Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * LPDDR flash memory device operations. This module provides read, write,
  3 * erase, lock/unlock support for LPDDR flash memories
  4 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
  5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
  6 * Many thanks to Roman Borisov for initial enabling
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License
 10 * as published by the Free Software Foundation; either version 2
 11 * of the License, or (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 21 * 02110-1301, USA.
 22 * TODO:
 23 * Implement VPP management
 24 * Implement XIP support
 25 * Implement OTP support
 26 */
 27#include <linux/mtd/pfow.h>
 28#include <linux/mtd/qinfo.h>
 29#include <linux/slab.h>
 
 30
 31static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
 32					size_t *retlen, u_char *buf);
 33static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
 34				size_t len, size_t *retlen, const u_char *buf);
 35static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
 36				unsigned long count, loff_t to, size_t *retlen);
 37static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
 38static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 39static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 40static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
 41			size_t *retlen, void **mtdbuf, resource_size_t *phys);
 42static void lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
 43static int get_chip(struct map_info *map, struct flchip *chip, int mode);
 44static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
 45static void put_chip(struct map_info *map, struct flchip *chip);
 46
 47struct mtd_info *lpddr_cmdset(struct map_info *map)
 48{
 49	struct lpddr_private *lpddr = map->fldrv_priv;
 50	struct flchip_shared *shared;
 51	struct flchip *chip;
 52	struct mtd_info *mtd;
 53	int numchips;
 54	int i, j;
 55
 56	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 57	if (!mtd) {
 58		printk(KERN_ERR "Failed to allocate memory for MTD device\n");
 59		return NULL;
 60	}
 61	mtd->priv = map;
 62	mtd->type = MTD_NORFLASH;
 63
 64	/* Fill in the default mtd operations */
 65	mtd->read = lpddr_read;
 66	mtd->type = MTD_NORFLASH;
 67	mtd->flags = MTD_CAP_NORFLASH;
 68	mtd->flags &= ~MTD_BIT_WRITEABLE;
 69	mtd->erase = lpddr_erase;
 70	mtd->write = lpddr_write_buffers;
 71	mtd->writev = lpddr_writev;
 72	mtd->read_oob = NULL;
 73	mtd->write_oob = NULL;
 74	mtd->sync = NULL;
 75	mtd->lock = lpddr_lock;
 76	mtd->unlock = lpddr_unlock;
 77	mtd->suspend = NULL;
 78	mtd->resume = NULL;
 79	if (map_is_linear(map)) {
 80		mtd->point = lpddr_point;
 81		mtd->unpoint = lpddr_unpoint;
 82	}
 83	mtd->block_isbad = NULL;
 84	mtd->block_markbad = NULL;
 85	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
 86	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
 87	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
 88
 89	shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
 90						GFP_KERNEL);
 91	if (!shared) {
 92		kfree(lpddr);
 93		kfree(mtd);
 94		return NULL;
 95	}
 96
 97	chip = &lpddr->chips[0];
 98	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
 99	for (i = 0; i < numchips; i++) {
100		shared[i].writing = shared[i].erasing = NULL;
101		mutex_init(&shared[i].lock);
102		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
103			*chip = lpddr->chips[i];
104			chip->start += j << lpddr->chipshift;
105			chip->oldstate = chip->state = FL_READY;
106			chip->priv = &shared[i];
107			/* those should be reset too since
108			   they create memory references. */
109			init_waitqueue_head(&chip->wq);
110			mutex_init(&chip->mutex);
111			chip++;
112		}
113	}
114
115	return mtd;
116}
117EXPORT_SYMBOL(lpddr_cmdset);
118
119static int wait_for_ready(struct map_info *map, struct flchip *chip,
120		unsigned int chip_op_time)
121{
122	unsigned int timeo, reset_timeo, sleep_time;
123	unsigned int dsr;
124	flstate_t chip_state = chip->state;
125	int ret = 0;
126
127	/* set our timeout to 8 times the expected delay */
128	timeo = chip_op_time * 8;
129	if (!timeo)
130		timeo = 500000;
131	reset_timeo = timeo;
132	sleep_time = chip_op_time / 2;
133
134	for (;;) {
135		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
136		if (dsr & DSR_READY_STATUS)
137			break;
138		if (!timeo) {
139			printk(KERN_ERR "%s: Flash timeout error state %d \n",
140							map->name, chip_state);
141			ret = -ETIME;
142			break;
143		}
144
145		/* OK Still waiting. Drop the lock, wait a while and retry. */
146		mutex_unlock(&chip->mutex);
147		if (sleep_time >= 1000000/HZ) {
148			/*
149			 * Half of the normal delay still remaining
150			 * can be performed with a sleeping delay instead
151			 * of busy waiting.
152			 */
153			msleep(sleep_time/1000);
154			timeo -= sleep_time;
155			sleep_time = 1000000/HZ;
156		} else {
157			udelay(1);
158			cond_resched();
159			timeo--;
160		}
161		mutex_lock(&chip->mutex);
162
163		while (chip->state != chip_state) {
164			/* Someone's suspended the operation: sleep */
165			DECLARE_WAITQUEUE(wait, current);
166			set_current_state(TASK_UNINTERRUPTIBLE);
167			add_wait_queue(&chip->wq, &wait);
168			mutex_unlock(&chip->mutex);
169			schedule();
170			remove_wait_queue(&chip->wq, &wait);
171			mutex_lock(&chip->mutex);
172		}
173		if (chip->erase_suspended || chip->write_suspended)  {
174			/* Suspend has occurred while sleep: reset timeout */
175			timeo = reset_timeo;
176			chip->erase_suspended = chip->write_suspended = 0;
177		}
178	}
179	/* check status for errors */
180	if (dsr & DSR_ERR) {
181		/* Clear DSR*/
182		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
183		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
184				map->name, dsr);
185		print_drs_error(dsr);
186		ret = -EIO;
187	}
188	chip->state = FL_READY;
189	return ret;
190}
191
192static int get_chip(struct map_info *map, struct flchip *chip, int mode)
193{
194	int ret;
195	DECLARE_WAITQUEUE(wait, current);
196
197 retry:
198	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
199		&& chip->state != FL_SYNCING) {
200		/*
201		 * OK. We have possibility for contension on the write/erase
202		 * operations which are global to the real chip and not per
203		 * partition.  So let's fight it over in the partition which
204		 * currently has authority on the operation.
