Loading...
1/*
2 * LPDDR flash memory device operations. This module provides read, write,
3 * erase, lock/unlock support for LPDDR flash memories
4 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
6 * Many thanks to Roman Borisov for initial enabling
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 * TODO:
23 * Implement VPP management
24 * Implement XIP support
25 * Implement OTP support
26 */
27#include <linux/mtd/pfow.h>
28#include <linux/mtd/qinfo.h>
29#include <linux/slab.h>
30
31static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
32 size_t *retlen, u_char *buf);
33static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
34 size_t len, size_t *retlen, const u_char *buf);
35static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
36 unsigned long count, loff_t to, size_t *retlen);
37static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
38static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
39static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
40static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
41 size_t *retlen, void **mtdbuf, resource_size_t *phys);
42static void lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
43static int get_chip(struct map_info *map, struct flchip *chip, int mode);
44static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
45static void put_chip(struct map_info *map, struct flchip *chip);
46
47struct mtd_info *lpddr_cmdset(struct map_info *map)
48{
49 struct lpddr_private *lpddr = map->fldrv_priv;
50 struct flchip_shared *shared;
51 struct flchip *chip;
52 struct mtd_info *mtd;
53 int numchips;
54 int i, j;
55
56 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
57 if (!mtd) {
58 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
59 return NULL;
60 }
61 mtd->priv = map;
62 mtd->type = MTD_NORFLASH;
63
64 /* Fill in the default mtd operations */
65 mtd->read = lpddr_read;
66 mtd->type = MTD_NORFLASH;
67 mtd->flags = MTD_CAP_NORFLASH;
68 mtd->flags &= ~MTD_BIT_WRITEABLE;
69 mtd->erase = lpddr_erase;
70 mtd->write = lpddr_write_buffers;
71 mtd->writev = lpddr_writev;
72 mtd->read_oob = NULL;
73 mtd->write_oob = NULL;
74 mtd->sync = NULL;
75 mtd->lock = lpddr_lock;
76 mtd->unlock = lpddr_unlock;
77 mtd->suspend = NULL;
78 mtd->resume = NULL;
79 if (map_is_linear(map)) {
80 mtd->point = lpddr_point;
81 mtd->unpoint = lpddr_unpoint;
82 }
83 mtd->block_isbad = NULL;
84 mtd->block_markbad = NULL;
85 mtd->size = 1 << lpddr->qinfo->DevSizeShift;
86 mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
87 mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
88
89 shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
90 GFP_KERNEL);
91 if (!shared) {
92 kfree(lpddr);
93 kfree(mtd);
94 return NULL;
95 }
96
97 chip = &lpddr->chips[0];
98 numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
99 for (i = 0; i < numchips; i++) {
100 shared[i].writing = shared[i].erasing = NULL;
101 mutex_init(&shared[i].lock);
102 for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
103 *chip = lpddr->chips[i];
104 chip->start += j << lpddr->chipshift;
105 chip->oldstate = chip->state = FL_READY;
106 chip->priv = &shared[i];
107 /* those should be reset too since
108 they create memory references. */
109 init_waitqueue_head(&chip->wq);
110 mutex_init(&chip->mutex);
111 chip++;
112 }
113 }
114
115 return mtd;
116}
117EXPORT_SYMBOL(lpddr_cmdset);
118
119static int wait_for_ready(struct map_info *map, struct flchip *chip,
120 unsigned int chip_op_time)
121{
122 unsigned int timeo, reset_timeo, sleep_time;
123 unsigned int dsr;
124 flstate_t chip_state = chip->state;
125 int ret = 0;
126
127 /* set our timeout to 8 times the expected delay */
128 timeo = chip_op_time * 8;
129 if (!timeo)
130 timeo = 500000;
131 reset_timeo = timeo;
132 sleep_time = chip_op_time / 2;
133
134 for (;;) {
135 dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
136 if (dsr & DSR_READY_STATUS)
137 break;
138 if (!timeo) {
139 printk(KERN_ERR "%s: Flash timeout error state %d \n",
140 map->name, chip_state);
141 ret = -ETIME;
142 break;
143 }
144
145 /* OK Still waiting. Drop the lock, wait a while and retry. */
146 mutex_unlock(&chip->mutex);
147 if (sleep_time >= 1000000/HZ) {
148 /*
149 * Half of the normal delay still remaining
150 * can be performed with a sleeping delay instead
151 * of busy waiting.
152 */
153 msleep(sleep_time/1000);
154 timeo -= sleep_time;
155 sleep_time = 1000000/HZ;
156 } else {
157 udelay(1);
158 cond_resched();
159 timeo--;
160 }
161 mutex_lock(&chip->mutex);
162
163 while (chip->state != chip_state) {
164 /* Someone's suspended the operation: sleep */
165 DECLARE_WAITQUEUE(wait, current);
166 set_current_state(TASK_UNINTERRUPTIBLE);
167 add_wait_queue(&chip->wq, &wait);
168 mutex_unlock(&chip->mutex);
169 schedule();
170 remove_wait_queue(&chip->wq, &wait);
171 mutex_lock(&chip->mutex);
172 }
173 if (chip->erase_suspended || chip->write_suspended) {
174 /* Suspend has occurred while sleep: reset timeout */
175 timeo = reset_timeo;
176 chip->erase_suspended = chip->write_suspended = 0;
177 }
178 }
179 /* check status for errors */
180 if (dsr & DSR_ERR) {
181 /* Clear DSR*/
182 map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
183 printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
184 map->name, dsr);
185 print_drs_error(dsr);
186 ret = -EIO;
187 }
188 chip->state = FL_READY;
189 return ret;
190}
191
192static int get_chip(struct map_info *map, struct flchip *chip, int mode)
193{
194 int ret;
195 DECLARE_WAITQUEUE(wait, current);
196
197 retry:
198 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
199 && chip->state != FL_SYNCING) {
200 /*
201 * OK. We have possibility for contension on the write/erase
202 * operations which are global to the real chip and not per
203 * partition. So let's fight it over in the partition which
204 * currently has authority on the operation.
