Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
   7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   8 * Copyright (C) 2007  Maciej W. Rozycki
   9 */
  10#ifndef _ASM_UACCESS_H
  11#define _ASM_UACCESS_H
  12
  13#include <linux/kernel.h>
  14#include <linux/errno.h>
  15#include <linux/thread_info.h>
  16
  17/*
  18 * The fs value determines whether argument validity checking should be
  19 * performed or not.  If get_fs() == USER_DS, checking is performed, with
  20 * get_fs() == KERNEL_DS, checking is bypassed.
  21 *
  22 * For historical reasons, these macros are grossly misnamed.
  23 */
  24#ifdef CONFIG_32BIT
  25
  26#define __UA_LIMIT	0x80000000UL
  27
  28#define __UA_ADDR	".word"
  29#define __UA_LA		"la"
  30#define __UA_ADDU	"addu"
  31#define __UA_t0		"$8"
  32#define __UA_t1		"$9"
  33
  34#endif /* CONFIG_32BIT */
  35
  36#ifdef CONFIG_64BIT
  37
  38extern u64 __ua_limit;
  39
  40#define __UA_LIMIT	__ua_limit
  41
  42#define __UA_ADDR	".dword"
  43#define __UA_LA		"dla"
  44#define __UA_ADDU	"daddu"
  45#define __UA_t0		"$12"
  46#define __UA_t1		"$13"
  47
  48#endif /* CONFIG_64BIT */
  49
  50/*
  51 * USER_DS is a bitmask that has the bits set that may not be set in a valid
  52 * userspace address.  Note that we limit 32-bit userspace to 0x7fff8000 but
  53 * the arithmetic we're doing only works if the limit is a power of two, so
  54 * we use 0x80000000 here on 32-bit kernels.  If a process passes an invalid
  55 * address in this range it's the process's problem, not ours :-)
  56 */
  57
  58#define KERNEL_DS	((mm_segment_t) { 0UL })
  59#define USER_DS		((mm_segment_t) { __UA_LIMIT })
  60
  61#define VERIFY_READ    0
  62#define VERIFY_WRITE   1
  63
  64#define get_ds()	(KERNEL_DS)
  65#define get_fs()	(current_thread_info()->addr_limit)
  66#define set_fs(x)	(current_thread_info()->addr_limit = (x))
  67
  68#define segment_eq(a, b)	((a).seg == (b).seg)
  69
  70
  71/*
  72 * Is a address valid? This does a straighforward calculation rather
  73 * than tests.
  74 *
  75 * Address valid if:
  76 *  - "addr" doesn't have any high-bits set
  77 *  - AND "size" doesn't have any high-bits set
  78 *  - AND "addr+size" doesn't have any high-bits set
  79 *  - OR we are in kernel mode.
  80 *
  81 * __ua_size() is a trick to avoid runtime checking of positive constant
  82 * sizes; for those we already know at compile time that the size is ok.
  83 */
  84#define __ua_size(size)							\
  85	((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
  86
  87/*
  88 * access_ok: - Checks if a user space pointer is valid
  89 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE.  Note that
  90 *        %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
  91 *        to write to a block, it is always safe to read from it.
  92 * @addr: User space pointer to start of block to check
  93 * @size: Size of block to check
  94 *
  95 * Context: User context only.  This function may sleep.
  96 *
  97 * Checks if a pointer to a block of memory in user space is valid.
  98 *
  99 * Returns true (nonzero) if the memory block may be valid, false (zero)
 100 * if it is definitely invalid.
 101 *
 102 * Note that, depending on architecture, this function probably just
 103 * checks that the pointer is in the user space range - after calling
 104 * this function, memory access functions may still return -EFAULT.
 105 */
 106
 107#define __access_mask get_fs().seg
 108
 109#define __access_ok(addr, size, mask)					\
 110({									\
 111	unsigned long __addr = (unsigned long) (addr);			\
 112	unsigned long __size = size;					\
 113	unsigned long __mask = mask;					\
 114	unsigned long __ok;						\
 115									\
 116	__chk_user_ptr(addr);						\
 117	__ok = (signed long)(__mask & (__addr | (__addr + __size) |	\
 118		__ua_size(__size)));					\
 119	__ok == 0;							\
 120})
 121
 122#define access_ok(type, addr, size)					\
 123	likely(__access_ok((addr), (size), __access_mask))
 124
 125/*
 126 * put_user: - Write a simple value into user space.
 127 * @x:   Value to copy to user space.
 128 * @ptr: Destination address, in user space.
 129 *
 130 * Context: User context only.  This function may sleep.
 131 *
 132 * This macro copies a single simple value from kernel space to user
 133 * space.  It supports simple types like char and int, but not larger
 134 * data types like structures or arrays.
 135 *
 136 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 137 * to the result of dereferencing @ptr.
 138 *
 139 * Returns zero on success, or -EFAULT on error.
 140 */
 141#define put_user(x,ptr)	\
 142	__put_user_check((x), (ptr), sizeof(*(ptr)))
 143
 144/*
 145 * get_user: - Get a simple variable from user space.
 146 * @x:   Variable to store result.
 147 * @ptr: Source address, in user space.
 148 *
 149 * Context: User context only.  This function may sleep.
 150 *
 151 * This macro copies a single simple variable from user space to kernel
 152 * space.  It supports simple types like char and int, but not larger
 153 * data types like structures or arrays.
 154 *
 155 * @ptr must have pointer-to-simple-variable type, and the result of
 156 * dereferencing @ptr must be assignable to @x without a cast.
 157 *
 158 * Returns zero on success, or -EFAULT on error.
 159 * On error, the variable @x is set to zero.
 160 */
 161#define get_user(x,ptr) \
 162	__get_user_check((x), (ptr), sizeof(*(ptr)))
 163
 164/*
 165 * __put_user: - Write a simple value into user space, with less checking.
 166 * @x:   Value to copy to user space.
 167 * @ptr: Destination address, in user space.
 168 *
 169 * Context: User context only.  This function may sleep.
 170 *
 171 * This macro copies a single simple value from kernel space to user
 172 * space.  It supports simple types like char and int, but not larger
 173 * data types like structures or arrays.
 174 *
 175 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 176 * to the result of dereferencing @ptr.
 177 *
 178 * Caller must check the pointer with access_ok() before calling this
 179 * function.
 180 *
 181 * Returns zero on success, or -EFAULT on error.
 182 */
 183#define __put_user(x,ptr) \
 184	__put_user_nocheck((x), (ptr), sizeof(*(ptr)))
 185
 186/*
 187 * __get_user: - Get a simple variable from user space, with less checking.
 188 * @x:   Variable to store result.
 189 * @ptr: Source address, in user space.
 190 *
 191 * Context: User context only.  This function may sleep.
 192 *
 193 * This macro copies a single simple variable from user space to kernel
 194 * space.  It supports simple types like char and int, but not larger
 195 * data types like structures or arrays.
 196 *
 197 * @ptr must have pointer-to-simple-variable type, and the result of
 198 * dereferencing @ptr must be assignable to @x without a cast.
 199 *
 200 * Caller must check the pointer with access_ok() before calling this
 201 * function.
 202 *
 203 * Returns zero on success, or -EFAULT on error.
 204 * On error, the variable @x is set to zero.
 205 */
 206#define __get_user(x,ptr) \
 207	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
 208
 209struct __large_struct { unsigned long buf[100]; };
 210#define __m(x) (*(struct __large_struct __user *)(x))
 211
 212/*
 213 * Yuck.  We need two variants, one for 64bit operation and one
 214 * for 32 bit mode and old iron.
 215 */
 216#ifdef CONFIG_32BIT
 217#define __GET_USER_DW(val, ptr) __get_user_asm_ll32(val, ptr)
 218#endif
 219#ifdef CONFIG_64BIT
 220#define __GET_USER_DW(val, ptr) __get_user_asm(val, "ld", ptr)
 221#endif
 222
 223extern void __get_user_unknown(void);
 224
 225#define __get_user_common(val, size, ptr)				\
 226do {									\
 227	switch (size) {							\
 228	case 1: __get_user_asm(val, "lb", ptr); break;			\
 229	case 2: __get_user_asm(val, "lh", ptr); break;			\
 230	case 4: __get_user_asm(val, "lw", ptr); break;			\
 231	case 8: __GET_USER_DW(val, ptr); break;				\
 232	default: __get_user_unknown(); break;				\
 233	}								\
 234} while (0)
 235
 236#define __get_user_nocheck(x, ptr, size)				\
 237({									\
 238	int __gu_err;							\
 239									\
 240	__chk_user_ptr(ptr);						\
 241	__get_user_common((x), size, ptr);				\
 242	__gu_err;							\
 243})
 244
 245#define __get_user_check(x, ptr, size)					\
 246({									\
 247	int __gu_err = -EFAULT;						\
 248	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 249									\
 250	might_fault();							\
 251	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size)))		\
 252		__get_user_common((x), size, __gu_ptr);			\
 253									\
 254	__gu_err;							\
 255})
 256
 257#define __get_user_asm(val, insn, addr)					\
 258{									\
 259	long __gu_tmp;							\
 260									\
 261	__asm__ __volatile__(						\
 262	"1:	" insn "	%1, %3				\n"	\
 263	"2:							\n"	\
 264	"	.section .fixup,\"ax\"				\n"	\
 265	"3:	li	%0, %4					\n"	\
 266	"	j	2b					\n"	\
 267	"	.previous					\n"	\
 268	"	.section __ex_table,\"a\"			\n"	\
 269	"	"__UA_ADDR "\t1b, 3b				\n"	\
 270	"	.previous					\n"	\
 271	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 272	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 273									\
 274	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 275}
 276
 277/*
 278 * Get a long long 64 using 32 bit registers.
