Linux Audio

Check our new training course

Loading...
v3.1
  1
  2/******************************************************************************
  3 *
  4 * Module Name: exmisc - ACPI AML (p-code) execution - specific opcodes
  5 *
  6 *****************************************************************************/
  7
  8/*
  9 * Copyright (C) 2000 - 2011, Intel Corp.
 10 * All rights reserved.
 11 *
 12 * Redistribution and use in source and binary forms, with or without
 13 * modification, are permitted provided that the following conditions
 14 * are met:
 15 * 1. Redistributions of source code must retain the above copyright
 16 *    notice, this list of conditions, and the following disclaimer,
 17 *    without modification.
 18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
 19 *    substantially similar to the "NO WARRANTY" disclaimer below
 20 *    ("Disclaimer") and any redistribution must be conditioned upon
 21 *    including a substantially similar Disclaimer requirement for further
 22 *    binary redistribution.
 23 * 3. Neither the names of the above-listed copyright holders nor the names
 24 *    of any contributors may be used to endorse or promote products derived
 25 *    from this software without specific prior written permission.
 26 *
 27 * Alternatively, this software may be distributed under the terms of the
 28 * GNU General Public License ("GPL") version 2 as published by the Free
 29 * Software Foundation.
 30 *
 31 * NO WARRANTY
 32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
 35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 42 * POSSIBILITY OF SUCH DAMAGES.
 43 */
 44
 45#include <acpi/acpi.h>
 46#include "accommon.h"
 47#include "acinterp.h"
 48#include "amlcode.h"
 49#include "amlresrc.h"
 50
 51#define _COMPONENT          ACPI_EXECUTER
 52ACPI_MODULE_NAME("exmisc")
 53
 54/*******************************************************************************
 55 *
 56 * FUNCTION:    acpi_ex_get_object_reference
 57 *
 58 * PARAMETERS:  obj_desc            - Create a reference to this object
 59 *              return_desc         - Where to store the reference
 60 *              walk_state          - Current state
 61 *
 62 * RETURN:      Status
 63 *
 64 * DESCRIPTION: Obtain and return a "reference" to the target object
 65 *              Common code for the ref_of_op and the cond_ref_of_op.
 66 *
 67 ******************************************************************************/
 68acpi_status
 69acpi_ex_get_object_reference(union acpi_operand_object *obj_desc,
 70			     union acpi_operand_object **return_desc,
 71			     struct acpi_walk_state *walk_state)
 72{
 73	union acpi_operand_object *reference_obj;
 74	union acpi_operand_object *referenced_obj;
 75
 76	ACPI_FUNCTION_TRACE_PTR(ex_get_object_reference, obj_desc);
 77
 78	*return_desc = NULL;
 79
 80	switch (ACPI_GET_DESCRIPTOR_TYPE(obj_desc)) {
 81	case ACPI_DESC_TYPE_OPERAND:
 82
 83		if (obj_desc->common.type != ACPI_TYPE_LOCAL_REFERENCE) {
 84			return_ACPI_STATUS(AE_AML_OPERAND_TYPE);
 85		}
 86
 87		/*
 88		 * Must be a reference to a Local or Arg
 89		 */
 90		switch (obj_desc->reference.class) {
 91		case ACPI_REFCLASS_LOCAL:
 92		case ACPI_REFCLASS_ARG:
 93		case ACPI_REFCLASS_DEBUG:
 94
 95			/* The referenced object is the pseudo-node for the local/arg */
 96
 97			referenced_obj = obj_desc->reference.object;
 98			break;
 99
100		default:
101
102			ACPI_ERROR((AE_INFO, "Unknown Reference Class 0x%2.2X",
103				    obj_desc->reference.class));
104			return_ACPI_STATUS(AE_AML_INTERNAL);
105		}
106		break;
107
108	case ACPI_DESC_TYPE_NAMED:
109
110		/*
111		 * A named reference that has already been resolved to a Node
112		 */
113		referenced_obj = obj_desc;
114		break;
115
116	default:
117
118		ACPI_ERROR((AE_INFO, "Invalid descriptor type 0x%X",
119			    ACPI_GET_DESCRIPTOR_TYPE(obj_desc)));
120		return_ACPI_STATUS(AE_TYPE);
121	}
122
123	/* Create a new reference object */
124
125	reference_obj =
126	    acpi_ut_create_internal_object(ACPI_TYPE_LOCAL_REFERENCE);
127	if (!reference_obj) {
128		return_ACPI_STATUS(AE_NO_MEMORY);
129	}
130
131	reference_obj->reference.class = ACPI_REFCLASS_REFOF;
132	reference_obj->reference.object = referenced_obj;
133	*return_desc = reference_obj;
134
135	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
136			  "Object %p Type [%s], returning Reference %p\n",
137			  obj_desc, acpi_ut_get_object_type_name(obj_desc),
138			  *return_desc));
139
140	return_ACPI_STATUS(AE_OK);
141}
142
143/*******************************************************************************
144 *
145 * FUNCTION:    acpi_ex_concat_template
146 *
147 * PARAMETERS:  Operand0            - First source object
148 *              Operand1            - Second source object
149 *              actual_return_desc  - Where to place the return object
150 *              walk_state          - Current walk state
151 *
152 * RETURN:      Status
153 *
154 * DESCRIPTION: Concatenate two resource templates
155 *
156 ******************************************************************************/
157
158acpi_status
159acpi_ex_concat_template(union acpi_operand_object *operand0,
160			union acpi_operand_object *operand1,
161			union acpi_operand_object **actual_return_desc,
162			struct acpi_walk_state *walk_state)
163{
164	acpi_status status;
165	union acpi_operand_object *return_desc;
166	u8 *new_buf;
167	u8 *end_tag;
168	acpi_size length0;
169	acpi_size length1;
170	acpi_size new_length;
171
172	ACPI_FUNCTION_TRACE(ex_concat_template);
173
174	/*
175	 * Find the end_tag descriptor in each resource template.