205 *
206 * The rules are as follows:
207 *
208 * - any write operation must own shared->writing.
209 *
210 * - any erase operation must own _both_ shared->writing and
211 * shared->erasing.
212 *
213 * - contension arbitration is handled in the owner's context.
214 *
215 * The 'shared' struct can be read and/or written only when
216 * its lock is taken.
217 */
218 struct flchip_shared *shared = chip->priv;
219 struct flchip *contender;
220 mutex_lock(&shared->lock);
221 contender = shared->writing;
222 if (contender && contender != chip) {
223 /*
224 * The engine to perform desired operation on this
225 * partition is already in use by someone else.
226 * Let's fight over it in the context of the chip
227 * currently using it. If it is possible to suspend,
228 * that other partition will do just that, otherwise
229 * it'll happily send us to sleep. In any case, when
230 * get_chip returns success we're clear to go ahead.
231 */
232 ret = mutex_trylock(&contender->mutex);
233 mutex_unlock(&shared->lock);
234 if (!ret)
235 goto retry;
236 mutex_unlock(&chip->mutex);
237 ret = chip_ready(map, contender, mode);
238 mutex_lock(&chip->mutex);
239
240 if (ret == -EAGAIN) {
241 mutex_unlock(&contender->mutex);
242 goto retry;
243 }
244 if (ret) {
245 mutex_unlock(&contender->mutex);
246 return ret;
247 }
248 mutex_lock(&shared->lock);
249
250 /* We should not own chip if it is already in FL_SYNCING
251 * state. Put contender and retry. */
252 if (chip->state == FL_SYNCING) {
253 put_chip(map, contender);
254 mutex_unlock(&contender->mutex);
255 goto retry;
256 }
257 mutex_unlock(&contender->mutex);
258 }
259
260 /* Check if we have suspended erase on this chip.
261 Must sleep in such a case. */
262 if (mode == FL_ERASING && shared->erasing
263 && shared->erasing->oldstate == FL_ERASING) {
264 mutex_unlock(&shared->lock);
265 set_current_state(TASK_UNINTERRUPTIBLE);
266 add_wait_queue(&chip->wq, &wait);
267 mutex_unlock(&chip->mutex);
268 schedule();
269 remove_wait_queue(&chip->wq, &wait);
270 mutex_lock(&chip->mutex);
271 goto retry;
272 }
273
274 /* We now own it */
275 shared->writing = chip;
276 if (mode == FL_ERASING)
277 shared->erasing = chip;
278 mutex_unlock(&shared->lock);
279 }
280
281 ret = chip_ready(map, chip, mode);
282 if (ret == -EAGAIN)
283 goto retry;
284
285 return ret;
286}
287
288static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
289{
290 struct lpddr_private *lpddr = map->fldrv_priv;
291 int ret = 0;
292 DECLARE_WAITQUEUE(wait, current);
293
294 /* Prevent setting state FL_SYNCING for chip in suspended state. */
295 if (FL_SYNCING == mode && FL_READY != chip->oldstate)
296 goto sleep;
297
298 switch (chip->state) {
299 case FL_READY:
300 case FL_JEDEC_QUERY:
301 return 0;
302
303 case FL_ERASING:
304 if (!lpddr->qinfo->SuspEraseSupp ||
305 !(mode == FL_READY || mode == FL_POINT))
306 goto sleep;
307
308 map_write(map, CMD(LPDDR_SUSPEND),
309 map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
310 chip->oldstate = FL_ERASING;
311 chip->state = FL_ERASE_SUSPENDING;
312 ret = wait_for_ready(map, chip, 0);
313 if (ret) {
314 /* Oops. something got wrong. */
315 /* Resume and pretend we weren't here. */
316 put_chip(map, chip);
317 printk(KERN_ERR "%s: suspend operation failed."
318 "State may be wrong \n", map->name);
319 return -EIO;
320 }
321 chip->erase_suspended = 1;
322 chip->state = FL_READY;
323 return 0;
324 /* Erase suspend */
325 case FL_POINT:
326 /* Only if there's no operation suspended... */
327 if (mode == FL_READY && chip->oldstate == FL_READY)
328 return 0;
329
330 default:
331sleep:
332 set_current_state(TASK_UNINTERRUPTIBLE);
333 add_wait_queue(&chip->wq, &wait);
334 mutex_unlock(&chip->mutex);
335 schedule();
336 remove_wait_queue(&chip->wq, &wait);
337 mutex_lock(&chip->mutex);
338 return -EAGAIN;
339 }
340}
341
342static void put_chip(struct map_info *map, struct flchip *chip)
343{
344 if (chip->priv) {
345 struct flchip_shared *shared = chip->priv;
346 mutex_lock(&shared->lock);
347 if (shared->writing == chip && chip->oldstate == FL_READY) {
348 /* We own the ability to write, but we're done */
349 shared->writing = shared->erasing;
350 if (shared->writing && shared->writing != chip) {
351 /* give back the ownership */
352 struct flchip *loaner = shared->writing;
353 mutex_lock(&loaner->mutex);
354 mutex_unlock(&shared->lock);
355 mutex_unlock(&chip->mutex);
356 put_chip(map, loaner);
357 mutex_lock(&chip->mutex);
358 mutex_unlock(&loaner->mutex);
359 wake_up(&chip->wq);
360 return;
361 }
362 shared->erasing = NULL;
363 shared->writing = NULL;
364 } else if (shared->erasing == chip && shared->writing != chip) {
365 /*
366 * We own the ability to erase without the ability
367 * to write, which means the erase was suspended
368 * and some other partition is currently writing.
369 * Don't let the switch below mess things up since
370 * we don't have ownership to resume anything.
