Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * ARMv6 Performance counter handling code.
  3 *
  4 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  5 *
  6 * ARMv6 has 2 configurable performance counters and a single cycle counter.
  7 * They all share a single reset bit but can be written to zero so we can use
  8 * that for a reset.
  9 *
 10 * The counters can't be individually enabled or disabled so when we remove
 11 * one event and replace it with another we could get spurious counts from the
 12 * wrong event. However, we can take advantage of the fact that the
 13 * performance counters can export events to the event bus, and the event bus
 14 * itself can be monitored. This requires that we *don't* export the events to
 15 * the event bus. The procedure for disabling a configurable counter is:
 16 *	- change the counter to count the ETMEXTOUT[0] signal (0x20). This
 17 *	  effectively stops the counter from counting.
 18 *	- disable the counter's interrupt generation (each counter has it's
 19 *	  own interrupt enable bit).
 20 * Once stopped, the counter value can be written as 0 to reset.
 21 *
 22 * To enable a counter:
 23 *	- enable the counter's interrupt generation.
 24 *	- set the new event type.
 25 *
 26 * Note: the dedicated cycle counter only counts cycles and can't be
 27 * enabled/disabled independently of the others. When we want to disable the
 28 * cycle counter, we have to just disable the interrupt reporting and start
 29 * ignoring that counter. When re-enabling, we have to reset the value and
 30 * enable the interrupt.
 31 */
 32
 33#if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K)
 34enum armv6_perf_types {
 35	ARMV6_PERFCTR_ICACHE_MISS	    = 0x0,
 36	ARMV6_PERFCTR_IBUF_STALL	    = 0x1,
 37	ARMV6_PERFCTR_DDEP_STALL	    = 0x2,
 38	ARMV6_PERFCTR_ITLB_MISS		    = 0x3,
 39	ARMV6_PERFCTR_DTLB_MISS		    = 0x4,
 40	ARMV6_PERFCTR_BR_EXEC		    = 0x5,
 41	ARMV6_PERFCTR_BR_MISPREDICT	    = 0x6,
 42	ARMV6_PERFCTR_INSTR_EXEC	    = 0x7,
 43	ARMV6_PERFCTR_DCACHE_HIT	    = 0x9,
 44	ARMV6_PERFCTR_DCACHE_ACCESS	    = 0xA,
 45	ARMV6_PERFCTR_DCACHE_MISS	    = 0xB,
 46	ARMV6_PERFCTR_DCACHE_WBACK	    = 0xC,
 47	ARMV6_PERFCTR_SW_PC_CHANGE	    = 0xD,
 48	ARMV6_PERFCTR_MAIN_TLB_MISS	    = 0xF,
 49	ARMV6_PERFCTR_EXPL_D_ACCESS	    = 0x10,
 50	ARMV6_PERFCTR_LSU_FULL_STALL	    = 0x11,
 51	ARMV6_PERFCTR_WBUF_DRAINED	    = 0x12,
 52	ARMV6_PERFCTR_CPU_CYCLES	    = 0xFF,
 53	ARMV6_PERFCTR_NOP		    = 0x20,
 54};
 55
 56enum armv6_counters {
 57	ARMV6_CYCLE_COUNTER = 1,
 58	ARMV6_COUNTER0,
 59	ARMV6_COUNTER1,
 60};
 61
 62/*
 63 * The hardware events that we support. We do support cache operations but
 64 * we have harvard caches and no way to combine instruction and data
 65 * accesses/misses in hardware.
 66 */
 67static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = {
 68	[PERF_COUNT_HW_CPU_CYCLES]	    = ARMV6_PERFCTR_CPU_CYCLES,
 69	[PERF_COUNT_HW_INSTRUCTIONS]	    = ARMV6_PERFCTR_INSTR_EXEC,
 70	[PERF_COUNT_HW_CACHE_REFERENCES]    = HW_OP_UNSUPPORTED,
 71	[PERF_COUNT_HW_CACHE_MISSES]	    = HW_OP_UNSUPPORTED,
 72	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6_PERFCTR_BR_EXEC,
 73	[PERF_COUNT_HW_BRANCH_MISSES]	    = ARMV6_PERFCTR_BR_MISPREDICT,
 74	[PERF_COUNT_HW_BUS_CYCLES]	    = HW_OP_UNSUPPORTED,
 
