Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * at24.c - handle most I2C EEPROMs
  3 *
  4 * Copyright (C) 2005-2007 David Brownell
  5 * Copyright (C) 2008 Wolfram Sang, Pengutronix
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License as published by
  9 * the Free Software Foundation; either version 2 of the License, or
 10 * (at your option) any later version.
 11 */
 12#include <linux/kernel.h>
 13#include <linux/init.h>
 14#include <linux/module.h>
 15#include <linux/slab.h>
 16#include <linux/delay.h>
 17#include <linux/mutex.h>
 18#include <linux/sysfs.h>
 19#include <linux/mod_devicetable.h>
 20#include <linux/log2.h>
 21#include <linux/bitops.h>
 22#include <linux/jiffies.h>
 23#include <linux/of.h>
 24#include <linux/i2c.h>
 25#include <linux/i2c/at24.h>
 26
 27/*
 28 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
 29 * Differences between different vendor product lines (like Atmel AT24C or
 30 * MicroChip 24LC, etc) won't much matter for typical read/write access.
 31 * There are also I2C RAM chips, likewise interchangeable. One example
 32 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
 33 *
 34 * However, misconfiguration can lose data. "Set 16-bit memory address"
 35 * to a part with 8-bit addressing will overwrite data. Writing with too
 36 * big a page size also loses data. And it's not safe to assume that the
 37 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
 38 * uses 0x51, for just one example.
 39 *
 40 * Accordingly, explicit board-specific configuration data should be used
 41 * in almost all cases. (One partial exception is an SMBus used to access
 42 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
 43 *
 44 * So this driver uses "new style" I2C driver binding, expecting to be
 45 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
 46 * similar kernel-resident tables; or, configuration data coming from
 47 * a bootloader.
 48 *
 49 * Other than binding model, current differences from "eeprom" driver are
 50 * that this one handles write access and isn't restricted to 24c02 devices.
 51 * It also handles larger devices (32 kbit and up) with two-byte addresses,
 52 * which won't work on pure SMBus systems.
 53 */
 54
 55struct at24_data {
 56	struct at24_platform_data chip;
 57	struct memory_accessor macc;
 58	int use_smbus;
 59
 60	/*
 61	 * Lock protects against activities from other Linux tasks,
 62	 * but not from changes by other I2C masters.
 63	 */
 64	struct mutex lock;
 65	struct bin_attribute bin;
 66
 67	u8 *writebuf;
 68	unsigned write_max;
 69	unsigned num_addresses;
 70
 71	/*
 72	 * Some chips tie up multiple I2C addresses; dummy devices reserve
 73	 * them for us, and we'll use them with SMBus calls.
 74	 */
 75	struct i2c_client *client[];
 76};
 77
 78/*
 79 * This parameter is to help this driver avoid blocking other drivers out
 80 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
 81 * clock, one 256 byte read takes about 1/43 second which is excessive;
 82 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
 83 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
 84 *
 85 * This value is forced to be a power of two so that writes align on pages.
 86 */
 87static unsigned io_limit = 128;
 88module_param(io_limit, uint, 0);
 89MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
 90
 91/*
 92 * Specs often allow 5 msec for a page write, sometimes 20 msec;
 93 * it's important to recover from write timeouts.
 94 */
 95static unsigned write_timeout = 25;
 96module_param(write_timeout, uint, 0);
 97MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
 98
 99#define AT24_SIZE_BYTELEN 5
100#define AT24_SIZE_FLAGS 8
101
102#define AT24_BITMASK(x) (BIT(x) - 1)
103
104/* create non-zero magic value for given eeprom parameters */
105#define AT24_DEVICE_MAGIC(_len, _flags) 		\
106	((1 << AT24_SIZE_FLAGS | (_flags)) 		\
107	    << AT24_SIZE_BYTELEN | ilog2(_len))
108
109static const struct i2c_device_id at24_ids[] = {
110	/* needs 8 addresses as A0-A2 are ignored */
111	{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
112	/* old variants can't be handled with this generic entry! */
113	{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
114	{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
115	/* spd is a 24c02 in memory DIMMs */
116	{ "spd", AT24_DEVICE_MAGIC(2048 / 8,
117		AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
118	{ "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
119	/* 24rf08 quirk is handled at i2c-core */
120	{ "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
121	{ "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
122	{ "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
123	{ "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
124	{ "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
125	{ "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
126	{ "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
127	{ "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
128	{ "at24", 0 },
129	{ /* END OF LIST */ }
130};
131MODULE_DEVICE_TABLE(i2c, at24_ids);
132
133/*-------------------------------------------------------------------------*/
134
135/*
136 * This routine supports chips which consume multiple I2C addresses. It
137 * computes the addressing information to be used for a given r/w request.
138 * Assumes that sanity checks for offset happened at sysfs-layer.
139 */
140static struct i2c_client *at24_translate_offset(struct at24_data *at24,
141		unsigned *offset)
142{
143	unsigned i;
144
145	if (at24->chip.flags & AT24_FLAG_ADDR16) {
146		i = *offset >> 16;
147		*offset &= 0xffff;
148	} else {
149		i = *offset >> 8;
150		*offset &= 0xff;
151	}
152
153	return at24->client[i];
154}
155
156static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
157		unsigned offset, size_t count)
158{
159	struct i2c_msg msg[2];
160	u8 msgbuf[2];
161	struct i2c_client *client;
162	unsigned long timeout, read_time;
163	int status, i;
164
165	memset(msg, 0, sizeof(msg));
166
167	/*
168	 * REVISIT some multi-address chips don't rollover page reads to
169	 * the next slave address, so we may need to truncate the count.