371 */
372 mutex_unlock(&shared->lock);
373 wake_up(&chip->wq);
374 return;
375 }
376 mutex_unlock(&shared->lock);
377 }
378
379 switch (chip->oldstate) {
380 case FL_ERASING:
381 map_write(map, CMD(LPDDR_RESUME),
382 map->pfow_base + PFOW_COMMAND_CODE);
383 map_write(map, CMD(LPDDR_START_EXECUTION),
384 map->pfow_base + PFOW_COMMAND_EXECUTE);
385 chip->oldstate = FL_READY;
386 chip->state = FL_ERASING;
387 break;
388 case FL_READY:
389 break;
390 default:
391 printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
392 map->name, chip->oldstate);
393 }
394 wake_up(&chip->wq);
395}
396
397int do_write_buffer(struct map_info *map, struct flchip *chip,
398 unsigned long adr, const struct kvec **pvec,
399 unsigned long *pvec_seek, int len)
400{
401 struct lpddr_private *lpddr = map->fldrv_priv;
402 map_word datum;
403 int ret, wbufsize, word_gap, words;
404 const struct kvec *vec;
405 unsigned long vec_seek;
406 unsigned long prog_buf_ofs;
407
408 wbufsize = 1 << lpddr->qinfo->BufSizeShift;
409
410 mutex_lock(&chip->mutex);
411 ret = get_chip(map, chip, FL_WRITING);
412 if (ret) {
413 mutex_unlock(&chip->mutex);
414 return ret;
415 }
416 /* Figure out the number of words to write */
417 word_gap = (-adr & (map_bankwidth(map)-1));
418 words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
419 if (!word_gap) {
420 words--;
421 } else {
422 word_gap = map_bankwidth(map) - word_gap;
423 adr -= word_gap;
424 datum = map_word_ff(map);
425 }
426 /* Write data */
427 /* Get the program buffer offset from PFOW register data first*/
428 prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
429 map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
430 vec = *pvec;
431 vec_seek = *pvec_seek;
432 do {
433 int n = map_bankwidth(map) - word_gap;
434
435 if (n > vec->iov_len - vec_seek)
436 n = vec->iov_len - vec_seek;
437 if (n > len)
438 n = len;
439
440 if (!word_gap && (len < map_bankwidth(map)))
441 datum = map_word_ff(map);
442
443 datum = map_word_load_partial(map, datum,
444 vec->iov_base + vec_seek, word_gap, n);
445
446 len -= n;
447 word_gap += n;
448 if (!len || word_gap == map_bankwidth(map)) {
449 map_write(map, datum, prog_buf_ofs);
450 prog_buf_ofs += map_bankwidth(map);
451 word_gap = 0;
452 }
453
454 vec_seek += n;
455 if (vec_seek == vec->iov_len) {
456 vec++;
457 vec_seek = 0;
458 }
459 } while (len);
460 *pvec = vec;
461 *pvec_seek = vec_seek;
462
463 /* GO GO GO */
464 send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
465 chip->state = FL_WRITING;
466 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
467 if (ret) {
468 printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
469 map->name, ret, adr);
470 goto out;
471 }
472
473 out: put_chip(map, chip);
474 mutex_unlock(&chip->mutex);
475 return ret;
476}
477
478int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
479{
480 struct map_info *map = mtd->priv;
481 struct lpddr_private *lpddr = map->fldrv_priv;
482 int chipnum = adr >> lpddr->chipshift;
483 struct flchip *chip = &lpddr->chips[chipnum];
484 int ret;
485
486 mutex_lock(&chip->mutex);
487 ret = get_chip(map, chip, FL_ERASING);
488 if (ret) {
489 mutex_unlock(&chip->mutex);
490 return ret;
491 }
492 send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
493 chip->state = FL_ERASING;
494 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
495 if (ret) {
496 printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
497 map->name, ret, adr);
498 goto out;
499 }
500 out: put_chip(map, chip);
501 mutex_unlock(&chip->mutex);
502 return ret;
503}
504
505static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
506 size_t *retlen, u_char *buf)
507{
508 struct map_info *map = mtd->priv;
509 struct lpddr_private *lpddr = map->fldrv_priv;
510 int chipnum = adr >> lpddr->chipshift;
511 struct flchip *chip = &lpddr->chips[chipnum];
512 int ret = 0;
513
514 mutex_lock(&chip->mutex);
515 ret = get_chip(map, chip, FL_READY);
516 if (ret) {
517 mutex_unlock(&chip->mutex);
518 return ret;
519 }
520
521 map_copy_from(map, buf, adr, len);
522 *retlen = len;
523
524 put_chip(map, chip);
525 mutex_unlock(&chip->mutex);
526 return ret;
527}
528
529static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
530 size_t *retlen, void **mtdbuf, resource_size_t *phys)
531{
532 struct map_info *map = mtd->priv;
533 struct lpddr_private *lpddr = map->fldrv_priv;
534 int chipnum = adr >> lpddr->chipshift;
535 unsigned long ofs, last_end = 0;
536 struct flchip *chip = &lpddr->chips[chipnum];
537 int ret = 0;
538
539 if (!map->virt || (adr + len > mtd->size))
540 return -EINVAL;
541
542 /* ofs: offset within the first chip that the first read should start */
543 ofs = adr - (chipnum << lpddr->chipshift);
544
545 *mtdbuf = (void *)map->virt + chip->start + ofs;
546 *retlen = 0;
547
548 while (len) {
549 unsigned long thislen;
550
551 if (chipnum >= lpddr->numchips)
552 break;
553
554 /* We cannot point across chips that are virtually disjoint */
555 if (!last_end)
556 last_end = chip->start;
557 else if (chip->start != last_end)
558 break;
559
560 if ((len + ofs - 1) >> lpddr->chipshift)
561 thislen = (1<<lpddr->chipshift) - ofs;
562 else
563 thislen = len;
564 /* get the chip */
565 mutex_lock(&chip->mutex);
566 ret = get_chip(map, chip, FL_POINT);
567 mutex_unlock(&chip->mutex);
568 if (ret)
569 break;
570
571 chip->state = FL_POINT;
572 chip->ref_point_counter++;
573 *retlen += thislen;
574 len -= thislen;
575
576 ofs = 0;
577 last_end += 1 << lpddr->chipshift;