 
 75};
 76
 77static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
 78					  [PERF_COUNT_HW_CACHE_OP_MAX]
 79					  [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 80	[C(L1D)] = {
 81		/*
 82		 * The performance counters don't differentiate between read
 83		 * and write accesses/misses so this isn't strictly correct,
 84		 * but it's the best we can do. Writes and reads get
 85		 * combined.
 86		 */
 87		[C(OP_READ)] = {
 88			[C(RESULT_ACCESS)]	= ARMV6_PERFCTR_DCACHE_ACCESS,
 89			[C(RESULT_MISS)]	= ARMV6_PERFCTR_DCACHE_MISS,
 90		},
 91		[C(OP_WRITE)] = {
 92			[C(RESULT_ACCESS)]	= ARMV6_PERFCTR_DCACHE_ACCESS,
 93			[C(RESULT_MISS)]	= ARMV6_PERFCTR_DCACHE_MISS,
 94		},
 95		[C(OP_PREFETCH)] = {
 96			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
 97			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
 98		},
 99	},
100	[C(L1I)] = {
101		[C(OP_READ)] = {
102			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
103			[C(RESULT_MISS)]	= ARMV6_PERFCTR_ICACHE_MISS,
104		},
105		[C(OP_WRITE)] = {
106			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
107			[C(RESULT_MISS)]	= ARMV6_PERFCTR_ICACHE_MISS,
108		},
109		[C(OP_PREFETCH)] = {
110			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
111			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
112		},
113	},
114	[C(LL)] = {
115		[C(OP_READ)] = {
116			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
117			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
118		},
119		[C(OP_WRITE)] = {
120			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
121			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
122		},
123		[C(OP_PREFETCH)] = {
124			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
125			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
126		},
127	},
128	[C(DTLB)] = {
129		/*
130		 * The ARM performance counters can count micro DTLB misses,
131		 * micro ITLB misses and main TLB misses. There isn't an event
132		 * for TLB misses, so use the micro misses here and if users
133		 * want the main TLB misses they can use a raw counter.
134		 */
135		[C(OP_READ)] = {
136			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
137			[C(RESULT_MISS)]	= ARMV6_PERFCTR_DTLB_MISS,
138		},
139		[C(OP_WRITE)] = {
140			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
141			[C(RESULT_MISS)]	= ARMV6_PERFCTR_DTLB_MISS,
142		},
143		[C(OP_PREFETCH)] = {
144			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
145			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
146		},
147	},
148	[C(ITLB)] = {
149		[C(OP_READ)] = {
150			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
151			[C(RESULT_MISS)]	= ARMV6_PERFCTR_ITLB_MISS,
152		},
153		[C(OP_WRITE)] = {
154			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
155			[C(RESULT_MISS)]	= ARMV6_PERFCTR_ITLB_MISS,
156		},
157		[C(OP_PREFETCH)] = {
158			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
159			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
160		},
161	},
162	[C(BPU)] = {
163		[C(OP_READ)] = {
164			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
165			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
166		},
167		[C(OP_WRITE)] = {
168			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
169			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
170		},
171		[C(OP_PREFETCH)] = {
172			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
173			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
174		},
175	},
176	[C(NODE)] = {
177		[C(OP_READ)] = {
178			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
179			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
180		},
181		[C(OP_WRITE)] = {
182			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
183			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
184		},
185		[C(OP_PREFETCH)] = {
186			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
187			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
188		},
189	},
190};
191
192enum armv6mpcore_perf_types {
193	ARMV6MPCORE_PERFCTR_ICACHE_MISS	    = 0x0,
194	ARMV6MPCORE_PERFCTR_IBUF_STALL	    = 0x1,
195	ARMV6MPCORE_PERFCTR_DDEP_STALL	    = 0x2,
196	ARMV6MPCORE_PERFCTR_ITLB_MISS	    = 0x3,
197	ARMV6MPCORE_PERFCTR_DTLB_MISS	    = 0x4,
198	ARMV6MPCORE_PERFCTR_BR_EXEC	    = 0x5,
199	ARMV6MPCORE_PERFCTR_BR_NOTPREDICT   = 0x6,
200	ARMV6MPCORE_PERFCTR_BR_MISPREDICT   = 0x7,
201	ARMV6MPCORE_PERFCTR_INSTR_EXEC	    = 0x8,
202	ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS = 0xA,
203	ARMV6MPCORE_PERFCTR_DCACHE_RDMISS   = 0xB,
204	ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS = 0xC,
205	ARMV6MPCORE_PERFCTR_DCACHE_WRMISS   = 0xD,
206	ARMV6MPCORE_PERFCTR_DCACHE_EVICTION = 0xE,
207	ARMV6MPCORE_PERFCTR_SW_PC_CHANGE    = 0xF,
208	ARMV6MPCORE_PERFCTR_MAIN_TLB_MISS   = 0x10,
209	ARMV6MPCORE_PERFCTR_EXPL_MEM_ACCESS = 0x11,
210	ARMV6MPCORE_PERFCTR_LSU_FULL_STALL  = 0x12,
211	ARMV6MPCORE_PERFCTR_WBUF_DRAINED    = 0x13,
212	ARMV6MPCORE_PERFCTR_CPU_CYCLES	    = 0xFF,
213};
214
215/*
216 * The hardware events that we support. We do support cache operations but
217 * we have harvard caches and no way to combine instruction and data
218 * accesses/misses in hardware.
219 */
220static const unsigned armv6mpcore_perf_map[PERF_COUNT_HW_MAX] = {
221	[PERF_COUNT_HW_CPU_CYCLES]	    = ARMV6MPCORE_PERFCTR_CPU_CYCLES,
222	[PERF_COUNT_HW_INSTRUCTIONS]	    = ARMV6MPCORE_PERFCTR_INSTR_EXEC,
223	[PERF_COUNT_HW_CACHE_REFERENCES]    = HW_OP_UNSUPPORTED,
224	[PERF_COUNT_HW_CACHE_MISSES]	    = HW_OP_UNSUPPORTED,
225	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_BR_EXEC,
226	[PERF_COUNT_HW_BRANCH_MISSES]	    = ARMV6MPCORE_PERFCTR_BR_MISPREDICT,
227	[PERF_COUNT_HW_BUS_CYCLES]	    = HW_OP_UNSUPPORTED,
 