 279 */
 280#define __get_user_asm_ll32(val, addr)					\
 281{									\
 282	union {								\
 283		unsigned long long	l;				\
 284		__typeof__(*(addr))	t;				\
 285	} __gu_tmp;							\
 286									\
 287	__asm__ __volatile__(						\
 288	"1:	lw	%1, (%3)				\n"	\
 289	"2:	lw	%D1, 4(%3)				\n"	\
 290	"3:	.section	.fixup,\"ax\"			\n"	\
 291	"4:	li	%0, %4					\n"	\
 292	"	move	%1, $0					\n"	\
 293	"	move	%D1, $0					\n"	\
 294	"	j	3b					\n"	\
 295	"	.previous					\n"	\
 296	"	.section	__ex_table,\"a\"		\n"	\
 297	"	" __UA_ADDR "	1b, 4b				\n"	\
 298	"	" __UA_ADDR "	2b, 4b				\n"	\
 299	"	.previous					\n"	\
 300	: "=r" (__gu_err), "=&r" (__gu_tmp.l)				\
 301	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 302									\
 303	(val) = __gu_tmp.t;						\
 304}
 305
 306/*
 307 * Yuck.  We need two variants, one for 64bit operation and one
 308 * for 32 bit mode and old iron.
 309 */
 310#ifdef CONFIG_32BIT
 311#define __PUT_USER_DW(ptr) __put_user_asm_ll32(ptr)
 312#endif
 313#ifdef CONFIG_64BIT
 314#define __PUT_USER_DW(ptr) __put_user_asm("sd", ptr)
 315#endif
 316
 317#define __put_user_nocheck(x, ptr, size)				\
 318({									\
 319	__typeof__(*(ptr)) __pu_val;					\
 320	int __pu_err = 0;						\
 321									\
 322	__chk_user_ptr(ptr);						\
 323	__pu_val = (x);							\
 324	switch (size) {							\
 325	case 1: __put_user_asm("sb", ptr); break;			\
 326	case 2: __put_user_asm("sh", ptr); break;			\
 327	case 4: __put_user_asm("sw", ptr); break;			\
 328	case 8: __PUT_USER_DW(ptr); break;				\
 329	default: __put_user_unknown(); break;				\
 330	}								\
 331	__pu_err;							\
 332})
 333
 334#define __put_user_check(x, ptr, size)					\
 335({									\
 336	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 337	__typeof__(*(ptr)) __pu_val = (x);				\
 338	int __pu_err = -EFAULT;						\
 339									\
 340	might_fault();							\
 341	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size))) {	\
 342		switch (size) {						\
 343		case 1: __put_user_asm("sb", __pu_addr); break;		\
 344		case 2: __put_user_asm("sh", __pu_addr); break;		\
 345		case 4: __put_user_asm("sw", __pu_addr); break;		\
 346		case 8: __PUT_USER_DW(__pu_addr); break;		\
 347		default: __put_user_unknown(); break;			\
 348		}							\
 349	}								\
 350	__pu_err;							\
 351})
 352
 353#define __put_user_asm(insn, ptr)					\
 354{									\
 355	__asm__ __volatile__(						\
 356	"1:	" insn "	%z2, %3		# __put_user_asm\n"	\
 357	"2:							\n"	\
 358	"	.section	.fixup,\"ax\"			\n"	\
 359	"3:	li	%0, %4					\n"	\
 360	"	j	2b					\n"	\
 361	"	.previous					\n"	\
 362	"	.section	__ex_table,\"a\"		\n"	\
 363	"	" __UA_ADDR "	1b, 3b				\n"	\
 364	"	.previous					\n"	\
 365	: "=r" (__pu_err)						\
 366	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 367	  "i" (-EFAULT));						\
 368}
 369
 370#define __put_user_asm_ll32(ptr)					\
 371{									\
 372	__asm__ __volatile__(						\
 373	"1:	sw	%2, (%3)	# __put_user_asm_ll32	\n"	\
 374	"2:	sw	%D2, 4(%3)				\n"	\
 375	"3:							\n"	\
 376	"	.section	.fixup,\"ax\"			\n"	\
 377	"4:	li	%0, %4					\n"	\
 378	"	j	3b					\n"	\
 379	"	.previous					\n"	\
 380	"	.section	__ex_table,\"a\"		\n"	\
 381	"	" __UA_ADDR "	1b, 4b				\n"	\
 382	"	" __UA_ADDR "	2b, 4b				\n"	\
 383	"	.previous"						\
 384	: "=r" (__pu_err)						\
 385	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 386	  "i" (-EFAULT));						\
 387}
 388
 389extern void __put_user_unknown(void);
 390
 391/*
 392 * put_user_unaligned: - Write a simple value into user space.
 393 * @x:   Value to copy to user space.
 394 * @ptr: Destination address, in user space.
 395 *
 396 * Context: User context only.  This function may sleep.
 397 *
 398 * This macro copies a single simple value from kernel space to user
 399 * space.  It supports simple types like char and int, but not larger
 400 * data types like structures or arrays.
 401 *
 402 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 403 * to the result of dereferencing @ptr.
 404 *
 405 * Returns zero on success, or -EFAULT on error.
 406 */
 407#define put_user_unaligned(x,ptr)	\
 408	__put_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 409
 410/*
 411 * get_user_unaligned: - Get a simple variable from user space.
 412 * @x:   Variable to store result.
 413 * @ptr: Source address, in user space.
 414 *
 415 * Context: User context only.  This function may sleep.
 416 *
 417 * This macro copies a single simple variable from user space to kernel
 418 * space.  It supports simple types like char and int, but not larger
 419 * data types like structures or arrays.
 420 *
 421 * @ptr must have pointer-to-simple-variable type, and the result of
 422 * dereferencing @ptr must be assignable to @x without a cast.
 423 *
 424 * Returns zero on success, or -EFAULT on error.
 425 * On error, the variable @x is set to zero.
 426 */
 427#define get_user_unaligned(x,ptr) \
 428	__get_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 429
 430/*
 431 * __put_user_unaligned: - Write a simple value into user space, with less checking.
 432 * @x:   Value to copy to user space.
 433 * @ptr: Destination address, in user space.
 434 *
 435 * Context: User context only.  This function may sleep.
 436 *
 437 * This macro copies a single simple value from kernel space to user
 438 * space.  It supports simple types like char and int, but not larger
 439 * data types like structures or arrays.
 440 *
 441 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 442 * to the result of dereferencing @ptr.
 443 *
 444 * Caller must check the pointer with access_ok() before calling this
 445 * function.
 446 *
 447 * Returns zero on success, or -EFAULT on error.
 448 */
 449#define __put_user_unaligned(x,ptr) \
 450	__put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
 451
 452/*
 453 * __get_user_unaligned: - Get a simple variable from user space, with less checking.
 454 * @x:   Variable to store result.
 455 * @ptr: Source address, in user space.
 456 *
 457 * Context: User context only.  This function may sleep.
 458 *
 459 * This macro copies a single simple variable from user space to kernel
 460 * space.  It supports simple types like char and int, but not larger
 461 * data types like structures or arrays.
 462 *
 463 * @ptr must have pointer-to-simple-variable type, and the result of
 464 * dereferencing @ptr must be assignable to @x without a cast.
 465 *
 466 * Caller must check the pointer with access_ok() before calling this
 467 * function.
 468 *
 469 * Returns zero on success, or -EFAULT on error.
 470 * On error, the variable @x is set to zero.
 471 */
 472#define __get_user_unaligned(x,ptr) \
 473	__get_user__unalignednocheck((x),(ptr),sizeof(*(ptr)))
 474
 475/*
 476 * Yuck.  We need two variants, one for 64bit operation and one
 477 * for 32 bit mode and old iron.
 478 */
 479#ifdef CONFIG_32BIT
 480#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 481	__get_user_unaligned_asm_ll32(val, ptr)
 482#endif
 483#ifdef CONFIG_64BIT
 484#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 485	__get_user_unaligned_asm(val, "uld", ptr)
 486#endif
 487
 488extern void __get_user_unaligned_unknown(void);
 489
 490#define __get_user_unaligned_common(val, size, ptr)			\
 491do {									\
 492	switch (size) {							\
 493	case 1: __get_user_asm(val, "lb", ptr); break;			\
 494	case 2: __get_user_unaligned_asm(val, "ulh", ptr); break;	\
 495	case 4: __get_user_unaligned_asm(val, "ulw", ptr); break;	\
 496	case 8: __GET_USER_UNALIGNED_DW(val, ptr); break;		\
 497	default: __get_user_unaligned_unknown(); break;			\
 498	}								\
 499} while (0)
 500
 501#define __get_user_unaligned_nocheck(x,ptr,size)			\
 502({									\
 503	int __gu_err;							\
 504									\
 505	__get_user_unaligned_common((x), size, ptr);			\
 506	__gu_err;							\
 507})
 508
 509#define __get_user_unaligned_check(x,ptr,size)				\
 510({									\
 511	int __gu_err = -EFAULT;						\
 512	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 513									\
 514	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size)))		\
 515		__get_user_unaligned_common((x), size, __gu_ptr);	\
 516									\
 517	__gu_err;							\
 518})
 519
 520#define __get_user_unaligned_asm(val, insn, addr)			\
 521{									\
 522	long __gu_tmp;							\
 523									\
 524	__asm__ __volatile__(						\
 525	"1:	" insn "	%1, %3				\n"	\
 526	"2:							\n"	\
 527	"	.section .fixup,\"ax\"				\n"	\
 528	"3:	li	%0, %4					\n"	\
 529	"	j	2b					\n"	\
 530	"	.previous					\n"	\
 531	"	.section __ex_table,\"a\"			\n"	\
 532	"	"__UA_ADDR "\t1b, 3b				\n"	\
 533	"	"__UA_ADDR "\t1b + 4, 3b			\n"	\
 534	"	.previous					\n"	\
 535	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 536	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 537									\
 538	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 539}
 540
 541/*
 542 * Get a long long 64 using 32 bit registers.
 543 */
 544#define __get_user_unaligned_asm_ll32(val, addr)			\
 545{									\
 546        unsigned long long __gu_tmp;					\
 547									\
 548	__asm__ __volatile__(						\
 549	"1:	ulw	%1, (%3)				\n"	\
 550	"2:	ulw	%D1, 4(%3)				\n"	\
 551	"	move	%0, $0					\n"	\
 552	"3:	.section	.fixup,\"ax\"			\n"	\
 553	"4:	li	%0, %4					\n"	\
 554	"	move	%1, $0					\n"	\
 555	"	move	%D1, $0					\n"	\
 556	"	j	3b					\n"	\
 557	"	.previous					\n"	\
 558	"	.section	__ex_table,\"a\"		\n"	\
 559	"	" __UA_ADDR "	1b, 4b				\n"	\
 560	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 561	"	" __UA_ADDR "	2b, 4b				\n"	\
 562	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 563	"	.previous					\n"	\
 564	: "=r" (__gu_err), "=&r" (__gu_tmp)				\
 565	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 566	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 567}
 568
 569/*
 570 * Yuck.  We need two variants, one for 64bit operation and one
 571 * for 32 bit mode and old iron.