578 chipnum++;
579 chip = &lpddr->chips[chipnum];
580 }
581 return 0;
582}
583
584static void lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
585{
586 struct map_info *map = mtd->priv;
587 struct lpddr_private *lpddr = map->fldrv_priv;
588 int chipnum = adr >> lpddr->chipshift;
589 unsigned long ofs;
590
591 /* ofs: offset within the first chip that the first read should start */
592 ofs = adr - (chipnum << lpddr->chipshift);
593
594 while (len) {
595 unsigned long thislen;
596 struct flchip *chip;
597
598 chip = &lpddr->chips[chipnum];
599 if (chipnum >= lpddr->numchips)
600 break;
601
602 if ((len + ofs - 1) >> lpddr->chipshift)
603 thislen = (1<<lpddr->chipshift) - ofs;
604 else
605 thislen = len;
606
607 mutex_lock(&chip->mutex);
608 if (chip->state == FL_POINT) {
609 chip->ref_point_counter--;
610 if (chip->ref_point_counter == 0)
611 chip->state = FL_READY;
612 } else
613 printk(KERN_WARNING "%s: Warning: unpoint called on non"
614 "pointed region\n", map->name);
615
616 put_chip(map, chip);
617 mutex_unlock(&chip->mutex);
618
619 len -= thislen;
620 ofs = 0;
621 chipnum++;
622 }
623}
624
625static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
626 size_t *retlen, const u_char *buf)
627{
628 struct kvec vec;
629
630 vec.iov_base = (void *) buf;
631 vec.iov_len = len;
632
633 return lpddr_writev(mtd, &vec, 1, to, retlen);
634}
635
636
637static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
638 unsigned long count, loff_t to, size_t *retlen)
639{
640 struct map_info *map = mtd->priv;
641 struct lpddr_private *lpddr = map->fldrv_priv;
642 int ret = 0;
643 int chipnum;
644 unsigned long ofs, vec_seek, i;
645 int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
646
647 size_t len = 0;
648
649 for (i = 0; i < count; i++)
650 len += vecs[i].iov_len;
651
652 *retlen = 0;
653 if (!len)
654 return 0;
655
656 chipnum = to >> lpddr->chipshift;
657
658 ofs = to;
659 vec_seek = 0;
660
661 do {
662 /* We must not cross write block boundaries */
663 int size = wbufsize - (ofs & (wbufsize-1));
664
665 if (size > len)
666 size = len;
667
668 ret = do_write_buffer(map, &lpddr->chips[chipnum],
669 ofs, &vecs, &vec_seek, size);
670 if (ret)
671 return ret;
672
673 ofs += size;
674 (*retlen) += size;
675 len -= size;
676
677 /* Be nice and reschedule with the chip in a usable
678 * state for other processes */
679 cond_resched();
680
681 } while (len);
682
683 return 0;
684}
685
686static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
687{
688 unsigned long ofs, len;
689 int ret;
690 struct map_info *map = mtd->priv;
691 struct lpddr_private *lpddr = map->fldrv_priv;
692 int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
693
694 ofs = instr->addr;
695 len = instr->len;
696
697 if (ofs > mtd->size || (len + ofs) > mtd->size)
698 return -EINVAL;
699
700 while (len > 0) {
701 ret = do_erase_oneblock(mtd, ofs);
702 if (ret)
703 return ret;
704 ofs += size;
705 len -= size;
706 }
707 instr->state = MTD_ERASE_DONE;
708 mtd_erase_callback(instr);
709
710 return 0;
711}
712
713#define DO_XXLOCK_LOCK 1
714#define DO_XXLOCK_UNLOCK 2
715int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
716{
717 int ret = 0;
718 struct map_info *map = mtd->priv;
719 struct lpddr_private *lpddr = map->fldrv_priv;
720 int chipnum = adr >> lpddr->chipshift;
721 struct flchip *chip = &lpddr->chips[chipnum];
722
723 mutex_lock(&chip->mutex);
724 ret = get_chip(map, chip, FL_LOCKING);
725 if (ret) {
726 mutex_unlock(&chip->mutex);
727 return ret;
728 }
729
730 if (thunk == DO_XXLOCK_LOCK) {
731 send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
732 chip->state = FL_LOCKING;
733 } else if (thunk == DO_XXLOCK_UNLOCK) {
734 send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
735 chip->state = FL_UNLOCKING;
736 } else
737 BUG();
738
739 ret = wait_for_ready(map, chip, 1);
740 if (ret) {
741 printk(KERN_ERR "%s: block unlock error status %d \n",
742 map->name, ret);
743 goto out;
744 }
745out: put_chip(map, chip);
746 mutex_unlock(&chip->mutex);
747 return ret;
748}
749
750static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
751{
752 return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
753}
754
755static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
756{
757 return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
758}
759
760int word_program(struct map_info *map, loff_t adr, uint32_t curval)
761{
762 int ret;
763 struct lpddr_private *lpddr = map->fldrv_priv;
764 int chipnum = adr >> lpddr->chipshift;
765 struct flchip *chip = &lpddr->chips[chipnum];
766
767 mutex_lock(&chip->mutex);
768 ret = get_chip(map, chip, FL_WRITING);
769 if (ret) {
770 mutex_unlock(&chip->mutex);
771 return ret;
772 }
773
774 send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval);
775
776 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime));
777 if (ret) {
778 printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n",
779 map->name, adr, curval);
780 goto out;
781 }
782
783out: put_chip(map, chip);
784 mutex_unlock(&chip->mutex);
785 return ret;
786}
787
788MODULE_LICENSE("GPL");
789MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
790MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
1/*
2 * LPDDR flash memory device operations. This module provides read, write,
3 * erase, lock/unlock support for LPDDR flash memories
4 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
6 * Many thanks to Roman Borisov for initial enabling