 
228};
229
230static const unsigned armv6mpcore_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
231					[PERF_COUNT_HW_CACHE_OP_MAX]
232					[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
233	[C(L1D)] = {
234		[C(OP_READ)] = {
235			[C(RESULT_ACCESS)]  =
236				ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS,
237			[C(RESULT_MISS)]    =
238				ARMV6MPCORE_PERFCTR_DCACHE_RDMISS,
239		},
240		[C(OP_WRITE)] = {
241			[C(RESULT_ACCESS)]  =
242				ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS,
243			[C(RESULT_MISS)]    =
244				ARMV6MPCORE_PERFCTR_DCACHE_WRMISS,
245		},
246		[C(OP_PREFETCH)] = {
247			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
248			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
249		},
250	},
251	[C(L1I)] = {
252		[C(OP_READ)] = {
253			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
254			[C(RESULT_MISS)]    = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
255		},
256		[C(OP_WRITE)] = {
257			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
258			[C(RESULT_MISS)]    = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
259		},
260		[C(OP_PREFETCH)] = {
261			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
262			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
263		},
264	},
265	[C(LL)] = {
266		[C(OP_READ)] = {
267			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
268			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
269		},
270		[C(OP_WRITE)] = {
271			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
272			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
273		},
274		[C(OP_PREFETCH)] = {
275			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
276			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
277		},
278	},
279	[C(DTLB)] = {
280		/*
281		 * The ARM performance counters can count micro DTLB misses,
282		 * micro ITLB misses and main TLB misses. There isn't an event
283		 * for TLB misses, so use the micro misses here and if users
284		 * want the main TLB misses they can use a raw counter.
285		 */
286		[C(OP_READ)] = {
287			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
288			[C(RESULT_MISS)]    = ARMV6MPCORE_PERFCTR_DTLB_MISS,
289		},
290		[C(OP_WRITE)] = {
291			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
292			[C(RESULT_MISS)]    = ARMV6MPCORE_PERFCTR_DTLB_MISS,
293		},
294		[C(OP_PREFETCH)] = {
295			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
296			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
297		},
298	},
299	[C(ITLB)] = {
300		[C(OP_READ)] = {
301			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
302			[C(RESULT_MISS)]    = ARMV6MPCORE_PERFCTR_ITLB_MISS,
303		},
304		[C(OP_WRITE)] = {
305			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
306			[C(RESULT_MISS)]    = ARMV6MPCORE_PERFCTR_ITLB_MISS,
307		},
308		[C(OP_PREFETCH)] = {
309			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
310			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
311		},
312	},
313	[C(BPU)] = {
314		[C(OP_READ)] = {
315			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
316			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
317		},
318		[C(OP_WRITE)] = {
319			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
320			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
321		},
322		[C(OP_PREFETCH)] = {
323			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
324			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
325		},
326	},
327	[C(NODE)] = {
328		[C(OP_READ)] = {
329			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
330			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
331		},
332		[C(OP_WRITE)] = {
333			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
334			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
335		},
336		[C(OP_PREFETCH)] = {
337			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
338			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
339		},
340	},
341};
342
343static inline unsigned long
344armv6_pmcr_read(void)
345{
346	u32 val;
347	asm volatile("mrc   p15, 0, %0, c15, c12, 0" : "=r"(val));
348	return val;
349}
350
351static inline void
352armv6_pmcr_write(unsigned long val)
353{
354	asm volatile("mcr   p15, 0, %0, c15, c12, 0" : : "r"(val));
355}
356
357#define ARMV6_PMCR_ENABLE		(1 << 0)
358#define ARMV6_PMCR_CTR01_RESET		(1 << 1)
359#define ARMV6_PMCR_CCOUNT_RESET		(1 << 2)
360#define ARMV6_PMCR_CCOUNT_DIV		(1 << 3)
361#define ARMV6_PMCR_COUNT0_IEN		(1 << 4)
362#define ARMV6_PMCR_COUNT1_IEN		(1 << 5)
363#define ARMV6_PMCR_CCOUNT_IEN		(1 << 6)
364#define ARMV6_PMCR_COUNT0_OVERFLOW	(1 << 8)
365#define ARMV6_PMCR_COUNT1_OVERFLOW	(1 << 9)
366#define ARMV6_PMCR_CCOUNT_OVERFLOW	(1 << 10)
367#define ARMV6_PMCR_EVT_COUNT0_SHIFT	20
368#define ARMV6_PMCR_EVT_COUNT0_MASK	(0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT)
369#define ARMV6_PMCR_EVT_COUNT1_SHIFT	12
370#define ARMV6_PMCR_EVT_COUNT1_MASK	(0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT)
371
372#define ARMV6_PMCR_OVERFLOWED_MASK \
373	(ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \
374	 ARMV6_PMCR_CCOUNT_OVERFLOW)
375
376static inline int
377armv6_pmcr_has_overflowed(unsigned long pmcr)
378{
379	return pmcr & ARMV6_PMCR_OVERFLOWED_MASK;
380}
381
382static inline int
383armv6_pmcr_counter_has_overflowed(unsigned long pmcr,
384				  enum armv6_counters counter)
385{
386	int ret = 0;
387
388	if (ARMV6_CYCLE_COUNTER == counter)
389		ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW;
390	else if (ARMV6_COUNTER0 == counter)
391		ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW;
392	else if (ARMV6_COUNTER1 == counter)
393		ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW;
394	else
395		WARN_ONCE(1, "invalid counter number (%d)\n", counter);
396
397	return ret;
398}
399
400static inline u32
401armv6pmu_read_counter(int counter)
402{
403	unsigned long value = 0;
404
405	if (ARMV6_CYCLE_COUNTER == counter)
406		asm volatile("mrc   p15, 0, %0, c15, c12, 1" : "=r"(value));
407	else if (ARMV6_COUNTER0 == counter)
408		asm volatile("mrc   p15, 0, %0, c15, c12, 2" : "=r"(value));
409	else if (ARMV6_COUNTER1 == counter)
410		asm volatile("mrc   p15, 0, %0, c15, c12, 3" : "=r"(value));
411	else
412		WARN_ONCE(1, "invalid counter number (%d)\n", counter);
413
414	return value;
415}
416
417static inline void
418armv6pmu_write_counter(int counter,
419		       u32 value)
420{
421	if (ARMV6_CYCLE_COUNTER == counter)
422		asm volatile("mcr   p15, 0, %0, c15, c12, 1" : : "r"(value));
423	else if (ARMV6_COUNTER0 == counter)
424		asm volatile("mcr   p15, 0, %0, c15, c12, 2" : : "r"(value));
425	else if (ARMV6_COUNTER1 == counter)
426		asm volatile("mcr   p15, 0, %0, c15, c12, 3" : : "r"(value));
427	else
428		WARN_ONCE(1, "invalid counter number (%d)\n", counter);
429}
430
431static void
432armv6pmu_enable_event(struct hw_perf_event *hwc,
433		      int idx)
434{
435	unsigned long val, mask, evt, flags;
 