170	 * Those chips might need another quirk flag.
171	 *
172	 * If the real hardware used four adjacent 24c02 chips and that
173	 * were misconfigured as one 24c08, that would be a similar effect:
174	 * one "eeprom" file not four, but larger reads would fail when
175	 * they crossed certain pages.
176	 */
177
178	/*
179	 * Slave address and byte offset derive from the offset. Always
180	 * set the byte address; on a multi-master board, another master
181	 * may have changed the chip's "current" address pointer.
182	 */
183	client = at24_translate_offset(at24, &offset);
184
185	if (count > io_limit)
186		count = io_limit;
187
188	switch (at24->use_smbus) {
189	case I2C_SMBUS_I2C_BLOCK_DATA:
190		/* Smaller eeproms can work given some SMBus extension calls */
191		if (count > I2C_SMBUS_BLOCK_MAX)
192			count = I2C_SMBUS_BLOCK_MAX;
193		break;
194	case I2C_SMBUS_WORD_DATA:
195		count = 2;
196		break;
197	case I2C_SMBUS_BYTE_DATA:
198		count = 1;
199		break;
200	default:
201		/*
202		 * When we have a better choice than SMBus calls, use a
203		 * combined I2C message. Write address; then read up to
204		 * io_limit data bytes. Note that read page rollover helps us
205		 * here (unlike writes). msgbuf is u8 and will cast to our
206		 * needs.
207		 */
208		i = 0;
209		if (at24->chip.flags & AT24_FLAG_ADDR16)
210			msgbuf[i++] = offset >> 8;
211		msgbuf[i++] = offset;
212
213		msg[0].addr = client->addr;
214		msg[0].buf = msgbuf;
215		msg[0].len = i;
216
217		msg[1].addr = client->addr;
218		msg[1].flags = I2C_M_RD;
219		msg[1].buf = buf;
220		msg[1].len = count;
221	}
222
223	/*
224	 * Reads fail if the previous write didn't complete yet. We may
225	 * loop a few times until this one succeeds, waiting at least
226	 * long enough for one entire page write to work.
227	 */
228	timeout = jiffies + msecs_to_jiffies(write_timeout);
229	do {
230		read_time = jiffies;
231		switch (at24->use_smbus) {
232		case I2C_SMBUS_I2C_BLOCK_DATA:
233			status = i2c_smbus_read_i2c_block_data(client, offset,
234					count, buf);
235			break;
236		case I2C_SMBUS_WORD_DATA:
237			status = i2c_smbus_read_word_data(client, offset);
238			if (status >= 0) {
239				buf[0] = status & 0xff;
240				buf[1] = status >> 8;
241				status = count;
242			}
243			break;
244		case I2C_SMBUS_BYTE_DATA:
245			status = i2c_smbus_read_byte_data(client, offset);
246			if (status >= 0) {
247				buf[0] = status;
248				status = count;
249			}
250			break;
251		default:
252			status = i2c_transfer(client->adapter, msg, 2);
253			if (status == 2)
254				status = count;
255		}
256		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
257				count, offset, status, jiffies);
258
259		if (status == count)
260			return count;
261
262		/* REVISIT: at HZ=100, this is sloooow */
263		msleep(1);
264	} while (time_before(read_time, timeout));
265
266	return -ETIMEDOUT;
267}
268
269static ssize_t at24_read(struct at24_data *at24,
270		char *buf, loff_t off, size_t count)
271{
272	ssize_t retval = 0;
273
274	if (unlikely(!count))
275		return count;
276
277	/*
278	 * Read data from chip, protecting against concurrent updates
279	 * from this host, but not from other I2C masters.
280	 */
281	mutex_lock(&at24->lock);
282
283	while (count) {
284		ssize_t	status;
285
286		status = at24_eeprom_read(at24, buf, off, count);
287		if (status <= 0) {
288			if (retval == 0)
289				retval = status;
290			break;
291		}
292		buf += status;
293		off += status;
294		count -= status;
295		retval += status;
296	}
297
298	mutex_unlock(&at24->lock);
299
300	return retval;
301}
302
303static ssize_t at24_bin_read(struct file *filp, struct kobject *kobj,
304		struct bin_attribute *attr,
305		char *buf, loff_t off, size_t count)
306{
307	struct at24_data *at24;
308
309	at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
310	return at24_read(at24, buf, off, count);
311}
312
313
314/*
315 * Note that if the hardware write-protect pin is pulled high, the whole
316 * chip is normally write protected. But there are plenty of product
317 * variants here, including OTP fuses and partial chip protect.
318 *
319 * We only use page mode writes; the alternative is sloooow. This routine
320 * writes at most one page.