205		 *
206		 * The rules are as follows:
207		 *
208		 * - any write operation must own shared->writing.
209		 *
210		 * - any erase operation must own _both_ shared->writing and
211		 *   shared->erasing.
212		 *
213		 * - contension arbitration is handled in the owner's context.
214		 *
215		 * The 'shared' struct can be read and/or written only when
216		 * its lock is taken.
217		 */
218		struct flchip_shared *shared = chip->priv;
219		struct flchip *contender;
220		mutex_lock(&shared->lock);
221		contender = shared->writing;
222		if (contender && contender != chip) {
223			/*
224			 * The engine to perform desired operation on this
225			 * partition is already in use by someone else.
226			 * Let's fight over it in the context of the chip
227			 * currently using it.  If it is possible to suspend,
228			 * that other partition will do just that, otherwise
229			 * it'll happily send us to sleep.  In any case, when
230			 * get_chip returns success we're clear to go ahead.
231			 */
232			ret = mutex_trylock(&contender->mutex);
233			mutex_unlock(&shared->lock);
234			if (!ret)
235				goto retry;
236			mutex_unlock(&chip->mutex);
237			ret = chip_ready(map, contender, mode);
238			mutex_lock(&chip->mutex);
239
240			if (ret == -EAGAIN) {
241				mutex_unlock(&contender->mutex);
242				goto retry;
243			}
244			if (ret) {
245				mutex_unlock(&contender->mutex);
246				return ret;
247			}
248			mutex_lock(&shared->lock);
249
250			/* We should not own chip if it is already in FL_SYNCING
251			 * state. Put contender and retry. */
252			if (chip->state == FL_SYNCING) {
253				put_chip(map, contender);
254				mutex_unlock(&contender->mutex);
255				goto retry;
256			}
257			mutex_unlock(&contender->mutex);
258		}
259
260		/* Check if we have suspended erase on this chip.
261		   Must sleep in such a case. */
262		if (mode == FL_ERASING && shared->erasing
263		    && shared->erasing->oldstate == FL_ERASING) {
264			mutex_unlock(&shared->lock);
265			set_current_state(TASK_UNINTERRUPTIBLE);
266			add_wait_queue(&chip->wq, &wait);
267			mutex_unlock(&chip->mutex);
268			schedule();
269			remove_wait_queue(&chip->wq, &wait);
270			mutex_lock(&chip->mutex);
271			goto retry;
272		}
273
274		/* We now own it */
275		shared->writing = chip;
276		if (mode == FL_ERASING)
277			shared->erasing = chip;
278		mutex_unlock(&shared->lock);
279	}
280
281	ret = chip_ready(map, chip, mode);
282	if (ret == -EAGAIN)
283		goto retry;
284
285	return ret;
286}
287
288static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
289{
290	struct lpddr_private *lpddr = map->fldrv_priv;
291	int ret = 0;
292	DECLARE_WAITQUEUE(wait, current);
293
294	/* Prevent setting state FL_SYNCING for chip in suspended state. */
295	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
296		goto sleep;
297
298	switch (chip->state) {
299	case FL_READY:
300	case FL_JEDEC_QUERY:
301		return 0;
302
303	case FL_ERASING:
304		if (!lpddr->qinfo->SuspEraseSupp ||
305			!(mode == FL_READY || mode == FL_POINT))
306			goto sleep;
307
308		map_write(map, CMD(LPDDR_SUSPEND),
309			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
310		chip->oldstate = FL_ERASING;
311		chip->state = FL_ERASE_SUSPENDING;
312		ret = wait_for_ready(map, chip, 0);
313		if (ret) {
314			/* Oops. something got wrong. */
315			/* Resume and pretend we weren't here.  */
316			put_chip(map, chip);
317			printk(KERN_ERR "%s: suspend operation failed."
318					"State may be wrong \n", map->name);
319			return -EIO;
320		}
321		chip->erase_suspended = 1;
322		chip->state = FL_READY;
323		return 0;
324		/* Erase suspend */
325	case FL_POINT:
326		/* Only if there's no operation suspended... */
327		if (mode == FL_READY && chip->oldstate == FL_READY)
328			return 0;
329
330	default:
331sleep:
332		set_current_state(TASK_UNINTERRUPTIBLE);
333		add_wait_queue(&chip->wq, &wait);
334		mutex_unlock(&chip->mutex);
335		schedule();
336		remove_wait_queue(&chip->wq, &wait);
337		mutex_lock(&chip->mutex);
338		return -EAGAIN;
339	}
340}
341
342static void put_chip(struct map_info *map, struct flchip *chip)
343{
344	if (chip->priv) {
345		struct flchip_shared *shared = chip->priv;
346		mutex_lock(&shared->lock);
347		if (shared->writing == chip && chip->oldstate == FL_READY) {
348			/* We own the ability to write, but we're done */
349			shared->writing = shared->erasing;
350			if (shared->writing && shared->writing != chip) {
351				/* give back the ownership */
352				struct flchip *loaner = shared->writing;
353				mutex_lock(&loaner->mutex);
354				mutex_unlock(&shared->lock);
355				mutex_unlock(&chip->mutex);
356				put_chip(map, loaner);
357				mutex_lock(&chip->mutex);
358				mutex_unlock(&loaner->mutex);
359				wake_up(&chip->wq);
360				return;
361			}
362			shared->erasing = NULL;
363			shared->writing = NULL;
364		} else if (shared->erasing == chip && shared->writing != chip) {
365			/*
366			 * We own the ability to erase without the ability
367			 * to write, which means the erase was suspended
368			 * and some other partition is currently writing.
