Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3 *
  4 *   This program is free software; you can redistribute it and/or
  5 *   modify it under the terms of the GNU General Public License
  6 *   as published by the Free Software Foundation, version 2.
  7 *
  8 *   This program is distributed in the hope that it will be useful, but
  9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 11 *   NON INFRINGEMENT.  See the GNU General Public License for
 12 *   more details.
 13 */
 14
 15#include <linux/mm.h>
 16#include <linux/dma-mapping.h>
 17#include <linux/vmalloc.h>
 
 18#include <asm/tlbflush.h>
 19#include <asm/homecache.h>
 20
 21/* Generic DMA mapping functions: */
 22
 23/*
 24 * Allocate what Linux calls "coherent" memory, which for us just
 25 * means uncached.
 26 */
 27void *dma_alloc_coherent(struct device *dev,
 28			 size_t size,
 29			 dma_addr_t *dma_handle,
 30			 gfp_t gfp)
 31{
 32	u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
 33	int node = dev_to_node(dev);
 34	int order = get_order(size);
 35	struct page *pg;
 36	dma_addr_t addr;
 37
 38	gfp |= __GFP_ZERO;
 39
 40	/*
 41	 * By forcing NUMA node 0 for 32-bit masks we ensure that the
 42	 * high 32 bits of the resulting PA will be zero.  If the mask
 43	 * size is, e.g., 24, we may still not be able to guarantee a
 44	 * suitable memory address, in which case we will return NULL.
 45	 * But such devices are uncommon.
 46	 */
 47	if (dma_mask <= DMA_BIT_MASK(32))
 48		node = 0;
 49
 50	pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_UNCACHED);
 51	if (pg == NULL)
 52		return NULL;
 53
 54	addr = page_to_phys(pg);
 55	if (addr + size > dma_mask) {
 56		homecache_free_pages(addr, order);
 57		return NULL;
 58	}
 59
 60	*dma_handle = addr;
 61	return page_address(pg);
 62}
 63EXPORT_SYMBOL(dma_alloc_coherent);
 64
 65/*
 66 * Free memory that was allocated with dma_alloc_coherent.
 67 */
 68void dma_free_coherent(struct device *dev, size_t size,
 69		  void *vaddr, dma_addr_t dma_handle)
 70{
 71	homecache_free_pages((unsigned long)vaddr, get_order(size));
 72}
 73EXPORT_SYMBOL(dma_free_coherent);
 74
 75/*
 76 * The map routines "map" the specified address range for DMA
 77 * accesses.  The memory belongs to the device after this call is
 78 * issued, until it is unmapped with dma_unmap_single.
 79 *
 80 * We don't need to do any mapping, we just flush the address range
 81 * out of the cache and return a DMA address.
 82 *
 83 * The unmap routines do whatever is necessary before the processor
 84 * accesses the memory again, and must be called before the driver
 85 * touches the memory.  We can get away with a cache invalidate if we
 86 * can count on nothing having been touched.
 87 */
 88
 89/* Flush a PA range from cache page by page. */
 90static void __dma_map_pa_range(dma_addr_t dma_addr, size_t size)
 91{
 92	struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
 93	size_t bytesleft = PAGE_SIZE - (dma_addr & (PAGE_SIZE - 1));
 94
 95	while ((ssize_t)size > 0) {
 96		/* Flush the page. */
 97		homecache_flush_cache(page++, 0);
 98
 99		/* Figure out if we need to continue on the next page. */
100		size -= bytesleft;
101		bytesleft = PAGE_SIZE;
102	}
103}
104
105/*
106 * dma_map_single can be passed any memory address, and there appear
107 * to be no alignment constraints.
108 *
109 * There is a chance that the start of the buffer will share a cache
110 * line with some other data that has been touched in the meantime.
