Loading...
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19#include "irq.h"
20#include "mmu.h"
21
22#include <linux/kvm_host.h>
23#include <linux/module.h>
24#include <linux/kernel.h>
25#include <linux/mm.h>
26#include <linux/highmem.h>
27#include <linux/sched.h>
28#include <linux/moduleparam.h>
29#include <linux/ftrace_event.h>
30#include <linux/slab.h>
31#include <linux/tboot.h>
32#include "kvm_cache_regs.h"
33#include "x86.h"
34
35#include <asm/io.h>
36#include <asm/desc.h>
37#include <asm/vmx.h>
38#include <asm/virtext.h>
39#include <asm/mce.h>
40#include <asm/i387.h>
41#include <asm/xcr.h>
42
43#include "trace.h"
44
45#define __ex(x) __kvm_handle_fault_on_reboot(x)
46#define __ex_clear(x, reg) \
47 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
48
49MODULE_AUTHOR("Qumranet");
50MODULE_LICENSE("GPL");
51
52static int __read_mostly enable_vpid = 1;
53module_param_named(vpid, enable_vpid, bool, 0444);
54
55static int __read_mostly flexpriority_enabled = 1;
56module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
57
58static int __read_mostly enable_ept = 1;
59module_param_named(ept, enable_ept, bool, S_IRUGO);
60
61static int __read_mostly enable_unrestricted_guest = 1;
62module_param_named(unrestricted_guest,
63 enable_unrestricted_guest, bool, S_IRUGO);
64
65static int __read_mostly emulate_invalid_guest_state = 0;
66module_param(emulate_invalid_guest_state, bool, S_IRUGO);
67
68static int __read_mostly vmm_exclusive = 1;
69module_param(vmm_exclusive, bool, S_IRUGO);
70
71static int __read_mostly yield_on_hlt = 1;
72module_param(yield_on_hlt, bool, S_IRUGO);
73
74/*
75 * If nested=1, nested virtualization is supported, i.e., guests may use
76 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
77 * use VMX instructions.
78 */
79static int __read_mostly nested = 0;
80module_param(nested, bool, S_IRUGO);
81
82#define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
83 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
84#define KVM_GUEST_CR0_MASK \
85 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
86#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
87 (X86_CR0_WP | X86_CR0_NE)
88#define KVM_VM_CR0_ALWAYS_ON \
89 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
90#define KVM_CR4_GUEST_OWNED_BITS \
91 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
92 | X86_CR4_OSXMMEXCPT)
93
94#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
95#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
96
97#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
98
99/*
100 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
101 * ple_gap: upper bound on the amount of time between two successive
102 * executions of PAUSE in a loop. Also indicate if ple enabled.
103 * According to test, this time is usually smaller than 128 cycles.
104 * ple_window: upper bound on the amount of time a guest is allowed to execute
105 * in a PAUSE loop. Tests indicate that most spinlocks are held for
106 * less than 2^12 cycles
107 * Time is measured based on a counter that runs at the same rate as the TSC,
108 * refer SDM volume 3b section 21.6.13 & 22.1.3.
109 */
110#define KVM_VMX_DEFAULT_PLE_GAP 128
111#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
112static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
113module_param(ple_gap, int, S_IRUGO);
114
115static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
116module_param(ple_window, int, S_IRUGO);
117
118#define NR_AUTOLOAD_MSRS 1
119#define VMCS02_POOL_SIZE 1
120
121struct vmcs {
122 u32 revision_id;
123 u32 abort;
124 char data[0];
125};
126
127/*
128 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
129 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
130 * loaded on this CPU (so we can clear them if the CPU goes down).
131 */
132struct loaded_vmcs {
133 struct vmcs *vmcs;
134 int cpu;
135 int launched;
136 struct list_head loaded_vmcss_on_cpu_link;
137};
138
139struct shared_msr_entry {
140 unsigned index;
141 u64 data;
142 u64 mask;
143};
144
145/*
146 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
147 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
148 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
149 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
150 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
151 * More than one of these structures may exist, if L1 runs multiple L2 guests.
152 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
153 * underlying hardware which will be used to run L2.
154 * This structure is packed to ensure that its layout is identical across
155 * machines (necessary for live migration).
156 * If there are changes in this struct, VMCS12_REVISION must be changed.
157 */
158typedef u64 natural_width;
159struct __packed vmcs12 {
160 /* According to the Intel spec, a VMCS region must start with the
161 * following two fields. Then follow implementation-specific data.
162 */
163 u32 revision_id;
164 u32 abort;
165
166 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
167 u32 padding[7]; /* room for future expansion */
168
169 u64 io_bitmap_a;
170 u64 io_bitmap_b;
171 u64 msr_bitmap;
172 u64 vm_exit_msr_store_addr;
173 u64 vm_exit_msr_load_addr;
174 u64 vm_entry_msr_load_addr;
175 u64 tsc_offset;
176 u64 virtual_apic_page_addr;
177 u64 apic_access_addr;
178 u64 ept_pointer;
179 u64 guest_physical_address;
180 u64 vmcs_link_pointer;
181 u64 guest_ia32_debugctl;
182 u64 guest_ia32_pat;
183 u64 guest_ia32_efer;
184 u64 guest_ia32_perf_global_ctrl;
185 u64 guest_pdptr0;
186 u64 guest_pdptr1;
187 u64 guest_pdptr2;
188 u64 guest_pdptr3;
189 u64 host_ia32_pat;
190 u64 host_ia32_efer;
191 u64 host_ia32_perf_global_ctrl;
192 u64 padding64[8]; /* room for future expansion */
193 /*
194 * To allow migration of L1 (complete with its L2 guests) between
195 * machines of different natural widths (32 or 64 bit), we cannot have
196 * unsigned long fields with no explict size. We use u64 (aliased
197 * natural_width) instead. Luckily, x86 is little-endian.
198 */
199 natural_width cr0_guest_host_mask;
200 natural_width cr4_guest_host_mask;
201 natural_width cr0_read_shadow;
202 natural_width cr4_read_shadow;
203 natural_width cr3_target_value0;
204 natural_width cr3_target_value1;
205 natural_width cr3_target_value2;
206 natural_width cr3_target_value3;
207 natural_width exit_qualification;
208 natural_width guest_linear_address;
209 natural_width guest_cr0;
210 natural_width guest_cr3;
211 natural_width guest_cr4;
212 natural_width guest_es_base;
213 natural_width guest_cs_base;
214 natural_width guest_ss_base;
215 natural_width guest_ds_base;
216 natural_width guest_fs_base;
217 natural_width guest_gs_base;
218 natural_width guest_ldtr_base;
219 natural_width guest_tr_base;
220 natural_width guest_gdtr_base;
221 natural_width guest_idtr_base;
222 natural_width guest_dr7;
223 natural_width guest_rsp;
224 natural_width guest_rip;
225 natural_width guest_rflags;
226 natural_width guest_pending_dbg_exceptions;
227 natural_width guest_sysenter_esp;
228 natural_width guest_sysenter_eip;
229 natural_width host_cr0;
230 natural_width host_cr3;
231 natural_width host_cr4;
232 natural_width host_fs_base;
233 natural_width host_gs_base;
234 natural_width host_tr_base;
235 natural_width host_gdtr_base;
236 natural_width host_idtr_base;
237 natural_width host_ia32_sysenter_esp;
238 natural_width host_ia32_sysenter_eip;
239 natural_width host_rsp;
240 natural_width host_rip;
241 natural_width paddingl[8]; /* room for future expansion */
242 u32 pin_based_vm_exec_control;
243 u32 cpu_based_vm_exec_control;
244 u32 exception_bitmap;
245 u32 page_fault_error_code_mask;
246 u32 page_fault_error_code_match;
247 u32 cr3_target_count;
248 u32 vm_exit_controls;
249 u32 vm_exit_msr_store_count;
250 u32 vm_exit_msr_load_count;
251 u32 vm_entry_controls;
252 u32 vm_entry_msr_load_count;
253 u32 vm_entry_intr_info_field;
254 u32 vm_entry_exception_error_code;
255 u32 vm_entry_instruction_len;
256 u32 tpr_threshold;
257 u32 secondary_vm_exec_control;
258 u32 vm_instruction_error;
259 u32 vm_exit_reason;
260 u32 vm_exit_intr_info;
261 u32 vm_exit_intr_error_code;
262 u32 idt_vectoring_info_field;
263 u32 idt_vectoring_error_code;
264 u32 vm_exit_instruction_len;
265 u32 vmx_instruction_info;
266 u32 guest_es_limit;
267 u32 guest_cs_limit;
268 u32 guest_ss_limit;
269 u32 guest_ds_limit;
270 u32 guest_fs_limit;
271 u32 guest_gs_limit;
272 u32 guest_ldtr_limit;
273 u32 guest_tr_limit;
274 u32 guest_gdtr_limit;
275 u32 guest_idtr_limit;
276 u32 guest_es_ar_bytes;
277 u32 guest_cs_ar_bytes;
278 u32 guest_ss_ar_bytes;
279 u32 guest_ds_ar_bytes;
280 u32 guest_fs_ar_bytes;
281 u32 guest_gs_ar_bytes;
282 u32 guest_ldtr_ar_bytes;
283 u32 guest_tr_ar_bytes;
284 u32 guest_interruptibility_info;
285 u32 guest_activity_state;
286 u32 guest_sysenter_cs;
287 u32 host_ia32_sysenter_cs;
288 u32 padding32[8]; /* room for future expansion */
289 u16 virtual_processor_id;
290 u16 guest_es_selector;
291 u16 guest_cs_selector;
292 u16 guest_ss_selector;
293 u16 guest_ds_selector;
294 u16 guest_fs_selector;
295 u16 guest_gs_selector;
296 u16 guest_ldtr_selector;
297 u16 guest_tr_selector;
298 u16 host_es_selector;
299 u16 host_cs_selector;
300 u16 host_ss_selector;
301 u16 host_ds_selector;
302 u16 host_fs_selector;
303 u16 host_gs_selector;
304 u16 host_tr_selector;
305};
306
307/*
308 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
309 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
310 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
311 */
312#define VMCS12_REVISION 0x11e57ed0
313
314/*
315 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
316 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
317 * current implementation, 4K are reserved to avoid future complications.
318 */
319#define VMCS12_SIZE 0x1000
320
321/* Used to remember the last vmcs02 used for some recently used vmcs12s */
322struct vmcs02_list {
323 struct list_head list;
324 gpa_t vmptr;
325 struct loaded_vmcs vmcs02;
326};
327
328/*
329 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
330 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
331 */
332struct nested_vmx {
333 /* Has the level1 guest done vmxon? */
334 bool vmxon;
335
336 /* The guest-physical address of the current VMCS L1 keeps for L2 */
337 gpa_t current_vmptr;
338 /* The host-usable pointer to the above */
339 struct page *current_vmcs12_page;
340 struct vmcs12 *current_vmcs12;
341
342 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
343 struct list_head vmcs02_pool;
344 int vmcs02_num;
345 u64 vmcs01_tsc_offset;
346 /* L2 must run next, and mustn't decide to exit to L1. */
347 bool nested_run_pending;
348 /*
349 * Guest pages referred to in vmcs02 with host-physical pointers, so
350 * we must keep them pinned while L2 runs.
351 */
352 struct page *apic_access_page;
353};
354
355struct vcpu_vmx {
356 struct kvm_vcpu vcpu;
357 unsigned long host_rsp;
358 u8 fail;
359 u8 cpl;
360 bool nmi_known_unmasked;
361 u32 exit_intr_info;
362 u32 idt_vectoring_info;
363 ulong rflags;
364 struct shared_msr_entry *guest_msrs;
365 int nmsrs;
366 int save_nmsrs;
367#ifdef CONFIG_X86_64
368 u64 msr_host_kernel_gs_base;
369 u64 msr_guest_kernel_gs_base;
370#endif
371 /*
372 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
373 * non-nested (L1) guest, it always points to vmcs01. For a nested
374 * guest (L2), it points to a different VMCS.
375 */
376 struct loaded_vmcs vmcs01;
377 struct loaded_vmcs *loaded_vmcs;
378 bool __launched; /* temporary, used in vmx_vcpu_run */
379 struct msr_autoload {
380 unsigned nr;
381 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
382 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
383 } msr_autoload;
384 struct {
385 int loaded;
386 u16 fs_sel, gs_sel, ldt_sel;
387 int gs_ldt_reload_needed;
388 int fs_reload_needed;
389 } host_state;
390 struct {
391 int vm86_active;
392 ulong save_rflags;
393 struct kvm_save_segment {
394 u16 selector;
395 unsigned long base;
396 u32 limit;
397 u32 ar;
398 } tr, es, ds, fs, gs;
399 } rmode;
400 struct {
401 u32 bitmask; /* 4 bits per segment (1 bit per field) */
402 struct kvm_save_segment seg[8];
403 } segment_cache;
404 int vpid;
405 bool emulation_required;
406
407 /* Support for vnmi-less CPUs */
408 int soft_vnmi_blocked;
409 ktime_t entry_time;
410 s64 vnmi_blocked_time;
411 u32 exit_reason;
412
413 bool rdtscp_enabled;
414
415 /* Support for a guest hypervisor (nested VMX) */
416 struct nested_vmx nested;
417};
418
419enum segment_cache_field {
420 SEG_FIELD_SEL = 0,
421 SEG_FIELD_BASE = 1,
422 SEG_FIELD_LIMIT = 2,
423 SEG_FIELD_AR = 3,
424
425 SEG_FIELD_NR = 4
426};
427
428static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
429{
430 return container_of(vcpu, struct vcpu_vmx, vcpu);
431}
432
433#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
434#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
435#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
436 [number##_HIGH] = VMCS12_OFFSET(name)+4
437
438static unsigned short vmcs_field_to_offset_table[] = {
439 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
440 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
441 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
442 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
443 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
444 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
445 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
446 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
447 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
448 FIELD(HOST_ES_SELECTOR, host_es_selector),
449 FIELD(HOST_CS_SELECTOR, host_cs_selector),
450 FIELD(HOST_SS_SELECTOR, host_ss_selector),
451 FIELD(HOST_DS_SELECTOR, host_ds_selector),
452 FIELD(HOST_FS_SELECTOR, host_fs_selector),
453 FIELD(HOST_GS_SELECTOR, host_gs_selector),
454 FIELD(HOST_TR_SELECTOR, host_tr_selector),
455 FIELD64(IO_BITMAP_A, io_bitmap_a),
456 FIELD64(IO_BITMAP_B, io_bitmap_b),
457 FIELD64(MSR_BITMAP, msr_bitmap),
458 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
459 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
460 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
461 FIELD64(TSC_OFFSET, tsc_offset),
462 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
463 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
464 FIELD64(EPT_POINTER, ept_pointer),
465 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
466 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
467 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
468 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
469 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
470 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
471 FIELD64(GUEST_PDPTR0, guest_pdptr0),
472 FIELD64(GUEST_PDPTR1, guest_pdptr1),
473 FIELD64(GUEST_PDPTR2, guest_pdptr2),
474 FIELD64(GUEST_PDPTR3, guest_pdptr3),
475 FIELD64(HOST_IA32_PAT, host_ia32_pat),
476 FIELD64(HOST_IA32_EFER, host_ia32_efer),
477 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
478 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
479 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
480 FIELD(EXCEPTION_BITMAP, exception_bitmap),
481 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
482 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
483 FIELD(CR3_TARGET_COUNT, cr3_target_count),
484 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
485 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
486 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
487 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
488 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
489 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
490 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
491 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
492 FIELD(TPR_THRESHOLD, tpr_threshold),
493 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
494 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
495 FIELD(VM_EXIT_REASON, vm_exit_reason),
496 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
497 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
498 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
499 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
500 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
501 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
502 FIELD(GUEST_ES_LIMIT, guest_es_limit),
503 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
504 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
505 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
506 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
507 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
508 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
509 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
510 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
511 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
512 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
513 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
514 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
515 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
516 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
517 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
518 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
519 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
520 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
521 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
522 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
523 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
524 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
525 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
526 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
527 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
528 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
529 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
530 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
531 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
532 FIELD(EXIT_QUALIFICATION, exit_qualification),
533 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
534 FIELD(GUEST_CR0, guest_cr0),
535 FIELD(GUEST_CR3, guest_cr3),
536 FIELD(GUEST_CR4, guest_cr4),
537 FIELD(GUEST_ES_BASE, guest_es_base),
538 FIELD(GUEST_CS_BASE, guest_cs_base),
539 FIELD(GUEST_SS_BASE, guest_ss_base),
540 FIELD(GUEST_DS_BASE, guest_ds_base),
541 FIELD(GUEST_FS_BASE, guest_fs_base),
542 FIELD(GUEST_GS_BASE, guest_gs_base),
543 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
544 FIELD(GUEST_TR_BASE, guest_tr_base),
545 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
546 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
547 FIELD(GUEST_DR7, guest_dr7),
548 FIELD(GUEST_RSP, guest_rsp),
549 FIELD(GUEST_RIP, guest_rip),
550 FIELD(GUEST_RFLAGS, guest_rflags),
551 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
552 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
553 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
554 FIELD(HOST_CR0, host_cr0),
555 FIELD(HOST_CR3, host_cr3),
556 FIELD(HOST_CR4, host_cr4),
557 FIELD(HOST_FS_BASE, host_fs_base),
558 FIELD(HOST_GS_BASE, host_gs_base),
559 FIELD(HOST_TR_BASE, host_tr_base),
560 FIELD(HOST_GDTR_BASE, host_gdtr_base),
561 FIELD(HOST_IDTR_BASE, host_idtr_base),
562 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
563 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
564 FIELD(HOST_RSP, host_rsp),
565 FIELD(HOST_RIP, host_rip),
566};
567static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
568
569static inline short vmcs_field_to_offset(unsigned long field)
570{
571 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
572 return -1;
573 return vmcs_field_to_offset_table[field];
574}
575
576static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
577{
578 return to_vmx(vcpu)->nested.current_vmcs12;
579}
580
581static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
582{
583 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
584 if (is_error_page(page)) {
585 kvm_release_page_clean(page);
586 return NULL;
587 }
588 return page;
589}
590
591static void nested_release_page(struct page *page)
592{
593 kvm_release_page_dirty(page);
594}
595
596static void nested_release_page_clean(struct page *page)
597{
598 kvm_release_page_clean(page);
599}
600
601static u64 construct_eptp(unsigned long root_hpa);
602static void kvm_cpu_vmxon(u64 addr);
603static void kvm_cpu_vmxoff(void);
604static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
605static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
606
607static DEFINE_PER_CPU(struct vmcs *, vmxarea);
608static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
609/*
610 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
611 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
612 */
613static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
614static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
615
616static unsigned long *vmx_io_bitmap_a;
617static unsigned long *vmx_io_bitmap_b;
618static unsigned long *vmx_msr_bitmap_legacy;
619static unsigned long *vmx_msr_bitmap_longmode;
620
621static bool cpu_has_load_ia32_efer;
622
623static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
624static DEFINE_SPINLOCK(vmx_vpid_lock);
625
626static struct vmcs_config {
627 int size;
628 int order;
629 u32 revision_id;
630 u32 pin_based_exec_ctrl;
631 u32 cpu_based_exec_ctrl;
632 u32 cpu_based_2nd_exec_ctrl;
633 u32 vmexit_ctrl;
634 u32 vmentry_ctrl;
635} vmcs_config;
636
637static struct vmx_capability {
638 u32 ept;
639 u32 vpid;
640} vmx_capability;
641
642#define VMX_SEGMENT_FIELD(seg) \
643 [VCPU_SREG_##seg] = { \
644 .selector = GUEST_##seg##_SELECTOR, \
645 .base = GUEST_##seg##_BASE, \
646 .limit = GUEST_##seg##_LIMIT, \
647 .ar_bytes = GUEST_##seg##_AR_BYTES, \
648 }
649
650static struct kvm_vmx_segment_field {
651 unsigned selector;
652 unsigned base;
653 unsigned limit;
654 unsigned ar_bytes;
655} kvm_vmx_segment_fields[] = {
656 VMX_SEGMENT_FIELD(CS),
657 VMX_SEGMENT_FIELD(DS),
658 VMX_SEGMENT_FIELD(ES),
659 VMX_SEGMENT_FIELD(FS),
660 VMX_SEGMENT_FIELD(GS),
661 VMX_SEGMENT_FIELD(SS),
662 VMX_SEGMENT_FIELD(TR),
663 VMX_SEGMENT_FIELD(LDTR),
664};
665
666static u64 host_efer;
667
668static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
669
670/*
671 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
672 * away by decrementing the array size.
673 */
674static const u32 vmx_msr_index[] = {
675#ifdef CONFIG_X86_64
676 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
677#endif
678 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
679};
680#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
681
682static inline bool is_page_fault(u32 intr_info)
683{
684 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
685 INTR_INFO_VALID_MASK)) ==
686 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
687}
688
689static inline bool is_no_device(u32 intr_info)
690{
691 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
692 INTR_INFO_VALID_MASK)) ==
693 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
694}
695
696static inline bool is_invalid_opcode(u32 intr_info)
697{
698 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
699 INTR_INFO_VALID_MASK)) ==
700 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
701}
702
703static inline bool is_external_interrupt(u32 intr_info)
704{
705 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
706 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
707}
708
709static inline bool is_machine_check(u32 intr_info)
710{
711 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
712 INTR_INFO_VALID_MASK)) ==
713 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
714}
715
716static inline bool cpu_has_vmx_msr_bitmap(void)
717{
718 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
719}
720
721static inline bool cpu_has_vmx_tpr_shadow(void)
722{
723 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
724}
725
726static inline bool vm_need_tpr_shadow(struct kvm *kvm)
727{
728 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
729}
730
731static inline bool cpu_has_secondary_exec_ctrls(void)
732{
733 return vmcs_config.cpu_based_exec_ctrl &
734 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
735}
736
737static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
738{
739 return vmcs_config.cpu_based_2nd_exec_ctrl &
740 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
741}
742
743static inline bool cpu_has_vmx_flexpriority(void)
744{
745 return cpu_has_vmx_tpr_shadow() &&
746 cpu_has_vmx_virtualize_apic_accesses();
747}
748
749static inline bool cpu_has_vmx_ept_execute_only(void)
750{
751 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
752}
753
754static inline bool cpu_has_vmx_eptp_uncacheable(void)
755{
756 return vmx_capability.ept & VMX_EPTP_UC_BIT;
757}
758
759static inline bool cpu_has_vmx_eptp_writeback(void)
760{
761 return vmx_capability.ept & VMX_EPTP_WB_BIT;
762}
763
764static inline bool cpu_has_vmx_ept_2m_page(void)
765{
766 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
767}
768
769static inline bool cpu_has_vmx_ept_1g_page(void)
770{
771 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
772}
773
774static inline bool cpu_has_vmx_ept_4levels(void)
775{
776 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
777}
778
779static inline bool cpu_has_vmx_invept_individual_addr(void)
780{
781 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
782}
783
784static inline bool cpu_has_vmx_invept_context(void)
785{
786 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
787}
788
789static inline bool cpu_has_vmx_invept_global(void)
790{
791 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
792}
793
794static inline bool cpu_has_vmx_invvpid_single(void)
795{
796 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
797}
798
799static inline bool cpu_has_vmx_invvpid_global(void)
800{
801 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
802}
803
804static inline bool cpu_has_vmx_ept(void)
805{
806 return vmcs_config.cpu_based_2nd_exec_ctrl &
807 SECONDARY_EXEC_ENABLE_EPT;
808}
809
810static inline bool cpu_has_vmx_unrestricted_guest(void)
811{
812 return vmcs_config.cpu_based_2nd_exec_ctrl &
813 SECONDARY_EXEC_UNRESTRICTED_GUEST;
814}
815
816static inline bool cpu_has_vmx_ple(void)
817{
818 return vmcs_config.cpu_based_2nd_exec_ctrl &
819 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
820}
821
822static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
823{
824 return flexpriority_enabled && irqchip_in_kernel(kvm);
825}
826
827static inline bool cpu_has_vmx_vpid(void)
828{
829 return vmcs_config.cpu_based_2nd_exec_ctrl &
830 SECONDARY_EXEC_ENABLE_VPID;
831}
832
833static inline bool cpu_has_vmx_rdtscp(void)
834{
835 return vmcs_config.cpu_based_2nd_exec_ctrl &
836 SECONDARY_EXEC_RDTSCP;
837}
838
839static inline bool cpu_has_virtual_nmis(void)
840{
841 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
842}
843
844static inline bool cpu_has_vmx_wbinvd_exit(void)
845{
846 return vmcs_config.cpu_based_2nd_exec_ctrl &
847 SECONDARY_EXEC_WBINVD_EXITING;
848}
849
850static inline bool report_flexpriority(void)
851{
852 return flexpriority_enabled;
853}
854
855static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
856{
857 return vmcs12->cpu_based_vm_exec_control & bit;
858}
859
860static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
861{
862 return (vmcs12->cpu_based_vm_exec_control &
863 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
864 (vmcs12->secondary_vm_exec_control & bit);
865}
866
867static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
868 struct kvm_vcpu *vcpu)
869{
870 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
871}
872
873static inline bool is_exception(u32 intr_info)
874{
875 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
876 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
877}
878
879static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
880static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
881 struct vmcs12 *vmcs12,
882 u32 reason, unsigned long qualification);
883
884static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
885{
886 int i;
887
888 for (i = 0; i < vmx->nmsrs; ++i)
889 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
890 return i;
891 return -1;
892}
893
894static inline void __invvpid(int ext, u16 vpid, gva_t gva)
895{
896 struct {
897 u64 vpid : 16;
898 u64 rsvd : 48;
899 u64 gva;
900 } operand = { vpid, 0, gva };
901
902 asm volatile (__ex(ASM_VMX_INVVPID)
903 /* CF==1 or ZF==1 --> rc = -1 */
904 "; ja 1f ; ud2 ; 1:"
905 : : "a"(&operand), "c"(ext) : "cc", "memory");
906}
907
908static inline void __invept(int ext, u64 eptp, gpa_t gpa)
909{
910 struct {
911 u64 eptp, gpa;
912 } operand = {eptp, gpa};
913
914 asm volatile (__ex(ASM_VMX_INVEPT)
915 /* CF==1 or ZF==1 --> rc = -1 */
916 "; ja 1f ; ud2 ; 1:\n"
917 : : "a" (&operand), "c" (ext) : "cc", "memory");
918}
919
920static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
921{
922 int i;
923
924 i = __find_msr_index(vmx, msr);
925 if (i >= 0)
926 return &vmx->guest_msrs[i];
927 return NULL;
928}
929
930static void vmcs_clear(struct vmcs *vmcs)
931{
932 u64 phys_addr = __pa(vmcs);
933 u8 error;
934
935 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
936 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
937 : "cc", "memory");
938 if (error)
939 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
940 vmcs, phys_addr);
941}
942
943static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
944{
945 vmcs_clear(loaded_vmcs->vmcs);
946 loaded_vmcs->cpu = -1;
947 loaded_vmcs->launched = 0;
948}
949
950static void vmcs_load(struct vmcs *vmcs)
951{
952 u64 phys_addr = __pa(vmcs);
953 u8 error;
954
955 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
956 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
957 : "cc", "memory");
958 if (error)
959 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
960 vmcs, phys_addr);
961}
962
963static void __loaded_vmcs_clear(void *arg)
964{
965 struct loaded_vmcs *loaded_vmcs = arg;
966 int cpu = raw_smp_processor_id();
967
968 if (loaded_vmcs->cpu != cpu)
969 return; /* vcpu migration can race with cpu offline */
970 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
971 per_cpu(current_vmcs, cpu) = NULL;
972 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
973 loaded_vmcs_init(loaded_vmcs);
974}
975
976static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
977{
978 if (loaded_vmcs->cpu != -1)
979 smp_call_function_single(
980 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
981}
982
983static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
984{
985 if (vmx->vpid == 0)
986 return;
987
988 if (cpu_has_vmx_invvpid_single())
989 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
990}
991
992static inline void vpid_sync_vcpu_global(void)
993{
994 if (cpu_has_vmx_invvpid_global())
995 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
996}
997
998static inline void vpid_sync_context(struct vcpu_vmx *vmx)
999{
1000 if (cpu_has_vmx_invvpid_single())
1001 vpid_sync_vcpu_single(vmx);
1002 else
1003 vpid_sync_vcpu_global();
1004}
1005
1006static inline void ept_sync_global(void)
1007{
1008 if (cpu_has_vmx_invept_global())
1009 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1010}
1011
1012static inline void ept_sync_context(u64 eptp)
1013{
1014 if (enable_ept) {
1015 if (cpu_has_vmx_invept_context())
1016 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1017 else
1018 ept_sync_global();
1019 }
1020}
1021
1022static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1023{
1024 if (enable_ept) {
1025 if (cpu_has_vmx_invept_individual_addr())
1026 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1027 eptp, gpa);
1028 else
1029 ept_sync_context(eptp);
1030 }
1031}
1032
1033static __always_inline unsigned long vmcs_readl(unsigned long field)
1034{
1035 unsigned long value;
1036
1037 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1038 : "=a"(value) : "d"(field) : "cc");
1039 return value;
1040}
1041
1042static __always_inline u16 vmcs_read16(unsigned long field)
1043{
1044 return vmcs_readl(field);
1045}
1046
1047static __always_inline u32 vmcs_read32(unsigned long field)
1048{
1049 return vmcs_readl(field);
1050}
1051
1052static __always_inline u64 vmcs_read64(unsigned long field)
1053{
1054#ifdef CONFIG_X86_64
1055 return vmcs_readl(field);
1056#else
1057 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1058#endif
1059}
1060
1061static noinline void vmwrite_error(unsigned long field, unsigned long value)
1062{
1063 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1064 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1065 dump_stack();
1066}
1067
1068static void vmcs_writel(unsigned long field, unsigned long value)
1069{
1070 u8 error;
1071
1072 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1073 : "=q"(error) : "a"(value), "d"(field) : "cc");
1074 if (unlikely(error))
1075 vmwrite_error(field, value);
1076}
1077
1078static void vmcs_write16(unsigned long field, u16 value)
1079{
1080 vmcs_writel(field, value);
1081}
1082
1083static void vmcs_write32(unsigned long field, u32 value)
1084{
1085 vmcs_writel(field, value);
1086}
1087
1088static void vmcs_write64(unsigned long field, u64 value)
1089{
1090 vmcs_writel(field, value);
1091#ifndef CONFIG_X86_64
1092 asm volatile ("");
1093 vmcs_writel(field+1, value >> 32);
1094#endif
1095}
1096
1097static void vmcs_clear_bits(unsigned long field, u32 mask)
1098{
1099 vmcs_writel(field, vmcs_readl(field) & ~mask);
1100}
1101
1102static void vmcs_set_bits(unsigned long field, u32 mask)
1103{
1104 vmcs_writel(field, vmcs_readl(field) | mask);
1105}
1106
1107static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1108{
1109 vmx->segment_cache.bitmask = 0;
1110}
1111
1112static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1113 unsigned field)
1114{
1115 bool ret;
1116 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1117
1118 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1119 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1120 vmx->segment_cache.bitmask = 0;
1121 }
1122 ret = vmx->segment_cache.bitmask & mask;
1123 vmx->segment_cache.bitmask |= mask;
1124 return ret;
1125}
1126
1127static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1128{
1129 u16 *p = &vmx->segment_cache.seg[seg].selector;
1130
1131 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1132 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1133 return *p;
1134}
1135
1136static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1137{
1138 ulong *p = &vmx->segment_cache.seg[seg].base;
1139
1140 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1141 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1142 return *p;
1143}
1144
1145static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1146{
1147 u32 *p = &vmx->segment_cache.seg[seg].limit;
1148
1149 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1150 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1151 return *p;
1152}
1153
1154static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1155{
1156 u32 *p = &vmx->segment_cache.seg[seg].ar;
1157
1158 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1159 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1160 return *p;
1161}
1162
1163static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1164{
1165 u32 eb;
1166
1167 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1168 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1169 if ((vcpu->guest_debug &
1170 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1171 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1172 eb |= 1u << BP_VECTOR;
1173 if (to_vmx(vcpu)->rmode.vm86_active)
1174 eb = ~0;
1175 if (enable_ept)
1176 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1177 if (vcpu->fpu_active)
1178 eb &= ~(1u << NM_VECTOR);
1179
1180 /* When we are running a nested L2 guest and L1 specified for it a
1181 * certain exception bitmap, we must trap the same exceptions and pass
1182 * them to L1. When running L2, we will only handle the exceptions
1183 * specified above if L1 did not want them.
1184 */
1185 if (is_guest_mode(vcpu))
1186 eb |= get_vmcs12(vcpu)->exception_bitmap;
1187
1188 vmcs_write32(EXCEPTION_BITMAP, eb);
1189}
1190
1191static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1192{
1193 unsigned i;
1194 struct msr_autoload *m = &vmx->msr_autoload;
1195
1196 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
1197 vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
1198 vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
1199 return;
1200 }
1201
1202 for (i = 0; i < m->nr; ++i)
1203 if (m->guest[i].index == msr)
1204 break;
1205
1206 if (i == m->nr)
1207 return;
1208 --m->nr;
1209 m->guest[i] = m->guest[m->nr];
1210 m->host[i] = m->host[m->nr];
1211 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1212 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1213}
1214
1215static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1216 u64 guest_val, u64 host_val)
1217{
1218 unsigned i;
1219 struct msr_autoload *m = &vmx->msr_autoload;
1220
1221 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
1222 vmcs_write64(GUEST_IA32_EFER, guest_val);
1223 vmcs_write64(HOST_IA32_EFER, host_val);
1224 vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
1225 vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
1226 return;
1227 }
1228
1229 for (i = 0; i < m->nr; ++i)
1230 if (m->guest[i].index == msr)
1231 break;
1232
1233 if (i == m->nr) {
1234 ++m->nr;
1235 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1236 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1237 }
1238
1239 m->guest[i].index = msr;
1240 m->guest[i].value = guest_val;
1241 m->host[i].index = msr;
1242 m->host[i].value = host_val;
1243}
1244
1245static void reload_tss(void)
1246{
1247 /*
1248 * VT restores TR but not its size. Useless.
1249 */
1250 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1251 struct desc_struct *descs;
1252
1253 descs = (void *)gdt->address;
1254 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1255 load_TR_desc();
1256}
1257
1258static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1259{
1260 u64 guest_efer;
1261 u64 ignore_bits;
1262
1263 guest_efer = vmx->vcpu.arch.efer;
1264
1265 /*
1266 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1267 * outside long mode
1268 */
1269 ignore_bits = EFER_NX | EFER_SCE;
1270#ifdef CONFIG_X86_64
1271 ignore_bits |= EFER_LMA | EFER_LME;
1272 /* SCE is meaningful only in long mode on Intel */
1273 if (guest_efer & EFER_LMA)
1274 ignore_bits &= ~(u64)EFER_SCE;
1275#endif
1276 guest_efer &= ~ignore_bits;
1277 guest_efer |= host_efer & ignore_bits;
1278 vmx->guest_msrs[efer_offset].data = guest_efer;
1279 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1280
1281 clear_atomic_switch_msr(vmx, MSR_EFER);
1282 /* On ept, can't emulate nx, and must switch nx atomically */
1283 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1284 guest_efer = vmx->vcpu.arch.efer;
1285 if (!(guest_efer & EFER_LMA))
1286 guest_efer &= ~EFER_LME;
1287 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1288 return false;
1289 }
1290
1291 return true;
1292}
1293
1294static unsigned long segment_base(u16 selector)
1295{
1296 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1297 struct desc_struct *d;
1298 unsigned long table_base;
1299 unsigned long v;
1300
1301 if (!(selector & ~3))
1302 return 0;
1303
1304 table_base = gdt->address;
1305
1306 if (selector & 4) { /* from ldt */
1307 u16 ldt_selector = kvm_read_ldt();
1308
1309 if (!(ldt_selector & ~3))
1310 return 0;
1311
1312 table_base = segment_base(ldt_selector);
1313 }
1314 d = (struct desc_struct *)(table_base + (selector & ~7));
1315 v = get_desc_base(d);
1316#ifdef CONFIG_X86_64
1317 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1318 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1319#endif
1320 return v;
1321}
1322
1323static inline unsigned long kvm_read_tr_base(void)
1324{
1325 u16 tr;
1326 asm("str %0" : "=g"(tr));
1327 return segment_base(tr);
1328}
1329
1330static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1331{
1332 struct vcpu_vmx *vmx = to_vmx(vcpu);
1333 int i;
1334
1335 if (vmx->host_state.loaded)
1336 return;
1337
1338 vmx->host_state.loaded = 1;
1339 /*
1340 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1341 * allow segment selectors with cpl > 0 or ti == 1.
1342 */
1343 vmx->host_state.ldt_sel = kvm_read_ldt();
1344 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1345 savesegment(fs, vmx->host_state.fs_sel);
1346 if (!(vmx->host_state.fs_sel & 7)) {
1347 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1348 vmx->host_state.fs_reload_needed = 0;
1349 } else {
1350 vmcs_write16(HOST_FS_SELECTOR, 0);
1351 vmx->host_state.fs_reload_needed = 1;
1352 }
1353 savesegment(gs, vmx->host_state.gs_sel);
1354 if (!(vmx->host_state.gs_sel & 7))
1355 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1356 else {
1357 vmcs_write16(HOST_GS_SELECTOR, 0);
1358 vmx->host_state.gs_ldt_reload_needed = 1;
1359 }
1360
1361#ifdef CONFIG_X86_64
1362 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1363 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1364#else
1365 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1366 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1367#endif
1368
1369#ifdef CONFIG_X86_64
1370 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1371 if (is_long_mode(&vmx->vcpu))
1372 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1373#endif
1374 for (i = 0; i < vmx->save_nmsrs; ++i)
1375 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1376 vmx->guest_msrs[i].data,
1377 vmx->guest_msrs[i].mask);
1378}
1379
1380static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1381{
1382 if (!vmx->host_state.loaded)
1383 return;
1384
1385 ++vmx->vcpu.stat.host_state_reload;
1386 vmx->host_state.loaded = 0;
1387#ifdef CONFIG_X86_64
1388 if (is_long_mode(&vmx->vcpu))
1389 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1390#endif
1391 if (vmx->host_state.gs_ldt_reload_needed) {
1392 kvm_load_ldt(vmx->host_state.ldt_sel);
1393#ifdef CONFIG_X86_64
1394 load_gs_index(vmx->host_state.gs_sel);
1395#else
1396 loadsegment(gs, vmx->host_state.gs_sel);
1397#endif
1398 }
1399 if (vmx->host_state.fs_reload_needed)
1400 loadsegment(fs, vmx->host_state.fs_sel);
1401 reload_tss();
1402#ifdef CONFIG_X86_64
1403 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1404#endif
1405 if (current_thread_info()->status & TS_USEDFPU)
1406 clts();
1407 load_gdt(&__get_cpu_var(host_gdt));
1408}
1409
1410static void vmx_load_host_state(struct vcpu_vmx *vmx)
1411{
1412 preempt_disable();
1413 __vmx_load_host_state(vmx);
1414 preempt_enable();
1415}
1416
1417/*
1418 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1419 * vcpu mutex is already taken.
1420 */
1421static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1422{
1423 struct vcpu_vmx *vmx = to_vmx(vcpu);
1424 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1425
1426 if (!vmm_exclusive)
1427 kvm_cpu_vmxon(phys_addr);
1428 else if (vmx->loaded_vmcs->cpu != cpu)
1429 loaded_vmcs_clear(vmx->loaded_vmcs);
1430
1431 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1432 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1433 vmcs_load(vmx->loaded_vmcs->vmcs);
1434 }
1435
1436 if (vmx->loaded_vmcs->cpu != cpu) {
1437 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1438 unsigned long sysenter_esp;
1439
1440 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1441 local_irq_disable();
1442 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1443 &per_cpu(loaded_vmcss_on_cpu, cpu));
1444 local_irq_enable();
1445
1446 /*
1447 * Linux uses per-cpu TSS and GDT, so set these when switching
1448 * processors.
1449 */
1450 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1451 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1452
1453 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1454 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1455 vmx->loaded_vmcs->cpu = cpu;
1456 }
1457}
1458
1459static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1460{
1461 __vmx_load_host_state(to_vmx(vcpu));
1462 if (!vmm_exclusive) {
1463 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1464 vcpu->cpu = -1;
1465 kvm_cpu_vmxoff();
1466 }
1467}
1468
1469static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1470{
1471 ulong cr0;
1472
1473 if (vcpu->fpu_active)
1474 return;
1475 vcpu->fpu_active = 1;
1476 cr0 = vmcs_readl(GUEST_CR0);
1477 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1478 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1479 vmcs_writel(GUEST_CR0, cr0);
1480 update_exception_bitmap(vcpu);
1481 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1482 if (is_guest_mode(vcpu))
1483 vcpu->arch.cr0_guest_owned_bits &=
1484 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1485 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1486}
1487
1488static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1489
1490/*
1491 * Return the cr0 value that a nested guest would read. This is a combination
1492 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1493 * its hypervisor (cr0_read_shadow).
1494 */
1495static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1496{
1497 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1498 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1499}
1500static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1501{
1502 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1503 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1504}
1505
1506static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1507{
1508 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1509 * set this *before* calling this function.
1510 */
1511 vmx_decache_cr0_guest_bits(vcpu);
1512 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1513 update_exception_bitmap(vcpu);
1514 vcpu->arch.cr0_guest_owned_bits = 0;
1515 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1516 if (is_guest_mode(vcpu)) {
1517 /*
1518 * L1's specified read shadow might not contain the TS bit,
1519 * so now that we turned on shadowing of this bit, we need to
1520 * set this bit of the shadow. Like in nested_vmx_run we need
1521 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1522 * up-to-date here because we just decached cr0.TS (and we'll
1523 * only update vmcs12->guest_cr0 on nested exit).
1524 */
1525 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1526 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1527 (vcpu->arch.cr0 & X86_CR0_TS);
1528 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1529 } else
1530 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1531}
1532
1533static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1534{
1535 unsigned long rflags, save_rflags;
1536
1537 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1538 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1539 rflags = vmcs_readl(GUEST_RFLAGS);
1540 if (to_vmx(vcpu)->rmode.vm86_active) {
1541 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1542 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1543 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1544 }
1545 to_vmx(vcpu)->rflags = rflags;
1546 }
1547 return to_vmx(vcpu)->rflags;
1548}
1549
1550static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1551{
1552 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1553 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1554 to_vmx(vcpu)->rflags = rflags;
1555 if (to_vmx(vcpu)->rmode.vm86_active) {
1556 to_vmx(vcpu)->rmode.save_rflags = rflags;
1557 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1558 }
1559 vmcs_writel(GUEST_RFLAGS, rflags);
1560}
1561
1562static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1563{
1564 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1565 int ret = 0;
1566
1567 if (interruptibility & GUEST_INTR_STATE_STI)
1568 ret |= KVM_X86_SHADOW_INT_STI;
1569 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1570 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1571
1572 return ret & mask;
1573}
1574
1575static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1576{
1577 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1578 u32 interruptibility = interruptibility_old;
1579
1580 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1581
1582 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1583 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1584 else if (mask & KVM_X86_SHADOW_INT_STI)
1585 interruptibility |= GUEST_INTR_STATE_STI;
1586
1587 if ((interruptibility != interruptibility_old))
1588 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1589}
1590
1591static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1592{
1593 unsigned long rip;
1594
1595 rip = kvm_rip_read(vcpu);
1596 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1597 kvm_rip_write(vcpu, rip);
1598
1599 /* skipping an emulated instruction also counts */
1600 vmx_set_interrupt_shadow(vcpu, 0);
1601}
1602
1603static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1604{
1605 /* Ensure that we clear the HLT state in the VMCS. We don't need to
1606 * explicitly skip the instruction because if the HLT state is set, then
1607 * the instruction is already executing and RIP has already been
1608 * advanced. */
1609 if (!yield_on_hlt &&
1610 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1611 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1612}
1613
1614/*
1615 * KVM wants to inject page-faults which it got to the guest. This function
1616 * checks whether in a nested guest, we need to inject them to L1 or L2.
1617 * This function assumes it is called with the exit reason in vmcs02 being
1618 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1619 * is running).
1620 */
1621static int nested_pf_handled(struct kvm_vcpu *vcpu)
1622{
1623 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1624
1625 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1626 if (!(vmcs12->exception_bitmap & PF_VECTOR))
1627 return 0;
1628
1629 nested_vmx_vmexit(vcpu);
1630 return 1;
1631}
1632
1633static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1634 bool has_error_code, u32 error_code,
1635 bool reinject)
1636{
1637 struct vcpu_vmx *vmx = to_vmx(vcpu);
1638 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1639
1640 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1641 nested_pf_handled(vcpu))
1642 return;
1643
1644 if (has_error_code) {
1645 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1646 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1647 }
1648
1649 if (vmx->rmode.vm86_active) {
1650 int inc_eip = 0;
1651 if (kvm_exception_is_soft(nr))
1652 inc_eip = vcpu->arch.event_exit_inst_len;
1653 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1654 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1655 return;
1656 }
1657
1658 if (kvm_exception_is_soft(nr)) {
1659 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1660 vmx->vcpu.arch.event_exit_inst_len);
1661 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1662 } else
1663 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1664
1665 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1666 vmx_clear_hlt(vcpu);
1667}
1668
1669static bool vmx_rdtscp_supported(void)
1670{
1671 return cpu_has_vmx_rdtscp();
1672}
1673
1674/*
1675 * Swap MSR entry in host/guest MSR entry array.
1676 */
1677static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1678{
1679 struct shared_msr_entry tmp;
1680
1681 tmp = vmx->guest_msrs[to];
1682 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1683 vmx->guest_msrs[from] = tmp;
1684}
1685
1686/*
1687 * Set up the vmcs to automatically save and restore system
1688 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1689 * mode, as fiddling with msrs is very expensive.
1690 */
1691static void setup_msrs(struct vcpu_vmx *vmx)
1692{
1693 int save_nmsrs, index;
1694 unsigned long *msr_bitmap;
1695
1696 vmx_load_host_state(vmx);
1697 save_nmsrs = 0;
1698#ifdef CONFIG_X86_64
1699 if (is_long_mode(&vmx->vcpu)) {
1700 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1701 if (index >= 0)
1702 move_msr_up(vmx, index, save_nmsrs++);
1703 index = __find_msr_index(vmx, MSR_LSTAR);
1704 if (index >= 0)
1705 move_msr_up(vmx, index, save_nmsrs++);
1706 index = __find_msr_index(vmx, MSR_CSTAR);
1707 if (index >= 0)
1708 move_msr_up(vmx, index, save_nmsrs++);
1709 index = __find_msr_index(vmx, MSR_TSC_AUX);
1710 if (index >= 0 && vmx->rdtscp_enabled)
1711 move_msr_up(vmx, index, save_nmsrs++);
1712 /*
1713 * MSR_STAR is only needed on long mode guests, and only
1714 * if efer.sce is enabled.
1715 */
1716 index = __find_msr_index(vmx, MSR_STAR);
1717 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1718 move_msr_up(vmx, index, save_nmsrs++);
1719 }
1720#endif
1721 index = __find_msr_index(vmx, MSR_EFER);
1722 if (index >= 0 && update_transition_efer(vmx, index))
1723 move_msr_up(vmx, index, save_nmsrs++);
1724
1725 vmx->save_nmsrs = save_nmsrs;
1726
1727 if (cpu_has_vmx_msr_bitmap()) {
1728 if (is_long_mode(&vmx->vcpu))
1729 msr_bitmap = vmx_msr_bitmap_longmode;
1730 else
1731 msr_bitmap = vmx_msr_bitmap_legacy;
1732
1733 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1734 }
1735}
1736
1737/*
1738 * reads and returns guest's timestamp counter "register"
1739 * guest_tsc = host_tsc + tsc_offset -- 21.3
1740 */
1741static u64 guest_read_tsc(void)
1742{
1743 u64 host_tsc, tsc_offset;
1744
1745 rdtscll(host_tsc);
1746 tsc_offset = vmcs_read64(TSC_OFFSET);
1747 return host_tsc + tsc_offset;
1748}
1749
1750/*
1751 * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
1752 * ioctl. In this case the call-back should update internal vmx state to make
1753 * the changes effective.
1754 */
1755static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1756{
1757 /* Nothing to do here */
1758}
1759
1760/*
1761 * writes 'offset' into guest's timestamp counter offset register
1762 */
1763static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1764{
1765 vmcs_write64(TSC_OFFSET, offset);
1766 if (is_guest_mode(vcpu))
1767 /*
1768 * We're here if L1 chose not to trap the TSC MSR. Since
1769 * prepare_vmcs12() does not copy tsc_offset, we need to also
1770 * set the vmcs12 field here.
1771 */
1772 get_vmcs12(vcpu)->tsc_offset = offset -
1773 to_vmx(vcpu)->nested.vmcs01_tsc_offset;
1774}
1775
1776static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1777{
1778 u64 offset = vmcs_read64(TSC_OFFSET);
1779 vmcs_write64(TSC_OFFSET, offset + adjustment);
1780 if (is_guest_mode(vcpu)) {
1781 /* Even when running L2, the adjustment needs to apply to L1 */
1782 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1783 }
1784}
1785
1786static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1787{
1788 return target_tsc - native_read_tsc();
1789}
1790
1791static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1792{
1793 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1794 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1795}
1796
1797/*
1798 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1799 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1800 * all guests if the "nested" module option is off, and can also be disabled
1801 * for a single guest by disabling its VMX cpuid bit.
1802 */
1803static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1804{
1805 return nested && guest_cpuid_has_vmx(vcpu);
1806}
1807
1808/*
1809 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1810 * returned for the various VMX controls MSRs when nested VMX is enabled.
1811 * The same values should also be used to verify that vmcs12 control fields are
1812 * valid during nested entry from L1 to L2.
1813 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1814 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1815 * bit in the high half is on if the corresponding bit in the control field
1816 * may be on. See also vmx_control_verify().
1817 * TODO: allow these variables to be modified (downgraded) by module options
1818 * or other means.
1819 */
1820static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1821static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1822static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1823static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1824static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1825static __init void nested_vmx_setup_ctls_msrs(void)
1826{
1827 /*
1828 * Note that as a general rule, the high half of the MSRs (bits in
1829 * the control fields which may be 1) should be initialized by the
1830 * intersection of the underlying hardware's MSR (i.e., features which
1831 * can be supported) and the list of features we want to expose -
1832 * because they are known to be properly supported in our code.
1833 * Also, usually, the low half of the MSRs (bits which must be 1) can
1834 * be set to 0, meaning that L1 may turn off any of these bits. The
1835 * reason is that if one of these bits is necessary, it will appear
1836 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1837 * fields of vmcs01 and vmcs02, will turn these bits off - and
1838 * nested_vmx_exit_handled() will not pass related exits to L1.
1839 * These rules have exceptions below.