176	 * Note1: returned pointers point TO the end_tag, not past it.
177	 * Note2: zero-length buffers are allowed; treated like one end_tag
178	 */
179
180	/* Get the length of the first resource template */
181
182	status = acpi_ut_get_resource_end_tag(operand0, &end_tag);
183	if (ACPI_FAILURE(status)) {
184		return_ACPI_STATUS(status);
185	}
186
187	length0 = ACPI_PTR_DIFF(end_tag, operand0->buffer.pointer);
188
189	/* Get the length of the second resource template */
190
191	status = acpi_ut_get_resource_end_tag(operand1, &end_tag);
192	if (ACPI_FAILURE(status)) {
193		return_ACPI_STATUS(status);
194	}
195
196	length1 = ACPI_PTR_DIFF(end_tag, operand1->buffer.pointer);
197
198	/* Combine both lengths, minimum size will be 2 for end_tag */
199
200	new_length = length0 + length1 + sizeof(struct aml_resource_end_tag);
201
202	/* Create a new buffer object for the result (with one end_tag) */
203
204	return_desc = acpi_ut_create_buffer_object(new_length);
205	if (!return_desc) {
206		return_ACPI_STATUS(AE_NO_MEMORY);
207	}
208
209	/*
210	 * Copy the templates to the new buffer, 0 first, then 1 follows. One
211	 * end_tag descriptor is copied from Operand1.
212	 */
213	new_buf = return_desc->buffer.pointer;
214	ACPI_MEMCPY(new_buf, operand0->buffer.pointer, length0);
215	ACPI_MEMCPY(new_buf + length0, operand1->buffer.pointer, length1);
216
217	/* Insert end_tag and set the checksum to zero, means "ignore checksum" */
218
219	new_buf[new_length - 1] = 0;
220	new_buf[new_length - 2] = ACPI_RESOURCE_NAME_END_TAG | 1;
221
222	/* Return the completed resource template */
223
224	*actual_return_desc = return_desc;
225	return_ACPI_STATUS(AE_OK);
226}
227
228/*******************************************************************************
229 *
230 * FUNCTION:    acpi_ex_do_concatenate
231 *
232 * PARAMETERS:  Operand0            - First source object
233 *              Operand1            - Second source object
234 *              actual_return_desc  - Where to place the return object
235 *              walk_state          - Current walk state
236 *
237 * RETURN:      Status
238 *
239 * DESCRIPTION: Concatenate two objects OF THE SAME TYPE.
240 *
241 ******************************************************************************/
242
243acpi_status
244acpi_ex_do_concatenate(union acpi_operand_object *operand0,
245		       union acpi_operand_object *operand1,
246		       union acpi_operand_object **actual_return_desc,
247		       struct acpi_walk_state *walk_state)
248{
249	union acpi_operand_object *local_operand1 = operand1;
250	union acpi_operand_object *return_desc;
251	char *new_buf;
252	acpi_status status;
253
254	ACPI_FUNCTION_TRACE(ex_do_concatenate);
255
256	/*
257	 * Convert the second operand if necessary.  The first operand
258	 * determines the type of the second operand, (See the Data Types
259	 * section of the ACPI specification.)  Both object types are
260	 * guaranteed to be either Integer/String/Buffer by the operand
261	 * resolution mechanism.
262	 */
263	switch (operand0->common.type) {
264	case ACPI_TYPE_INTEGER:
265		status =
266		    acpi_ex_convert_to_integer(operand1, &local_operand1, 16);
267		break;
268
269	case ACPI_TYPE_STRING:
270		status = acpi_ex_convert_to_string(operand1, &local_operand1,
271						   ACPI_IMPLICIT_CONVERT_HEX);
272		break;
273
274	case ACPI_TYPE_BUFFER:
275		status = acpi_ex_convert_to_buffer(operand1, &local_operand1);
276		break;
277
278	default:
279		ACPI_ERROR((AE_INFO, "Invalid object type: 0x%X",
280			    operand0->common.type));
281		status = AE_AML_INTERNAL;
282	}
283
284	if (ACPI_FAILURE(status)) {
285		goto cleanup;
286	}
287
288	/*
289	 * Both operands are now known to be the same object type
290	 * (Both are Integer, String, or Buffer), and we can now perform the
291	 * concatenation.
292	 */
293
294	/*
295	 * There are three cases to handle:
296	 *
297	 * 1) Two Integers concatenated to produce a new Buffer
298	 * 2) Two Strings concatenated to produce a new String
299	 * 3) Two Buffers concatenated to produce a new Buffer
300	 */
301	switch (operand0->common.type) {
302	case ACPI_TYPE_INTEGER:
303
304		/* Result of two Integers is a Buffer */
305		/* Need enough buffer space for two integers */
306
307		return_desc = acpi_ut_create_buffer_object((acpi_size)
308							   ACPI_MUL_2
309							   (acpi_gbl_integer_byte_width));
310		if (!return_desc) {
311			status = AE_NO_MEMORY;
312			goto cleanup;
313		}
314
315		new_buf = (char *)return_desc->buffer.pointer;
316
317		/* Copy the first integer, LSB first */
318
319		ACPI_MEMCPY(new_buf, &operand0->integer.value,
320			    acpi_gbl_integer_byte_width);
321
322		/* Copy the second integer (LSB first) after the first */
323
324		ACPI_MEMCPY(new_buf + acpi_gbl_integer_byte_width,
325			    &local_operand1->integer.value,
326			    acpi_gbl_integer_byte_width);
327		break;
328
329	case ACPI_TYPE_STRING:
330
331		/* Result of two Strings is a String */
332
333		return_desc = acpi_ut_create_string_object(((acpi_size)
334							    operand0->string.