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 * TODO:
23 * Implement VPP management
24 * Implement XIP support
25 * Implement OTP support
26 */
27#include <linux/mtd/pfow.h>
28#include <linux/mtd/qinfo.h>
29#include <linux/slab.h>
30#include <linux/module.h>
31
32static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
33 size_t *retlen, u_char *buf);
34static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
35 size_t len, size_t *retlen, const u_char *buf);
36static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
37 unsigned long count, loff_t to, size_t *retlen);
38static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
39static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
40static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
41static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
42 size_t *retlen, void **mtdbuf, resource_size_t *phys);
43static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
44static int get_chip(struct map_info *map, struct flchip *chip, int mode);
45static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
46static void put_chip(struct map_info *map, struct flchip *chip);
47
48struct mtd_info *lpddr_cmdset(struct map_info *map)
49{
50 struct lpddr_private *lpddr = map->fldrv_priv;
51 struct flchip_shared *shared;
52 struct flchip *chip;
53 struct mtd_info *mtd;
54 int numchips;
55 int i, j;
56
57 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
58 if (!mtd) {
59 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
60 return NULL;
61 }
62 mtd->priv = map;
63 mtd->type = MTD_NORFLASH;
64
65 /* Fill in the default mtd operations */
66 mtd->_read = lpddr_read;
67 mtd->type = MTD_NORFLASH;
68 mtd->flags = MTD_CAP_NORFLASH;
69 mtd->flags &= ~MTD_BIT_WRITEABLE;
70 mtd->_erase = lpddr_erase;
71 mtd->_write = lpddr_write_buffers;
72 mtd->_writev = lpddr_writev;
73 mtd->_lock = lpddr_lock;
74 mtd->_unlock = lpddr_unlock;
75 if (map_is_linear(map)) {
76 mtd->_point = lpddr_point;
77 mtd->_unpoint = lpddr_unpoint;
78 }
79 mtd->size = 1 << lpddr->qinfo->DevSizeShift;
80 mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
81 mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
82
83 shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
84 GFP_KERNEL);
85 if (!shared) {
86 kfree(lpddr);
87 kfree(mtd);
88 return NULL;
89 }
90
91 chip = &lpddr->chips[0];
92 numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
93 for (i = 0; i < numchips; i++) {
94 shared[i].writing = shared[i].erasing = NULL;
95 mutex_init(&shared[i].lock);
96 for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
97 *chip = lpddr->chips[i];
98 chip->start += j << lpddr->chipshift;
99 chip->oldstate = chip->state = FL_READY;
100 chip->priv = &shared[i];
101 /* those should be reset too since
102 they create memory references. */
103 init_waitqueue_head(&chip->wq);
104 mutex_init(&chip->mutex);
105 chip++;
106 }
107 }
108
109 return mtd;
110}
111EXPORT_SYMBOL(lpddr_cmdset);
112
113static int wait_for_ready(struct map_info *map, struct flchip *chip,
114 unsigned int chip_op_time)
115{
116 unsigned int timeo, reset_timeo, sleep_time;
117 unsigned int dsr;
118 flstate_t chip_state = chip->state;
119 int ret = 0;
120
121 /* set our timeout to 8 times the expected delay */
122 timeo = chip_op_time * 8;
123 if (!timeo)
124 timeo = 500000;
125 reset_timeo = timeo;
126 sleep_time = chip_op_time / 2;
127
128 for (;;) {
129 dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
130 if (dsr & DSR_READY_STATUS)
131 break;
132 if (!timeo) {
133 printk(KERN_ERR "%s: Flash timeout error state %d \n",
134 map->name, chip_state);
135 ret = -ETIME;
136 break;
137 }
138
139 /* OK Still waiting. Drop the lock, wait a while and retry. */
140 mutex_unlock(&chip->mutex);
141 if (sleep_time >= 1000000/HZ) {
142 /*
143 * Half of the normal delay still remaining
144 * can be performed with a sleeping delay instead
145 * of busy waiting.
146 */
147 msleep(sleep_time/1000);
148 timeo -= sleep_time;
149 sleep_time = 1000000/HZ;
150 } else {
151 udelay(1);
152 cond_resched();
153 timeo--;
154 }
155 mutex_lock(&chip->mutex);
156
157 while (chip->state != chip_state) {
158 /* Someone's suspended the operation: sleep */
159 DECLARE_WAITQUEUE(wait, current);
160 set_current_state(TASK_UNINTERRUPTIBLE);
161 add_wait_queue(&chip->wq, &wait);
162 mutex_unlock(&chip->mutex);
163 schedule();
164 remove_wait_queue(&chip->wq, &wait);
165 mutex_lock(&chip->mutex);
166 }
167 if (chip->erase_suspended || chip->write_suspended) {
168 /* Suspend has occurred while sleep: reset timeout */
169 timeo = reset_timeo;
170 chip->erase_suspended = chip->write_suspended = 0;
171 }
172 }
173 /* check status for errors */
174 if (dsr & DSR_ERR) {
175 /* Clear DSR*/
176 map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
177 printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
178 map->name, dsr);
179 print_drs_error(dsr);
180 ret = -EIO;
181 }
182 chip->state = FL_READY;
183 return ret;
184}
185
186static int get_chip(struct map_info *map, struct flchip *chip, int mode)
187{
188 int ret;
189 DECLARE_WAITQUEUE(wait, current);
190
191 retry:
192 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
193 && chip->state != FL_SYNCING) {
194 /*
195 * OK. We have possibility for contension on the write/erase
196 * operations which are global to the real chip and not per
197 * partition. So let's fight it over in the partition which
198 * currently has authority on the operation.