321 */
322static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
323		unsigned offset, size_t count)
324{
325	struct i2c_client *client;
326	struct i2c_msg msg;
327	ssize_t status;
328	unsigned long timeout, write_time;
329	unsigned next_page;
330
331	/* Get corresponding I2C address and adjust offset */
332	client = at24_translate_offset(at24, &offset);
333
334	/* write_max is at most a page */
335	if (count > at24->write_max)
336		count = at24->write_max;
337
338	/* Never roll over backwards, to the start of this page */
339	next_page = roundup(offset + 1, at24->chip.page_size);
340	if (offset + count > next_page)
341		count = next_page - offset;
342
343	/* If we'll use I2C calls for I/O, set up the message */
344	if (!at24->use_smbus) {
345		int i = 0;
346
347		msg.addr = client->addr;
348		msg.flags = 0;
349
350		/* msg.buf is u8 and casts will mask the values */
351		msg.buf = at24->writebuf;
352		if (at24->chip.flags & AT24_FLAG_ADDR16)
353			msg.buf[i++] = offset >> 8;
354
355		msg.buf[i++] = offset;
356		memcpy(&msg.buf[i], buf, count);
357		msg.len = i + count;
358	}
359
360	/*
361	 * Writes fail if the previous one didn't complete yet. We may
362	 * loop a few times until this one succeeds, waiting at least
363	 * long enough for one entire page write to work.
364	 */
365	timeout = jiffies + msecs_to_jiffies(write_timeout);
366	do {
367		write_time = jiffies;
368		if (at24->use_smbus) {
369			status = i2c_smbus_write_i2c_block_data(client,
370					offset, count, buf);
371			if (status == 0)
372				status = count;
373		} else {
374			status = i2c_transfer(client->adapter, &msg, 1);
375			if (status == 1)
376				status = count;
377		}
378		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
379				count, offset, status, jiffies);
380
381		if (status == count)
382			return count;
383
384		/* REVISIT: at HZ=100, this is sloooow */
385		msleep(1);
386	} while (time_before(write_time, timeout));
387
388	return -ETIMEDOUT;
389}
390
391static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
392			  size_t count)
393{
394	ssize_t retval = 0;
395
396	if (unlikely(!count))
397		return count;
398
399	/*
400	 * Write data to chip, protecting against concurrent updates
401	 * from this host, but not from other I2C masters.
402	 */
403	mutex_lock(&at24->lock);
404
405	while (count) {
406		ssize_t	status;
407
408		status = at24_eeprom_write(at24, buf, off, count);
409		if (status <= 0) {
410			if (retval == 0)
411				retval = status;
412			break;
413		}
414		buf += status;
415		off += status;
416		count -= status;
417		retval += status;
418	}
419
420	mutex_unlock(&at24->lock);
421
422	return retval;
423}
424
425static ssize_t at24_bin_write(struct file *filp, struct kobject *kobj,
426		struct bin_attribute *attr,
427		char *buf, loff_t off, size_t count)
428{
429	struct at24_data *at24;
430
431	at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
432	return at24_write(at24, buf, off, count);
433}
434
435/*-------------------------------------------------------------------------*/
436
437/*
438 * This lets other kernel code access the eeprom data. For example, it
439 * might hold a board's Ethernet address, or board-specific calibration
440 * data generated on the manufacturing floor.
441 */
442
443static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf,
444			 off_t offset, size_t count)
445{
446	struct at24_data *at24 = container_of(macc, struct at24_data, macc);
447
448	return at24_read(at24, buf, offset, count);
449}
450
451static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf,
452			  off_t offset, size_t count)
453{
454	struct at24_data *at24 = container_of(macc, struct at24_data, macc);
455
456	return at24_write(at24, buf, offset, count);
457}
458
459/*-------------------------------------------------------------------------*/
460
461#ifdef CONFIG_OF
462static void at24_get_ofdata(struct i2c_client *client,
463		struct at24_platform_data *chip)
464{
465	const __be32 *val;
466	struct device_node *node = client->dev.of_node;
467
468	if (node) {
469		if (of_get_property(node, "read-only", NULL))
470			chip->flags |= AT24_FLAG_READONLY;
471		val = of_get_property(node, "pagesize", NULL);
472		if (val)
473			chip->page_size = be32_to_cpup(val);
474	}
475}
476#else
477static void at24_get_ofdata(struct i2c_client *client,
478		struct at24_platform_data *chip)
479{ }
480#endif /* CONFIG_OF */
481
482static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
483{
484	struct at24_platform_data chip;
485	bool writable;
486	int use_smbus = 0;
487	struct at24_data *at24;
488	int err;
489	unsigned i, num_addresses;
490	kernel_ulong_t magic;
491
492	if (client->dev.platform_data) {
493		chip = *(struct at24_platform_data *)client->dev.platform_data;
494	} else {
495		if (!id->driver_data) {
496			err = -ENODEV;
497			goto err_out;
498		}
499		magic = id->driver_data;
500		chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
501		magic >>= AT24_SIZE_BYTELEN;
502		chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
503		/*
504		 * This is slow, but we can't know all eeproms, so we better
505		 * play safe. Specifying custom eeprom-types via platform_data
506		 * is recommended anyhow.