335							    length +
336							    local_operand1->
337							    string.length));
338		if (!return_desc) {
339			status = AE_NO_MEMORY;
340			goto cleanup;
341		}
342
343		new_buf = return_desc->string.pointer;
344
345		/* Concatenate the strings */
346
347		ACPI_STRCPY(new_buf, operand0->string.pointer);
348		ACPI_STRCPY(new_buf + operand0->string.length,
349			    local_operand1->string.pointer);
350		break;
351
352	case ACPI_TYPE_BUFFER:
353
354		/* Result of two Buffers is a Buffer */
355
356		return_desc = acpi_ut_create_buffer_object(((acpi_size)
357							    operand0->buffer.
358							    length +
359							    local_operand1->
360							    buffer.length));
361		if (!return_desc) {
362			status = AE_NO_MEMORY;
363			goto cleanup;
364		}
365
366		new_buf = (char *)return_desc->buffer.pointer;
367
368		/* Concatenate the buffers */
369
370		ACPI_MEMCPY(new_buf, operand0->buffer.pointer,
371			    operand0->buffer.length);
372		ACPI_MEMCPY(new_buf + operand0->buffer.length,
373			    local_operand1->buffer.pointer,
374			    local_operand1->buffer.length);
375		break;
376
377	default:
378
379		/* Invalid object type, should not happen here */
380
381		ACPI_ERROR((AE_INFO, "Invalid object type: 0x%X",
382			    operand0->common.type));
383		status = AE_AML_INTERNAL;
384		goto cleanup;
385	}
386
387	*actual_return_desc = return_desc;
388
389      cleanup:
390	if (local_operand1 != operand1) {
391		acpi_ut_remove_reference(local_operand1);
392	}
393	return_ACPI_STATUS(status);
394}
395
396/*******************************************************************************
397 *
398 * FUNCTION:    acpi_ex_do_math_op
399 *
400 * PARAMETERS:  Opcode              - AML opcode
401 *              Integer0            - Integer operand #0
402 *              Integer1            - Integer operand #1
403 *
404 * RETURN:      Integer result of the operation
405 *
406 * DESCRIPTION: Execute a math AML opcode. The purpose of having all of the
407 *              math functions here is to prevent a lot of pointer dereferencing
408 *              to obtain the operands.
409 *
410 ******************************************************************************/
411
412u64 acpi_ex_do_math_op(u16 opcode, u64 integer0, u64 integer1)
413{
414
415	ACPI_FUNCTION_ENTRY();
416
417	switch (opcode) {
418	case AML_ADD_OP:	/* Add (Integer0, Integer1, Result) */
419
420		return (integer0 + integer1);
421
422	case AML_BIT_AND_OP:	/* And (Integer0, Integer1, Result) */
423
424		return (integer0 & integer1);
425
426	case AML_BIT_NAND_OP:	/* NAnd (Integer0, Integer1, Result) */
427
428		return (~(integer0 & integer1));
429
430	case AML_BIT_OR_OP:	/* Or (Integer0, Integer1, Result) */
431
432		return (integer0 | integer1);
433
434	case AML_BIT_NOR_OP:	/* NOr (Integer0, Integer1, Result) */
435
436		return (~(integer0 | integer1));
437
438	case AML_BIT_XOR_OP:	/* XOr (Integer0, Integer1, Result) */
439
440		return (integer0 ^ integer1);
441
442	case AML_MULTIPLY_OP:	/* Multiply (Integer0, Integer1, Result) */
443
444		return (integer0 * integer1);
445
446	case AML_SHIFT_LEFT_OP:	/* shift_left (Operand, shift_count, Result) */
447
448		/*
449		 * We need to check if the shiftcount is larger than the integer bit
450		 * width since the behavior of this is not well-defined in the C language.
451		 */
452		if (integer1 >= acpi_gbl_integer_bit_width) {
453			return (0);
454		}
455		return (integer0 << integer1);
456
457	case AML_SHIFT_RIGHT_OP:	/* shift_right (Operand, shift_count, Result) */
458
459		/*
460		 * We need to check if the shiftcount is larger than the integer bit
461		 * width since the behavior of this is not well-defined in the C language.
462		 */
463		if (integer1 >= acpi_gbl_integer_bit_width) {
464			return (0);
465		}
466		return (integer0 >> integer1);
467
468	case AML_SUBTRACT_OP:	/* Subtract (Integer0, Integer1, Result) */
469
470		return (integer0 - integer1);
471
472	default:
473
474		return (0);
475	}
476}
477
478/*******************************************************************************
479 *
480 * FUNCTION:    acpi_ex_do_logical_numeric_op
481 *
482 * PARAMETERS:  Opcode              - AML opcode
483 *              Integer0            - Integer operand #0
484 *              Integer1            - Integer operand #1
485 *              logical_result      - TRUE/FALSE result of the operation
486 *
487 * RETURN:      Status
488 *
489 * DESCRIPTION: Execute a logical "Numeric" AML opcode. For these Numeric
490 *              operators (LAnd and LOr), both operands must be integers.
491 *
492 *              Note: cleanest machine code seems to be produced by the code
493 *              below, rather than using statements of the form:
494 *                  Result = (Integer0 && Integer1);
495 *
496 ******************************************************************************/
497
498acpi_status
499acpi_ex_do_logical_numeric_op(u16 opcode,
500			      u64 integer0, u64 integer1, u8 *logical_result)
501{
502	acpi_status status = AE_OK;
503	u8 local_result = FALSE;
504
505	ACPI_FUNCTION_TRACE(ex_do_logical_numeric_op);
506
507	switch (opcode) {
508	case AML_LAND_OP:	/* LAnd (Integer0, Integer1) */
509
510		if (integer0 && integer1) {
511			local_result = TRUE;
512		}
513		break;
514
515	case AML_LOR_OP:	/* LOr (Integer0, Integer1) */
516
517		if (integer0 || integer1) {
518			local_result = TRUE;
519		}
520		break;
521
522	default:
523		status = AE_AML_INTERNAL;
524		break;
525	}
526
527	/* Return the logical result and status */
528
529	*logical_result = local_result;
530	return_ACPI_STATUS(status);
531}
532
533/*******************************************************************************
534 *
535 * FUNCTION:    acpi_ex_do_logical_op
536 *
537 * PARAMETERS:  Opcode              - AML opcode
538 *              Operand0            - operand #0
539 *              Operand1            - operand #1
540 *              logical_result      - TRUE/FALSE result of the operation
541 *
542 * RETURN:      Status
543 *
544 * DESCRIPTION: Execute a logical AML opcode. The purpose of having all of the
545 *              functions here is to prevent a lot of pointer dereferencing
546 *              to obtain the operands and to simplify the generation of the
547 *              logical value. For the Numeric operators (LAnd and LOr), both
548 *              operands must be integers. For the other logical operators,
549 *              operands can be any combination of Integer/String/Buffer. The
550 *              first operand determines the type to which the second operand
551 *              will be converted.