 572 */
 573#ifdef CONFIG_32BIT
 574#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr)
 575#endif
 576#ifdef CONFIG_64BIT
 577#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr)
 578#endif
 579
 580#define __put_user_unaligned_nocheck(x,ptr,size)			\
 581({									\
 582	__typeof__(*(ptr)) __pu_val;					\
 583	int __pu_err = 0;						\
 584									\
 585	__pu_val = (x);							\
 586	switch (size) {							\
 587	case 1: __put_user_asm("sb", ptr); break;			\
 588	case 2: __put_user_unaligned_asm("ush", ptr); break;		\
 589	case 4: __put_user_unaligned_asm("usw", ptr); break;		\
 590	case 8: __PUT_USER_UNALIGNED_DW(ptr); break;			\
 591	default: __put_user_unaligned_unknown(); break;			\
 592	}								\
 593	__pu_err;							\
 594})
 595
 596#define __put_user_unaligned_check(x,ptr,size)				\
 597({									\
 598	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 599	__typeof__(*(ptr)) __pu_val = (x);				\
 600	int __pu_err = -EFAULT;						\
 601									\
 602	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size))) {	\
 603		switch (size) {						\
 604		case 1: __put_user_asm("sb", __pu_addr); break;		\
 605		case 2: __put_user_unaligned_asm("ush", __pu_addr); break; \
 606		case 4: __put_user_unaligned_asm("usw", __pu_addr); break; \
 607		case 8: __PUT_USER_UNALGINED_DW(__pu_addr); break;	\
 608		default: __put_user_unaligned_unknown(); break;		\
 609		}							\
 610	}								\
 611	__pu_err;							\
 612})
 613
 614#define __put_user_unaligned_asm(insn, ptr)				\
 615{									\
 616	__asm__ __volatile__(						\
 617	"1:	" insn "	%z2, %3		# __put_user_unaligned_asm\n" \
 618	"2:							\n"	\
 619	"	.section	.fixup,\"ax\"			\n"	\
 620	"3:	li	%0, %4					\n"	\
 621	"	j	2b					\n"	\
 622	"	.previous					\n"	\
 623	"	.section	__ex_table,\"a\"		\n"	\
 624	"	" __UA_ADDR "	1b, 3b				\n"	\
 625	"	.previous					\n"	\
 626	: "=r" (__pu_err)						\
 627	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 628	  "i" (-EFAULT));						\
 629}
 630
 631#define __put_user_unaligned_asm_ll32(ptr)				\
 632{									\
 633	__asm__ __volatile__(						\
 634	"1:	sw	%2, (%3)	# __put_user_unaligned_asm_ll32	\n" \
 635	"2:	sw	%D2, 4(%3)				\n"	\
 636	"3:							\n"	\
 637	"	.section	.fixup,\"ax\"			\n"	\
 638	"4:	li	%0, %4					\n"	\
 639	"	j	3b					\n"	\
 640	"	.previous					\n"	\
 641	"	.section	__ex_table,\"a\"		\n"	\
 642	"	" __UA_ADDR "	1b, 4b				\n"	\
 643	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 644	"	" __UA_ADDR "	2b, 4b				\n"	\
 645	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 646	"	.previous"						\
 647	: "=r" (__pu_err)						\
 648	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 649	  "i" (-EFAULT));						\
 650}
 651
 652extern void __put_user_unaligned_unknown(void);
 653
 654/*
 655 * We're generating jump to subroutines which will be outside the range of
 656 * jump instructions
 657 */
 658#ifdef MODULE
 659#define __MODULE_JAL(destination)					\
 660	".set\tnoat\n\t"						\
 661	__UA_LA "\t$1, " #destination "\n\t" 				\
 662	"jalr\t$1\n\t"							\
 663	".set\tat\n\t"
 664#else
 665#define __MODULE_JAL(destination)					\
 666	"jal\t" #destination "\n\t"
 667#endif
 668
 669#ifndef CONFIG_CPU_DADDI_WORKAROUNDS
 670#define DADDI_SCRATCH "$0"
 671#else
 672#define DADDI_SCRATCH "$3"
 673#endif
 674
 675extern size_t __copy_user(void *__to, const void *__from, size_t __n);
 676
 677#define __invoke_copy_to_user(to, from, n)				\
 678({									\
 679	register void __user *__cu_to_r __asm__("$4");			\
 680	register const void *__cu_from_r __asm__("$5");			\
 681	register long __cu_len_r __asm__("$6");				\
 682									\
 683	__cu_to_r = (to);						\
 684	__cu_from_r = (from);						\
 685	__cu_len_r = (n);						\
 686	__asm__ __volatile__(						\
 687	__MODULE_JAL(__copy_user)					\
 688	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 689	:								\
 690	: "$8", "$9", "$10", "$11", "$12", "$15", "$24", "$31",		\
 691	  DADDI_SCRATCH, "memory");					\
 692	__cu_len_r;							\
 693})
 694
 695/*
 696 * __copy_to_user: - Copy a block of data into user space, with less checking.
 697 * @to:   Destination address, in user space.
 698 * @from: Source address, in kernel space.
 699 * @n:    Number of bytes to copy.
 700 *
 701 * Context: User context only.  This function may sleep.
 702 *
 703 * Copy data from kernel space to user space.  Caller must check
 704 * the specified block with access_ok() before calling this function.
 705 *
 706 * Returns number of bytes that could not be copied.
 707 * On success, this will be zero.
 708 */
 709#define __copy_to_user(to, from, n)					\
 710({									\
 711	void __user *__cu_to;						\
 712	const void *__cu_from;						\
 713	long __cu_len;							\
 714									\
 715	__cu_to = (to);							\
 716	__cu_from = (from);						\
 717	__cu_len = (n);							\
 718	might_fault();							\
 719	__cu_len = __invoke_copy_to_user(__cu_to, __cu_from, __cu_len);	\
 720	__cu_len;							\
 721})
 722
 723extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n);
 724
 725#define __copy_to_user_inatomic(to, from, n)				\
 726({									\
 727	void __user *__cu_to;						\
 728	const void *__cu_from;						\
 729	long __cu_len;							\
 730									\
 731	__cu_to = (to);							\
 732	__cu_from = (from);						\
 733	__cu_len = (n);							\
 734	__cu_len = __invoke_copy_to_user(__cu_to, __cu_from, __cu_len);	\
 735	__cu_len;							\
 736})
 737
 738#define __copy_from_user_inatomic(to, from, n)				\
 739({									\
 740	void *__cu_to;							\
 741	const void __user *__cu_from;					\
 742	long __cu_len;							\
 743									\
 744	__cu_to = (to);							\
 745	__cu_from = (from);						\
 746	__cu_len = (n);							\
 747	__cu_len = __invoke_copy_from_user_inatomic(__cu_to, __cu_from,	\
 748	                                            __cu_len);		\
 749	__cu_len;							\
 750})
 751
 752/*
 753 * copy_to_user: - Copy a block of data into user space.
 754 * @to:   Destination address, in user space.
 755 * @from: Source address, in kernel space.
 756 * @n:    Number of bytes to copy.
 757 *
 758 * Context: User context only.  This function may sleep.
 759 *
 760 * Copy data from kernel space to user space.
 761 *
 762 * Returns number of bytes that could not be copied.
 763 * On success, this will be zero.
 764 */
 765#define copy_to_user(to, from, n)					\
 766({									\
 767	void __user *__cu_to;						\
 768	const void *__cu_from;						\
 769	long __cu_len;							\
 770									\
 771	__cu_to = (to);							\
 772	__cu_from = (from);						\
 773	__cu_len = (n);							\
 774	if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) {		\
 775		might_fault();						\
 776		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
 777		                                 __cu_len);		\
 778	}								\
 779	__cu_len;							\
 780})
 781
 782#define __invoke_copy_from_user(to, from, n)				\
 783({									\
 784	register void *__cu_to_r __asm__("$4");				\
 785	register const void __user *__cu_from_r __asm__("$5");		\
 786	register long __cu_len_r __asm__("$6");				\
 787									\
 788	__cu_to_r = (to);						\
 789	__cu_from_r = (from);						\
 790	__cu_len_r = (n);						\
 791	__asm__ __volatile__(						\
 792	".set\tnoreorder\n\t"						\
 793	__MODULE_JAL(__copy_user)					\
 794	".set\tnoat\n\t"						\
 795	__UA_ADDU "\t$1, %1, %2\n\t"					\
 796	".set\tat\n\t"							\
 797	".set\treorder"							\
 798	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 799	:								\
 800	: "$8", "$9", "$10", "$11", "$12", "$15", "$24", "$31",		\
 801	  DADDI_SCRATCH, "memory");					\
 802	__cu_len_r;							\
 803})
 804
 805#define __invoke_copy_from_user_inatomic(to, from, n)			\
 806({									\
 807	register void *__cu_to_r __asm__("$4");				\
 808	register const void __user *__cu_from_r __asm__("$5");		\
 809	register long __cu_len_r __asm__("$6");				\
 810									\
 811	__cu_to_r = (to);						\
 812	__cu_from_r = (from);						\
 813	__cu_len_r = (n);						\
 814	__asm__ __volatile__(						\
 815	".set\tnoreorder\n\t"						\
 816	__MODULE_JAL(__copy_user_inatomic)				\
 817	".set\tnoat\n\t"						\
 818	__UA_ADDU "\t$1, %1, %2\n\t"					\
 819	".set\tat\n\t"							\
 820	".set\treorder"							\
 821	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 822	:								\
 823	: "$8", "$9", "$10", "$11", "$12", "$15", "$24", "$31",		\
 824	  DADDI_SCRATCH, "memory");					\
 825	__cu_len_r;							\
 826})
 827
 828/*
 829 * __copy_from_user: - Copy a block of data from user space, with less checking.