1840 */
1841
1842 /* pin-based controls */
1843 /*
1844 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1845 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1846 */
1847 nested_vmx_pinbased_ctls_low = 0x16 ;
1848 nested_vmx_pinbased_ctls_high = 0x16 |
1849 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1850 PIN_BASED_VIRTUAL_NMIS;
1851
1852 /* exit controls */
1853 nested_vmx_exit_ctls_low = 0;
1854 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
1855#ifdef CONFIG_X86_64
1856 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1857#else
1858 nested_vmx_exit_ctls_high = 0;
1859#endif
1860
1861 /* entry controls */
1862 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1863 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1864 nested_vmx_entry_ctls_low = 0;
1865 nested_vmx_entry_ctls_high &=
1866 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1867
1868 /* cpu-based controls */
1869 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1870 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1871 nested_vmx_procbased_ctls_low = 0;
1872 nested_vmx_procbased_ctls_high &=
1873 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1874 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1875 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1876 CPU_BASED_CR3_STORE_EXITING |
1877#ifdef CONFIG_X86_64
1878 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1879#endif
1880 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1881 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
1882 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1883 /*
1884 * We can allow some features even when not supported by the
1885 * hardware. For example, L1 can specify an MSR bitmap - and we
1886 * can use it to avoid exits to L1 - even when L0 runs L2
1887 * without MSR bitmaps.
1888 */
1889 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1890
1891 /* secondary cpu-based controls */
1892 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1893 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1894 nested_vmx_secondary_ctls_low = 0;
1895 nested_vmx_secondary_ctls_high &=
1896 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1897}
1898
1899static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1900{
1901 /*
1902 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1903 */
1904 return ((control & high) | low) == control;
1905}
1906
1907static inline u64 vmx_control_msr(u32 low, u32 high)
1908{
1909 return low | ((u64)high << 32);
1910}
1911
1912/*
1913 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1914 * also let it use VMX-specific MSRs.
1915 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1916 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1917 * like all other MSRs).
1918 */
1919static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1920{
1921 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
1922 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
1923 /*
1924 * According to the spec, processors which do not support VMX
1925 * should throw a #GP(0) when VMX capability MSRs are read.
1926 */
1927 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1928 return 1;
1929 }
1930
1931 switch (msr_index) {
1932 case MSR_IA32_FEATURE_CONTROL:
1933 *pdata = 0;
1934 break;
1935 case MSR_IA32_VMX_BASIC:
1936 /*
1937 * This MSR reports some information about VMX support. We
1938 * should return information about the VMX we emulate for the
1939 * guest, and the VMCS structure we give it - not about the
1940 * VMX support of the underlying hardware.
1941 */
1942 *pdata = VMCS12_REVISION |
1943 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
1944 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
1945 break;
1946 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1947 case MSR_IA32_VMX_PINBASED_CTLS:
1948 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
1949 nested_vmx_pinbased_ctls_high);
1950 break;
1951 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1952 case MSR_IA32_VMX_PROCBASED_CTLS:
1953 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
1954 nested_vmx_procbased_ctls_high);
1955 break;
1956 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1957 case MSR_IA32_VMX_EXIT_CTLS:
1958 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
1959 nested_vmx_exit_ctls_high);
1960 break;
1961 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1962 case MSR_IA32_VMX_ENTRY_CTLS:
1963 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
1964 nested_vmx_entry_ctls_high);
1965 break;
1966 case MSR_IA32_VMX_MISC:
1967 *pdata = 0;
1968 break;
1969 /*
1970 * These MSRs specify bits which the guest must keep fixed (on or off)
1971 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
1972 * We picked the standard core2 setting.
1973 */
1974#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
1975#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
1976 case MSR_IA32_VMX_CR0_FIXED0:
1977 *pdata = VMXON_CR0_ALWAYSON;
1978 break;
1979 case MSR_IA32_VMX_CR0_FIXED1:
1980 *pdata = -1ULL;
1981 break;
1982 case MSR_IA32_VMX_CR4_FIXED0:
1983 *pdata = VMXON_CR4_ALWAYSON;
1984 break;
1985 case MSR_IA32_VMX_CR4_FIXED1:
1986 *pdata = -1ULL;
1987 break;
1988 case MSR_IA32_VMX_VMCS_ENUM:
1989 *pdata = 0x1f;
1990 break;
1991 case MSR_IA32_VMX_PROCBASED_CTLS2:
1992 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
1993 nested_vmx_secondary_ctls_high);
1994 break;
1995 case MSR_IA32_VMX_EPT_VPID_CAP:
1996 /* Currently, no nested ept or nested vpid */
1997 *pdata = 0;
1998 break;
1999 default:
2000 return 0;
2001 }
2002
2003 return 1;
2004}
2005
2006static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2007{
2008 if (!nested_vmx_allowed(vcpu))
2009 return 0;
2010
2011 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2012 /* TODO: the right thing. */
2013 return 1;
2014 /*
2015 * No need to treat VMX capability MSRs specially: If we don't handle
2016 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2017 */
2018 return 0;
2019}
2020
2021/*
2022 * Reads an msr value (of 'msr_index') into 'pdata'.
2023 * Returns 0 on success, non-0 otherwise.
2024 * Assumes vcpu_load() was already called.
2025 */
2026static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2027{
2028 u64 data;
2029 struct shared_msr_entry *msr;
2030
2031 if (!pdata) {
2032 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2033 return -EINVAL;
2034 }
2035
2036 switch (msr_index) {
2037#ifdef CONFIG_X86_64
2038 case MSR_FS_BASE:
2039 data = vmcs_readl(GUEST_FS_BASE);
2040 break;
2041 case MSR_GS_BASE:
2042 data = vmcs_readl(GUEST_GS_BASE);
2043 break;
2044 case MSR_KERNEL_GS_BASE:
2045 vmx_load_host_state(to_vmx(vcpu));
2046 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2047 break;
2048#endif
2049 case MSR_EFER:
2050 return kvm_get_msr_common(vcpu, msr_index, pdata);
2051 case MSR_IA32_TSC:
2052 data = guest_read_tsc();
2053 break;
2054 case MSR_IA32_SYSENTER_CS:
2055 data = vmcs_read32(GUEST_SYSENTER_CS);
2056 break;
2057 case MSR_IA32_SYSENTER_EIP:
2058 data = vmcs_readl(GUEST_SYSENTER_EIP);
2059 break;
2060 case MSR_IA32_SYSENTER_ESP:
2061 data = vmcs_readl(GUEST_SYSENTER_ESP);
2062 break;
2063 case MSR_TSC_AUX:
2064 if (!to_vmx(vcpu)->rdtscp_enabled)
2065 return 1;
2066 /* Otherwise falls through */
2067 default:
2068 vmx_load_host_state(to_vmx(vcpu));
2069 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2070 return 0;
2071 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2072 if (msr) {
2073 vmx_load_host_state(to_vmx(vcpu));
2074 data = msr->data;
2075 break;
2076 }
2077 return kvm_get_msr_common(vcpu, msr_index, pdata);
2078 }
2079
2080 *pdata = data;
2081 return 0;
2082}
2083
2084/*
2085 * Writes msr value into into the appropriate "register".
2086 * Returns 0 on success, non-0 otherwise.
2087 * Assumes vcpu_load() was already called.
2088 */
2089static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2090{
2091 struct vcpu_vmx *vmx = to_vmx(vcpu);
2092 struct shared_msr_entry *msr;
2093 int ret = 0;
2094
2095 switch (msr_index) {
2096 case MSR_EFER:
2097 vmx_load_host_state(vmx);
2098 ret = kvm_set_msr_common(vcpu, msr_index, data);
2099 break;
2100#ifdef CONFIG_X86_64
2101 case MSR_FS_BASE:
2102 vmx_segment_cache_clear(vmx);
2103 vmcs_writel(GUEST_FS_BASE, data);
2104 break;
2105 case MSR_GS_BASE:
2106 vmx_segment_cache_clear(vmx);
2107 vmcs_writel(GUEST_GS_BASE, data);
2108 break;
2109 case MSR_KERNEL_GS_BASE:
2110 vmx_load_host_state(vmx);
2111 vmx->msr_guest_kernel_gs_base = data;
2112 break;
2113#endif
2114 case MSR_IA32_SYSENTER_CS:
2115 vmcs_write32(GUEST_SYSENTER_CS, data);
2116 break;
2117 case MSR_IA32_SYSENTER_EIP:
2118 vmcs_writel(GUEST_SYSENTER_EIP, data);
2119 break;
2120 case MSR_IA32_SYSENTER_ESP:
2121 vmcs_writel(GUEST_SYSENTER_ESP, data);
2122 break;
2123 case MSR_IA32_TSC:
2124 kvm_write_tsc(vcpu, data);
2125 break;
2126 case MSR_IA32_CR_PAT:
2127 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2128 vmcs_write64(GUEST_IA32_PAT, data);
2129 vcpu->arch.pat = data;
2130 break;
2131 }
2132 ret = kvm_set_msr_common(vcpu, msr_index, data);
2133 break;
2134 case MSR_TSC_AUX:
2135 if (!vmx->rdtscp_enabled)
2136 return 1;
2137 /* Check reserved bit, higher 32 bits should be zero */
2138 if ((data >> 32) != 0)
2139 return 1;
2140 /* Otherwise falls through */
2141 default:
2142 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2143 break;
2144 msr = find_msr_entry(vmx, msr_index);
2145 if (msr) {
2146 vmx_load_host_state(vmx);
2147 msr->data = data;
2148 break;
2149 }
2150 ret = kvm_set_msr_common(vcpu, msr_index, data);
2151 }
2152
2153 return ret;
2154}
2155
2156static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2157{
2158 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2159 switch (reg) {
2160 case VCPU_REGS_RSP:
2161 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2162 break;
2163 case VCPU_REGS_RIP:
2164 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2165 break;
2166 case VCPU_EXREG_PDPTR:
2167 if (enable_ept)
2168 ept_save_pdptrs(vcpu);
2169 break;
2170 default:
2171 break;
2172 }
2173}
2174
2175static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
2176{
2177 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2178 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2179 else
2180 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2181
2182 update_exception_bitmap(vcpu);
2183}
2184
2185static __init int cpu_has_kvm_support(void)
2186{
2187 return cpu_has_vmx();
2188}
2189
2190static __init int vmx_disabled_by_bios(void)
2191{
2192 u64 msr;
2193
2194 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2195 if (msr & FEATURE_CONTROL_LOCKED) {
2196 /* launched w/ TXT and VMX disabled */
2197 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2198 && tboot_enabled())
2199 return 1;
2200 /* launched w/o TXT and VMX only enabled w/ TXT */
2201 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2202 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2203 && !tboot_enabled()) {
2204 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2205 "activate TXT before enabling KVM\n");
2206 return 1;
2207 }
2208 /* launched w/o TXT and VMX disabled */
2209 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2210 && !tboot_enabled())
2211 return 1;
2212 }
2213
2214 return 0;
2215}
2216
2217static void kvm_cpu_vmxon(u64 addr)
2218{
2219 asm volatile (ASM_VMX_VMXON_RAX
2220 : : "a"(&addr), "m"(addr)
2221 : "memory", "cc");
2222}
2223
2224static int hardware_enable(void *garbage)
2225{
2226 int cpu = raw_smp_processor_id();
2227 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2228 u64 old, test_bits;
2229
2230 if (read_cr4() & X86_CR4_VMXE)
2231 return -EBUSY;
2232
2233 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2234 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2235
2236 test_bits = FEATURE_CONTROL_LOCKED;
2237 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2238 if (tboot_enabled())
2239 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2240
2241 if ((old & test_bits) != test_bits) {
2242 /* enable and lock */
2243 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2244 }
2245 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2246
2247 if (vmm_exclusive) {
2248 kvm_cpu_vmxon(phys_addr);
2249 ept_sync_global();
2250 }
2251
2252 store_gdt(&__get_cpu_var(host_gdt));
2253
2254 return 0;
2255}
2256
2257static void vmclear_local_loaded_vmcss(void)
2258{
2259 int cpu = raw_smp_processor_id();
2260 struct loaded_vmcs *v, *n;
2261
2262 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2263 loaded_vmcss_on_cpu_link)
2264 __loaded_vmcs_clear(v);
2265}
2266
2267
2268/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2269 * tricks.
2270 */
2271static void kvm_cpu_vmxoff(void)
2272{
2273 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2274}
2275
2276static void hardware_disable(void *garbage)
2277{
2278 if (vmm_exclusive) {
2279 vmclear_local_loaded_vmcss();
2280 kvm_cpu_vmxoff();
2281 }
2282 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2283}
2284
2285static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2286 u32 msr, u32 *result)
2287{
2288 u32 vmx_msr_low, vmx_msr_high;
2289 u32 ctl = ctl_min | ctl_opt;
2290
2291 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2292
2293 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2294 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2295
2296 /* Ensure minimum (required) set of control bits are supported. */
2297 if (ctl_min & ~ctl)
2298 return -EIO;
2299
2300 *result = ctl;
2301 return 0;
2302}
2303
2304static __init bool allow_1_setting(u32 msr, u32 ctl)
2305{
2306 u32 vmx_msr_low, vmx_msr_high;
2307
2308 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2309 return vmx_msr_high & ctl;
2310}
2311
2312static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2313{
2314 u32 vmx_msr_low, vmx_msr_high;
2315 u32 min, opt, min2, opt2;
2316 u32 _pin_based_exec_control = 0;
2317 u32 _cpu_based_exec_control = 0;
2318 u32 _cpu_based_2nd_exec_control = 0;
2319 u32 _vmexit_control = 0;
2320 u32 _vmentry_control = 0;
2321
2322 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2323 opt = PIN_BASED_VIRTUAL_NMIS;
2324 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2325 &_pin_based_exec_control) < 0)
2326 return -EIO;
2327
2328 min =
2329#ifdef CONFIG_X86_64
2330 CPU_BASED_CR8_LOAD_EXITING |
2331 CPU_BASED_CR8_STORE_EXITING |
2332#endif
2333 CPU_BASED_CR3_LOAD_EXITING |
2334 CPU_BASED_CR3_STORE_EXITING |
2335 CPU_BASED_USE_IO_BITMAPS |
2336 CPU_BASED_MOV_DR_EXITING |
2337 CPU_BASED_USE_TSC_OFFSETING |
2338 CPU_BASED_MWAIT_EXITING |
2339 CPU_BASED_MONITOR_EXITING |
2340 CPU_BASED_INVLPG_EXITING;
2341
2342 if (yield_on_hlt)
2343 min |= CPU_BASED_HLT_EXITING;
2344
2345 opt = CPU_BASED_TPR_SHADOW |
2346 CPU_BASED_USE_MSR_BITMAPS |
2347 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2348 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2349 &_cpu_based_exec_control) < 0)
2350 return -EIO;
2351#ifdef CONFIG_X86_64
2352 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2353 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2354 ~CPU_BASED_CR8_STORE_EXITING;
2355#endif
2356 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2357 min2 = 0;
2358 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2359 SECONDARY_EXEC_WBINVD_EXITING |
2360 SECONDARY_EXEC_ENABLE_VPID |
2361 SECONDARY_EXEC_ENABLE_EPT |
2362 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2363 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2364 SECONDARY_EXEC_RDTSCP;
2365 if (adjust_vmx_controls(min2, opt2,
2366 MSR_IA32_VMX_PROCBASED_CTLS2,
2367 &_cpu_based_2nd_exec_control) < 0)
2368 return -EIO;
2369 }
2370#ifndef CONFIG_X86_64
2371 if (!(_cpu_based_2nd_exec_control &
2372 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2373 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2374#endif
2375 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2376 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2377 enabled */
2378 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2379 CPU_BASED_CR3_STORE_EXITING |
2380 CPU_BASED_INVLPG_EXITING);
2381 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2382 vmx_capability.ept, vmx_capability.vpid);
2383 }
2384
2385 min = 0;
2386#ifdef CONFIG_X86_64
2387 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2388#endif
2389 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
2390 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2391 &_vmexit_control) < 0)
2392 return -EIO;
2393
2394 min = 0;
2395 opt = VM_ENTRY_LOAD_IA32_PAT;
2396 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2397 &_vmentry_control) < 0)
2398 return -EIO;
2399
2400 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2401
2402 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2403 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2404 return -EIO;
2405
2406#ifdef CONFIG_X86_64
2407 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2408 if (vmx_msr_high & (1u<<16))
2409 return -EIO;
2410#endif
2411
2412 /* Require Write-Back (WB) memory type for VMCS accesses. */
2413 if (((vmx_msr_high >> 18) & 15) != 6)
2414 return -EIO;
2415
2416 vmcs_conf->size = vmx_msr_high & 0x1fff;
2417 vmcs_conf->order = get_order(vmcs_config.size);
2418 vmcs_conf->revision_id = vmx_msr_low;
2419
2420 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2421 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2422 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2423 vmcs_conf->vmexit_ctrl = _vmexit_control;
2424 vmcs_conf->vmentry_ctrl = _vmentry_control;
2425
2426 cpu_has_load_ia32_efer =
2427 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2428 VM_ENTRY_LOAD_IA32_EFER)
2429 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2430 VM_EXIT_LOAD_IA32_EFER);
2431
2432 return 0;
2433}
2434
2435static struct vmcs *alloc_vmcs_cpu(int cpu)
2436{
2437 int node = cpu_to_node(cpu);
2438 struct page *pages;
2439 struct vmcs *vmcs;
2440
2441 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2442 if (!pages)
2443 return NULL;
2444 vmcs = page_address(pages);
2445 memset(vmcs, 0, vmcs_config.size);
2446 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2447 return vmcs;
2448}
2449
2450static struct vmcs *alloc_vmcs(void)
2451{
2452 return alloc_vmcs_cpu(raw_smp_processor_id());
2453}
2454
2455static void free_vmcs(struct vmcs *vmcs)
2456{
2457 free_pages((unsigned long)vmcs, vmcs_config.order);
2458}
2459
2460/*
2461 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2462 */
2463static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2464{
2465 if (!loaded_vmcs->vmcs)
2466 return;
2467 loaded_vmcs_clear(loaded_vmcs);
2468 free_vmcs(loaded_vmcs->vmcs);
2469 loaded_vmcs->vmcs = NULL;
2470}
2471
2472static void free_kvm_area(void)
2473{
2474 int cpu;
2475
2476 for_each_possible_cpu(cpu) {
2477 free_vmcs(per_cpu(vmxarea, cpu));
2478 per_cpu(vmxarea, cpu) = NULL;
2479 }
2480}
2481
2482static __init int alloc_kvm_area(void)
2483{
2484 int cpu;
2485
2486 for_each_possible_cpu(cpu) {
2487 struct vmcs *vmcs;
2488
2489 vmcs = alloc_vmcs_cpu(cpu);
2490 if (!vmcs) {
2491 free_kvm_area();
2492 return -ENOMEM;
2493 }
2494
2495 per_cpu(vmxarea, cpu) = vmcs;
2496 }
2497 return 0;
2498}
2499
2500static __init int hardware_setup(void)
2501{
2502 if (setup_vmcs_config(&vmcs_config) < 0)
2503 return -EIO;
2504
2505 if (boot_cpu_has(X86_FEATURE_NX))
2506 kvm_enable_efer_bits(EFER_NX);
2507
2508 if (!cpu_has_vmx_vpid())
2509 enable_vpid = 0;
2510
2511 if (!cpu_has_vmx_ept() ||
2512 !cpu_has_vmx_ept_4levels()) {
2513 enable_ept = 0;
2514 enable_unrestricted_guest = 0;
2515 }
2516
2517 if (!cpu_has_vmx_unrestricted_guest())
2518 enable_unrestricted_guest = 0;
2519
2520 if (!cpu_has_vmx_flexpriority())
2521 flexpriority_enabled = 0;
2522
2523 if (!cpu_has_vmx_tpr_shadow())
2524 kvm_x86_ops->update_cr8_intercept = NULL;
2525
2526 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2527 kvm_disable_largepages();
2528
2529 if (!cpu_has_vmx_ple())
2530 ple_gap = 0;
2531
2532 if (nested)
2533 nested_vmx_setup_ctls_msrs();
2534
2535 return alloc_kvm_area();
2536}
2537
2538static __exit void hardware_unsetup(void)
2539{
2540 free_kvm_area();
2541}
2542
2543static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2544{
2545 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2546
2547 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
2548 vmcs_write16(sf->selector, save->selector);
2549 vmcs_writel(sf->base, save->base);
2550 vmcs_write32(sf->limit, save->limit);
2551 vmcs_write32(sf->ar_bytes, save->ar);
2552 } else {
2553 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2554 << AR_DPL_SHIFT;
2555 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2556 }
2557}
2558
2559static void enter_pmode(struct kvm_vcpu *vcpu)
2560{
2561 unsigned long flags;
2562 struct vcpu_vmx *vmx = to_vmx(vcpu);
2563
2564 vmx->emulation_required = 1;
2565 vmx->rmode.vm86_active = 0;
2566
2567 vmx_segment_cache_clear(vmx);
2568
2569 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
2570 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2571 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2572 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
2573
2574 flags = vmcs_readl(GUEST_RFLAGS);
2575 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2576 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2577 vmcs_writel(GUEST_RFLAGS, flags);
2578
2579 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2580 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2581
2582 update_exception_bitmap(vcpu);
2583
2584 if (emulate_invalid_guest_state)
2585 return;
2586
2587 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2588 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2589 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2590 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
2591
2592 vmx_segment_cache_clear(vmx);
2593
2594 vmcs_write16(GUEST_SS_SELECTOR, 0);
2595 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2596
2597 vmcs_write16(GUEST_CS_SELECTOR,
2598 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2599 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2600}
2601
2602static gva_t rmode_tss_base(struct kvm *kvm)
2603{
2604 if (!kvm->arch.tss_addr) {
2605 struct kvm_memslots *slots;
2606 gfn_t base_gfn;
2607
2608 slots = kvm_memslots(kvm);
2609 base_gfn = slots->memslots[0].base_gfn +
2610 kvm->memslots->memslots[0].npages - 3;
2611 return base_gfn << PAGE_SHIFT;
2612 }
2613 return kvm->arch.tss_addr;
2614}
2615
2616static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2617{
2618 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2619
2620 save->selector = vmcs_read16(sf->selector);
2621 save->base = vmcs_readl(sf->base);
2622 save->limit = vmcs_read32(sf->limit);
2623 save->ar = vmcs_read32(sf->ar_bytes);
2624 vmcs_write16(sf->selector, save->base >> 4);
2625 vmcs_write32(sf->base, save->base & 0xffff0);
2626 vmcs_write32(sf->limit, 0xffff);
2627 vmcs_write32(sf->ar_bytes, 0xf3);
2628 if (save->base & 0xf)
2629 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2630 " aligned when entering protected mode (seg=%d)",
2631 seg);
2632}
2633
2634static void enter_rmode(struct kvm_vcpu *vcpu)
2635{
2636 unsigned long flags;
2637 struct vcpu_vmx *vmx = to_vmx(vcpu);
2638
2639 if (enable_unrestricted_guest)
2640 return;
2641
2642 vmx->emulation_required = 1;
2643 vmx->rmode.vm86_active = 1;
2644
2645 /*
2646 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2647 * vcpu. Call it here with phys address pointing 16M below 4G.
2648 */
2649 if (!vcpu->kvm->arch.tss_addr) {
2650 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2651 "called before entering vcpu\n");
2652 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2653 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2654 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2655 }
2656
2657 vmx_segment_cache_clear(vmx);
2658
2659 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
2660 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
2661 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2662
2663 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
2664 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2665
2666 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
2667 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2668
2669 flags = vmcs_readl(GUEST_RFLAGS);
2670 vmx->rmode.save_rflags = flags;
2671
2672 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2673
2674 vmcs_writel(GUEST_RFLAGS, flags);
2675 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2676 update_exception_bitmap(vcpu);
2677
2678 if (emulate_invalid_guest_state)
2679 goto continue_rmode;
2680
2681 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2682 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2683 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2684
2685 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
2686 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2687 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2688 vmcs_writel(GUEST_CS_BASE, 0xf0000);
2689 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2690
2691 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2692 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2693 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2694 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
2695
2696continue_rmode:
2697 kvm_mmu_reset_context(vcpu);
2698}
2699
2700static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2701{
2702 struct vcpu_vmx *vmx = to_vmx(vcpu);
2703 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2704
2705 if (!msr)
2706 return;
2707
2708 /*
2709 * Force kernel_gs_base reloading before EFER changes, as control
2710 * of this msr depends on is_long_mode().
2711 */
2712 vmx_load_host_state(to_vmx(vcpu));
2713 vcpu->arch.efer = efer;
2714 if (efer & EFER_LMA) {
2715 vmcs_write32(VM_ENTRY_CONTROLS,
2716 vmcs_read32(VM_ENTRY_CONTROLS) |
2717 VM_ENTRY_IA32E_MODE);
2718 msr->data = efer;
2719 } else {
2720 vmcs_write32(VM_ENTRY_CONTROLS,
2721 vmcs_read32(VM_ENTRY_CONTROLS) &
2722 ~VM_ENTRY_IA32E_MODE);
2723
2724 msr->data = efer & ~EFER_LME;
2725 }
2726 setup_msrs(vmx);
2727}
2728
2729#ifdef CONFIG_X86_64
2730
2731static void enter_lmode(struct kvm_vcpu *vcpu)
2732{
2733 u32 guest_tr_ar;
2734
2735 vmx_segment_cache_clear(to_vmx(vcpu));
2736
2737 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2738 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2739 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
2740 __func__);
2741 vmcs_write32(GUEST_TR_AR_BYTES,
2742 (guest_tr_ar & ~AR_TYPE_MASK)
2743 | AR_TYPE_BUSY_64_TSS);
2744 }
2745 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2746}
2747
2748static void exit_lmode(struct kvm_vcpu *vcpu)
2749{
2750 vmcs_write32(VM_ENTRY_CONTROLS,
2751 vmcs_read32(VM_ENTRY_CONTROLS)
2752 & ~VM_ENTRY_IA32E_MODE);
2753 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2754}
2755
2756#endif
2757
2758static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2759{
2760 vpid_sync_context(to_vmx(vcpu));
2761 if (enable_ept) {
2762 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2763 return;
2764 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2765 }
2766}
2767
2768static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2769{
2770 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2771
2772 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2773 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2774}
2775
2776static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2777{
2778 if (enable_ept && is_paging(vcpu))
2779 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2780 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2781}
2782
2783static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2784{
2785 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2786
2787 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2788 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2789}
2790
2791static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2792{
2793 if (!test_bit(VCPU_EXREG_PDPTR,
2794 (unsigned long *)&vcpu->arch.regs_dirty))
2795 return;
2796
2797 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2798 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2799 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2800 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2801 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2802 }
2803}
2804
2805static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2806{
2807 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2808 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2809 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2810 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2811 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2812 }
2813
2814 __set_bit(VCPU_EXREG_PDPTR,
2815 (unsigned long *)&vcpu->arch.regs_avail);
2816 __set_bit(VCPU_EXREG_PDPTR,
2817 (unsigned long *)&vcpu->arch.regs_dirty);
2818}
2819
2820static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2821
2822static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2823 unsigned long cr0,
2824 struct kvm_vcpu *vcpu)
2825{
2826 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2827 vmx_decache_cr3(vcpu);
2828 if (!(cr0 & X86_CR0_PG)) {
2829 /* From paging/starting to nonpaging */
2830 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2831 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2832 (CPU_BASED_CR3_LOAD_EXITING |
2833 CPU_BASED_CR3_STORE_EXITING));
2834 vcpu->arch.cr0 = cr0;
2835 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2836 } else if (!is_paging(vcpu)) {
2837 /* From nonpaging to paging */
2838 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2839 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2840 ~(CPU_BASED_CR3_LOAD_EXITING |
2841 CPU_BASED_CR3_STORE_EXITING));
2842 vcpu->arch.cr0 = cr0;
2843 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2844 }
2845
2846 if (!(cr0 & X86_CR0_WP))
2847 *hw_cr0 &= ~X86_CR0_WP;
2848}
2849
2850static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2851{
2852 struct vcpu_vmx *vmx = to_vmx(vcpu);
2853 unsigned long hw_cr0;
2854
2855 if (enable_unrestricted_guest)
2856 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2857 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2858 else
2859 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
2860
2861 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2862 enter_pmode(vcpu);
2863
2864 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2865 enter_rmode(vcpu);
2866
2867#ifdef CONFIG_X86_64
2868 if (vcpu->arch.efer & EFER_LME) {
2869 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2870 enter_lmode(vcpu);
2871 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2872 exit_lmode(vcpu);
2873 }
2874#endif
2875
2876 if (enable_ept)
2877 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2878
2879 if (!vcpu->fpu_active)
2880 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
2881
2882 vmcs_writel(CR0_READ_SHADOW, cr0);
2883 vmcs_writel(GUEST_CR0, hw_cr0);
2884 vcpu->arch.cr0 = cr0;
2885 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2886}
2887
2888static u64 construct_eptp(unsigned long root_hpa)
2889{
2890 u64 eptp;
2891
2892 /* TODO write the value reading from MSR */
2893 eptp = VMX_EPT_DEFAULT_MT |
2894 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
2895 eptp |= (root_hpa & PAGE_MASK);
2896
2897 return eptp;
2898}
2899
2900static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2901{
2902 unsigned long guest_cr3;
2903 u64 eptp;
2904
2905 guest_cr3 = cr3;
2906 if (enable_ept) {
2907 eptp = construct_eptp(cr3);
2908 vmcs_write64(EPT_POINTER, eptp);
2909 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
2910 vcpu->kvm->arch.ept_identity_map_addr;
2911 ept_load_pdptrs(vcpu);
2912 }
2913
2914 vmx_flush_tlb(vcpu);
2915 vmcs_writel(GUEST_CR3, guest_cr3);
2916}
2917
2918static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2919{
2920 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
2921 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
2922
2923 if (cr4 & X86_CR4_VMXE) {
2924 /*
2925 * To use VMXON (and later other VMX instructions), a guest
2926 * must first be able to turn on cr4.VMXE (see handle_vmon()).
2927 * So basically the check on whether to allow nested VMX
2928 * is here.
2929 */
2930 if (!nested_vmx_allowed(vcpu))
2931 return 1;
2932 } else if (to_vmx(vcpu)->nested.vmxon)
2933 return 1;
2934
2935 vcpu->arch.cr4 = cr4;
2936 if (enable_ept) {
2937 if (!is_paging(vcpu)) {
2938 hw_cr4 &= ~X86_CR4_PAE;
2939 hw_cr4 |= X86_CR4_PSE;
2940 } else if (!(cr4 & X86_CR4_PAE)) {
2941 hw_cr4 &= ~X86_CR4_PAE;
2942 }
2943 }
2944
2945 vmcs_writel(CR4_READ_SHADOW, cr4);
2946 vmcs_writel(GUEST_CR4, hw_cr4);
2947 return 0;
2948}
2949
2950static void vmx_get_segment(struct kvm_vcpu *vcpu,
2951 struct kvm_segment *var, int seg)
2952{
2953 struct vcpu_vmx *vmx = to_vmx(vcpu);
2954 struct kvm_save_segment *save;
2955 u32 ar;
2956
2957 if (vmx->rmode.vm86_active
2958 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
2959 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
2960 || seg == VCPU_SREG_GS)
2961 && !emulate_invalid_guest_state) {
2962 switch (seg) {
2963 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
2964 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
2965 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
2966 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
2967 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
2968 default: BUG();
2969 }
2970 var->selector = save->selector;
2971 var->base = save->base;
2972 var->limit = save->limit;
2973 ar = save->ar;
2974 if (seg == VCPU_SREG_TR
2975 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
2976 goto use_saved_rmode_seg;
2977 }
2978 var->base = vmx_read_guest_seg_base(vmx, seg);
2979 var->limit = vmx_read_guest_seg_limit(vmx, seg);
2980 var->selector = vmx_read_guest_seg_selector(vmx, seg);
2981 ar = vmx_read_guest_seg_ar(vmx, seg);
2982use_saved_rmode_seg:
2983 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
2984 ar = 0;
2985 var->type = ar & 15;
2986 var->s = (ar >> 4) & 1;
2987 var->dpl = (ar >> 5) & 3;
2988 var->present = (ar >> 7) & 1;
2989 var->avl = (ar >> 12) & 1;
2990 var->l = (ar >> 13) & 1;
2991 var->db = (ar >> 14) & 1;
2992 var->g = (ar >> 15) & 1;
2993 var->unusable = (ar >> 16) & 1;
2994}
2995
2996static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2997{
2998 struct kvm_segment s;
2999
3000 if (to_vmx(vcpu)->rmode.vm86_active) {
3001 vmx_get_segment(vcpu, &s, seg);
3002 return s.base;
3003 }
3004 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3005}
3006
3007static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
3008{
3009 if (!is_protmode(vcpu))
3010 return 0;
3011
3012 if (!is_long_mode(vcpu)
3013 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3014 return 3;
3015
3016 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
3017}
3018
3019static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3020{
3021 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3022 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3023 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
3024 }
3025 return to_vmx(vcpu)->cpl;
3026}
3027
3028
3029static u32 vmx_segment_access_rights(struct kvm_segment *var)
3030{
3031 u32 ar;
3032
3033 if (var->unusable)
3034 ar = 1 << 16;
3035 else {
3036 ar = var->type & 15;
3037 ar |= (var->s & 1) << 4;
3038 ar |= (var->dpl & 3) << 5;
3039 ar |= (var->present & 1) << 7;
3040 ar |= (var->avl & 1) << 12;
3041 ar |= (var->l & 1) << 13;
3042 ar |= (var->db & 1) << 14;
3043 ar |= (var->g & 1) << 15;
3044 }
3045 if (ar == 0) /* a 0 value means unusable */
3046 ar = AR_UNUSABLE_MASK;
3047
3048 return ar;
3049}
3050
3051static void vmx_set_segment(struct kvm_vcpu *vcpu,
3052 struct kvm_segment *var, int seg)
3053{
3054 struct vcpu_vmx *vmx = to_vmx(vcpu);
3055 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3056 u32 ar;
3057
3058 vmx_segment_cache_clear(vmx);
3059
3060 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
3061 vmcs_write16(sf->selector, var->selector);
3062 vmx->rmode.tr.selector = var->selector;
3063 vmx->rmode.tr.base = var->base;
3064 vmx->rmode.tr.limit = var->limit;
3065 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
3066 return;
3067 }
3068 vmcs_writel(sf->base, var->base);
3069 vmcs_write32(sf->limit, var->limit);
3070 vmcs_write16(sf->selector, var->selector);
3071 if (vmx->rmode.vm86_active && var->s) {
3072 /*
3073 * Hack real-mode segments into vm86 compatibility.
3074 */
3075 if (var->base == 0xffff0000 && var->selector == 0xf000)
3076 vmcs_writel(sf->base, 0xf0000);
3077 ar = 0xf3;
3078 } else
3079 ar = vmx_segment_access_rights(var);
3080
3081 /*
3082 * Fix the "Accessed" bit in AR field of segment registers for older
3083 * qemu binaries.
3084 * IA32 arch specifies that at the time of processor reset the
3085 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3086 * is setting it to 0 in the usedland code. This causes invalid guest
3087 * state vmexit when "unrestricted guest" mode is turned on.
3088 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3089 * tree. Newer qemu binaries with that qemu fix would not need this
3090 * kvm hack.
3091 */
3092 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3093 ar |= 0x1; /* Accessed */
3094
3095 vmcs_write32(sf->ar_bytes, ar);
3096 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3097}
3098
3099static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3100{
3101 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3102
3103 *db = (ar >> 14) & 1;
3104 *l = (ar >> 13) & 1;
3105}
3106
3107static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3108{
3109 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3110 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3111}
3112
3113static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3114{
3115 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3116 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3117}
3118
3119static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3120{
3121 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3122 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3123}
3124
3125static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3126{
3127 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3128 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3129}
3130
3131static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3132{
3133 struct kvm_segment var;
3134 u32 ar;
3135
3136 vmx_get_segment(vcpu, &var, seg);
3137 ar = vmx_segment_access_rights(&var);
3138
3139 if (var.base != (var.selector << 4))
3140 return false;
3141 if (var.limit != 0xffff)
3142 return false;
3143 if (ar != 0xf3)
3144 return false;
3145
3146 return true;
3147}
3148
3149static bool code_segment_valid(struct kvm_vcpu *vcpu)
3150{
3151 struct kvm_segment cs;
3152 unsigned int cs_rpl;
3153
3154 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3155 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3156
3157 if (cs.unusable)
3158 return false;
3159 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3160 return false;
3161 if (!cs.s)
3162 return false;
3163 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3164 if (cs.dpl > cs_rpl)
3165 return false;
3166 } else {
3167 if (cs.dpl != cs_rpl)
3168 return false;
3169 }
3170 if (!cs.present)
3171 return false;
3172
3173 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3174 return true;
3175}
3176
3177static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3178{
3179 struct kvm_segment ss;
3180 unsigned int ss_rpl;
3181
3182 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3183 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3184
3185 if (ss.unusable)
3186 return true;
3187 if (ss.type != 3 && ss.type != 7)
3188 return false;
3189 if (!ss.s)
3190 return false;
3191 if (ss.dpl != ss_rpl) /* DPL != RPL */
3192 return false;
3193 if (!ss.present)
3194 return false;
3195
3196 return true;
3197}
3198
3199static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3200{
3201 struct kvm_segment var;
3202 unsigned int rpl;
3203
3204 vmx_get_segment(vcpu, &var, seg);
3205 rpl = var.selector & SELECTOR_RPL_MASK;
3206
3207 if (var.unusable)
3208 return true;
3209 if (!var.s)
3210 return false;
3211 if (!var.present)
3212 return false;
3213 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3214 if (var.dpl < rpl) /* DPL < RPL */
3215 return false;
3216 }
3217
3218 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3219 * rights flags
3220 */
3221 return true;
3222}
3223
3224static bool tr_valid(struct kvm_vcpu *vcpu)
3225{
3226 struct kvm_segment tr;
3227
3228 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3229
3230 if (tr.unusable)
3231 return false;
3232 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3233 return false;
3234 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3235 return false;
3236 if (!tr.present)
3237 return false;
3238
3239 return true;
3240}
3241
3242static bool ldtr_valid(struct kvm_vcpu *vcpu)
3243{
3244 struct kvm_segment ldtr;
3245
3246 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3247
3248 if (ldtr.unusable)
3249 return true;
3250 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3251 return false;
3252 if (ldtr.type != 2)
3253 return false;
3254 if (!ldtr.present)
3255 return false;
3256
3257 return true;
3258}
3259
3260static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3261{
3262 struct kvm_segment cs, ss;
3263
3264 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3265 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3266
3267 return ((cs.selector & SELECTOR_RPL_MASK) ==
3268 (ss.selector & SELECTOR_RPL_MASK));
3269}
3270
3271/*
3272 * Check if guest state is valid. Returns true if valid, false if
3273 * not.
3274 * We assume that registers are always usable
3275 */
3276static bool guest_state_valid(struct kvm_vcpu *vcpu)
3277{
3278 /* real mode guest state checks */
3279 if (!is_protmode(vcpu)) {
3280 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3281 return false;
3282 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3283 return false;
3284 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3285 return false;
3286 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3287 return false;
3288 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3289 return false;
3290 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3291 return false;
3292 } else {
3293 /* protected mode guest state checks */
3294 if (!cs_ss_rpl_check(vcpu))
3295 return false;
3296 if (!code_segment_valid(vcpu))
3297 return false;
3298 if (!stack_segment_valid(vcpu))
3299 return false;
3300 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3301 return false;
3302 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3303 return false;
3304 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3305 return false;
3306 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3307 return false;
3308 if (!tr_valid(vcpu))
3309 return false;
3310 if (!ldtr_valid(vcpu))
3311 return false;
3312 }
3313 /* TODO:
3314 * - Add checks on RIP
3315 * - Add checks on RFLAGS
3316 */
3317
3318 return true;
3319}
3320
3321static int init_rmode_tss(struct kvm *kvm)
3322{
3323 gfn_t fn;
3324 u16 data = 0;
3325 int r, idx, ret = 0;
3326
3327 idx = srcu_read_lock(&kvm->srcu);
3328 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
3329 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3330 if (r < 0)
3331 goto out;
3332 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3333 r = kvm_write_guest_page(kvm, fn++, &data,
3334 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3335 if (r < 0)
3336 goto out;
3337 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3338 if (r < 0)
3339 goto out;
3340 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3341 if (r < 0)
3342 goto out;
3343 data = ~0;
3344 r = kvm_write_guest_page(kvm, fn, &data,
3345 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3346 sizeof(u8));
3347 if (r < 0)
3348 goto out;
3349
3350 ret = 1;
3351out:
3352 srcu_read_unlock(&kvm->srcu, idx);
3353 return ret;
3354}
3355
3356static int init_rmode_identity_map(struct kvm *kvm)
3357{
3358 int i, idx, r, ret;
3359 pfn_t identity_map_pfn;
3360 u32 tmp;
3361
3362 if (!enable_ept)
3363 return 1;
3364 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3365 printk(KERN_ERR "EPT: identity-mapping pagetable "
3366 "haven't been allocated!\n");
3367 return 0;
3368 }
3369 if (likely(kvm->arch.ept_identity_pagetable_done))
3370 return 1;
3371 ret = 0;
3372 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3373 idx = srcu_read_lock(&kvm->srcu);
3374 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3375 if (r < 0)
3376 goto out;
3377 /* Set up identity-mapping pagetable for EPT in real mode */
3378 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3379 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3380 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3381 r = kvm_write_guest_page(kvm, identity_map_pfn,
3382 &tmp, i * sizeof(tmp), sizeof(tmp));
3383 if (r < 0)
3384 goto out;
3385 }
3386 kvm->arch.ept_identity_pagetable_done = true;
3387 ret = 1;
3388out:
3389 srcu_read_unlock(&kvm->srcu, idx);
3390 return ret;
3391}
3392
3393static void seg_setup(int seg)
3394{
3395 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3396 unsigned int ar;
3397
3398 vmcs_write16(sf->selector, 0);
3399 vmcs_writel(sf->base, 0);
3400 vmcs_write32(sf->limit, 0xffff);
3401 if (enable_unrestricted_guest) {
3402 ar = 0x93;
3403 if (seg == VCPU_SREG_CS)
3404 ar |= 0x08; /* code segment */
3405 } else
3406 ar = 0xf3;
3407
3408 vmcs_write32(sf->ar_bytes, ar);
3409}
3410
3411static int alloc_apic_access_page(struct kvm *kvm)
3412{
3413 struct kvm_userspace_memory_region kvm_userspace_mem;
3414 int r = 0;
3415
3416 mutex_lock(&kvm->slots_lock);
3417 if (kvm->arch.apic_access_page)
3418 goto out;
3419 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3420 kvm_userspace_mem.flags = 0;
3421 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3422 kvm_userspace_mem.memory_size = PAGE_SIZE;
3423 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3424 if (r)
3425 goto out;
3426
3427 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
3428out:
3429 mutex_unlock(&kvm->slots_lock);
3430 return r;
3431}
3432
3433static int alloc_identity_pagetable(struct kvm *kvm)
3434{
3435 struct kvm_userspace_memory_region kvm_userspace_mem;
3436 int r = 0;
3437
3438 mutex_lock(&kvm->slots_lock);
3439 if (kvm->arch.ept_identity_pagetable)
3440 goto out;
3441 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3442 kvm_userspace_mem.flags = 0;
3443 kvm_userspace_mem.guest_phys_addr =
3444 kvm->arch.ept_identity_map_addr;
3445 kvm_userspace_mem.memory_size = PAGE_SIZE;
3446 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3447 if (r)
3448 goto out;
3449
3450 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
3451 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3452out:
3453 mutex_unlock(&kvm->slots_lock);
3454 return r;
3455}
3456
3457static void allocate_vpid(struct vcpu_vmx *vmx)
3458{
3459 int vpid;
3460
3461 vmx->vpid = 0;
3462 if (!enable_vpid)
3463 return;
3464 spin_lock(&vmx_vpid_lock);
3465 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3466 if (vpid < VMX_NR_VPIDS) {
3467 vmx->vpid = vpid;
3468 __set_bit(vpid, vmx_vpid_bitmap);
3469 }
3470 spin_unlock(&vmx_vpid_lock);
3471}
3472
3473static void free_vpid(struct vcpu_vmx *vmx)
3474{
3475 if (!enable_vpid)
3476 return;
3477 spin_lock(&vmx_vpid_lock);
3478 if (vmx->vpid != 0)
3479 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3480 spin_unlock(&vmx_vpid_lock);
3481}
3482
3483static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
3484{
3485 int f = sizeof(unsigned long);
3486
3487 if (!cpu_has_vmx_msr_bitmap())
3488 return;
3489
3490 /*
3491 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3492 * have the write-low and read-high bitmap offsets the wrong way round.
3493 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3494 */
3495 if (msr <= 0x1fff) {
3496 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3497 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
3498 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3499 msr &= 0x1fff;
3500 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3501 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
3502 }
3503}
3504
3505static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3506{
3507 if (!longmode_only)
3508 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3509 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3510}
3511
3512/*
3513 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3514 * will not change in the lifetime of the guest.
3515 * Note that host-state that does change is set elsewhere. E.g., host-state
3516 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3517 */
3518static void vmx_set_constant_host_state(void)
3519{
3520 u32 low32, high32;
3521 unsigned long tmpl;
3522 struct desc_ptr dt;
3523
3524 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
3525 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3526 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3527
3528 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3529 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3530 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3531 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3532 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3533
3534 native_store_idt(&dt);
3535 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3536
3537 asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3538 vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3539
3540 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3541 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3542 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3543 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3544
3545 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3546 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3547 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3548 }
3549}
3550
3551static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3552{
3553 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3554 if (enable_ept)
3555 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3556 if (is_guest_mode(&vmx->vcpu))
3557 vmx->vcpu.arch.cr4_guest_owned_bits &=
3558 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3559 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3560}
3561
3562static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3563{
3564 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3565 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3566 exec_control &= ~CPU_BASED_TPR_SHADOW;
3567#ifdef CONFIG_X86_64
3568 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3569 CPU_BASED_CR8_LOAD_EXITING;
3570#endif
3571 }
3572 if (!enable_ept)
3573 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3574 CPU_BASED_CR3_LOAD_EXITING |
3575 CPU_BASED_INVLPG_EXITING;
3576 return exec_control;
3577}
3578
3579static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3580{
3581 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3582 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3583 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3584 if (vmx->vpid == 0)
3585 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3586 if (!enable_ept) {
3587 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3588 enable_unrestricted_guest = 0;
3589 }
3590 if (!enable_unrestricted_guest)
3591 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3592 if (!ple_gap)
3593 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3594 return exec_control;
3595}
3596
3597static void ept_set_mmio_spte_mask(void)
3598{
3599 /*
3600 * EPT Misconfigurations can be generated if the value of bits 2:0
3601 * of an EPT paging-structure entry is 110b (write/execute).
3602 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3603 * spte.
3604 */
3605 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3606}
3607
3608/*
3609 * Sets up the vmcs for emulated real mode.
3610 */
3611static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
3612{
3613#ifdef CONFIG_X86_64
3614 unsigned long a;
3615#endif
3616 int i;
3617
3618 /* I/O */
3619 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3620 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
3621
3622 if (cpu_has_vmx_msr_bitmap())
3623 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
3624
3625 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3626
3627 /* Control */
3628 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3629 vmcs_config.pin_based_exec_ctrl);
3630
3631 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
3632
3633 if (cpu_has_secondary_exec_ctrls()) {
3634 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3635 vmx_secondary_exec_control(vmx));
3636 }
3637
3638 if (ple_gap) {
3639 vmcs_write32(PLE_GAP, ple_gap);
3640 vmcs_write32(PLE_WINDOW, ple_window);
3641 }
3642
3643 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3644 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
3645 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3646
3647 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3648 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
3649 vmx_set_constant_host_state();
3650#ifdef CONFIG_X86_64
3651 rdmsrl(MSR_FS_BASE, a);
3652 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3653 rdmsrl(MSR_GS_BASE, a);
3654 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3655#else
3656 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3657 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3658#endif
3659
3660 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3661 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3662 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
3663 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3664 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
3665
3666 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3667 u32 msr_low, msr_high;
3668 u64 host_pat;
3669 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3670 host_pat = msr_low | ((u64) msr_high << 32);
3671 /* Write the default value follow host pat */
3672 vmcs_write64(GUEST_IA32_PAT, host_pat);
3673 /* Keep arch.pat sync with GUEST_IA32_PAT */
3674 vmx->vcpu.arch.pat = host_pat;
3675 }
3676
3677 for (i = 0; i < NR_VMX_MSR; ++i) {
3678 u32 index = vmx_msr_index[i];
3679 u32 data_low, data_high;
3680 int j = vmx->nmsrs;
3681
3682 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3683 continue;
3684 if (wrmsr_safe(index, data_low, data_high) < 0)
3685 continue;
3686 vmx->guest_msrs[j].index = i;
3687 vmx->guest_msrs[j].data = 0;
3688 vmx->guest_msrs[j].mask = -1ull;
3689 ++vmx->nmsrs;
3690 }
3691
3692 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
3693
3694 /* 22.2.1, 20.8.1 */
3695 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3696
3697 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
3698 set_cr4_guest_host_mask(vmx);
3699
3700 kvm_write_tsc(&vmx->vcpu, 0);
3701
3702 return 0;
3703}
3704
3705static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3706{
3707 struct vcpu_vmx *vmx = to_vmx(vcpu);
3708 u64 msr;
3709 int ret;
3710
3711 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3712
3713 vmx->rmode.vm86_active = 0;
3714
3715 vmx->soft_vnmi_blocked = 0;
3716
3717 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
3718 kvm_set_cr8(&vmx->vcpu, 0);
3719 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
3720 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3721 msr |= MSR_IA32_APICBASE_BSP;
3722 kvm_set_apic_base(&vmx->vcpu, msr);
3723
3724 ret = fx_init(&vmx->vcpu);
3725 if (ret != 0)
3726 goto out;
3727
3728 vmx_segment_cache_clear(vmx);
3729
3730 seg_setup(VCPU_SREG_CS);
3731 /*
3732 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3733 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3734 */
3735 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
3736 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3737 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3738 } else {
3739 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3740 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
3741 }
3742
3743 seg_setup(VCPU_SREG_DS);
3744 seg_setup(VCPU_SREG_ES);
3745 seg_setup(VCPU_SREG_FS);
3746 seg_setup(VCPU_SREG_GS);
3747 seg_setup(VCPU_SREG_SS);
3748
3749 vmcs_write16(GUEST_TR_SELECTOR, 0);
3750 vmcs_writel(GUEST_TR_BASE, 0);
3751 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3752 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3753
3754 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3755 vmcs_writel(GUEST_LDTR_BASE, 0);
3756 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3757 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3758
3759 vmcs_write32(GUEST_SYSENTER_CS, 0);
3760 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3761 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3762
3763 vmcs_writel(GUEST_RFLAGS, 0x02);
3764 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3765 kvm_rip_write(vcpu, 0xfff0);
3766 else
3767 kvm_rip_write(vcpu, 0);
3768 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
3769
3770 vmcs_writel(GUEST_DR7, 0x400);
3771
3772 vmcs_writel(GUEST_GDTR_BASE, 0);
3773 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3774
3775 vmcs_writel(GUEST_IDTR_BASE, 0);
3776 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3777
3778 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
3779 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3780 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3781
3782 /* Special registers */
3783 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3784
3785 setup_msrs(vmx);
3786
3787 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
3788
3789 if (cpu_has_vmx_tpr_shadow()) {
3790 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3791 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3792 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
3793 __pa(vmx->vcpu.arch.apic->regs));
3794 vmcs_write32(TPR_THRESHOLD, 0);
3795 }
3796
3797 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3798 vmcs_write64(APIC_ACCESS_ADDR,
3799 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
3800
3801 if (vmx->vpid != 0)
3802 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3803
3804 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
3805 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
3806 vmx_set_cr4(&vmx->vcpu, 0);
3807 vmx_set_efer(&vmx->vcpu, 0);
3808 vmx_fpu_activate(&vmx->vcpu);
3809 update_exception_bitmap(&vmx->vcpu);
3810
3811 vpid_sync_context(vmx);
3812
3813 ret = 0;
3814
3815 /* HACK: Don't enable emulation on guest boot/reset */
3816 vmx->emulation_required = 0;
3817
3818out:
3819 return ret;
3820}
3821
3822/*
3823 * In nested virtualization, check if L1 asked to exit on external interrupts.