507		 */
508		chip.page_size = 1;
509
510		/* update chipdata if OF is present */
511		at24_get_ofdata(client, &chip);
512
513		chip.setup = NULL;
514		chip.context = NULL;
515	}
516
517	if (!is_power_of_2(chip.byte_len))
518		dev_warn(&client->dev,
519			"byte_len looks suspicious (no power of 2)!\n");
520	if (!chip.page_size) {
521		dev_err(&client->dev, "page_size must not be 0!\n");
522		err = -EINVAL;
523		goto err_out;
524	}
525	if (!is_power_of_2(chip.page_size))
526		dev_warn(&client->dev,
527			"page_size looks suspicious (no power of 2)!\n");
528
529	/* Use I2C operations unless we're stuck with SMBus extensions. */
530	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
531		if (chip.flags & AT24_FLAG_ADDR16) {
532			err = -EPFNOSUPPORT;
533			goto err_out;
534		}
535		if (i2c_check_functionality(client->adapter,
536				I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
537			use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
538		} else if (i2c_check_functionality(client->adapter,
539				I2C_FUNC_SMBUS_READ_WORD_DATA)) {
540			use_smbus = I2C_SMBUS_WORD_DATA;
541		} else if (i2c_check_functionality(client->adapter,
542				I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
543			use_smbus = I2C_SMBUS_BYTE_DATA;
544		} else {
545			err = -EPFNOSUPPORT;
546			goto err_out;
547		}
548	}
549
550	if (chip.flags & AT24_FLAG_TAKE8ADDR)
551		num_addresses = 8;
552	else
553		num_addresses =	DIV_ROUND_UP(chip.byte_len,
554			(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
555
556	at24 = kzalloc(sizeof(struct at24_data) +
557		num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
558	if (!at24) {
559		err = -ENOMEM;
560		goto err_out;
561	}
562
563	mutex_init(&at24->lock);
564	at24->use_smbus = use_smbus;
565	at24->chip = chip;
566	at24->num_addresses = num_addresses;
567
568	/*
569	 * Export the EEPROM bytes through sysfs, since that's convenient.
570	 * By default, only root should see the data (maybe passwords etc)
571	 */
572	sysfs_bin_attr_init(&at24->bin);
573	at24->bin.attr.name = "eeprom";
574	at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR;
575	at24->bin.read = at24_bin_read;
576	at24->bin.size = chip.byte_len;
577
578	at24->macc.read = at24_macc_read;
579
580	writable = !(chip.flags & AT24_FLAG_READONLY);
581	if (writable) {
582		if (!use_smbus || i2c_check_functionality(client->adapter,
583				I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
584
585			unsigned write_max = chip.page_size;
586
587			at24->macc.write = at24_macc_write;
588
589			at24->bin.write = at24_bin_write;
590			at24->bin.attr.mode |= S_IWUSR;
591
592			if (write_max > io_limit)
593				write_max = io_limit;
594			if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
595				write_max = I2C_SMBUS_BLOCK_MAX;
596			at24->write_max = write_max;
597
598			/* buffer (data + address at the beginning) */
599			at24->writebuf = kmalloc(write_max + 2, GFP_KERNEL);
600			if (!at24->writebuf) {
601				err = -ENOMEM;
602				goto err_struct;
603			}
604		} else {
605			dev_warn(&client->dev,
606				"cannot write due to controller restrictions.");
607		}
608	}
609
610	at24->client[0] = client;
611
612	/* use dummy devices for multiple-address chips */
613	for (i = 1; i < num_addresses; i++) {
614		at24->client[i] = i2c_new_dummy(client->adapter,
615					client->addr + i);
616		if (!at24->client[i]) {
617			dev_err(&client->dev, "address 0x%02x unavailable\n",
618					client->addr + i);
619			err = -EADDRINUSE;
620			goto err_clients;
621		}
622	}
623
624	err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin);
625	if (err)
626		goto err_clients;
627
628	i2c_set_clientdata(client, at24);
629
630	dev_info(&client->dev, "%zu byte %s EEPROM, %s, %u bytes/write\n",
631		at24->bin.size, client->name,
632		writable ? "writable" : "read-only", at24->write_max);
633	if (use_smbus == I2C_SMBUS_WORD_DATA ||
634	    use_smbus == I2C_SMBUS_BYTE_DATA) {
635		dev_notice(&client->dev, "Falling back to %s reads, "
636			   "performance will suffer\n", use_smbus ==
637			   I2C_SMBUS_WORD_DATA ? "word" : "byte");
638	}
639
640	/* export data to kernel code */
641	if (chip.setup)
642		chip.setup(&at24->macc, chip.context);
643
644	return 0;
645
646err_clients:
647	for (i = 1; i < num_addresses; i++)
648		if (at24->client[i])
649			i2c_unregister_device(at24->client[i]);
650
651	kfree(at24->writebuf);
652err_struct:
653	kfree(at24);
654err_out:
655	dev_dbg(&client->dev, "probe error %d\n", err);
656	return err;
657}
658
659static int __devexit at24_remove(struct i2c_client *client)
660{
661	struct at24_data *at24;
662	int i;
663
664	at24 = i2c_get_clientdata(client);
665	sysfs_remove_bin_file(&client->dev.kobj, &at24->bin);
666
667	for (i = 1; i < at24->num_addresses; i++)
668		i2c_unregister_device(at24->client[i]);
669
670	kfree(at24->writebuf);
671	kfree(at24);
672	return 0;
673}
674
675/*-------------------------------------------------------------------------*/
676
677static struct i2c_driver at24_driver = {
678	.driver = {
679		.name = "at24",
680		.owner = THIS_MODULE,
681	},
682	.probe = at24_probe,
683	.remove = __devexit_p(at24_remove),
684	.id_table = at24_ids,
685};
686
687static int __init at24_init(void)
688{
689	if (!io_limit) {
690		pr_err("at24: io_limit must not be 0!\n");
691		return -EINVAL;
692	}
693
694	io_limit = rounddown_pow_of_two(io_limit);
695	return i2c_add_driver(&at24_driver);
696}
697module_init(at24_init);
698
699static void __exit at24_exit(void)
700{
701	i2c_del_driver(&at24_driver);
702}
703module_exit(at24_exit);
704
705MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
706MODULE_AUTHOR("David Brownell and Wolfram Sang");
707MODULE_LICENSE("GPL");
v3.5.6
  1/*
  2 * at24.c - handle most I2C EEPROMs
  3 *
  4 * Copyright (C) 2005-2007 David Brownell
  5 * Copyright (C) 2008 Wolfram Sang, Pengutronix
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License as published by
  9 * the Free Software Foundation; either version 2 of the License, or
 10 * (at your option) any later version.