111 */
112dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
113	       enum dma_data_direction direction)
114{
115	dma_addr_t dma_addr = __pa(ptr);
116
117	BUG_ON(!valid_dma_direction(direction));
118	WARN_ON(size == 0);
119
120	__dma_map_pa_range(dma_addr, size);
121
122	return dma_addr;
123}
124EXPORT_SYMBOL(dma_map_single);
125
126void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
127		 enum dma_data_direction direction)
128{
129	BUG_ON(!valid_dma_direction(direction));
130}
131EXPORT_SYMBOL(dma_unmap_single);
132
133int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
134	   enum dma_data_direction direction)
135{
136	struct scatterlist *sg;
137	int i;
138
139	BUG_ON(!valid_dma_direction(direction));
140
141	WARN_ON(nents == 0 || sglist->length == 0);
142
143	for_each_sg(sglist, sg, nents, i) {
144		sg->dma_address = sg_phys(sg);
145		__dma_map_pa_range(sg->dma_address, sg->length);
146	}
147
148	return nents;
149}
150EXPORT_SYMBOL(dma_map_sg);
151
152void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
153	     enum dma_data_direction direction)
154{
155	BUG_ON(!valid_dma_direction(direction));
156}
157EXPORT_SYMBOL(dma_unmap_sg);
158
159dma_addr_t dma_map_page(struct device *dev, struct page *page,
160			unsigned long offset, size_t size,
161			enum dma_data_direction direction)
162{
163	BUG_ON(!valid_dma_direction(direction));
164
165	BUG_ON(offset + size > PAGE_SIZE);
166	homecache_flush_cache(page, 0);
167
168	return page_to_pa(page) + offset;
169}
170EXPORT_SYMBOL(dma_map_page);
171
172void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
173	       enum dma_data_direction direction)
174{
175	BUG_ON(!valid_dma_direction(direction));
176}
177EXPORT_SYMBOL(dma_unmap_page);
178
179void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
180			     size_t size, enum dma_data_direction direction)
181{
182	BUG_ON(!valid_dma_direction(direction));
183}
184EXPORT_SYMBOL(dma_sync_single_for_cpu);
185
186void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
187				size_t size, enum dma_data_direction direction)
188{
189	unsigned long start = PFN_DOWN(dma_handle);
190	unsigned long end = PFN_DOWN(dma_handle + size - 1);
191	unsigned long i;
192
193	BUG_ON(!valid_dma_direction(direction));
194	for (i = start; i <= end; ++i)
195		homecache_flush_cache(pfn_to_page(i), 0);
196}
197EXPORT_SYMBOL(dma_sync_single_for_device);
198
199void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
200		    enum dma_data_direction direction)
201{
202	BUG_ON(!valid_dma_direction(direction));
203	WARN_ON(nelems == 0 || sg[0].length == 0);
204}
205EXPORT_SYMBOL(dma_sync_sg_for_cpu);
206
207/*
208 * Flush and invalidate cache for scatterlist.
209 */
210void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
211			    int nelems, enum dma_data_direction direction)
212{
213	struct scatterlist *sg;
214	int i;
215
216	BUG_ON(!valid_dma_direction(direction));
217	WARN_ON(nelems == 0 || sglist->length == 0);
218
219	for_each_sg(sglist, sg, nelems, i) {
220		dma_sync_single_for_device(dev, sg->dma_address,
221					   sg_dma_len(sg), direction);
222	}
223}
224EXPORT_SYMBOL(dma_sync_sg_for_device);
225
226void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
227				   unsigned long offset, size_t size,
228				   enum dma_data_direction direction)
229{
230	dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction);
231}
232EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
233
234void dma_sync_single_range_for_device(struct device *dev,
235				      dma_addr_t dma_handle,
236				      unsigned long offset, size_t size,
237				      enum dma_data_direction direction)
238{
239	dma_sync_single_for_device(dev, dma_handle + offset, size, direction);
240}
241EXPORT_SYMBOL(dma_sync_single_range_for_device);
242
243/*
244 * dma_alloc_noncoherent() returns non-cacheable memory, so there's no
245 * need to do any flushing here.