3824 * For most existing hypervisors, this will always return true.
3825 */
3826static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
3827{
3828 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
3829 PIN_BASED_EXT_INTR_MASK;
3830}
3831
3832static void enable_irq_window(struct kvm_vcpu *vcpu)
3833{
3834 u32 cpu_based_vm_exec_control;
3835 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
3836 /* We can get here when nested_run_pending caused
3837 * vmx_interrupt_allowed() to return false. In this case, do
3838 * nothing - the interrupt will be injected later.
3839 */
3840 return;
3841
3842 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3843 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3844 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3845}
3846
3847static void enable_nmi_window(struct kvm_vcpu *vcpu)
3848{
3849 u32 cpu_based_vm_exec_control;
3850
3851 if (!cpu_has_virtual_nmis()) {
3852 enable_irq_window(vcpu);
3853 return;
3854 }
3855
3856 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3857 enable_irq_window(vcpu);
3858 return;
3859 }
3860 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3861 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3862 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3863}
3864
3865static void vmx_inject_irq(struct kvm_vcpu *vcpu)
3866{
3867 struct vcpu_vmx *vmx = to_vmx(vcpu);
3868 uint32_t intr;
3869 int irq = vcpu->arch.interrupt.nr;
3870
3871 trace_kvm_inj_virq(irq);
3872
3873 ++vcpu->stat.irq_injections;
3874 if (vmx->rmode.vm86_active) {
3875 int inc_eip = 0;
3876 if (vcpu->arch.interrupt.soft)
3877 inc_eip = vcpu->arch.event_exit_inst_len;
3878 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
3879 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3880 return;
3881 }
3882 intr = irq | INTR_INFO_VALID_MASK;
3883 if (vcpu->arch.interrupt.soft) {
3884 intr |= INTR_TYPE_SOFT_INTR;
3885 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3886 vmx->vcpu.arch.event_exit_inst_len);
3887 } else
3888 intr |= INTR_TYPE_EXT_INTR;
3889 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
3890 vmx_clear_hlt(vcpu);
3891}
3892
3893static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
3894{
3895 struct vcpu_vmx *vmx = to_vmx(vcpu);
3896
3897 if (is_guest_mode(vcpu))
3898 return;
3899
3900 if (!cpu_has_virtual_nmis()) {
3901 /*
3902 * Tracking the NMI-blocked state in software is built upon
3903 * finding the next open IRQ window. This, in turn, depends on
3904 * well-behaving guests: They have to keep IRQs disabled at
3905 * least as long as the NMI handler runs. Otherwise we may
3906 * cause NMI nesting, maybe breaking the guest. But as this is
3907 * highly unlikely, we can live with the residual risk.
3908 */
3909 vmx->soft_vnmi_blocked = 1;
3910 vmx->vnmi_blocked_time = 0;
3911 }
3912
3913 ++vcpu->stat.nmi_injections;
3914 vmx->nmi_known_unmasked = false;
3915 if (vmx->rmode.vm86_active) {
3916 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
3917 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3918 return;
3919 }
3920 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
3921 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
3922 vmx_clear_hlt(vcpu);
3923}
3924
3925static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
3926{
3927 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
3928 return 0;
3929
3930 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3931 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
3932 | GUEST_INTR_STATE_NMI));
3933}
3934
3935static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
3936{
3937 if (!cpu_has_virtual_nmis())
3938 return to_vmx(vcpu)->soft_vnmi_blocked;
3939 if (to_vmx(vcpu)->nmi_known_unmasked)
3940 return false;
3941 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3942}
3943
3944static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3945{
3946 struct vcpu_vmx *vmx = to_vmx(vcpu);
3947
3948 if (!cpu_has_virtual_nmis()) {
3949 if (vmx->soft_vnmi_blocked != masked) {
3950 vmx->soft_vnmi_blocked = masked;
3951 vmx->vnmi_blocked_time = 0;
3952 }
3953 } else {
3954 vmx->nmi_known_unmasked = !masked;
3955 if (masked)
3956 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3957 GUEST_INTR_STATE_NMI);
3958 else
3959 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3960 GUEST_INTR_STATE_NMI);
3961 }
3962}
3963
3964static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
3965{
3966 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
3967 struct vmcs12 *vmcs12;
3968 if (to_vmx(vcpu)->nested.nested_run_pending)
3969 return 0;
3970 nested_vmx_vmexit(vcpu);
3971 vmcs12 = get_vmcs12(vcpu);
3972 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
3973 vmcs12->vm_exit_intr_info = 0;
3974 /* fall through to normal code, but now in L1, not L2 */
3975 }
3976
3977 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
3978 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3979 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
3980}
3981
3982static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
3983{
3984 int ret;
3985 struct kvm_userspace_memory_region tss_mem = {
3986 .slot = TSS_PRIVATE_MEMSLOT,
3987 .guest_phys_addr = addr,
3988 .memory_size = PAGE_SIZE * 3,
3989 .flags = 0,
3990 };
3991
3992 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
3993 if (ret)
3994 return ret;
3995 kvm->arch.tss_addr = addr;
3996 if (!init_rmode_tss(kvm))
3997 return -ENOMEM;
3998
3999 return 0;
4000}
4001
4002static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4003 int vec, u32 err_code)
4004{
4005 /*
4006 * Instruction with address size override prefix opcode 0x67
4007 * Cause the #SS fault with 0 error code in VM86 mode.
4008 */
4009 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
4010 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
4011 return 1;
4012 /*
4013 * Forward all other exceptions that are valid in real mode.
4014 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4015 * the required debugging infrastructure rework.
4016 */
4017 switch (vec) {
4018 case DB_VECTOR:
4019 if (vcpu->guest_debug &
4020 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4021 return 0;
4022 kvm_queue_exception(vcpu, vec);
4023 return 1;
4024 case BP_VECTOR:
4025 /*
4026 * Update instruction length as we may reinject the exception
4027 * from user space while in guest debugging mode.
4028 */
4029 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4030 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4031 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4032 return 0;
4033 /* fall through */
4034 case DE_VECTOR:
4035 case OF_VECTOR:
4036 case BR_VECTOR:
4037 case UD_VECTOR:
4038 case DF_VECTOR:
4039 case SS_VECTOR:
4040 case GP_VECTOR:
4041 case MF_VECTOR:
4042 kvm_queue_exception(vcpu, vec);
4043 return 1;
4044 }
4045 return 0;
4046}
4047
4048/*
4049 * Trigger machine check on the host. We assume all the MSRs are already set up
4050 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4051 * We pass a fake environment to the machine check handler because we want
4052 * the guest to be always treated like user space, no matter what context
4053 * it used internally.
4054 */
4055static void kvm_machine_check(void)
4056{
4057#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4058 struct pt_regs regs = {
4059 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4060 .flags = X86_EFLAGS_IF,
4061 };
4062
4063 do_machine_check(®s, 0);
4064#endif
4065}
4066
4067static int handle_machine_check(struct kvm_vcpu *vcpu)
4068{
4069 /* already handled by vcpu_run */
4070 return 1;
4071}
4072
4073static int handle_exception(struct kvm_vcpu *vcpu)
4074{
4075 struct vcpu_vmx *vmx = to_vmx(vcpu);
4076 struct kvm_run *kvm_run = vcpu->run;
4077 u32 intr_info, ex_no, error_code;
4078 unsigned long cr2, rip, dr6;
4079 u32 vect_info;
4080 enum emulation_result er;
4081
4082 vect_info = vmx->idt_vectoring_info;
4083 intr_info = vmx->exit_intr_info;
4084
4085 if (is_machine_check(intr_info))
4086 return handle_machine_check(vcpu);
4087
4088 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4089 !is_page_fault(intr_info)) {
4090 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4091 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4092 vcpu->run->internal.ndata = 2;
4093 vcpu->run->internal.data[0] = vect_info;
4094 vcpu->run->internal.data[1] = intr_info;
4095 return 0;
4096 }
4097
4098 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4099 return 1; /* already handled by vmx_vcpu_run() */
4100
4101 if (is_no_device(intr_info)) {
4102 vmx_fpu_activate(vcpu);
4103 return 1;
4104 }
4105
4106 if (is_invalid_opcode(intr_info)) {
4107 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4108 if (er != EMULATE_DONE)
4109 kvm_queue_exception(vcpu, UD_VECTOR);
4110 return 1;
4111 }
4112
4113 error_code = 0;
4114 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4115 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4116 if (is_page_fault(intr_info)) {
4117 /* EPT won't cause page fault directly */
4118 if (enable_ept)
4119 BUG();
4120 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4121 trace_kvm_page_fault(cr2, error_code);
4122
4123 if (kvm_event_needs_reinjection(vcpu))
4124 kvm_mmu_unprotect_page_virt(vcpu, cr2);
4125 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4126 }
4127
4128 if (vmx->rmode.vm86_active &&
4129 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
4130 error_code)) {
4131 if (vcpu->arch.halt_request) {
4132 vcpu->arch.halt_request = 0;
4133 return kvm_emulate_halt(vcpu);
4134 }
4135 return 1;
4136 }
4137
4138 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4139 switch (ex_no) {
4140 case DB_VECTOR:
4141 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4142 if (!(vcpu->guest_debug &
4143 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4144 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4145 kvm_queue_exception(vcpu, DB_VECTOR);
4146 return 1;
4147 }
4148 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4149 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4150 /* fall through */
4151 case BP_VECTOR:
4152 /*
4153 * Update instruction length as we may reinject #BP from
4154 * user space while in guest debugging mode. Reading it for
4155 * #DB as well causes no harm, it is not used in that case.
4156 */
4157 vmx->vcpu.arch.event_exit_inst_len =
4158 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4159 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4160 rip = kvm_rip_read(vcpu);
4161 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4162 kvm_run->debug.arch.exception = ex_no;
4163 break;
4164 default:
4165 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4166 kvm_run->ex.exception = ex_no;
4167 kvm_run->ex.error_code = error_code;
4168 break;
4169 }
4170 return 0;
4171}
4172
4173static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4174{
4175 ++vcpu->stat.irq_exits;
4176 return 1;
4177}
4178
4179static int handle_triple_fault(struct kvm_vcpu *vcpu)
4180{
4181 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4182 return 0;
4183}
4184
4185static int handle_io(struct kvm_vcpu *vcpu)
4186{
4187 unsigned long exit_qualification;
4188 int size, in, string;
4189 unsigned port;
4190
4191 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4192 string = (exit_qualification & 16) != 0;
4193 in = (exit_qualification & 8) != 0;
4194
4195 ++vcpu->stat.io_exits;
4196
4197 if (string || in)
4198 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4199
4200 port = exit_qualification >> 16;
4201 size = (exit_qualification & 7) + 1;
4202 skip_emulated_instruction(vcpu);
4203
4204 return kvm_fast_pio_out(vcpu, size, port);
4205}
4206
4207static void
4208vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4209{
4210 /*
4211 * Patch in the VMCALL instruction:
4212 */
4213 hypercall[0] = 0x0f;
4214 hypercall[1] = 0x01;
4215 hypercall[2] = 0xc1;
4216}
4217
4218/* called to set cr0 as approriate for a mov-to-cr0 exit. */
4219static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4220{
4221 if (to_vmx(vcpu)->nested.vmxon &&
4222 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4223 return 1;
4224
4225 if (is_guest_mode(vcpu)) {
4226 /*
4227 * We get here when L2 changed cr0 in a way that did not change
4228 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4229 * but did change L0 shadowed bits. This can currently happen
4230 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4231 * loading) while pretending to allow the guest to change it.
4232 */
4233 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4234 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4235 return 1;
4236 vmcs_writel(CR0_READ_SHADOW, val);
4237 return 0;
4238 } else
4239 return kvm_set_cr0(vcpu, val);
4240}
4241
4242static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4243{
4244 if (is_guest_mode(vcpu)) {
4245 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4246 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4247 return 1;
4248 vmcs_writel(CR4_READ_SHADOW, val);
4249 return 0;
4250 } else
4251 return kvm_set_cr4(vcpu, val);
4252}
4253
4254/* called to set cr0 as approriate for clts instruction exit. */
4255static void handle_clts(struct kvm_vcpu *vcpu)
4256{
4257 if (is_guest_mode(vcpu)) {
4258 /*
4259 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4260 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4261 * just pretend it's off (also in arch.cr0 for fpu_activate).
4262 */
4263 vmcs_writel(CR0_READ_SHADOW,
4264 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4265 vcpu->arch.cr0 &= ~X86_CR0_TS;
4266 } else
4267 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4268}
4269
4270static int handle_cr(struct kvm_vcpu *vcpu)
4271{
4272 unsigned long exit_qualification, val;
4273 int cr;
4274 int reg;
4275 int err;
4276
4277 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4278 cr = exit_qualification & 15;
4279 reg = (exit_qualification >> 8) & 15;
4280 switch ((exit_qualification >> 4) & 3) {
4281 case 0: /* mov to cr */
4282 val = kvm_register_read(vcpu, reg);
4283 trace_kvm_cr_write(cr, val);
4284 switch (cr) {
4285 case 0:
4286 err = handle_set_cr0(vcpu, val);
4287 kvm_complete_insn_gp(vcpu, err);
4288 return 1;
4289 case 3:
4290 err = kvm_set_cr3(vcpu, val);
4291 kvm_complete_insn_gp(vcpu, err);
4292 return 1;
4293 case 4:
4294 err = handle_set_cr4(vcpu, val);
4295 kvm_complete_insn_gp(vcpu, err);
4296 return 1;
4297 case 8: {
4298 u8 cr8_prev = kvm_get_cr8(vcpu);
4299 u8 cr8 = kvm_register_read(vcpu, reg);
4300 err = kvm_set_cr8(vcpu, cr8);
4301 kvm_complete_insn_gp(vcpu, err);
4302 if (irqchip_in_kernel(vcpu->kvm))
4303 return 1;
4304 if (cr8_prev <= cr8)
4305 return 1;
4306 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4307 return 0;
4308 }
4309 };
4310 break;
4311 case 2: /* clts */
4312 handle_clts(vcpu);
4313 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4314 skip_emulated_instruction(vcpu);
4315 vmx_fpu_activate(vcpu);
4316 return 1;
4317 case 1: /*mov from cr*/
4318 switch (cr) {
4319 case 3:
4320 val = kvm_read_cr3(vcpu);
4321 kvm_register_write(vcpu, reg, val);
4322 trace_kvm_cr_read(cr, val);
4323 skip_emulated_instruction(vcpu);
4324 return 1;
4325 case 8:
4326 val = kvm_get_cr8(vcpu);
4327 kvm_register_write(vcpu, reg, val);
4328 trace_kvm_cr_read(cr, val);
4329 skip_emulated_instruction(vcpu);
4330 return 1;
4331 }
4332 break;
4333 case 3: /* lmsw */
4334 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4335 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4336 kvm_lmsw(vcpu, val);
4337
4338 skip_emulated_instruction(vcpu);
4339 return 1;
4340 default:
4341 break;
4342 }
4343 vcpu->run->exit_reason = 0;
4344 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4345 (int)(exit_qualification >> 4) & 3, cr);
4346 return 0;
4347}
4348
4349static int handle_dr(struct kvm_vcpu *vcpu)
4350{
4351 unsigned long exit_qualification;
4352 int dr, reg;
4353
4354 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4355 if (!kvm_require_cpl(vcpu, 0))
4356 return 1;
4357 dr = vmcs_readl(GUEST_DR7);
4358 if (dr & DR7_GD) {
4359 /*
4360 * As the vm-exit takes precedence over the debug trap, we
4361 * need to emulate the latter, either for the host or the
4362 * guest debugging itself.
4363 */
4364 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4365 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4366 vcpu->run->debug.arch.dr7 = dr;
4367 vcpu->run->debug.arch.pc =
4368 vmcs_readl(GUEST_CS_BASE) +
4369 vmcs_readl(GUEST_RIP);
4370 vcpu->run->debug.arch.exception = DB_VECTOR;
4371 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4372 return 0;
4373 } else {
4374 vcpu->arch.dr7 &= ~DR7_GD;
4375 vcpu->arch.dr6 |= DR6_BD;
4376 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4377 kvm_queue_exception(vcpu, DB_VECTOR);
4378 return 1;
4379 }
4380 }
4381
4382 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4383 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4384 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4385 if (exit_qualification & TYPE_MOV_FROM_DR) {
4386 unsigned long val;
4387 if (!kvm_get_dr(vcpu, dr, &val))
4388 kvm_register_write(vcpu, reg, val);
4389 } else
4390 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
4391 skip_emulated_instruction(vcpu);
4392 return 1;
4393}
4394
4395static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4396{
4397 vmcs_writel(GUEST_DR7, val);
4398}
4399
4400static int handle_cpuid(struct kvm_vcpu *vcpu)
4401{
4402 kvm_emulate_cpuid(vcpu);
4403 return 1;
4404}
4405
4406static int handle_rdmsr(struct kvm_vcpu *vcpu)
4407{
4408 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4409 u64 data;
4410
4411 if (vmx_get_msr(vcpu, ecx, &data)) {
4412 trace_kvm_msr_read_ex(ecx);
4413 kvm_inject_gp(vcpu, 0);
4414 return 1;
4415 }
4416
4417 trace_kvm_msr_read(ecx, data);
4418
4419 /* FIXME: handling of bits 32:63 of rax, rdx */
4420 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4421 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
4422 skip_emulated_instruction(vcpu);
4423 return 1;
4424}
4425
4426static int handle_wrmsr(struct kvm_vcpu *vcpu)
4427{
4428 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4429 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4430 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4431
4432 if (vmx_set_msr(vcpu, ecx, data) != 0) {
4433 trace_kvm_msr_write_ex(ecx, data);
4434 kvm_inject_gp(vcpu, 0);
4435 return 1;
4436 }
4437
4438 trace_kvm_msr_write(ecx, data);
4439 skip_emulated_instruction(vcpu);
4440 return 1;
4441}
4442
4443static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4444{
4445 kvm_make_request(KVM_REQ_EVENT, vcpu);
4446 return 1;
4447}
4448
4449static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4450{
4451 u32 cpu_based_vm_exec_control;
4452
4453 /* clear pending irq */
4454 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4455 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4456 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4457
4458 kvm_make_request(KVM_REQ_EVENT, vcpu);
4459
4460 ++vcpu->stat.irq_window_exits;
4461
4462 /*
4463 * If the user space waits to inject interrupts, exit as soon as
4464 * possible
4465 */
4466 if (!irqchip_in_kernel(vcpu->kvm) &&
4467 vcpu->run->request_interrupt_window &&
4468 !kvm_cpu_has_interrupt(vcpu)) {
4469 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
4470 return 0;
4471 }
4472 return 1;
4473}
4474
4475static int handle_halt(struct kvm_vcpu *vcpu)
4476{
4477 skip_emulated_instruction(vcpu);
4478 return kvm_emulate_halt(vcpu);
4479}
4480
4481static int handle_vmcall(struct kvm_vcpu *vcpu)
4482{
4483 skip_emulated_instruction(vcpu);
4484 kvm_emulate_hypercall(vcpu);
4485 return 1;
4486}
4487
4488static int handle_invd(struct kvm_vcpu *vcpu)
4489{
4490 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4491}
4492
4493static int handle_invlpg(struct kvm_vcpu *vcpu)
4494{
4495 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4496
4497 kvm_mmu_invlpg(vcpu, exit_qualification);
4498 skip_emulated_instruction(vcpu);
4499 return 1;
4500}
4501
4502static int handle_wbinvd(struct kvm_vcpu *vcpu)
4503{
4504 skip_emulated_instruction(vcpu);
4505 kvm_emulate_wbinvd(vcpu);
4506 return 1;
4507}
4508
4509static int handle_xsetbv(struct kvm_vcpu *vcpu)
4510{
4511 u64 new_bv = kvm_read_edx_eax(vcpu);
4512 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4513
4514 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4515 skip_emulated_instruction(vcpu);
4516 return 1;
4517}
4518
4519static int handle_apic_access(struct kvm_vcpu *vcpu)
4520{
4521 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4522}
4523
4524static int handle_task_switch(struct kvm_vcpu *vcpu)
4525{
4526 struct vcpu_vmx *vmx = to_vmx(vcpu);
4527 unsigned long exit_qualification;
4528 bool has_error_code = false;
4529 u32 error_code = 0;
4530 u16 tss_selector;
4531 int reason, type, idt_v;
4532
4533 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4534 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4535
4536 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4537
4538 reason = (u32)exit_qualification >> 30;
4539 if (reason == TASK_SWITCH_GATE && idt_v) {
4540 switch (type) {
4541 case INTR_TYPE_NMI_INTR:
4542 vcpu->arch.nmi_injected = false;
4543 vmx_set_nmi_mask(vcpu, true);
4544 break;
4545 case INTR_TYPE_EXT_INTR:
4546 case INTR_TYPE_SOFT_INTR:
4547 kvm_clear_interrupt_queue(vcpu);
4548 break;
4549 case INTR_TYPE_HARD_EXCEPTION:
4550 if (vmx->idt_vectoring_info &
4551 VECTORING_INFO_DELIVER_CODE_MASK) {
4552 has_error_code = true;
4553 error_code =
4554 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4555 }
4556 /* fall through */
4557 case INTR_TYPE_SOFT_EXCEPTION:
4558 kvm_clear_exception_queue(vcpu);
4559 break;
4560 default:
4561 break;
4562 }
4563 }
4564 tss_selector = exit_qualification;
4565
4566 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4567 type != INTR_TYPE_EXT_INTR &&
4568 type != INTR_TYPE_NMI_INTR))
4569 skip_emulated_instruction(vcpu);
4570
4571 if (kvm_task_switch(vcpu, tss_selector, reason,
4572 has_error_code, error_code) == EMULATE_FAIL) {
4573 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4574 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4575 vcpu->run->internal.ndata = 0;
4576 return 0;
4577 }
4578
4579 /* clear all local breakpoint enable flags */
4580 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4581
4582 /*
4583 * TODO: What about debug traps on tss switch?
4584 * Are we supposed to inject them and update dr6?
4585 */
4586
4587 return 1;
4588}
4589
4590static int handle_ept_violation(struct kvm_vcpu *vcpu)
4591{
4592 unsigned long exit_qualification;
4593 gpa_t gpa;
4594 int gla_validity;
4595
4596 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4597
4598 if (exit_qualification & (1 << 6)) {
4599 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
4600 return -EINVAL;
4601 }
4602
4603 gla_validity = (exit_qualification >> 7) & 0x3;
4604 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4605 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4606 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4607 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
4608 vmcs_readl(GUEST_LINEAR_ADDRESS));
4609 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4610 (long unsigned int)exit_qualification);
4611 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4612 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
4613 return 0;
4614 }
4615
4616 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4617 trace_kvm_page_fault(gpa, exit_qualification);
4618 return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
4619}
4620
4621static u64 ept_rsvd_mask(u64 spte, int level)
4622{
4623 int i;
4624 u64 mask = 0;
4625
4626 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4627 mask |= (1ULL << i);
4628
4629 if (level > 2)
4630 /* bits 7:3 reserved */
4631 mask |= 0xf8;
4632 else if (level == 2) {
4633 if (spte & (1ULL << 7))
4634 /* 2MB ref, bits 20:12 reserved */
4635 mask |= 0x1ff000;
4636 else
4637 /* bits 6:3 reserved */
4638 mask |= 0x78;
4639 }
4640
4641 return mask;
4642}
4643
4644static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4645 int level)
4646{
4647 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4648
4649 /* 010b (write-only) */
4650 WARN_ON((spte & 0x7) == 0x2);
4651
4652 /* 110b (write/execute) */
4653 WARN_ON((spte & 0x7) == 0x6);
4654
4655 /* 100b (execute-only) and value not supported by logical processor */
4656 if (!cpu_has_vmx_ept_execute_only())
4657 WARN_ON((spte & 0x7) == 0x4);
4658
4659 /* not 000b */
4660 if ((spte & 0x7)) {
4661 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4662
4663 if (rsvd_bits != 0) {
4664 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4665 __func__, rsvd_bits);
4666 WARN_ON(1);
4667 }
4668
4669 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4670 u64 ept_mem_type = (spte & 0x38) >> 3;
4671
4672 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4673 ept_mem_type == 7) {
4674 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4675 __func__, ept_mem_type);
4676 WARN_ON(1);
4677 }
4678 }
4679 }
4680}
4681
4682static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
4683{
4684 u64 sptes[4];
4685 int nr_sptes, i, ret;
4686 gpa_t gpa;
4687
4688 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4689
4690 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4691 if (likely(ret == 1))
4692 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4693 EMULATE_DONE;
4694 if (unlikely(!ret))
4695 return 1;
4696
4697 /* It is the real ept misconfig */
4698 printk(KERN_ERR "EPT: Misconfiguration.\n");
4699 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4700
4701 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4702
4703 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4704 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4705
4706 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4707 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
4708
4709 return 0;
4710}
4711
4712static int handle_nmi_window(struct kvm_vcpu *vcpu)
4713{
4714 u32 cpu_based_vm_exec_control;
4715
4716 /* clear pending NMI */
4717 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4718 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4719 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4720 ++vcpu->stat.nmi_window_exits;
4721 kvm_make_request(KVM_REQ_EVENT, vcpu);
4722
4723 return 1;
4724}
4725
4726static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
4727{
4728 struct vcpu_vmx *vmx = to_vmx(vcpu);
4729 enum emulation_result err = EMULATE_DONE;
4730 int ret = 1;
4731 u32 cpu_exec_ctrl;
4732 bool intr_window_requested;
4733
4734 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4735 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
4736
4737 while (!guest_state_valid(vcpu)) {
4738 if (intr_window_requested
4739 && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4740 return handle_interrupt_window(&vmx->vcpu);
4741
4742 err = emulate_instruction(vcpu, 0);
4743
4744 if (err == EMULATE_DO_MMIO) {
4745 ret = 0;
4746 goto out;
4747 }
4748
4749 if (err != EMULATE_DONE)
4750 return 0;
4751
4752 if (signal_pending(current))
4753 goto out;
4754 if (need_resched())
4755 schedule();
4756 }
4757
4758 vmx->emulation_required = 0;
4759out:
4760 return ret;
4761}
4762
4763/*
4764 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4765 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4766 */
4767static int handle_pause(struct kvm_vcpu *vcpu)
4768{
4769 skip_emulated_instruction(vcpu);
4770 kvm_vcpu_on_spin(vcpu);
4771
4772 return 1;
4773}
4774
4775static int handle_invalid_op(struct kvm_vcpu *vcpu)
4776{
4777 kvm_queue_exception(vcpu, UD_VECTOR);
4778 return 1;
4779}
4780
4781/*
4782 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
4783 * We could reuse a single VMCS for all the L2 guests, but we also want the
4784 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
4785 * allows keeping them loaded on the processor, and in the future will allow
4786 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
4787 * every entry if they never change.
4788 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
4789 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
4790 *
4791 * The following functions allocate and free a vmcs02 in this pool.
4792 */
4793
4794/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
4795static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
4796{
4797 struct vmcs02_list *item;
4798 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4799 if (item->vmptr == vmx->nested.current_vmptr) {
4800 list_move(&item->list, &vmx->nested.vmcs02_pool);
4801 return &item->vmcs02;
4802 }
4803
4804 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
4805 /* Recycle the least recently used VMCS. */
4806 item = list_entry(vmx->nested.vmcs02_pool.prev,
4807 struct vmcs02_list, list);
4808 item->vmptr = vmx->nested.current_vmptr;
4809 list_move(&item->list, &vmx->nested.vmcs02_pool);
4810 return &item->vmcs02;
4811 }
4812
4813 /* Create a new VMCS */
4814 item = (struct vmcs02_list *)
4815 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
4816 if (!item)
4817 return NULL;
4818 item->vmcs02.vmcs = alloc_vmcs();
4819 if (!item->vmcs02.vmcs) {
4820 kfree(item);
4821 return NULL;
4822 }
4823 loaded_vmcs_init(&item->vmcs02);
4824 item->vmptr = vmx->nested.current_vmptr;
4825 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
4826 vmx->nested.vmcs02_num++;
4827 return &item->vmcs02;
4828}
4829
4830/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
4831static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
4832{
4833 struct vmcs02_list *item;
4834 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4835 if (item->vmptr == vmptr) {
4836 free_loaded_vmcs(&item->vmcs02);
4837 list_del(&item->list);
4838 kfree(item);
4839 vmx->nested.vmcs02_num--;
4840 return;
4841 }
4842}
4843
4844/*
4845 * Free all VMCSs saved for this vcpu, except the one pointed by
4846 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
4847 * currently used, if running L2), and vmcs01 when running L2.
4848 */
4849static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
4850{
4851 struct vmcs02_list *item, *n;
4852 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4853 if (vmx->loaded_vmcs != &item->vmcs02)
4854 free_loaded_vmcs(&item->vmcs02);
4855 list_del(&item->list);
4856 kfree(item);
4857 }
4858 vmx->nested.vmcs02_num = 0;
4859
4860 if (vmx->loaded_vmcs != &vmx->vmcs01)
4861 free_loaded_vmcs(&vmx->vmcs01);
4862}
4863
4864/*
4865 * Emulate the VMXON instruction.
4866 * Currently, we just remember that VMX is active, and do not save or even
4867 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4868 * do not currently need to store anything in that guest-allocated memory
4869 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4870 * argument is different from the VMXON pointer (which the spec says they do).
4871 */
4872static int handle_vmon(struct kvm_vcpu *vcpu)
4873{
4874 struct kvm_segment cs;
4875 struct vcpu_vmx *vmx = to_vmx(vcpu);
4876
4877 /* The Intel VMX Instruction Reference lists a bunch of bits that
4878 * are prerequisite to running VMXON, most notably cr4.VMXE must be
4879 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
4880 * Otherwise, we should fail with #UD. We test these now:
4881 */
4882 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
4883 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
4884 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4885 kvm_queue_exception(vcpu, UD_VECTOR);
4886 return 1;
4887 }
4888
4889 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4890 if (is_long_mode(vcpu) && !cs.l) {
4891 kvm_queue_exception(vcpu, UD_VECTOR);
4892 return 1;
4893 }
4894
4895 if (vmx_get_cpl(vcpu)) {
4896 kvm_inject_gp(vcpu, 0);
4897 return 1;
4898 }
4899
4900 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
4901 vmx->nested.vmcs02_num = 0;
4902
4903 vmx->nested.vmxon = true;
4904
4905 skip_emulated_instruction(vcpu);
4906 return 1;
4907}
4908
4909/*
4910 * Intel's VMX Instruction Reference specifies a common set of prerequisites
4911 * for running VMX instructions (except VMXON, whose prerequisites are
4912 * slightly different). It also specifies what exception to inject otherwise.
4913 */
4914static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
4915{
4916 struct kvm_segment cs;
4917 struct vcpu_vmx *vmx = to_vmx(vcpu);
4918
4919 if (!vmx->nested.vmxon) {
4920 kvm_queue_exception(vcpu, UD_VECTOR);
4921 return 0;
4922 }
4923
4924 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4925 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
4926 (is_long_mode(vcpu) && !cs.l)) {
4927 kvm_queue_exception(vcpu, UD_VECTOR);
4928 return 0;
4929 }
4930
4931 if (vmx_get_cpl(vcpu)) {
4932 kvm_inject_gp(vcpu, 0);
4933 return 0;
4934 }
4935
4936 return 1;
4937}
4938
4939/*
4940 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
4941 * just stops using VMX.
4942 */
4943static void free_nested(struct vcpu_vmx *vmx)
4944{
4945 if (!vmx->nested.vmxon)
4946 return;
4947 vmx->nested.vmxon = false;
4948 if (vmx->nested.current_vmptr != -1ull) {
4949 kunmap(vmx->nested.current_vmcs12_page);
4950 nested_release_page(vmx->nested.current_vmcs12_page);
4951 vmx->nested.current_vmptr = -1ull;
4952 vmx->nested.current_vmcs12 = NULL;
4953 }
4954 /* Unpin physical memory we referred to in current vmcs02 */
4955 if (vmx->nested.apic_access_page) {
4956 nested_release_page(vmx->nested.apic_access_page);
4957 vmx->nested.apic_access_page = 0;
4958 }
4959
4960 nested_free_all_saved_vmcss(vmx);
4961}
4962
4963/* Emulate the VMXOFF instruction */
4964static int handle_vmoff(struct kvm_vcpu *vcpu)
4965{
4966 if (!nested_vmx_check_permission(vcpu))
4967 return 1;
4968 free_nested(to_vmx(vcpu));
4969 skip_emulated_instruction(vcpu);
4970 return 1;
4971}
4972
4973/*
4974 * Decode the memory-address operand of a vmx instruction, as recorded on an
4975 * exit caused by such an instruction (run by a guest hypervisor).
4976 * On success, returns 0. When the operand is invalid, returns 1 and throws
4977 * #UD or #GP.
4978 */
4979static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
4980 unsigned long exit_qualification,
4981 u32 vmx_instruction_info, gva_t *ret)
4982{
4983 /*
4984 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4985 * Execution", on an exit, vmx_instruction_info holds most of the
4986 * addressing components of the operand. Only the displacement part
4987 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4988 * For how an actual address is calculated from all these components,
4989 * refer to Vol. 1, "Operand Addressing".
4990 */
4991 int scaling = vmx_instruction_info & 3;
4992 int addr_size = (vmx_instruction_info >> 7) & 7;
4993 bool is_reg = vmx_instruction_info & (1u << 10);
4994 int seg_reg = (vmx_instruction_info >> 15) & 7;
4995 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4996 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4997 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4998 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4999
5000 if (is_reg) {
5001 kvm_queue_exception(vcpu, UD_VECTOR);
5002 return 1;
5003 }
5004
5005 /* Addr = segment_base + offset */
5006 /* offset = base + [index * scale] + displacement */
5007 *ret = vmx_get_segment_base(vcpu, seg_reg);
5008 if (base_is_valid)
5009 *ret += kvm_register_read(vcpu, base_reg);
5010 if (index_is_valid)
5011 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5012 *ret += exit_qualification; /* holds the displacement */
5013
5014 if (addr_size == 1) /* 32 bit */
5015 *ret &= 0xffffffff;
5016
5017 /*
5018 * TODO: throw #GP (and return 1) in various cases that the VM*
5019 * instructions require it - e.g., offset beyond segment limit,
5020 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5021 * address, and so on. Currently these are not checked.
5022 */
5023 return 0;
5024}
5025
5026/*
5027 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5028 * set the success or error code of an emulated VMX instruction, as specified
5029 * by Vol 2B, VMX Instruction Reference, "Conventions".
5030 */
5031static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5032{
5033 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5034 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5035 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5036}
5037
5038static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5039{
5040 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5041 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5042 X86_EFLAGS_SF | X86_EFLAGS_OF))
5043 | X86_EFLAGS_CF);
5044}
5045
5046static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5047 u32 vm_instruction_error)
5048{
5049 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5050 /*
5051 * failValid writes the error number to the current VMCS, which
5052 * can't be done there isn't a current VMCS.
5053 */
5054 nested_vmx_failInvalid(vcpu);
5055 return;
5056 }
5057 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5058 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5059 X86_EFLAGS_SF | X86_EFLAGS_OF))
5060 | X86_EFLAGS_ZF);
5061 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5062}
5063
5064/* Emulate the VMCLEAR instruction */
5065static int handle_vmclear(struct kvm_vcpu *vcpu)
5066{
5067 struct vcpu_vmx *vmx = to_vmx(vcpu);
5068 gva_t gva;
5069 gpa_t vmptr;
5070 struct vmcs12 *vmcs12;
5071 struct page *page;
5072 struct x86_exception e;
5073
5074 if (!nested_vmx_check_permission(vcpu))
5075 return 1;
5076
5077 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5078 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5079 return 1;
5080
5081 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5082 sizeof(vmptr), &e)) {
5083 kvm_inject_page_fault(vcpu, &e);
5084 return 1;
5085 }
5086
5087 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5088 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5089 skip_emulated_instruction(vcpu);
5090 return 1;
5091 }
5092
5093 if (vmptr == vmx->nested.current_vmptr) {
5094 kunmap(vmx->nested.current_vmcs12_page);
5095 nested_release_page(vmx->nested.current_vmcs12_page);
5096 vmx->nested.current_vmptr = -1ull;
5097 vmx->nested.current_vmcs12 = NULL;
5098 }
5099
5100 page = nested_get_page(vcpu, vmptr);
5101 if (page == NULL) {
5102 /*
5103 * For accurate processor emulation, VMCLEAR beyond available
5104 * physical memory should do nothing at all. However, it is
5105 * possible that a nested vmx bug, not a guest hypervisor bug,
5106 * resulted in this case, so let's shut down before doing any
5107 * more damage:
5108 */
5109 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5110 return 1;
5111 }
5112 vmcs12 = kmap(page);
5113 vmcs12->launch_state = 0;
5114 kunmap(page);
5115 nested_release_page(page);
5116
5117 nested_free_vmcs02(vmx, vmptr);
5118
5119 skip_emulated_instruction(vcpu);
5120 nested_vmx_succeed(vcpu);
5121 return 1;
5122}
5123
5124static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5125
5126/* Emulate the VMLAUNCH instruction */
5127static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5128{
5129 return nested_vmx_run(vcpu, true);
5130}
5131
5132/* Emulate the VMRESUME instruction */
5133static int handle_vmresume(struct kvm_vcpu *vcpu)
5134{
5135
5136 return nested_vmx_run(vcpu, false);
5137}
5138
5139enum vmcs_field_type {
5140 VMCS_FIELD_TYPE_U16 = 0,
5141 VMCS_FIELD_TYPE_U64 = 1,
5142 VMCS_FIELD_TYPE_U32 = 2,
5143 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5144};
5145
5146static inline int vmcs_field_type(unsigned long field)
5147{
5148 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5149 return VMCS_FIELD_TYPE_U32;
5150 return (field >> 13) & 0x3 ;
5151}
5152
5153static inline int vmcs_field_readonly(unsigned long field)
5154{
5155 return (((field >> 10) & 0x3) == 1);
5156}
5157
5158/*
5159 * Read a vmcs12 field. Since these can have varying lengths and we return
5160 * one type, we chose the biggest type (u64) and zero-extend the return value
5161 * to that size. Note that the caller, handle_vmread, might need to use only
5162 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5163 * 64-bit fields are to be returned).
5164 */
5165static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5166 unsigned long field, u64 *ret)
5167{
5168 short offset = vmcs_field_to_offset(field);
5169 char *p;
5170
5171 if (offset < 0)
5172 return 0;
5173
5174 p = ((char *)(get_vmcs12(vcpu))) + offset;
5175
5176 switch (vmcs_field_type(field)) {
5177 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5178 *ret = *((natural_width *)p);
5179 return 1;
5180 case VMCS_FIELD_TYPE_U16:
5181 *ret = *((u16 *)p);
5182 return 1;
5183 case VMCS_FIELD_TYPE_U32:
5184 *ret = *((u32 *)p);
5185 return 1;
5186 case VMCS_FIELD_TYPE_U64:
5187 *ret = *((u64 *)p);
5188 return 1;
5189 default:
5190 return 0; /* can never happen. */
5191 }
5192}
5193
5194/*
5195 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5196 * used before) all generate the same failure when it is missing.
5197 */
5198static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5199{
5200 struct vcpu_vmx *vmx = to_vmx(vcpu);
5201 if (vmx->nested.current_vmptr == -1ull) {
5202 nested_vmx_failInvalid(vcpu);
5203 skip_emulated_instruction(vcpu);
5204 return 0;
5205 }
5206 return 1;
5207}
5208
5209static int handle_vmread(struct kvm_vcpu *vcpu)
5210{
5211 unsigned long field;
5212 u64 field_value;
5213 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5214 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5215 gva_t gva = 0;
5216
5217 if (!nested_vmx_check_permission(vcpu) ||
5218 !nested_vmx_check_vmcs12(vcpu))
5219 return 1;
5220
5221 /* Decode instruction info and find the field to read */
5222 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5223 /* Read the field, zero-extended to a u64 field_value */
5224 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5225 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5226 skip_emulated_instruction(vcpu);
5227 return 1;
5228 }
5229 /*
5230 * Now copy part of this value to register or memory, as requested.
5231 * Note that the number of bits actually copied is 32 or 64 depending
5232 * on the guest's mode (32 or 64 bit), not on the given field's length.
5233 */
5234 if (vmx_instruction_info & (1u << 10)) {
5235 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5236 field_value);
5237 } else {
5238 if (get_vmx_mem_address(vcpu, exit_qualification,
5239 vmx_instruction_info, &gva))
5240 return 1;
5241 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5242 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5243 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5244 }
5245
5246 nested_vmx_succeed(vcpu);
5247 skip_emulated_instruction(vcpu);
5248 return 1;
5249}
5250
5251
5252static int handle_vmwrite(struct kvm_vcpu *vcpu)
5253{
5254 unsigned long field;
5255 gva_t gva;
5256 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5257 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5258 char *p;
5259 short offset;
5260 /* The value to write might be 32 or 64 bits, depending on L1's long
5261 * mode, and eventually we need to write that into a field of several
5262 * possible lengths. The code below first zero-extends the value to 64
5263 * bit (field_value), and then copies only the approriate number of
5264 * bits into the vmcs12 field.
5265 */
5266 u64 field_value = 0;
5267 struct x86_exception e;
5268
5269 if (!nested_vmx_check_permission(vcpu) ||
5270 !nested_vmx_check_vmcs12(vcpu))
5271 return 1;
5272
5273 if (vmx_instruction_info & (1u << 10))
5274 field_value = kvm_register_read(vcpu,
5275 (((vmx_instruction_info) >> 3) & 0xf));
5276 else {
5277 if (get_vmx_mem_address(vcpu, exit_qualification,
5278 vmx_instruction_info, &gva))
5279 return 1;
5280 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5281 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5282 kvm_inject_page_fault(vcpu, &e);
5283 return 1;
5284 }
5285 }
5286
5287
5288 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5289 if (vmcs_field_readonly(field)) {
5290 nested_vmx_failValid(vcpu,
5291 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5292 skip_emulated_instruction(vcpu);
5293 return 1;
5294 }
5295
5296 offset = vmcs_field_to_offset(field);
5297 if (offset < 0) {
5298 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5299 skip_emulated_instruction(vcpu);
5300 return 1;
5301 }
5302 p = ((char *) get_vmcs12(vcpu)) + offset;
5303
5304 switch (vmcs_field_type(field)) {
5305 case VMCS_FIELD_TYPE_U16:
5306 *(u16 *)p = field_value;
5307 break;
5308 case VMCS_FIELD_TYPE_U32:
5309 *(u32 *)p = field_value;
5310 break;
5311 case VMCS_FIELD_TYPE_U64:
5312 *(u64 *)p = field_value;
5313 break;
5314 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5315 *(natural_width *)p = field_value;
5316 break;
5317 default:
5318 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5319 skip_emulated_instruction(vcpu);
5320 return 1;
5321 }
5322
5323 nested_vmx_succeed(vcpu);
5324 skip_emulated_instruction(vcpu);
5325 return 1;
5326}
5327
5328/* Emulate the VMPTRLD instruction */
5329static int handle_vmptrld(struct kvm_vcpu *vcpu)
5330{
5331 struct vcpu_vmx *vmx = to_vmx(vcpu);
5332 gva_t gva;
5333 gpa_t vmptr;
5334 struct x86_exception e;
5335
5336 if (!nested_vmx_check_permission(vcpu))
5337 return 1;
5338
5339 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5340 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5341 return 1;
5342
5343 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5344 sizeof(vmptr), &e)) {
5345 kvm_inject_page_fault(vcpu, &e);
5346 return 1;
5347 }
5348
5349 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5350 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5351 skip_emulated_instruction(vcpu);
5352 return 1;
5353 }
5354
5355 if (vmx->nested.current_vmptr != vmptr) {
5356 struct vmcs12 *new_vmcs12;
5357 struct page *page;
5358 page = nested_get_page(vcpu, vmptr);
5359 if (page == NULL) {
5360 nested_vmx_failInvalid(vcpu);
5361 skip_emulated_instruction(vcpu);
5362 return 1;
5363 }
5364 new_vmcs12 = kmap(page);
5365 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5366 kunmap(page);
5367 nested_release_page_clean(page);
5368 nested_vmx_failValid(vcpu,
5369 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5370 skip_emulated_instruction(vcpu);
5371 return 1;
5372 }
5373 if (vmx->nested.current_vmptr != -1ull) {
5374 kunmap(vmx->nested.current_vmcs12_page);
5375 nested_release_page(vmx->nested.current_vmcs12_page);
5376 }
5377
5378 vmx->nested.current_vmptr = vmptr;
5379 vmx->nested.current_vmcs12 = new_vmcs12;
5380 vmx->nested.current_vmcs12_page = page;
5381 }
5382
5383 nested_vmx_succeed(vcpu);
5384 skip_emulated_instruction(vcpu);
5385 return 1;
5386}
5387
5388/* Emulate the VMPTRST instruction */
5389static int handle_vmptrst(struct kvm_vcpu *vcpu)
5390{
5391 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5392 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5393 gva_t vmcs_gva;
5394 struct x86_exception e;
5395
5396 if (!nested_vmx_check_permission(vcpu))
5397 return 1;
5398
5399 if (get_vmx_mem_address(vcpu, exit_qualification,
5400 vmx_instruction_info, &vmcs_gva))
5401 return 1;
5402 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5403 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5404 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5405 sizeof(u64), &e)) {
5406 kvm_inject_page_fault(vcpu, &e);
5407 return 1;
5408 }
5409 nested_vmx_succeed(vcpu);
5410 skip_emulated_instruction(vcpu);
5411 return 1;
5412}
5413
5414/*
5415 * The exit handlers return 1 if the exit was handled fully and guest execution
5416 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5417 * to be done to userspace and return 0.
5418 */
5419static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5420 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5421 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5422 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5423 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5424 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5425 [EXIT_REASON_CR_ACCESS] = handle_cr,
5426 [EXIT_REASON_DR_ACCESS] = handle_dr,
5427 [EXIT_REASON_CPUID] = handle_cpuid,
5428 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5429 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5430 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5431 [EXIT_REASON_HLT] = handle_halt,
5432 [EXIT_REASON_INVD] = handle_invd,
5433 [EXIT_REASON_INVLPG] = handle_invlpg,
5434 [EXIT_REASON_VMCALL] = handle_vmcall,
5435 [EXIT_REASON_VMCLEAR] = handle_vmclear,
5436 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
5437 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
5438 [EXIT_REASON_VMPTRST] = handle_vmptrst,
5439 [EXIT_REASON_VMREAD] = handle_vmread,
5440 [EXIT_REASON_VMRESUME] = handle_vmresume,
5441 [EXIT_REASON_VMWRITE] = handle_vmwrite,
5442 [EXIT_REASON_VMOFF] = handle_vmoff,
5443 [EXIT_REASON_VMON] = handle_vmon,
5444 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5445 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5446 [EXIT_REASON_WBINVD] = handle_wbinvd,
5447 [EXIT_REASON_XSETBV] = handle_xsetbv,
5448 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5449 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5450 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5451 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5452 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5453 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5454 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
5455};
5456
5457static const int kvm_vmx_max_exit_handlers =
5458 ARRAY_SIZE(kvm_vmx_exit_handlers);
5459
5460/*
5461 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5462 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5463 * disinterest in the current event (read or write a specific MSR) by using an
5464 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5465 */
5466static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5467 struct vmcs12 *vmcs12, u32 exit_reason)
5468{
5469 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5470 gpa_t bitmap;
5471
5472 if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5473 return 1;
5474
5475 /*
5476 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5477 * for the four combinations of read/write and low/high MSR numbers.
5478 * First we need to figure out which of the four to use:
5479 */
5480 bitmap = vmcs12->msr_bitmap;
5481 if (exit_reason == EXIT_REASON_MSR_WRITE)
5482 bitmap += 2048;
5483 if (msr_index >= 0xc0000000) {
5484 msr_index -= 0xc0000000;
5485 bitmap += 1024;
5486 }
5487
5488 /* Then read the msr_index'th bit from this bitmap: */
5489 if (msr_index < 1024*8) {
5490 unsigned char b;
5491 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5492 return 1 & (b >> (msr_index & 7));
5493 } else
5494 return 1; /* let L1 handle the wrong parameter */
5495}
5496
5497/*
5498 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5499 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5500 * intercept (via guest_host_mask etc.) the current event.
5501 */
5502static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5503 struct vmcs12 *vmcs12)
5504{
5505 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5506 int cr = exit_qualification & 15;
5507 int reg = (exit_qualification >> 8) & 15;
5508 unsigned long val = kvm_register_read(vcpu, reg);
5509
5510 switch ((exit_qualification >> 4) & 3) {
5511 case 0: /* mov to cr */
5512 switch (cr) {
5513 case 0:
5514 if (vmcs12->cr0_guest_host_mask &
5515 (val ^ vmcs12->cr0_read_shadow))
5516 return 1;
5517 break;
5518 case 3:
5519 if ((vmcs12->cr3_target_count >= 1 &&
5520 vmcs12->cr3_target_value0 == val) ||
5521 (vmcs12->cr3_target_count >= 2 &&
5522 vmcs12->cr3_target_value1 == val) ||
5523 (vmcs12->cr3_target_count >= 3 &&
5524 vmcs12->cr3_target_value2 == val) ||
5525 (vmcs12->cr3_target_count >= 4 &&
5526 vmcs12->cr3_target_value3 == val))
5527 return 0;
5528 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5529 return 1;
5530 break;
5531 case 4:
5532 if (vmcs12->cr4_guest_host_mask &
5533 (vmcs12->cr4_read_shadow ^ val))
5534 return 1;
5535 break;
5536 case 8:
5537 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5538 return 1;
5539 break;
5540 }
5541 break;
5542 case 2: /* clts */
5543 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5544 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5545 return 1;
5546 break;
5547 case 1: /* mov from cr */
5548 switch (cr) {
5549 case 3:
5550 if (vmcs12->cpu_based_vm_exec_control &
5551 CPU_BASED_CR3_STORE_EXITING)
5552 return 1;
5553 break;
5554 case 8:
5555 if (vmcs12->cpu_based_vm_exec_control &
5556 CPU_BASED_CR8_STORE_EXITING)
5557 return 1;
5558 break;
5559 }
5560 break;
5561 case 3: /* lmsw */
5562 /*
5563 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5564 * cr0. Other attempted changes are ignored, with no exit.