 830 * @to:   Destination address, in kernel space.
 831 * @from: Source address, in user space.
 832 * @n:    Number of bytes to copy.
 833 *
 834 * Context: User context only.  This function may sleep.
 835 *
 836 * Copy data from user space to kernel space.  Caller must check
 837 * the specified block with access_ok() before calling this function.
 838 *
 839 * Returns number of bytes that could not be copied.
 840 * On success, this will be zero.
 841 *
 842 * If some data could not be copied, this function will pad the copied
 843 * data to the requested size using zero bytes.
 844 */
 845#define __copy_from_user(to, from, n)					\
 846({									\
 847	void *__cu_to;							\
 848	const void __user *__cu_from;					\
 849	long __cu_len;							\
 850									\
 851	__cu_to = (to);							\
 852	__cu_from = (from);						\
 853	__cu_len = (n);							\
 854	might_fault();							\
 855	__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,		\
 856	                                   __cu_len);			\
 857	__cu_len;							\
 858})
 859
 860/*
 861 * copy_from_user: - Copy a block of data from user space.
 862 * @to:   Destination address, in kernel space.
 863 * @from: Source address, in user space.
 864 * @n:    Number of bytes to copy.
 865 *
 866 * Context: User context only.  This function may sleep.
 867 *
 868 * Copy data from user space to kernel space.
 869 *
 870 * Returns number of bytes that could not be copied.
 871 * On success, this will be zero.
 872 *
 873 * If some data could not be copied, this function will pad the copied
 874 * data to the requested size using zero bytes.
 875 */
 876#define copy_from_user(to, from, n)					\
 877({									\
 878	void *__cu_to;							\
 879	const void __user *__cu_from;					\
 880	long __cu_len;							\
 881									\
 882	__cu_to = (to);							\
 883	__cu_from = (from);						\
 884	__cu_len = (n);							\
 885	if (access_ok(VERIFY_READ, __cu_from, __cu_len)) {		\
 886		might_fault();						\
 887		__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,	\
 888		                                   __cu_len);		\
 889	}								\
 890	__cu_len;							\
 891})
 892
 893#define __copy_in_user(to, from, n)					\
 894({									\
 895	void __user *__cu_to;						\
 896	const void __user *__cu_from;					\
 897	long __cu_len;							\
 898									\
 899	__cu_to = (to);							\
 900	__cu_from = (from);						\
 901	__cu_len = (n);							\
 902	might_fault();							\
 903	__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,		\
 904	                                   __cu_len);			\
 905	__cu_len;							\
 906})
 907
 908#define copy_in_user(to, from, n)					\
 909({									\
 910	void __user *__cu_to;						\
 911	const void __user *__cu_from;					\
 912	long __cu_len;							\
 913									\
 914	__cu_to = (to);							\
 915	__cu_from = (from);						\
 916	__cu_len = (n);							\
 917	if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) &&	\
 918	           access_ok(VERIFY_WRITE, __cu_to, __cu_len))) {	\
 919		might_fault();						\
 920		__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,	\
 921		                                   __cu_len);		\
 922	}								\
 923	__cu_len;							\
 924})
 925
 926/*
 927 * __clear_user: - Zero a block of memory in user space, with less checking.
 928 * @to:   Destination address, in user space.
 929 * @n:    Number of bytes to zero.
 930 *
 931 * Zero a block of memory in user space.  Caller must check
 932 * the specified block with access_ok() before calling this function.
 933 *
 934 * Returns number of bytes that could not be cleared.
 935 * On success, this will be zero.
 936 */
 937static inline __kernel_size_t
 938__clear_user(void __user *addr, __kernel_size_t size)
 939{
 940	__kernel_size_t res;
 941
 942	might_fault();
 943	__asm__ __volatile__(
 944		"move\t$4, %1\n\t"
 945		"move\t$5, $0\n\t"
 946		"move\t$6, %2\n\t"
 947		__MODULE_JAL(__bzero)
 948		"move\t%0, $6"
 949		: "=r" (res)
 950		: "r" (addr), "r" (size)
 951		: "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
 952
 953	return res;
 954}
 955
 956#define clear_user(addr,n)						\
 957({									\
 958	void __user * __cl_addr = (addr);				\
 959	unsigned long __cl_size = (n);					\
 960	if (__cl_size && access_ok(VERIFY_WRITE,			\
 961					__cl_addr, __cl_size))		\
 962		__cl_size = __clear_user(__cl_addr, __cl_size);		\
 963	__cl_size;							\
 964})
 965
 966/*
 967 * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking.
 968 * @dst:   Destination address, in kernel space.  This buffer must be at
 969 *         least @count bytes long.
 970 * @src:   Source address, in user space.
 971 * @count: Maximum number of bytes to copy, including the trailing NUL.
 972 *
 973 * Copies a NUL-terminated string from userspace to kernel space.
 974 * Caller must check the specified block with access_ok() before calling
 975 * this function.
 976 *
 977 * On success, returns the length of the string (not including the trailing
 978 * NUL).
 979 *
 980 * If access to userspace fails, returns -EFAULT (some data may have been
 981 * copied).
 982 *
 983 * If @count is smaller than the length of the string, copies @count bytes
 984 * and returns @count.
 985 */
 986static inline long
 987__strncpy_from_user(char *__to, const char __user *__from, long __len)
 988{
 989	long res;
 990
 991	might_fault();
 992	__asm__ __volatile__(
 993		"move\t$4, %1\n\t"
 994		"move\t$5, %2\n\t"
 995		"move\t$6, %3\n\t"
 996		__MODULE_JAL(__strncpy_from_user_nocheck_asm)
 997		"move\t%0, $2"
 998		: "=r" (res)
 999		: "r" (__to), "r" (__from), "r" (__len)
1000		: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1001
1002	return res;
1003}
1004
1005/*
1006 * strncpy_from_user: - Copy a NUL terminated string from userspace.
1007 * @dst:   Destination address, in kernel space.  This buffer must be at
1008 *         least @count bytes long.
1009 * @src:   Source address, in user space.
1010 * @count: Maximum number of bytes to copy, including the trailing NUL.
1011 *
1012 * Copies a NUL-terminated string from userspace to kernel space.
1013 *
1014 * On success, returns the length of the string (not including the trailing
1015 * NUL).
1016 *
1017 * If access to userspace fails, returns -EFAULT (some data may have been
1018 * copied).
1019 *
1020 * If @count is smaller than the length of the string, copies @count bytes
1021 * and returns @count.
1022 */
1023static inline long
1024strncpy_from_user(char *__to, const char __user *__from, long __len)
1025{
1026	long res;
1027
1028	might_fault();
1029	__asm__ __volatile__(
1030		"move\t$4, %1\n\t"
1031		"move\t$5, %2\n\t"
1032		"move\t$6, %3\n\t"
1033		__MODULE_JAL(__strncpy_from_user_asm)
1034		"move\t%0, $2"
1035		: "=r" (res)
1036		: "r" (__to), "r" (__from), "r" (__len)
1037		: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1038
1039	return res;
1040}
1041
1042/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1043static inline long __strlen_user(const char __user *s)
1044{
1045	long res;
1046
1047	might_fault();
1048	__asm__ __volatile__(
1049		"move\t$4, %1\n\t"
1050		__MODULE_JAL(__strlen_user_nocheck_asm)
1051		"move\t%0, $2"
1052		: "=r" (res)
1053		: "r" (s)
1054		: "$2", "$4", __UA_t0, "$31");
1055
1056	return res;
1057}
1058
1059/*
1060 * strlen_user: - Get the size of a string in user space.
1061 * @str: The string to measure.
1062 *
1063 * Context: User context only.  This function may sleep.
1064 *
1065 * Get the size of a NUL-terminated string in user space.
1066 *
1067 * Returns the size of the string INCLUDING the terminating NUL.
1068 * On exception, returns 0.
1069 *
1070 * If there is a limit on the length of a valid string, you may wish to
1071 * consider using strnlen_user() instead.
1072 */
1073static inline long strlen_user(const char __user *s)
1074{
1075	long res;
1076
1077	might_fault();
1078	__asm__ __volatile__(
1079		"move\t$4, %1\n\t"
1080		__MODULE_JAL(__strlen_user_asm)
1081		"move\t%0, $2"
1082		: "=r" (res)
1083		: "r" (s)
1084		: "$2", "$4", __UA_t0, "$31");
1085
1086	return res;
1087}
1088
1089/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1090static inline long __strnlen_user(const char __user *s, long n)
1091{
1092	long res;
1093
1094	might_fault();
1095	__asm__ __volatile__(
1096		"move\t$4, %1\n\t"
1097		"move\t$5, %2\n\t"
1098		__MODULE_JAL(__strnlen_user_nocheck_asm)
1099		"move\t%0, $2"
1100		: "=r" (res)
1101		: "r" (s), "r" (n)
1102		: "$2", "$4", "$5", __UA_t0, "$31");
1103
1104	return res;
1105}
1106
1107/*
1108 * strlen_user: - Get the size of a string in user space.
1109 * @str: The string to measure.
1110 *
1111 * Context: User context only.  This function may sleep.
1112 *
1113 * Get the size of a NUL-terminated string in user space.
1114 *
1115 * Returns the size of the string INCLUDING the terminating NUL.
1116 * On exception, returns 0.
1117 *
1118 * If there is a limit on the length of a valid string, you may wish to
1119 * consider using strnlen_user() instead.
1120 */
1121static inline long strnlen_user(const char __user *s, long n)
1122{
1123	long res;
1124
1125	might_fault();
1126	__asm__ __volatile__(
1127		"move\t$4, %1\n\t"
1128		"move\t$5, %2\n\t"
1129		__MODULE_JAL(__strnlen_user_asm)
1130		"move\t%0, $2"
1131		: "=r" (res)
1132		: "r" (s), "r" (n)
1133		: "$2", "$4", "$5", __UA_t0, "$31");
1134
1135	return res;
1136}
1137
1138struct exception_table_entry
1139{
1140	unsigned long insn;
1141	unsigned long nextinsn;
1142};
1143
1144extern int fixup_exception(struct pt_regs *regs);
1145
1146#endif /* _ASM_UACCESS_H */
v3.5.6
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
   7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   8 * Copyright (C) 2007  Maciej W. Rozycki
   9 */
  10#ifndef _ASM_UACCESS_H
  11#define _ASM_UACCESS_H
  12
  13#include <linux/kernel.h>
  14#include <linux/errno.h>
  15#include <linux/thread_info.h>
  16
  17/*
  18 * The fs value determines whether argument validity checking should be
  19 * performed or not.  If get_fs() == USER_DS, checking is performed, with
  20 * get_fs() == KERNEL_DS, checking is bypassed.