 11 */
 12#include <linux/kernel.h>
 13#include <linux/init.h>
 14#include <linux/module.h>
 15#include <linux/slab.h>
 16#include <linux/delay.h>
 17#include <linux/mutex.h>
 18#include <linux/sysfs.h>
 19#include <linux/mod_devicetable.h>
 20#include <linux/log2.h>
 21#include <linux/bitops.h>
 22#include <linux/jiffies.h>
 23#include <linux/of.h>
 24#include <linux/i2c.h>
 25#include <linux/i2c/at24.h>
 26
 27/*
 28 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
 29 * Differences between different vendor product lines (like Atmel AT24C or
 30 * MicroChip 24LC, etc) won't much matter for typical read/write access.
 31 * There are also I2C RAM chips, likewise interchangeable. One example
 32 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
 33 *
 34 * However, misconfiguration can lose data. "Set 16-bit memory address"
 35 * to a part with 8-bit addressing will overwrite data. Writing with too
 36 * big a page size also loses data. And it's not safe to assume that the
 37 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
 38 * uses 0x51, for just one example.
 39 *
 40 * Accordingly, explicit board-specific configuration data should be used
 41 * in almost all cases. (One partial exception is an SMBus used to access
 42 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
 43 *
 44 * So this driver uses "new style" I2C driver binding, expecting to be
 45 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
 46 * similar kernel-resident tables; or, configuration data coming from
 47 * a bootloader.
 48 *
 49 * Other than binding model, current differences from "eeprom" driver are
 50 * that this one handles write access and isn't restricted to 24c02 devices.
 51 * It also handles larger devices (32 kbit and up) with two-byte addresses,
 52 * which won't work on pure SMBus systems.
 53 */
 54
 55struct at24_data {
 56	struct at24_platform_data chip;
 57	struct memory_accessor macc;
 58	int use_smbus;
 59
 60	/*
 61	 * Lock protects against activities from other Linux tasks,
 62	 * but not from changes by other I2C masters.
 63	 */
 64	struct mutex lock;
 65	struct bin_attribute bin;
 66
 67	u8 *writebuf;
 68	unsigned write_max;
 69	unsigned num_addresses;
 70
 71	/*
 72	 * Some chips tie up multiple I2C addresses; dummy devices reserve
 73	 * them for us, and we'll use them with SMBus calls.
 74	 */
 75	struct i2c_client *client[];
 76};
 77
 78/*
 79 * This parameter is to help this driver avoid blocking other drivers out
 80 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
 81 * clock, one 256 byte read takes about 1/43 second which is excessive;
 82 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
 83 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
 84 *
 85 * This value is forced to be a power of two so that writes align on pages.
 86 */
 87static unsigned io_limit = 128;
 88module_param(io_limit, uint, 0);
 89MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
 90
 91/*
 92 * Specs often allow 5 msec for a page write, sometimes 20 msec;
 93 * it's important to recover from write timeouts.
 94 */
 95static unsigned write_timeout = 25;
 96module_param(write_timeout, uint, 0);
 97MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
 98
 99#define AT24_SIZE_BYTELEN 5
100#define AT24_SIZE_FLAGS 8
101
102#define AT24_BITMASK(x) (BIT(x) - 1)
103
104/* create non-zero magic value for given eeprom parameters */
105#define AT24_DEVICE_MAGIC(_len, _flags) 		\
106	((1 << AT24_SIZE_FLAGS | (_flags)) 		\
107	    << AT24_SIZE_BYTELEN | ilog2(_len))
108
109static const struct i2c_device_id at24_ids[] = {
110	/* needs 8 addresses as A0-A2 are ignored */
111	{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
112	/* old variants can't be handled with this generic entry! */
113	{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
114	{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
115	/* spd is a 24c02 in memory DIMMs */
116	{ "spd", AT24_DEVICE_MAGIC(2048 / 8,
117		AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
118	{ "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
119	/* 24rf08 quirk is handled at i2c-core */
120	{ "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
121	{ "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
122	{ "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
123	{ "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
124	{ "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
125	{ "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
126	{ "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
127	{ "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
128	{ "at24", 0 },
129	{ /* END OF LIST */ }
130};
131MODULE_DEVICE_TABLE(i2c, at24_ids);
132
133/*-------------------------------------------------------------------------*/
134
135/*
136 * This routine supports chips which consume multiple I2C addresses. It
137 * computes the addressing information to be used for a given r/w request.
138 * Assumes that sanity checks for offset happened at sysfs-layer.
139 */
140static struct i2c_client *at24_translate_offset(struct at24_data *at24,
141		unsigned *offset)
142{
143	unsigned i;
144
145	if (at24->chip.flags & AT24_FLAG_ADDR16) {
146		i = *offset >> 16;
147		*offset &= 0xffff;
148	} else {
149		i = *offset >> 8;
150		*offset &= 0xff;
151	}
152
153	return at24->client[i];
154}
155
156static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
157		unsigned offset, size_t count)
158{
159	struct i2c_msg msg[2];
160	u8 msgbuf[2];
161	struct i2c_client *client;
162	unsigned long timeout, read_time;
163	int status, i;
164
165	memset(msg, 0, sizeof(msg));
166
167	/*
168	 * REVISIT some multi-address chips don't rollover page reads to
169	 * the next slave address, so we may need to truncate the count.