5565 */
5566 if (vmcs12->cr0_guest_host_mask & 0xe &
5567 (val ^ vmcs12->cr0_read_shadow))
5568 return 1;
5569 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5570 !(vmcs12->cr0_read_shadow & 0x1) &&
5571 (val & 0x1))
5572 return 1;
5573 break;
5574 }
5575 return 0;
5576}
5577
5578/*
5579 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5580 * should handle it ourselves in L0 (and then continue L2). Only call this
5581 * when in is_guest_mode (L2).
5582 */
5583static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5584{
5585 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5586 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5587 struct vcpu_vmx *vmx = to_vmx(vcpu);
5588 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5589
5590 if (vmx->nested.nested_run_pending)
5591 return 0;
5592
5593 if (unlikely(vmx->fail)) {
5594 printk(KERN_INFO "%s failed vm entry %x\n",
5595 __func__, vmcs_read32(VM_INSTRUCTION_ERROR));
5596 return 1;
5597 }
5598
5599 switch (exit_reason) {
5600 case EXIT_REASON_EXCEPTION_NMI:
5601 if (!is_exception(intr_info))
5602 return 0;
5603 else if (is_page_fault(intr_info))
5604 return enable_ept;
5605 return vmcs12->exception_bitmap &
5606 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5607 case EXIT_REASON_EXTERNAL_INTERRUPT:
5608 return 0;
5609 case EXIT_REASON_TRIPLE_FAULT:
5610 return 1;
5611 case EXIT_REASON_PENDING_INTERRUPT:
5612 case EXIT_REASON_NMI_WINDOW:
5613 /*
5614 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5615 * (aka Interrupt Window Exiting) only when L1 turned it on,
5616 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5617 * Same for NMI Window Exiting.
5618 */
5619 return 1;
5620 case EXIT_REASON_TASK_SWITCH:
5621 return 1;
5622 case EXIT_REASON_CPUID:
5623 return 1;
5624 case EXIT_REASON_HLT:
5625 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5626 case EXIT_REASON_INVD:
5627 return 1;
5628 case EXIT_REASON_INVLPG:
5629 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5630 case EXIT_REASON_RDPMC:
5631 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5632 case EXIT_REASON_RDTSC:
5633 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5634 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5635 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5636 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5637 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5638 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5639 /*
5640 * VMX instructions trap unconditionally. This allows L1 to
5641 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5642 */
5643 return 1;
5644 case EXIT_REASON_CR_ACCESS:
5645 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5646 case EXIT_REASON_DR_ACCESS:
5647 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5648 case EXIT_REASON_IO_INSTRUCTION:
5649 /* TODO: support IO bitmaps */
5650 return 1;
5651 case EXIT_REASON_MSR_READ:
5652 case EXIT_REASON_MSR_WRITE:
5653 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5654 case EXIT_REASON_INVALID_STATE:
5655 return 1;
5656 case EXIT_REASON_MWAIT_INSTRUCTION:
5657 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5658 case EXIT_REASON_MONITOR_INSTRUCTION:
5659 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5660 case EXIT_REASON_PAUSE_INSTRUCTION:
5661 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5662 nested_cpu_has2(vmcs12,
5663 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5664 case EXIT_REASON_MCE_DURING_VMENTRY:
5665 return 0;
5666 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5667 return 1;
5668 case EXIT_REASON_APIC_ACCESS:
5669 return nested_cpu_has2(vmcs12,
5670 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5671 case EXIT_REASON_EPT_VIOLATION:
5672 case EXIT_REASON_EPT_MISCONFIG:
5673 return 0;
5674 case EXIT_REASON_WBINVD:
5675 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5676 case EXIT_REASON_XSETBV:
5677 return 1;
5678 default:
5679 return 1;
5680 }
5681}
5682
5683static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5684{
5685 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5686 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5687}
5688
5689/*
5690 * The guest has exited. See if we can fix it or if we need userspace
5691 * assistance.
5692 */
5693static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5694{
5695 struct vcpu_vmx *vmx = to_vmx(vcpu);
5696 u32 exit_reason = vmx->exit_reason;
5697 u32 vectoring_info = vmx->idt_vectoring_info;
5698
5699 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5700
5701 /* If guest state is invalid, start emulating */
5702 if (vmx->emulation_required && emulate_invalid_guest_state)
5703 return handle_invalid_guest_state(vcpu);
5704
5705 /*
5706 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5707 * we did not inject a still-pending event to L1 now because of
5708 * nested_run_pending, we need to re-enable this bit.
5709 */
5710 if (vmx->nested.nested_run_pending)
5711 kvm_make_request(KVM_REQ_EVENT, vcpu);
5712
5713 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5714 exit_reason == EXIT_REASON_VMRESUME))
5715 vmx->nested.nested_run_pending = 1;
5716 else
5717 vmx->nested.nested_run_pending = 0;
5718
5719 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
5720 nested_vmx_vmexit(vcpu);
5721 return 1;
5722 }
5723
5724 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5725 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5726 vcpu->run->fail_entry.hardware_entry_failure_reason
5727 = exit_reason;
5728 return 0;
5729 }
5730
5731 if (unlikely(vmx->fail)) {
5732 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5733 vcpu->run->fail_entry.hardware_entry_failure_reason
5734 = vmcs_read32(VM_INSTRUCTION_ERROR);
5735 return 0;
5736 }
5737
5738 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5739 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5740 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5741 exit_reason != EXIT_REASON_TASK_SWITCH))
5742 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
5743 "(0x%x) and exit reason is 0x%x\n",
5744 __func__, vectoring_info, exit_reason);
5745
5746 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
5747 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
5748 get_vmcs12(vcpu), vcpu)))) {
5749 if (vmx_interrupt_allowed(vcpu)) {
5750 vmx->soft_vnmi_blocked = 0;
5751 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
5752 vcpu->arch.nmi_pending) {
5753 /*
5754 * This CPU don't support us in finding the end of an
5755 * NMI-blocked window if the guest runs with IRQs
5756 * disabled. So we pull the trigger after 1 s of
5757 * futile waiting, but inform the user about this.
5758 */
5759 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5760 "state on VCPU %d after 1 s timeout\n",
5761 __func__, vcpu->vcpu_id);
5762 vmx->soft_vnmi_blocked = 0;
5763 }
5764 }
5765
5766 if (exit_reason < kvm_vmx_max_exit_handlers
5767 && kvm_vmx_exit_handlers[exit_reason])
5768 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5769 else {
5770 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5771 vcpu->run->hw.hardware_exit_reason = exit_reason;
5772 }
5773 return 0;
5774}
5775
5776static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5777{
5778 if (irr == -1 || tpr < irr) {
5779 vmcs_write32(TPR_THRESHOLD, 0);
5780 return;
5781 }
5782
5783 vmcs_write32(TPR_THRESHOLD, irr);
5784}
5785
5786static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
5787{
5788 u32 exit_intr_info;
5789
5790 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
5791 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
5792 return;
5793
5794 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5795 exit_intr_info = vmx->exit_intr_info;
5796
5797 /* Handle machine checks before interrupts are enabled */
5798 if (is_machine_check(exit_intr_info))
5799 kvm_machine_check();
5800
5801 /* We need to handle NMIs before interrupts are enabled */
5802 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
5803 (exit_intr_info & INTR_INFO_VALID_MASK)) {
5804 kvm_before_handle_nmi(&vmx->vcpu);
5805 asm("int $2");
5806 kvm_after_handle_nmi(&vmx->vcpu);
5807 }
5808}
5809
5810static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
5811{
5812 u32 exit_intr_info;
5813 bool unblock_nmi;
5814 u8 vector;
5815 bool idtv_info_valid;
5816
5817 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
5818
5819 if (cpu_has_virtual_nmis()) {
5820 if (vmx->nmi_known_unmasked)
5821 return;
5822 /*
5823 * Can't use vmx->exit_intr_info since we're not sure what
5824 * the exit reason is.
5825 */
5826 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5827 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
5828 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
5829 /*
5830 * SDM 3: 27.7.1.2 (September 2008)
5831 * Re-set bit "block by NMI" before VM entry if vmexit caused by
5832 * a guest IRET fault.
5833 * SDM 3: 23.2.2 (September 2008)
5834 * Bit 12 is undefined in any of the following cases:
5835 * If the VM exit sets the valid bit in the IDT-vectoring
5836 * information field.
5837 * If the VM exit is due to a double fault.
5838 */
5839 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
5840 vector != DF_VECTOR && !idtv_info_valid)
5841 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5842 GUEST_INTR_STATE_NMI);
5843 else
5844 vmx->nmi_known_unmasked =
5845 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
5846 & GUEST_INTR_STATE_NMI);
5847 } else if (unlikely(vmx->soft_vnmi_blocked))
5848 vmx->vnmi_blocked_time +=
5849 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
5850}
5851
5852static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
5853 u32 idt_vectoring_info,
5854 int instr_len_field,
5855 int error_code_field)
5856{
5857 u8 vector;
5858 int type;
5859 bool idtv_info_valid;
5860
5861 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
5862
5863 vmx->vcpu.arch.nmi_injected = false;
5864 kvm_clear_exception_queue(&vmx->vcpu);
5865 kvm_clear_interrupt_queue(&vmx->vcpu);
5866
5867 if (!idtv_info_valid)
5868 return;
5869
5870 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
5871
5872 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
5873 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
5874
5875 switch (type) {
5876 case INTR_TYPE_NMI_INTR:
5877 vmx->vcpu.arch.nmi_injected = true;
5878 /*
5879 * SDM 3: 27.7.1.2 (September 2008)
5880 * Clear bit "block by NMI" before VM entry if a NMI
5881 * delivery faulted.
5882 */
5883 vmx_set_nmi_mask(&vmx->vcpu, false);
5884 break;
5885 case INTR_TYPE_SOFT_EXCEPTION:
5886 vmx->vcpu.arch.event_exit_inst_len =
5887 vmcs_read32(instr_len_field);
5888 /* fall through */
5889 case INTR_TYPE_HARD_EXCEPTION:
5890 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
5891 u32 err = vmcs_read32(error_code_field);
5892 kvm_queue_exception_e(&vmx->vcpu, vector, err);
5893 } else
5894 kvm_queue_exception(&vmx->vcpu, vector);
5895 break;
5896 case INTR_TYPE_SOFT_INTR:
5897 vmx->vcpu.arch.event_exit_inst_len =
5898 vmcs_read32(instr_len_field);
5899 /* fall through */
5900 case INTR_TYPE_EXT_INTR:
5901 kvm_queue_interrupt(&vmx->vcpu, vector,
5902 type == INTR_TYPE_SOFT_INTR);
5903 break;
5904 default:
5905 break;
5906 }
5907}
5908
5909static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
5910{
5911 if (is_guest_mode(&vmx->vcpu))
5912 return;
5913 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
5914 VM_EXIT_INSTRUCTION_LEN,
5915 IDT_VECTORING_ERROR_CODE);
5916}
5917
5918static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
5919{
5920 if (is_guest_mode(vcpu))
5921 return;
5922 __vmx_complete_interrupts(to_vmx(vcpu),
5923 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5924 VM_ENTRY_INSTRUCTION_LEN,
5925 VM_ENTRY_EXCEPTION_ERROR_CODE);
5926
5927 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
5928}
5929
5930#ifdef CONFIG_X86_64
5931#define R "r"
5932#define Q "q"
5933#else
5934#define R "e"
5935#define Q "l"
5936#endif
5937
5938static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
5939{
5940 struct vcpu_vmx *vmx = to_vmx(vcpu);
5941
5942 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
5943 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5944 if (vmcs12->idt_vectoring_info_field &
5945 VECTORING_INFO_VALID_MASK) {
5946 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5947 vmcs12->idt_vectoring_info_field);
5948 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5949 vmcs12->vm_exit_instruction_len);
5950 if (vmcs12->idt_vectoring_info_field &
5951 VECTORING_INFO_DELIVER_CODE_MASK)
5952 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
5953 vmcs12->idt_vectoring_error_code);
5954 }
5955 }
5956
5957 /* Record the guest's net vcpu time for enforced NMI injections. */
5958 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
5959 vmx->entry_time = ktime_get();
5960
5961 /* Don't enter VMX if guest state is invalid, let the exit handler
5962 start emulation until we arrive back to a valid state */
5963 if (vmx->emulation_required && emulate_invalid_guest_state)
5964 return;
5965
5966 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
5967 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
5968 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
5969 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
5970
5971 /* When single-stepping over STI and MOV SS, we must clear the
5972 * corresponding interruptibility bits in the guest state. Otherwise
5973 * vmentry fails as it then expects bit 14 (BS) in pending debug
5974 * exceptions being set, but that's not correct for the guest debugging
5975 * case. */
5976 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5977 vmx_set_interrupt_shadow(vcpu, 0);
5978
5979 vmx->__launched = vmx->loaded_vmcs->launched;
5980 asm(
5981 /* Store host registers */
5982 "push %%"R"dx; push %%"R"bp;"
5983 "push %%"R"cx \n\t" /* placeholder for guest rcx */
5984 "push %%"R"cx \n\t"
5985 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
5986 "je 1f \n\t"
5987 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
5988 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
5989 "1: \n\t"
5990 /* Reload cr2 if changed */
5991 "mov %c[cr2](%0), %%"R"ax \n\t"
5992 "mov %%cr2, %%"R"dx \n\t"
5993 "cmp %%"R"ax, %%"R"dx \n\t"
5994 "je 2f \n\t"
5995 "mov %%"R"ax, %%cr2 \n\t"
5996 "2: \n\t"
5997 /* Check if vmlaunch of vmresume is needed */
5998 "cmpl $0, %c[launched](%0) \n\t"
5999 /* Load guest registers. Don't clobber flags. */
6000 "mov %c[rax](%0), %%"R"ax \n\t"
6001 "mov %c[rbx](%0), %%"R"bx \n\t"
6002 "mov %c[rdx](%0), %%"R"dx \n\t"
6003 "mov %c[rsi](%0), %%"R"si \n\t"
6004 "mov %c[rdi](%0), %%"R"di \n\t"
6005 "mov %c[rbp](%0), %%"R"bp \n\t"
6006#ifdef CONFIG_X86_64
6007 "mov %c[r8](%0), %%r8 \n\t"
6008 "mov %c[r9](%0), %%r9 \n\t"
6009 "mov %c[r10](%0), %%r10 \n\t"
6010 "mov %c[r11](%0), %%r11 \n\t"
6011 "mov %c[r12](%0), %%r12 \n\t"
6012 "mov %c[r13](%0), %%r13 \n\t"
6013 "mov %c[r14](%0), %%r14 \n\t"
6014 "mov %c[r15](%0), %%r15 \n\t"
6015#endif
6016 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
6017
6018 /* Enter guest mode */
6019 "jne .Llaunched \n\t"
6020 __ex(ASM_VMX_VMLAUNCH) "\n\t"
6021 "jmp .Lkvm_vmx_return \n\t"
6022 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
6023 ".Lkvm_vmx_return: "
6024 /* Save guest registers, load host registers, keep flags */
6025 "mov %0, %c[wordsize](%%"R"sp) \n\t"
6026 "pop %0 \n\t"
6027 "mov %%"R"ax, %c[rax](%0) \n\t"
6028 "mov %%"R"bx, %c[rbx](%0) \n\t"
6029 "pop"Q" %c[rcx](%0) \n\t"
6030 "mov %%"R"dx, %c[rdx](%0) \n\t"
6031 "mov %%"R"si, %c[rsi](%0) \n\t"
6032 "mov %%"R"di, %c[rdi](%0) \n\t"
6033 "mov %%"R"bp, %c[rbp](%0) \n\t"
6034#ifdef CONFIG_X86_64
6035 "mov %%r8, %c[r8](%0) \n\t"
6036 "mov %%r9, %c[r9](%0) \n\t"
6037 "mov %%r10, %c[r10](%0) \n\t"
6038 "mov %%r11, %c[r11](%0) \n\t"
6039 "mov %%r12, %c[r12](%0) \n\t"
6040 "mov %%r13, %c[r13](%0) \n\t"
6041 "mov %%r14, %c[r14](%0) \n\t"
6042 "mov %%r15, %c[r15](%0) \n\t"
6043#endif
6044 "mov %%cr2, %%"R"ax \n\t"
6045 "mov %%"R"ax, %c[cr2](%0) \n\t"
6046
6047 "pop %%"R"bp; pop %%"R"dx \n\t"
6048 "setbe %c[fail](%0) \n\t"
6049 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
6050 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
6051 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
6052 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
6053 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6054 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6055 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6056 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6057 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6058 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6059 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
6060#ifdef CONFIG_X86_64
6061 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6062 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6063 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6064 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6065 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6066 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6067 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6068 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6069#endif
6070 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6071 [wordsize]"i"(sizeof(ulong))
6072 : "cc", "memory"
6073 , R"ax", R"bx", R"di", R"si"
6074#ifdef CONFIG_X86_64
6075 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6076#endif
6077 );
6078
6079 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6080 | (1 << VCPU_EXREG_RFLAGS)
6081 | (1 << VCPU_EXREG_CPL)
6082 | (1 << VCPU_EXREG_PDPTR)
6083 | (1 << VCPU_EXREG_SEGMENTS)
6084 | (1 << VCPU_EXREG_CR3));
6085 vcpu->arch.regs_dirty = 0;
6086
6087 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6088
6089 if (is_guest_mode(vcpu)) {
6090 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6091 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6092 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6093 vmcs12->idt_vectoring_error_code =
6094 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6095 vmcs12->vm_exit_instruction_len =
6096 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6097 }
6098 }
6099
6100 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
6101 vmx->loaded_vmcs->launched = 1;
6102
6103 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6104
6105 vmx_complete_atomic_exit(vmx);
6106 vmx_recover_nmi_blocking(vmx);
6107 vmx_complete_interrupts(vmx);
6108}
6109
6110#undef R
6111#undef Q
6112
6113static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6114{
6115 struct vcpu_vmx *vmx = to_vmx(vcpu);
6116
6117 free_vpid(vmx);
6118 free_nested(vmx);
6119 free_loaded_vmcs(vmx->loaded_vmcs);
6120 kfree(vmx->guest_msrs);
6121 kvm_vcpu_uninit(vcpu);
6122 kmem_cache_free(kvm_vcpu_cache, vmx);
6123}
6124
6125static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6126{
6127 int err;
6128 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
6129 int cpu;
6130
6131 if (!vmx)
6132 return ERR_PTR(-ENOMEM);
6133
6134 allocate_vpid(vmx);
6135
6136 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6137 if (err)
6138 goto free_vcpu;
6139
6140 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
6141 err = -ENOMEM;
6142 if (!vmx->guest_msrs) {
6143 goto uninit_vcpu;
6144 }
6145
6146 vmx->loaded_vmcs = &vmx->vmcs01;
6147 vmx->loaded_vmcs->vmcs = alloc_vmcs();
6148 if (!vmx->loaded_vmcs->vmcs)
6149 goto free_msrs;
6150 if (!vmm_exclusive)
6151 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6152 loaded_vmcs_init(vmx->loaded_vmcs);
6153 if (!vmm_exclusive)
6154 kvm_cpu_vmxoff();
6155
6156 cpu = get_cpu();
6157 vmx_vcpu_load(&vmx->vcpu, cpu);
6158 vmx->vcpu.cpu = cpu;
6159 err = vmx_vcpu_setup(vmx);
6160 vmx_vcpu_put(&vmx->vcpu);
6161 put_cpu();
6162 if (err)
6163 goto free_vmcs;
6164 if (vm_need_virtualize_apic_accesses(kvm))
6165 err = alloc_apic_access_page(kvm);
6166 if (err)
6167 goto free_vmcs;
6168
6169 if (enable_ept) {
6170 if (!kvm->arch.ept_identity_map_addr)
6171 kvm->arch.ept_identity_map_addr =
6172 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
6173 err = -ENOMEM;
6174 if (alloc_identity_pagetable(kvm) != 0)
6175 goto free_vmcs;
6176 if (!init_rmode_identity_map(kvm))
6177 goto free_vmcs;
6178 }
6179
6180 vmx->nested.current_vmptr = -1ull;
6181 vmx->nested.current_vmcs12 = NULL;
6182
6183 return &vmx->vcpu;
6184
6185free_vmcs:
6186 free_vmcs(vmx->loaded_vmcs->vmcs);
6187free_msrs:
6188 kfree(vmx->guest_msrs);
6189uninit_vcpu:
6190 kvm_vcpu_uninit(&vmx->vcpu);
6191free_vcpu:
6192 free_vpid(vmx);
6193 kmem_cache_free(kvm_vcpu_cache, vmx);
6194 return ERR_PTR(err);
6195}
6196
6197static void __init vmx_check_processor_compat(void *rtn)
6198{
6199 struct vmcs_config vmcs_conf;
6200
6201 *(int *)rtn = 0;
6202 if (setup_vmcs_config(&vmcs_conf) < 0)
6203 *(int *)rtn = -EIO;
6204 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6205 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6206 smp_processor_id());
6207 *(int *)rtn = -EIO;
6208 }
6209}
6210
6211static int get_ept_level(void)
6212{
6213 return VMX_EPT_DEFAULT_GAW + 1;
6214}
6215
6216static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6217{
6218 u64 ret;
6219
6220 /* For VT-d and EPT combination
6221 * 1. MMIO: always map as UC
6222 * 2. EPT with VT-d:
6223 * a. VT-d without snooping control feature: can't guarantee the
6224 * result, try to trust guest.
6225 * b. VT-d with snooping control feature: snooping control feature of
6226 * VT-d engine can guarantee the cache correctness. Just set it
6227 * to WB to keep consistent with host. So the same as item 3.
6228 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6229 * consistent with host MTRR
6230 */
6231 if (is_mmio)
6232 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
6233 else if (vcpu->kvm->arch.iommu_domain &&
6234 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6235 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6236 VMX_EPT_MT_EPTE_SHIFT;
6237 else
6238 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
6239 | VMX_EPT_IPAT_BIT;
6240
6241 return ret;
6242}
6243
6244#define _ER(x) { EXIT_REASON_##x, #x }
6245
6246static const struct trace_print_flags vmx_exit_reasons_str[] = {
6247 _ER(EXCEPTION_NMI),
6248 _ER(EXTERNAL_INTERRUPT),
6249 _ER(TRIPLE_FAULT),
6250 _ER(PENDING_INTERRUPT),
6251 _ER(NMI_WINDOW),
6252 _ER(TASK_SWITCH),
6253 _ER(CPUID),
6254 _ER(HLT),
6255 _ER(INVLPG),
6256 _ER(RDPMC),
6257 _ER(RDTSC),
6258 _ER(VMCALL),
6259 _ER(VMCLEAR),
6260 _ER(VMLAUNCH),
6261 _ER(VMPTRLD),
6262 _ER(VMPTRST),
6263 _ER(VMREAD),
6264 _ER(VMRESUME),
6265 _ER(VMWRITE),
6266 _ER(VMOFF),
6267 _ER(VMON),
6268 _ER(CR_ACCESS),
6269 _ER(DR_ACCESS),
6270 _ER(IO_INSTRUCTION),
6271 _ER(MSR_READ),
6272 _ER(MSR_WRITE),
6273 _ER(MWAIT_INSTRUCTION),
6274 _ER(MONITOR_INSTRUCTION),
6275 _ER(PAUSE_INSTRUCTION),
6276 _ER(MCE_DURING_VMENTRY),
6277 _ER(TPR_BELOW_THRESHOLD),
6278 _ER(APIC_ACCESS),
6279 _ER(EPT_VIOLATION),
6280 _ER(EPT_MISCONFIG),
6281 _ER(WBINVD),
6282 { -1, NULL }
6283};
6284
6285#undef _ER
6286
6287static int vmx_get_lpage_level(void)
6288{
6289 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6290 return PT_DIRECTORY_LEVEL;
6291 else
6292 /* For shadow and EPT supported 1GB page */
6293 return PT_PDPE_LEVEL;
6294}
6295
6296static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6297{
6298 struct kvm_cpuid_entry2 *best;
6299 struct vcpu_vmx *vmx = to_vmx(vcpu);
6300 u32 exec_control;
6301
6302 vmx->rdtscp_enabled = false;
6303 if (vmx_rdtscp_supported()) {
6304 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6305 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6306 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6307 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6308 vmx->rdtscp_enabled = true;
6309 else {
6310 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6311 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6312 exec_control);
6313 }
6314 }
6315 }
6316}
6317
6318static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6319{
6320 if (func == 1 && nested)
6321 entry->ecx |= bit(X86_FEATURE_VMX);
6322}
6323
6324/*
6325 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6326 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6327 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6328 * guest in a way that will both be appropriate to L1's requests, and our
6329 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6330 * function also has additional necessary side-effects, like setting various
6331 * vcpu->arch fields.
6332 */
6333static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6334{
6335 struct vcpu_vmx *vmx = to_vmx(vcpu);
6336 u32 exec_control;
6337
6338 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6339 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6340 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6341 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6342 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6343 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6344 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6345 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6346 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6347 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6348 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6349 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6350 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6351 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6352 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6353 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6354 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6355 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6356 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6357 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6358 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6359 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6360 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6361 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6362 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6363 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6364 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6365 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6366 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6367 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6368 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6369 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6370 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6371 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6372 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6373 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6374
6375 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6376 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6377 vmcs12->vm_entry_intr_info_field);
6378 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6379 vmcs12->vm_entry_exception_error_code);
6380 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6381 vmcs12->vm_entry_instruction_len);
6382 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6383 vmcs12->guest_interruptibility_info);
6384 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6385 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6386 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6387 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6388 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6389 vmcs12->guest_pending_dbg_exceptions);
6390 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6391 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6392
6393 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6394
6395 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6396 (vmcs_config.pin_based_exec_ctrl |
6397 vmcs12->pin_based_vm_exec_control));
6398
6399 /*
6400 * Whether page-faults are trapped is determined by a combination of
6401 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6402 * If enable_ept, L0 doesn't care about page faults and we should
6403 * set all of these to L1's desires. However, if !enable_ept, L0 does
6404 * care about (at least some) page faults, and because it is not easy
6405 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6406 * to exit on each and every L2 page fault. This is done by setting
6407 * MASK=MATCH=0 and (see below) EB.PF=1.
6408 * Note that below we don't need special code to set EB.PF beyond the
6409 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6410 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6411 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6412 *
6413 * A problem with this approach (when !enable_ept) is that L1 may be
6414 * injected with more page faults than it asked for. This could have
6415 * caused problems, but in practice existing hypervisors don't care.
6416 * To fix this, we will need to emulate the PFEC checking (on the L1
6417 * page tables), using walk_addr(), when injecting PFs to L1.
6418 */
6419 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6420 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6421 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6422 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6423
6424 if (cpu_has_secondary_exec_ctrls()) {
6425 u32 exec_control = vmx_secondary_exec_control(vmx);
6426 if (!vmx->rdtscp_enabled)
6427 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6428 /* Take the following fields only from vmcs12 */
6429 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6430 if (nested_cpu_has(vmcs12,
6431 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6432 exec_control |= vmcs12->secondary_vm_exec_control;
6433
6434 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6435 /*
6436 * Translate L1 physical address to host physical
6437 * address for vmcs02. Keep the page pinned, so this
6438 * physical address remains valid. We keep a reference
6439 * to it so we can release it later.
6440 */
6441 if (vmx->nested.apic_access_page) /* shouldn't happen */
6442 nested_release_page(vmx->nested.apic_access_page);
6443 vmx->nested.apic_access_page =
6444 nested_get_page(vcpu, vmcs12->apic_access_addr);
6445 /*
6446 * If translation failed, no matter: This feature asks
6447 * to exit when accessing the given address, and if it
6448 * can never be accessed, this feature won't do
6449 * anything anyway.
6450 */
6451 if (!vmx->nested.apic_access_page)
6452 exec_control &=
6453 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6454 else
6455 vmcs_write64(APIC_ACCESS_ADDR,
6456 page_to_phys(vmx->nested.apic_access_page));
6457 }
6458
6459 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6460 }
6461
6462
6463 /*
6464 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6465 * Some constant fields are set here by vmx_set_constant_host_state().
6466 * Other fields are different per CPU, and will be set later when
6467 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6468 */
6469 vmx_set_constant_host_state();
6470
6471 /*
6472 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6473 * entry, but only if the current (host) sp changed from the value
6474 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6475 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6476 * here we just force the write to happen on entry.
6477 */
6478 vmx->host_rsp = 0;
6479
6480 exec_control = vmx_exec_control(vmx); /* L0's desires */
6481 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6482 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6483 exec_control &= ~CPU_BASED_TPR_SHADOW;
6484 exec_control |= vmcs12->cpu_based_vm_exec_control;
6485 /*
6486 * Merging of IO and MSR bitmaps not currently supported.
6487 * Rather, exit every time.
6488 */
6489 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6490 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6491 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6492
6493 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6494
6495 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6496 * bitwise-or of what L1 wants to trap for L2, and what we want to
6497 * trap. Note that CR0.TS also needs updating - we do this later.
6498 */
6499 update_exception_bitmap(vcpu);
6500 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6501 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6502
6503 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6504 vmcs_write32(VM_EXIT_CONTROLS,
6505 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6506 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6507 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6508
6509 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6510 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6511 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6512 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6513
6514
6515 set_cr4_guest_host_mask(vmx);
6516
6517 vmcs_write64(TSC_OFFSET,
6518 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6519
6520 if (enable_vpid) {
6521 /*
6522 * Trivially support vpid by letting L2s share their parent
6523 * L1's vpid. TODO: move to a more elaborate solution, giving
6524 * each L2 its own vpid and exposing the vpid feature to L1.
6525 */
6526 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6527 vmx_flush_tlb(vcpu);
6528 }
6529
6530 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6531 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6532 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6533 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6534 else
6535 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6536 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6537 vmx_set_efer(vcpu, vcpu->arch.efer);
6538
6539 /*
6540 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6541 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6542 * The CR0_READ_SHADOW is what L2 should have expected to read given
6543 * the specifications by L1; It's not enough to take
6544 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6545 * have more bits than L1 expected.
6546 */
6547 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6548 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6549
6550 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6551 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6552
6553 /* shadow page tables on either EPT or shadow page tables */
6554 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6555 kvm_mmu_reset_context(vcpu);
6556
6557 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6558 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6559}
6560
6561/*
6562 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6563 * for running an L2 nested guest.
6564 */
6565static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6566{
6567 struct vmcs12 *vmcs12;
6568 struct vcpu_vmx *vmx = to_vmx(vcpu);
6569 int cpu;
6570 struct loaded_vmcs *vmcs02;
6571
6572 if (!nested_vmx_check_permission(vcpu) ||
6573 !nested_vmx_check_vmcs12(vcpu))
6574 return 1;
6575
6576 skip_emulated_instruction(vcpu);
6577 vmcs12 = get_vmcs12(vcpu);
6578
6579 /*
6580 * The nested entry process starts with enforcing various prerequisites
6581 * on vmcs12 as required by the Intel SDM, and act appropriately when
6582 * they fail: As the SDM explains, some conditions should cause the
6583 * instruction to fail, while others will cause the instruction to seem
6584 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6585 * To speed up the normal (success) code path, we should avoid checking
6586 * for misconfigurations which will anyway be caught by the processor
6587 * when using the merged vmcs02.
6588 */
6589 if (vmcs12->launch_state == launch) {
6590 nested_vmx_failValid(vcpu,
6591 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6592 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6593 return 1;
6594 }
6595
6596 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6597 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6598 /*TODO: Also verify bits beyond physical address width are 0*/
6599 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6600 return 1;
6601 }
6602
6603 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6604 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6605 /*TODO: Also verify bits beyond physical address width are 0*/
6606 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6607 return 1;
6608 }
6609
6610 if (vmcs12->vm_entry_msr_load_count > 0 ||
6611 vmcs12->vm_exit_msr_load_count > 0 ||
6612 vmcs12->vm_exit_msr_store_count > 0) {
6613 if (printk_ratelimit())
6614 printk(KERN_WARNING
6615 "%s: VMCS MSR_{LOAD,STORE} unsupported\n", __func__);
6616 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6617 return 1;
6618 }
6619
6620 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6621 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6622 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6623 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6624 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6625 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6626 !vmx_control_verify(vmcs12->vm_exit_controls,
6627 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6628 !vmx_control_verify(vmcs12->vm_entry_controls,
6629 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6630 {
6631 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6632 return 1;
6633 }
6634
6635 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6636 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6637 nested_vmx_failValid(vcpu,
6638 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6639 return 1;
6640 }
6641
6642 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6643 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6644 nested_vmx_entry_failure(vcpu, vmcs12,
6645 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6646 return 1;
6647 }
6648 if (vmcs12->vmcs_link_pointer != -1ull) {
6649 nested_vmx_entry_failure(vcpu, vmcs12,
6650 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6651 return 1;
6652 }
6653
6654 /*
6655 * We're finally done with prerequisite checking, and can start with
6656 * the nested entry.
6657 */
6658
6659 vmcs02 = nested_get_current_vmcs02(vmx);
6660 if (!vmcs02)
6661 return -ENOMEM;
6662
6663 enter_guest_mode(vcpu);
6664
6665 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6666
6667 cpu = get_cpu();
6668 vmx->loaded_vmcs = vmcs02;
6669 vmx_vcpu_put(vcpu);
6670 vmx_vcpu_load(vcpu, cpu);
6671 vcpu->cpu = cpu;
6672 put_cpu();
6673
6674 vmcs12->launch_state = 1;
6675
6676 prepare_vmcs02(vcpu, vmcs12);
6677
6678 /*
6679 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6680 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6681 * returned as far as L1 is concerned. It will only return (and set
6682 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6683 */
6684 return 1;
6685}
6686
6687/*
6688 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6689 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6690 * This function returns the new value we should put in vmcs12.guest_cr0.
6691 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6692 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6693 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6694 * didn't trap the bit, because if L1 did, so would L0).
6695 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6696 * been modified by L2, and L1 knows it. So just leave the old value of
6697 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6698 * isn't relevant, because if L0 traps this bit it can set it to anything.
6699 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6700 * changed these bits, and therefore they need to be updated, but L0
6701 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6702 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6703 */
6704static inline unsigned long
6705vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6706{
6707 return
6708 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6709 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6710 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
6711 vcpu->arch.cr0_guest_owned_bits));
6712}
6713
6714static inline unsigned long
6715vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6716{
6717 return
6718 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
6719 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
6720 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
6721 vcpu->arch.cr4_guest_owned_bits));
6722}
6723
6724/*
6725 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6726 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6727 * and this function updates it to reflect the changes to the guest state while
6728 * L2 was running (and perhaps made some exits which were handled directly by L0
6729 * without going back to L1), and to reflect the exit reason.
6730 * Note that we do not have to copy here all VMCS fields, just those that
6731 * could have changed by the L2 guest or the exit - i.e., the guest-state and
6732 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
6733 * which already writes to vmcs12 directly.
6734 */
6735void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6736{
6737 /* update guest state fields: */
6738 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
6739 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
6740
6741 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
6742 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6743 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
6744 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
6745
6746 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
6747 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
6748 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
6749 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
6750 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
6751 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
6752 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
6753 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
6754 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
6755 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
6756 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
6757 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
6758 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
6759 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
6760 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
6761 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
6762 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
6763 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
6764 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
6765 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
6766 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
6767 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
6768 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
6769 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
6770 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
6771 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
6772 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
6773 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
6774 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
6775 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
6776 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
6777 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
6778 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
6779 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
6780 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
6781 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
6782
6783 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
6784 vmcs12->guest_interruptibility_info =
6785 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
6786 vmcs12->guest_pending_dbg_exceptions =
6787 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
6788
6789 /* TODO: These cannot have changed unless we have MSR bitmaps and
6790 * the relevant bit asks not to trap the change */
6791 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
6792 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
6793 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
6794 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
6795 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
6796 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
6797
6798 /* update exit information fields: */
6799
6800 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
6801 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6802
6803 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6804 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6805 vmcs12->idt_vectoring_info_field =
6806 vmcs_read32(IDT_VECTORING_INFO_FIELD);
6807 vmcs12->idt_vectoring_error_code =
6808 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6809 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6810 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6811
6812 /* clear vm-entry fields which are to be cleared on exit */
6813 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6814 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
6815}
6816
6817/*
6818 * A part of what we need to when the nested L2 guest exits and we want to
6819 * run its L1 parent, is to reset L1's guest state to the host state specified
6820 * in vmcs12.
6821 * This function is to be called not only on normal nested exit, but also on
6822 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
6823 * Failures During or After Loading Guest State").
6824 * This function should be called when the active VMCS is L1's (vmcs01).
6825 */
6826void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6827{
6828 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
6829 vcpu->arch.efer = vmcs12->host_ia32_efer;
6830 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
6831 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6832 else
6833 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6834 vmx_set_efer(vcpu, vcpu->arch.efer);
6835
6836 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
6837 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
6838 /*
6839 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
6840 * actually changed, because it depends on the current state of
6841 * fpu_active (which may have changed).
6842 * Note that vmx_set_cr0 refers to efer set above.
6843 */
6844 kvm_set_cr0(vcpu, vmcs12->host_cr0);
6845 /*
6846 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
6847 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
6848 * but we also need to update cr0_guest_host_mask and exception_bitmap.
6849 */
6850 update_exception_bitmap(vcpu);
6851 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
6852 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6853
6854 /*
6855 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
6856 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
6857 */
6858 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
6859 kvm_set_cr4(vcpu, vmcs12->host_cr4);
6860
6861 /* shadow page tables on either EPT or shadow page tables */
6862 kvm_set_cr3(vcpu, vmcs12->host_cr3);
6863 kvm_mmu_reset_context(vcpu);
6864
6865 if (enable_vpid) {
6866 /*
6867 * Trivially support vpid by letting L2s share their parent
6868 * L1's vpid. TODO: move to a more elaborate solution, giving
6869 * each L2 its own vpid and exposing the vpid feature to L1.
6870 */
6871 vmx_flush_tlb(vcpu);
6872 }
6873
6874
6875 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
6876 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
6877 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
6878 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
6879 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
6880 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
6881 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
6882 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
6883 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
6884 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
6885 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
6886 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
6887 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
6888 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
6889 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
6890
6891 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
6892 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
6893 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6894 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
6895 vmcs12->host_ia32_perf_global_ctrl);
6896}
6897
6898/*
6899 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
6900 * and modify vmcs12 to make it see what it would expect to see there if
6901 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
6902 */
6903static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
6904{
6905 struct vcpu_vmx *vmx = to_vmx(vcpu);
6906 int cpu;
6907 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6908
6909 leave_guest_mode(vcpu);
6910 prepare_vmcs12(vcpu, vmcs12);
6911
6912 cpu = get_cpu();
6913 vmx->loaded_vmcs = &vmx->vmcs01;
6914 vmx_vcpu_put(vcpu);
6915 vmx_vcpu_load(vcpu, cpu);
6916 vcpu->cpu = cpu;
6917 put_cpu();
6918
6919 /* if no vmcs02 cache requested, remove the one we used */
6920 if (VMCS02_POOL_SIZE == 0)
6921 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
6922
6923 load_vmcs12_host_state(vcpu, vmcs12);
6924
6925 /* Update TSC_OFFSET if vmx_adjust_tsc_offset() was used while L2 ran */
6926 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
6927
6928 /* This is needed for same reason as it was needed in prepare_vmcs02 */
6929 vmx->host_rsp = 0;
6930
6931 /* Unpin physical memory we referred to in vmcs02 */
6932 if (vmx->nested.apic_access_page) {
6933 nested_release_page(vmx->nested.apic_access_page);
6934 vmx->nested.apic_access_page = 0;
6935 }
6936
6937 /*
6938 * Exiting from L2 to L1, we're now back to L1 which thinks it just
6939 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
6940 * success or failure flag accordingly.
6941 */
6942 if (unlikely(vmx->fail)) {
6943 vmx->fail = 0;
6944 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
6945 } else
6946 nested_vmx_succeed(vcpu);
6947}
6948
6949/*
6950 * L1's failure to enter L2 is a subset of a normal exit, as explained in
6951 * 23.7 "VM-entry failures during or after loading guest state" (this also
6952 * lists the acceptable exit-reason and exit-qualification parameters).
6953 * It should only be called before L2 actually succeeded to run, and when
6954 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
6955 */
6956static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
6957 struct vmcs12 *vmcs12,
6958 u32 reason, unsigned long qualification)
6959{
6960 load_vmcs12_host_state(vcpu, vmcs12);
6961 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
6962 vmcs12->exit_qualification = qualification;
6963 nested_vmx_succeed(vcpu);
6964}
6965
6966static int vmx_check_intercept(struct kvm_vcpu *vcpu,
6967 struct x86_instruction_info *info,
6968 enum x86_intercept_stage stage)
6969{
6970 return X86EMUL_CONTINUE;
6971}
6972
6973static struct kvm_x86_ops vmx_x86_ops = {
6974 .cpu_has_kvm_support = cpu_has_kvm_support,
6975 .disabled_by_bios = vmx_disabled_by_bios,
6976 .hardware_setup = hardware_setup,
6977 .hardware_unsetup = hardware_unsetup,
6978 .check_processor_compatibility = vmx_check_processor_compat,
6979 .hardware_enable = hardware_enable,
6980 .hardware_disable = hardware_disable,
6981 .cpu_has_accelerated_tpr = report_flexpriority,
6982
6983 .vcpu_create = vmx_create_vcpu,
6984 .vcpu_free = vmx_free_vcpu,
6985 .vcpu_reset = vmx_vcpu_reset,
6986
6987 .prepare_guest_switch = vmx_save_host_state,
6988 .vcpu_load = vmx_vcpu_load,
6989 .vcpu_put = vmx_vcpu_put,
6990
6991 .set_guest_debug = set_guest_debug,
6992 .get_msr = vmx_get_msr,
6993 .set_msr = vmx_set_msr,
6994 .get_segment_base = vmx_get_segment_base,
6995 .get_segment = vmx_get_segment,
6996 .set_segment = vmx_set_segment,
6997 .get_cpl = vmx_get_cpl,
6998 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
6999 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7000 .decache_cr3 = vmx_decache_cr3,
7001 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7002 .set_cr0 = vmx_set_cr0,
7003 .set_cr3 = vmx_set_cr3,
7004 .set_cr4 = vmx_set_cr4,
7005 .set_efer = vmx_set_efer,
7006 .get_idt = vmx_get_idt,
7007 .set_idt = vmx_set_idt,
7008 .get_gdt = vmx_get_gdt,
7009 .set_gdt = vmx_set_gdt,
7010 .set_dr7 = vmx_set_dr7,
7011 .cache_reg = vmx_cache_reg,
7012 .get_rflags = vmx_get_rflags,
7013 .set_rflags = vmx_set_rflags,
7014 .fpu_activate = vmx_fpu_activate,
7015 .fpu_deactivate = vmx_fpu_deactivate,
7016
7017 .tlb_flush = vmx_flush_tlb,
7018
7019 .run = vmx_vcpu_run,
7020 .handle_exit = vmx_handle_exit,
7021 .skip_emulated_instruction = skip_emulated_instruction,
7022 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7023 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7024 .patch_hypercall = vmx_patch_hypercall,
7025 .set_irq = vmx_inject_irq,
7026 .set_nmi = vmx_inject_nmi,
7027 .queue_exception = vmx_queue_exception,
7028 .cancel_injection = vmx_cancel_injection,
7029 .interrupt_allowed = vmx_interrupt_allowed,
7030 .nmi_allowed = vmx_nmi_allowed,
7031 .get_nmi_mask = vmx_get_nmi_mask,
7032 .set_nmi_mask = vmx_set_nmi_mask,
7033 .enable_nmi_window = enable_nmi_window,
7034 .enable_irq_window = enable_irq_window,
7035 .update_cr8_intercept = update_cr8_intercept,
7036
7037 .set_tss_addr = vmx_set_tss_addr,
7038 .get_tdp_level = get_ept_level,
7039 .get_mt_mask = vmx_get_mt_mask,
7040
7041 .get_exit_info = vmx_get_exit_info,
7042 .exit_reasons_str = vmx_exit_reasons_str,
7043
7044 .get_lpage_level = vmx_get_lpage_level,
7045
7046 .cpuid_update = vmx_cpuid_update,
7047
7048 .rdtscp_supported = vmx_rdtscp_supported,
7049
7050 .set_supported_cpuid = vmx_set_supported_cpuid,
7051
7052 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7053
7054 .set_tsc_khz = vmx_set_tsc_khz,
7055 .write_tsc_offset = vmx_write_tsc_offset,
7056 .adjust_tsc_offset = vmx_adjust_tsc_offset,
7057 .compute_tsc_offset = vmx_compute_tsc_offset,
7058
7059 .set_tdp_cr3 = vmx_set_cr3,
7060
7061 .check_intercept = vmx_check_intercept,
7062};
7063
7064static int __init vmx_init(void)
7065{
7066 int r, i;
7067
7068 rdmsrl_safe(MSR_EFER, &host_efer);
7069
7070 for (i = 0; i < NR_VMX_MSR; ++i)
7071 kvm_define_shared_msr(i, vmx_msr_index[i]);
7072
7073 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
7074 if (!vmx_io_bitmap_a)
7075 return -ENOMEM;
7076
7077 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
7078 if (!vmx_io_bitmap_b) {
7079 r = -ENOMEM;
7080 goto out;
7081 }
7082
7083 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7084 if (!vmx_msr_bitmap_legacy) {
7085 r = -ENOMEM;
7086 goto out1;
7087 }
7088
7089 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7090 if (!vmx_msr_bitmap_longmode) {
7091 r = -ENOMEM;
7092 goto out2;
7093 }
7094
7095 /*
7096 * Allow direct access to the PC debug port (it is often used for I/O
7097 * delays, but the vmexits simply slow things down).
7098 */
7099 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7100 clear_bit(0x80, vmx_io_bitmap_a);
7101
7102 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
7103
7104 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7105 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
7106
7107 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7108
7109 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7110 __alignof__(struct vcpu_vmx), THIS_MODULE);
7111 if (r)
7112 goto out3;
7113
7114 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7115 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7116 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7117 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7118 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7119 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
7120
7121 if (enable_ept) {
7122 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
7123 VMX_EPT_EXECUTABLE_MASK);
7124 ept_set_mmio_spte_mask();
7125 kvm_enable_tdp();
7126 } else
7127 kvm_disable_tdp();
7128
7129 return 0;
7130
7131out3:
7132 free_page((unsigned long)vmx_msr_bitmap_longmode);
7133out2:
7134 free_page((unsigned long)vmx_msr_bitmap_legacy);
7135out1:
7136 free_page((unsigned long)vmx_io_bitmap_b);
7137out:
7138 free_page((unsigned long)vmx_io_bitmap_a);
7139 return r;
7140}
7141
7142static void __exit vmx_exit(void)
7143{
7144 free_page((unsigned long)vmx_msr_bitmap_legacy);
7145 free_page((unsigned long)vmx_msr_bitmap_longmode);
7146 free_page((unsigned long)vmx_io_bitmap_b);
7147 free_page((unsigned long)vmx_io_bitmap_a);
7148
7149 kvm_exit();
7150}
7151
7152module_init(vmx_init)
7153module_exit(vmx_exit)
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19#include "irq.h"
20#include "mmu.h"
21#include "cpuid.h"
22
23#include <linux/kvm_host.h>
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/mm.h>
27#include <linux/highmem.h>
28#include <linux/sched.h>
29#include <linux/moduleparam.h>
30#include <linux/mod_devicetable.h>
31#include <linux/ftrace_event.h>
32#include <linux/slab.h>
33#include <linux/tboot.h>
34#include "kvm_cache_regs.h"
35#include "x86.h"
36
37#include <asm/io.h>
38#include <asm/desc.h>
39#include <asm/vmx.h>
40#include <asm/virtext.h>
41#include <asm/mce.h>
42#include <asm/i387.h>
43#include <asm/xcr.h>
44#include <asm/perf_event.h>
45
46#include "trace.h"
47
48#define __ex(x) __kvm_handle_fault_on_reboot(x)
49#define __ex_clear(x, reg) \
50 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
51
52MODULE_AUTHOR("Qumranet");
53MODULE_LICENSE("GPL");
54
55static const struct x86_cpu_id vmx_cpu_id[] = {
56 X86_FEATURE_MATCH(X86_FEATURE_VMX),
57 {}
58};
59MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
60
61static bool __read_mostly enable_vpid = 1;
62module_param_named(vpid, enable_vpid, bool, 0444);
63
64static bool __read_mostly flexpriority_enabled = 1;
65module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
66
67static bool __read_mostly enable_ept = 1;
68module_param_named(ept, enable_ept, bool, S_IRUGO);
69
70static bool __read_mostly enable_unrestricted_guest = 1;
71module_param_named(unrestricted_guest,
72 enable_unrestricted_guest, bool, S_IRUGO);
73
74static bool __read_mostly emulate_invalid_guest_state = 0;
75module_param(emulate_invalid_guest_state, bool, S_IRUGO);
76
77static bool __read_mostly vmm_exclusive = 1;
78module_param(vmm_exclusive, bool, S_IRUGO);
79
80static bool __read_mostly fasteoi = 1;
81module_param(fasteoi, bool, S_IRUGO);
82
83/*
84 * If nested=1, nested virtualization is supported, i.e., guests may use
85 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
86 * use VMX instructions.
87 */
88static bool __read_mostly nested = 0;
89module_param(nested, bool, S_IRUGO);
90
91#define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
92 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
93#define KVM_GUEST_CR0_MASK \
94 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
95#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
96 (X86_CR0_WP | X86_CR0_NE)
97#define KVM_VM_CR0_ALWAYS_ON \
98 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
99#define KVM_CR4_GUEST_OWNED_BITS \
100 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
101 | X86_CR4_OSXMMEXCPT)
102
103#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
104#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
105
106#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
107
108/*
109 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
110 * ple_gap: upper bound on the amount of time between two successive
111 * executions of PAUSE in a loop. Also indicate if ple enabled.