436
437	if (ARMV6_CYCLE_COUNTER == idx) {
438		mask	= 0;
439		evt	= ARMV6_PMCR_CCOUNT_IEN;
440	} else if (ARMV6_COUNTER0 == idx) {
441		mask	= ARMV6_PMCR_EVT_COUNT0_MASK;
442		evt	= (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) |
443			  ARMV6_PMCR_COUNT0_IEN;
444	} else if (ARMV6_COUNTER1 == idx) {
445		mask	= ARMV6_PMCR_EVT_COUNT1_MASK;
446		evt	= (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) |
447			  ARMV6_PMCR_COUNT1_IEN;
448	} else {
449		WARN_ONCE(1, "invalid counter number (%d)\n", idx);
450		return;
451	}
452
453	/*
454	 * Mask out the current event and set the counter to count the event
455	 * that we're interested in.
456	 */
457	raw_spin_lock_irqsave(&pmu_lock, flags);
458	val = armv6_pmcr_read();
459	val &= ~mask;
460	val |= evt;
461	armv6_pmcr_write(val);
462	raw_spin_unlock_irqrestore(&pmu_lock, flags);
463}
464
465static irqreturn_t
466armv6pmu_handle_irq(int irq_num,
467		    void *dev)
468{
469	unsigned long pmcr = armv6_pmcr_read();
470	struct perf_sample_data data;
471	struct cpu_hw_events *cpuc;
472	struct pt_regs *regs;
473	int idx;
474
475	if (!armv6_pmcr_has_overflowed(pmcr))
476		return IRQ_NONE;
477
478	regs = get_irq_regs();
479
480	/*
481	 * The interrupts are cleared by writing the overflow flags back to
482	 * the control register. All of the other bits don't have any effect
483	 * if they are rewritten, so write the whole value back.
484	 */
485	armv6_pmcr_write(pmcr);
486
487	perf_sample_data_init(&data, 0);
488
489	cpuc = &__get_cpu_var(cpu_hw_events);
490	for (idx = 0; idx <= armpmu->num_events; ++idx) {
491		struct perf_event *event = cpuc->events[idx];
492		struct hw_perf_event *hwc;
493
494		if (!test_bit(idx, cpuc->active_mask))
 