  21 *
  22 * For historical reasons, these macros are grossly misnamed.
  23 */
  24#ifdef CONFIG_32BIT
  25
  26#define __UA_LIMIT	0x80000000UL
  27
  28#define __UA_ADDR	".word"
  29#define __UA_LA		"la"
  30#define __UA_ADDU	"addu"
  31#define __UA_t0		"$8"
  32#define __UA_t1		"$9"
  33
  34#endif /* CONFIG_32BIT */
  35
  36#ifdef CONFIG_64BIT
  37
  38extern u64 __ua_limit;
  39
  40#define __UA_LIMIT	__ua_limit
  41
  42#define __UA_ADDR	".dword"
  43#define __UA_LA		"dla"
  44#define __UA_ADDU	"daddu"
  45#define __UA_t0		"$12"
  46#define __UA_t1		"$13"
  47
  48#endif /* CONFIG_64BIT */
  49
  50/*
  51 * USER_DS is a bitmask that has the bits set that may not be set in a valid
  52 * userspace address.  Note that we limit 32-bit userspace to 0x7fff8000 but
  53 * the arithmetic we're doing only works if the limit is a power of two, so
  54 * we use 0x80000000 here on 32-bit kernels.  If a process passes an invalid
  55 * address in this range it's the process's problem, not ours :-)
  56 */
  57
  58#define KERNEL_DS	((mm_segment_t) { 0UL })
  59#define USER_DS		((mm_segment_t) { __UA_LIMIT })
  60
  61#define VERIFY_READ    0
  62#define VERIFY_WRITE   1
  63
  64#define get_ds()	(KERNEL_DS)
  65#define get_fs()	(current_thread_info()->addr_limit)
  66#define set_fs(x)	(current_thread_info()->addr_limit = (x))
  67
  68#define segment_eq(a, b)	((a).seg == (b).seg)
  69
  70
  71/*
  72 * Is a address valid? This does a straighforward calculation rather
  73 * than tests.
  74 *
  75 * Address valid if:
  76 *  - "addr" doesn't have any high-bits set
  77 *  - AND "size" doesn't have any high-bits set
  78 *  - AND "addr+size" doesn't have any high-bits set
  79 *  - OR we are in kernel mode.
  80 *
  81 * __ua_size() is a trick to avoid runtime checking of positive constant
  82 * sizes; for those we already know at compile time that the size is ok.
  83 */
  84#define __ua_size(size)							\
  85	((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
  86
  87/*
  88 * access_ok: - Checks if a user space pointer is valid
  89 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE.  Note that
  90 *        %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
  91 *        to write to a block, it is always safe to read from it.
  92 * @addr: User space pointer to start of block to check
  93 * @size: Size of block to check
  94 *
  95 * Context: User context only.  This function may sleep.
  96 *
  97 * Checks if a pointer to a block of memory in user space is valid.
  98 *
  99 * Returns true (nonzero) if the memory block may be valid, false (zero)
 100 * if it is definitely invalid.
 101 *
 102 * Note that, depending on architecture, this function probably just
 103 * checks that the pointer is in the user space range - after calling
 104 * this function, memory access functions may still return -EFAULT.
 105 */
 106
 107#define __access_mask get_fs().seg
 108
 109#define __access_ok(addr, size, mask)					\
 110({									\
 111	unsigned long __addr = (unsigned long) (addr);			\
 112	unsigned long __size = size;					\
 113	unsigned long __mask = mask;					\
 114	unsigned long __ok;						\
 115									\
 116	__chk_user_ptr(addr);						\
 117	__ok = (signed long)(__mask & (__addr | (__addr + __size) |	\
 118		__ua_size(__size)));					\
 119	__ok == 0;							\
 120})
 121
 122#define access_ok(type, addr, size)					\
 123	likely(__access_ok((addr), (size), __access_mask))
 124
 125/*
 126 * put_user: - Write a simple value into user space.
 127 * @x:   Value to copy to user space.
 128 * @ptr: Destination address, in user space.
 129 *
 130 * Context: User context only.  This function may sleep.
 131 *
 132 * This macro copies a single simple value from kernel space to user
 133 * space.  It supports simple types like char and int, but not larger
 134 * data types like structures or arrays.
 135 *
 136 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 137 * to the result of dereferencing @ptr.
 138 *
 139 * Returns zero on success, or -EFAULT on error.
 140 */
 141#define put_user(x,ptr)	\
 142	__put_user_check((x), (ptr), sizeof(*(ptr)))
 143
 144/*
 145 * get_user: - Get a simple variable from user space.
 146 * @x:   Variable to store result.
 147 * @ptr: Source address, in user space.
 148 *
 149 * Context: User context only.  This function may sleep.
 150 *
 151 * This macro copies a single simple variable from user space to kernel
 152 * space.  It supports simple types like char and int, but not larger
 153 * data types like structures or arrays.
 154 *
 155 * @ptr must have pointer-to-simple-variable type, and the result of
 156 * dereferencing @ptr must be assignable to @x without a cast.
 157 *
 158 * Returns zero on success, or -EFAULT on error.
 159 * On error, the variable @x is set to zero.
 160 */
 161#define get_user(x,ptr) \
 162	__get_user_check((x), (ptr), sizeof(*(ptr)))
 163
 164/*
 165 * __put_user: - Write a simple value into user space, with less checking.
 166 * @x:   Value to copy to user space.
 167 * @ptr: Destination address, in user space.
 168 *
 169 * Context: User context only.  This function may sleep.
 170 *
 171 * This macro copies a single simple value from kernel space to user
 172 * space.  It supports simple types like char and int, but not larger
 173 * data types like structures or arrays.
 174 *
 175 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 176 * to the result of dereferencing @ptr.
 177 *
 178 * Caller must check the pointer with access_ok() before calling this
 179 * function.
 180 *
 181 * Returns zero on success, or -EFAULT on error.
 182 */
 183#define __put_user(x,ptr) \
 184	__put_user_nocheck((x), (ptr), sizeof(*(ptr)))
 185
 186/*
 187 * __get_user: - Get a simple variable from user space, with less checking.
 188 * @x:   Variable to store result.
 189 * @ptr: Source address, in user space.
 190 *
 191 * Context: User context only.  This function may sleep.
 192 *
 193 * This macro copies a single simple variable from user space to kernel
 194 * space.  It supports simple types like char and int, but not larger
 195 * data types like structures or arrays.
 196 *
 197 * @ptr must have pointer-to-simple-variable type, and the result of
 198 * dereferencing @ptr must be assignable to @x without a cast.
 199 *
 200 * Caller must check the pointer with access_ok() before calling this
 201 * function.
 202 *
 203 * Returns zero on success, or -EFAULT on error.
 204 * On error, the variable @x is set to zero.
 205 */
 206#define __get_user(x,ptr) \
 207	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
 208
 209struct __large_struct { unsigned long buf[100]; };
 210#define __m(x) (*(struct __large_struct __user *)(x))
 211
 212/*
 213 * Yuck.  We need two variants, one for 64bit operation and one
 214 * for 32 bit mode and old iron.
 215 */
 216#ifdef CONFIG_32BIT
 217#define __GET_USER_DW(val, ptr) __get_user_asm_ll32(val, ptr)
 218#endif
 219#ifdef CONFIG_64BIT
 220#define __GET_USER_DW(val, ptr) __get_user_asm(val, "ld", ptr)
 221#endif
 222
 223extern void __get_user_unknown(void);
 224
 225#define __get_user_common(val, size, ptr)				\
 226do {									\
 227	switch (size) {							\
 228	case 1: __get_user_asm(val, "lb", ptr); break;			\
 229	case 2: __get_user_asm(val, "lh", ptr); break;			\
 230	case 4: __get_user_asm(val, "lw", ptr); break;			\
 231	case 8: __GET_USER_DW(val, ptr); break;				\
 232	default: __get_user_unknown(); break;				\
 233	}								\
 234} while (0)
 235
 236#define __get_user_nocheck(x, ptr, size)				\
 237({									\
 238	int __gu_err;							\
 239									\
 240	__chk_user_ptr(ptr);						\
 241	__get_user_common((x), size, ptr);				\
 242	__gu_err;							\
 243})
 244
 245#define __get_user_check(x, ptr, size)					\
 246({									\
 247	int __gu_err = -EFAULT;						\
 248	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 249									\
 250	might_fault();							\
 251	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size)))		\
 252		__get_user_common((x), size, __gu_ptr);			\
 253									\
 254	__gu_err;							\
 255})
 256
 257#define __get_user_asm(val, insn, addr)					\
 258{									\
 259	long __gu_tmp;							\
 260									\
 261	__asm__ __volatile__(						\
 262	"1:	" insn "	%1, %3				\n"	\
 263	"2:							\n"	\
 264	"	.section .fixup,\"ax\"				\n"	\
 265	"3:	li	%0, %4					\n"	\
 266	"	j	2b					\n"	\
 267	"	.previous					\n"	\
 268	"	.section __ex_table,\"a\"			\n"	\
 269	"	"__UA_ADDR "\t1b, 3b				\n"	\
 270	"	.previous					\n"	\
 271	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 272	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 273									\
 274	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 275}
 276
 277/*
 278 * Get a long long 64 using 32 bit registers.