369			 * Don't let the switch below mess things up since
370			 * we don't have ownership to resume anything.
371			 */
372			mutex_unlock(&shared->lock);
373			wake_up(&chip->wq);
374			return;
375		}
376		mutex_unlock(&shared->lock);
377	}
378
379	switch (chip->oldstate) {
380	case FL_ERASING:
381		map_write(map, CMD(LPDDR_RESUME),
382				map->pfow_base + PFOW_COMMAND_CODE);
383		map_write(map, CMD(LPDDR_START_EXECUTION),
384				map->pfow_base + PFOW_COMMAND_EXECUTE);
385		chip->oldstate = FL_READY;
386		chip->state = FL_ERASING;
387		break;
388	case FL_READY:
389		break;
390	default:
391		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
392				map->name, chip->oldstate);
393	}
394	wake_up(&chip->wq);
395}
396
397int do_write_buffer(struct map_info *map, struct flchip *chip,
398			unsigned long adr, const struct kvec **pvec,
399			unsigned long *pvec_seek, int len)
400{
401	struct lpddr_private *lpddr = map->fldrv_priv;
402	map_word datum;
403	int ret, wbufsize, word_gap, words;
404	const struct kvec *vec;
405	unsigned long vec_seek;
406	unsigned long prog_buf_ofs;
407
408	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
409
410	mutex_lock(&chip->mutex);
411	ret = get_chip(map, chip, FL_WRITING);
412	if (ret) {
413		mutex_unlock(&chip->mutex);
414		return ret;
415	}
416	/* Figure out the number of words to write */
417	word_gap = (-adr & (map_bankwidth(map)-1));
418	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
419	if (!word_gap) {
420		words--;
421	} else {
422		word_gap = map_bankwidth(map) - word_gap;
423		adr -= word_gap;
424		datum = map_word_ff(map);
425	}
426	/* Write data */
427	/* Get the program buffer offset from PFOW register data first*/
428	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
429				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
430	vec = *pvec;
431	vec_seek = *pvec_seek;
432	do {
433		int n = map_bankwidth(map) - word_gap;
434
435		if (n > vec->iov_len - vec_seek)
436			n = vec->iov_len - vec_seek;
437		if (n > len)
438			n = len;
439
440		if (!word_gap && (len < map_bankwidth(map)))
441			datum = map_word_ff(map);
442
443		datum = map_word_load_partial(map, datum,
444				vec->iov_base + vec_seek, word_gap, n);
445
446		len -= n;
447		word_gap += n;
448		if (!len || word_gap == map_bankwidth(map)) {
449			map_write(map, datum, prog_buf_ofs);
450			prog_buf_ofs += map_bankwidth(map);
451			word_gap = 0;
452		}
453
454		vec_seek += n;
455		if (vec_seek == vec->iov_len) {
456			vec++;
457			vec_seek = 0;
458		}
459	} while (len);
460	*pvec = vec;
461	*pvec_seek = vec_seek;
462
463	/* GO GO GO */
464	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
465	chip->state = FL_WRITING;
466	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
467	if (ret)	{
468		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
469			map->name, ret, adr);
470		goto out;
471	}
472
473 out:	put_chip(map, chip);
474	mutex_unlock(&chip->mutex);
475	return ret;
476}
477
478int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
479{
480	struct map_info *map = mtd->priv;
481	struct lpddr_private *lpddr = map->fldrv_priv;
482	int chipnum = adr >> lpddr->chipshift;
483	struct flchip *chip = &lpddr->chips[chipnum];
484	int ret;
485
486	mutex_lock(&chip->mutex);
487	ret = get_chip(map, chip, FL_ERASING);
488	if (ret) {
489		mutex_unlock(&chip->mutex);
490		return ret;
491	}
492	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
493	chip->state = FL_ERASING;
494	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
495	if (ret) {
496		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
497			map->name, ret, adr);
498		goto out;
499	}
500 out:	put_chip(map, chip);
501	mutex_unlock(&chip->mutex);
502	return ret;
503}
504
505static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
506			size_t *retlen, u_char *buf)
507{
508	struct map_info *map = mtd->priv;
509	struct lpddr_private *lpddr = map->fldrv_priv;
510	int chipnum = adr >> lpddr->chipshift;
511	struct flchip *chip = &lpddr->chips[chipnum];
512	int ret = 0;
513
514	mutex_lock(&chip->mutex);
515	ret = get_chip(map, chip, FL_READY);
516	if (ret) {
517		mutex_unlock(&chip->mutex);
518		return ret;
519	}
520
521	map_copy_from(map, buf, adr, len);
522	*retlen = len;
523
524	put_chip(map, chip);
525	mutex_unlock(&chip->mutex);
526	return ret;
527}
528
529static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
530			size_t *retlen, void **mtdbuf, resource_size_t *phys)
531{
532	struct map_info *map = mtd->priv;
533	struct lpddr_private *lpddr = map->fldrv_priv;
534	int chipnum = adr >> lpddr->chipshift;
535	unsigned long ofs, last_end = 0;
536	struct flchip *chip = &lpddr->chips[chipnum];
537	int ret = 0;
538
539	if (!map->virt || (adr + len > mtd->size))
540		return -EINVAL;
541
542	/* ofs: offset within the first chip that the first read should start */
543	ofs = adr - (chipnum << lpddr->chipshift);
544
545	*mtdbuf = (void *)map->virt + chip->start + ofs;
546	*retlen = 0;
547
548	while (len) {
549		unsigned long thislen;
550
551		if (chipnum >= lpddr->numchips)
552			break;
553
554		/* We cannot point across chips that are virtually disjoint */
555		if (!last_end)
556			last_end = chip->start;
557		else if (chip->start != last_end)
558			break;
559
560		if ((len + ofs - 1) >> lpddr->chipshift)
561			thislen = (1<<lpddr->chipshift) - ofs;
562		else
563			thislen = len;
564		/* get the chip */
565		mutex_lock(&chip->mutex);
566		ret = get_chip(map, chip, FL_POINT);
567		mutex_unlock(&chip->mutex);
568		if (ret)
569			break;
570
571		chip->state = FL_POINT;
572		chip->ref_point_counter++;
573		*retlen += thislen;
574		len -= thislen;
575
576		ofs = 0;
577		last_end += 1 << lpddr->chipshift;
578		chipnum++;
579		chip = &lpddr->chips[chipnum];
580	}
581	return 0;