552 *
553 *              Note: cleanest machine code seems to be produced by the code
554 *              below, rather than using statements of the form:
555 *                  Result = (Operand0 == Operand1);
556 *
557 ******************************************************************************/
558
559acpi_status
560acpi_ex_do_logical_op(u16 opcode,
561		      union acpi_operand_object *operand0,
562		      union acpi_operand_object *operand1, u8 * logical_result)
563{
564	union acpi_operand_object *local_operand1 = operand1;
565	u64 integer0;
566	u64 integer1;
567	u32 length0;
568	u32 length1;
569	acpi_status status = AE_OK;
570	u8 local_result = FALSE;
571	int compare;
572
573	ACPI_FUNCTION_TRACE(ex_do_logical_op);
574
575	/*
576	 * Convert the second operand if necessary.  The first operand
577	 * determines the type of the second operand, (See the Data Types
578	 * section of the ACPI 3.0+ specification.)  Both object types are
579	 * guaranteed to be either Integer/String/Buffer by the operand
580	 * resolution mechanism.
581	 */
582	switch (operand0->common.type) {
583	case ACPI_TYPE_INTEGER:
584		status =
585		    acpi_ex_convert_to_integer(operand1, &local_operand1, 16);
586		break;
587
588	case ACPI_TYPE_STRING:
589		status = acpi_ex_convert_to_string(operand1, &local_operand1,
590						   ACPI_IMPLICIT_CONVERT_HEX);
591		break;
592
593	case ACPI_TYPE_BUFFER:
594		status = acpi_ex_convert_to_buffer(operand1, &local_operand1);
595		break;
596
597	default:
598		status = AE_AML_INTERNAL;
599		break;
600	}
601
602	if (ACPI_FAILURE(status)) {
603		goto cleanup;
604	}
605
606	/*
607	 * Two cases: 1) Both Integers, 2) Both Strings or Buffers
608	 */
609	if (operand0->common.type == ACPI_TYPE_INTEGER) {
610		/*
611		 * 1) Both operands are of type integer
612		 *    Note: local_operand1 may have changed above
613		 */
614		integer0 = operand0->integer.value;
615		integer1 = local_operand1->integer.value;
616
617		switch (opcode) {
618		case AML_LEQUAL_OP:	/* LEqual (Operand0, Operand1) */
619
620			if (integer0 == integer1) {
621				local_result = TRUE;
622			}
623			break;
624
625		case AML_LGREATER_OP:	/* LGreater (Operand0, Operand1) */
626
627			if (integer0 > integer1) {
628				local_result = TRUE;
629			}
630			break;
631
632		case AML_LLESS_OP:	/* LLess (Operand0, Operand1) */
633
634			if (integer0 < integer1) {
635				local_result = TRUE;
636			}
637			break;
638
639		default:
640			status = AE_AML_INTERNAL;
641			break;
642		}
643	} else {
644		/*
645		 * 2) Both operands are Strings or both are Buffers
646		 *    Note: Code below takes advantage of common Buffer/String
647		 *          object fields. local_operand1 may have changed above. Use
648		 *          memcmp to handle nulls in buffers.
649		 */
650		length0 = operand0->buffer.length;
651		length1 = local_operand1->buffer.length;
652
653		/* Lexicographic compare: compare the data bytes */
654
655		compare = ACPI_MEMCMP(operand0->buffer.pointer,
656				      local_operand1->buffer.pointer,
657				      (length0 > length1) ? length1 : length0);
658
659		switch (opcode) {
660		case AML_LEQUAL_OP:	/* LEqual (Operand0, Operand1) */
661
662			/* Length and all bytes must be equal */
663
664			if ((length0 == length1) && (compare == 0)) {
665
666				/* Length and all bytes match ==> TRUE */
667
668				local_result = TRUE;
669			}
670			break;
671
672		case AML_LGREATER_OP:	/* LGreater (Operand0, Operand1) */
673
674			if (compare > 0) {
675				local_result = TRUE;
676				goto cleanup;	/* TRUE */
677			}
678			if (compare < 0) {
679				goto cleanup;	/* FALSE */
680			}
681
682			/* Bytes match (to shortest length), compare lengths */
683
684			if (length0 > length1) {
685				local_result = TRUE;
686			}
687			break;
688
689		case AML_LLESS_OP:	/* LLess (Operand0, Operand1) */
690
691			if (compare > 0) {
692				goto cleanup;	/* FALSE */
693			}
694			if (compare < 0) {
695				local_result = TRUE;
696				goto cleanup;	/* TRUE */
697			}
698
699			/* Bytes match (to shortest length), compare lengths */
700
701			if (length0 < length1) {
702				local_result = TRUE;
703			}
704			break;
705
706		default:
707			status = AE_AML_INTERNAL;
708			break;
709		}
710	}
711
712      cleanup:
713
714	/* New object was created if implicit conversion performed - delete */
715
716	if (local_operand1 != operand1) {
717		acpi_ut_remove_reference(local_operand1);
718	}
719
720	/* Return the logical result and status */
721
722	*logical_result = local_result;
723	return_ACPI_STATUS(status);
724}
v3.5.6
  1
  2/******************************************************************************
  3 *
  4 * Module Name: exmisc - ACPI AML (p-code) execution - specific opcodes
  5 *
  6 *****************************************************************************/
  7
  8/*
  9 * Copyright (C) 2000 - 2012, Intel Corp.