170	 * Those chips might need another quirk flag.
171	 *
172	 * If the real hardware used four adjacent 24c02 chips and that
173	 * were misconfigured as one 24c08, that would be a similar effect:
174	 * one "eeprom" file not four, but larger reads would fail when
175	 * they crossed certain pages.
176	 */
177
178	/*
179	 * Slave address and byte offset derive from the offset. Always
180	 * set the byte address; on a multi-master board, another master
181	 * may have changed the chip's "current" address pointer.
182	 */
183	client = at24_translate_offset(at24, &offset);
184
185	if (count > io_limit)
186		count = io_limit;
187
188	switch (at24->use_smbus) {
189	case I2C_SMBUS_I2C_BLOCK_DATA:
190		/* Smaller eeproms can work given some SMBus extension calls */
191		if (count > I2C_SMBUS_BLOCK_MAX)
192			count = I2C_SMBUS_BLOCK_MAX;
193		break;
194	case I2C_SMBUS_WORD_DATA:
195		count = 2;
196		break;
197	case I2C_SMBUS_BYTE_DATA:
198		count = 1;
199		break;
200	default:
201		/*
202		 * When we have a better choice than SMBus calls, use a
203		 * combined I2C message. Write address; then read up to
204		 * io_limit data bytes. Note that read page rollover helps us
205		 * here (unlike writes). msgbuf is u8 and will cast to our
206		 * needs.
207		 */
208		i = 0;
209		if (at24->chip.flags & AT24_FLAG_ADDR16)
210			msgbuf[i++] = offset >> 8;
211		msgbuf[i++] = offset;
212
213		msg[0].addr = client->addr;
214		msg[0].buf = msgbuf;
215		msg[0].len = i;
216
217		msg[1].addr = client->addr;
218		msg[1].flags = I2C_M_RD;
219		msg[1].buf = buf;
220		msg[1].len = count;
221	}
222
223	/*
224	 * Reads fail if the previous write didn't complete yet. We may
225	 * loop a few times until this one succeeds, waiting at least
226	 * long enough for one entire page write to work.
227	 */
228	timeout = jiffies + msecs_to_jiffies(write_timeout);
229	do {
230		read_time = jiffies;
231		switch (at24->use_smbus) {
232		case I2C_SMBUS_I2C_BLOCK_DATA:
233			status = i2c_smbus_read_i2c_block_data(client, offset,
234					count, buf);
235			break;
236		case I2C_SMBUS_WORD_DATA:
237			status = i2c_smbus_read_word_data(client, offset);
238			if (status >= 0) {
239				buf[0] = status & 0xff;
240				buf[1] = status >> 8;
241				status = count;
242			}
243			break;
244		case I2C_SMBUS_BYTE_DATA:
245			status = i2c_smbus_read_byte_data(client, offset);
246			if (status >= 0) {
247				buf[0] = status;
248				status = count;
249			}
250			break;
251		default:
252			status = i2c_transfer(client->adapter, msg, 2);
253			if (status == 2)
254				status = count;
255		}
256		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
257				count, offset, status, jiffies);
258
259		if (status == count)
260			return count;
261
262		/* REVISIT: at HZ=100, this is sloooow */
263		msleep(1);
264	} while (time_before(read_time, timeout));
265
266	return -ETIMEDOUT;
267}
268
269static ssize_t at24_read(struct at24_data *at24,
270		char *buf, loff_t off, size_t count)
271{
272	ssize_t retval = 0;
273
274	if (unlikely(!count))
275		return count;
276
277	/*
278	 * Read data from chip, protecting against concurrent updates
279	 * from this host, but not from other I2C masters.
280	 */
281	mutex_lock(&at24->lock);
282
283	while (count) {
284		ssize_t	status;
285
286		status = at24_eeprom_read(at24, buf, off, count);
287		if (status <= 0) {
288			if (retval == 0)
289				retval = status;
290			break;
291		}
292		buf += status;
293		off += status;
294		count -= status;
295		retval += status;
296	}
297
298	mutex_unlock(&at24->lock);
299
300	return retval;
301}
302
303static ssize_t at24_bin_read(struct file *filp, struct kobject *kobj,
304		struct bin_attribute *attr,
305		char *buf, loff_t off, size_t count)
306{
307	struct at24_data *at24;
308
309	at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
310	return at24_read(at24, buf, off, count);
311}
312
313
314/*
315 * Note that if the hardware write-protect pin is pulled high, the whole
316 * chip is normally write protected. But there are plenty of product
317 * variants here, including OTP fuses and partial chip protect.
318 *
319 * We only use page mode writes; the alternative is sloooow. This routine
320 * writes at most one page.