582}
583
584static void lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
585{
586	struct map_info *map = mtd->priv;
587	struct lpddr_private *lpddr = map->fldrv_priv;
588	int chipnum = adr >> lpddr->chipshift;
589	unsigned long ofs;
590
591	/* ofs: offset within the first chip that the first read should start */
592	ofs = adr - (chipnum << lpddr->chipshift);
593
594	while (len) {
595		unsigned long thislen;
596		struct flchip *chip;
597
598		chip = &lpddr->chips[chipnum];
599		if (chipnum >= lpddr->numchips)
600			break;
601
602		if ((len + ofs - 1) >> lpddr->chipshift)
603			thislen = (1<<lpddr->chipshift) - ofs;
604		else
605			thislen = len;
606
607		mutex_lock(&chip->mutex);
608		if (chip->state == FL_POINT) {
609			chip->ref_point_counter--;
610			if (chip->ref_point_counter == 0)
611				chip->state = FL_READY;
612		} else
613			printk(KERN_WARNING "%s: Warning: unpoint called on non"
614					"pointed region\n", map->name);
 
 
615
616		put_chip(map, chip);
617		mutex_unlock(&chip->mutex);
618
619		len -= thislen;
620		ofs = 0;
621		chipnum++;
622	}
 
 
623}
624
625static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
626				size_t *retlen, const u_char *buf)
627{
628	struct kvec vec;
629
630	vec.iov_base = (void *) buf;
631	vec.iov_len = len;
632
633	return lpddr_writev(mtd, &vec, 1, to, retlen);
634}
635
636
637static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
638				unsigned long count, loff_t to, size_t *retlen)
639{
640	struct map_info *map = mtd->priv;
641	struct lpddr_private *lpddr = map->fldrv_priv;
642	int ret = 0;
643	int chipnum;
644	unsigned long ofs, vec_seek, i;
645	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
646
647	size_t len = 0;
648
649	for (i = 0; i < count; i++)
650		len += vecs[i].iov_len;
651
652	*retlen = 0;
653	if (!len)
654		return 0;
655
656	chipnum = to >> lpddr->chipshift;
657
658	ofs = to;
659	vec_seek = 0;
660
661	do {
662		/* We must not cross write block boundaries */
663		int size = wbufsize - (ofs & (wbufsize-1));
664
665		if (size > len)
666			size = len;
667
668		ret = do_write_buffer(map, &lpddr->chips[chipnum],
669					  ofs, &vecs, &vec_seek, size);
670		if (ret)
671			return ret;
672
673		ofs += size;
674		(*retlen) += size;
675		len -= size;
676
677		/* Be nice and reschedule with the chip in a usable
678		 * state for other processes */
679		cond_resched();
680
681	} while (len);
682
683	return 0;
684}
685
686static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
687{
688	unsigned long ofs, len;
689	int ret;
690	struct map_info *map = mtd->priv;
691	struct lpddr_private *lpddr = map->fldrv_priv;
692	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
693
694	ofs = instr->addr;
695	len = instr->len;
696
697	if (ofs > mtd->size || (len + ofs) > mtd->size)
698		return -EINVAL;
699
700	while (len > 0) {
701		ret = do_erase_oneblock(mtd, ofs);
702		if (ret)
703			return ret;
704		ofs += size;
705		len -= size;
706	}
707	instr->state = MTD_ERASE_DONE;
708	mtd_erase_callback(instr);
709
710	return 0;
711}
712
713#define DO_XXLOCK_LOCK		1
714#define DO_XXLOCK_UNLOCK	2
715int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
716{
717	int ret = 0;
718	struct map_info *map = mtd->priv;
719	struct lpddr_private *lpddr = map->fldrv_priv;
720	int chipnum = adr >> lpddr->chipshift;
721	struct flchip *chip = &lpddr->chips[chipnum];
722
723	mutex_lock(&chip->mutex);
724	ret = get_chip(map, chip, FL_LOCKING);
725	if (ret) {
726		mutex_unlock(&chip->mutex);
727		return ret;
728	}
729
730	if (thunk == DO_XXLOCK_LOCK) {
731		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
732		chip->state = FL_LOCKING;
733	} else if (thunk == DO_XXLOCK_UNLOCK) {
734		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
735		chip->state = FL_UNLOCKING;
736	} else
737		BUG();
738
739	ret = wait_for_ready(map, chip, 1);
740	if (ret)	{
741		printk(KERN_ERR "%s: block unlock error status %d \n",
742				map->name, ret);
743		goto out;
744	}
745out:	put_chip(map, chip);
746	mutex_unlock(&chip->mutex);
747	return ret;
748}
749
750static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
751{
752	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
753}
754
755static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
756{
757	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
758}
759
760int word_program(struct map_info *map, loff_t adr, uint32_t curval)
761{
762    int ret;
763	struct lpddr_private *lpddr = map->fldrv_priv;
764	int chipnum = adr >> lpddr->chipshift;
765	struct flchip *chip = &lpddr->chips[chipnum];
766
767	mutex_lock(&chip->mutex);
768	ret = get_chip(map, chip, FL_WRITING);
769	if (ret) {
770		mutex_unlock(&chip->mutex);
771		return ret;
772	}
773
774	send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval);
775
776	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime));
777	if (ret)	{
778		printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n",
779			map->name, adr, curval);
780		goto out;
781	}
782
783out:	put_chip(map, chip);
784	mutex_unlock(&chip->mutex);
785	return ret;
786}
787
788MODULE_LICENSE("GPL");
789MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
790MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
v3.5.6
  1/*
  2 * LPDDR flash memory device operations. This module provides read, write,
  3 * erase, lock/unlock support for LPDDR flash memories
  4 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
  5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
  6 * Many thanks to Roman Borisov for initial enabling
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License
 10 * as published by the Free Software Foundation; either version 2
 11 * of the License, or (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 21 * 02110-1301, USA.