112 * According to test, this time is usually smaller than 128 cycles.
113 * ple_window: upper bound on the amount of time a guest is allowed to execute
114 * in a PAUSE loop. Tests indicate that most spinlocks are held for
115 * less than 2^12 cycles
116 * Time is measured based on a counter that runs at the same rate as the TSC,
117 * refer SDM volume 3b section 21.6.13 & 22.1.3.
118 */
119#define KVM_VMX_DEFAULT_PLE_GAP 128
120#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
121static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
122module_param(ple_gap, int, S_IRUGO);
123
124static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
125module_param(ple_window, int, S_IRUGO);
126
127#define NR_AUTOLOAD_MSRS 8
128#define VMCS02_POOL_SIZE 1
129
130struct vmcs {
131 u32 revision_id;
132 u32 abort;
133 char data[0];
134};
135
136/*
137 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
138 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
139 * loaded on this CPU (so we can clear them if the CPU goes down).
140 */
141struct loaded_vmcs {
142 struct vmcs *vmcs;
143 int cpu;
144 int launched;
145 struct list_head loaded_vmcss_on_cpu_link;
146};
147
148struct shared_msr_entry {
149 unsigned index;
150 u64 data;
151 u64 mask;
152};
153
154/*
155 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
156 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
157 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
158 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
159 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
160 * More than one of these structures may exist, if L1 runs multiple L2 guests.
161 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
162 * underlying hardware which will be used to run L2.
163 * This structure is packed to ensure that its layout is identical across
164 * machines (necessary for live migration).
165 * If there are changes in this struct, VMCS12_REVISION must be changed.
166 */
167typedef u64 natural_width;
168struct __packed vmcs12 {
169 /* According to the Intel spec, a VMCS region must start with the
170 * following two fields. Then follow implementation-specific data.
171 */
172 u32 revision_id;
173 u32 abort;
174
175 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
176 u32 padding[7]; /* room for future expansion */
177
178 u64 io_bitmap_a;
179 u64 io_bitmap_b;
180 u64 msr_bitmap;
181 u64 vm_exit_msr_store_addr;
182 u64 vm_exit_msr_load_addr;
183 u64 vm_entry_msr_load_addr;
184 u64 tsc_offset;
185 u64 virtual_apic_page_addr;
186 u64 apic_access_addr;
187 u64 ept_pointer;
188 u64 guest_physical_address;
189 u64 vmcs_link_pointer;
190 u64 guest_ia32_debugctl;
191 u64 guest_ia32_pat;
192 u64 guest_ia32_efer;
193 u64 guest_ia32_perf_global_ctrl;
194 u64 guest_pdptr0;
195 u64 guest_pdptr1;
196 u64 guest_pdptr2;
197 u64 guest_pdptr3;
198 u64 host_ia32_pat;
199 u64 host_ia32_efer;
200 u64 host_ia32_perf_global_ctrl;
201 u64 padding64[8]; /* room for future expansion */
202 /*
203 * To allow migration of L1 (complete with its L2 guests) between
204 * machines of different natural widths (32 or 64 bit), we cannot have
205 * unsigned long fields with no explict size. We use u64 (aliased
206 * natural_width) instead. Luckily, x86 is little-endian.
207 */
208 natural_width cr0_guest_host_mask;
209 natural_width cr4_guest_host_mask;
210 natural_width cr0_read_shadow;
211 natural_width cr4_read_shadow;
212 natural_width cr3_target_value0;
213 natural_width cr3_target_value1;
214 natural_width cr3_target_value2;
215 natural_width cr3_target_value3;
216 natural_width exit_qualification;
217 natural_width guest_linear_address;
218 natural_width guest_cr0;
219 natural_width guest_cr3;
220 natural_width guest_cr4;
221 natural_width guest_es_base;
222 natural_width guest_cs_base;
223 natural_width guest_ss_base;
224 natural_width guest_ds_base;
225 natural_width guest_fs_base;
226 natural_width guest_gs_base;
227 natural_width guest_ldtr_base;
228 natural_width guest_tr_base;
229 natural_width guest_gdtr_base;
230 natural_width guest_idtr_base;
231 natural_width guest_dr7;
232 natural_width guest_rsp;
233 natural_width guest_rip;
234 natural_width guest_rflags;
235 natural_width guest_pending_dbg_exceptions;
236 natural_width guest_sysenter_esp;
237 natural_width guest_sysenter_eip;
238 natural_width host_cr0;
239 natural_width host_cr3;
240 natural_width host_cr4;
241 natural_width host_fs_base;
242 natural_width host_gs_base;
243 natural_width host_tr_base;
244 natural_width host_gdtr_base;
245 natural_width host_idtr_base;
246 natural_width host_ia32_sysenter_esp;
247 natural_width host_ia32_sysenter_eip;
248 natural_width host_rsp;
249 natural_width host_rip;
250 natural_width paddingl[8]; /* room for future expansion */
251 u32 pin_based_vm_exec_control;
252 u32 cpu_based_vm_exec_control;
253 u32 exception_bitmap;
254 u32 page_fault_error_code_mask;
255 u32 page_fault_error_code_match;
256 u32 cr3_target_count;
257 u32 vm_exit_controls;
258 u32 vm_exit_msr_store_count;
259 u32 vm_exit_msr_load_count;
260 u32 vm_entry_controls;
261 u32 vm_entry_msr_load_count;
262 u32 vm_entry_intr_info_field;
263 u32 vm_entry_exception_error_code;
264 u32 vm_entry_instruction_len;
265 u32 tpr_threshold;
266 u32 secondary_vm_exec_control;
267 u32 vm_instruction_error;
268 u32 vm_exit_reason;
269 u32 vm_exit_intr_info;
270 u32 vm_exit_intr_error_code;
271 u32 idt_vectoring_info_field;
272 u32 idt_vectoring_error_code;
273 u32 vm_exit_instruction_len;
274 u32 vmx_instruction_info;
275 u32 guest_es_limit;
276 u32 guest_cs_limit;
277 u32 guest_ss_limit;
278 u32 guest_ds_limit;
279 u32 guest_fs_limit;
280 u32 guest_gs_limit;
281 u32 guest_ldtr_limit;
282 u32 guest_tr_limit;
283 u32 guest_gdtr_limit;
284 u32 guest_idtr_limit;
285 u32 guest_es_ar_bytes;
286 u32 guest_cs_ar_bytes;
287 u32 guest_ss_ar_bytes;
288 u32 guest_ds_ar_bytes;
289 u32 guest_fs_ar_bytes;
290 u32 guest_gs_ar_bytes;
291 u32 guest_ldtr_ar_bytes;
292 u32 guest_tr_ar_bytes;
293 u32 guest_interruptibility_info;
294 u32 guest_activity_state;
295 u32 guest_sysenter_cs;
296 u32 host_ia32_sysenter_cs;
297 u32 padding32[8]; /* room for future expansion */
298 u16 virtual_processor_id;
299 u16 guest_es_selector;
300 u16 guest_cs_selector;
301 u16 guest_ss_selector;
302 u16 guest_ds_selector;
303 u16 guest_fs_selector;
304 u16 guest_gs_selector;
305 u16 guest_ldtr_selector;
306 u16 guest_tr_selector;
307 u16 host_es_selector;
308 u16 host_cs_selector;
309 u16 host_ss_selector;
310 u16 host_ds_selector;
311 u16 host_fs_selector;
312 u16 host_gs_selector;
313 u16 host_tr_selector;
314};
315
316/*
317 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
318 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
319 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
320 */
321#define VMCS12_REVISION 0x11e57ed0
322
323/*
324 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
325 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
326 * current implementation, 4K are reserved to avoid future complications.
327 */
328#define VMCS12_SIZE 0x1000
329
330/* Used to remember the last vmcs02 used for some recently used vmcs12s */
331struct vmcs02_list {
332 struct list_head list;
333 gpa_t vmptr;
334 struct loaded_vmcs vmcs02;
335};
336
337/*
338 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
339 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
340 */
341struct nested_vmx {
342 /* Has the level1 guest done vmxon? */
343 bool vmxon;
344
345 /* The guest-physical address of the current VMCS L1 keeps for L2 */
346 gpa_t current_vmptr;
347 /* The host-usable pointer to the above */
348 struct page *current_vmcs12_page;
349 struct vmcs12 *current_vmcs12;
350
351 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
352 struct list_head vmcs02_pool;
353 int vmcs02_num;
354 u64 vmcs01_tsc_offset;
355 /* L2 must run next, and mustn't decide to exit to L1. */
356 bool nested_run_pending;
357 /*
358 * Guest pages referred to in vmcs02 with host-physical pointers, so
359 * we must keep them pinned while L2 runs.
360 */
361 struct page *apic_access_page;
362};
363
364struct vcpu_vmx {
365 struct kvm_vcpu vcpu;
366 unsigned long host_rsp;
367 u8 fail;
368 u8 cpl;
369 bool nmi_known_unmasked;
370 u32 exit_intr_info;
371 u32 idt_vectoring_info;
372 ulong rflags;
373 struct shared_msr_entry *guest_msrs;
374 int nmsrs;
375 int save_nmsrs;
376#ifdef CONFIG_X86_64
377 u64 msr_host_kernel_gs_base;
378 u64 msr_guest_kernel_gs_base;
379#endif
380 /*
381 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
382 * non-nested (L1) guest, it always points to vmcs01. For a nested
383 * guest (L2), it points to a different VMCS.
384 */
385 struct loaded_vmcs vmcs01;
386 struct loaded_vmcs *loaded_vmcs;
387 bool __launched; /* temporary, used in vmx_vcpu_run */
388 struct msr_autoload {
389 unsigned nr;
390 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
391 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
392 } msr_autoload;
393 struct {
394 int loaded;
395 u16 fs_sel, gs_sel, ldt_sel;
396#ifdef CONFIG_X86_64
397 u16 ds_sel, es_sel;
398#endif
399 int gs_ldt_reload_needed;
400 int fs_reload_needed;
401 } host_state;
402 struct {
403 int vm86_active;
404 ulong save_rflags;
405 struct kvm_save_segment {
406 u16 selector;
407 unsigned long base;
408 u32 limit;
409 u32 ar;
410 } tr, es, ds, fs, gs;
411 } rmode;
412 struct {
413 u32 bitmask; /* 4 bits per segment (1 bit per field) */
414 struct kvm_save_segment seg[8];
415 } segment_cache;
416 int vpid;
417 bool emulation_required;
418
419 /* Support for vnmi-less CPUs */
420 int soft_vnmi_blocked;
421 ktime_t entry_time;
422 s64 vnmi_blocked_time;
423 u32 exit_reason;
424
425 bool rdtscp_enabled;
426
427 /* Support for a guest hypervisor (nested VMX) */
428 struct nested_vmx nested;
429};
430
431enum segment_cache_field {
432 SEG_FIELD_SEL = 0,
433 SEG_FIELD_BASE = 1,
434 SEG_FIELD_LIMIT = 2,
435 SEG_FIELD_AR = 3,
436
437 SEG_FIELD_NR = 4
438};
439
440static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
441{
442 return container_of(vcpu, struct vcpu_vmx, vcpu);
443}
444
445#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
446#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
447#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
448 [number##_HIGH] = VMCS12_OFFSET(name)+4
449
450static unsigned short vmcs_field_to_offset_table[] = {
451 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
452 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
453 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
454 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
455 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
456 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
457 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
458 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
459 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
460 FIELD(HOST_ES_SELECTOR, host_es_selector),
461 FIELD(HOST_CS_SELECTOR, host_cs_selector),
462 FIELD(HOST_SS_SELECTOR, host_ss_selector),
463 FIELD(HOST_DS_SELECTOR, host_ds_selector),
464 FIELD(HOST_FS_SELECTOR, host_fs_selector),
465 FIELD(HOST_GS_SELECTOR, host_gs_selector),
466 FIELD(HOST_TR_SELECTOR, host_tr_selector),
467 FIELD64(IO_BITMAP_A, io_bitmap_a),
468 FIELD64(IO_BITMAP_B, io_bitmap_b),
469 FIELD64(MSR_BITMAP, msr_bitmap),
470 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
471 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
472 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
473 FIELD64(TSC_OFFSET, tsc_offset),
474 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
475 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
476 FIELD64(EPT_POINTER, ept_pointer),
477 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
478 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
479 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
480 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
481 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
482 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
483 FIELD64(GUEST_PDPTR0, guest_pdptr0),
484 FIELD64(GUEST_PDPTR1, guest_pdptr1),
485 FIELD64(GUEST_PDPTR2, guest_pdptr2),
486 FIELD64(GUEST_PDPTR3, guest_pdptr3),
487 FIELD64(HOST_IA32_PAT, host_ia32_pat),
488 FIELD64(HOST_IA32_EFER, host_ia32_efer),
489 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
490 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
491 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
492 FIELD(EXCEPTION_BITMAP, exception_bitmap),
493 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
494 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
495 FIELD(CR3_TARGET_COUNT, cr3_target_count),
496 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
497 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
498 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
499 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
500 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
501 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
502 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
503 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
504 FIELD(TPR_THRESHOLD, tpr_threshold),
505 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
506 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
507 FIELD(VM_EXIT_REASON, vm_exit_reason),
508 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
509 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
510 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
511 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
512 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
513 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
514 FIELD(GUEST_ES_LIMIT, guest_es_limit),
515 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
516 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
517 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
518 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
519 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
520 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
521 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
522 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
523 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
524 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
525 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
526 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
527 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
528 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
529 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
530 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
531 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
532 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
533 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
534 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
535 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
536 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
537 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
538 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
539 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
540 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
541 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
542 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
543 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
544 FIELD(EXIT_QUALIFICATION, exit_qualification),
545 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
546 FIELD(GUEST_CR0, guest_cr0),
547 FIELD(GUEST_CR3, guest_cr3),
548 FIELD(GUEST_CR4, guest_cr4),
549 FIELD(GUEST_ES_BASE, guest_es_base),
550 FIELD(GUEST_CS_BASE, guest_cs_base),
551 FIELD(GUEST_SS_BASE, guest_ss_base),
552 FIELD(GUEST_DS_BASE, guest_ds_base),
553 FIELD(GUEST_FS_BASE, guest_fs_base),
554 FIELD(GUEST_GS_BASE, guest_gs_base),
555 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
556 FIELD(GUEST_TR_BASE, guest_tr_base),
557 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
558 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
559 FIELD(GUEST_DR7, guest_dr7),
560 FIELD(GUEST_RSP, guest_rsp),
561 FIELD(GUEST_RIP, guest_rip),
562 FIELD(GUEST_RFLAGS, guest_rflags),
563 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
564 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
565 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
566 FIELD(HOST_CR0, host_cr0),
567 FIELD(HOST_CR3, host_cr3),
568 FIELD(HOST_CR4, host_cr4),
569 FIELD(HOST_FS_BASE, host_fs_base),
570 FIELD(HOST_GS_BASE, host_gs_base),
571 FIELD(HOST_TR_BASE, host_tr_base),
572 FIELD(HOST_GDTR_BASE, host_gdtr_base),
573 FIELD(HOST_IDTR_BASE, host_idtr_base),
574 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
575 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
576 FIELD(HOST_RSP, host_rsp),
577 FIELD(HOST_RIP, host_rip),
578};
579static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
580
581static inline short vmcs_field_to_offset(unsigned long field)
582{
583 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
584 return -1;
585 return vmcs_field_to_offset_table[field];
586}
587
588static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
589{
590 return to_vmx(vcpu)->nested.current_vmcs12;
591}
592
593static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
594{
595 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
596 if (is_error_page(page)) {
597 kvm_release_page_clean(page);
598 return NULL;
599 }
600 return page;
601}
602
603static void nested_release_page(struct page *page)
604{
605 kvm_release_page_dirty(page);
606}
607
608static void nested_release_page_clean(struct page *page)
609{
610 kvm_release_page_clean(page);
611}
612
613static u64 construct_eptp(unsigned long root_hpa);
614static void kvm_cpu_vmxon(u64 addr);
615static void kvm_cpu_vmxoff(void);
616static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
617static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
618static void vmx_set_segment(struct kvm_vcpu *vcpu,
619 struct kvm_segment *var, int seg);
620static void vmx_get_segment(struct kvm_vcpu *vcpu,
621 struct kvm_segment *var, int seg);
622
623static DEFINE_PER_CPU(struct vmcs *, vmxarea);
624static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
625/*
626 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
627 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
628 */
629static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
630static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
631
632static unsigned long *vmx_io_bitmap_a;
633static unsigned long *vmx_io_bitmap_b;
634static unsigned long *vmx_msr_bitmap_legacy;
635static unsigned long *vmx_msr_bitmap_longmode;
636
637static bool cpu_has_load_ia32_efer;
638static bool cpu_has_load_perf_global_ctrl;
639
640static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
641static DEFINE_SPINLOCK(vmx_vpid_lock);
642
643static struct vmcs_config {
644 int size;
645 int order;
646 u32 revision_id;
647 u32 pin_based_exec_ctrl;
648 u32 cpu_based_exec_ctrl;
649 u32 cpu_based_2nd_exec_ctrl;
650 u32 vmexit_ctrl;
651 u32 vmentry_ctrl;
652} vmcs_config;
653
654static struct vmx_capability {
655 u32 ept;
656 u32 vpid;
657} vmx_capability;
658
659#define VMX_SEGMENT_FIELD(seg) \
660 [VCPU_SREG_##seg] = { \
661 .selector = GUEST_##seg##_SELECTOR, \
662 .base = GUEST_##seg##_BASE, \
663 .limit = GUEST_##seg##_LIMIT, \
664 .ar_bytes = GUEST_##seg##_AR_BYTES, \
665 }
666
667static struct kvm_vmx_segment_field {
668 unsigned selector;
669 unsigned base;
670 unsigned limit;
671 unsigned ar_bytes;
672} kvm_vmx_segment_fields[] = {
673 VMX_SEGMENT_FIELD(CS),
674 VMX_SEGMENT_FIELD(DS),
675 VMX_SEGMENT_FIELD(ES),
676 VMX_SEGMENT_FIELD(FS),
677 VMX_SEGMENT_FIELD(GS),
678 VMX_SEGMENT_FIELD(SS),
679 VMX_SEGMENT_FIELD(TR),
680 VMX_SEGMENT_FIELD(LDTR),
681};
682
683static u64 host_efer;
684
685static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
686
687/*
688 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
689 * away by decrementing the array size.
690 */
691static const u32 vmx_msr_index[] = {
692#ifdef CONFIG_X86_64
693 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
694#endif
695 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
696};
697#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
698
699static inline bool is_page_fault(u32 intr_info)
700{
701 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
702 INTR_INFO_VALID_MASK)) ==
703 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
704}
705
706static inline bool is_no_device(u32 intr_info)
707{
708 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
709 INTR_INFO_VALID_MASK)) ==
710 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
711}
712
713static inline bool is_invalid_opcode(u32 intr_info)
714{
715 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
716 INTR_INFO_VALID_MASK)) ==
717 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
718}
719
720static inline bool is_external_interrupt(u32 intr_info)
721{
722 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
723 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
724}
725
726static inline bool is_machine_check(u32 intr_info)
727{
728 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
729 INTR_INFO_VALID_MASK)) ==
730 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
731}
732
733static inline bool cpu_has_vmx_msr_bitmap(void)
734{
735 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
736}
737
738static inline bool cpu_has_vmx_tpr_shadow(void)
739{
740 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
741}
742
743static inline bool vm_need_tpr_shadow(struct kvm *kvm)
744{
745 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
746}
747
748static inline bool cpu_has_secondary_exec_ctrls(void)
749{
750 return vmcs_config.cpu_based_exec_ctrl &
751 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
752}
753
754static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
755{
756 return vmcs_config.cpu_based_2nd_exec_ctrl &
757 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
758}
759
760static inline bool cpu_has_vmx_flexpriority(void)
761{
762 return cpu_has_vmx_tpr_shadow() &&
763 cpu_has_vmx_virtualize_apic_accesses();
764}
765
766static inline bool cpu_has_vmx_ept_execute_only(void)
767{
768 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
769}
770
771static inline bool cpu_has_vmx_eptp_uncacheable(void)
772{
773 return vmx_capability.ept & VMX_EPTP_UC_BIT;
774}
775
776static inline bool cpu_has_vmx_eptp_writeback(void)
777{
778 return vmx_capability.ept & VMX_EPTP_WB_BIT;
779}
780
781static inline bool cpu_has_vmx_ept_2m_page(void)
782{
783 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
784}
785
786static inline bool cpu_has_vmx_ept_1g_page(void)
787{
788 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
789}
790
791static inline bool cpu_has_vmx_ept_4levels(void)
792{
793 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
794}
795
796static inline bool cpu_has_vmx_invept_individual_addr(void)
797{
798 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
799}
800
801static inline bool cpu_has_vmx_invept_context(void)
802{
803 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
804}
805
806static inline bool cpu_has_vmx_invept_global(void)
807{
808 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
809}
810
811static inline bool cpu_has_vmx_invvpid_single(void)
812{
813 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
814}
815
816static inline bool cpu_has_vmx_invvpid_global(void)
817{
818 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
819}
820
821static inline bool cpu_has_vmx_ept(void)
822{
823 return vmcs_config.cpu_based_2nd_exec_ctrl &
824 SECONDARY_EXEC_ENABLE_EPT;
825}
826
827static inline bool cpu_has_vmx_unrestricted_guest(void)
828{
829 return vmcs_config.cpu_based_2nd_exec_ctrl &
830 SECONDARY_EXEC_UNRESTRICTED_GUEST;
831}
832
833static inline bool cpu_has_vmx_ple(void)
834{
835 return vmcs_config.cpu_based_2nd_exec_ctrl &
836 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
837}
838
839static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
840{
841 return flexpriority_enabled && irqchip_in_kernel(kvm);
842}
843
844static inline bool cpu_has_vmx_vpid(void)
845{
846 return vmcs_config.cpu_based_2nd_exec_ctrl &
847 SECONDARY_EXEC_ENABLE_VPID;
848}
849
850static inline bool cpu_has_vmx_rdtscp(void)
851{
852 return vmcs_config.cpu_based_2nd_exec_ctrl &
853 SECONDARY_EXEC_RDTSCP;
854}
855
856static inline bool cpu_has_virtual_nmis(void)
857{
858 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
859}
860
861static inline bool cpu_has_vmx_wbinvd_exit(void)
862{
863 return vmcs_config.cpu_based_2nd_exec_ctrl &
864 SECONDARY_EXEC_WBINVD_EXITING;
865}
866
867static inline bool report_flexpriority(void)
868{
869 return flexpriority_enabled;
870}
871
872static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
873{
874 return vmcs12->cpu_based_vm_exec_control & bit;
875}
876
877static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
878{
879 return (vmcs12->cpu_based_vm_exec_control &
880 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
881 (vmcs12->secondary_vm_exec_control & bit);
882}
883
884static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
885 struct kvm_vcpu *vcpu)
886{
887 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
888}
889
890static inline bool is_exception(u32 intr_info)
891{
892 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
893 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
894}
895
896static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
897static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
898 struct vmcs12 *vmcs12,
899 u32 reason, unsigned long qualification);
900
901static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
902{
903 int i;
904
905 for (i = 0; i < vmx->nmsrs; ++i)
906 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
907 return i;
908 return -1;
909}
910
911static inline void __invvpid(int ext, u16 vpid, gva_t gva)
912{
913 struct {
914 u64 vpid : 16;
915 u64 rsvd : 48;
916 u64 gva;
917 } operand = { vpid, 0, gva };
918
919 asm volatile (__ex(ASM_VMX_INVVPID)
920 /* CF==1 or ZF==1 --> rc = -1 */
921 "; ja 1f ; ud2 ; 1:"
922 : : "a"(&operand), "c"(ext) : "cc", "memory");
923}
924
925static inline void __invept(int ext, u64 eptp, gpa_t gpa)
926{
927 struct {
928 u64 eptp, gpa;
929 } operand = {eptp, gpa};
930
931 asm volatile (__ex(ASM_VMX_INVEPT)
932 /* CF==1 or ZF==1 --> rc = -1 */
933 "; ja 1f ; ud2 ; 1:\n"
934 : : "a" (&operand), "c" (ext) : "cc", "memory");
935}
936
937static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
938{
939 int i;
940
941 i = __find_msr_index(vmx, msr);
942 if (i >= 0)
943 return &vmx->guest_msrs[i];
944 return NULL;
945}
946
947static void vmcs_clear(struct vmcs *vmcs)
948{
949 u64 phys_addr = __pa(vmcs);
950 u8 error;
951
952 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
953 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
954 : "cc", "memory");
955 if (error)
956 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
957 vmcs, phys_addr);
958}
959
960static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
961{
962 vmcs_clear(loaded_vmcs->vmcs);
963 loaded_vmcs->cpu = -1;
964 loaded_vmcs->launched = 0;
965}
966
967static void vmcs_load(struct vmcs *vmcs)
968{
969 u64 phys_addr = __pa(vmcs);
970 u8 error;
971
972 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
973 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
974 : "cc", "memory");
975 if (error)
976 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
977 vmcs, phys_addr);
978}
979
980static void __loaded_vmcs_clear(void *arg)
981{
982 struct loaded_vmcs *loaded_vmcs = arg;
983 int cpu = raw_smp_processor_id();
984
985 if (loaded_vmcs->cpu != cpu)
986 return; /* vcpu migration can race with cpu offline */
987 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
988 per_cpu(current_vmcs, cpu) = NULL;
989 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
990 loaded_vmcs_init(loaded_vmcs);
991}
992
993static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
994{
995 if (loaded_vmcs->cpu != -1)
996 smp_call_function_single(
997 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
998}
999
1000static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1001{
1002 if (vmx->vpid == 0)
1003 return;
1004
1005 if (cpu_has_vmx_invvpid_single())
1006 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1007}
1008
1009static inline void vpid_sync_vcpu_global(void)
1010{
1011 if (cpu_has_vmx_invvpid_global())
1012 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1013}
1014
1015static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1016{
1017 if (cpu_has_vmx_invvpid_single())
1018 vpid_sync_vcpu_single(vmx);
1019 else
1020 vpid_sync_vcpu_global();
1021}
1022
1023static inline void ept_sync_global(void)
1024{
1025 if (cpu_has_vmx_invept_global())
1026 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1027}
1028
1029static inline void ept_sync_context(u64 eptp)
1030{
1031 if (enable_ept) {
1032 if (cpu_has_vmx_invept_context())
1033 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1034 else
1035 ept_sync_global();
1036 }
1037}
1038
1039static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1040{
1041 if (enable_ept) {
1042 if (cpu_has_vmx_invept_individual_addr())
1043 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1044 eptp, gpa);
1045 else
1046 ept_sync_context(eptp);
1047 }
1048}
1049
1050static __always_inline unsigned long vmcs_readl(unsigned long field)
1051{
1052 unsigned long value;
1053
1054 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1055 : "=a"(value) : "d"(field) : "cc");
1056 return value;
1057}
1058
1059static __always_inline u16 vmcs_read16(unsigned long field)
1060{
1061 return vmcs_readl(field);
1062}
1063
1064static __always_inline u32 vmcs_read32(unsigned long field)
1065{
1066 return vmcs_readl(field);
1067}
1068
1069static __always_inline u64 vmcs_read64(unsigned long field)
1070{
1071#ifdef CONFIG_X86_64
1072 return vmcs_readl(field);
1073#else
1074 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1075#endif
1076}
1077
1078static noinline void vmwrite_error(unsigned long field, unsigned long value)
1079{
1080 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1081 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1082 dump_stack();
1083}
1084
1085static void vmcs_writel(unsigned long field, unsigned long value)
1086{
1087 u8 error;
1088
1089 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1090 : "=q"(error) : "a"(value), "d"(field) : "cc");
1091 if (unlikely(error))
1092 vmwrite_error(field, value);
1093}
1094
1095static void vmcs_write16(unsigned long field, u16 value)
1096{
1097 vmcs_writel(field, value);
1098}
1099
1100static void vmcs_write32(unsigned long field, u32 value)
1101{
1102 vmcs_writel(field, value);
1103}
1104
1105static void vmcs_write64(unsigned long field, u64 value)
1106{
1107 vmcs_writel(field, value);
1108#ifndef CONFIG_X86_64
1109 asm volatile ("");
1110 vmcs_writel(field+1, value >> 32);
1111#endif
1112}
1113
1114static void vmcs_clear_bits(unsigned long field, u32 mask)
1115{
1116 vmcs_writel(field, vmcs_readl(field) & ~mask);
1117}
1118
1119static void vmcs_set_bits(unsigned long field, u32 mask)
1120{
1121 vmcs_writel(field, vmcs_readl(field) | mask);
1122}
1123
1124static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1125{
1126 vmx->segment_cache.bitmask = 0;
1127}
1128
1129static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1130 unsigned field)
1131{
1132 bool ret;
1133 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1134
1135 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1136 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1137 vmx->segment_cache.bitmask = 0;
1138 }
1139 ret = vmx->segment_cache.bitmask & mask;
1140 vmx->segment_cache.bitmask |= mask;
1141 return ret;
1142}
1143
1144static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1145{
1146 u16 *p = &vmx->segment_cache.seg[seg].selector;
1147
1148 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1149 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1150 return *p;
1151}
1152
1153static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1154{
1155 ulong *p = &vmx->segment_cache.seg[seg].base;
1156
1157 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1158 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1159 return *p;
1160}
1161
1162static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1163{
1164 u32 *p = &vmx->segment_cache.seg[seg].limit;
1165
1166 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1167 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1168 return *p;
1169}
1170
1171static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1172{
1173 u32 *p = &vmx->segment_cache.seg[seg].ar;
1174
1175 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1176 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1177 return *p;
1178}
1179
1180static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1181{
1182 u32 eb;
1183
1184 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1185 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1186 if ((vcpu->guest_debug &
1187 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1188 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1189 eb |= 1u << BP_VECTOR;
1190 if (to_vmx(vcpu)->rmode.vm86_active)
1191 eb = ~0;
1192 if (enable_ept)
1193 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1194 if (vcpu->fpu_active)
1195 eb &= ~(1u << NM_VECTOR);
1196
1197 /* When we are running a nested L2 guest and L1 specified for it a
1198 * certain exception bitmap, we must trap the same exceptions and pass
1199 * them to L1. When running L2, we will only handle the exceptions
1200 * specified above if L1 did not want them.
1201 */
1202 if (is_guest_mode(vcpu))
1203 eb |= get_vmcs12(vcpu)->exception_bitmap;
1204
1205 vmcs_write32(EXCEPTION_BITMAP, eb);
1206}
1207
1208static void clear_atomic_switch_msr_special(unsigned long entry,
1209 unsigned long exit)
1210{
1211 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1212 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1213}
1214
1215static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1216{
1217 unsigned i;
1218 struct msr_autoload *m = &vmx->msr_autoload;
1219
1220 switch (msr) {
1221 case MSR_EFER:
1222 if (cpu_has_load_ia32_efer) {
1223 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1224 VM_EXIT_LOAD_IA32_EFER);
1225 return;
1226 }
1227 break;
1228 case MSR_CORE_PERF_GLOBAL_CTRL:
1229 if (cpu_has_load_perf_global_ctrl) {
1230 clear_atomic_switch_msr_special(
1231 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1232 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1233 return;
1234 }
1235 break;
1236 }
1237
1238 for (i = 0; i < m->nr; ++i)
1239 if (m->guest[i].index == msr)
1240 break;
1241
1242 if (i == m->nr)
1243 return;
1244 --m->nr;
1245 m->guest[i] = m->guest[m->nr];
1246 m->host[i] = m->host[m->nr];
1247 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1248 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1249}
1250
1251static void add_atomic_switch_msr_special(unsigned long entry,
1252 unsigned long exit, unsigned long guest_val_vmcs,
1253 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1254{
1255 vmcs_write64(guest_val_vmcs, guest_val);
1256 vmcs_write64(host_val_vmcs, host_val);
1257 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1258 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1259}
1260
1261static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1262 u64 guest_val, u64 host_val)
1263{
1264 unsigned i;
1265 struct msr_autoload *m = &vmx->msr_autoload;
1266
1267 switch (msr) {
1268 case MSR_EFER:
1269 if (cpu_has_load_ia32_efer) {
1270 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1271 VM_EXIT_LOAD_IA32_EFER,
1272 GUEST_IA32_EFER,
1273 HOST_IA32_EFER,
1274 guest_val, host_val);
1275 return;
1276 }
1277 break;
1278 case MSR_CORE_PERF_GLOBAL_CTRL:
1279 if (cpu_has_load_perf_global_ctrl) {
1280 add_atomic_switch_msr_special(
1281 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1282 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1283 GUEST_IA32_PERF_GLOBAL_CTRL,
1284 HOST_IA32_PERF_GLOBAL_CTRL,
1285 guest_val, host_val);
1286 return;
1287 }
1288 break;
1289 }
1290
1291 for (i = 0; i < m->nr; ++i)
1292 if (m->guest[i].index == msr)
1293 break;
1294
1295 if (i == NR_AUTOLOAD_MSRS) {
1296 printk_once(KERN_WARNING"Not enough mst switch entries. "
1297 "Can't add msr %x\n", msr);
1298 return;
1299 } else if (i == m->nr) {
1300 ++m->nr;
1301 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1302 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1303 }
1304
1305 m->guest[i].index = msr;
1306 m->guest[i].value = guest_val;
1307 m->host[i].index = msr;
1308 m->host[i].value = host_val;
1309}
1310
1311static void reload_tss(void)
1312{
1313 /*
1314 * VT restores TR but not its size. Useless.
1315 */
1316 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1317 struct desc_struct *descs;
1318
1319 descs = (void *)gdt->address;
1320 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1321 load_TR_desc();
1322}
1323
1324static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1325{
1326 u64 guest_efer;
1327 u64 ignore_bits;
1328
1329 guest_efer = vmx->vcpu.arch.efer;
1330
1331 /*
1332 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1333 * outside long mode
1334 */
1335 ignore_bits = EFER_NX | EFER_SCE;
1336#ifdef CONFIG_X86_64
1337 ignore_bits |= EFER_LMA | EFER_LME;
1338 /* SCE is meaningful only in long mode on Intel */
1339 if (guest_efer & EFER_LMA)
1340 ignore_bits &= ~(u64)EFER_SCE;
1341#endif
1342 guest_efer &= ~ignore_bits;
1343 guest_efer |= host_efer & ignore_bits;
1344 vmx->guest_msrs[efer_offset].data = guest_efer;
1345 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1346
1347 clear_atomic_switch_msr(vmx, MSR_EFER);
1348 /* On ept, can't emulate nx, and must switch nx atomically */
1349 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1350 guest_efer = vmx->vcpu.arch.efer;
1351 if (!(guest_efer & EFER_LMA))
1352 guest_efer &= ~EFER_LME;
1353 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1354 return false;
1355 }
1356
1357 return true;
1358}
1359
1360static unsigned long segment_base(u16 selector)
1361{
1362 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1363 struct desc_struct *d;
1364 unsigned long table_base;
1365 unsigned long v;
1366
1367 if (!(selector & ~3))
1368 return 0;
1369
1370 table_base = gdt->address;
1371
1372 if (selector & 4) { /* from ldt */
1373 u16 ldt_selector = kvm_read_ldt();
1374
1375 if (!(ldt_selector & ~3))
1376 return 0;
1377
1378 table_base = segment_base(ldt_selector);
1379 }
1380 d = (struct desc_struct *)(table_base + (selector & ~7));
1381 v = get_desc_base(d);
1382#ifdef CONFIG_X86_64
1383 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1384 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1385#endif
1386 return v;
1387}
1388
1389static inline unsigned long kvm_read_tr_base(void)
1390{
1391 u16 tr;
1392 asm("str %0" : "=g"(tr));
1393 return segment_base(tr);
1394}
1395
1396static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1397{
1398 struct vcpu_vmx *vmx = to_vmx(vcpu);
1399 int i;
1400
1401 if (vmx->host_state.loaded)
1402 return;
1403
1404 vmx->host_state.loaded = 1;
1405 /*
1406 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1407 * allow segment selectors with cpl > 0 or ti == 1.
1408 */
1409 vmx->host_state.ldt_sel = kvm_read_ldt();
1410 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1411 savesegment(fs, vmx->host_state.fs_sel);
1412 if (!(vmx->host_state.fs_sel & 7)) {
1413 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1414 vmx->host_state.fs_reload_needed = 0;
1415 } else {
1416 vmcs_write16(HOST_FS_SELECTOR, 0);
1417 vmx->host_state.fs_reload_needed = 1;
1418 }
1419 savesegment(gs, vmx->host_state.gs_sel);
1420 if (!(vmx->host_state.gs_sel & 7))
1421 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1422 else {
1423 vmcs_write16(HOST_GS_SELECTOR, 0);
1424 vmx->host_state.gs_ldt_reload_needed = 1;
1425 }
1426
1427#ifdef CONFIG_X86_64
1428 savesegment(ds, vmx->host_state.ds_sel);
1429 savesegment(es, vmx->host_state.es_sel);
1430#endif
1431
1432#ifdef CONFIG_X86_64
1433 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1434 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1435#else
1436 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1437 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1438#endif
1439
1440#ifdef CONFIG_X86_64
1441 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1442 if (is_long_mode(&vmx->vcpu))
1443 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1444#endif
1445 for (i = 0; i < vmx->save_nmsrs; ++i)
1446 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1447 vmx->guest_msrs[i].data,
1448 vmx->guest_msrs[i].mask);
1449}
1450
1451static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1452{
1453 if (!vmx->host_state.loaded)
1454 return;
1455
1456 ++vmx->vcpu.stat.host_state_reload;
1457 vmx->host_state.loaded = 0;
1458#ifdef CONFIG_X86_64
1459 if (is_long_mode(&vmx->vcpu))
1460 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1461#endif
1462 if (vmx->host_state.gs_ldt_reload_needed) {
1463 kvm_load_ldt(vmx->host_state.ldt_sel);
1464#ifdef CONFIG_X86_64
1465 load_gs_index(vmx->host_state.gs_sel);
1466#else
1467 loadsegment(gs, vmx->host_state.gs_sel);
1468#endif
1469 }
1470 if (vmx->host_state.fs_reload_needed)
1471 loadsegment(fs, vmx->host_state.fs_sel);
1472#ifdef CONFIG_X86_64
1473 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1474 loadsegment(ds, vmx->host_state.ds_sel);
1475 loadsegment(es, vmx->host_state.es_sel);
1476 }
1477#endif
1478 reload_tss();
1479#ifdef CONFIG_X86_64
1480 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1481#endif
1482 if (user_has_fpu())
1483 clts();
1484 load_gdt(&__get_cpu_var(host_gdt));
1485}
1486
1487static void vmx_load_host_state(struct vcpu_vmx *vmx)
1488{
1489 preempt_disable();
1490 __vmx_load_host_state(vmx);
1491 preempt_enable();
1492}
1493
1494/*
1495 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1496 * vcpu mutex is already taken.
1497 */
1498static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1499{
1500 struct vcpu_vmx *vmx = to_vmx(vcpu);
1501 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1502
1503 if (!vmm_exclusive)
1504 kvm_cpu_vmxon(phys_addr);
1505 else if (vmx->loaded_vmcs->cpu != cpu)
1506 loaded_vmcs_clear(vmx->loaded_vmcs);
1507
1508 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1509 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1510 vmcs_load(vmx->loaded_vmcs->vmcs);
1511 }
1512
1513 if (vmx->loaded_vmcs->cpu != cpu) {
1514 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1515 unsigned long sysenter_esp;
1516
1517 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1518 local_irq_disable();
1519 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1520 &per_cpu(loaded_vmcss_on_cpu, cpu));
1521 local_irq_enable();
1522
1523 /*
1524 * Linux uses per-cpu TSS and GDT, so set these when switching
1525 * processors.
1526 */
1527 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1528 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1529
1530 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1531 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1532 vmx->loaded_vmcs->cpu = cpu;
1533 }
1534}
1535
1536static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1537{
1538 __vmx_load_host_state(to_vmx(vcpu));
1539 if (!vmm_exclusive) {
1540 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1541 vcpu->cpu = -1;
1542 kvm_cpu_vmxoff();
1543 }
1544}
1545
1546static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1547{
1548 ulong cr0;
1549
1550 if (vcpu->fpu_active)
1551 return;
1552 vcpu->fpu_active = 1;
1553 cr0 = vmcs_readl(GUEST_CR0);
1554 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1555 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1556 vmcs_writel(GUEST_CR0, cr0);
1557 update_exception_bitmap(vcpu);
1558 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1559 if (is_guest_mode(vcpu))
1560 vcpu->arch.cr0_guest_owned_bits &=
1561 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1562 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1563}
1564
1565static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1566
1567/*
1568 * Return the cr0 value that a nested guest would read. This is a combination
1569 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1570 * its hypervisor (cr0_read_shadow).
1571 */
1572static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1573{
1574 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1575 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1576}
1577static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1578{
1579 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1580 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1581}
1582
1583static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1584{
1585 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1586 * set this *before* calling this function.
1587 */
1588 vmx_decache_cr0_guest_bits(vcpu);
1589 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1590 update_exception_bitmap(vcpu);
1591 vcpu->arch.cr0_guest_owned_bits = 0;
1592 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1593 if (is_guest_mode(vcpu)) {
1594 /*
1595 * L1's specified read shadow might not contain the TS bit,
1596 * so now that we turned on shadowing of this bit, we need to
1597 * set this bit of the shadow. Like in nested_vmx_run we need
1598 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1599 * up-to-date here because we just decached cr0.TS (and we'll
1600 * only update vmcs12->guest_cr0 on nested exit).
1601 */
1602 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1603 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1604 (vcpu->arch.cr0 & X86_CR0_TS);
1605 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1606 } else
1607 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1608}
1609
1610static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1611{
1612 unsigned long rflags, save_rflags;
1613
1614 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1615 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1616 rflags = vmcs_readl(GUEST_RFLAGS);
1617 if (to_vmx(vcpu)->rmode.vm86_active) {
1618 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1619 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1620 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1621 }
1622 to_vmx(vcpu)->rflags = rflags;
1623 }
1624 return to_vmx(vcpu)->rflags;
1625}
1626
1627static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1628{
1629 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1630 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1631 to_vmx(vcpu)->rflags = rflags;
1632 if (to_vmx(vcpu)->rmode.vm86_active) {
1633 to_vmx(vcpu)->rmode.save_rflags = rflags;
1634 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1635 }
1636 vmcs_writel(GUEST_RFLAGS, rflags);
1637}
1638
1639static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1640{
1641 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1642 int ret = 0;
1643
1644 if (interruptibility & GUEST_INTR_STATE_STI)
1645 ret |= KVM_X86_SHADOW_INT_STI;
1646 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1647 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1648
1649 return ret & mask;
1650}
1651
1652static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1653{
1654 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1655 u32 interruptibility = interruptibility_old;
1656
1657 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1658
1659 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1660 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1661 else if (mask & KVM_X86_SHADOW_INT_STI)
1662 interruptibility |= GUEST_INTR_STATE_STI;
1663
1664 if ((interruptibility != interruptibility_old))
1665 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1666}
1667
1668static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1669{
1670 unsigned long rip;
1671
1672 rip = kvm_rip_read(vcpu);
1673 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1674 kvm_rip_write(vcpu, rip);
1675
1676 /* skipping an emulated instruction also counts */
1677 vmx_set_interrupt_shadow(vcpu, 0);
1678}
1679
1680/*
1681 * KVM wants to inject page-faults which it got to the guest. This function
1682 * checks whether in a nested guest, we need to inject them to L1 or L2.
1683 * This function assumes it is called with the exit reason in vmcs02 being
1684 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1685 * is running).
1686 */
1687static int nested_pf_handled(struct kvm_vcpu *vcpu)
1688{
1689 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1690
1691 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1692 if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
1693 return 0;
1694
1695 nested_vmx_vmexit(vcpu);
1696 return 1;
1697}
1698
1699static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1700 bool has_error_code, u32 error_code,
1701 bool reinject)
1702{
1703 struct vcpu_vmx *vmx = to_vmx(vcpu);
1704 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1705
1706 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1707 nested_pf_handled(vcpu))
1708 return;
1709
1710 if (has_error_code) {
1711 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1712 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1713 }
1714
1715 if (vmx->rmode.vm86_active) {
1716 int inc_eip = 0;
1717 if (kvm_exception_is_soft(nr))
1718 inc_eip = vcpu->arch.event_exit_inst_len;
1719 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1720 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1721 return;
1722 }
1723
1724 if (kvm_exception_is_soft(nr)) {
1725 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1726 vmx->vcpu.arch.event_exit_inst_len);
1727 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1728 } else
1729 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1730
1731 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1732}
1733
1734static bool vmx_rdtscp_supported(void)
1735{
1736 return cpu_has_vmx_rdtscp();
1737}
1738
1739/*
1740 * Swap MSR entry in host/guest MSR entry array.
1741 */
1742static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1743{
1744 struct shared_msr_entry tmp;
1745
1746 tmp = vmx->guest_msrs[to];
1747 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1748 vmx->guest_msrs[from] = tmp;
1749}
1750
1751/*
1752 * Set up the vmcs to automatically save and restore system
1753 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1754 * mode, as fiddling with msrs is very expensive.
1755 */
1756static void setup_msrs(struct vcpu_vmx *vmx)
1757{
1758 int save_nmsrs, index;
1759 unsigned long *msr_bitmap;
1760
1761 save_nmsrs = 0;
1762#ifdef CONFIG_X86_64
1763 if (is_long_mode(&vmx->vcpu)) {
1764 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1765 if (index >= 0)
1766 move_msr_up(vmx, index, save_nmsrs++);
1767 index = __find_msr_index(vmx, MSR_LSTAR);
1768 if (index >= 0)
1769 move_msr_up(vmx, index, save_nmsrs++);
1770 index = __find_msr_index(vmx, MSR_CSTAR);
1771 if (index >= 0)
1772 move_msr_up(vmx, index, save_nmsrs++);
1773 index = __find_msr_index(vmx, MSR_TSC_AUX);
1774 if (index >= 0 && vmx->rdtscp_enabled)
1775 move_msr_up(vmx, index, save_nmsrs++);
1776 /*
1777 * MSR_STAR is only needed on long mode guests, and only
1778 * if efer.sce is enabled.
1779 */
1780 index = __find_msr_index(vmx, MSR_STAR);
1781 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1782 move_msr_up(vmx, index, save_nmsrs++);
1783 }
1784#endif
1785 index = __find_msr_index(vmx, MSR_EFER);
1786 if (index >= 0 && update_transition_efer(vmx, index))
1787 move_msr_up(vmx, index, save_nmsrs++);
1788
1789 vmx->save_nmsrs = save_nmsrs;
1790
1791 if (cpu_has_vmx_msr_bitmap()) {
1792 if (is_long_mode(&vmx->vcpu))
1793 msr_bitmap = vmx_msr_bitmap_longmode;
1794 else
1795 msr_bitmap = vmx_msr_bitmap_legacy;
1796
1797 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1798 }
1799}
1800
1801/*
1802 * reads and returns guest's timestamp counter "register"
1803 * guest_tsc = host_tsc + tsc_offset -- 21.3
1804 */
1805static u64 guest_read_tsc(void)
1806{
1807 u64 host_tsc, tsc_offset;
1808
1809 rdtscll(host_tsc);
1810 tsc_offset = vmcs_read64(TSC_OFFSET);
1811 return host_tsc + tsc_offset;
1812}
1813
1814/*
1815 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1816 * counter, even if a nested guest (L2) is currently running.
1817 */
1818u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
1819{
1820 u64 host_tsc, tsc_offset;
1821
1822 rdtscll(host_tsc);
1823 tsc_offset = is_guest_mode(vcpu) ?
1824 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1825 vmcs_read64(TSC_OFFSET);
1826 return host_tsc + tsc_offset;
1827}
1828
1829/*
1830 * Engage any workarounds for mis-matched TSC rates. Currently limited to
1831 * software catchup for faster rates on slower CPUs.
1832 */
1833static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1834{
1835 if (!scale)
1836 return;
1837
1838 if (user_tsc_khz > tsc_khz) {
1839 vcpu->arch.tsc_catchup = 1;
1840 vcpu->arch.tsc_always_catchup = 1;
1841 } else
1842 WARN(1, "user requested TSC rate below hardware speed\n");
1843}
1844
1845/*
1846 * writes 'offset' into guest's timestamp counter offset register
1847 */
1848static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1849{
1850 if (is_guest_mode(vcpu)) {
1851 /*
1852 * We're here if L1 chose not to trap WRMSR to TSC. According
1853 * to the spec, this should set L1's TSC; The offset that L1
1854 * set for L2 remains unchanged, and still needs to be added
1855 * to the newly set TSC to get L2's TSC.
1856 */
1857 struct vmcs12 *vmcs12;
1858 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1859 /* recalculate vmcs02.TSC_OFFSET: */
1860 vmcs12 = get_vmcs12(vcpu);
1861 vmcs_write64(TSC_OFFSET, offset +
1862 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1863 vmcs12->tsc_offset : 0));
1864 } else {
1865 vmcs_write64(TSC_OFFSET, offset);
1866 }
1867}
1868
1869static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1870{
1871 u64 offset = vmcs_read64(TSC_OFFSET);
1872 vmcs_write64(TSC_OFFSET, offset + adjustment);
1873 if (is_guest_mode(vcpu)) {
1874 /* Even when running L2, the adjustment needs to apply to L1 */
1875 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1876 }
1877}
1878
1879static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1880{
1881 return target_tsc - native_read_tsc();
1882}
1883
1884static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1885{
1886 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1887 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1888}
1889
1890/*
1891 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1892 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1893 * all guests if the "nested" module option is off, and can also be disabled
1894 * for a single guest by disabling its VMX cpuid bit.
1895 */
1896static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1897{
1898 return nested && guest_cpuid_has_vmx(vcpu);
1899}
1900
1901/*
1902 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1903 * returned for the various VMX controls MSRs when nested VMX is enabled.
1904 * The same values should also be used to verify that vmcs12 control fields are
1905 * valid during nested entry from L1 to L2.
1906 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1907 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1908 * bit in the high half is on if the corresponding bit in the control field
1909 * may be on. See also vmx_control_verify().
1910 * TODO: allow these variables to be modified (downgraded) by module options
1911 * or other means.
1912 */
1913static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1914static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1915static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1916static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1917static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1918static __init void nested_vmx_setup_ctls_msrs(void)
1919{
1920 /*
1921 * Note that as a general rule, the high half of the MSRs (bits in
1922 * the control fields which may be 1) should be initialized by the
1923 * intersection of the underlying hardware's MSR (i.e., features which
1924 * can be supported) and the list of features we want to expose -
1925 * because they are known to be properly supported in our code.
1926 * Also, usually, the low half of the MSRs (bits which must be 1) can
1927 * be set to 0, meaning that L1 may turn off any of these bits. The
1928 * reason is that if one of these bits is necessary, it will appear
1929 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1930 * fields of vmcs01 and vmcs02, will turn these bits off - and
1931 * nested_vmx_exit_handled() will not pass related exits to L1.