199 *
200 * The rules are as follows:
201 *
202 * - any write operation must own shared->writing.
203 *
204 * - any erase operation must own _both_ shared->writing and
205 * shared->erasing.
206 *
207 * - contension arbitration is handled in the owner's context.
208 *
209 * The 'shared' struct can be read and/or written only when
210 * its lock is taken.
211 */
212 struct flchip_shared *shared = chip->priv;
213 struct flchip *contender;
214 mutex_lock(&shared->lock);
215 contender = shared->writing;
216 if (contender && contender != chip) {
217 /*
218 * The engine to perform desired operation on this
219 * partition is already in use by someone else.
220 * Let's fight over it in the context of the chip
221 * currently using it. If it is possible to suspend,
222 * that other partition will do just that, otherwise
223 * it'll happily send us to sleep. In any case, when
224 * get_chip returns success we're clear to go ahead.
225 */
226 ret = mutex_trylock(&contender->mutex);
227 mutex_unlock(&shared->lock);
228 if (!ret)
229 goto retry;
230 mutex_unlock(&chip->mutex);
231 ret = chip_ready(map, contender, mode);
232 mutex_lock(&chip->mutex);
233
234 if (ret == -EAGAIN) {
235 mutex_unlock(&contender->mutex);
236 goto retry;
237 }
238 if (ret) {
239 mutex_unlock(&contender->mutex);
240 return ret;
241 }
242 mutex_lock(&shared->lock);
243
244 /* We should not own chip if it is already in FL_SYNCING
245 * state. Put contender and retry. */
246 if (chip->state == FL_SYNCING) {
247 put_chip(map, contender);
248 mutex_unlock(&contender->mutex);
249 goto retry;
250 }
251 mutex_unlock(&contender->mutex);
252 }
253
254 /* Check if we have suspended erase on this chip.
255 Must sleep in such a case. */
256 if (mode == FL_ERASING && shared->erasing
257 && shared->erasing->oldstate == FL_ERASING) {
258 mutex_unlock(&shared->lock);
259 set_current_state(TASK_UNINTERRUPTIBLE);
260 add_wait_queue(&chip->wq, &wait);
261 mutex_unlock(&chip->mutex);
262 schedule();
263 remove_wait_queue(&chip->wq, &wait);
264 mutex_lock(&chip->mutex);
265 goto retry;
266 }
267
268 /* We now own it */
269 shared->writing = chip;
270 if (mode == FL_ERASING)
271 shared->erasing = chip;
272 mutex_unlock(&shared->lock);
273 }
274
275 ret = chip_ready(map, chip, mode);
276 if (ret == -EAGAIN)
277 goto retry;
278
279 return ret;
280}
281
282static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
283{
284 struct lpddr_private *lpddr = map->fldrv_priv;
285 int ret = 0;
286 DECLARE_WAITQUEUE(wait, current);
287
288 /* Prevent setting state FL_SYNCING for chip in suspended state. */
289 if (FL_SYNCING == mode && FL_READY != chip->oldstate)
290 goto sleep;
291
292 switch (chip->state) {
293 case FL_READY:
294 case FL_JEDEC_QUERY:
295 return 0;
296
297 case FL_ERASING:
298 if (!lpddr->qinfo->SuspEraseSupp ||
299 !(mode == FL_READY || mode == FL_POINT))
300 goto sleep;
301
302 map_write(map, CMD(LPDDR_SUSPEND),
303 map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
304 chip->oldstate = FL_ERASING;
305 chip->state = FL_ERASE_SUSPENDING;
306 ret = wait_for_ready(map, chip, 0);
307 if (ret) {
308 /* Oops. something got wrong. */
309 /* Resume and pretend we weren't here. */
310 put_chip(map, chip);
311 printk(KERN_ERR "%s: suspend operation failed."
312 "State may be wrong \n", map->name);
313 return -EIO;
314 }
315 chip->erase_suspended = 1;
316 chip->state = FL_READY;
317 return 0;
318 /* Erase suspend */
319 case FL_POINT:
320 /* Only if there's no operation suspended... */
321 if (mode == FL_READY && chip->oldstate == FL_READY)
322 return 0;
323
324 default:
325sleep:
326 set_current_state(TASK_UNINTERRUPTIBLE);
327 add_wait_queue(&chip->wq, &wait);
328 mutex_unlock(&chip->mutex);
329 schedule();
330 remove_wait_queue(&chip->wq, &wait);
331 mutex_lock(&chip->mutex);
332 return -EAGAIN;
333 }
334}
335
336static void put_chip(struct map_info *map, struct flchip *chip)
337{
338 if (chip->priv) {
339 struct flchip_shared *shared = chip->priv;
340 mutex_lock(&shared->lock);
341 if (shared->writing == chip && chip->oldstate == FL_READY) {
342 /* We own the ability to write, but we're done */
343 shared->writing = shared->erasing;
344 if (shared->writing && shared->writing != chip) {
345 /* give back the ownership */
346 struct flchip *loaner = shared->writing;
347 mutex_lock(&loaner->mutex);
348 mutex_unlock(&shared->lock);
349 mutex_unlock(&chip->mutex);
350 put_chip(map, loaner);
351 mutex_lock(&chip->mutex);
352 mutex_unlock(&loaner->mutex);
353 wake_up(&chip->wq);
354 return;
355 }
356 shared->erasing = NULL;
357 shared->writing = NULL;
358 } else if (shared->erasing == chip && shared->writing != chip) {
359 /*
360 * We own the ability to erase without the ability
361 * to write, which means the erase was suspended
362 * and some other partition is currently writing.
363 * Don't let the switch below mess things up since
364 * we don't have ownership to resume anything.