246 */
247void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
248		    enum dma_data_direction direction)
249{
250}
251EXPORT_SYMBOL(dma_cache_sync);
v3.5.6
  1/*
  2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3 *
  4 *   This program is free software; you can redistribute it and/or
  5 *   modify it under the terms of the GNU General Public License
  6 *   as published by the Free Software Foundation, version 2.
  7 *
  8 *   This program is distributed in the hope that it will be useful, but
  9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 11 *   NON INFRINGEMENT.  See the GNU General Public License for
 12 *   more details.
 13 */
 14
 15#include <linux/mm.h>
 16#include <linux/dma-mapping.h>
 17#include <linux/vmalloc.h>
 18#include <linux/export.h>
 19#include <asm/tlbflush.h>
 20#include <asm/homecache.h>
 21
 22/* Generic DMA mapping functions: */
 23
 24/*
 25 * Allocate what Linux calls "coherent" memory, which for us just
 26 * means uncached.
 27 */
 28void *dma_alloc_coherent(struct device *dev,
 29			 size_t size,
 30			 dma_addr_t *dma_handle,
 31			 gfp_t gfp)
 32{
 33	u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
 34	int node = dev_to_node(dev);
 35	int order = get_order(size);
 36	struct page *pg;
 37	dma_addr_t addr;
 38
 39	gfp |= __GFP_ZERO;
 40
 41	/*
 42	 * By forcing NUMA node 0 for 32-bit masks we ensure that the
 43	 * high 32 bits of the resulting PA will be zero.  If the mask
 44	 * size is, e.g., 24, we may still not be able to guarantee a
 45	 * suitable memory address, in which case we will return NULL.
 46	 * But such devices are uncommon.
 47	 */
 48	if (dma_mask <= DMA_BIT_MASK(32))
 49		node = 0;
 50
 51	pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_UNCACHED);
 52	if (pg == NULL)
 53		return NULL;
 54
 55	addr = page_to_phys(pg);
 56	if (addr + size > dma_mask) {
 57		homecache_free_pages(addr, order);
 58		return NULL;
 59	}
 60
 61	*dma_handle = addr;
 62	return page_address(pg);
 63}
 64EXPORT_SYMBOL(dma_alloc_coherent);
 65
 66/*
 67 * Free memory that was allocated with dma_alloc_coherent.
 68 */
 69void dma_free_coherent(struct device *dev, size_t size,
 70		  void *vaddr, dma_addr_t dma_handle)
 71{
 72	homecache_free_pages((unsigned long)vaddr, get_order(size));
 73}
 74EXPORT_SYMBOL(dma_free_coherent);
 75
 76/*
 77 * The map routines "map" the specified address range for DMA
 78 * accesses.  The memory belongs to the device after this call is
 79 * issued, until it is unmapped with dma_unmap_single.
 80 *
 81 * We don't need to do any mapping, we just flush the address range
 82 * out of the cache and return a DMA address.
 83 *
 84 * The unmap routines do whatever is necessary before the processor
 85 * accesses the memory again, and must be called before the driver
 86 * touches the memory.  We can get away with a cache invalidate if we
 87 * can count on nothing having been touched.
 88 */
 89
 90/* Flush a PA range from cache page by page. */
 91static void __dma_map_pa_range(dma_addr_t dma_addr, size_t size)
 92{
 93	struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
 94	size_t bytesleft = PAGE_SIZE - (dma_addr & (PAGE_SIZE - 1));
 95
 96	while ((ssize_t)size > 0) {
 97		/* Flush the page. */
 98		homecache_flush_cache(page++, 0);
 99
100		/* Figure out if we need to continue on the next page. */
101		size -= bytesleft;
102		bytesleft = PAGE_SIZE;
103	}
104}
105
106/*
107 * dma_map_single can be passed any memory address, and there appear
108 * to be no alignment constraints.
109 *
110 * There is a chance that the start of the buffer will share a cache
111 * line with some other data that has been touched in the meantime.