1932 * These rules have exceptions below.
1933 */
1934
1935 /* pin-based controls */
1936 /*
1937 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1938 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1939 */
1940 nested_vmx_pinbased_ctls_low = 0x16 ;
1941 nested_vmx_pinbased_ctls_high = 0x16 |
1942 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1943 PIN_BASED_VIRTUAL_NMIS;
1944
1945 /* exit controls */
1946 nested_vmx_exit_ctls_low = 0;
1947 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
1948#ifdef CONFIG_X86_64
1949 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1950#else
1951 nested_vmx_exit_ctls_high = 0;
1952#endif
1953
1954 /* entry controls */
1955 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1956 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1957 nested_vmx_entry_ctls_low = 0;
1958 nested_vmx_entry_ctls_high &=
1959 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1960
1961 /* cpu-based controls */
1962 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1963 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1964 nested_vmx_procbased_ctls_low = 0;
1965 nested_vmx_procbased_ctls_high &=
1966 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1967 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1968 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1969 CPU_BASED_CR3_STORE_EXITING |
1970#ifdef CONFIG_X86_64
1971 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1972#endif
1973 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1974 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
1975 CPU_BASED_RDPMC_EXITING |
1976 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1977 /*
1978 * We can allow some features even when not supported by the
1979 * hardware. For example, L1 can specify an MSR bitmap - and we
1980 * can use it to avoid exits to L1 - even when L0 runs L2
1981 * without MSR bitmaps.
1982 */
1983 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1984
1985 /* secondary cpu-based controls */
1986 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1987 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1988 nested_vmx_secondary_ctls_low = 0;
1989 nested_vmx_secondary_ctls_high &=
1990 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1991}
1992
1993static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1994{
1995 /*
1996 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1997 */
1998 return ((control & high) | low) == control;
1999}
2000
2001static inline u64 vmx_control_msr(u32 low, u32 high)
2002{
2003 return low | ((u64)high << 32);
2004}
2005
2006/*
2007 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2008 * also let it use VMX-specific MSRs.
2009 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2010 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2011 * like all other MSRs).
2012 */
2013static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2014{
2015 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2016 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2017 /*
2018 * According to the spec, processors which do not support VMX
2019 * should throw a #GP(0) when VMX capability MSRs are read.
2020 */
2021 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2022 return 1;
2023 }
2024
2025 switch (msr_index) {
2026 case MSR_IA32_FEATURE_CONTROL:
2027 *pdata = 0;
2028 break;
2029 case MSR_IA32_VMX_BASIC:
2030 /*
2031 * This MSR reports some information about VMX support. We
2032 * should return information about the VMX we emulate for the
2033 * guest, and the VMCS structure we give it - not about the
2034 * VMX support of the underlying hardware.
2035 */
2036 *pdata = VMCS12_REVISION |
2037 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2038 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2039 break;
2040 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2041 case MSR_IA32_VMX_PINBASED_CTLS:
2042 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2043 nested_vmx_pinbased_ctls_high);
2044 break;
2045 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2046 case MSR_IA32_VMX_PROCBASED_CTLS:
2047 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2048 nested_vmx_procbased_ctls_high);
2049 break;
2050 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2051 case MSR_IA32_VMX_EXIT_CTLS:
2052 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2053 nested_vmx_exit_ctls_high);
2054 break;
2055 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2056 case MSR_IA32_VMX_ENTRY_CTLS:
2057 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2058 nested_vmx_entry_ctls_high);
2059 break;
2060 case MSR_IA32_VMX_MISC:
2061 *pdata = 0;
2062 break;
2063 /*
2064 * These MSRs specify bits which the guest must keep fixed (on or off)
2065 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2066 * We picked the standard core2 setting.
2067 */
2068#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2069#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2070 case MSR_IA32_VMX_CR0_FIXED0:
2071 *pdata = VMXON_CR0_ALWAYSON;
2072 break;
2073 case MSR_IA32_VMX_CR0_FIXED1:
2074 *pdata = -1ULL;
2075 break;
2076 case MSR_IA32_VMX_CR4_FIXED0:
2077 *pdata = VMXON_CR4_ALWAYSON;
2078 break;
2079 case MSR_IA32_VMX_CR4_FIXED1:
2080 *pdata = -1ULL;
2081 break;
2082 case MSR_IA32_VMX_VMCS_ENUM:
2083 *pdata = 0x1f;
2084 break;
2085 case MSR_IA32_VMX_PROCBASED_CTLS2:
2086 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2087 nested_vmx_secondary_ctls_high);
2088 break;
2089 case MSR_IA32_VMX_EPT_VPID_CAP:
2090 /* Currently, no nested ept or nested vpid */
2091 *pdata = 0;
2092 break;
2093 default:
2094 return 0;
2095 }
2096
2097 return 1;
2098}
2099
2100static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2101{
2102 if (!nested_vmx_allowed(vcpu))
2103 return 0;
2104
2105 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2106 /* TODO: the right thing. */
2107 return 1;
2108 /*
2109 * No need to treat VMX capability MSRs specially: If we don't handle
2110 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2111 */
2112 return 0;
2113}
2114
2115/*
2116 * Reads an msr value (of 'msr_index') into 'pdata'.
2117 * Returns 0 on success, non-0 otherwise.
2118 * Assumes vcpu_load() was already called.
2119 */
2120static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2121{
2122 u64 data;
2123 struct shared_msr_entry *msr;
2124
2125 if (!pdata) {
2126 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2127 return -EINVAL;
2128 }
2129
2130 switch (msr_index) {
2131#ifdef CONFIG_X86_64
2132 case MSR_FS_BASE:
2133 data = vmcs_readl(GUEST_FS_BASE);
2134 break;
2135 case MSR_GS_BASE:
2136 data = vmcs_readl(GUEST_GS_BASE);
2137 break;
2138 case MSR_KERNEL_GS_BASE:
2139 vmx_load_host_state(to_vmx(vcpu));
2140 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2141 break;
2142#endif
2143 case MSR_EFER:
2144 return kvm_get_msr_common(vcpu, msr_index, pdata);
2145 case MSR_IA32_TSC:
2146 data = guest_read_tsc();
2147 break;
2148 case MSR_IA32_SYSENTER_CS:
2149 data = vmcs_read32(GUEST_SYSENTER_CS);
2150 break;
2151 case MSR_IA32_SYSENTER_EIP:
2152 data = vmcs_readl(GUEST_SYSENTER_EIP);
2153 break;
2154 case MSR_IA32_SYSENTER_ESP:
2155 data = vmcs_readl(GUEST_SYSENTER_ESP);
2156 break;
2157 case MSR_TSC_AUX:
2158 if (!to_vmx(vcpu)->rdtscp_enabled)
2159 return 1;
2160 /* Otherwise falls through */
2161 default:
2162 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2163 return 0;
2164 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2165 if (msr) {
2166 data = msr->data;
2167 break;
2168 }
2169 return kvm_get_msr_common(vcpu, msr_index, pdata);
2170 }
2171
2172 *pdata = data;
2173 return 0;
2174}
2175
2176/*
2177 * Writes msr value into into the appropriate "register".
2178 * Returns 0 on success, non-0 otherwise.
2179 * Assumes vcpu_load() was already called.
2180 */
2181static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2182{
2183 struct vcpu_vmx *vmx = to_vmx(vcpu);
2184 struct shared_msr_entry *msr;
2185 int ret = 0;
2186
2187 switch (msr_index) {
2188 case MSR_EFER:
2189 ret = kvm_set_msr_common(vcpu, msr_index, data);
2190 break;
2191#ifdef CONFIG_X86_64
2192 case MSR_FS_BASE:
2193 vmx_segment_cache_clear(vmx);
2194 vmcs_writel(GUEST_FS_BASE, data);
2195 break;
2196 case MSR_GS_BASE:
2197 vmx_segment_cache_clear(vmx);
2198 vmcs_writel(GUEST_GS_BASE, data);
2199 break;
2200 case MSR_KERNEL_GS_BASE:
2201 vmx_load_host_state(vmx);
2202 vmx->msr_guest_kernel_gs_base = data;
2203 break;
2204#endif
2205 case MSR_IA32_SYSENTER_CS:
2206 vmcs_write32(GUEST_SYSENTER_CS, data);
2207 break;
2208 case MSR_IA32_SYSENTER_EIP:
2209 vmcs_writel(GUEST_SYSENTER_EIP, data);
2210 break;
2211 case MSR_IA32_SYSENTER_ESP:
2212 vmcs_writel(GUEST_SYSENTER_ESP, data);
2213 break;
2214 case MSR_IA32_TSC:
2215 kvm_write_tsc(vcpu, data);
2216 break;
2217 case MSR_IA32_CR_PAT:
2218 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2219 vmcs_write64(GUEST_IA32_PAT, data);
2220 vcpu->arch.pat = data;
2221 break;
2222 }
2223 ret = kvm_set_msr_common(vcpu, msr_index, data);
2224 break;
2225 case MSR_TSC_AUX:
2226 if (!vmx->rdtscp_enabled)
2227 return 1;
2228 /* Check reserved bit, higher 32 bits should be zero */
2229 if ((data >> 32) != 0)
2230 return 1;
2231 /* Otherwise falls through */
2232 default:
2233 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2234 break;
2235 msr = find_msr_entry(vmx, msr_index);
2236 if (msr) {
2237 msr->data = data;
2238 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2239 preempt_disable();
2240 kvm_set_shared_msr(msr->index, msr->data,
2241 msr->mask);
2242 preempt_enable();
2243 }
2244 break;
2245 }
2246 ret = kvm_set_msr_common(vcpu, msr_index, data);
2247 }
2248
2249 return ret;
2250}
2251
2252static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2253{
2254 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2255 switch (reg) {
2256 case VCPU_REGS_RSP:
2257 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2258 break;
2259 case VCPU_REGS_RIP:
2260 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2261 break;
2262 case VCPU_EXREG_PDPTR:
2263 if (enable_ept)
2264 ept_save_pdptrs(vcpu);
2265 break;
2266 default:
2267 break;
2268 }
2269}
2270
2271static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
2272{
2273 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2274 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2275 else
2276 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2277
2278 update_exception_bitmap(vcpu);
2279}
2280
2281static __init int cpu_has_kvm_support(void)
2282{
2283 return cpu_has_vmx();
2284}
2285
2286static __init int vmx_disabled_by_bios(void)
2287{
2288 u64 msr;
2289
2290 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2291 if (msr & FEATURE_CONTROL_LOCKED) {
2292 /* launched w/ TXT and VMX disabled */
2293 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2294 && tboot_enabled())
2295 return 1;
2296 /* launched w/o TXT and VMX only enabled w/ TXT */
2297 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2298 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2299 && !tboot_enabled()) {
2300 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2301 "activate TXT before enabling KVM\n");
2302 return 1;
2303 }
2304 /* launched w/o TXT and VMX disabled */
2305 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2306 && !tboot_enabled())
2307 return 1;
2308 }
2309
2310 return 0;
2311}
2312
2313static void kvm_cpu_vmxon(u64 addr)
2314{
2315 asm volatile (ASM_VMX_VMXON_RAX
2316 : : "a"(&addr), "m"(addr)
2317 : "memory", "cc");
2318}
2319
2320static int hardware_enable(void *garbage)
2321{
2322 int cpu = raw_smp_processor_id();
2323 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2324 u64 old, test_bits;
2325
2326 if (read_cr4() & X86_CR4_VMXE)
2327 return -EBUSY;
2328
2329 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2330 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2331
2332 test_bits = FEATURE_CONTROL_LOCKED;
2333 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2334 if (tboot_enabled())
2335 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2336
2337 if ((old & test_bits) != test_bits) {
2338 /* enable and lock */
2339 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2340 }
2341 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2342
2343 if (vmm_exclusive) {
2344 kvm_cpu_vmxon(phys_addr);
2345 ept_sync_global();
2346 }
2347
2348 store_gdt(&__get_cpu_var(host_gdt));
2349
2350 return 0;
2351}
2352
2353static void vmclear_local_loaded_vmcss(void)
2354{
2355 int cpu = raw_smp_processor_id();
2356 struct loaded_vmcs *v, *n;
2357
2358 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2359 loaded_vmcss_on_cpu_link)
2360 __loaded_vmcs_clear(v);
2361}
2362
2363
2364/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2365 * tricks.
2366 */
2367static void kvm_cpu_vmxoff(void)
2368{
2369 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2370}
2371
2372static void hardware_disable(void *garbage)
2373{
2374 if (vmm_exclusive) {
2375 vmclear_local_loaded_vmcss();
2376 kvm_cpu_vmxoff();
2377 }
2378 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2379}
2380
2381static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2382 u32 msr, u32 *result)
2383{
2384 u32 vmx_msr_low, vmx_msr_high;
2385 u32 ctl = ctl_min | ctl_opt;
2386
2387 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2388
2389 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2390 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2391
2392 /* Ensure minimum (required) set of control bits are supported. */
2393 if (ctl_min & ~ctl)
2394 return -EIO;
2395
2396 *result = ctl;
2397 return 0;
2398}
2399
2400static __init bool allow_1_setting(u32 msr, u32 ctl)
2401{
2402 u32 vmx_msr_low, vmx_msr_high;
2403
2404 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2405 return vmx_msr_high & ctl;
2406}
2407
2408static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2409{
2410 u32 vmx_msr_low, vmx_msr_high;
2411 u32 min, opt, min2, opt2;
2412 u32 _pin_based_exec_control = 0;
2413 u32 _cpu_based_exec_control = 0;
2414 u32 _cpu_based_2nd_exec_control = 0;
2415 u32 _vmexit_control = 0;
2416 u32 _vmentry_control = 0;
2417
2418 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2419 opt = PIN_BASED_VIRTUAL_NMIS;
2420 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2421 &_pin_based_exec_control) < 0)
2422 return -EIO;
2423
2424 min = CPU_BASED_HLT_EXITING |
2425#ifdef CONFIG_X86_64
2426 CPU_BASED_CR8_LOAD_EXITING |
2427 CPU_BASED_CR8_STORE_EXITING |
2428#endif
2429 CPU_BASED_CR3_LOAD_EXITING |
2430 CPU_BASED_CR3_STORE_EXITING |
2431 CPU_BASED_USE_IO_BITMAPS |
2432 CPU_BASED_MOV_DR_EXITING |
2433 CPU_BASED_USE_TSC_OFFSETING |
2434 CPU_BASED_MWAIT_EXITING |
2435 CPU_BASED_MONITOR_EXITING |
2436 CPU_BASED_INVLPG_EXITING |
2437 CPU_BASED_RDPMC_EXITING;
2438
2439 opt = CPU_BASED_TPR_SHADOW |
2440 CPU_BASED_USE_MSR_BITMAPS |
2441 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2442 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2443 &_cpu_based_exec_control) < 0)
2444 return -EIO;
2445#ifdef CONFIG_X86_64
2446 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2447 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2448 ~CPU_BASED_CR8_STORE_EXITING;
2449#endif
2450 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2451 min2 = 0;
2452 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2453 SECONDARY_EXEC_WBINVD_EXITING |
2454 SECONDARY_EXEC_ENABLE_VPID |
2455 SECONDARY_EXEC_ENABLE_EPT |
2456 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2457 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2458 SECONDARY_EXEC_RDTSCP;
2459 if (adjust_vmx_controls(min2, opt2,
2460 MSR_IA32_VMX_PROCBASED_CTLS2,
2461 &_cpu_based_2nd_exec_control) < 0)
2462 return -EIO;
2463 }
2464#ifndef CONFIG_X86_64
2465 if (!(_cpu_based_2nd_exec_control &
2466 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2467 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2468#endif
2469 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2470 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2471 enabled */
2472 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2473 CPU_BASED_CR3_STORE_EXITING |
2474 CPU_BASED_INVLPG_EXITING);
2475 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2476 vmx_capability.ept, vmx_capability.vpid);
2477 }
2478
2479 min = 0;
2480#ifdef CONFIG_X86_64
2481 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2482#endif
2483 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
2484 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2485 &_vmexit_control) < 0)
2486 return -EIO;
2487
2488 min = 0;
2489 opt = VM_ENTRY_LOAD_IA32_PAT;
2490 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2491 &_vmentry_control) < 0)
2492 return -EIO;
2493
2494 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2495
2496 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2497 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2498 return -EIO;
2499
2500#ifdef CONFIG_X86_64
2501 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2502 if (vmx_msr_high & (1u<<16))
2503 return -EIO;
2504#endif
2505
2506 /* Require Write-Back (WB) memory type for VMCS accesses. */
2507 if (((vmx_msr_high >> 18) & 15) != 6)
2508 return -EIO;
2509
2510 vmcs_conf->size = vmx_msr_high & 0x1fff;
2511 vmcs_conf->order = get_order(vmcs_config.size);
2512 vmcs_conf->revision_id = vmx_msr_low;
2513
2514 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2515 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2516 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2517 vmcs_conf->vmexit_ctrl = _vmexit_control;
2518 vmcs_conf->vmentry_ctrl = _vmentry_control;
2519
2520 cpu_has_load_ia32_efer =
2521 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2522 VM_ENTRY_LOAD_IA32_EFER)
2523 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2524 VM_EXIT_LOAD_IA32_EFER);
2525
2526 cpu_has_load_perf_global_ctrl =
2527 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2528 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2529 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2530 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2531
2532 /*
2533 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2534 * but due to arrata below it can't be used. Workaround is to use
2535 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2536 *
2537 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2538 *
2539 * AAK155 (model 26)
2540 * AAP115 (model 30)
2541 * AAT100 (model 37)
2542 * BC86,AAY89,BD102 (model 44)
2543 * BA97 (model 46)
2544 *
2545 */
2546 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2547 switch (boot_cpu_data.x86_model) {
2548 case 26:
2549 case 30:
2550 case 37:
2551 case 44:
2552 case 46:
2553 cpu_has_load_perf_global_ctrl = false;
2554 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2555 "does not work properly. Using workaround\n");
2556 break;
2557 default:
2558 break;
2559 }
2560 }
2561
2562 return 0;
2563}
2564
2565static struct vmcs *alloc_vmcs_cpu(int cpu)
2566{
2567 int node = cpu_to_node(cpu);
2568 struct page *pages;
2569 struct vmcs *vmcs;
2570
2571 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2572 if (!pages)
2573 return NULL;
2574 vmcs = page_address(pages);
2575 memset(vmcs, 0, vmcs_config.size);
2576 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2577 return vmcs;
2578}
2579
2580static struct vmcs *alloc_vmcs(void)
2581{
2582 return alloc_vmcs_cpu(raw_smp_processor_id());
2583}
2584
2585static void free_vmcs(struct vmcs *vmcs)
2586{
2587 free_pages((unsigned long)vmcs, vmcs_config.order);
2588}
2589
2590/*
2591 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2592 */
2593static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2594{
2595 if (!loaded_vmcs->vmcs)
2596 return;
2597 loaded_vmcs_clear(loaded_vmcs);
2598 free_vmcs(loaded_vmcs->vmcs);
2599 loaded_vmcs->vmcs = NULL;
2600}
2601
2602static void free_kvm_area(void)
2603{
2604 int cpu;
2605
2606 for_each_possible_cpu(cpu) {
2607 free_vmcs(per_cpu(vmxarea, cpu));
2608 per_cpu(vmxarea, cpu) = NULL;
2609 }
2610}
2611
2612static __init int alloc_kvm_area(void)
2613{
2614 int cpu;
2615
2616 for_each_possible_cpu(cpu) {
2617 struct vmcs *vmcs;
2618
2619 vmcs = alloc_vmcs_cpu(cpu);
2620 if (!vmcs) {
2621 free_kvm_area();
2622 return -ENOMEM;
2623 }
2624
2625 per_cpu(vmxarea, cpu) = vmcs;
2626 }
2627 return 0;
2628}
2629
2630static __init int hardware_setup(void)
2631{
2632 if (setup_vmcs_config(&vmcs_config) < 0)
2633 return -EIO;
2634
2635 if (boot_cpu_has(X86_FEATURE_NX))
2636 kvm_enable_efer_bits(EFER_NX);
2637
2638 if (!cpu_has_vmx_vpid())
2639 enable_vpid = 0;
2640
2641 if (!cpu_has_vmx_ept() ||
2642 !cpu_has_vmx_ept_4levels()) {
2643 enable_ept = 0;
2644 enable_unrestricted_guest = 0;
2645 }
2646
2647 if (!cpu_has_vmx_unrestricted_guest())
2648 enable_unrestricted_guest = 0;
2649
2650 if (!cpu_has_vmx_flexpriority())
2651 flexpriority_enabled = 0;
2652
2653 if (!cpu_has_vmx_tpr_shadow())
2654 kvm_x86_ops->update_cr8_intercept = NULL;
2655
2656 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2657 kvm_disable_largepages();
2658
2659 if (!cpu_has_vmx_ple())
2660 ple_gap = 0;
2661
2662 if (nested)
2663 nested_vmx_setup_ctls_msrs();
2664
2665 return alloc_kvm_area();
2666}
2667
2668static __exit void hardware_unsetup(void)
2669{
2670 free_kvm_area();
2671}
2672
2673static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2674{
2675 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2676
2677 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
2678 vmcs_write16(sf->selector, save->selector);
2679 vmcs_writel(sf->base, save->base);
2680 vmcs_write32(sf->limit, save->limit);
2681 vmcs_write32(sf->ar_bytes, save->ar);
2682 } else {
2683 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2684 << AR_DPL_SHIFT;
2685 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2686 }
2687}
2688
2689static void enter_pmode(struct kvm_vcpu *vcpu)
2690{
2691 unsigned long flags;
2692 struct vcpu_vmx *vmx = to_vmx(vcpu);
2693
2694 vmx->emulation_required = 1;
2695 vmx->rmode.vm86_active = 0;
2696
2697 vmx_segment_cache_clear(vmx);
2698
2699 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
2700 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2701 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2702 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
2703
2704 flags = vmcs_readl(GUEST_RFLAGS);
2705 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2706 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2707 vmcs_writel(GUEST_RFLAGS, flags);
2708
2709 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2710 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2711
2712 update_exception_bitmap(vcpu);
2713
2714 if (emulate_invalid_guest_state)
2715 return;
2716
2717 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2718 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2719 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2720 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
2721
2722 vmx_segment_cache_clear(vmx);
2723
2724 vmcs_write16(GUEST_SS_SELECTOR, 0);
2725 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2726
2727 vmcs_write16(GUEST_CS_SELECTOR,
2728 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2729 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2730}
2731
2732static gva_t rmode_tss_base(struct kvm *kvm)
2733{
2734 if (!kvm->arch.tss_addr) {
2735 struct kvm_memslots *slots;
2736 struct kvm_memory_slot *slot;
2737 gfn_t base_gfn;
2738
2739 slots = kvm_memslots(kvm);
2740 slot = id_to_memslot(slots, 0);
2741 base_gfn = slot->base_gfn + slot->npages - 3;
2742
2743 return base_gfn << PAGE_SHIFT;
2744 }
2745 return kvm->arch.tss_addr;
2746}
2747
2748static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2749{
2750 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2751
2752 save->selector = vmcs_read16(sf->selector);
2753 save->base = vmcs_readl(sf->base);
2754 save->limit = vmcs_read32(sf->limit);
2755 save->ar = vmcs_read32(sf->ar_bytes);
2756 vmcs_write16(sf->selector, save->base >> 4);
2757 vmcs_write32(sf->base, save->base & 0xffff0);
2758 vmcs_write32(sf->limit, 0xffff);
2759 vmcs_write32(sf->ar_bytes, 0xf3);
2760 if (save->base & 0xf)
2761 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2762 " aligned when entering protected mode (seg=%d)",
2763 seg);
2764}
2765
2766static void enter_rmode(struct kvm_vcpu *vcpu)
2767{
2768 unsigned long flags;
2769 struct vcpu_vmx *vmx = to_vmx(vcpu);
2770 struct kvm_segment var;
2771
2772 if (enable_unrestricted_guest)
2773 return;
2774
2775 vmx->emulation_required = 1;
2776 vmx->rmode.vm86_active = 1;
2777
2778 /*
2779 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2780 * vcpu. Call it here with phys address pointing 16M below 4G.
2781 */
2782 if (!vcpu->kvm->arch.tss_addr) {
2783 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2784 "called before entering vcpu\n");
2785 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2786 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2787 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2788 }
2789
2790 vmx_segment_cache_clear(vmx);
2791
2792 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
2793 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
2794 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2795
2796 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
2797 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2798
2799 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
2800 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2801
2802 flags = vmcs_readl(GUEST_RFLAGS);
2803 vmx->rmode.save_rflags = flags;
2804
2805 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2806
2807 vmcs_writel(GUEST_RFLAGS, flags);
2808 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2809 update_exception_bitmap(vcpu);
2810
2811 if (emulate_invalid_guest_state)
2812 goto continue_rmode;
2813
2814 vmx_get_segment(vcpu, &var, VCPU_SREG_SS);
2815 vmx_set_segment(vcpu, &var, VCPU_SREG_SS);
2816
2817 vmx_get_segment(vcpu, &var, VCPU_SREG_CS);
2818 vmx_set_segment(vcpu, &var, VCPU_SREG_CS);
2819
2820 vmx_get_segment(vcpu, &var, VCPU_SREG_ES);
2821 vmx_set_segment(vcpu, &var, VCPU_SREG_ES);
2822
2823 vmx_get_segment(vcpu, &var, VCPU_SREG_DS);
2824 vmx_set_segment(vcpu, &var, VCPU_SREG_DS);
2825
2826 vmx_get_segment(vcpu, &var, VCPU_SREG_GS);
2827 vmx_set_segment(vcpu, &var, VCPU_SREG_GS);
2828
2829 vmx_get_segment(vcpu, &var, VCPU_SREG_FS);
2830 vmx_set_segment(vcpu, &var, VCPU_SREG_FS);
2831
2832continue_rmode:
2833 kvm_mmu_reset_context(vcpu);
2834}
2835
2836static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2837{
2838 struct vcpu_vmx *vmx = to_vmx(vcpu);
2839 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2840
2841 if (!msr)
2842 return;
2843
2844 /*
2845 * Force kernel_gs_base reloading before EFER changes, as control
2846 * of this msr depends on is_long_mode().
2847 */
2848 vmx_load_host_state(to_vmx(vcpu));
2849 vcpu->arch.efer = efer;
2850 if (efer & EFER_LMA) {
2851 vmcs_write32(VM_ENTRY_CONTROLS,
2852 vmcs_read32(VM_ENTRY_CONTROLS) |
2853 VM_ENTRY_IA32E_MODE);
2854 msr->data = efer;
2855 } else {
2856 vmcs_write32(VM_ENTRY_CONTROLS,
2857 vmcs_read32(VM_ENTRY_CONTROLS) &
2858 ~VM_ENTRY_IA32E_MODE);
2859
2860 msr->data = efer & ~EFER_LME;
2861 }
2862 setup_msrs(vmx);
2863}
2864
2865#ifdef CONFIG_X86_64
2866
2867static void enter_lmode(struct kvm_vcpu *vcpu)
2868{
2869 u32 guest_tr_ar;
2870
2871 vmx_segment_cache_clear(to_vmx(vcpu));
2872
2873 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2874 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2875 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2876 __func__);
2877 vmcs_write32(GUEST_TR_AR_BYTES,
2878 (guest_tr_ar & ~AR_TYPE_MASK)
2879 | AR_TYPE_BUSY_64_TSS);
2880 }
2881 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2882}
2883
2884static void exit_lmode(struct kvm_vcpu *vcpu)
2885{
2886 vmcs_write32(VM_ENTRY_CONTROLS,
2887 vmcs_read32(VM_ENTRY_CONTROLS)
2888 & ~VM_ENTRY_IA32E_MODE);
2889 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2890}
2891
2892#endif
2893
2894static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2895{
2896 vpid_sync_context(to_vmx(vcpu));
2897 if (enable_ept) {
2898 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2899 return;
2900 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2901 }
2902}
2903
2904static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2905{
2906 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2907
2908 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2909 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2910}
2911
2912static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2913{
2914 if (enable_ept && is_paging(vcpu))
2915 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2916 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2917}
2918
2919static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2920{
2921 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2922
2923 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2924 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2925}
2926
2927static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2928{
2929 if (!test_bit(VCPU_EXREG_PDPTR,
2930 (unsigned long *)&vcpu->arch.regs_dirty))
2931 return;
2932
2933 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2934 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2935 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2936 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2937 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2938 }
2939}
2940
2941static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2942{
2943 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2944 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2945 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2946 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2947 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2948 }
2949
2950 __set_bit(VCPU_EXREG_PDPTR,
2951 (unsigned long *)&vcpu->arch.regs_avail);
2952 __set_bit(VCPU_EXREG_PDPTR,
2953 (unsigned long *)&vcpu->arch.regs_dirty);
2954}
2955
2956static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2957
2958static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2959 unsigned long cr0,
2960 struct kvm_vcpu *vcpu)
2961{
2962 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2963 vmx_decache_cr3(vcpu);
2964 if (!(cr0 & X86_CR0_PG)) {
2965 /* From paging/starting to nonpaging */
2966 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2967 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2968 (CPU_BASED_CR3_LOAD_EXITING |
2969 CPU_BASED_CR3_STORE_EXITING));
2970 vcpu->arch.cr0 = cr0;
2971 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2972 } else if (!is_paging(vcpu)) {
2973 /* From nonpaging to paging */
2974 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2975 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2976 ~(CPU_BASED_CR3_LOAD_EXITING |
2977 CPU_BASED_CR3_STORE_EXITING));
2978 vcpu->arch.cr0 = cr0;
2979 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2980 }
2981
2982 if (!(cr0 & X86_CR0_WP))
2983 *hw_cr0 &= ~X86_CR0_WP;
2984}
2985
2986static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2987{
2988 struct vcpu_vmx *vmx = to_vmx(vcpu);
2989 unsigned long hw_cr0;
2990
2991 if (enable_unrestricted_guest)
2992 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2993 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2994 else
2995 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
2996
2997 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2998 enter_pmode(vcpu);
2999
3000 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3001 enter_rmode(vcpu);
3002
3003#ifdef CONFIG_X86_64
3004 if (vcpu->arch.efer & EFER_LME) {
3005 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3006 enter_lmode(vcpu);
3007 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3008 exit_lmode(vcpu);
3009 }
3010#endif
3011
3012 if (enable_ept)
3013 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3014
3015 if (!vcpu->fpu_active)
3016 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3017
3018 vmcs_writel(CR0_READ_SHADOW, cr0);
3019 vmcs_writel(GUEST_CR0, hw_cr0);
3020 vcpu->arch.cr0 = cr0;
3021 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3022}
3023
3024static u64 construct_eptp(unsigned long root_hpa)
3025{
3026 u64 eptp;
3027
3028 /* TODO write the value reading from MSR */
3029 eptp = VMX_EPT_DEFAULT_MT |
3030 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3031 eptp |= (root_hpa & PAGE_MASK);
3032
3033 return eptp;
3034}
3035
3036static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3037{
3038 unsigned long guest_cr3;
3039 u64 eptp;
3040
3041 guest_cr3 = cr3;
3042 if (enable_ept) {
3043 eptp = construct_eptp(cr3);
3044 vmcs_write64(EPT_POINTER, eptp);
3045 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3046 vcpu->kvm->arch.ept_identity_map_addr;
3047 ept_load_pdptrs(vcpu);
3048 }
3049
3050 vmx_flush_tlb(vcpu);
3051 vmcs_writel(GUEST_CR3, guest_cr3);
3052}
3053
3054static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3055{
3056 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3057 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3058
3059 if (cr4 & X86_CR4_VMXE) {
3060 /*
3061 * To use VMXON (and later other VMX instructions), a guest
3062 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3063 * So basically the check on whether to allow nested VMX
3064 * is here.
3065 */
3066 if (!nested_vmx_allowed(vcpu))
3067 return 1;
3068 } else if (to_vmx(vcpu)->nested.vmxon)
3069 return 1;
3070
3071 vcpu->arch.cr4 = cr4;
3072 if (enable_ept) {
3073 if (!is_paging(vcpu)) {
3074 hw_cr4 &= ~X86_CR4_PAE;
3075 hw_cr4 |= X86_CR4_PSE;
3076 } else if (!(cr4 & X86_CR4_PAE)) {
3077 hw_cr4 &= ~X86_CR4_PAE;
3078 }
3079 }
3080
3081 vmcs_writel(CR4_READ_SHADOW, cr4);
3082 vmcs_writel(GUEST_CR4, hw_cr4);
3083 return 0;
3084}
3085
3086static void vmx_get_segment(struct kvm_vcpu *vcpu,
3087 struct kvm_segment *var, int seg)
3088{
3089 struct vcpu_vmx *vmx = to_vmx(vcpu);
3090 struct kvm_save_segment *save;
3091 u32 ar;
3092
3093 if (vmx->rmode.vm86_active
3094 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
3095 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
3096 || seg == VCPU_SREG_GS)
3097 && !emulate_invalid_guest_state) {
3098 switch (seg) {
3099 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
3100 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
3101 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
3102 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
3103 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
3104 default: BUG();
3105 }
3106 var->selector = save->selector;
3107 var->base = save->base;
3108 var->limit = save->limit;
3109 ar = save->ar;
3110 if (seg == VCPU_SREG_TR
3111 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3112 goto use_saved_rmode_seg;
3113 }
3114 var->base = vmx_read_guest_seg_base(vmx, seg);
3115 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3116 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3117 ar = vmx_read_guest_seg_ar(vmx, seg);
3118use_saved_rmode_seg:
3119 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
3120 ar = 0;
3121 var->type = ar & 15;
3122 var->s = (ar >> 4) & 1;
3123 var->dpl = (ar >> 5) & 3;
3124 var->present = (ar >> 7) & 1;
3125 var->avl = (ar >> 12) & 1;
3126 var->l = (ar >> 13) & 1;
3127 var->db = (ar >> 14) & 1;
3128 var->g = (ar >> 15) & 1;
3129 var->unusable = (ar >> 16) & 1;
3130}
3131
3132static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3133{
3134 struct kvm_segment s;
3135
3136 if (to_vmx(vcpu)->rmode.vm86_active) {
3137 vmx_get_segment(vcpu, &s, seg);
3138 return s.base;
3139 }
3140 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3141}
3142
3143static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
3144{
3145 if (!is_protmode(vcpu))
3146 return 0;
3147
3148 if (!is_long_mode(vcpu)
3149 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3150 return 3;
3151
3152 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
3153}
3154
3155static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3156{
3157 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3158 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3159 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
3160 }
3161 return to_vmx(vcpu)->cpl;
3162}
3163
3164
3165static u32 vmx_segment_access_rights(struct kvm_segment *var)
3166{
3167 u32 ar;
3168
3169 if (var->unusable)
3170 ar = 1 << 16;
3171 else {
3172 ar = var->type & 15;
3173 ar |= (var->s & 1) << 4;
3174 ar |= (var->dpl & 3) << 5;
3175 ar |= (var->present & 1) << 7;
3176 ar |= (var->avl & 1) << 12;
3177 ar |= (var->l & 1) << 13;
3178 ar |= (var->db & 1) << 14;
3179 ar |= (var->g & 1) << 15;
3180 }
3181 if (ar == 0) /* a 0 value means unusable */
3182 ar = AR_UNUSABLE_MASK;
3183
3184 return ar;
3185}
3186
3187static void vmx_set_segment(struct kvm_vcpu *vcpu,
3188 struct kvm_segment *var, int seg)
3189{
3190 struct vcpu_vmx *vmx = to_vmx(vcpu);
3191 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3192 u32 ar;
3193
3194 vmx_segment_cache_clear(vmx);
3195
3196 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
3197 vmcs_write16(sf->selector, var->selector);
3198 vmx->rmode.tr.selector = var->selector;
3199 vmx->rmode.tr.base = var->base;
3200 vmx->rmode.tr.limit = var->limit;
3201 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
3202 return;
3203 }
3204 vmcs_writel(sf->base, var->base);
3205 vmcs_write32(sf->limit, var->limit);
3206 vmcs_write16(sf->selector, var->selector);
3207 if (vmx->rmode.vm86_active && var->s) {
3208 /*
3209 * Hack real-mode segments into vm86 compatibility.
3210 */
3211 if (var->base == 0xffff0000 && var->selector == 0xf000)
3212 vmcs_writel(sf->base, 0xf0000);
3213 ar = 0xf3;
3214 } else
3215 ar = vmx_segment_access_rights(var);
3216
3217 /*
3218 * Fix the "Accessed" bit in AR field of segment registers for older
3219 * qemu binaries.
3220 * IA32 arch specifies that at the time of processor reset the
3221 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3222 * is setting it to 0 in the usedland code. This causes invalid guest
3223 * state vmexit when "unrestricted guest" mode is turned on.
3224 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3225 * tree. Newer qemu binaries with that qemu fix would not need this
3226 * kvm hack.
3227 */
3228 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3229 ar |= 0x1; /* Accessed */
3230
3231 vmcs_write32(sf->ar_bytes, ar);
3232 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3233
3234 /*
3235 * Fix segments for real mode guest in hosts that don't have
3236 * "unrestricted_mode" or it was disabled.
3237 * This is done to allow migration of the guests from hosts with
3238 * unrestricted guest like Westmere to older host that don't have
3239 * unrestricted guest like Nehelem.
3240 */
3241 if (!enable_unrestricted_guest && vmx->rmode.vm86_active) {
3242 switch (seg) {
3243 case VCPU_SREG_CS:
3244 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
3245 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
3246 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
3247 vmcs_writel(GUEST_CS_BASE, 0xf0000);
3248 vmcs_write16(GUEST_CS_SELECTOR,
3249 vmcs_readl(GUEST_CS_BASE) >> 4);
3250 break;
3251 case VCPU_SREG_ES:
3252 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
3253 break;
3254 case VCPU_SREG_DS:
3255 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
3256 break;
3257 case VCPU_SREG_GS:
3258 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
3259 break;
3260 case VCPU_SREG_FS:
3261 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
3262 break;
3263 case VCPU_SREG_SS:
3264 vmcs_write16(GUEST_SS_SELECTOR,
3265 vmcs_readl(GUEST_SS_BASE) >> 4);
3266 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
3267 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
3268 break;
3269 }
3270 }
3271}
3272
3273static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3274{
3275 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3276
3277 *db = (ar >> 14) & 1;
3278 *l = (ar >> 13) & 1;
3279}
3280
3281static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3282{
3283 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3284 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3285}
3286
3287static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3288{
3289 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3290 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3291}
3292
3293static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3294{
3295 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3296 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3297}
3298
3299static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3300{
3301 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3302 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3303}
3304
3305static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3306{
3307 struct kvm_segment var;
3308 u32 ar;
3309
3310 vmx_get_segment(vcpu, &var, seg);
3311 ar = vmx_segment_access_rights(&var);
3312
3313 if (var.base != (var.selector << 4))
3314 return false;
3315 if (var.limit != 0xffff)
3316 return false;
3317 if (ar != 0xf3)
3318 return false;
3319
3320 return true;
3321}
3322
3323static bool code_segment_valid(struct kvm_vcpu *vcpu)
3324{
3325 struct kvm_segment cs;
3326 unsigned int cs_rpl;
3327
3328 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3329 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3330
3331 if (cs.unusable)
3332 return false;
3333 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3334 return false;
3335 if (!cs.s)
3336 return false;
3337 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3338 if (cs.dpl > cs_rpl)
3339 return false;
3340 } else {
3341 if (cs.dpl != cs_rpl)
3342 return false;
3343 }
3344 if (!cs.present)
3345 return false;
3346
3347 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3348 return true;
3349}
3350
3351static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3352{
3353 struct kvm_segment ss;
3354 unsigned int ss_rpl;
3355
3356 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3357 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3358
3359 if (ss.unusable)
3360 return true;
3361 if (ss.type != 3 && ss.type != 7)
3362 return false;
3363 if (!ss.s)
3364 return false;
3365 if (ss.dpl != ss_rpl) /* DPL != RPL */
3366 return false;
3367 if (!ss.present)
3368 return false;
3369
3370 return true;
3371}
3372
3373static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3374{
3375 struct kvm_segment var;
3376 unsigned int rpl;
3377
3378 vmx_get_segment(vcpu, &var, seg);
3379 rpl = var.selector & SELECTOR_RPL_MASK;
3380
3381 if (var.unusable)
3382 return true;
3383 if (!var.s)
3384 return false;
3385 if (!var.present)
3386 return false;
3387 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3388 if (var.dpl < rpl) /* DPL < RPL */
3389 return false;
3390 }
3391
3392 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3393 * rights flags
3394 */
3395 return true;
3396}
3397
3398static bool tr_valid(struct kvm_vcpu *vcpu)
3399{
3400 struct kvm_segment tr;
3401
3402 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3403
3404 if (tr.unusable)
3405 return false;
3406 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3407 return false;
3408 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3409 return false;
3410 if (!tr.present)
3411 return false;
3412
3413 return true;
3414}
3415
3416static bool ldtr_valid(struct kvm_vcpu *vcpu)
3417{
3418 struct kvm_segment ldtr;
3419
3420 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3421
3422 if (ldtr.unusable)
3423 return true;
3424 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3425 return false;
3426 if (ldtr.type != 2)
3427 return false;
3428 if (!ldtr.present)
3429 return false;
3430
3431 return true;
3432}
3433
3434static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3435{
3436 struct kvm_segment cs, ss;
3437
3438 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3439 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3440
3441 return ((cs.selector & SELECTOR_RPL_MASK) ==
3442 (ss.selector & SELECTOR_RPL_MASK));
3443}
3444
3445/*
3446 * Check if guest state is valid. Returns true if valid, false if
3447 * not.
3448 * We assume that registers are always usable
3449 */
3450static bool guest_state_valid(struct kvm_vcpu *vcpu)
3451{
3452 /* real mode guest state checks */
3453 if (!is_protmode(vcpu)) {
3454 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3455 return false;
3456 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3457 return false;
3458 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3459 return false;
3460 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3461 return false;
3462 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3463 return false;
3464 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3465 return false;
3466 } else {
3467 /* protected mode guest state checks */
3468 if (!cs_ss_rpl_check(vcpu))
3469 return false;
3470 if (!code_segment_valid(vcpu))
3471 return false;
3472 if (!stack_segment_valid(vcpu))
3473 return false;
3474 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3475 return false;
3476 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3477 return false;
3478 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3479 return false;
3480 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3481 return false;
3482 if (!tr_valid(vcpu))
3483 return false;
3484 if (!ldtr_valid(vcpu))
3485 return false;
3486 }
3487 /* TODO:
3488 * - Add checks on RIP
3489 * - Add checks on RFLAGS
3490 */
3491
3492 return true;
3493}
3494
3495static int init_rmode_tss(struct kvm *kvm)
3496{
3497 gfn_t fn;
3498 u16 data = 0;
3499 int r, idx, ret = 0;
3500
3501 idx = srcu_read_lock(&kvm->srcu);
3502 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
3503 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3504 if (r < 0)
3505 goto out;
3506 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3507 r = kvm_write_guest_page(kvm, fn++, &data,
3508 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3509 if (r < 0)
3510 goto out;
3511 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3512 if (r < 0)
3513 goto out;
3514 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3515 if (r < 0)
3516 goto out;
3517 data = ~0;
3518 r = kvm_write_guest_page(kvm, fn, &data,
3519 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3520 sizeof(u8));
3521 if (r < 0)
3522 goto out;
3523
3524 ret = 1;
3525out:
3526 srcu_read_unlock(&kvm->srcu, idx);
3527 return ret;
3528}
3529
3530static int init_rmode_identity_map(struct kvm *kvm)
3531{
3532 int i, idx, r, ret;
3533 pfn_t identity_map_pfn;
3534 u32 tmp;
3535
3536 if (!enable_ept)
3537 return 1;
3538 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3539 printk(KERN_ERR "EPT: identity-mapping pagetable "
3540 "haven't been allocated!\n");
3541 return 0;
3542 }
3543 if (likely(kvm->arch.ept_identity_pagetable_done))
3544 return 1;
3545 ret = 0;
3546 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3547 idx = srcu_read_lock(&kvm->srcu);
3548 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3549 if (r < 0)
3550 goto out;
3551 /* Set up identity-mapping pagetable for EPT in real mode */
3552 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3553 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3554 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3555 r = kvm_write_guest_page(kvm, identity_map_pfn,
3556 &tmp, i * sizeof(tmp), sizeof(tmp));
3557 if (r < 0)
3558 goto out;
3559 }
3560 kvm->arch.ept_identity_pagetable_done = true;
3561 ret = 1;
3562out:
3563 srcu_read_unlock(&kvm->srcu, idx);
3564 return ret;
3565}
3566
3567static void seg_setup(int seg)
3568{
3569 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3570 unsigned int ar;
3571
3572 vmcs_write16(sf->selector, 0);
3573 vmcs_writel(sf->base, 0);
3574 vmcs_write32(sf->limit, 0xffff);
3575 if (enable_unrestricted_guest) {
3576 ar = 0x93;
3577 if (seg == VCPU_SREG_CS)
3578 ar |= 0x08; /* code segment */
3579 } else
3580 ar = 0xf3;
3581
3582 vmcs_write32(sf->ar_bytes, ar);
3583}
3584
3585static int alloc_apic_access_page(struct kvm *kvm)
3586{
3587 struct kvm_userspace_memory_region kvm_userspace_mem;
3588 int r = 0;
3589
3590 mutex_lock(&kvm->slots_lock);
3591 if (kvm->arch.apic_access_page)
3592 goto out;
3593 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3594 kvm_userspace_mem.flags = 0;
3595 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3596 kvm_userspace_mem.memory_size = PAGE_SIZE;
3597 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3598 if (r)
3599 goto out;
3600
3601 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
3602out:
3603 mutex_unlock(&kvm->slots_lock);
3604 return r;
3605}
3606
3607static int alloc_identity_pagetable(struct kvm *kvm)
3608{
3609 struct kvm_userspace_memory_region kvm_userspace_mem;
3610 int r = 0;
3611
3612 mutex_lock(&kvm->slots_lock);
3613 if (kvm->arch.ept_identity_pagetable)
3614 goto out;
3615 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3616 kvm_userspace_mem.flags = 0;
3617 kvm_userspace_mem.guest_phys_addr =
3618 kvm->arch.ept_identity_map_addr;
3619 kvm_userspace_mem.memory_size = PAGE_SIZE;
3620 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3621 if (r)
3622 goto out;
3623
3624 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
3625 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3626out:
3627 mutex_unlock(&kvm->slots_lock);
3628 return r;
3629}
3630
3631static void allocate_vpid(struct vcpu_vmx *vmx)
3632{
3633 int vpid;
3634
3635 vmx->vpid = 0;
3636 if (!enable_vpid)
3637 return;
3638 spin_lock(&vmx_vpid_lock);
3639 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3640 if (vpid < VMX_NR_VPIDS) {
3641 vmx->vpid = vpid;
3642 __set_bit(vpid, vmx_vpid_bitmap);
3643 }
3644 spin_unlock(&vmx_vpid_lock);
3645}
3646
3647static void free_vpid(struct vcpu_vmx *vmx)
3648{
3649 if (!enable_vpid)
3650 return;
3651 spin_lock(&vmx_vpid_lock);
3652 if (vmx->vpid != 0)
3653 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3654 spin_unlock(&vmx_vpid_lock);
3655}
3656
3657static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
3658{
3659 int f = sizeof(unsigned long);
3660
3661 if (!cpu_has_vmx_msr_bitmap())
3662 return;
3663
3664 /*
3665 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3666 * have the write-low and read-high bitmap offsets the wrong way round.
3667 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3668 */
3669 if (msr <= 0x1fff) {
3670 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3671 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
3672 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3673 msr &= 0x1fff;
3674 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3675 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
3676 }
3677}
3678
3679static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3680{
3681 if (!longmode_only)
3682 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3683 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3684}
3685
3686/*
3687 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3688 * will not change in the lifetime of the guest.
3689 * Note that host-state that does change is set elsewhere. E.g., host-state
3690 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3691 */
3692static void vmx_set_constant_host_state(void)
3693{
3694 u32 low32, high32;
3695 unsigned long tmpl;
3696 struct desc_ptr dt;
3697
3698 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
3699 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3700 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3701
3702 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3703#ifdef CONFIG_X86_64
3704 /*
3705 * Load null selectors, so we can avoid reloading them in
3706 * __vmx_load_host_state(), in case userspace uses the null selectors
3707 * too (the expected case).
3708 */
3709 vmcs_write16(HOST_DS_SELECTOR, 0);
3710 vmcs_write16(HOST_ES_SELECTOR, 0);
3711#else
3712 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3713 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3714#endif
3715 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3716 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3717
3718 native_store_idt(&dt);
3719 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3720
3721 asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3722 vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3723
3724 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3725 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3726 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3727 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3728
3729 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3730 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3731 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3732 }
3733}
3734
3735static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3736{
3737 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3738 if (enable_ept)
3739 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3740 if (is_guest_mode(&vmx->vcpu))
3741 vmx->vcpu.arch.cr4_guest_owned_bits &=
3742 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3743 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3744}
3745
3746static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3747{
3748 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3749 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3750 exec_control &= ~CPU_BASED_TPR_SHADOW;
3751#ifdef CONFIG_X86_64
3752 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3753 CPU_BASED_CR8_LOAD_EXITING;
3754#endif
3755 }
3756 if (!enable_ept)
3757 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3758 CPU_BASED_CR3_LOAD_EXITING |
3759 CPU_BASED_INVLPG_EXITING;
3760 return exec_control;
3761}
3762
3763static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3764{
3765 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3766 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3767 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3768 if (vmx->vpid == 0)
3769 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3770 if (!enable_ept) {
3771 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3772 enable_unrestricted_guest = 0;
3773 }
3774 if (!enable_unrestricted_guest)
3775 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3776 if (!ple_gap)
3777 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3778 return exec_control;
3779}
3780
3781static void ept_set_mmio_spte_mask(void)
3782{
3783 /*
3784 * EPT Misconfigurations can be generated if the value of bits 2:0
3785 * of an EPT paging-structure entry is 110b (write/execute).
3786 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3787 * spte.
3788 */
3789 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3790}
3791
3792/*
3793 * Sets up the vmcs for emulated real mode.