 10 * All rights reserved.
 11 *
 12 * Redistribution and use in source and binary forms, with or without
 13 * modification, are permitted provided that the following conditions
 14 * are met:
 15 * 1. Redistributions of source code must retain the above copyright
 16 *    notice, this list of conditions, and the following disclaimer,
 17 *    without modification.
 18 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
 19 *    substantially similar to the "NO WARRANTY" disclaimer below
 20 *    ("Disclaimer") and any redistribution must be conditioned upon
 21 *    including a substantially similar Disclaimer requirement for further
 22 *    binary redistribution.
 23 * 3. Neither the names of the above-listed copyright holders nor the names
 24 *    of any contributors may be used to endorse or promote products derived
 25 *    from this software without specific prior written permission.
 26 *
 27 * Alternatively, this software may be distributed under the terms of the
 28 * GNU General Public License ("GPL") version 2 as published by the Free
 29 * Software Foundation.
 30 *
 31 * NO WARRANTY
 32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
 35 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 36 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 41 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 42 * POSSIBILITY OF SUCH DAMAGES.
 43 */
 44
 45#include <acpi/acpi.h>
 46#include "accommon.h"
 47#include "acinterp.h"
 48#include "amlcode.h"
 49#include "amlresrc.h"
 50
 51#define _COMPONENT          ACPI_EXECUTER
 52ACPI_MODULE_NAME("exmisc")
 53
 54/*******************************************************************************
 55 *
 56 * FUNCTION:    acpi_ex_get_object_reference
 57 *
 58 * PARAMETERS:  obj_desc            - Create a reference to this object
 59 *              return_desc         - Where to store the reference
 60 *              walk_state          - Current state
 61 *
 62 * RETURN:      Status
 63 *
 64 * DESCRIPTION: Obtain and return a "reference" to the target object
 65 *              Common code for the ref_of_op and the cond_ref_of_op.
 66 *
 67 ******************************************************************************/
 68acpi_status
 69acpi_ex_get_object_reference(union acpi_operand_object *obj_desc,
 70			     union acpi_operand_object **return_desc,
 71			     struct acpi_walk_state *walk_state)
 72{
 73	union acpi_operand_object *reference_obj;
 74	union acpi_operand_object *referenced_obj;
 75
 76	ACPI_FUNCTION_TRACE_PTR(ex_get_object_reference, obj_desc);
 77
 78	*return_desc = NULL;
 79
 80	switch (ACPI_GET_DESCRIPTOR_TYPE(obj_desc)) {
 81	case ACPI_DESC_TYPE_OPERAND:
 82
 83		if (obj_desc->common.type != ACPI_TYPE_LOCAL_REFERENCE) {
 84			return_ACPI_STATUS(AE_AML_OPERAND_TYPE);
 85		}
 86
 87		/*
 88		 * Must be a reference to a Local or Arg
 89		 */
 90		switch (obj_desc->reference.class) {
 91		case ACPI_REFCLASS_LOCAL:
 92		case ACPI_REFCLASS_ARG:
 93		case ACPI_REFCLASS_DEBUG:
 94
 95			/* The referenced object is the pseudo-node for the local/arg */
 96
 97			referenced_obj = obj_desc->reference.object;
 98			break;
 99
100		default:
101
102			ACPI_ERROR((AE_INFO, "Unknown Reference Class 0x%2.2X",
103				    obj_desc->reference.class));
104			return_ACPI_STATUS(AE_AML_INTERNAL);
105		}
106		break;
107
108	case ACPI_DESC_TYPE_NAMED:
109
110		/*
111		 * A named reference that has already been resolved to a Node
112		 */
113		referenced_obj = obj_desc;
114		break;
115
116	default:
117
118		ACPI_ERROR((AE_INFO, "Invalid descriptor type 0x%X",
119			    ACPI_GET_DESCRIPTOR_TYPE(obj_desc)));
120		return_ACPI_STATUS(AE_TYPE);
121	}
122
123	/* Create a new reference object */
124
125	reference_obj =
126	    acpi_ut_create_internal_object(ACPI_TYPE_LOCAL_REFERENCE);
127	if (!reference_obj) {
128		return_ACPI_STATUS(AE_NO_MEMORY);
129	}
130
131	reference_obj->reference.class = ACPI_REFCLASS_REFOF;
132	reference_obj->reference.object = referenced_obj;
133	*return_desc = reference_obj;
134
135	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
136			  "Object %p Type [%s], returning Reference %p\n",
137			  obj_desc, acpi_ut_get_object_type_name(obj_desc),
138			  *return_desc));
139
140	return_ACPI_STATUS(AE_OK);
141}
142
143/*******************************************************************************
144 *
145 * FUNCTION:    acpi_ex_concat_template
146 *
147 * PARAMETERS:  Operand0            - First source object
148 *              Operand1            - Second source object
149 *              actual_return_desc  - Where to place the return object
150 *              walk_state          - Current walk state
151 *
152 * RETURN:      Status
153 *
154 * DESCRIPTION: Concatenate two resource templates
155 *
156 ******************************************************************************/
157
158acpi_status
159acpi_ex_concat_template(union acpi_operand_object *operand0,
160			union acpi_operand_object *operand1,
161			union acpi_operand_object **actual_return_desc,
162			struct acpi_walk_state *walk_state)
163{
164	acpi_status status;
165	union acpi_operand_object *return_desc;
166	u8 *new_buf;
167	u8 *end_tag;
168	acpi_size length0;
169	acpi_size length1;
170	acpi_size new_length;
171
172	ACPI_FUNCTION_TRACE(ex_concat_template);
173
174	/*
175	 * Find the end_tag descriptor in each resource template.