 22 * TODO:
 23 * Implement VPP management
 24 * Implement XIP support
 25 * Implement OTP support
 26 */
 27#include <linux/mtd/pfow.h>
 28#include <linux/mtd/qinfo.h>
 29#include <linux/slab.h>
 30#include <linux/module.h>
 31
 32static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
 33					size_t *retlen, u_char *buf);
 34static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
 35				size_t len, size_t *retlen, const u_char *buf);
 36static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
 37				unsigned long count, loff_t to, size_t *retlen);
 38static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
 39static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 40static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 41static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
 42			size_t *retlen, void **mtdbuf, resource_size_t *phys);
 43static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
 44static int get_chip(struct map_info *map, struct flchip *chip, int mode);
 45static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
 46static void put_chip(struct map_info *map, struct flchip *chip);
 47
 48struct mtd_info *lpddr_cmdset(struct map_info *map)
 49{
 50	struct lpddr_private *lpddr = map->fldrv_priv;
 51	struct flchip_shared *shared;
 52	struct flchip *chip;
 53	struct mtd_info *mtd;
 54	int numchips;
 55	int i, j;
 56
 57	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 58	if (!mtd) {
 59		printk(KERN_ERR "Failed to allocate memory for MTD device\n");
 60		return NULL;
 61	}
 62	mtd->priv = map;
 63	mtd->type = MTD_NORFLASH;
 64
 65	/* Fill in the default mtd operations */
 66	mtd->_read = lpddr_read;
 67	mtd->type = MTD_NORFLASH;
 68	mtd->flags = MTD_CAP_NORFLASH;
 69	mtd->flags &= ~MTD_BIT_WRITEABLE;
 70	mtd->_erase = lpddr_erase;
 71	mtd->_write = lpddr_write_buffers;
 72	mtd->_writev = lpddr_writev;
 73	mtd->_lock = lpddr_lock;
 74	mtd->_unlock = lpddr_unlock;
 
 
 
 
 
 75	if (map_is_linear(map)) {
 76		mtd->_point = lpddr_point;
 77		mtd->_unpoint = lpddr_unpoint;
 78	}
 
 
 79	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
 80	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
 81	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
 82
 83	shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
 84						GFP_KERNEL);
 85	if (!shared) {
 86		kfree(lpddr);
 87		kfree(mtd);
 88		return NULL;
 89	}
 90
 91	chip = &lpddr->chips[0];
 92	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
 93	for (i = 0; i < numchips; i++) {
 94		shared[i].writing = shared[i].erasing = NULL;
 95		mutex_init(&shared[i].lock);
 96		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
 97			*chip = lpddr->chips[i];
 98			chip->start += j << lpddr->chipshift;
 99			chip->oldstate = chip->state = FL_READY;
100			chip->priv = &shared[i];
101			/* those should be reset too since
102			   they create memory references. */
103			init_waitqueue_head(&chip->wq);
104			mutex_init(&chip->mutex);
105			chip++;
106		}
107	}
108
109	return mtd;
110}
111EXPORT_SYMBOL(lpddr_cmdset);
112
113static int wait_for_ready(struct map_info *map, struct flchip *chip,
114		unsigned int chip_op_time)
115{
116	unsigned int timeo, reset_timeo, sleep_time;
117	unsigned int dsr;
118	flstate_t chip_state = chip->state;
119	int ret = 0;
120
121	/* set our timeout to 8 times the expected delay */
122	timeo = chip_op_time * 8;
123	if (!timeo)
124		timeo = 500000;
125	reset_timeo = timeo;
126	sleep_time = chip_op_time / 2;
127
128	for (;;) {
129		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
130		if (dsr & DSR_READY_STATUS)
131			break;
132		if (!timeo) {
133			printk(KERN_ERR "%s: Flash timeout error state %d \n",
134							map->name, chip_state);
135			ret = -ETIME;
136			break;
137		}
138
139		/* OK Still waiting. Drop the lock, wait a while and retry. */
140		mutex_unlock(&chip->mutex);
141		if (sleep_time >= 1000000/HZ) {
142			/*
143			 * Half of the normal delay still remaining
144			 * can be performed with a sleeping delay instead
145			 * of busy waiting.
146			 */
147			msleep(sleep_time/1000);
148			timeo -= sleep_time;
149			sleep_time = 1000000/HZ;
150		} else {
151			udelay(1);
152			cond_resched();
153			timeo--;
154		}
155		mutex_lock(&chip->mutex);
156
157		while (chip->state != chip_state) {
158			/* Someone's suspended the operation: sleep */
159			DECLARE_WAITQUEUE(wait, current);
160			set_current_state(TASK_UNINTERRUPTIBLE);
161			add_wait_queue(&chip->wq, &wait);
162			mutex_unlock(&chip->mutex);
163			schedule();
164			remove_wait_queue(&chip->wq, &wait);
165			mutex_lock(&chip->mutex);
166		}
167		if (chip->erase_suspended || chip->write_suspended)  {
168			/* Suspend has occurred while sleep: reset timeout */
169			timeo = reset_timeo;
170			chip->erase_suspended = chip->write_suspended = 0;
171		}
172	}
173	/* check status for errors */
174	if (dsr & DSR_ERR) {
175		/* Clear DSR*/
176		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
177		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
178				map->name, dsr);
179		print_drs_error(dsr);
180		ret = -EIO;
181	}
182	chip->state = FL_READY;
183	return ret;
184}
185
186static int get_chip(struct map_info *map, struct flchip *chip, int mode)
187{
188	int ret;
189	DECLARE_WAITQUEUE(wait, current);
190
191 retry:
192	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
193		&& chip->state != FL_SYNCING) {
194		/*
195		 * OK. We have possibility for contension on the write/erase
196		 * operations which are global to the real chip and not per
197		 * partition.  So let's fight it over in the partition which
198		 * currently has authority on the operation.