 279 */
 280#define __get_user_asm_ll32(val, addr)					\
 281{									\
 282	union {								\
 283		unsigned long long	l;				\
 284		__typeof__(*(addr))	t;				\
 285	} __gu_tmp;							\
 286									\
 287	__asm__ __volatile__(						\
 288	"1:	lw	%1, (%3)				\n"	\
 289	"2:	lw	%D1, 4(%3)				\n"	\
 290	"3:	.section	.fixup,\"ax\"			\n"	\
 291	"4:	li	%0, %4					\n"	\
 292	"	move	%1, $0					\n"	\
 293	"	move	%D1, $0					\n"	\
 294	"	j	3b					\n"	\
 295	"	.previous					\n"	\
 296	"	.section	__ex_table,\"a\"		\n"	\
 297	"	" __UA_ADDR "	1b, 4b				\n"	\
 298	"	" __UA_ADDR "	2b, 4b				\n"	\
 299	"	.previous					\n"	\
 300	: "=r" (__gu_err), "=&r" (__gu_tmp.l)				\
 301	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 302									\
 303	(val) = __gu_tmp.t;						\
 304}
 305
 306/*
 307 * Yuck.  We need two variants, one for 64bit operation and one
 308 * for 32 bit mode and old iron.
 309 */
 310#ifdef CONFIG_32BIT
 311#define __PUT_USER_DW(ptr) __put_user_asm_ll32(ptr)
 312#endif
 313#ifdef CONFIG_64BIT
 314#define __PUT_USER_DW(ptr) __put_user_asm("sd", ptr)
 315#endif
 316
 317#define __put_user_nocheck(x, ptr, size)				\
 318({									\
 319	__typeof__(*(ptr)) __pu_val;					\
 320	int __pu_err = 0;						\
 321									\
 322	__chk_user_ptr(ptr);						\
 323	__pu_val = (x);							\
 324	switch (size) {							\
 325	case 1: __put_user_asm("sb", ptr); break;			\
 326	case 2: __put_user_asm("sh", ptr); break;			\
 327	case 4: __put_user_asm("sw", ptr); break;			\
 328	case 8: __PUT_USER_DW(ptr); break;				\
 329	default: __put_user_unknown(); break;				\
 330	}								\
 331	__pu_err;							\
 332})
 333
 334#define __put_user_check(x, ptr, size)					\
 335({									\
 336	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 337	__typeof__(*(ptr)) __pu_val = (x);				\
 338	int __pu_err = -EFAULT;						\
 339									\
 340	might_fault();							\
 341	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size))) {	\
 342		switch (size) {						\
 343		case 1: __put_user_asm("sb", __pu_addr); break;		\
 344		case 2: __put_user_asm("sh", __pu_addr); break;		\
 345		case 4: __put_user_asm("sw", __pu_addr); break;		\
 346		case 8: __PUT_USER_DW(__pu_addr); break;		\
 347		default: __put_user_unknown(); break;			\
 348		}							\
 349	}								\
 350	__pu_err;							\
 351})
 352
 353#define __put_user_asm(insn, ptr)					\
 354{									\
 355	__asm__ __volatile__(						\
 356	"1:	" insn "	%z2, %3		# __put_user_asm\n"	\
 357	"2:							\n"	\
 358	"	.section	.fixup,\"ax\"			\n"	\
 359	"3:	li	%0, %4					\n"	\
 360	"	j	2b					\n"	\
 361	"	.previous					\n"	\
 362	"	.section	__ex_table,\"a\"		\n"	\
 363	"	" __UA_ADDR "	1b, 3b				\n"	\
 364	"	.previous					\n"	\
 365	: "=r" (__pu_err)						\
 366	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 367	  "i" (-EFAULT));						\
 368}
 369
 370#define __put_user_asm_ll32(ptr)					\
 371{									\
 372	__asm__ __volatile__(						\
 373	"1:	sw	%2, (%3)	# __put_user_asm_ll32	\n"	\
 374	"2:	sw	%D2, 4(%3)				\n"	\
 375	"3:							\n"	\
 376	"	.section	.fixup,\"ax\"			\n"	\
 377	"4:	li	%0, %4					\n"	\
 378	"	j	3b					\n"	\
 379	"	.previous					\n"	\
 380	"	.section	__ex_table,\"a\"		\n"	\
 381	"	" __UA_ADDR "	1b, 4b				\n"	\
 382	"	" __UA_ADDR "	2b, 4b				\n"	\
 383	"	.previous"						\
 384	: "=r" (__pu_err)						\
 385	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 386	  "i" (-EFAULT));						\
 387}
 388
 389extern void __put_user_unknown(void);
 390
 391/*
 392 * put_user_unaligned: - Write a simple value into user space.
 393 * @x:   Value to copy to user space.
 394 * @ptr: Destination address, in user space.
 395 *
 396 * Context: User context only.  This function may sleep.
 397 *
 398 * This macro copies a single simple value from kernel space to user
 399 * space.  It supports simple types like char and int, but not larger
 400 * data types like structures or arrays.
 401 *
 402 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 403 * to the result of dereferencing @ptr.
 404 *
 405 * Returns zero on success, or -EFAULT on error.
 406 */
 407#define put_user_unaligned(x,ptr)	\
 408	__put_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 409
 410/*
 411 * get_user_unaligned: - Get a simple variable from user space.
 412 * @x:   Variable to store result.
 413 * @ptr: Source address, in user space.
 414 *
 415 * Context: User context only.  This function may sleep.
 416 *
 417 * This macro copies a single simple variable from user space to kernel
 418 * space.  It supports simple types like char and int, but not larger
 419 * data types like structures or arrays.
 420 *
 421 * @ptr must have pointer-to-simple-variable type, and the result of
 422 * dereferencing @ptr must be assignable to @x without a cast.
 423 *
 424 * Returns zero on success, or -EFAULT on error.
 425 * On error, the variable @x is set to zero.
 426 */
 427#define get_user_unaligned(x,ptr) \
 428	__get_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 429
 430/*
 431 * __put_user_unaligned: - Write a simple value into user space, with less checking.
 432 * @x:   Value to copy to user space.
 433 * @ptr: Destination address, in user space.
 434 *
 435 * Context: User context only.  This function may sleep.
 436 *
 437 * This macro copies a single simple value from kernel space to user
 438 * space.  It supports simple types like char and int, but not larger
 439 * data types like structures or arrays.
 440 *
 441 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 442 * to the result of dereferencing @ptr.
 443 *
 444 * Caller must check the pointer with access_ok() before calling this
 445 * function.
 446 *
 447 * Returns zero on success, or -EFAULT on error.
 448 */
 449#define __put_user_unaligned(x,ptr) \
 450	__put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
 451
 452/*
 453 * __get_user_unaligned: - Get a simple variable from user space, with less checking.
 454 * @x:   Variable to store result.
 455 * @ptr: Source address, in user space.
 456 *
 457 * Context: User context only.  This function may sleep.
 458 *
 459 * This macro copies a single simple variable from user space to kernel
 460 * space.  It supports simple types like char and int, but not larger
 461 * data types like structures or arrays.
 462 *
 463 * @ptr must have pointer-to-simple-variable type, and the result of
 464 * dereferencing @ptr must be assignable to @x without a cast.
 465 *
 466 * Caller must check the pointer with access_ok() before calling this
 467 * function.
 468 *
 469 * Returns zero on success, or -EFAULT on error.
 470 * On error, the variable @x is set to zero.
 471 */
 472#define __get_user_unaligned(x,ptr) \
 473	__get_user__unalignednocheck((x),(ptr),sizeof(*(ptr)))
 474
 475/*
 476 * Yuck.  We need two variants, one for 64bit operation and one
 477 * for 32 bit mode and old iron.
 478 */
 479#ifdef CONFIG_32BIT
 480#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 481	__get_user_unaligned_asm_ll32(val, ptr)
 482#endif
 483#ifdef CONFIG_64BIT
 484#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 485	__get_user_unaligned_asm(val, "uld", ptr)
 486#endif
 487
 488extern void __get_user_unaligned_unknown(void);
 489
 490#define __get_user_unaligned_common(val, size, ptr)			\
 491do {									\
 492	switch (size) {							\
 493	case 1: __get_user_asm(val, "lb", ptr); break;			\
 494	case 2: __get_user_unaligned_asm(val, "ulh", ptr); break;	\
 495	case 4: __get_user_unaligned_asm(val, "ulw", ptr); break;	\
 496	case 8: __GET_USER_UNALIGNED_DW(val, ptr); break;		\
 497	default: __get_user_unaligned_unknown(); break;			\
 498	}								\
 499} while (0)
 500
 501#define __get_user_unaligned_nocheck(x,ptr,size)			\
 502({									\
 503	int __gu_err;							\
 504									\
 505	__get_user_unaligned_common((x), size, ptr);			\
 506	__gu_err;							\
 507})
 508
 509#define __get_user_unaligned_check(x,ptr,size)				\
 510({									\
 511	int __gu_err = -EFAULT;						\
 512	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 513									\
 514	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size)))		\
 515		__get_user_unaligned_common((x), size, __gu_ptr);	\
 516									\
 517	__gu_err;							\
 518})
 519
 520#define __get_user_unaligned_asm(val, insn, addr)			\
 521{									\
 522	long __gu_tmp;							\
 523									\
 524	__asm__ __volatile__(						\
 525	"1:	" insn "	%1, %3				\n"	\
 526	"2:							\n"	\
 527	"	.section .fixup,\"ax\"				\n"	\
 528	"3:	li	%0, %4					\n"	\
 529	"	j	2b					\n"	\
 530	"	.previous					\n"	\
 531	"	.section __ex_table,\"a\"			\n"	\
 532	"	"__UA_ADDR "\t1b, 3b				\n"	\
 533	"	"__UA_ADDR "\t1b + 4, 3b			\n"	\
 534	"	.previous					\n"	\
 535	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 536	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 537									\
 538	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 539}
 540
 541/*
 542 * Get a long long 64 using 32 bit registers.
 543 */
 544#define __get_user_unaligned_asm_ll32(val, addr)			\
 545{									\
 546        unsigned long long __gu_tmp;					\
 547									\
 548	__asm__ __volatile__(						\
 549	"1:	ulw	%1, (%3)				\n"	\
 550	"2:	ulw	%D1, 4(%3)				\n"	\
 551	"	move	%0, $0					\n"	\
 552	"3:	.section	.fixup,\"ax\"			\n"	\
 553	"4:	li	%0, %4					\n"	\
 554	"	move	%1, $0					\n"	\
 555	"	move	%D1, $0					\n"	\
 556	"	j	3b					\n"	\
 557	"	.previous					\n"	\
 558	"	.section	__ex_table,\"a\"		\n"	\
 559	"	" __UA_ADDR "	1b, 4b				\n"	\
 560	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 561	"	" __UA_ADDR "	2b, 4b				\n"	\
 562	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 563	"	.previous					\n"	\
 564	: "=r" (__gu_err), "=&r" (__gu_tmp)				\
 565	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 566	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 567}
 568
 569/*
 570 * Yuck.  We need two variants, one for 64bit operation and one
 571 * for 32 bit mode and old iron.