365 */
366 mutex_unlock(&shared->lock);
367 wake_up(&chip->wq);
368 return;
369 }
370 mutex_unlock(&shared->lock);
371 }
372
373 switch (chip->oldstate) {
374 case FL_ERASING:
375 map_write(map, CMD(LPDDR_RESUME),
376 map->pfow_base + PFOW_COMMAND_CODE);
377 map_write(map, CMD(LPDDR_START_EXECUTION),
378 map->pfow_base + PFOW_COMMAND_EXECUTE);
379 chip->oldstate = FL_READY;
380 chip->state = FL_ERASING;
381 break;
382 case FL_READY:
383 break;
384 default:
385 printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
386 map->name, chip->oldstate);
387 }
388 wake_up(&chip->wq);
389}
390
391int do_write_buffer(struct map_info *map, struct flchip *chip,
392 unsigned long adr, const struct kvec **pvec,
393 unsigned long *pvec_seek, int len)
394{
395 struct lpddr_private *lpddr = map->fldrv_priv;
396 map_word datum;
397 int ret, wbufsize, word_gap, words;
398 const struct kvec *vec;
399 unsigned long vec_seek;
400 unsigned long prog_buf_ofs;
401
402 wbufsize = 1 << lpddr->qinfo->BufSizeShift;
403
404 mutex_lock(&chip->mutex);
405 ret = get_chip(map, chip, FL_WRITING);
406 if (ret) {
407 mutex_unlock(&chip->mutex);
408 return ret;
409 }
410 /* Figure out the number of words to write */
411 word_gap = (-adr & (map_bankwidth(map)-1));
412 words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
413 if (!word_gap) {
414 words--;
415 } else {
416 word_gap = map_bankwidth(map) - word_gap;
417 adr -= word_gap;
418 datum = map_word_ff(map);
419 }
420 /* Write data */
421 /* Get the program buffer offset from PFOW register data first*/
422 prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
423 map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
424 vec = *pvec;
425 vec_seek = *pvec_seek;
426 do {
427 int n = map_bankwidth(map) - word_gap;
428
429 if (n > vec->iov_len - vec_seek)
430 n = vec->iov_len - vec_seek;
431 if (n > len)
432 n = len;
433
434 if (!word_gap && (len < map_bankwidth(map)))
435 datum = map_word_ff(map);
436
437 datum = map_word_load_partial(map, datum,
438 vec->iov_base + vec_seek, word_gap, n);
439
440 len -= n;
441 word_gap += n;
442 if (!len || word_gap == map_bankwidth(map)) {
443 map_write(map, datum, prog_buf_ofs);
444 prog_buf_ofs += map_bankwidth(map);
445 word_gap = 0;
446 }
447
448 vec_seek += n;
449 if (vec_seek == vec->iov_len) {
450 vec++;
451 vec_seek = 0;
452 }
453 } while (len);
454 *pvec = vec;
455 *pvec_seek = vec_seek;
456
457 /* GO GO GO */
458 send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
459 chip->state = FL_WRITING;
460 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
461 if (ret) {
462 printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
463 map->name, ret, adr);
464 goto out;
465 }
466
467 out: put_chip(map, chip);
468 mutex_unlock(&chip->mutex);
469 return ret;
470}
471
472int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
473{
474 struct map_info *map = mtd->priv;
475 struct lpddr_private *lpddr = map->fldrv_priv;
476 int chipnum = adr >> lpddr->chipshift;
477 struct flchip *chip = &lpddr->chips[chipnum];
478 int ret;
479
480 mutex_lock(&chip->mutex);
481 ret = get_chip(map, chip, FL_ERASING);
482 if (ret) {
483 mutex_unlock(&chip->mutex);
484 return ret;
485 }
486 send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
487 chip->state = FL_ERASING;
488 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
489 if (ret) {
490 printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
491 map->name, ret, adr);
492 goto out;
493 }
494 out: put_chip(map, chip);
495 mutex_unlock(&chip->mutex);
496 return ret;
497}
498
499static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
500 size_t *retlen, u_char *buf)
501{
502 struct map_info *map = mtd->priv;
503 struct lpddr_private *lpddr = map->fldrv_priv;
504 int chipnum = adr >> lpddr->chipshift;
505 struct flchip *chip = &lpddr->chips[chipnum];
506 int ret = 0;
507
508 mutex_lock(&chip->mutex);
509 ret = get_chip(map, chip, FL_READY);
510 if (ret) {
511 mutex_unlock(&chip->mutex);
512 return ret;
513 }
514
515 map_copy_from(map, buf, adr, len);
516 *retlen = len;
517
518 put_chip(map, chip);
519 mutex_unlock(&chip->mutex);
520 return ret;
521}
522
523static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
524 size_t *retlen, void **mtdbuf, resource_size_t *phys)
525{
526 struct map_info *map = mtd->priv;
527 struct lpddr_private *lpddr = map->fldrv_priv;
528 int chipnum = adr >> lpddr->chipshift;
529 unsigned long ofs, last_end = 0;
530 struct flchip *chip = &lpddr->chips[chipnum];
531 int ret = 0;
532
533 if (!map->virt)
534 return -EINVAL;
535
536 /* ofs: offset within the first chip that the first read should start */
537 ofs = adr - (chipnum << lpddr->chipshift);
538 *mtdbuf = (void *)map->virt + chip->start + ofs;
539
540 while (len) {
541 unsigned long thislen;
542
543 if (chipnum >= lpddr->numchips)
544 break;
545
546 /* We cannot point across chips that are virtually disjoint */
547 if (!last_end)
548 last_end = chip->start;
549 else if (chip->start != last_end)
550 break;
551
552 if ((len + ofs - 1) >> lpddr->chipshift)
553 thislen = (1<<lpddr->chipshift) - ofs;
554 else
555 thislen = len;
556 /* get the chip */
557 mutex_lock(&chip->mutex);
558 ret = get_chip(map, chip, FL_POINT);
559 mutex_unlock(&chip->mutex);
560 if (ret)
561 break;
562
563 chip->state = FL_POINT;