321 */
322static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
323		unsigned offset, size_t count)
324{
325	struct i2c_client *client;
326	struct i2c_msg msg;
327	ssize_t status;
328	unsigned long timeout, write_time;
329	unsigned next_page;
330
331	/* Get corresponding I2C address and adjust offset */
332	client = at24_translate_offset(at24, &offset);
333
334	/* write_max is at most a page */
335	if (count > at24->write_max)
336		count = at24->write_max;
337
338	/* Never roll over backwards, to the start of this page */
339	next_page = roundup(offset + 1, at24->chip.page_size);
340	if (offset + count > next_page)
341		count = next_page - offset;
342
343	/* If we'll use I2C calls for I/O, set up the message */
344	if (!at24->use_smbus) {
345		int i = 0;
346
347		msg.addr = client->addr;
348		msg.flags = 0;
349
350		/* msg.buf is u8 and casts will mask the values */
351		msg.buf = at24->writebuf;
352		if (at24->chip.flags & AT24_FLAG_ADDR16)
353			msg.buf[i++] = offset >> 8;
354
355		msg.buf[i++] = offset;
356		memcpy(&msg.buf[i], buf, count);
357		msg.len = i + count;
358	}
359
360	/*
361	 * Writes fail if the previous one didn't complete yet. We may
362	 * loop a few times until this one succeeds, waiting at least
363	 * long enough for one entire page write to work.
364	 */
365	timeout = jiffies + msecs_to_jiffies(write_timeout);
366	do {
367		write_time = jiffies;
368		if (at24->use_smbus) {
369			status = i2c_smbus_write_i2c_block_data(client,
370					offset, count, buf);
371			if (status == 0)
372				status = count;
373		} else {
374			status = i2c_transfer(client->adapter, &msg, 1);
375			if (status == 1)
376				status = count;
377		}
378		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
379				count, offset, status, jiffies);
380
381		if (status == count)
382			return count;
383
384		/* REVISIT: at HZ=100, this is sloooow */
385		msleep(1);
386	} while (time_before(write_time, timeout));
387
388	return -ETIMEDOUT;
389}
390
391static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
392			  size_t count)
393{
394	ssize_t retval = 0;
395
396	if (unlikely(!count))
397		return count;
398
399	/*
400	 * Write data to chip, protecting against concurrent updates
401	 * from this host, but not from other I2C masters.
402	 */
403	mutex_lock(&at24->lock);
404
405	while (count) {
406		ssize_t	status;
407
408		status = at24_eeprom_write(at24, buf, off, count);
409		if (status <= 0) {
410			if (retval == 0)
411				retval = status;
412			break;
413		}
414		buf += status;
415		off += status;
416		count -= status;
417		retval += status;
418	}
419
420	mutex_unlock(&at24->lock);
421
422	return retval;
423}
424
425static ssize_t at24_bin_write(struct file *filp, struct kobject *kobj,
426		struct bin_attribute *attr,
427		char *buf, loff_t off, size_t count)
428{
429	struct at24_data *at24;
430
431	at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
432	return at24_write(at24, buf, off, count);
433}
434
435/*-------------------------------------------------------------------------*/
436
437/*
438 * This lets other kernel code access the eeprom data. For example, it
439 * might hold a board's Ethernet address, or board-specific calibration
440 * data generated on the manufacturing floor.
441 */
442
443static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf,
444			 off_t offset, size_t count)
445{
446	struct at24_data *at24 = container_of(macc, struct at24_data, macc);
447
448	return at24_read(at24, buf, offset, count);
449}
450
451static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf,
452			  off_t offset, size_t count)
453{
454	struct at24_data *at24 = container_of(macc, struct at24_data, macc);
455
456	return at24_write(at24, buf, offset, count);
457}
458
459/*-------------------------------------------------------------------------*/
460
461#ifdef CONFIG_OF
462static void at24_get_ofdata(struct i2c_client *client,
463		struct at24_platform_data *chip)
464{
465	const __be32 *val;
466	struct device_node *node = client->dev.of_node;
467
468	if (node) {
469		if (of_get_property(node, "read-only", NULL))
470			chip->flags |= AT24_FLAG_READONLY;
471		val = of_get_property(node, "pagesize", NULL);
472		if (val)
473			chip->page_size = be32_to_cpup(val);
474	}
475}
476#else
477static void at24_get_ofdata(struct i2c_client *client,
478		struct at24_platform_data *chip)
479{ }
480#endif /* CONFIG_OF */
481
482static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
483{
484	struct at24_platform_data chip;
485	bool writable;
486	int use_smbus = 0;
487	struct at24_data *at24;
488	int err;
489	unsigned i, num_addresses;
490	kernel_ulong_t magic;
491
492	if (client->dev.platform_data) {
493		chip = *(struct at24_platform_data *)client->dev.platform_data;
494	} else {
495		if (!id->driver_data) {
496			err = -ENODEV;
497			goto err_out;
498		}
499		magic = id->driver_data;
500		chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
501		magic >>= AT24_SIZE_BYTELEN;
502		chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
503		/*
504		 * This is slow, but we can't know all eeproms, so we better
505		 * play safe. Specifying custom eeprom-types via platform_data
506		 * is recommended anyhow.