495			continue;
496
497		/*
498		 * We have a single interrupt for all counters. Check that
499		 * each counter has overflowed before we process it.
500		 */
501		if (!armv6_pmcr_counter_has_overflowed(pmcr, idx))
502			continue;
503
504		hwc = &event->hw;
505		armpmu_event_update(event, hwc, idx, 1);
506		data.period = event->hw.last_period;
507		if (!armpmu_event_set_period(event, hwc, idx))
508			continue;
509
510		if (perf_event_overflow(event, &data, regs))
511			armpmu->disable(hwc, idx);
512	}
513
514	/*
515	 * Handle the pending perf events.
516	 *
517	 * Note: this call *must* be run with interrupts disabled. For
518	 * platforms that can have the PMU interrupts raised as an NMI, this
519	 * will not work.
520	 */
521	irq_work_run();
522
523	return IRQ_HANDLED;
524}
525
526static void
527armv6pmu_start(void)
528{
529	unsigned long flags, val;
 
530
531	raw_spin_lock_irqsave(&pmu_lock, flags);
532	val = armv6_pmcr_read();
533	val |= ARMV6_PMCR_ENABLE;
534	armv6_pmcr_write(val);
535	raw_spin_unlock_irqrestore(&pmu_lock, flags);
536}
537
538static void
539armv6pmu_stop(void)
540{
541	unsigned long flags, val;
 