564 chip->ref_point_counter++;
565 *retlen += thislen;
566 len -= thislen;
567
568 ofs = 0;
569 last_end += 1 << lpddr->chipshift;
570 chipnum++;
571 chip = &lpddr->chips[chipnum];
572 }
573 return 0;
574}
575
576static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
577{
578 struct map_info *map = mtd->priv;
579 struct lpddr_private *lpddr = map->fldrv_priv;
580 int chipnum = adr >> lpddr->chipshift, err = 0;
581 unsigned long ofs;
582
583 /* ofs: offset within the first chip that the first read should start */
584 ofs = adr - (chipnum << lpddr->chipshift);
585
586 while (len) {
587 unsigned long thislen;
588 struct flchip *chip;
589
590 chip = &lpddr->chips[chipnum];
591 if (chipnum >= lpddr->numchips)
592 break;
593
594 if ((len + ofs - 1) >> lpddr->chipshift)
595 thislen = (1<<lpddr->chipshift) - ofs;
596 else
597 thislen = len;
598
599 mutex_lock(&chip->mutex);
600 if (chip->state == FL_POINT) {
601 chip->ref_point_counter--;
602 if (chip->ref_point_counter == 0)
603 chip->state = FL_READY;
604 } else {
605 printk(KERN_WARNING "%s: Warning: unpoint called on non"
606 "pointed region\n", map->name);
607 err = -EINVAL;
608 }
609
610 put_chip(map, chip);
611 mutex_unlock(&chip->mutex);
612
613 len -= thislen;
614 ofs = 0;
615 chipnum++;
616 }
617
618 return err;
619}
620
621static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
622 size_t *retlen, const u_char *buf)
623{
624 struct kvec vec;
625
626 vec.iov_base = (void *) buf;
627 vec.iov_len = len;
628
629 return lpddr_writev(mtd, &vec, 1, to, retlen);
630}
631
632
633static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
634 unsigned long count, loff_t to, size_t *retlen)
635{
636 struct map_info *map = mtd->priv;
637 struct lpddr_private *lpddr = map->fldrv_priv;
638 int ret = 0;
639 int chipnum;
640 unsigned long ofs, vec_seek, i;
641 int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
642 size_t len = 0;
643
644 for (i = 0; i < count; i++)
645 len += vecs[i].iov_len;
646
647 if (!len)
648 return 0;
649
650 chipnum = to >> lpddr->chipshift;
651
652 ofs = to;
653 vec_seek = 0;
654
655 do {
656 /* We must not cross write block boundaries */
657 int size = wbufsize - (ofs & (wbufsize-1));
658
659 if (size > len)
660 size = len;
661
662 ret = do_write_buffer(map, &lpddr->chips[chipnum],
663 ofs, &vecs, &vec_seek, size);
664 if (ret)
665 return ret;
666
667 ofs += size;
668 (*retlen) += size;
669 len -= size;
670
671 /* Be nice and reschedule with the chip in a usable
672 * state for other processes */
673 cond_resched();
674
675 } while (len);
676
677 return 0;
678}
679
680static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
681{
682 unsigned long ofs, len;
683 int ret;
684 struct map_info *map = mtd->priv;
685 struct lpddr_private *lpddr = map->fldrv_priv;
686 int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
687
688 ofs = instr->addr;
689 len = instr->len;
690
691 while (len > 0) {
692 ret = do_erase_oneblock(mtd, ofs);
693 if (ret)
694 return ret;
695 ofs += size;
696 len -= size;
697 }
698 instr->state = MTD_ERASE_DONE;
699 mtd_erase_callback(instr);
700
701 return 0;
702}
703
704#define DO_XXLOCK_LOCK 1
705#define DO_XXLOCK_UNLOCK 2
706int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
707{
708 int ret = 0;
709 struct map_info *map = mtd->priv;
710 struct lpddr_private *lpddr = map->fldrv_priv;
711 int chipnum = adr >> lpddr->chipshift;
712 struct flchip *chip = &lpddr->chips[chipnum];
713
714 mutex_lock(&chip->mutex);
715 ret = get_chip(map, chip, FL_LOCKING);
716 if (ret) {
717 mutex_unlock(&chip->mutex);
718 return ret;
719 }
720
721 if (thunk == DO_XXLOCK_LOCK) {
722 send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
723 chip->state = FL_LOCKING;
724 } else if (thunk == DO_XXLOCK_UNLOCK) {
725 send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
726 chip->state = FL_UNLOCKING;
727 } else
728 BUG();
729
730 ret = wait_for_ready(map, chip, 1);
731 if (ret) {
732 printk(KERN_ERR "%s: block unlock error status %d \n",
733 map->name, ret);
734 goto out;
735 }
736out: put_chip(map, chip);
737 mutex_unlock(&chip->mutex);
738 return ret;
739}
740
741static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
742{
743 return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
744}
745
746static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
747{
748 return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
749}
750
751int word_program(struct map_info *map, loff_t adr, uint32_t curval)
752{
753 int ret;
754 struct lpddr_private *lpddr = map->fldrv_priv;
755 int chipnum = adr >> lpddr->chipshift;
756 struct flchip *chip = &lpddr->chips[chipnum];
757
758 mutex_lock(&chip->mutex);
759 ret = get_chip(map, chip, FL_WRITING);
760 if (ret) {
761 mutex_unlock(&chip->mutex);
762 return ret;
763 }
764
765 send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval);
766
767 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime));
768 if (ret) {
769 printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n",
770 map->name, adr, curval);
771 goto out;
772 }
773
774out: put_chip(map, chip);
775 mutex_unlock(&chip->mutex);
776 return ret;
777}
778
779MODULE_LICENSE("GPL");
780MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
781MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");