507		 */
508		chip.page_size = 1;
509
510		/* update chipdata if OF is present */
511		at24_get_ofdata(client, &chip);
512
513		chip.setup = NULL;
514		chip.context = NULL;
515	}
516
517	if (!is_power_of_2(chip.byte_len))
518		dev_warn(&client->dev,
519			"byte_len looks suspicious (no power of 2)!\n");
520	if (!chip.page_size) {
521		dev_err(&client->dev, "page_size must not be 0!\n");
522		err = -EINVAL;
523		goto err_out;
524	}
525	if (!is_power_of_2(chip.page_size))
526		dev_warn(&client->dev,
527			"page_size looks suspicious (no power of 2)!\n");
528
529	/* Use I2C operations unless we're stuck with SMBus extensions. */
530	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
531		if (chip.flags & AT24_FLAG_ADDR16) {
532			err = -EPFNOSUPPORT;
533			goto err_out;
534		}
535		if (i2c_check_functionality(client->adapter,
536				I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
537			use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
538		} else if (i2c_check_functionality(client->adapter,
539				I2C_FUNC_SMBUS_READ_WORD_DATA)) {
540			use_smbus = I2C_SMBUS_WORD_DATA;
541		} else if (i2c_check_functionality(client->adapter,
542				I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
543			use_smbus = I2C_SMBUS_BYTE_DATA;
544		} else {
545			err = -EPFNOSUPPORT;
546			goto err_out;
547		}
548	}
549
550	if (chip.flags & AT24_FLAG_TAKE8ADDR)
551		num_addresses = 8;
552	else
553		num_addresses =	DIV_ROUND_UP(chip.byte_len,
554			(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
555
556	at24 = kzalloc(sizeof(struct at24_data) +
557		num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
558	if (!at24) {
559		err = -ENOMEM;
560		goto err_out;
561	}
562
563	mutex_init(&at24->lock);
564	at24->use_smbus = use_smbus;
565	at24->chip = chip;
566	at24->num_addresses = num_addresses;
567
568	/*
569	 * Export the EEPROM bytes through sysfs, since that's convenient.
570	 * By default, only root should see the data (maybe passwords etc)
571	 */
572	sysfs_bin_attr_init(&at24->bin);
573	at24->bin.attr.name = "eeprom";
574	at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR;
575	at24->bin.read = at24_bin_read;
576	at24->bin.size = chip.byte_len;
577
578	at24->macc.read = at24_macc_read;
579
580	writable = !(chip.flags & AT24_FLAG_READONLY);
581	if (writable) {
582		if (!use_smbus || i2c_check_functionality(client->adapter,
583				I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
584
585			unsigned write_max = chip.page_size;
586
587			at24->macc.write = at24_macc_write;
588
589			at24->bin.write = at24_bin_write;
590			at24->bin.attr.mode |= S_IWUSR;
591
592			if (write_max > io_limit)
593				write_max = io_limit;
594			if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
595				write_max = I2C_SMBUS_BLOCK_MAX;
596			at24->write_max = write_max;
597
598			/* buffer (data + address at the beginning) */
599			at24->writebuf = kmalloc(write_max + 2, GFP_KERNEL);
600			if (!at24->writebuf) {
601				err = -ENOMEM;
602				goto err_struct;
603			}
604		} else {
605			dev_warn(&client->dev,
606				"cannot write due to controller restrictions.");
607		}
608	}
609
610	at24->client[0] = client;
611
612	/* use dummy devices for multiple-address chips */
613	for (i = 1; i < num_addresses; i++) {
614		at24->client[i] = i2c_new_dummy(client->adapter,
615					client->addr + i);
616		if (!at24->client[i]) {
617			dev_err(&client->dev, "address 0x%02x unavailable\n",
618					client->addr + i);
619			err = -EADDRINUSE;
620			goto err_clients;
621		}
622	}
623
624	err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin);
625	if (err)
626		goto err_clients;
627
628	i2c_set_clientdata(client, at24);
629
630	dev_info(&client->dev, "%zu byte %s EEPROM, %s, %u bytes/write\n",
631		at24->bin.size, client->name,
632		writable ? "writable" : "read-only", at24->write_max);
633	if (use_smbus == I2C_SMBUS_WORD_DATA ||
634	    use_smbus == I2C_SMBUS_BYTE_DATA) {
635		dev_notice(&client->dev, "Falling back to %s reads, "
636			   "performance will suffer\n", use_smbus ==
637			   I2C_SMBUS_WORD_DATA ? "word" : "byte");
638	}
639
640	/* export data to kernel code */
641	if (chip.setup)
642		chip.setup(&at24->macc, chip.context);
643
644	return 0;
645
646err_clients:
647	for (i = 1; i < num_addresses; i++)
648		if (at24->client[i])
649			i2c_unregister_device(at24->client[i]);
650
651	kfree(at24->writebuf);
652err_struct:
653	kfree(at24);
654err_out:
655	dev_dbg(&client->dev, "probe error %d\n", err);
656	return err;
657}
658
659static int __devexit at24_remove(struct i2c_client *client)
660{
661	struct at24_data *at24;
662	int i;
663
664	at24 = i2c_get_clientdata(client);
665	sysfs_remove_bin_file(&client->dev.kobj, &at24->bin);
666
667	for (i = 1; i < at24->num_addresses; i++)
668		i2c_unregister_device(at24->client[i]);
669
670	kfree(at24->writebuf);
671	kfree(at24);
672	return 0;
673}
674
675/*-------------------------------------------------------------------------*/
676
677static struct i2c_driver at24_driver = {
678	.driver = {
679		.name = "at24",
680		.owner = THIS_MODULE,
681	},
682	.probe = at24_probe,
683	.remove = __devexit_p(at24_remove),
684	.id_table = at24_ids,
685};
686
687static int __init at24_init(void)
688{
689	if (!io_limit) {
690		pr_err("at24: io_limit must not be 0!\n");
691		return -EINVAL;
692	}
693
694	io_limit = rounddown_pow_of_two(io_limit);
695	return i2c_add_driver(&at24_driver);
696}
697module_init(at24_init);
698
699static void __exit at24_exit(void)
700{
701	i2c_del_driver(&at24_driver);
702}
703module_exit(at24_exit);
704
705MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
706MODULE_AUTHOR("David Brownell and Wolfram Sang");
707MODULE_LICENSE("GPL");