 572 */
 573#ifdef CONFIG_32BIT
 574#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr)
 575#endif
 576#ifdef CONFIG_64BIT
 577#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr)
 578#endif
 579
 580#define __put_user_unaligned_nocheck(x,ptr,size)			\
 581({									\
 582	__typeof__(*(ptr)) __pu_val;					\
 583	int __pu_err = 0;						\
 584									\
 585	__pu_val = (x);							\
 586	switch (size) {							\
 587	case 1: __put_user_asm("sb", ptr); break;			\
 588	case 2: __put_user_unaligned_asm("ush", ptr); break;		\
 589	case 4: __put_user_unaligned_asm("usw", ptr); break;		\
 590	case 8: __PUT_USER_UNALIGNED_DW(ptr); break;			\
 591	default: __put_user_unaligned_unknown(); break;			\
 592	}								\
 593	__pu_err;							\
 594})
 595
 596#define __put_user_unaligned_check(x,ptr,size)				\
 597({									\
 598	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 599	__typeof__(*(ptr)) __pu_val = (x);				\
 600	int __pu_err = -EFAULT;						\
 601									\
 602	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size))) {	\
 603		switch (size) {						\
 604		case 1: __put_user_asm("sb", __pu_addr); break;		\
 605		case 2: __put_user_unaligned_asm("ush", __pu_addr); break; \
 606		case 4: __put_user_unaligned_asm("usw", __pu_addr); break; \
 607		case 8: __PUT_USER_UNALGINED_DW(__pu_addr); break;	\
 608		default: __put_user_unaligned_unknown(); break;		\
 609		}							\
 610	}								\
 611	__pu_err;							\
 612})
 613
 614#define __put_user_unaligned_asm(insn, ptr)				\
 615{									\
 616	__asm__ __volatile__(						\
 617	"1:	" insn "	%z2, %3		# __put_user_unaligned_asm\n" \
 618	"2:							\n"	\
 619	"	.section	.fixup,\"ax\"			\n"	\
 620	"3:	li	%0, %4					\n"	\
 621	"	j	2b					\n"	\
 622	"	.previous					\n"	\
 623	"	.section	__ex_table,\"a\"		\n"	\
 624	"	" __UA_ADDR "	1b, 3b				\n"	\
 625	"	.previous					\n"	\
 626	: "=r" (__pu_err)						\
 627	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 628	  "i" (-EFAULT));						\
 629}
 630
 631#define __put_user_unaligned_asm_ll32(ptr)				\
 632{									\
 633	__asm__ __volatile__(						\
 634	"1:	sw	%2, (%3)	# __put_user_unaligned_asm_ll32	\n" \
 635	"2:	sw	%D2, 4(%3)				\n"	\
 636	"3:							\n"	\
 637	"	.section	.fixup,\"ax\"			\n"	\
 638	"4:	li	%0, %4					\n"	\
 639	"	j	3b					\n"	\
 640	"	.previous					\n"	\
 641	"	.section	__ex_table,\"a\"		\n"	\
 642	"	" __UA_ADDR "	1b, 4b				\n"	\
 643	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 644	"	" __UA_ADDR "	2b, 4b				\n"	\
 645	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 646	"	.previous"						\
 647	: "=r" (__pu_err)						\
 648	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 649	  "i" (-EFAULT));						\
 650}
 651
 652extern void __put_user_unaligned_unknown(void);
 653
 654/*
 655 * We're generating jump to subroutines which will be outside the range of
 656 * jump instructions
 657 */
 658#ifdef MODULE
 659#define __MODULE_JAL(destination)					\
 660	".set\tnoat\n\t"						\
 661	__UA_LA "\t$1, " #destination "\n\t" 				\
 662	"jalr\t$1\n\t"							\
 663	".set\tat\n\t"
 664#else
 665#define __MODULE_JAL(destination)					\
 666	"jal\t" #destination "\n\t"
 667#endif
 668
 669#ifndef CONFIG_CPU_DADDI_WORKAROUNDS
 670#define DADDI_SCRATCH "$0"
 671#else
 672#define DADDI_SCRATCH "$3"
 673#endif
 674
 675extern size_t __copy_user(void *__to, const void *__from, size_t __n);
 676
 677#define __invoke_copy_to_user(to, from, n)				\
 678({									\
 679	register void __user *__cu_to_r __asm__("$4");			\
 680	register const void *__cu_from_r __asm__("$5");			\
 681	register long __cu_len_r __asm__("$6");				\
 682									\
 683	__cu_to_r = (to);						\
 684	__cu_from_r = (from);						\
 685	__cu_len_r = (n);						\
 686	__asm__ __volatile__(						\
 687	__MODULE_JAL(__copy_user)					\
 688	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 689	:								\
 690	: "$8", "$9", "$10", "$11", "$12", "$15", "$24", "$31",		\
 691	  DADDI_SCRATCH, "memory");					\
 692	__cu_len_r;							\
 693})
 694
 695/*
 696 * __copy_to_user: - Copy a block of data into user space, with less checking.
 697 * @to:   Destination address, in user space.
 698 * @from: Source address, in kernel space.
 699 * @n:    Number of bytes to copy.
 700 *
 701 * Context: User context only.  This function may sleep.
 702 *
 703 * Copy data from kernel space to user space.  Caller must check
 704 * the specified block with access_ok() before calling this function.
 705 *
 706 * Returns number of bytes that could not be copied.
 707 * On success, this will be zero.
 708 */
 709#define __copy_to_user(to, from, n)					\
 710({									\
 711	void __user *__cu_to;						\
 712	const void *__cu_from;						\
 713	long __cu_len;							\
 714									\
 715	__cu_to = (to);							\
 716	__cu_from = (from);						\
 717	__cu_len = (n);							\
 718	might_fault();							\
 719	__cu_len = __invoke_copy_to_user(__cu_to, __cu_from, __cu_len);	\
 720	__cu_len;							\
 721})
 722
 723extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n);
 724
 725#define __copy_to_user_inatomic(to, from, n)				\
 726({									\
 727	void __user *__cu_to;						\
 728	const void *__cu_from;						\
 729	long __cu_len;							\
 730									\
 731	__cu_to = (to);							\
 732	__cu_from = (from);						\
 733	__cu_len = (n);							\
 734	__cu_len = __invoke_copy_to_user(__cu_to, __cu_from, __cu_len);	\
 735	__cu_len;							\
 736})
 737
 738#define __copy_from_user_inatomic(to, from, n)				\
 739({									\
 740	void *__cu_to;							\
 741	const void __user *__cu_from;					\
 742	long __cu_len;							\
 743									\
 744	__cu_to = (to);							\
 745	__cu_from = (from);						\
 746	__cu_len = (n);							\
 747	__cu_len = __invoke_copy_from_user_inatomic(__cu_to, __cu_from,	\
 748	                                            __cu_len);		\
 749	__cu_len;							\
 750})
 751
 752/*
 753 * copy_to_user: - Copy a block of data into user space.
 754 * @to:   Destination address, in user space.
 755 * @from: Source address, in kernel space.
 756 * @n:    Number of bytes to copy.
 757 *
 758 * Context: User context only.  This function may sleep.
 759 *
 760 * Copy data from kernel space to user space.
 761 *
 762 * Returns number of bytes that could not be copied.
 763 * On success, this will be zero.
 764 */
 765#define copy_to_user(to, from, n)					\
 766({									\
 767	void __user *__cu_to;						\
 768	const void *__cu_from;						\
 769	long __cu_len;							\
 770									\
 771	__cu_to = (to);							\
 772	__cu_from = (from);						\
 773	__cu_len = (n);							\
 774	if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) {		\
 775		might_fault();						\
 776		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
 777		                                 __cu_len);		\
 778	}								\
 779	__cu_len;							\
 780})
 781
 782#define __invoke_copy_from_user(to, from, n)				\
 783({									\
 784	register void *__cu_to_r __asm__("$4");				\
 785	register const void __user *__cu_from_r __asm__("$5");		\
 786	register long __cu_len_r __asm__("$6");				\
 787									\
 788	__cu_to_r = (to);						\
 789	__cu_from_r = (from);						\
 790	__cu_len_r = (n);						\
 791	__asm__ __volatile__(						\
 792	".set\tnoreorder\n\t"						\
 793	__MODULE_JAL(__copy_user)					\
 794	".set\tnoat\n\t"						\
 795	__UA_ADDU "\t$1, %1, %2\n\t"					\
 796	".set\tat\n\t"							\
 797	".set\treorder"							\
 798	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 799	:								\
 800	: "$8", "$9", "$10", "$11", "$12", "$15", "$24", "$31",		\
 801	  DADDI_SCRATCH, "memory");					\
 802	__cu_len_r;							\
 803})
 804
 805#define __invoke_copy_from_user_inatomic(to, from, n)			\
 806({									\
 807	register void *__cu_to_r __asm__("$4");				\
 808	register const void __user *__cu_from_r __asm__("$5");		\
 809	register long __cu_len_r __asm__("$6");				\
 810									\
 811	__cu_to_r = (to);						\
 812	__cu_from_r = (from);						\
 813	__cu_len_r = (n);						\
 814	__asm__ __volatile__(						\
 815	".set\tnoreorder\n\t"						\
 816	__MODULE_JAL(__copy_user_inatomic)				\
 817	".set\tnoat\n\t"						\
 818	__UA_ADDU "\t$1, %1, %2\n\t"					\
 819	".set\tat\n\t"							\
 820	".set\treorder"							\
 821	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 822	:								\
 823	: "$8", "$9", "$10", "$11", "$12", "$15", "$24", "$31",		\
 824	  DADDI_SCRATCH, "memory");					\
 825	__cu_len_r;							\
 826})
 827
 828/*
 829 * __copy_from_user: - Copy a block of data from user space, with less checking.