199		 *
200		 * The rules are as follows:
201		 *
202		 * - any write operation must own shared->writing.
203		 *
204		 * - any erase operation must own _both_ shared->writing and
205		 *   shared->erasing.
206		 *
207		 * - contension arbitration is handled in the owner's context.
208		 *
209		 * The 'shared' struct can be read and/or written only when
210		 * its lock is taken.
211		 */
212		struct flchip_shared *shared = chip->priv;
213		struct flchip *contender;
214		mutex_lock(&shared->lock);
215		contender = shared->writing;
216		if (contender && contender != chip) {
217			/*
218			 * The engine to perform desired operation on this
219			 * partition is already in use by someone else.
220			 * Let's fight over it in the context of the chip
221			 * currently using it.  If it is possible to suspend,
222			 * that other partition will do just that, otherwise
223			 * it'll happily send us to sleep.  In any case, when
224			 * get_chip returns success we're clear to go ahead.
225			 */
226			ret = mutex_trylock(&contender->mutex);
227			mutex_unlock(&shared->lock);
228			if (!ret)
229				goto retry;
230			mutex_unlock(&chip->mutex);
231			ret = chip_ready(map, contender, mode);
232			mutex_lock(&chip->mutex);
233
234			if (ret == -EAGAIN) {
235				mutex_unlock(&contender->mutex);
236				goto retry;
237			}
238			if (ret) {
239				mutex_unlock(&contender->mutex);
240				return ret;
241			}
242			mutex_lock(&shared->lock);
243
244			/* We should not own chip if it is already in FL_SYNCING
245			 * state. Put contender and retry. */
246			if (chip->state == FL_SYNCING) {
247				put_chip(map, contender);
248				mutex_unlock(&contender->mutex);
249				goto retry;
250			}
251			mutex_unlock(&contender->mutex);
252		}
253
254		/* Check if we have suspended erase on this chip.
255		   Must sleep in such a case. */
256		if (mode == FL_ERASING && shared->erasing
257		    && shared->erasing->oldstate == FL_ERASING) {
258			mutex_unlock(&shared->lock);
259			set_current_state(TASK_UNINTERRUPTIBLE);
260			add_wait_queue(&chip->wq, &wait);
261			mutex_unlock(&chip->mutex);
262			schedule();
263			remove_wait_queue(&chip->wq, &wait);
264			mutex_lock(&chip->mutex);
265			goto retry;
266		}
267
268		/* We now own it */
269		shared->writing = chip;
270		if (mode == FL_ERASING)
271			shared->erasing = chip;
272		mutex_unlock(&shared->lock);
273	}
274
275	ret = chip_ready(map, chip, mode);
276	if (ret == -EAGAIN)
277		goto retry;
278
279	return ret;
280}
281
282static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
283{
284	struct lpddr_private *lpddr = map->fldrv_priv;
285	int ret = 0;
286	DECLARE_WAITQUEUE(wait, current);
287
288	/* Prevent setting state FL_SYNCING for chip in suspended state. */
289	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
290		goto sleep;
291
292	switch (chip->state) {
293	case FL_READY:
294	case FL_JEDEC_QUERY:
295		return 0;
296
297	case FL_ERASING:
298		if (!lpddr->qinfo->SuspEraseSupp ||
299			!(mode == FL_READY || mode == FL_POINT))
300			goto sleep;
301
302		map_write(map, CMD(LPDDR_SUSPEND),
303			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
304		chip->oldstate = FL_ERASING;
305		chip->state = FL_ERASE_SUSPENDING;
306		ret = wait_for_ready(map, chip, 0);
307		if (ret) {
308			/* Oops. something got wrong. */
309			/* Resume and pretend we weren't here.  */
310			put_chip(map, chip);
311			printk(KERN_ERR "%s: suspend operation failed."
312					"State may be wrong \n", map->name);
313			return -EIO;
314		}
315		chip->erase_suspended = 1;
316		chip->state = FL_READY;
317		return 0;
318		/* Erase suspend */
319	case FL_POINT:
320		/* Only if there's no operation suspended... */
321		if (mode == FL_READY && chip->oldstate == FL_READY)
322			return 0;
323
324	default:
325sleep:
326		set_current_state(TASK_UNINTERRUPTIBLE);
327		add_wait_queue(&chip->wq, &wait);
328		mutex_unlock(&chip->mutex);
329		schedule();
330		remove_wait_queue(&chip->wq, &wait);
331		mutex_lock(&chip->mutex);
332		return -EAGAIN;
333	}
334}
335
336static void put_chip(struct map_info *map, struct flchip *chip)
337{
338	if (chip->priv) {
339		struct flchip_shared *shared = chip->priv;
340		mutex_lock(&shared->lock);
341		if (shared->writing == chip && chip->oldstate == FL_READY) {
342			/* We own the ability to write, but we're done */
343			shared->writing = shared->erasing;
344			if (shared->writing && shared->writing != chip) {
345				/* give back the ownership */
346				struct flchip *loaner = shared->writing;
347				mutex_lock(&loaner->mutex);
348				mutex_unlock(&shared->lock);
349				mutex_unlock(&chip->mutex);
350				put_chip(map, loaner);
351				mutex_lock(&chip->mutex);
352				mutex_unlock(&loaner->mutex);
353				wake_up(&chip->wq);
354				return;
355			}
356			shared->erasing = NULL;
357			shared->writing = NULL;
358		} else if (shared->erasing == chip && shared->writing != chip) {
359			/*
360			 * We own the ability to erase without the ability
361			 * to write, which means the erase was suspended
362			 * and some other partition is currently writing.