3794 */
3795static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
3796{
3797#ifdef CONFIG_X86_64
3798 unsigned long a;
3799#endif
3800 int i;
3801
3802 /* I/O */
3803 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3804 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
3805
3806 if (cpu_has_vmx_msr_bitmap())
3807 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
3808
3809 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3810
3811 /* Control */
3812 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3813 vmcs_config.pin_based_exec_ctrl);
3814
3815 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
3816
3817 if (cpu_has_secondary_exec_ctrls()) {
3818 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3819 vmx_secondary_exec_control(vmx));
3820 }
3821
3822 if (ple_gap) {
3823 vmcs_write32(PLE_GAP, ple_gap);
3824 vmcs_write32(PLE_WINDOW, ple_window);
3825 }
3826
3827 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3828 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
3829 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3830
3831 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3832 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
3833 vmx_set_constant_host_state();
3834#ifdef CONFIG_X86_64
3835 rdmsrl(MSR_FS_BASE, a);
3836 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3837 rdmsrl(MSR_GS_BASE, a);
3838 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3839#else
3840 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3841 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3842#endif
3843
3844 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3845 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3846 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
3847 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3848 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
3849
3850 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3851 u32 msr_low, msr_high;
3852 u64 host_pat;
3853 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3854 host_pat = msr_low | ((u64) msr_high << 32);
3855 /* Write the default value follow host pat */
3856 vmcs_write64(GUEST_IA32_PAT, host_pat);
3857 /* Keep arch.pat sync with GUEST_IA32_PAT */
3858 vmx->vcpu.arch.pat = host_pat;
3859 }
3860
3861 for (i = 0; i < NR_VMX_MSR; ++i) {
3862 u32 index = vmx_msr_index[i];
3863 u32 data_low, data_high;
3864 int j = vmx->nmsrs;
3865
3866 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3867 continue;
3868 if (wrmsr_safe(index, data_low, data_high) < 0)
3869 continue;
3870 vmx->guest_msrs[j].index = i;
3871 vmx->guest_msrs[j].data = 0;
3872 vmx->guest_msrs[j].mask = -1ull;
3873 ++vmx->nmsrs;
3874 }
3875
3876 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
3877
3878 /* 22.2.1, 20.8.1 */
3879 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3880
3881 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
3882 set_cr4_guest_host_mask(vmx);
3883
3884 kvm_write_tsc(&vmx->vcpu, 0);
3885
3886 return 0;
3887}
3888
3889static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3890{
3891 struct vcpu_vmx *vmx = to_vmx(vcpu);
3892 u64 msr;
3893 int ret;
3894
3895 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3896
3897 vmx->rmode.vm86_active = 0;
3898
3899 vmx->soft_vnmi_blocked = 0;
3900
3901 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
3902 kvm_set_cr8(&vmx->vcpu, 0);
3903 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
3904 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3905 msr |= MSR_IA32_APICBASE_BSP;
3906 kvm_set_apic_base(&vmx->vcpu, msr);
3907
3908 ret = fx_init(&vmx->vcpu);
3909 if (ret != 0)
3910 goto out;
3911
3912 vmx_segment_cache_clear(vmx);
3913
3914 seg_setup(VCPU_SREG_CS);
3915 /*
3916 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3917 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3918 */
3919 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
3920 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3921 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3922 } else {
3923 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3924 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
3925 }
3926
3927 seg_setup(VCPU_SREG_DS);
3928 seg_setup(VCPU_SREG_ES);
3929 seg_setup(VCPU_SREG_FS);
3930 seg_setup(VCPU_SREG_GS);
3931 seg_setup(VCPU_SREG_SS);
3932
3933 vmcs_write16(GUEST_TR_SELECTOR, 0);
3934 vmcs_writel(GUEST_TR_BASE, 0);
3935 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3936 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3937
3938 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3939 vmcs_writel(GUEST_LDTR_BASE, 0);
3940 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3941 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3942
3943 vmcs_write32(GUEST_SYSENTER_CS, 0);
3944 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3945 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3946
3947 vmcs_writel(GUEST_RFLAGS, 0x02);
3948 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3949 kvm_rip_write(vcpu, 0xfff0);
3950 else
3951 kvm_rip_write(vcpu, 0);
3952 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
3953
3954 vmcs_writel(GUEST_DR7, 0x400);
3955
3956 vmcs_writel(GUEST_GDTR_BASE, 0);
3957 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3958
3959 vmcs_writel(GUEST_IDTR_BASE, 0);
3960 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3961
3962 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
3963 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3964 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3965
3966 /* Special registers */
3967 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3968
3969 setup_msrs(vmx);
3970
3971 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
3972
3973 if (cpu_has_vmx_tpr_shadow()) {
3974 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3975 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3976 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
3977 __pa(vmx->vcpu.arch.apic->regs));
3978 vmcs_write32(TPR_THRESHOLD, 0);
3979 }
3980
3981 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3982 vmcs_write64(APIC_ACCESS_ADDR,
3983 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
3984
3985 if (vmx->vpid != 0)
3986 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3987
3988 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
3989 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3990 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
3991 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
3992 vmx_set_cr4(&vmx->vcpu, 0);
3993 vmx_set_efer(&vmx->vcpu, 0);
3994 vmx_fpu_activate(&vmx->vcpu);
3995 update_exception_bitmap(&vmx->vcpu);
3996
3997 vpid_sync_context(vmx);
3998
3999 ret = 0;
4000
4001 /* HACK: Don't enable emulation on guest boot/reset */
4002 vmx->emulation_required = 0;
4003
4004out:
4005 return ret;
4006}
4007
4008/*
4009 * In nested virtualization, check if L1 asked to exit on external interrupts.
4010 * For most existing hypervisors, this will always return true.
4011 */
4012static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4013{
4014 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4015 PIN_BASED_EXT_INTR_MASK;
4016}
4017
4018static void enable_irq_window(struct kvm_vcpu *vcpu)
4019{
4020 u32 cpu_based_vm_exec_control;
4021 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4022 /*
4023 * We get here if vmx_interrupt_allowed() said we can't
4024 * inject to L1 now because L2 must run. Ask L2 to exit
4025 * right after entry, so we can inject to L1 more promptly.
4026 */
4027 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
4028 return;
4029 }
4030
4031 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4032 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4033 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4034}
4035
4036static void enable_nmi_window(struct kvm_vcpu *vcpu)
4037{
4038 u32 cpu_based_vm_exec_control;
4039
4040 if (!cpu_has_virtual_nmis()) {
4041 enable_irq_window(vcpu);
4042 return;
4043 }
4044
4045 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4046 enable_irq_window(vcpu);
4047 return;
4048 }
4049 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4050 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4051 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4052}
4053
4054static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4055{
4056 struct vcpu_vmx *vmx = to_vmx(vcpu);
4057 uint32_t intr;
4058 int irq = vcpu->arch.interrupt.nr;
4059
4060 trace_kvm_inj_virq(irq);
4061
4062 ++vcpu->stat.irq_injections;
4063 if (vmx->rmode.vm86_active) {
4064 int inc_eip = 0;
4065 if (vcpu->arch.interrupt.soft)
4066 inc_eip = vcpu->arch.event_exit_inst_len;
4067 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4068 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4069 return;
4070 }
4071 intr = irq | INTR_INFO_VALID_MASK;
4072 if (vcpu->arch.interrupt.soft) {
4073 intr |= INTR_TYPE_SOFT_INTR;
4074 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4075 vmx->vcpu.arch.event_exit_inst_len);
4076 } else
4077 intr |= INTR_TYPE_EXT_INTR;
4078 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4079}
4080
4081static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4082{
4083 struct vcpu_vmx *vmx = to_vmx(vcpu);
4084
4085 if (is_guest_mode(vcpu))
4086 return;
4087
4088 if (!cpu_has_virtual_nmis()) {
4089 /*
4090 * Tracking the NMI-blocked state in software is built upon
4091 * finding the next open IRQ window. This, in turn, depends on
4092 * well-behaving guests: They have to keep IRQs disabled at
4093 * least as long as the NMI handler runs. Otherwise we may
4094 * cause NMI nesting, maybe breaking the guest. But as this is
4095 * highly unlikely, we can live with the residual risk.
4096 */
4097 vmx->soft_vnmi_blocked = 1;
4098 vmx->vnmi_blocked_time = 0;
4099 }
4100
4101 ++vcpu->stat.nmi_injections;
4102 vmx->nmi_known_unmasked = false;
4103 if (vmx->rmode.vm86_active) {
4104 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4105 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4106 return;
4107 }
4108 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4109 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4110}
4111
4112static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4113{
4114 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4115 return 0;
4116
4117 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4118 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4119 | GUEST_INTR_STATE_NMI));
4120}
4121
4122static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4123{
4124 if (!cpu_has_virtual_nmis())
4125 return to_vmx(vcpu)->soft_vnmi_blocked;
4126 if (to_vmx(vcpu)->nmi_known_unmasked)
4127 return false;
4128 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4129}
4130
4131static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4132{
4133 struct vcpu_vmx *vmx = to_vmx(vcpu);
4134
4135 if (!cpu_has_virtual_nmis()) {
4136 if (vmx->soft_vnmi_blocked != masked) {
4137 vmx->soft_vnmi_blocked = masked;
4138 vmx->vnmi_blocked_time = 0;
4139 }
4140 } else {
4141 vmx->nmi_known_unmasked = !masked;
4142 if (masked)
4143 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4144 GUEST_INTR_STATE_NMI);
4145 else
4146 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4147 GUEST_INTR_STATE_NMI);
4148 }
4149}
4150
4151static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4152{
4153 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4154 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4155 if (to_vmx(vcpu)->nested.nested_run_pending ||
4156 (vmcs12->idt_vectoring_info_field &
4157 VECTORING_INFO_VALID_MASK))
4158 return 0;
4159 nested_vmx_vmexit(vcpu);
4160 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4161 vmcs12->vm_exit_intr_info = 0;
4162 /* fall through to normal code, but now in L1, not L2 */
4163 }
4164
4165 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4166 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4167 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4168}
4169
4170static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4171{
4172 int ret;
4173 struct kvm_userspace_memory_region tss_mem = {
4174 .slot = TSS_PRIVATE_MEMSLOT,
4175 .guest_phys_addr = addr,
4176 .memory_size = PAGE_SIZE * 3,
4177 .flags = 0,
4178 };
4179
4180 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
4181 if (ret)
4182 return ret;
4183 kvm->arch.tss_addr = addr;
4184 if (!init_rmode_tss(kvm))
4185 return -ENOMEM;
4186
4187 return 0;
4188}
4189
4190static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4191 int vec, u32 err_code)
4192{
4193 /*
4194 * Instruction with address size override prefix opcode 0x67
4195 * Cause the #SS fault with 0 error code in VM86 mode.
4196 */
4197 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
4198 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
4199 return 1;
4200 /*
4201 * Forward all other exceptions that are valid in real mode.
4202 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4203 * the required debugging infrastructure rework.
4204 */
4205 switch (vec) {
4206 case DB_VECTOR:
4207 if (vcpu->guest_debug &
4208 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4209 return 0;
4210 kvm_queue_exception(vcpu, vec);
4211 return 1;
4212 case BP_VECTOR:
4213 /*
4214 * Update instruction length as we may reinject the exception
4215 * from user space while in guest debugging mode.
4216 */
4217 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4218 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4219 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4220 return 0;
4221 /* fall through */
4222 case DE_VECTOR:
4223 case OF_VECTOR:
4224 case BR_VECTOR:
4225 case UD_VECTOR:
4226 case DF_VECTOR:
4227 case SS_VECTOR:
4228 case GP_VECTOR:
4229 case MF_VECTOR:
4230 kvm_queue_exception(vcpu, vec);
4231 return 1;
4232 }
4233 return 0;
4234}
4235
4236/*
4237 * Trigger machine check on the host. We assume all the MSRs are already set up
4238 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4239 * We pass a fake environment to the machine check handler because we want
4240 * the guest to be always treated like user space, no matter what context
4241 * it used internally.
4242 */
4243static void kvm_machine_check(void)
4244{
4245#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4246 struct pt_regs regs = {
4247 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4248 .flags = X86_EFLAGS_IF,
4249 };
4250
4251 do_machine_check(®s, 0);
4252#endif
4253}
4254
4255static int handle_machine_check(struct kvm_vcpu *vcpu)
4256{
4257 /* already handled by vcpu_run */
4258 return 1;
4259}
4260
4261static int handle_exception(struct kvm_vcpu *vcpu)
4262{
4263 struct vcpu_vmx *vmx = to_vmx(vcpu);
4264 struct kvm_run *kvm_run = vcpu->run;
4265 u32 intr_info, ex_no, error_code;
4266 unsigned long cr2, rip, dr6;
4267 u32 vect_info;
4268 enum emulation_result er;
4269
4270 vect_info = vmx->idt_vectoring_info;
4271 intr_info = vmx->exit_intr_info;
4272
4273 if (is_machine_check(intr_info))
4274 return handle_machine_check(vcpu);
4275
4276 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4277 !is_page_fault(intr_info)) {
4278 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4279 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4280 vcpu->run->internal.ndata = 2;
4281 vcpu->run->internal.data[0] = vect_info;
4282 vcpu->run->internal.data[1] = intr_info;
4283 return 0;
4284 }
4285
4286 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4287 return 1; /* already handled by vmx_vcpu_run() */
4288
4289 if (is_no_device(intr_info)) {
4290 vmx_fpu_activate(vcpu);
4291 return 1;
4292 }
4293
4294 if (is_invalid_opcode(intr_info)) {
4295 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4296 if (er != EMULATE_DONE)
4297 kvm_queue_exception(vcpu, UD_VECTOR);
4298 return 1;
4299 }
4300
4301 error_code = 0;
4302 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4303 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4304 if (is_page_fault(intr_info)) {
4305 /* EPT won't cause page fault directly */
4306 BUG_ON(enable_ept);
4307 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4308 trace_kvm_page_fault(cr2, error_code);
4309
4310 if (kvm_event_needs_reinjection(vcpu))
4311 kvm_mmu_unprotect_page_virt(vcpu, cr2);
4312 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4313 }
4314
4315 if (vmx->rmode.vm86_active &&
4316 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
4317 error_code)) {
4318 if (vcpu->arch.halt_request) {
4319 vcpu->arch.halt_request = 0;
4320 return kvm_emulate_halt(vcpu);
4321 }
4322 return 1;
4323 }
4324
4325 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4326 switch (ex_no) {
4327 case DB_VECTOR:
4328 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4329 if (!(vcpu->guest_debug &
4330 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4331 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4332 kvm_queue_exception(vcpu, DB_VECTOR);
4333 return 1;
4334 }
4335 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4336 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4337 /* fall through */
4338 case BP_VECTOR:
4339 /*
4340 * Update instruction length as we may reinject #BP from
4341 * user space while in guest debugging mode. Reading it for
4342 * #DB as well causes no harm, it is not used in that case.
4343 */
4344 vmx->vcpu.arch.event_exit_inst_len =
4345 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4346 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4347 rip = kvm_rip_read(vcpu);
4348 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4349 kvm_run->debug.arch.exception = ex_no;
4350 break;
4351 default:
4352 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4353 kvm_run->ex.exception = ex_no;
4354 kvm_run->ex.error_code = error_code;
4355 break;
4356 }
4357 return 0;
4358}
4359
4360static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4361{
4362 ++vcpu->stat.irq_exits;
4363 return 1;
4364}
4365
4366static int handle_triple_fault(struct kvm_vcpu *vcpu)
4367{
4368 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4369 return 0;
4370}
4371
4372static int handle_io(struct kvm_vcpu *vcpu)
4373{
4374 unsigned long exit_qualification;
4375 int size, in, string;
4376 unsigned port;
4377
4378 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4379 string = (exit_qualification & 16) != 0;
4380 in = (exit_qualification & 8) != 0;
4381
4382 ++vcpu->stat.io_exits;
4383
4384 if (string || in)
4385 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4386
4387 port = exit_qualification >> 16;
4388 size = (exit_qualification & 7) + 1;
4389 skip_emulated_instruction(vcpu);
4390
4391 return kvm_fast_pio_out(vcpu, size, port);
4392}
4393
4394static void
4395vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4396{
4397 /*
4398 * Patch in the VMCALL instruction:
4399 */
4400 hypercall[0] = 0x0f;
4401 hypercall[1] = 0x01;
4402 hypercall[2] = 0xc1;
4403}
4404
4405/* called to set cr0 as approriate for a mov-to-cr0 exit. */
4406static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4407{
4408 if (to_vmx(vcpu)->nested.vmxon &&
4409 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4410 return 1;
4411
4412 if (is_guest_mode(vcpu)) {
4413 /*
4414 * We get here when L2 changed cr0 in a way that did not change
4415 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4416 * but did change L0 shadowed bits. This can currently happen
4417 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4418 * loading) while pretending to allow the guest to change it.
4419 */
4420 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4421 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4422 return 1;
4423 vmcs_writel(CR0_READ_SHADOW, val);
4424 return 0;
4425 } else
4426 return kvm_set_cr0(vcpu, val);
4427}
4428
4429static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4430{
4431 if (is_guest_mode(vcpu)) {
4432 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4433 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4434 return 1;
4435 vmcs_writel(CR4_READ_SHADOW, val);
4436 return 0;
4437 } else
4438 return kvm_set_cr4(vcpu, val);
4439}
4440
4441/* called to set cr0 as approriate for clts instruction exit. */
4442static void handle_clts(struct kvm_vcpu *vcpu)
4443{
4444 if (is_guest_mode(vcpu)) {
4445 /*
4446 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4447 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4448 * just pretend it's off (also in arch.cr0 for fpu_activate).
4449 */
4450 vmcs_writel(CR0_READ_SHADOW,
4451 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4452 vcpu->arch.cr0 &= ~X86_CR0_TS;
4453 } else
4454 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4455}
4456
4457static int handle_cr(struct kvm_vcpu *vcpu)
4458{
4459 unsigned long exit_qualification, val;
4460 int cr;
4461 int reg;
4462 int err;
4463
4464 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4465 cr = exit_qualification & 15;
4466 reg = (exit_qualification >> 8) & 15;
4467 switch ((exit_qualification >> 4) & 3) {
4468 case 0: /* mov to cr */
4469 val = kvm_register_read(vcpu, reg);
4470 trace_kvm_cr_write(cr, val);
4471 switch (cr) {
4472 case 0:
4473 err = handle_set_cr0(vcpu, val);
4474 kvm_complete_insn_gp(vcpu, err);
4475 return 1;
4476 case 3:
4477 err = kvm_set_cr3(vcpu, val);
4478 kvm_complete_insn_gp(vcpu, err);
4479 return 1;
4480 case 4:
4481 err = handle_set_cr4(vcpu, val);
4482 kvm_complete_insn_gp(vcpu, err);
4483 return 1;
4484 case 8: {
4485 u8 cr8_prev = kvm_get_cr8(vcpu);
4486 u8 cr8 = kvm_register_read(vcpu, reg);
4487 err = kvm_set_cr8(vcpu, cr8);
4488 kvm_complete_insn_gp(vcpu, err);
4489 if (irqchip_in_kernel(vcpu->kvm))
4490 return 1;
4491 if (cr8_prev <= cr8)
4492 return 1;
4493 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4494 return 0;
4495 }
4496 };
4497 break;
4498 case 2: /* clts */
4499 handle_clts(vcpu);
4500 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4501 skip_emulated_instruction(vcpu);
4502 vmx_fpu_activate(vcpu);
4503 return 1;
4504 case 1: /*mov from cr*/
4505 switch (cr) {
4506 case 3:
4507 val = kvm_read_cr3(vcpu);
4508 kvm_register_write(vcpu, reg, val);
4509 trace_kvm_cr_read(cr, val);
4510 skip_emulated_instruction(vcpu);
4511 return 1;
4512 case 8:
4513 val = kvm_get_cr8(vcpu);
4514 kvm_register_write(vcpu, reg, val);
4515 trace_kvm_cr_read(cr, val);
4516 skip_emulated_instruction(vcpu);
4517 return 1;
4518 }
4519 break;
4520 case 3: /* lmsw */
4521 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4522 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4523 kvm_lmsw(vcpu, val);
4524
4525 skip_emulated_instruction(vcpu);
4526 return 1;
4527 default:
4528 break;
4529 }
4530 vcpu->run->exit_reason = 0;
4531 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4532 (int)(exit_qualification >> 4) & 3, cr);
4533 return 0;
4534}
4535
4536static int handle_dr(struct kvm_vcpu *vcpu)
4537{
4538 unsigned long exit_qualification;
4539 int dr, reg;
4540
4541 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4542 if (!kvm_require_cpl(vcpu, 0))
4543 return 1;
4544 dr = vmcs_readl(GUEST_DR7);
4545 if (dr & DR7_GD) {
4546 /*
4547 * As the vm-exit takes precedence over the debug trap, we
4548 * need to emulate the latter, either for the host or the
4549 * guest debugging itself.
4550 */
4551 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4552 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4553 vcpu->run->debug.arch.dr7 = dr;
4554 vcpu->run->debug.arch.pc =
4555 vmcs_readl(GUEST_CS_BASE) +
4556 vmcs_readl(GUEST_RIP);
4557 vcpu->run->debug.arch.exception = DB_VECTOR;
4558 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4559 return 0;
4560 } else {
4561 vcpu->arch.dr7 &= ~DR7_GD;
4562 vcpu->arch.dr6 |= DR6_BD;
4563 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4564 kvm_queue_exception(vcpu, DB_VECTOR);
4565 return 1;
4566 }
4567 }
4568
4569 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4570 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4571 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4572 if (exit_qualification & TYPE_MOV_FROM_DR) {
4573 unsigned long val;
4574 if (!kvm_get_dr(vcpu, dr, &val))
4575 kvm_register_write(vcpu, reg, val);
4576 } else
4577 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
4578 skip_emulated_instruction(vcpu);
4579 return 1;
4580}
4581
4582static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4583{
4584 vmcs_writel(GUEST_DR7, val);
4585}
4586
4587static int handle_cpuid(struct kvm_vcpu *vcpu)
4588{
4589 kvm_emulate_cpuid(vcpu);
4590 return 1;
4591}
4592
4593static int handle_rdmsr(struct kvm_vcpu *vcpu)
4594{
4595 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4596 u64 data;
4597
4598 if (vmx_get_msr(vcpu, ecx, &data)) {
4599 trace_kvm_msr_read_ex(ecx);
4600 kvm_inject_gp(vcpu, 0);
4601 return 1;
4602 }
4603
4604 trace_kvm_msr_read(ecx, data);
4605
4606 /* FIXME: handling of bits 32:63 of rax, rdx */
4607 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4608 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
4609 skip_emulated_instruction(vcpu);
4610 return 1;
4611}
4612
4613static int handle_wrmsr(struct kvm_vcpu *vcpu)
4614{
4615 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4616 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4617 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4618
4619 if (vmx_set_msr(vcpu, ecx, data) != 0) {
4620 trace_kvm_msr_write_ex(ecx, data);
4621 kvm_inject_gp(vcpu, 0);
4622 return 1;
4623 }
4624
4625 trace_kvm_msr_write(ecx, data);
4626 skip_emulated_instruction(vcpu);
4627 return 1;
4628}
4629
4630static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4631{
4632 kvm_make_request(KVM_REQ_EVENT, vcpu);
4633 return 1;
4634}
4635
4636static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4637{
4638 u32 cpu_based_vm_exec_control;
4639
4640 /* clear pending irq */
4641 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4642 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4643 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4644
4645 kvm_make_request(KVM_REQ_EVENT, vcpu);
4646
4647 ++vcpu->stat.irq_window_exits;
4648
4649 /*
4650 * If the user space waits to inject interrupts, exit as soon as
4651 * possible
4652 */
4653 if (!irqchip_in_kernel(vcpu->kvm) &&
4654 vcpu->run->request_interrupt_window &&
4655 !kvm_cpu_has_interrupt(vcpu)) {
4656 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
4657 return 0;
4658 }
4659 return 1;
4660}
4661
4662static int handle_halt(struct kvm_vcpu *vcpu)
4663{
4664 skip_emulated_instruction(vcpu);
4665 return kvm_emulate_halt(vcpu);
4666}
4667
4668static int handle_vmcall(struct kvm_vcpu *vcpu)
4669{
4670 skip_emulated_instruction(vcpu);
4671 kvm_emulate_hypercall(vcpu);
4672 return 1;
4673}
4674
4675static int handle_invd(struct kvm_vcpu *vcpu)
4676{
4677 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4678}
4679
4680static int handle_invlpg(struct kvm_vcpu *vcpu)
4681{
4682 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4683
4684 kvm_mmu_invlpg(vcpu, exit_qualification);
4685 skip_emulated_instruction(vcpu);
4686 return 1;
4687}
4688
4689static int handle_rdpmc(struct kvm_vcpu *vcpu)
4690{
4691 int err;
4692
4693 err = kvm_rdpmc(vcpu);
4694 kvm_complete_insn_gp(vcpu, err);
4695
4696 return 1;
4697}
4698
4699static int handle_wbinvd(struct kvm_vcpu *vcpu)
4700{
4701 skip_emulated_instruction(vcpu);
4702 kvm_emulate_wbinvd(vcpu);
4703 return 1;
4704}
4705
4706static int handle_xsetbv(struct kvm_vcpu *vcpu)
4707{
4708 u64 new_bv = kvm_read_edx_eax(vcpu);
4709 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4710
4711 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4712 skip_emulated_instruction(vcpu);
4713 return 1;
4714}
4715
4716static int handle_apic_access(struct kvm_vcpu *vcpu)
4717{
4718 if (likely(fasteoi)) {
4719 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4720 int access_type, offset;
4721
4722 access_type = exit_qualification & APIC_ACCESS_TYPE;
4723 offset = exit_qualification & APIC_ACCESS_OFFSET;
4724 /*
4725 * Sane guest uses MOV to write EOI, with written value
4726 * not cared. So make a short-circuit here by avoiding
4727 * heavy instruction emulation.
4728 */
4729 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4730 (offset == APIC_EOI)) {
4731 kvm_lapic_set_eoi(vcpu);
4732 skip_emulated_instruction(vcpu);
4733 return 1;
4734 }
4735 }
4736 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4737}
4738
4739static int handle_task_switch(struct kvm_vcpu *vcpu)
4740{
4741 struct vcpu_vmx *vmx = to_vmx(vcpu);
4742 unsigned long exit_qualification;
4743 bool has_error_code = false;
4744 u32 error_code = 0;
4745 u16 tss_selector;
4746 int reason, type, idt_v, idt_index;
4747
4748 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4749 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
4750 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4751
4752 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4753
4754 reason = (u32)exit_qualification >> 30;
4755 if (reason == TASK_SWITCH_GATE && idt_v) {
4756 switch (type) {
4757 case INTR_TYPE_NMI_INTR:
4758 vcpu->arch.nmi_injected = false;
4759 vmx_set_nmi_mask(vcpu, true);
4760 break;
4761 case INTR_TYPE_EXT_INTR:
4762 case INTR_TYPE_SOFT_INTR:
4763 kvm_clear_interrupt_queue(vcpu);
4764 break;
4765 case INTR_TYPE_HARD_EXCEPTION:
4766 if (vmx->idt_vectoring_info &
4767 VECTORING_INFO_DELIVER_CODE_MASK) {
4768 has_error_code = true;
4769 error_code =
4770 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4771 }
4772 /* fall through */
4773 case INTR_TYPE_SOFT_EXCEPTION:
4774 kvm_clear_exception_queue(vcpu);
4775 break;
4776 default:
4777 break;
4778 }
4779 }
4780 tss_selector = exit_qualification;
4781
4782 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4783 type != INTR_TYPE_EXT_INTR &&
4784 type != INTR_TYPE_NMI_INTR))
4785 skip_emulated_instruction(vcpu);
4786
4787 if (kvm_task_switch(vcpu, tss_selector,
4788 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
4789 has_error_code, error_code) == EMULATE_FAIL) {
4790 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4791 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4792 vcpu->run->internal.ndata = 0;
4793 return 0;
4794 }
4795
4796 /* clear all local breakpoint enable flags */
4797 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4798
4799 /*
4800 * TODO: What about debug traps on tss switch?
4801 * Are we supposed to inject them and update dr6?
4802 */
4803
4804 return 1;
4805}
4806
4807static int handle_ept_violation(struct kvm_vcpu *vcpu)
4808{
4809 unsigned long exit_qualification;
4810 gpa_t gpa;
4811 int gla_validity;
4812
4813 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4814
4815 if (exit_qualification & (1 << 6)) {
4816 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
4817 return -EINVAL;
4818 }
4819
4820 gla_validity = (exit_qualification >> 7) & 0x3;
4821 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4822 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4823 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4824 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
4825 vmcs_readl(GUEST_LINEAR_ADDRESS));
4826 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4827 (long unsigned int)exit_qualification);
4828 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4829 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
4830 return 0;
4831 }
4832
4833 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4834 trace_kvm_page_fault(gpa, exit_qualification);
4835 return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
4836}
4837
4838static u64 ept_rsvd_mask(u64 spte, int level)
4839{
4840 int i;
4841 u64 mask = 0;
4842
4843 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4844 mask |= (1ULL << i);
4845
4846 if (level > 2)
4847 /* bits 7:3 reserved */
4848 mask |= 0xf8;
4849 else if (level == 2) {
4850 if (spte & (1ULL << 7))
4851 /* 2MB ref, bits 20:12 reserved */
4852 mask |= 0x1ff000;
4853 else
4854 /* bits 6:3 reserved */
4855 mask |= 0x78;
4856 }
4857
4858 return mask;
4859}
4860
4861static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4862 int level)
4863{
4864 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4865
4866 /* 010b (write-only) */
4867 WARN_ON((spte & 0x7) == 0x2);
4868
4869 /* 110b (write/execute) */
4870 WARN_ON((spte & 0x7) == 0x6);
4871
4872 /* 100b (execute-only) and value not supported by logical processor */
4873 if (!cpu_has_vmx_ept_execute_only())
4874 WARN_ON((spte & 0x7) == 0x4);
4875
4876 /* not 000b */
4877 if ((spte & 0x7)) {
4878 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4879
4880 if (rsvd_bits != 0) {
4881 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4882 __func__, rsvd_bits);
4883 WARN_ON(1);
4884 }
4885
4886 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4887 u64 ept_mem_type = (spte & 0x38) >> 3;
4888
4889 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4890 ept_mem_type == 7) {
4891 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4892 __func__, ept_mem_type);
4893 WARN_ON(1);
4894 }
4895 }
4896 }
4897}
4898
4899static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
4900{
4901 u64 sptes[4];
4902 int nr_sptes, i, ret;
4903 gpa_t gpa;
4904
4905 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4906
4907 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4908 if (likely(ret == 1))
4909 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4910 EMULATE_DONE;
4911 if (unlikely(!ret))
4912 return 1;
4913
4914 /* It is the real ept misconfig */
4915 printk(KERN_ERR "EPT: Misconfiguration.\n");
4916 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4917
4918 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4919
4920 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4921 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4922
4923 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4924 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
4925
4926 return 0;
4927}
4928
4929static int handle_nmi_window(struct kvm_vcpu *vcpu)
4930{
4931 u32 cpu_based_vm_exec_control;
4932
4933 /* clear pending NMI */
4934 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4935 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4936 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4937 ++vcpu->stat.nmi_window_exits;
4938 kvm_make_request(KVM_REQ_EVENT, vcpu);
4939
4940 return 1;
4941}
4942
4943static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
4944{
4945 struct vcpu_vmx *vmx = to_vmx(vcpu);
4946 enum emulation_result err = EMULATE_DONE;
4947 int ret = 1;
4948 u32 cpu_exec_ctrl;
4949 bool intr_window_requested;
4950
4951 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4952 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
4953
4954 while (!guest_state_valid(vcpu)) {
4955 if (intr_window_requested
4956 && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4957 return handle_interrupt_window(&vmx->vcpu);
4958
4959 err = emulate_instruction(vcpu, 0);
4960
4961 if (err == EMULATE_DO_MMIO) {
4962 ret = 0;
4963 goto out;
4964 }
4965
4966 if (err != EMULATE_DONE)
4967 return 0;
4968
4969 if (signal_pending(current))
4970 goto out;
4971 if (need_resched())
4972 schedule();
4973 }
4974
4975 vmx->emulation_required = 0;
4976out:
4977 return ret;
4978}
4979
4980/*
4981 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4982 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4983 */
4984static int handle_pause(struct kvm_vcpu *vcpu)
4985{
4986 skip_emulated_instruction(vcpu);
4987 kvm_vcpu_on_spin(vcpu);
4988
4989 return 1;
4990}
4991
4992static int handle_invalid_op(struct kvm_vcpu *vcpu)
4993{
4994 kvm_queue_exception(vcpu, UD_VECTOR);
4995 return 1;
4996}
4997
4998/*
4999 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5000 * We could reuse a single VMCS for all the L2 guests, but we also want the
5001 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5002 * allows keeping them loaded on the processor, and in the future will allow
5003 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5004 * every entry if they never change.
5005 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5006 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5007 *
5008 * The following functions allocate and free a vmcs02 in this pool.
5009 */
5010
5011/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5012static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5013{
5014 struct vmcs02_list *item;
5015 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5016 if (item->vmptr == vmx->nested.current_vmptr) {
5017 list_move(&item->list, &vmx->nested.vmcs02_pool);
5018 return &item->vmcs02;
5019 }
5020
5021 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5022 /* Recycle the least recently used VMCS. */
5023 item = list_entry(vmx->nested.vmcs02_pool.prev,
5024 struct vmcs02_list, list);
5025 item->vmptr = vmx->nested.current_vmptr;
5026 list_move(&item->list, &vmx->nested.vmcs02_pool);
5027 return &item->vmcs02;
5028 }
5029
5030 /* Create a new VMCS */
5031 item = (struct vmcs02_list *)
5032 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5033 if (!item)
5034 return NULL;
5035 item->vmcs02.vmcs = alloc_vmcs();
5036 if (!item->vmcs02.vmcs) {
5037 kfree(item);
5038 return NULL;
5039 }
5040 loaded_vmcs_init(&item->vmcs02);
5041 item->vmptr = vmx->nested.current_vmptr;
5042 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5043 vmx->nested.vmcs02_num++;
5044 return &item->vmcs02;
5045}
5046
5047/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5048static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5049{
5050 struct vmcs02_list *item;
5051 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5052 if (item->vmptr == vmptr) {
5053 free_loaded_vmcs(&item->vmcs02);
5054 list_del(&item->list);
5055 kfree(item);
5056 vmx->nested.vmcs02_num--;
5057 return;
5058 }
5059}
5060
5061/*
5062 * Free all VMCSs saved for this vcpu, except the one pointed by
5063 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5064 * currently used, if running L2), and vmcs01 when running L2.
5065 */
5066static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5067{
5068 struct vmcs02_list *item, *n;
5069 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5070 if (vmx->loaded_vmcs != &item->vmcs02)
5071 free_loaded_vmcs(&item->vmcs02);
5072 list_del(&item->list);
5073 kfree(item);
5074 }
5075 vmx->nested.vmcs02_num = 0;
5076
5077 if (vmx->loaded_vmcs != &vmx->vmcs01)
5078 free_loaded_vmcs(&vmx->vmcs01);
5079}
5080
5081/*
5082 * Emulate the VMXON instruction.
5083 * Currently, we just remember that VMX is active, and do not save or even
5084 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5085 * do not currently need to store anything in that guest-allocated memory
5086 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5087 * argument is different from the VMXON pointer (which the spec says they do).
5088 */
5089static int handle_vmon(struct kvm_vcpu *vcpu)
5090{
5091 struct kvm_segment cs;
5092 struct vcpu_vmx *vmx = to_vmx(vcpu);
5093
5094 /* The Intel VMX Instruction Reference lists a bunch of bits that
5095 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5096 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5097 * Otherwise, we should fail with #UD. We test these now:
5098 */
5099 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5100 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5101 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5102 kvm_queue_exception(vcpu, UD_VECTOR);
5103 return 1;
5104 }
5105
5106 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5107 if (is_long_mode(vcpu) && !cs.l) {
5108 kvm_queue_exception(vcpu, UD_VECTOR);
5109 return 1;
5110 }
5111
5112 if (vmx_get_cpl(vcpu)) {
5113 kvm_inject_gp(vcpu, 0);
5114 return 1;
5115 }
5116
5117 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5118 vmx->nested.vmcs02_num = 0;
5119
5120 vmx->nested.vmxon = true;
5121
5122 skip_emulated_instruction(vcpu);
5123 return 1;
5124}
5125
5126/*
5127 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5128 * for running VMX instructions (except VMXON, whose prerequisites are
5129 * slightly different). It also specifies what exception to inject otherwise.
5130 */
5131static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5132{
5133 struct kvm_segment cs;
5134 struct vcpu_vmx *vmx = to_vmx(vcpu);
5135
5136 if (!vmx->nested.vmxon) {
5137 kvm_queue_exception(vcpu, UD_VECTOR);
5138 return 0;
5139 }
5140
5141 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5142 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5143 (is_long_mode(vcpu) && !cs.l)) {
5144 kvm_queue_exception(vcpu, UD_VECTOR);
5145 return 0;
5146 }
5147
5148 if (vmx_get_cpl(vcpu)) {
5149 kvm_inject_gp(vcpu, 0);
5150 return 0;
5151 }
5152
5153 return 1;
5154}
5155
5156/*
5157 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5158 * just stops using VMX.
5159 */
5160static void free_nested(struct vcpu_vmx *vmx)
5161{
5162 if (!vmx->nested.vmxon)
5163 return;
5164 vmx->nested.vmxon = false;
5165 if (vmx->nested.current_vmptr != -1ull) {
5166 kunmap(vmx->nested.current_vmcs12_page);
5167 nested_release_page(vmx->nested.current_vmcs12_page);
5168 vmx->nested.current_vmptr = -1ull;
5169 vmx->nested.current_vmcs12 = NULL;
5170 }
5171 /* Unpin physical memory we referred to in current vmcs02 */
5172 if (vmx->nested.apic_access_page) {
5173 nested_release_page(vmx->nested.apic_access_page);
5174 vmx->nested.apic_access_page = 0;
5175 }
5176
5177 nested_free_all_saved_vmcss(vmx);
5178}
5179
5180/* Emulate the VMXOFF instruction */
5181static int handle_vmoff(struct kvm_vcpu *vcpu)
5182{
5183 if (!nested_vmx_check_permission(vcpu))
5184 return 1;
5185 free_nested(to_vmx(vcpu));
5186 skip_emulated_instruction(vcpu);
5187 return 1;
5188}
5189
5190/*
5191 * Decode the memory-address operand of a vmx instruction, as recorded on an
5192 * exit caused by such an instruction (run by a guest hypervisor).
5193 * On success, returns 0. When the operand is invalid, returns 1 and throws
5194 * #UD or #GP.
5195 */
5196static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5197 unsigned long exit_qualification,
5198 u32 vmx_instruction_info, gva_t *ret)
5199{
5200 /*
5201 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5202 * Execution", on an exit, vmx_instruction_info holds most of the
5203 * addressing components of the operand. Only the displacement part
5204 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5205 * For how an actual address is calculated from all these components,
5206 * refer to Vol. 1, "Operand Addressing".
5207 */
5208 int scaling = vmx_instruction_info & 3;
5209 int addr_size = (vmx_instruction_info >> 7) & 7;
5210 bool is_reg = vmx_instruction_info & (1u << 10);
5211 int seg_reg = (vmx_instruction_info >> 15) & 7;
5212 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5213 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5214 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5215 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5216
5217 if (is_reg) {
5218 kvm_queue_exception(vcpu, UD_VECTOR);
5219 return 1;
5220 }
5221
5222 /* Addr = segment_base + offset */
5223 /* offset = base + [index * scale] + displacement */
5224 *ret = vmx_get_segment_base(vcpu, seg_reg);
5225 if (base_is_valid)
5226 *ret += kvm_register_read(vcpu, base_reg);
5227 if (index_is_valid)
5228 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5229 *ret += exit_qualification; /* holds the displacement */
5230
5231 if (addr_size == 1) /* 32 bit */
5232 *ret &= 0xffffffff;
5233
5234 /*
5235 * TODO: throw #GP (and return 1) in various cases that the VM*
5236 * instructions require it - e.g., offset beyond segment limit,
5237 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5238 * address, and so on. Currently these are not checked.
5239 */
5240 return 0;
5241}
5242
5243/*
5244 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5245 * set the success or error code of an emulated VMX instruction, as specified
5246 * by Vol 2B, VMX Instruction Reference, "Conventions".
5247 */
5248static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5249{
5250 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5251 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5252 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5253}
5254
5255static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5256{
5257 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5258 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5259 X86_EFLAGS_SF | X86_EFLAGS_OF))
5260 | X86_EFLAGS_CF);
5261}
5262
5263static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5264 u32 vm_instruction_error)
5265{
5266 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5267 /*
5268 * failValid writes the error number to the current VMCS, which
5269 * can't be done there isn't a current VMCS.
5270 */
5271 nested_vmx_failInvalid(vcpu);
5272 return;
5273 }
5274 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5275 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5276 X86_EFLAGS_SF | X86_EFLAGS_OF))
5277 | X86_EFLAGS_ZF);
5278 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5279}
5280
5281/* Emulate the VMCLEAR instruction */
5282static int handle_vmclear(struct kvm_vcpu *vcpu)
5283{
5284 struct vcpu_vmx *vmx = to_vmx(vcpu);
5285 gva_t gva;
5286 gpa_t vmptr;
5287 struct vmcs12 *vmcs12;
5288 struct page *page;
5289 struct x86_exception e;
5290
5291 if (!nested_vmx_check_permission(vcpu))
5292 return 1;
5293
5294 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5295 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5296 return 1;
5297
5298 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5299 sizeof(vmptr), &e)) {
5300 kvm_inject_page_fault(vcpu, &e);
5301 return 1;
5302 }
5303
5304 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5305 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5306 skip_emulated_instruction(vcpu);
5307 return 1;
5308 }
5309
5310 if (vmptr == vmx->nested.current_vmptr) {
5311 kunmap(vmx->nested.current_vmcs12_page);
5312 nested_release_page(vmx->nested.current_vmcs12_page);
5313 vmx->nested.current_vmptr = -1ull;
5314 vmx->nested.current_vmcs12 = NULL;
5315 }
5316
5317 page = nested_get_page(vcpu, vmptr);
5318 if (page == NULL) {
5319 /*
5320 * For accurate processor emulation, VMCLEAR beyond available
5321 * physical memory should do nothing at all. However, it is
5322 * possible that a nested vmx bug, not a guest hypervisor bug,
5323 * resulted in this case, so let's shut down before doing any
5324 * more damage:
5325 */
5326 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5327 return 1;
5328 }
5329 vmcs12 = kmap(page);
5330 vmcs12->launch_state = 0;
5331 kunmap(page);
5332 nested_release_page(page);
5333
5334 nested_free_vmcs02(vmx, vmptr);
5335
5336 skip_emulated_instruction(vcpu);
5337 nested_vmx_succeed(vcpu);
5338 return 1;
5339}
5340
5341static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5342
5343/* Emulate the VMLAUNCH instruction */
5344static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5345{
5346 return nested_vmx_run(vcpu, true);
5347}
5348
5349/* Emulate the VMRESUME instruction */
5350static int handle_vmresume(struct kvm_vcpu *vcpu)
5351{
5352
5353 return nested_vmx_run(vcpu, false);
5354}
5355
5356enum vmcs_field_type {
5357 VMCS_FIELD_TYPE_U16 = 0,
5358 VMCS_FIELD_TYPE_U64 = 1,
5359 VMCS_FIELD_TYPE_U32 = 2,
5360 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5361};
5362
5363static inline int vmcs_field_type(unsigned long field)
5364{
5365 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5366 return VMCS_FIELD_TYPE_U32;
5367 return (field >> 13) & 0x3 ;
5368}
5369
5370static inline int vmcs_field_readonly(unsigned long field)
5371{
5372 return (((field >> 10) & 0x3) == 1);
5373}
5374
5375/*
5376 * Read a vmcs12 field. Since these can have varying lengths and we return
5377 * one type, we chose the biggest type (u64) and zero-extend the return value
5378 * to that size. Note that the caller, handle_vmread, might need to use only
5379 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5380 * 64-bit fields are to be returned).
5381 */
5382static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5383 unsigned long field, u64 *ret)
5384{
5385 short offset = vmcs_field_to_offset(field);
5386 char *p;
5387
5388 if (offset < 0)
5389 return 0;
5390
5391 p = ((char *)(get_vmcs12(vcpu))) + offset;
5392
5393 switch (vmcs_field_type(field)) {
5394 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5395 *ret = *((natural_width *)p);
5396 return 1;
5397 case VMCS_FIELD_TYPE_U16:
5398 *ret = *((u16 *)p);
5399 return 1;
5400 case VMCS_FIELD_TYPE_U32:
5401 *ret = *((u32 *)p);
5402 return 1;
5403 case VMCS_FIELD_TYPE_U64:
5404 *ret = *((u64 *)p);
5405 return 1;
5406 default:
5407 return 0; /* can never happen. */
5408 }
5409}
5410
5411/*
5412 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5413 * used before) all generate the same failure when it is missing.
5414 */
5415static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5416{
5417 struct vcpu_vmx *vmx = to_vmx(vcpu);
5418 if (vmx->nested.current_vmptr == -1ull) {
5419 nested_vmx_failInvalid(vcpu);
5420 skip_emulated_instruction(vcpu);
5421 return 0;
5422 }
5423 return 1;
5424}
5425
5426static int handle_vmread(struct kvm_vcpu *vcpu)
5427{
5428 unsigned long field;
5429 u64 field_value;
5430 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5431 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5432 gva_t gva = 0;
5433
5434 if (!nested_vmx_check_permission(vcpu) ||
5435 !nested_vmx_check_vmcs12(vcpu))
5436 return 1;
5437
5438 /* Decode instruction info and find the field to read */
5439 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5440 /* Read the field, zero-extended to a u64 field_value */
5441 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5442 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5443 skip_emulated_instruction(vcpu);
5444 return 1;
5445 }
5446 /*
5447 * Now copy part of this value to register or memory, as requested.
5448 * Note that the number of bits actually copied is 32 or 64 depending
5449 * on the guest's mode (32 or 64 bit), not on the given field's length.
5450 */
5451 if (vmx_instruction_info & (1u << 10)) {
5452 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5453 field_value);
5454 } else {
5455 if (get_vmx_mem_address(vcpu, exit_qualification,
5456 vmx_instruction_info, &gva))
5457 return 1;
5458 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5459 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5460 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5461 }
5462
5463 nested_vmx_succeed(vcpu);
5464 skip_emulated_instruction(vcpu);
5465 return 1;
5466}
5467
5468
5469static int handle_vmwrite(struct kvm_vcpu *vcpu)
5470{
5471 unsigned long field;
5472 gva_t gva;
5473 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5474 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5475 char *p;
5476 short offset;
5477 /* The value to write might be 32 or 64 bits, depending on L1's long
5478 * mode, and eventually we need to write that into a field of several
5479 * possible lengths. The code below first zero-extends the value to 64
5480 * bit (field_value), and then copies only the approriate number of
5481 * bits into the vmcs12 field.
5482 */
5483 u64 field_value = 0;
5484 struct x86_exception e;
5485
5486 if (!nested_vmx_check_permission(vcpu) ||
5487 !nested_vmx_check_vmcs12(vcpu))
5488 return 1;
5489
5490 if (vmx_instruction_info & (1u << 10))
5491 field_value = kvm_register_read(vcpu,
5492 (((vmx_instruction_info) >> 3) & 0xf));
5493 else {
5494 if (get_vmx_mem_address(vcpu, exit_qualification,
5495 vmx_instruction_info, &gva))
5496 return 1;
5497 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5498 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5499 kvm_inject_page_fault(vcpu, &e);
5500 return 1;
5501 }
5502 }
5503
5504
5505 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5506 if (vmcs_field_readonly(field)) {
5507 nested_vmx_failValid(vcpu,
5508 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5509 skip_emulated_instruction(vcpu);
5510 return 1;
5511 }
5512
5513 offset = vmcs_field_to_offset(field);
5514 if (offset < 0) {
5515 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5516 skip_emulated_instruction(vcpu);
5517 return 1;
5518 }
5519 p = ((char *) get_vmcs12(vcpu)) + offset;
5520
5521 switch (vmcs_field_type(field)) {
5522 case VMCS_FIELD_TYPE_U16:
5523 *(u16 *)p = field_value;
5524 break;
5525 case VMCS_FIELD_TYPE_U32:
5526 *(u32 *)p = field_value;
5527 break;
5528 case VMCS_FIELD_TYPE_U64:
5529 *(u64 *)p = field_value;
5530 break;
5531 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5532 *(natural_width *)p = field_value;
5533 break;
5534 default:
5535 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5536 skip_emulated_instruction(vcpu);
5537 return 1;
5538 }
5539
5540 nested_vmx_succeed(vcpu);
5541 skip_emulated_instruction(vcpu);
5542 return 1;
5543}
5544
5545/* Emulate the VMPTRLD instruction */
5546static int handle_vmptrld(struct kvm_vcpu *vcpu)
5547{
5548 struct vcpu_vmx *vmx = to_vmx(vcpu);
5549 gva_t gva;
5550 gpa_t vmptr;
5551 struct x86_exception e;
5552
5553 if (!nested_vmx_check_permission(vcpu))
5554 return 1;
5555
5556 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5557 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5558 return 1;
5559
5560 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5561 sizeof(vmptr), &e)) {
5562 kvm_inject_page_fault(vcpu, &e);
5563 return 1;
5564 }
5565
5566 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5567 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5568 skip_emulated_instruction(vcpu);
5569 return 1;
5570 }
5571
5572 if (vmx->nested.current_vmptr != vmptr) {
5573 struct vmcs12 *new_vmcs12;
5574 struct page *page;
5575 page = nested_get_page(vcpu, vmptr);
5576 if (page == NULL) {
5577 nested_vmx_failInvalid(vcpu);
5578 skip_emulated_instruction(vcpu);
5579 return 1;
5580 }
5581 new_vmcs12 = kmap(page);
5582 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5583 kunmap(page);
5584 nested_release_page_clean(page);
5585 nested_vmx_failValid(vcpu,
5586 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5587 skip_emulated_instruction(vcpu);
5588 return 1;
5589 }
5590 if (vmx->nested.current_vmptr != -1ull) {
5591 kunmap(vmx->nested.current_vmcs12_page);
5592 nested_release_page(vmx->nested.current_vmcs12_page);
5593 }
5594
5595 vmx->nested.current_vmptr = vmptr;
5596 vmx->nested.current_vmcs12 = new_vmcs12;
5597 vmx->nested.current_vmcs12_page = page;
5598 }
5599
5600 nested_vmx_succeed(vcpu);
5601 skip_emulated_instruction(vcpu);
5602 return 1;
5603}
5604
5605/* Emulate the VMPTRST instruction */
5606static int handle_vmptrst(struct kvm_vcpu *vcpu)
5607{
5608 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5609 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5610 gva_t vmcs_gva;
5611 struct x86_exception e;
5612
5613 if (!nested_vmx_check_permission(vcpu))
5614 return 1;
5615
5616 if (get_vmx_mem_address(vcpu, exit_qualification,
5617 vmx_instruction_info, &vmcs_gva))
5618 return 1;
5619 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5620 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5621 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5622 sizeof(u64), &e)) {
5623 kvm_inject_page_fault(vcpu, &e);
5624 return 1;
5625 }
5626 nested_vmx_succeed(vcpu);
5627 skip_emulated_instruction(vcpu);
5628 return 1;
5629}
5630
5631/*
5632 * The exit handlers return 1 if the exit was handled fully and guest execution
5633 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5634 * to be done to userspace and return 0.