 830 * @to:   Destination address, in kernel space.
 831 * @from: Source address, in user space.
 832 * @n:    Number of bytes to copy.
 833 *
 834 * Context: User context only.  This function may sleep.
 835 *
 836 * Copy data from user space to kernel space.  Caller must check
 837 * the specified block with access_ok() before calling this function.
 838 *
 839 * Returns number of bytes that could not be copied.
 840 * On success, this will be zero.
 841 *
 842 * If some data could not be copied, this function will pad the copied
 843 * data to the requested size using zero bytes.
 844 */
 845#define __copy_from_user(to, from, n)					\
 846({									\
 847	void *__cu_to;							\
 848	const void __user *__cu_from;					\
 849	long __cu_len;							\
 850									\
 851	__cu_to = (to);							\
 852	__cu_from = (from);						\
 853	__cu_len = (n);							\
 854	might_fault();							\
 855	__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,		\
 856	                                   __cu_len);			\
 857	__cu_len;							\
 858})
 859
 860/*
 861 * copy_from_user: - Copy a block of data from user space.
 862 * @to:   Destination address, in kernel space.
 863 * @from: Source address, in user space.
 864 * @n:    Number of bytes to copy.
 865 *
 866 * Context: User context only.  This function may sleep.
 867 *
 868 * Copy data from user space to kernel space.
 869 *
 870 * Returns number of bytes that could not be copied.
 871 * On success, this will be zero.
 872 *
 873 * If some data could not be copied, this function will pad the copied
 874 * data to the requested size using zero bytes.
 875 */
 876#define copy_from_user(to, from, n)					\
 877({									\
 878	void *__cu_to;							\
 879	const void __user *__cu_from;					\
 880	long __cu_len;							\
 881									\
 882	__cu_to = (to);							\
 883	__cu_from = (from);						\
 884	__cu_len = (n);							\
 885	if (access_ok(VERIFY_READ, __cu_from, __cu_len)) {		\
 886		might_fault();						\
 887		__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,	\
 888		                                   __cu_len);		\
 889	}								\
 890	__cu_len;							\
 891})
 892
 893#define __copy_in_user(to, from, n)					\
 894({									\
 895	void __user *__cu_to;						\
 896	const void __user *__cu_from;					\
 897	long __cu_len;							\
 898									\
 899	__cu_to = (to);							\
 900	__cu_from = (from);						\
 901	__cu_len = (n);							\
 902	might_fault();							\
 903	__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,		\
 904	                                   __cu_len);			\
 905	__cu_len;							\
 906})
 907
 908#define copy_in_user(to, from, n)					\
 909({									\
 910	void __user *__cu_to;						\
 911	const void __user *__cu_from;					\
 912	long __cu_len;							\
 913									\
 914	__cu_to = (to);							\
 915	__cu_from = (from);						\
 916	__cu_len = (n);							\
 917	if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) &&	\
 918	           access_ok(VERIFY_WRITE, __cu_to, __cu_len))) {	\
 919		might_fault();						\
 920		__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,	\
 921		                                   __cu_len);		\
 922	}								\
 923	__cu_len;							\
 924})
 925
 926/*
 927 * __clear_user: - Zero a block of memory in user space, with less checking.
 928 * @to:   Destination address, in user space.
 929 * @n:    Number of bytes to zero.
 930 *
 931 * Zero a block of memory in user space.  Caller must check
 932 * the specified block with access_ok() before calling this function.
 933 *
 934 * Returns number of bytes that could not be cleared.
 935 * On success, this will be zero.
 936 */
 937static inline __kernel_size_t
 938__clear_user(void __user *addr, __kernel_size_t size)
 939{
 940	__kernel_size_t res;
 941
 942	might_fault();
 943	__asm__ __volatile__(
 944		"move\t$4, %1\n\t"
 945		"move\t$5, $0\n\t"
 946		"move\t$6, %2\n\t"
 947		__MODULE_JAL(__bzero)
 948		"move\t%0, $6"
 949		: "=r" (res)
 950		: "r" (addr), "r" (size)
 951		: "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
 952
 953	return res;
 954}
 955
 956#define clear_user(addr,n)						\
 957({									\
 958	void __user * __cl_addr = (addr);				\
 959	unsigned long __cl_size = (n);					\
 960	if (__cl_size && access_ok(VERIFY_WRITE,			\
 961					__cl_addr, __cl_size))		\
 962		__cl_size = __clear_user(__cl_addr, __cl_size);		\
 963	__cl_size;							\
 964})
 965
 966/*
 967 * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking.
 968 * @dst:   Destination address, in kernel space.  This buffer must be at
 969 *         least @count bytes long.
 970 * @src:   Source address, in user space.
 971 * @count: Maximum number of bytes to copy, including the trailing NUL.
 972 *
 973 * Copies a NUL-terminated string from userspace to kernel space.
 974 * Caller must check the specified block with access_ok() before calling
 975 * this function.
 976 *
 977 * On success, returns the length of the string (not including the trailing
 978 * NUL).
 979 *
 980 * If access to userspace fails, returns -EFAULT (some data may have been
 981 * copied).
 982 *
 983 * If @count is smaller than the length of the string, copies @count bytes
 984 * and returns @count.
 985 */
 986static inline long
 987__strncpy_from_user(char *__to, const char __user *__from, long __len)
 988{
 989	long res;
 990
 991	might_fault();
 992	__asm__ __volatile__(
 993		"move\t$4, %1\n\t"
 994		"move\t$5, %2\n\t"
 995		"move\t$6, %3\n\t"
 996		__MODULE_JAL(__strncpy_from_user_nocheck_asm)
 997		"move\t%0, $2"
 998		: "=r" (res)
 999		: "r" (__to), "r" (__from), "r" (__len)
1000		: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1001
1002	return res;
1003}
1004
1005/*
1006 * strncpy_from_user: - Copy a NUL terminated string from userspace.
1007 * @dst:   Destination address, in kernel space.  This buffer must be at
1008 *         least @count bytes long.
1009 * @src:   Source address, in user space.
1010 * @count: Maximum number of bytes to copy, including the trailing NUL.
1011 *
1012 * Copies a NUL-terminated string from userspace to kernel space.
1013 *
1014 * On success, returns the length of the string (not including the trailing
1015 * NUL).
1016 *
1017 * If access to userspace fails, returns -EFAULT (some data may have been
1018 * copied).
1019 *
1020 * If @count is smaller than the length of the string, copies @count bytes
1021 * and returns @count.
1022 */
1023static inline long
1024strncpy_from_user(char *__to, const char __user *__from, long __len)
1025{
1026	long res;
1027
1028	might_fault();
1029	__asm__ __volatile__(
1030		"move\t$4, %1\n\t"
1031		"move\t$5, %2\n\t"
1032		"move\t$6, %3\n\t"
1033		__MODULE_JAL(__strncpy_from_user_asm)
1034		"move\t%0, $2"
1035		: "=r" (res)
1036		: "r" (__to), "r" (__from), "r" (__len)
1037		: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1038
1039	return res;
1040}
1041
1042/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1043static inline long __strlen_user(const char __user *s)
1044{
1045	long res;
1046
1047	might_fault();
1048	__asm__ __volatile__(
1049		"move\t$4, %1\n\t"
1050		__MODULE_JAL(__strlen_user_nocheck_asm)
1051		"move\t%0, $2"
1052		: "=r" (res)
1053		: "r" (s)
1054		: "$2", "$4", __UA_t0, "$31");
1055
1056	return res;
1057}
1058
1059/*
1060 * strlen_user: - Get the size of a string in user space.
1061 * @str: The string to measure.
1062 *
1063 * Context: User context only.  This function may sleep.
1064 *
1065 * Get the size of a NUL-terminated string in user space.
1066 *
1067 * Returns the size of the string INCLUDING the terminating NUL.
1068 * On exception, returns 0.
1069 *
1070 * If there is a limit on the length of a valid string, you may wish to
1071 * consider using strnlen_user() instead.
1072 */
1073static inline long strlen_user(const char __user *s)
1074{
1075	long res;
1076
1077	might_fault();
1078	__asm__ __volatile__(
1079		"move\t$4, %1\n\t"
1080		__MODULE_JAL(__strlen_user_asm)
1081		"move\t%0, $2"
1082		: "=r" (res)
1083		: "r" (s)
1084		: "$2", "$4", __UA_t0, "$31");
1085
1086	return res;
1087}
1088
1089/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1090static inline long __strnlen_user(const char __user *s, long n)
1091{
1092	long res;
1093
1094	might_fault();
1095	__asm__ __volatile__(
1096		"move\t$4, %1\n\t"
1097		"move\t$5, %2\n\t"
1098		__MODULE_JAL(__strnlen_user_nocheck_asm)
1099		"move\t%0, $2"
1100		: "=r" (res)
1101		: "r" (s), "r" (n)
1102		: "$2", "$4", "$5", __UA_t0, "$31");
1103
1104	return res;
1105}
1106
1107/*
1108 * strlen_user: - Get the size of a string in user space.
1109 * @str: The string to measure.
1110 *
1111 * Context: User context only.  This function may sleep.
1112 *
1113 * Get the size of a NUL-terminated string in user space.
1114 *
1115 * Returns the size of the string INCLUDING the terminating NUL.
1116 * On exception, returns 0.
1117 *
1118 * If there is a limit on the length of a valid string, you may wish to
1119 * consider using strnlen_user() instead.
1120 */
1121static inline long strnlen_user(const char __user *s, long n)
1122{
1123	long res;
1124
1125	might_fault();
1126	__asm__ __volatile__(
1127		"move\t$4, %1\n\t"
1128		"move\t$5, %2\n\t"
1129		__MODULE_JAL(__strnlen_user_asm)
1130		"move\t%0, $2"
1131		: "=r" (res)
1132		: "r" (s), "r" (n)
1133		: "$2", "$4", "$5", __UA_t0, "$31");
1134
1135	return res;
1136}
1137
1138struct exception_table_entry
1139{
1140	unsigned long insn;
1141	unsigned long nextinsn;
1142};
1143
1144extern int fixup_exception(struct pt_regs *regs);
1145
1146#endif /* _ASM_UACCESS_H */