112 */
113dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
114	       enum dma_data_direction direction)
115{
116	dma_addr_t dma_addr = __pa(ptr);
117
118	BUG_ON(!valid_dma_direction(direction));
119	WARN_ON(size == 0);
120
121	__dma_map_pa_range(dma_addr, size);
122
123	return dma_addr;
124}
125EXPORT_SYMBOL(dma_map_single);
126
127void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
128		 enum dma_data_direction direction)
129{
130	BUG_ON(!valid_dma_direction(direction));
131}
132EXPORT_SYMBOL(dma_unmap_single);
133
134int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
135	   enum dma_data_direction direction)
136{
137	struct scatterlist *sg;
138	int i;
139
140	BUG_ON(!valid_dma_direction(direction));
141
142	WARN_ON(nents == 0 || sglist->length == 0);
143
144	for_each_sg(sglist, sg, nents, i) {
145		sg->dma_address = sg_phys(sg);
146		__dma_map_pa_range(sg->dma_address, sg->length);
147	}
148
149	return nents;
150}
151EXPORT_SYMBOL(dma_map_sg);
152
153void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
154	     enum dma_data_direction direction)
155{
156	BUG_ON(!valid_dma_direction(direction));
157}
158EXPORT_SYMBOL(dma_unmap_sg);
159
160dma_addr_t dma_map_page(struct device *dev, struct page *page,
161			unsigned long offset, size_t size,
162			enum dma_data_direction direction)
163{
164	BUG_ON(!valid_dma_direction(direction));
165
166	BUG_ON(offset + size > PAGE_SIZE);
167	homecache_flush_cache(page, 0);
168
169	return page_to_pa(page) + offset;
170}
171EXPORT_SYMBOL(dma_map_page);
172
173void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
174	       enum dma_data_direction direction)
175{
176	BUG_ON(!valid_dma_direction(direction));
177}
178EXPORT_SYMBOL(dma_unmap_page);
179
180void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
181			     size_t size, enum dma_data_direction direction)
182{
183	BUG_ON(!valid_dma_direction(direction));
184}
185EXPORT_SYMBOL(dma_sync_single_for_cpu);
186
187void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
188				size_t size, enum dma_data_direction direction)
189{
190	unsigned long start = PFN_DOWN(dma_handle);
191	unsigned long end = PFN_DOWN(dma_handle + size - 1);
192	unsigned long i;
193
194	BUG_ON(!valid_dma_direction(direction));
195	for (i = start; i <= end; ++i)
196		homecache_flush_cache(pfn_to_page(i), 0);
197}
198EXPORT_SYMBOL(dma_sync_single_for_device);
199
200void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
201		    enum dma_data_direction direction)
202{
203	BUG_ON(!valid_dma_direction(direction));
204	WARN_ON(nelems == 0 || sg[0].length == 0);
205}
206EXPORT_SYMBOL(dma_sync_sg_for_cpu);
207
208/*
209 * Flush and invalidate cache for scatterlist.
210 */
211void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
212			    int nelems, enum dma_data_direction direction)
213{
214	struct scatterlist *sg;
215	int i;
216
217	BUG_ON(!valid_dma_direction(direction));
218	WARN_ON(nelems == 0 || sglist->length == 0);
219
220	for_each_sg(sglist, sg, nelems, i) {
221		dma_sync_single_for_device(dev, sg->dma_address,
222					   sg_dma_len(sg), direction);
223	}
224}
225EXPORT_SYMBOL(dma_sync_sg_for_device);
226
227void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
228				   unsigned long offset, size_t size,
229				   enum dma_data_direction direction)
230{
231	dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction);
232}
233EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
234
235void dma_sync_single_range_for_device(struct device *dev,
236				      dma_addr_t dma_handle,
237				      unsigned long offset, size_t size,
238				      enum dma_data_direction direction)
239{
240	dma_sync_single_for_device(dev, dma_handle + offset, size, direction);
241}
242EXPORT_SYMBOL(dma_sync_single_range_for_device);
243
244/*
245 * dma_alloc_noncoherent() returns non-cacheable memory, so there's no
246 * need to do any flushing here.
247 */
248void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
249		    enum dma_data_direction direction)
250{
251}
252EXPORT_SYMBOL(dma_cache_sync);