5635 */
5636static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5637 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5638 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5639 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5640 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5641 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5642 [EXIT_REASON_CR_ACCESS] = handle_cr,
5643 [EXIT_REASON_DR_ACCESS] = handle_dr,
5644 [EXIT_REASON_CPUID] = handle_cpuid,
5645 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5646 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5647 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5648 [EXIT_REASON_HLT] = handle_halt,
5649 [EXIT_REASON_INVD] = handle_invd,
5650 [EXIT_REASON_INVLPG] = handle_invlpg,
5651 [EXIT_REASON_RDPMC] = handle_rdpmc,
5652 [EXIT_REASON_VMCALL] = handle_vmcall,
5653 [EXIT_REASON_VMCLEAR] = handle_vmclear,
5654 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
5655 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
5656 [EXIT_REASON_VMPTRST] = handle_vmptrst,
5657 [EXIT_REASON_VMREAD] = handle_vmread,
5658 [EXIT_REASON_VMRESUME] = handle_vmresume,
5659 [EXIT_REASON_VMWRITE] = handle_vmwrite,
5660 [EXIT_REASON_VMOFF] = handle_vmoff,
5661 [EXIT_REASON_VMON] = handle_vmon,
5662 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5663 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5664 [EXIT_REASON_WBINVD] = handle_wbinvd,
5665 [EXIT_REASON_XSETBV] = handle_xsetbv,
5666 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5667 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5668 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5669 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5670 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5671 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5672 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
5673};
5674
5675static const int kvm_vmx_max_exit_handlers =
5676 ARRAY_SIZE(kvm_vmx_exit_handlers);
5677
5678/*
5679 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5680 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5681 * disinterest in the current event (read or write a specific MSR) by using an
5682 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5683 */
5684static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5685 struct vmcs12 *vmcs12, u32 exit_reason)
5686{
5687 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5688 gpa_t bitmap;
5689
5690 if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5691 return 1;
5692
5693 /*
5694 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5695 * for the four combinations of read/write and low/high MSR numbers.
5696 * First we need to figure out which of the four to use:
5697 */
5698 bitmap = vmcs12->msr_bitmap;
5699 if (exit_reason == EXIT_REASON_MSR_WRITE)
5700 bitmap += 2048;
5701 if (msr_index >= 0xc0000000) {
5702 msr_index -= 0xc0000000;
5703 bitmap += 1024;
5704 }
5705
5706 /* Then read the msr_index'th bit from this bitmap: */
5707 if (msr_index < 1024*8) {
5708 unsigned char b;
5709 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5710 return 1 & (b >> (msr_index & 7));
5711 } else
5712 return 1; /* let L1 handle the wrong parameter */
5713}
5714
5715/*
5716 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5717 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5718 * intercept (via guest_host_mask etc.) the current event.
5719 */
5720static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5721 struct vmcs12 *vmcs12)
5722{
5723 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5724 int cr = exit_qualification & 15;
5725 int reg = (exit_qualification >> 8) & 15;
5726 unsigned long val = kvm_register_read(vcpu, reg);
5727
5728 switch ((exit_qualification >> 4) & 3) {
5729 case 0: /* mov to cr */
5730 switch (cr) {
5731 case 0:
5732 if (vmcs12->cr0_guest_host_mask &
5733 (val ^ vmcs12->cr0_read_shadow))
5734 return 1;
5735 break;
5736 case 3:
5737 if ((vmcs12->cr3_target_count >= 1 &&
5738 vmcs12->cr3_target_value0 == val) ||
5739 (vmcs12->cr3_target_count >= 2 &&
5740 vmcs12->cr3_target_value1 == val) ||
5741 (vmcs12->cr3_target_count >= 3 &&
5742 vmcs12->cr3_target_value2 == val) ||
5743 (vmcs12->cr3_target_count >= 4 &&
5744 vmcs12->cr3_target_value3 == val))
5745 return 0;
5746 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5747 return 1;
5748 break;
5749 case 4:
5750 if (vmcs12->cr4_guest_host_mask &
5751 (vmcs12->cr4_read_shadow ^ val))
5752 return 1;
5753 break;
5754 case 8:
5755 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5756 return 1;
5757 break;
5758 }
5759 break;
5760 case 2: /* clts */
5761 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5762 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5763 return 1;
5764 break;
5765 case 1: /* mov from cr */
5766 switch (cr) {
5767 case 3:
5768 if (vmcs12->cpu_based_vm_exec_control &
5769 CPU_BASED_CR3_STORE_EXITING)
5770 return 1;
5771 break;
5772 case 8:
5773 if (vmcs12->cpu_based_vm_exec_control &
5774 CPU_BASED_CR8_STORE_EXITING)
5775 return 1;
5776 break;
5777 }
5778 break;
5779 case 3: /* lmsw */
5780 /*
5781 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5782 * cr0. Other attempted changes are ignored, with no exit.
5783 */
5784 if (vmcs12->cr0_guest_host_mask & 0xe &
5785 (val ^ vmcs12->cr0_read_shadow))
5786 return 1;
5787 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5788 !(vmcs12->cr0_read_shadow & 0x1) &&
5789 (val & 0x1))
5790 return 1;
5791 break;
5792 }
5793 return 0;
5794}
5795
5796/*
5797 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5798 * should handle it ourselves in L0 (and then continue L2). Only call this
5799 * when in is_guest_mode (L2).
5800 */
5801static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5802{
5803 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5804 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5805 struct vcpu_vmx *vmx = to_vmx(vcpu);
5806 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5807
5808 if (vmx->nested.nested_run_pending)
5809 return 0;
5810
5811 if (unlikely(vmx->fail)) {
5812 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5813 vmcs_read32(VM_INSTRUCTION_ERROR));
5814 return 1;
5815 }
5816
5817 switch (exit_reason) {
5818 case EXIT_REASON_EXCEPTION_NMI:
5819 if (!is_exception(intr_info))
5820 return 0;
5821 else if (is_page_fault(intr_info))
5822 return enable_ept;
5823 return vmcs12->exception_bitmap &
5824 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5825 case EXIT_REASON_EXTERNAL_INTERRUPT:
5826 return 0;
5827 case EXIT_REASON_TRIPLE_FAULT:
5828 return 1;
5829 case EXIT_REASON_PENDING_INTERRUPT:
5830 case EXIT_REASON_NMI_WINDOW:
5831 /*
5832 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5833 * (aka Interrupt Window Exiting) only when L1 turned it on,
5834 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5835 * Same for NMI Window Exiting.
5836 */
5837 return 1;
5838 case EXIT_REASON_TASK_SWITCH:
5839 return 1;
5840 case EXIT_REASON_CPUID:
5841 return 1;
5842 case EXIT_REASON_HLT:
5843 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5844 case EXIT_REASON_INVD:
5845 return 1;
5846 case EXIT_REASON_INVLPG:
5847 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5848 case EXIT_REASON_RDPMC:
5849 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5850 case EXIT_REASON_RDTSC:
5851 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5852 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5853 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5854 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5855 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5856 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5857 /*
5858 * VMX instructions trap unconditionally. This allows L1 to
5859 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5860 */
5861 return 1;
5862 case EXIT_REASON_CR_ACCESS:
5863 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5864 case EXIT_REASON_DR_ACCESS:
5865 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5866 case EXIT_REASON_IO_INSTRUCTION:
5867 /* TODO: support IO bitmaps */
5868 return 1;
5869 case EXIT_REASON_MSR_READ:
5870 case EXIT_REASON_MSR_WRITE:
5871 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5872 case EXIT_REASON_INVALID_STATE:
5873 return 1;
5874 case EXIT_REASON_MWAIT_INSTRUCTION:
5875 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5876 case EXIT_REASON_MONITOR_INSTRUCTION:
5877 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5878 case EXIT_REASON_PAUSE_INSTRUCTION:
5879 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5880 nested_cpu_has2(vmcs12,
5881 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5882 case EXIT_REASON_MCE_DURING_VMENTRY:
5883 return 0;
5884 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5885 return 1;
5886 case EXIT_REASON_APIC_ACCESS:
5887 return nested_cpu_has2(vmcs12,
5888 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5889 case EXIT_REASON_EPT_VIOLATION:
5890 case EXIT_REASON_EPT_MISCONFIG:
5891 return 0;
5892 case EXIT_REASON_WBINVD:
5893 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5894 case EXIT_REASON_XSETBV:
5895 return 1;
5896 default:
5897 return 1;
5898 }
5899}
5900
5901static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5902{
5903 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5904 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5905}
5906
5907/*
5908 * The guest has exited. See if we can fix it or if we need userspace
5909 * assistance.
5910 */
5911static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5912{
5913 struct vcpu_vmx *vmx = to_vmx(vcpu);
5914 u32 exit_reason = vmx->exit_reason;
5915 u32 vectoring_info = vmx->idt_vectoring_info;
5916
5917 /* If guest state is invalid, start emulating */
5918 if (vmx->emulation_required && emulate_invalid_guest_state)
5919 return handle_invalid_guest_state(vcpu);
5920
5921 /*
5922 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5923 * we did not inject a still-pending event to L1 now because of
5924 * nested_run_pending, we need to re-enable this bit.
5925 */
5926 if (vmx->nested.nested_run_pending)
5927 kvm_make_request(KVM_REQ_EVENT, vcpu);
5928
5929 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5930 exit_reason == EXIT_REASON_VMRESUME))
5931 vmx->nested.nested_run_pending = 1;
5932 else
5933 vmx->nested.nested_run_pending = 0;
5934
5935 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
5936 nested_vmx_vmexit(vcpu);
5937 return 1;
5938 }
5939
5940 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5941 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5942 vcpu->run->fail_entry.hardware_entry_failure_reason
5943 = exit_reason;
5944 return 0;
5945 }
5946
5947 if (unlikely(vmx->fail)) {
5948 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5949 vcpu->run->fail_entry.hardware_entry_failure_reason
5950 = vmcs_read32(VM_INSTRUCTION_ERROR);
5951 return 0;
5952 }
5953
5954 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5955 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5956 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5957 exit_reason != EXIT_REASON_TASK_SWITCH))
5958 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
5959 "(0x%x) and exit reason is 0x%x\n",
5960 __func__, vectoring_info, exit_reason);
5961
5962 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
5963 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
5964 get_vmcs12(vcpu), vcpu)))) {
5965 if (vmx_interrupt_allowed(vcpu)) {
5966 vmx->soft_vnmi_blocked = 0;
5967 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
5968 vcpu->arch.nmi_pending) {
5969 /*
5970 * This CPU don't support us in finding the end of an
5971 * NMI-blocked window if the guest runs with IRQs
5972 * disabled. So we pull the trigger after 1 s of
5973 * futile waiting, but inform the user about this.
5974 */
5975 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5976 "state on VCPU %d after 1 s timeout\n",
5977 __func__, vcpu->vcpu_id);
5978 vmx->soft_vnmi_blocked = 0;
5979 }
5980 }
5981
5982 if (exit_reason < kvm_vmx_max_exit_handlers
5983 && kvm_vmx_exit_handlers[exit_reason])
5984 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5985 else {
5986 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5987 vcpu->run->hw.hardware_exit_reason = exit_reason;
5988 }
5989 return 0;
5990}
5991
5992static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5993{
5994 if (irr == -1 || tpr < irr) {
5995 vmcs_write32(TPR_THRESHOLD, 0);
5996 return;
5997 }
5998
5999 vmcs_write32(TPR_THRESHOLD, irr);
6000}
6001
6002static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6003{
6004 u32 exit_intr_info;
6005
6006 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6007 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6008 return;
6009
6010 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6011 exit_intr_info = vmx->exit_intr_info;
6012
6013 /* Handle machine checks before interrupts are enabled */
6014 if (is_machine_check(exit_intr_info))
6015 kvm_machine_check();
6016
6017 /* We need to handle NMIs before interrupts are enabled */
6018 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
6019 (exit_intr_info & INTR_INFO_VALID_MASK)) {
6020 kvm_before_handle_nmi(&vmx->vcpu);
6021 asm("int $2");
6022 kvm_after_handle_nmi(&vmx->vcpu);
6023 }
6024}
6025
6026static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6027{
6028 u32 exit_intr_info;
6029 bool unblock_nmi;
6030 u8 vector;
6031 bool idtv_info_valid;
6032
6033 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6034
6035 if (cpu_has_virtual_nmis()) {
6036 if (vmx->nmi_known_unmasked)
6037 return;
6038 /*
6039 * Can't use vmx->exit_intr_info since we're not sure what
6040 * the exit reason is.
6041 */
6042 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6043 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6044 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6045 /*
6046 * SDM 3: 27.7.1.2 (September 2008)
6047 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6048 * a guest IRET fault.
6049 * SDM 3: 23.2.2 (September 2008)
6050 * Bit 12 is undefined in any of the following cases:
6051 * If the VM exit sets the valid bit in the IDT-vectoring
6052 * information field.
6053 * If the VM exit is due to a double fault.
6054 */
6055 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6056 vector != DF_VECTOR && !idtv_info_valid)
6057 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6058 GUEST_INTR_STATE_NMI);
6059 else
6060 vmx->nmi_known_unmasked =
6061 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6062 & GUEST_INTR_STATE_NMI);
6063 } else if (unlikely(vmx->soft_vnmi_blocked))
6064 vmx->vnmi_blocked_time +=
6065 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
6066}
6067
6068static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
6069 u32 idt_vectoring_info,
6070 int instr_len_field,
6071 int error_code_field)
6072{
6073 u8 vector;
6074 int type;
6075 bool idtv_info_valid;
6076
6077 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6078
6079 vmx->vcpu.arch.nmi_injected = false;
6080 kvm_clear_exception_queue(&vmx->vcpu);
6081 kvm_clear_interrupt_queue(&vmx->vcpu);
6082
6083 if (!idtv_info_valid)
6084 return;
6085
6086 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6087
6088 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6089 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6090
6091 switch (type) {
6092 case INTR_TYPE_NMI_INTR:
6093 vmx->vcpu.arch.nmi_injected = true;
6094 /*
6095 * SDM 3: 27.7.1.2 (September 2008)
6096 * Clear bit "block by NMI" before VM entry if a NMI
6097 * delivery faulted.
6098 */
6099 vmx_set_nmi_mask(&vmx->vcpu, false);
6100 break;
6101 case INTR_TYPE_SOFT_EXCEPTION:
6102 vmx->vcpu.arch.event_exit_inst_len =
6103 vmcs_read32(instr_len_field);
6104 /* fall through */
6105 case INTR_TYPE_HARD_EXCEPTION:
6106 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6107 u32 err = vmcs_read32(error_code_field);
6108 kvm_queue_exception_e(&vmx->vcpu, vector, err);
6109 } else
6110 kvm_queue_exception(&vmx->vcpu, vector);
6111 break;
6112 case INTR_TYPE_SOFT_INTR:
6113 vmx->vcpu.arch.event_exit_inst_len =
6114 vmcs_read32(instr_len_field);
6115 /* fall through */
6116 case INTR_TYPE_EXT_INTR:
6117 kvm_queue_interrupt(&vmx->vcpu, vector,
6118 type == INTR_TYPE_SOFT_INTR);
6119 break;
6120 default:
6121 break;
6122 }
6123}
6124
6125static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6126{
6127 if (is_guest_mode(&vmx->vcpu))
6128 return;
6129 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6130 VM_EXIT_INSTRUCTION_LEN,
6131 IDT_VECTORING_ERROR_CODE);
6132}
6133
6134static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6135{
6136 if (is_guest_mode(vcpu))
6137 return;
6138 __vmx_complete_interrupts(to_vmx(vcpu),
6139 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6140 VM_ENTRY_INSTRUCTION_LEN,
6141 VM_ENTRY_EXCEPTION_ERROR_CODE);
6142
6143 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6144}
6145
6146static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6147{
6148 int i, nr_msrs;
6149 struct perf_guest_switch_msr *msrs;
6150
6151 msrs = perf_guest_get_msrs(&nr_msrs);
6152
6153 if (!msrs)
6154 return;
6155
6156 for (i = 0; i < nr_msrs; i++)
6157 if (msrs[i].host == msrs[i].guest)
6158 clear_atomic_switch_msr(vmx, msrs[i].msr);
6159 else
6160 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6161 msrs[i].host);
6162}
6163
6164#ifdef CONFIG_X86_64
6165#define R "r"
6166#define Q "q"
6167#else
6168#define R "e"
6169#define Q "l"
6170#endif
6171
6172static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6173{
6174 struct vcpu_vmx *vmx = to_vmx(vcpu);
6175
6176 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6177 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6178 if (vmcs12->idt_vectoring_info_field &
6179 VECTORING_INFO_VALID_MASK) {
6180 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6181 vmcs12->idt_vectoring_info_field);
6182 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6183 vmcs12->vm_exit_instruction_len);
6184 if (vmcs12->idt_vectoring_info_field &
6185 VECTORING_INFO_DELIVER_CODE_MASK)
6186 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6187 vmcs12->idt_vectoring_error_code);
6188 }
6189 }
6190
6191 /* Record the guest's net vcpu time for enforced NMI injections. */
6192 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6193 vmx->entry_time = ktime_get();
6194
6195 /* Don't enter VMX if guest state is invalid, let the exit handler
6196 start emulation until we arrive back to a valid state */
6197 if (vmx->emulation_required && emulate_invalid_guest_state)
6198 return;
6199
6200 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6201 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6202 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6203 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6204
6205 /* When single-stepping over STI and MOV SS, we must clear the
6206 * corresponding interruptibility bits in the guest state. Otherwise
6207 * vmentry fails as it then expects bit 14 (BS) in pending debug
6208 * exceptions being set, but that's not correct for the guest debugging
6209 * case. */
6210 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6211 vmx_set_interrupt_shadow(vcpu, 0);
6212
6213 atomic_switch_perf_msrs(vmx);
6214
6215 vmx->__launched = vmx->loaded_vmcs->launched;
6216 asm(
6217 /* Store host registers */
6218 "push %%"R"dx; push %%"R"bp;"
6219 "push %%"R"cx \n\t" /* placeholder for guest rcx */
6220 "push %%"R"cx \n\t"
6221 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
6222 "je 1f \n\t"
6223 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
6224 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
6225 "1: \n\t"
6226 /* Reload cr2 if changed */
6227 "mov %c[cr2](%0), %%"R"ax \n\t"
6228 "mov %%cr2, %%"R"dx \n\t"
6229 "cmp %%"R"ax, %%"R"dx \n\t"
6230 "je 2f \n\t"
6231 "mov %%"R"ax, %%cr2 \n\t"
6232 "2: \n\t"
6233 /* Check if vmlaunch of vmresume is needed */
6234 "cmpl $0, %c[launched](%0) \n\t"
6235 /* Load guest registers. Don't clobber flags. */
6236 "mov %c[rax](%0), %%"R"ax \n\t"
6237 "mov %c[rbx](%0), %%"R"bx \n\t"
6238 "mov %c[rdx](%0), %%"R"dx \n\t"
6239 "mov %c[rsi](%0), %%"R"si \n\t"
6240 "mov %c[rdi](%0), %%"R"di \n\t"
6241 "mov %c[rbp](%0), %%"R"bp \n\t"
6242#ifdef CONFIG_X86_64
6243 "mov %c[r8](%0), %%r8 \n\t"
6244 "mov %c[r9](%0), %%r9 \n\t"
6245 "mov %c[r10](%0), %%r10 \n\t"
6246 "mov %c[r11](%0), %%r11 \n\t"
6247 "mov %c[r12](%0), %%r12 \n\t"
6248 "mov %c[r13](%0), %%r13 \n\t"
6249 "mov %c[r14](%0), %%r14 \n\t"
6250 "mov %c[r15](%0), %%r15 \n\t"
6251#endif
6252 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
6253
6254 /* Enter guest mode */
6255 "jne .Llaunched \n\t"
6256 __ex(ASM_VMX_VMLAUNCH) "\n\t"
6257 "jmp .Lkvm_vmx_return \n\t"
6258 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
6259 ".Lkvm_vmx_return: "
6260 /* Save guest registers, load host registers, keep flags */
6261 "mov %0, %c[wordsize](%%"R"sp) \n\t"
6262 "pop %0 \n\t"
6263 "mov %%"R"ax, %c[rax](%0) \n\t"
6264 "mov %%"R"bx, %c[rbx](%0) \n\t"
6265 "pop"Q" %c[rcx](%0) \n\t"
6266 "mov %%"R"dx, %c[rdx](%0) \n\t"
6267 "mov %%"R"si, %c[rsi](%0) \n\t"
6268 "mov %%"R"di, %c[rdi](%0) \n\t"
6269 "mov %%"R"bp, %c[rbp](%0) \n\t"
6270#ifdef CONFIG_X86_64
6271 "mov %%r8, %c[r8](%0) \n\t"
6272 "mov %%r9, %c[r9](%0) \n\t"
6273 "mov %%r10, %c[r10](%0) \n\t"
6274 "mov %%r11, %c[r11](%0) \n\t"
6275 "mov %%r12, %c[r12](%0) \n\t"
6276 "mov %%r13, %c[r13](%0) \n\t"
6277 "mov %%r14, %c[r14](%0) \n\t"
6278 "mov %%r15, %c[r15](%0) \n\t"
6279#endif
6280 "mov %%cr2, %%"R"ax \n\t"
6281 "mov %%"R"ax, %c[cr2](%0) \n\t"
6282
6283 "pop %%"R"bp; pop %%"R"dx \n\t"
6284 "setbe %c[fail](%0) \n\t"
6285 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
6286 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
6287 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
6288 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
6289 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6290 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6291 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6292 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6293 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6294 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6295 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
6296#ifdef CONFIG_X86_64
6297 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6298 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6299 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6300 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6301 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6302 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6303 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6304 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6305#endif
6306 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6307 [wordsize]"i"(sizeof(ulong))
6308 : "cc", "memory"
6309 , R"ax", R"bx", R"di", R"si"
6310#ifdef CONFIG_X86_64
6311 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6312#endif
6313 );
6314
6315#ifndef CONFIG_X86_64
6316 /*
6317 * The sysexit path does not restore ds/es, so we must set them to
6318 * a reasonable value ourselves.
6319 *
6320 * We can't defer this to vmx_load_host_state() since that function
6321 * may be executed in interrupt context, which saves and restore segments
6322 * around it, nullifying its effect.
6323 */
6324 loadsegment(ds, __USER_DS);
6325 loadsegment(es, __USER_DS);
6326#endif
6327
6328 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6329 | (1 << VCPU_EXREG_RFLAGS)
6330 | (1 << VCPU_EXREG_CPL)
6331 | (1 << VCPU_EXREG_PDPTR)
6332 | (1 << VCPU_EXREG_SEGMENTS)
6333 | (1 << VCPU_EXREG_CR3));
6334 vcpu->arch.regs_dirty = 0;
6335
6336 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6337
6338 if (is_guest_mode(vcpu)) {
6339 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6340 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6341 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6342 vmcs12->idt_vectoring_error_code =
6343 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6344 vmcs12->vm_exit_instruction_len =
6345 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6346 }
6347 }
6348
6349 vmx->loaded_vmcs->launched = 1;
6350
6351 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6352 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6353
6354 vmx_complete_atomic_exit(vmx);
6355 vmx_recover_nmi_blocking(vmx);
6356 vmx_complete_interrupts(vmx);
6357}
6358
6359#undef R
6360#undef Q
6361
6362static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6363{
6364 struct vcpu_vmx *vmx = to_vmx(vcpu);
6365
6366 free_vpid(vmx);
6367 free_nested(vmx);
6368 free_loaded_vmcs(vmx->loaded_vmcs);
6369 kfree(vmx->guest_msrs);
6370 kvm_vcpu_uninit(vcpu);
6371 kmem_cache_free(kvm_vcpu_cache, vmx);
6372}
6373
6374static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6375{
6376 int err;
6377 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
6378 int cpu;
6379
6380 if (!vmx)
6381 return ERR_PTR(-ENOMEM);
6382
6383 allocate_vpid(vmx);
6384
6385 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6386 if (err)
6387 goto free_vcpu;
6388
6389 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
6390 err = -ENOMEM;
6391 if (!vmx->guest_msrs) {
6392 goto uninit_vcpu;
6393 }
6394
6395 vmx->loaded_vmcs = &vmx->vmcs01;
6396 vmx->loaded_vmcs->vmcs = alloc_vmcs();
6397 if (!vmx->loaded_vmcs->vmcs)
6398 goto free_msrs;
6399 if (!vmm_exclusive)
6400 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6401 loaded_vmcs_init(vmx->loaded_vmcs);
6402 if (!vmm_exclusive)
6403 kvm_cpu_vmxoff();
6404
6405 cpu = get_cpu();
6406 vmx_vcpu_load(&vmx->vcpu, cpu);
6407 vmx->vcpu.cpu = cpu;
6408 err = vmx_vcpu_setup(vmx);
6409 vmx_vcpu_put(&vmx->vcpu);
6410 put_cpu();
6411 if (err)
6412 goto free_vmcs;
6413 if (vm_need_virtualize_apic_accesses(kvm))
6414 err = alloc_apic_access_page(kvm);
6415 if (err)
6416 goto free_vmcs;
6417
6418 if (enable_ept) {
6419 if (!kvm->arch.ept_identity_map_addr)
6420 kvm->arch.ept_identity_map_addr =
6421 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
6422 err = -ENOMEM;
6423 if (alloc_identity_pagetable(kvm) != 0)
6424 goto free_vmcs;
6425 if (!init_rmode_identity_map(kvm))
6426 goto free_vmcs;
6427 }
6428
6429 vmx->nested.current_vmptr = -1ull;
6430 vmx->nested.current_vmcs12 = NULL;
6431
6432 return &vmx->vcpu;
6433
6434free_vmcs:
6435 free_loaded_vmcs(vmx->loaded_vmcs);
6436free_msrs:
6437 kfree(vmx->guest_msrs);
6438uninit_vcpu:
6439 kvm_vcpu_uninit(&vmx->vcpu);
6440free_vcpu:
6441 free_vpid(vmx);
6442 kmem_cache_free(kvm_vcpu_cache, vmx);
6443 return ERR_PTR(err);
6444}
6445
6446static void __init vmx_check_processor_compat(void *rtn)
6447{
6448 struct vmcs_config vmcs_conf;
6449
6450 *(int *)rtn = 0;
6451 if (setup_vmcs_config(&vmcs_conf) < 0)
6452 *(int *)rtn = -EIO;
6453 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6454 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6455 smp_processor_id());
6456 *(int *)rtn = -EIO;
6457 }
6458}
6459
6460static int get_ept_level(void)
6461{
6462 return VMX_EPT_DEFAULT_GAW + 1;
6463}
6464
6465static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6466{
6467 u64 ret;
6468
6469 /* For VT-d and EPT combination
6470 * 1. MMIO: always map as UC
6471 * 2. EPT with VT-d:
6472 * a. VT-d without snooping control feature: can't guarantee the
6473 * result, try to trust guest.
6474 * b. VT-d with snooping control feature: snooping control feature of
6475 * VT-d engine can guarantee the cache correctness. Just set it
6476 * to WB to keep consistent with host. So the same as item 3.
6477 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6478 * consistent with host MTRR
6479 */
6480 if (is_mmio)
6481 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
6482 else if (vcpu->kvm->arch.iommu_domain &&
6483 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6484 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6485 VMX_EPT_MT_EPTE_SHIFT;
6486 else
6487 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
6488 | VMX_EPT_IPAT_BIT;
6489
6490 return ret;
6491}
6492
6493static int vmx_get_lpage_level(void)
6494{
6495 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6496 return PT_DIRECTORY_LEVEL;
6497 else
6498 /* For shadow and EPT supported 1GB page */
6499 return PT_PDPE_LEVEL;
6500}
6501
6502static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6503{
6504 struct kvm_cpuid_entry2 *best;
6505 struct vcpu_vmx *vmx = to_vmx(vcpu);
6506 u32 exec_control;
6507
6508 vmx->rdtscp_enabled = false;
6509 if (vmx_rdtscp_supported()) {
6510 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6511 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6512 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6513 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6514 vmx->rdtscp_enabled = true;
6515 else {
6516 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6517 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6518 exec_control);
6519 }
6520 }
6521 }
6522}
6523
6524static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6525{
6526 if (func == 1 && nested)
6527 entry->ecx |= bit(X86_FEATURE_VMX);
6528}
6529
6530/*
6531 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6532 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6533 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6534 * guest in a way that will both be appropriate to L1's requests, and our
6535 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6536 * function also has additional necessary side-effects, like setting various
6537 * vcpu->arch fields.
6538 */
6539static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6540{
6541 struct vcpu_vmx *vmx = to_vmx(vcpu);
6542 u32 exec_control;
6543
6544 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6545 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6546 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6547 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6548 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6549 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6550 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6551 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6552 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6553 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6554 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6555 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6556 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6557 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6558 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6559 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6560 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6561 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6562 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6563 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6564 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6565 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6566 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6567 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6568 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6569 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6570 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6571 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6572 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6573 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6574 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6575 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6576 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6577 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6578 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6579 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6580
6581 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6582 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6583 vmcs12->vm_entry_intr_info_field);
6584 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6585 vmcs12->vm_entry_exception_error_code);
6586 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6587 vmcs12->vm_entry_instruction_len);
6588 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6589 vmcs12->guest_interruptibility_info);
6590 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6591 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6592 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6593 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6594 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6595 vmcs12->guest_pending_dbg_exceptions);
6596 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6597 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6598
6599 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6600
6601 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6602 (vmcs_config.pin_based_exec_ctrl |
6603 vmcs12->pin_based_vm_exec_control));
6604
6605 /*
6606 * Whether page-faults are trapped is determined by a combination of
6607 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6608 * If enable_ept, L0 doesn't care about page faults and we should
6609 * set all of these to L1's desires. However, if !enable_ept, L0 does
6610 * care about (at least some) page faults, and because it is not easy
6611 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6612 * to exit on each and every L2 page fault. This is done by setting
6613 * MASK=MATCH=0 and (see below) EB.PF=1.
6614 * Note that below we don't need special code to set EB.PF beyond the
6615 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6616 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6617 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6618 *
6619 * A problem with this approach (when !enable_ept) is that L1 may be
6620 * injected with more page faults than it asked for. This could have
6621 * caused problems, but in practice existing hypervisors don't care.
6622 * To fix this, we will need to emulate the PFEC checking (on the L1
6623 * page tables), using walk_addr(), when injecting PFs to L1.
6624 */
6625 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6626 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6627 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6628 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6629
6630 if (cpu_has_secondary_exec_ctrls()) {
6631 u32 exec_control = vmx_secondary_exec_control(vmx);
6632 if (!vmx->rdtscp_enabled)
6633 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6634 /* Take the following fields only from vmcs12 */
6635 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6636 if (nested_cpu_has(vmcs12,
6637 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6638 exec_control |= vmcs12->secondary_vm_exec_control;
6639
6640 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6641 /*
6642 * Translate L1 physical address to host physical
6643 * address for vmcs02. Keep the page pinned, so this
6644 * physical address remains valid. We keep a reference
6645 * to it so we can release it later.
6646 */
6647 if (vmx->nested.apic_access_page) /* shouldn't happen */
6648 nested_release_page(vmx->nested.apic_access_page);
6649 vmx->nested.apic_access_page =
6650 nested_get_page(vcpu, vmcs12->apic_access_addr);
6651 /*
6652 * If translation failed, no matter: This feature asks
6653 * to exit when accessing the given address, and if it
6654 * can never be accessed, this feature won't do
6655 * anything anyway.
6656 */
6657 if (!vmx->nested.apic_access_page)
6658 exec_control &=
6659 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6660 else
6661 vmcs_write64(APIC_ACCESS_ADDR,
6662 page_to_phys(vmx->nested.apic_access_page));
6663 }
6664
6665 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6666 }
6667
6668
6669 /*
6670 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6671 * Some constant fields are set here by vmx_set_constant_host_state().
6672 * Other fields are different per CPU, and will be set later when
6673 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6674 */
6675 vmx_set_constant_host_state();
6676
6677 /*
6678 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6679 * entry, but only if the current (host) sp changed from the value
6680 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6681 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6682 * here we just force the write to happen on entry.
6683 */
6684 vmx->host_rsp = 0;
6685
6686 exec_control = vmx_exec_control(vmx); /* L0's desires */
6687 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6688 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6689 exec_control &= ~CPU_BASED_TPR_SHADOW;
6690 exec_control |= vmcs12->cpu_based_vm_exec_control;
6691 /*
6692 * Merging of IO and MSR bitmaps not currently supported.
6693 * Rather, exit every time.
6694 */
6695 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6696 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6697 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6698
6699 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6700
6701 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6702 * bitwise-or of what L1 wants to trap for L2, and what we want to
6703 * trap. Note that CR0.TS also needs updating - we do this later.
6704 */
6705 update_exception_bitmap(vcpu);
6706 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6707 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6708
6709 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6710 vmcs_write32(VM_EXIT_CONTROLS,
6711 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6712 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6713 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6714
6715 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6716 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6717 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6718 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6719
6720
6721 set_cr4_guest_host_mask(vmx);
6722
6723 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6724 vmcs_write64(TSC_OFFSET,
6725 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6726 else
6727 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
6728
6729 if (enable_vpid) {
6730 /*
6731 * Trivially support vpid by letting L2s share their parent
6732 * L1's vpid. TODO: move to a more elaborate solution, giving
6733 * each L2 its own vpid and exposing the vpid feature to L1.
6734 */
6735 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6736 vmx_flush_tlb(vcpu);
6737 }
6738
6739 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6740 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6741 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6742 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6743 else
6744 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6745 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6746 vmx_set_efer(vcpu, vcpu->arch.efer);
6747
6748 /*
6749 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6750 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6751 * The CR0_READ_SHADOW is what L2 should have expected to read given
6752 * the specifications by L1; It's not enough to take
6753 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6754 * have more bits than L1 expected.
6755 */
6756 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6757 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6758
6759 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6760 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6761
6762 /* shadow page tables on either EPT or shadow page tables */
6763 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6764 kvm_mmu_reset_context(vcpu);
6765
6766 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6767 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6768}
6769
6770/*
6771 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6772 * for running an L2 nested guest.
6773 */
6774static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6775{
6776 struct vmcs12 *vmcs12;
6777 struct vcpu_vmx *vmx = to_vmx(vcpu);
6778 int cpu;
6779 struct loaded_vmcs *vmcs02;
6780
6781 if (!nested_vmx_check_permission(vcpu) ||
6782 !nested_vmx_check_vmcs12(vcpu))
6783 return 1;
6784
6785 skip_emulated_instruction(vcpu);
6786 vmcs12 = get_vmcs12(vcpu);
6787
6788 /*
6789 * The nested entry process starts with enforcing various prerequisites
6790 * on vmcs12 as required by the Intel SDM, and act appropriately when
6791 * they fail: As the SDM explains, some conditions should cause the
6792 * instruction to fail, while others will cause the instruction to seem
6793 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6794 * To speed up the normal (success) code path, we should avoid checking
6795 * for misconfigurations which will anyway be caught by the processor
6796 * when using the merged vmcs02.
6797 */
6798 if (vmcs12->launch_state == launch) {
6799 nested_vmx_failValid(vcpu,
6800 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6801 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6802 return 1;
6803 }
6804
6805 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6806 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6807 /*TODO: Also verify bits beyond physical address width are 0*/
6808 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6809 return 1;
6810 }
6811
6812 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6813 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6814 /*TODO: Also verify bits beyond physical address width are 0*/
6815 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6816 return 1;
6817 }
6818
6819 if (vmcs12->vm_entry_msr_load_count > 0 ||
6820 vmcs12->vm_exit_msr_load_count > 0 ||
6821 vmcs12->vm_exit_msr_store_count > 0) {
6822 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6823 __func__);
6824 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6825 return 1;
6826 }
6827
6828 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6829 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6830 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6831 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6832 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6833 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6834 !vmx_control_verify(vmcs12->vm_exit_controls,
6835 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6836 !vmx_control_verify(vmcs12->vm_entry_controls,
6837 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6838 {
6839 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6840 return 1;
6841 }
6842
6843 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6844 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6845 nested_vmx_failValid(vcpu,
6846 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6847 return 1;
6848 }
6849
6850 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6851 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6852 nested_vmx_entry_failure(vcpu, vmcs12,
6853 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6854 return 1;
6855 }
6856 if (vmcs12->vmcs_link_pointer != -1ull) {
6857 nested_vmx_entry_failure(vcpu, vmcs12,
6858 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6859 return 1;
6860 }
6861
6862 /*
6863 * We're finally done with prerequisite checking, and can start with
6864 * the nested entry.
6865 */
6866
6867 vmcs02 = nested_get_current_vmcs02(vmx);
6868 if (!vmcs02)
6869 return -ENOMEM;
6870
6871 enter_guest_mode(vcpu);
6872
6873 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6874
6875 cpu = get_cpu();
6876 vmx->loaded_vmcs = vmcs02;
6877 vmx_vcpu_put(vcpu);
6878 vmx_vcpu_load(vcpu, cpu);
6879 vcpu->cpu = cpu;
6880 put_cpu();
6881
6882 vmcs12->launch_state = 1;
6883
6884 prepare_vmcs02(vcpu, vmcs12);
6885
6886 /*
6887 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6888 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6889 * returned as far as L1 is concerned. It will only return (and set
6890 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6891 */
6892 return 1;
6893}
6894
6895/*
6896 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6897 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6898 * This function returns the new value we should put in vmcs12.guest_cr0.
6899 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6900 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6901 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6902 * didn't trap the bit, because if L1 did, so would L0).
6903 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6904 * been modified by L2, and L1 knows it. So just leave the old value of
6905 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6906 * isn't relevant, because if L0 traps this bit it can set it to anything.
6907 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6908 * changed these bits, and therefore they need to be updated, but L0
6909 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6910 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6911 */
6912static inline unsigned long
6913vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6914{
6915 return
6916 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6917 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6918 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
6919 vcpu->arch.cr0_guest_owned_bits));
6920}
6921
6922static inline unsigned long
6923vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6924{
6925 return
6926 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
6927 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
6928 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
6929 vcpu->arch.cr4_guest_owned_bits));
6930}
6931
6932/*
6933 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6934 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6935 * and this function updates it to reflect the changes to the guest state while
6936 * L2 was running (and perhaps made some exits which were handled directly by L0
6937 * without going back to L1), and to reflect the exit reason.
6938 * Note that we do not have to copy here all VMCS fields, just those that
6939 * could have changed by the L2 guest or the exit - i.e., the guest-state and
6940 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
6941 * which already writes to vmcs12 directly.
6942 */
6943void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6944{
6945 /* update guest state fields: */
6946 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
6947 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
6948
6949 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
6950 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6951 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
6952 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
6953
6954 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
6955 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
6956 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
6957 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
6958 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
6959 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
6960 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
6961 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
6962 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
6963 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
6964 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
6965 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
6966 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
6967 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
6968 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
6969 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
6970 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
6971 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
6972 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
6973 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
6974 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
6975 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
6976 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
6977 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
6978 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
6979 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
6980 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
6981 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
6982 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
6983 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
6984 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
6985 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
6986 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
6987 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
6988 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
6989 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
6990
6991 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
6992 vmcs12->guest_interruptibility_info =
6993 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
6994 vmcs12->guest_pending_dbg_exceptions =
6995 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
6996
6997 /* TODO: These cannot have changed unless we have MSR bitmaps and
6998 * the relevant bit asks not to trap the change */
6999 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
7000 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
7001 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
7002 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
7003 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
7004 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
7005
7006 /* update exit information fields: */
7007
7008 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
7009 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7010
7011 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7012 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
7013 vmcs12->idt_vectoring_info_field =
7014 vmcs_read32(IDT_VECTORING_INFO_FIELD);
7015 vmcs12->idt_vectoring_error_code =
7016 vmcs_read32(IDT_VECTORING_ERROR_CODE);
7017 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
7018 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7019
7020 /* clear vm-entry fields which are to be cleared on exit */
7021 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
7022 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
7023}
7024
7025/*
7026 * A part of what we need to when the nested L2 guest exits and we want to
7027 * run its L1 parent, is to reset L1's guest state to the host state specified
7028 * in vmcs12.
7029 * This function is to be called not only on normal nested exit, but also on
7030 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
7031 * Failures During or After Loading Guest State").
7032 * This function should be called when the active VMCS is L1's (vmcs01).
7033 */
7034void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7035{
7036 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
7037 vcpu->arch.efer = vmcs12->host_ia32_efer;
7038 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
7039 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7040 else
7041 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7042 vmx_set_efer(vcpu, vcpu->arch.efer);
7043
7044 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
7045 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
7046 /*
7047 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
7048 * actually changed, because it depends on the current state of
7049 * fpu_active (which may have changed).
7050 * Note that vmx_set_cr0 refers to efer set above.
7051 */
7052 kvm_set_cr0(vcpu, vmcs12->host_cr0);
7053 /*
7054 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
7055 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
7056 * but we also need to update cr0_guest_host_mask and exception_bitmap.
7057 */
7058 update_exception_bitmap(vcpu);
7059 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
7060 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7061
7062 /*
7063 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
7064 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
7065 */
7066 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
7067 kvm_set_cr4(vcpu, vmcs12->host_cr4);
7068
7069 /* shadow page tables on either EPT or shadow page tables */
7070 kvm_set_cr3(vcpu, vmcs12->host_cr3);
7071 kvm_mmu_reset_context(vcpu);
7072
7073 if (enable_vpid) {
7074 /*
7075 * Trivially support vpid by letting L2s share their parent
7076 * L1's vpid. TODO: move to a more elaborate solution, giving
7077 * each L2 its own vpid and exposing the vpid feature to L1.
7078 */
7079 vmx_flush_tlb(vcpu);
7080 }
7081
7082
7083 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
7084 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7085 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7086 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7087 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7088 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7089 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7090 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7091 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7092 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7093 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7094 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7095 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7096 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7097 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7098
7099 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7100 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7101 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7102 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7103 vmcs12->host_ia32_perf_global_ctrl);
7104}
7105
7106/*
7107 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7108 * and modify vmcs12 to make it see what it would expect to see there if
7109 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7110 */
7111static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7112{
7113 struct vcpu_vmx *vmx = to_vmx(vcpu);
7114 int cpu;
7115 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7116
7117 leave_guest_mode(vcpu);
7118 prepare_vmcs12(vcpu, vmcs12);
7119
7120 cpu = get_cpu();
7121 vmx->loaded_vmcs = &vmx->vmcs01;
7122 vmx_vcpu_put(vcpu);
7123 vmx_vcpu_load(vcpu, cpu);
7124 vcpu->cpu = cpu;
7125 put_cpu();
7126
7127 /* if no vmcs02 cache requested, remove the one we used */
7128 if (VMCS02_POOL_SIZE == 0)
7129 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7130
7131 load_vmcs12_host_state(vcpu, vmcs12);
7132
7133 /* Update TSC_OFFSET if TSC was changed while L2 ran */
7134 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7135
7136 /* This is needed for same reason as it was needed in prepare_vmcs02 */
7137 vmx->host_rsp = 0;
7138
7139 /* Unpin physical memory we referred to in vmcs02 */
7140 if (vmx->nested.apic_access_page) {
7141 nested_release_page(vmx->nested.apic_access_page);
7142 vmx->nested.apic_access_page = 0;
7143 }
7144
7145 /*
7146 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7147 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7148 * success or failure flag accordingly.
7149 */
7150 if (unlikely(vmx->fail)) {
7151 vmx->fail = 0;
7152 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7153 } else
7154 nested_vmx_succeed(vcpu);
7155}
7156
7157/*
7158 * L1's failure to enter L2 is a subset of a normal exit, as explained in
7159 * 23.7 "VM-entry failures during or after loading guest state" (this also
7160 * lists the acceptable exit-reason and exit-qualification parameters).
7161 * It should only be called before L2 actually succeeded to run, and when
7162 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7163 */
7164static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7165 struct vmcs12 *vmcs12,
7166 u32 reason, unsigned long qualification)
7167{
7168 load_vmcs12_host_state(vcpu, vmcs12);
7169 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7170 vmcs12->exit_qualification = qualification;
7171 nested_vmx_succeed(vcpu);
7172}
7173
7174static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7175 struct x86_instruction_info *info,
7176 enum x86_intercept_stage stage)
7177{
7178 return X86EMUL_CONTINUE;
7179}
7180
7181static struct kvm_x86_ops vmx_x86_ops = {
7182 .cpu_has_kvm_support = cpu_has_kvm_support,
7183 .disabled_by_bios = vmx_disabled_by_bios,
7184 .hardware_setup = hardware_setup,
7185 .hardware_unsetup = hardware_unsetup,
7186 .check_processor_compatibility = vmx_check_processor_compat,
7187 .hardware_enable = hardware_enable,
7188 .hardware_disable = hardware_disable,
7189 .cpu_has_accelerated_tpr = report_flexpriority,
7190
7191 .vcpu_create = vmx_create_vcpu,
7192 .vcpu_free = vmx_free_vcpu,
7193 .vcpu_reset = vmx_vcpu_reset,
7194
7195 .prepare_guest_switch = vmx_save_host_state,
7196 .vcpu_load = vmx_vcpu_load,
7197 .vcpu_put = vmx_vcpu_put,
7198
7199 .set_guest_debug = set_guest_debug,
7200 .get_msr = vmx_get_msr,
7201 .set_msr = vmx_set_msr,
7202 .get_segment_base = vmx_get_segment_base,
7203 .get_segment = vmx_get_segment,
7204 .set_segment = vmx_set_segment,
7205 .get_cpl = vmx_get_cpl,
7206 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7207 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7208 .decache_cr3 = vmx_decache_cr3,
7209 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7210 .set_cr0 = vmx_set_cr0,
7211 .set_cr3 = vmx_set_cr3,
7212 .set_cr4 = vmx_set_cr4,
7213 .set_efer = vmx_set_efer,
7214 .get_idt = vmx_get_idt,
7215 .set_idt = vmx_set_idt,
7216 .get_gdt = vmx_get_gdt,
7217 .set_gdt = vmx_set_gdt,
7218 .set_dr7 = vmx_set_dr7,
7219 .cache_reg = vmx_cache_reg,
7220 .get_rflags = vmx_get_rflags,
7221 .set_rflags = vmx_set_rflags,
7222 .fpu_activate = vmx_fpu_activate,
7223 .fpu_deactivate = vmx_fpu_deactivate,
7224
7225 .tlb_flush = vmx_flush_tlb,
7226
7227 .run = vmx_vcpu_run,
7228 .handle_exit = vmx_handle_exit,
7229 .skip_emulated_instruction = skip_emulated_instruction,
7230 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7231 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7232 .patch_hypercall = vmx_patch_hypercall,
7233 .set_irq = vmx_inject_irq,
7234 .set_nmi = vmx_inject_nmi,
7235 .queue_exception = vmx_queue_exception,
7236 .cancel_injection = vmx_cancel_injection,
7237 .interrupt_allowed = vmx_interrupt_allowed,
7238 .nmi_allowed = vmx_nmi_allowed,
7239 .get_nmi_mask = vmx_get_nmi_mask,
7240 .set_nmi_mask = vmx_set_nmi_mask,
7241 .enable_nmi_window = enable_nmi_window,
7242 .enable_irq_window = enable_irq_window,
7243 .update_cr8_intercept = update_cr8_intercept,
7244
7245 .set_tss_addr = vmx_set_tss_addr,
7246 .get_tdp_level = get_ept_level,
7247 .get_mt_mask = vmx_get_mt_mask,
7248
7249 .get_exit_info = vmx_get_exit_info,
7250
7251 .get_lpage_level = vmx_get_lpage_level,
7252
7253 .cpuid_update = vmx_cpuid_update,
7254
7255 .rdtscp_supported = vmx_rdtscp_supported,
7256
7257 .set_supported_cpuid = vmx_set_supported_cpuid,
7258
7259 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7260
7261 .set_tsc_khz = vmx_set_tsc_khz,
7262 .write_tsc_offset = vmx_write_tsc_offset,
7263 .adjust_tsc_offset = vmx_adjust_tsc_offset,
7264 .compute_tsc_offset = vmx_compute_tsc_offset,
7265 .read_l1_tsc = vmx_read_l1_tsc,
7266
7267 .set_tdp_cr3 = vmx_set_cr3,
7268
7269 .check_intercept = vmx_check_intercept,
7270};
7271
7272static int __init vmx_init(void)
7273{
7274 int r, i;
7275
7276 rdmsrl_safe(MSR_EFER, &host_efer);
7277
7278 for (i = 0; i < NR_VMX_MSR; ++i)
7279 kvm_define_shared_msr(i, vmx_msr_index[i]);
7280
7281 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
7282 if (!vmx_io_bitmap_a)
7283 return -ENOMEM;
7284
7285 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
7286 if (!vmx_io_bitmap_b) {
7287 r = -ENOMEM;
7288 goto out;
7289 }
7290
7291 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7292 if (!vmx_msr_bitmap_legacy) {
7293 r = -ENOMEM;
7294 goto out1;
7295 }
7296
7297 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7298 if (!vmx_msr_bitmap_longmode) {
7299 r = -ENOMEM;
7300 goto out2;
7301 }
7302
7303 /*
7304 * Allow direct access to the PC debug port (it is often used for I/O
7305 * delays, but the vmexits simply slow things down).
7306 */
7307 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7308 clear_bit(0x80, vmx_io_bitmap_a);
7309
7310 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
7311
7312 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7313 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
7314
7315 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7316
7317 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7318 __alignof__(struct vcpu_vmx), THIS_MODULE);
7319 if (r)
7320 goto out3;
7321
7322 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7323 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7324 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7325 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7326 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7327 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
7328
7329 if (enable_ept) {
7330 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
7331 VMX_EPT_EXECUTABLE_MASK);
7332 ept_set_mmio_spte_mask();
7333 kvm_enable_tdp();
7334 } else
7335 kvm_disable_tdp();
7336
7337 return 0;
7338
7339out3:
7340 free_page((unsigned long)vmx_msr_bitmap_longmode);
7341out2:
7342 free_page((unsigned long)vmx_msr_bitmap_legacy);
7343out1:
7344 free_page((unsigned long)vmx_io_bitmap_b);
7345out:
7346 free_page((unsigned long)vmx_io_bitmap_a);
7347 return r;
7348}
7349
7350static void __exit vmx_exit(void)
7351{
7352 free_page((unsigned long)vmx_msr_bitmap_legacy);
7353 free_page((unsigned long)vmx_msr_bitmap_longmode);
7354 free_page((unsigned long)vmx_io_bitmap_b);
7355 free_page((unsigned long)vmx_io_bitmap_a);
7356
7357 kvm_exit();
7358}
7359
7360module_init(vmx_init)
7361module_exit(vmx_exit)