363			 * Don't let the switch below mess things up since
364			 * we don't have ownership to resume anything.
365			 */
366			mutex_unlock(&shared->lock);
367			wake_up(&chip->wq);
368			return;
369		}
370		mutex_unlock(&shared->lock);
371	}
372
373	switch (chip->oldstate) {
374	case FL_ERASING:
375		map_write(map, CMD(LPDDR_RESUME),
376				map->pfow_base + PFOW_COMMAND_CODE);
377		map_write(map, CMD(LPDDR_START_EXECUTION),
378				map->pfow_base + PFOW_COMMAND_EXECUTE);
379		chip->oldstate = FL_READY;
380		chip->state = FL_ERASING;
381		break;
382	case FL_READY:
383		break;
384	default:
385		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
386				map->name, chip->oldstate);
387	}
388	wake_up(&chip->wq);
389}
390
391int do_write_buffer(struct map_info *map, struct flchip *chip,
392			unsigned long adr, const struct kvec **pvec,
393			unsigned long *pvec_seek, int len)
394{
395	struct lpddr_private *lpddr = map->fldrv_priv;
396	map_word datum;
397	int ret, wbufsize, word_gap, words;
398	const struct kvec *vec;
399	unsigned long vec_seek;
400	unsigned long prog_buf_ofs;
401
402	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
403
404	mutex_lock(&chip->mutex);
405	ret = get_chip(map, chip, FL_WRITING);
406	if (ret) {
407		mutex_unlock(&chip->mutex);
408		return ret;
409	}
410	/* Figure out the number of words to write */
411	word_gap = (-adr & (map_bankwidth(map)-1));
412	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
413	if (!word_gap) {
414		words--;
415	} else {
416		word_gap = map_bankwidth(map) - word_gap;
417		adr -= word_gap;
418		datum = map_word_ff(map);
419	}
420	/* Write data */
421	/* Get the program buffer offset from PFOW register data first*/
422	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
423				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
424	vec = *pvec;
425	vec_seek = *pvec_seek;
426	do {
427		int n = map_bankwidth(map) - word_gap;
428
429		if (n > vec->iov_len - vec_seek)
430			n = vec->iov_len - vec_seek;
431		if (n > len)
432			n = len;
433
434		if (!word_gap && (len < map_bankwidth(map)))
435			datum = map_word_ff(map);
436
437		datum = map_word_load_partial(map, datum,
438				vec->iov_base + vec_seek, word_gap, n);
439
440		len -= n;
441		word_gap += n;
442		if (!len || word_gap == map_bankwidth(map)) {
443			map_write(map, datum, prog_buf_ofs);
444			prog_buf_ofs += map_bankwidth(map);
445			word_gap = 0;
446		}
447
448		vec_seek += n;
449		if (vec_seek == vec->iov_len) {
450			vec++;
451			vec_seek = 0;
452		}
453	} while (len);
454	*pvec = vec;
455	*pvec_seek = vec_seek;
456
457	/* GO GO GO */
458	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
459	chip->state = FL_WRITING;
460	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
461	if (ret)	{
462		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
463			map->name, ret, adr);
464		goto out;
465	}
466
467 out:	put_chip(map, chip);
468	mutex_unlock(&chip->mutex);
469	return ret;
470}
471
472int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
473{
474	struct map_info *map = mtd->priv;
475	struct lpddr_private *lpddr = map->fldrv_priv;
476	int chipnum = adr >> lpddr->chipshift;
477	struct flchip *chip = &lpddr->chips[chipnum];
478	int ret;
479
480	mutex_lock(&chip->mutex);
481	ret = get_chip(map, chip, FL_ERASING);
482	if (ret) {
483		mutex_unlock(&chip->mutex);
484		return ret;
485	}
486	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
487	chip->state = FL_ERASING;
488	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
489	if (ret) {
490		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
491			map->name, ret, adr);
492		goto out;
493	}
494 out:	put_chip(map, chip);
495	mutex_unlock(&chip->mutex);
496	return ret;
497}
498
499static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
500			size_t *retlen, u_char *buf)
501{
502	struct map_info *map = mtd->priv;
503	struct lpddr_private *lpddr = map->fldrv_priv;
504	int chipnum = adr >> lpddr->chipshift;
505	struct flchip *chip = &lpddr->chips[chipnum];
506	int ret = 0;
507
508	mutex_lock(&chip->mutex);
509	ret = get_chip(map, chip, FL_READY);
510	if (ret) {
511		mutex_unlock(&chip->mutex);
512		return ret;
513	}
514
515	map_copy_from(map, buf, adr, len);
516	*retlen = len;
517
518	put_chip(map, chip);
519	mutex_unlock(&chip->mutex);
520	return ret;
521}
522
523static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
524			size_t *retlen, void **mtdbuf, resource_size_t *phys)
525{
526	struct map_info *map = mtd->priv;
527	struct lpddr_private *lpddr = map->fldrv_priv;
528	int chipnum = adr >> lpddr->chipshift;
529	unsigned long ofs, last_end = 0;
530	struct flchip *chip = &lpddr->chips[chipnum];
531	int ret = 0;
532
533	if (!map->virt)
534		return -EINVAL;
535
536	/* ofs: offset within the first chip that the first read should start */
537	ofs = adr - (chipnum << lpddr->chipshift);
 
538	*mtdbuf = (void *)map->virt + chip->start + ofs;
 
539
540	while (len) {
541		unsigned long thislen;
542
543		if (chipnum >= lpddr->numchips)
544			break;
545
546		/* We cannot point across chips that are virtually disjoint */
547		if (!last_end)
548			last_end = chip->start;
549		else if (chip->start != last_end)
550			break;
551
552		if ((len + ofs - 1) >> lpddr->chipshift)
553			thislen = (1<<lpddr->chipshift) - ofs;
554		else
555			thislen = len;
556		/* get the chip */
557		mutex_lock(&chip->mutex);
558		ret = get_chip(map, chip, FL_POINT);
559		mutex_unlock(&chip->mutex);