176	 * Note1: returned pointers point TO the end_tag, not past it.
177	 * Note2: zero-length buffers are allowed; treated like one end_tag
178	 */
179
180	/* Get the length of the first resource template */
181
182	status = acpi_ut_get_resource_end_tag(operand0, &end_tag);
183	if (ACPI_FAILURE(status)) {
184		return_ACPI_STATUS(status);
185	}
186
187	length0 = ACPI_PTR_DIFF(end_tag, operand0->buffer.pointer);
188
189	/* Get the length of the second resource template */
190
191	status = acpi_ut_get_resource_end_tag(operand1, &end_tag);
192	if (ACPI_FAILURE(status)) {
193		return_ACPI_STATUS(status);
194	}
195
196	length1 = ACPI_PTR_DIFF(end_tag, operand1->buffer.pointer);
197
198	/* Combine both lengths, minimum size will be 2 for end_tag */
199
200	new_length = length0 + length1 + sizeof(struct aml_resource_end_tag);
201
202	/* Create a new buffer object for the result (with one end_tag) */
203
204	return_desc = acpi_ut_create_buffer_object(new_length);
205	if (!return_desc) {
206		return_ACPI_STATUS(AE_NO_MEMORY);
207	}
208
209	/*
210	 * Copy the templates to the new buffer, 0 first, then 1 follows. One
211	 * end_tag descriptor is copied from Operand1.
212	 */
213	new_buf = return_desc->buffer.pointer;
214	ACPI_MEMCPY(new_buf, operand0->buffer.pointer, length0);
215	ACPI_MEMCPY(new_buf + length0, operand1->buffer.pointer, length1);
216
217	/* Insert end_tag and set the checksum to zero, means "ignore checksum" */
218
219	new_buf[new_length - 1] = 0;
220	new_buf[new_length - 2] = ACPI_RESOURCE_NAME_END_TAG | 1;
221
222	/* Return the completed resource template */
223
224	*actual_return_desc = return_desc;
225	return_ACPI_STATUS(AE_OK);
226}
227
228/*******************************************************************************
229 *
230 * FUNCTION:    acpi_ex_do_concatenate
231 *
232 * PARAMETERS:  Operand0            - First source object
233 *              Operand1            - Second source object
234 *              actual_return_desc  - Where to place the return object
235 *              walk_state          - Current walk state
236 *
237 * RETURN:      Status
238 *
239 * DESCRIPTION: Concatenate two objects OF THE SAME TYPE.
240 *
241 ******************************************************************************/
242
243acpi_status
244acpi_ex_do_concatenate(union acpi_operand_object *operand0,
245		       union acpi_operand_object *operand1,
246		       union acpi_operand_object **actual_return_desc,
247		       struct acpi_walk_state *walk_state)
248{
249	union acpi_operand_object *local_operand1 = operand1;
250	union acpi_operand_object *return_desc;
251	char *new_buf;
252	acpi_status status;
253
254	ACPI_FUNCTION_TRACE(ex_do_concatenate);
255
256	/*
257	 * Convert the second operand if necessary.  The first operand
258	 * determines the type of the second operand, (See the Data Types
259	 * section of the ACPI specification.)  Both object types are
260	 * guaranteed to be either Integer/String/Buffer by the operand
261	 * resolution mechanism.
262	 */
263	switch (operand0->common.type) {
264	case ACPI_TYPE_INTEGER:
265		status =
266		    acpi_ex_convert_to_integer(operand1, &local_operand1, 16);
267		break;
268
269	case ACPI_TYPE_STRING:
270		status = acpi_ex_convert_to_string(operand1, &local_operand1,
271						   ACPI_IMPLICIT_CONVERT_HEX);
272		break;
273
274	case ACPI_TYPE_BUFFER:
275		status = acpi_ex_convert_to_buffer(operand1, &local_operand1);
276		break;
277
278	default:
279		ACPI_ERROR((AE_INFO, "Invalid object type: 0x%X",
280			    operand0->common.type));
281		status = AE_AML_INTERNAL;
282	}
283
284	if (ACPI_FAILURE(status)) {
285		goto cleanup;
286	}
287
288	/*
289	 * Both operands are now known to be the same object type
290	 * (Both are Integer, String, or Buffer), and we can now perform the
291	 * concatenation.
292	 */
293
294	/*
295	 * There are three cases to handle:
296	 *
297	 * 1) Two Integers concatenated to produce a new Buffer
298	 * 2) Two Strings concatenated to produce a new String
299	 * 3) Two Buffers concatenated to produce a new Buffer
300	 */
301	switch (operand0->common.type) {
302	case ACPI_TYPE_INTEGER:
303
304		/* Result of two Integers is a Buffer */
305		/* Need enough buffer space for two integers */
306
307		return_desc = acpi_ut_create_buffer_object((acpi_size)
308							   ACPI_MUL_2
309							   (acpi_gbl_integer_byte_width));
310		if (!return_desc) {
311			status = AE_NO_MEMORY;
312			goto cleanup;
313		}
314
315		new_buf = (char *)return_desc->buffer.pointer;
316
317		/* Copy the first integer, LSB first */
318
319		ACPI_MEMCPY(new_buf, &operand0->integer.value,
320			    acpi_gbl_integer_byte_width);
321
322		/* Copy the second integer (LSB first) after the first */
323
324		ACPI_MEMCPY(new_buf + acpi_gbl_integer_byte_width,
325			    &local_operand1->integer.value,
326			    acpi_gbl_integer_byte_width);
327		break;
328
329	case ACPI_TYPE_STRING:
330
331		/* Result of two Strings is a String */
332
333		return_desc = acpi_ut_create_string_object(((acpi_size)
334							    operand0->string.
335							    length +
336							    local_operand1->
337							    string.length));
338		if (!return_desc) {
339			status = AE_NO_MEMORY;
340			goto cleanup;
341		}
342
343		new_buf = return_desc->string.pointer;
344
345		/* Concatenate the strings */
346
347		ACPI_STRCPY(new_buf, operand0->string.pointer);
348		ACPI_STRCPY(new_buf + operand0->string.length,
349			    local_operand1->string.pointer);
350		break;
351
352	case ACPI_TYPE_BUFFER:
353
354		/* Result of two Buffers is a Buffer */
355
356		return_desc = acpi_ut_create_buffer_object(((acpi_size)
357							    operand0->buffer.
358							    length +
359							    local_operand1->
360							    buffer.length));
361		if (!return_desc) {
362			status = AE_NO_MEMORY;
363			goto cleanup;
364		}
365
366		new_buf = (char *)return_desc->buffer.pointer;
367
368		/* Concatenate the buffers */
369
370		ACPI_MEMCPY(new_buf, operand0->buffer.pointer,
371			    operand0->buffer.length);
372		ACPI_MEMCPY(new_buf + operand0->buffer.length,
373			    local_operand1->buffer.pointer,
374			    local_operand1->buffer.length);
375		break;
376
377	default:
378
379		/* Invalid object type, should not happen here */
380
381		ACPI_ERROR((AE_INFO, "Invalid object type: 0x%X",
382			    operand0->common.type));
383		status = AE_AML_INTERNAL;
384		goto cleanup;
385	}
386
387	*actual_return_desc = return_desc;
388
389      cleanup:
390	if (local_operand1 != operand1) {
391		acpi_ut_remove_reference(local_operand1);
392	}
393	return_ACPI_STATUS(status);
394}
395
396/*******************************************************************************
397 *
398 * FUNCTION:    acpi_ex_do_math_op
399 *
400 * PARAMETERS:  Opcode              - AML opcode
401 *              Integer0            - Integer operand #0
402 *              Integer1            - Integer operand #1
403 *
404 * RETURN:      Integer result of the operation
405 *
406 * DESCRIPTION: Execute a math AML opcode. The purpose of having all of the
407 *              math functions here is to prevent a lot of pointer dereferencing
408 *              to obtain the operands.
409 *
410 ******************************************************************************/
411
412u64 acpi_ex_do_math_op(u16 opcode, u64 integer0, u64 integer1)
413{
414
415	ACPI_FUNCTION_ENTRY();
416
417	switch (opcode) {
418	case AML_ADD_OP:	/* Add (Integer0, Integer1, Result) */
419
420		return (integer0 + integer1);
421
422	case AML_BIT_AND_OP:	/* And (Integer0, Integer1, Result) */
423
424		return (integer0 & integer1);
425
426	case AML_BIT_NAND_OP:	/* NAnd (Integer0, Integer1, Result) */
427
428		return (~(integer0 & integer1));
429
430	case AML_BIT_OR_OP:	/* Or (Integer0, Integer1, Result) */
431
432		return (integer0 | integer1);
433
434	case AML_BIT_NOR_OP:	/* NOr (Integer0, Integer1, Result) */
435
436		return (~(integer0 | integer1));
437
438	case AML_BIT_XOR_OP:	/* XOr (Integer0, Integer1, Result) */
439
440		return (integer0 ^ integer1);
441
442	case AML_MULTIPLY_OP:	/* Multiply (Integer0, Integer1, Result) */
443
444		return (integer0 * integer1);
445
446	case AML_SHIFT_LEFT_OP:	/* shift_left (Operand, shift_count, Result) */
447
448		/*
449		 * We need to check if the shiftcount is larger than the integer bit
450		 * width since the behavior of this is not well-defined in the C language.
451		 */
452		if (integer1 >= acpi_gbl_integer_bit_width) {
453			return (0);
454		}
455		return (integer0 << integer1);
456
457	case AML_SHIFT_RIGHT_OP:	/* shift_right (Operand, shift_count, Result) */
458
459		/*
460		 * We need to check if the shiftcount is larger than the integer bit
461		 * width since the behavior of this is not well-defined in the C language.
462		 */
463		if (integer1 >= acpi_gbl_integer_bit_width) {
464			return (0);
465		}
466		return (integer0 >> integer1);
467
468	case AML_SUBTRACT_OP:	/* Subtract (Integer0, Integer1, Result) */
469
470		return (integer0 - integer1);
471
472	default:
473
474		return (0);
475	}
476}
477
478/*******************************************************************************
479 *
480 * FUNCTION:    acpi_ex_do_logical_numeric_op
481 *
482 * PARAMETERS:  Opcode              - AML opcode
483 *              Integer0            - Integer operand #0
484 *              Integer1            - Integer operand #1
485 *              logical_result      - TRUE/FALSE result of the operation
486 *
487 * RETURN:      Status
488 *
489 * DESCRIPTION: Execute a logical "Numeric" AML opcode. For these Numeric
490 *              operators (LAnd and LOr), both operands must be integers.
491 *
492 *              Note: cleanest machine code seems to be produced by the code
493 *              below, rather than using statements of the form:
494 *                  Result = (Integer0 && Integer1);
495 *
496 ******************************************************************************/
497
498acpi_status
499acpi_ex_do_logical_numeric_op(u16 opcode,
500			      u64 integer0, u64 integer1, u8 *logical_result)
501{
502	acpi_status status = AE_OK;
503	u8 local_result = FALSE;
504
505	ACPI_FUNCTION_TRACE(ex_do_logical_numeric_op);
506
507	switch (opcode) {
508	case AML_LAND_OP:	/* LAnd (Integer0, Integer1) */
509
510		if (integer0 && integer1) {
511			local_result = TRUE;
512		}
513		break;
514
515	case AML_LOR_OP:	/* LOr (Integer0, Integer1) */
516
517		if (integer0 || integer1) {
518			local_result = TRUE;
519		}
520		break;
521
522	default:
523		status = AE_AML_INTERNAL;
524		break;
525	}
526
527	/* Return the logical result and status */
528
529	*logical_result = local_result;
530	return_ACPI_STATUS(status);
531}
532
533/*******************************************************************************
534 *
535 * FUNCTION:    acpi_ex_do_logical_op
536 *
537 * PARAMETERS:  Opcode              - AML opcode
538 *              Operand0            - operand #0
539 *              Operand1            - operand #1
540 *              logical_result      - TRUE/FALSE result of the operation
541 *
542 * RETURN:      Status
543 *
544 * DESCRIPTION: Execute a logical AML opcode. The purpose of having all of the
545 *              functions here is to prevent a lot of pointer dereferencing
546 *              to obtain the operands and to simplify the generation of the
547 *              logical value. For the Numeric operators (LAnd and LOr), both
548 *              operands must be integers. For the other logical operators,
549 *              operands can be any combination of Integer/String/Buffer. The
550 *              first operand determines the type to which the second operand
551 *              will be converted.