560		if (ret)
561			break;
562
563		chip->state = FL_POINT;
564		chip->ref_point_counter++;
565		*retlen += thislen;
566		len -= thislen;
567
568		ofs = 0;
569		last_end += 1 << lpddr->chipshift;
570		chipnum++;
571		chip = &lpddr->chips[chipnum];
572	}
573	return 0;
574}
575
576static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
577{
578	struct map_info *map = mtd->priv;
579	struct lpddr_private *lpddr = map->fldrv_priv;
580	int chipnum = adr >> lpddr->chipshift, err = 0;
581	unsigned long ofs;
582
583	/* ofs: offset within the first chip that the first read should start */
584	ofs = adr - (chipnum << lpddr->chipshift);
585
586	while (len) {
587		unsigned long thislen;
588		struct flchip *chip;
589
590		chip = &lpddr->chips[chipnum];
591		if (chipnum >= lpddr->numchips)
592			break;
593
594		if ((len + ofs - 1) >> lpddr->chipshift)
595			thislen = (1<<lpddr->chipshift) - ofs;
596		else
597			thislen = len;
598
599		mutex_lock(&chip->mutex);
600		if (chip->state == FL_POINT) {
601			chip->ref_point_counter--;
602			if (chip->ref_point_counter == 0)
603				chip->state = FL_READY;
604		} else {
605			printk(KERN_WARNING "%s: Warning: unpoint called on non"
606					"pointed region\n", map->name);
607			err = -EINVAL;
608		}
609
610		put_chip(map, chip);
611		mutex_unlock(&chip->mutex);
612
613		len -= thislen;
614		ofs = 0;
615		chipnum++;
616	}
617
618	return err;
619}
620
621static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
622				size_t *retlen, const u_char *buf)
623{
624	struct kvec vec;
625
626	vec.iov_base = (void *) buf;
627	vec.iov_len = len;
628
629	return lpddr_writev(mtd, &vec, 1, to, retlen);
630}
631
632
633static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
634				unsigned long count, loff_t to, size_t *retlen)
635{
636	struct map_info *map = mtd->priv;
637	struct lpddr_private *lpddr = map->fldrv_priv;
638	int ret = 0;
639	int chipnum;
640	unsigned long ofs, vec_seek, i;
641	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
 
642	size_t len = 0;
643
644	for (i = 0; i < count; i++)
645		len += vecs[i].iov_len;
646
 
647	if (!len)
648		return 0;
649
650	chipnum = to >> lpddr->chipshift;
651
652	ofs = to;
653	vec_seek = 0;
654
655	do {
656		/* We must not cross write block boundaries */
657		int size = wbufsize - (ofs & (wbufsize-1));
658
659		if (size > len)
660			size = len;
661
662		ret = do_write_buffer(map, &lpddr->chips[chipnum],
663					  ofs, &vecs, &vec_seek, size);
664		if (ret)
665			return ret;
666
667		ofs += size;
668		(*retlen) += size;
669		len -= size;
670
671		/* Be nice and reschedule with the chip in a usable
672		 * state for other processes */
673		cond_resched();
674
675	} while (len);
676
677	return 0;
678}
679
680static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
681{
682	unsigned long ofs, len;
683	int ret;
684	struct map_info *map = mtd->priv;
685	struct lpddr_private *lpddr = map->fldrv_priv;
686	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
687
688	ofs = instr->addr;
689	len = instr->len;
 
 
 
690
691	while (len > 0) {
692		ret = do_erase_oneblock(mtd, ofs);
693		if (ret)
694			return ret;
695		ofs += size;
696		len -= size;
697	}
698	instr->state = MTD_ERASE_DONE;
699	mtd_erase_callback(instr);
700
701	return 0;
702}
703
704#define DO_XXLOCK_LOCK		1
705#define DO_XXLOCK_UNLOCK	2
706int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
707{
708	int ret = 0;
709	struct map_info *map = mtd->priv;
710	struct lpddr_private *lpddr = map->fldrv_priv;
711	int chipnum = adr >> lpddr->chipshift;
712	struct flchip *chip = &lpddr->chips[chipnum];
713
714	mutex_lock(&chip->mutex);
715	ret = get_chip(map, chip, FL_LOCKING);
716	if (ret) {
717		mutex_unlock(&chip->mutex);
718		return ret;
719	}
720
721	if (thunk == DO_XXLOCK_LOCK) {
722		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
723		chip->state = FL_LOCKING;
724	} else if (thunk == DO_XXLOCK_UNLOCK) {
725		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
726		chip->state = FL_UNLOCKING;
727	} else
728		BUG();
729
730	ret = wait_for_ready(map, chip, 1);
731	if (ret)	{
732		printk(KERN_ERR "%s: block unlock error status %d \n",
733				map->name, ret);
734		goto out;
735	}
736out:	put_chip(map, chip);
737	mutex_unlock(&chip->mutex);
738	return ret;
739}
740
741static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
742{
743	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
744}
745
746static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
747{
748	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
749}
750
751int word_program(struct map_info *map, loff_t adr, uint32_t curval)
752{
753    int ret;
754	struct lpddr_private *lpddr = map->fldrv_priv;
755	int chipnum = adr >> lpddr->chipshift;
756	struct flchip *chip = &lpddr->chips[chipnum];
757
758	mutex_lock(&chip->mutex);
759	ret = get_chip(map, chip, FL_WRITING);
760	if (ret) {
761		mutex_unlock(&chip->mutex);
762		return ret;
763	}
764
765	send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval);
766
767	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime));
768	if (ret)	{
769		printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n",
770			map->name, adr, curval);
771		goto out;
772	}
773
774out:	put_chip(map, chip);
775	mutex_unlock(&chip->mutex);
776	return ret;
777}
778
779MODULE_LICENSE("GPL");
780MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
781MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");