552 *
553 *              Note: cleanest machine code seems to be produced by the code
554 *              below, rather than using statements of the form:
555 *                  Result = (Operand0 == Operand1);
556 *
557 ******************************************************************************/
558
559acpi_status
560acpi_ex_do_logical_op(u16 opcode,
561		      union acpi_operand_object *operand0,
562		      union acpi_operand_object *operand1, u8 * logical_result)
563{
564	union acpi_operand_object *local_operand1 = operand1;
565	u64 integer0;
566	u64 integer1;
567	u32 length0;
568	u32 length1;
569	acpi_status status = AE_OK;
570	u8 local_result = FALSE;
571	int compare;
572
573	ACPI_FUNCTION_TRACE(ex_do_logical_op);
574
575	/*
576	 * Convert the second operand if necessary.  The first operand
577	 * determines the type of the second operand, (See the Data Types
578	 * section of the ACPI 3.0+ specification.)  Both object types are
579	 * guaranteed to be either Integer/String/Buffer by the operand
580	 * resolution mechanism.
581	 */
582	switch (operand0->common.type) {
583	case ACPI_TYPE_INTEGER:
584		status =
585		    acpi_ex_convert_to_integer(operand1, &local_operand1, 16);
586		break;
587
588	case ACPI_TYPE_STRING:
589		status = acpi_ex_convert_to_string(operand1, &local_operand1,
590						   ACPI_IMPLICIT_CONVERT_HEX);
591		break;
592
593	case ACPI_TYPE_BUFFER:
594		status = acpi_ex_convert_to_buffer(operand1, &local_operand1);
595		break;
596
597	default:
598		status = AE_AML_INTERNAL;
599		break;
600	}
601
602	if (ACPI_FAILURE(status)) {
603		goto cleanup;
604	}
605
606	/*
607	 * Two cases: 1) Both Integers, 2) Both Strings or Buffers
608	 */
609	if (operand0->common.type == ACPI_TYPE_INTEGER) {
610		/*
611		 * 1) Both operands are of type integer
612		 *    Note: local_operand1 may have changed above
613		 */
614		integer0 = operand0->integer.value;
615		integer1 = local_operand1->integer.value;
616
617		switch (opcode) {
618		case AML_LEQUAL_OP:	/* LEqual (Operand0, Operand1) */
619
620			if (integer0 == integer1) {
621				local_result = TRUE;
622			}
623			break;
624
625		case AML_LGREATER_OP:	/* LGreater (Operand0, Operand1) */
626
627			if (integer0 > integer1) {
628				local_result = TRUE;
629			}
630			break;
631
632		case AML_LLESS_OP:	/* LLess (Operand0, Operand1) */
633
634			if (integer0 < integer1) {
635				local_result = TRUE;
636			}
637			break;
638
639		default:
640			status = AE_AML_INTERNAL;
641			break;
642		}
643	} else {
644		/*
645		 * 2) Both operands are Strings or both are Buffers
646		 *    Note: Code below takes advantage of common Buffer/String
647		 *          object fields. local_operand1 may have changed above. Use
648		 *          memcmp to handle nulls in buffers.
649		 */
650		length0 = operand0->buffer.length;
651		length1 = local_operand1->buffer.length;
652
653		/* Lexicographic compare: compare the data bytes */
654
655		compare = ACPI_MEMCMP(operand0->buffer.pointer,
656				      local_operand1->buffer.pointer,
657				      (length0 > length1) ? length1 : length0);
658
659		switch (opcode) {
660		case AML_LEQUAL_OP:	/* LEqual (Operand0, Operand1) */
661
662			/* Length and all bytes must be equal */
663
664			if ((length0 == length1) && (compare == 0)) {
665
666				/* Length and all bytes match ==> TRUE */
667
668				local_result = TRUE;
669			}
670			break;
671
672		case AML_LGREATER_OP:	/* LGreater (Operand0, Operand1) */
673
674			if (compare > 0) {
675				local_result = TRUE;
676				goto cleanup;	/* TRUE */
677			}
678			if (compare < 0) {
679				goto cleanup;	/* FALSE */
680			}
681
682			/* Bytes match (to shortest length), compare lengths */
683
684			if (length0 > length1) {
685				local_result = TRUE;
686			}
687			break;
688
689		case AML_LLESS_OP:	/* LLess (Operand0, Operand1) */
690
691			if (compare > 0) {
692				goto cleanup;	/* FALSE */
693			}
694			if (compare < 0) {
695				local_result = TRUE;
696				goto cleanup;	/* TRUE */
697			}
698
699			/* Bytes match (to shortest length), compare lengths */
700
701			if (length0 < length1) {
702				local_result = TRUE;
703			}
704			break;
705
706		default:
707			status = AE_AML_INTERNAL;
708			break;
709		}
710	}
711
712      cleanup:
713
714	/* New object was created if implicit conversion performed - delete */
715
716	if (local_operand1 != operand1) {
717		acpi_ut_remove_reference(local_operand1);
718	}
719
720	/* Return the logical result and status */
721
722	*logical_result = local_result;
723	return_ACPI_STATUS(status);
724}