542
543	raw_spin_lock_irqsave(&pmu_lock, flags);
544	val = armv6_pmcr_read();
545	val &= ~ARMV6_PMCR_ENABLE;
546	armv6_pmcr_write(val);
547	raw_spin_unlock_irqrestore(&pmu_lock, flags);
548}
549
550static int
551armv6pmu_get_event_idx(struct cpu_hw_events *cpuc,
552		       struct hw_perf_event *event)
553{
554	/* Always place a cycle counter into the cycle counter. */
555	if (ARMV6_PERFCTR_CPU_CYCLES == event->config_base) {
556		if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask))
557			return -EAGAIN;
558
559		return ARMV6_CYCLE_COUNTER;
560	} else {
561		/*
562		 * For anything other than a cycle counter, try and use
563		 * counter0 and counter1.
564		 */
565		if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask))
566			return ARMV6_COUNTER1;
567
568		if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask))
569			return ARMV6_COUNTER0;
570
571		/* The counters are all in use. */
572		return -EAGAIN;
573	}
574}
575
576static void
577armv6pmu_disable_event(struct hw_perf_event *hwc,
578		       int idx)
579{
580	unsigned long val, mask, evt, flags;
 
581
582	if (ARMV6_CYCLE_COUNTER == idx) {
583		mask	= ARMV6_PMCR_CCOUNT_IEN;
584		evt	= 0;
585	} else if (ARMV6_COUNTER0 == idx) {
586		mask	= ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK;
587		evt	= ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT;
588	} else if (ARMV6_COUNTER1 == idx) {
589		mask	= ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK;
590		evt	= ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT;
591	} else {
592		WARN_ONCE(1, "invalid counter number (%d)\n", idx);
593		return;
594	}
595
596	/*
597	 * Mask out the current event and set the counter to count the number
598	 * of ETM bus signal assertion cycles. The external reporting should
599	 * be disabled and so this should never increment.
600	 */
601	raw_spin_lock_irqsave(&pmu_lock, flags);
602	val = armv6_pmcr_read();
603	val &= ~mask;
604	val |= evt;
605	armv6_pmcr_write(val);
606	raw_spin_unlock_irqrestore(&pmu_lock, flags);
607}
608
609static void
610armv6mpcore_pmu_disable_event(struct hw_perf_event *hwc,
611			      int idx)
612{
613	unsigned long val, mask, flags, evt = 0;
 
614
615	if (ARMV6_CYCLE_COUNTER == idx) {
616		mask	= ARMV6_PMCR_CCOUNT_IEN;
617	} else if (ARMV6_COUNTER0 == idx) {
618		mask	= ARMV6_PMCR_COUNT0_IEN;
619	} else if (ARMV6_COUNTER1 == idx) {
620		mask	= ARMV6_PMCR_COUNT1_IEN;
621	} else {
622		WARN_ONCE(1, "invalid counter number (%d)\n", idx);
623		return;
624	}
625
626	/*
627	 * Unlike UP ARMv6, we don't have a way of stopping the counters. We
628	 * simply disable the interrupt reporting.
629	 */
630	raw_spin_lock_irqsave(&pmu_lock, flags);
631	val = armv6_pmcr_read();
632	val &= ~mask;
633	val |= evt;
634	armv6_pmcr_write(val);
635	raw_spin_unlock_irqrestore(&pmu_lock, flags);
 
 
 
 
 
 
636}
637
638static const struct arm_pmu armv6pmu = {
639	.id			= ARM_PERF_PMU_ID_V6,
640	.name			= "v6",
641	.handle_irq		= armv6pmu_handle_irq,
642	.enable			= armv6pmu_enable_event,
643	.disable		= armv6pmu_disable_event,
644	.read_counter		= armv6pmu_read_counter,
645	.write_counter		= armv6pmu_write_counter,
646	.get_event_idx		= armv6pmu_get_event_idx,
647	.start			= armv6pmu_start,
648	.stop			= armv6pmu_stop,
649	.cache_map		= &armv6_perf_cache_map,
650	.event_map		= &armv6_perf_map,
651	.raw_event_mask		= 0xFF,
652	.num_events		= 3,
653	.max_period		= (1LLU << 32) - 1,
654};
655
656static const struct arm_pmu *__init armv6pmu_init(void)
657{
658	return &armv6pmu;
659}
660
661/*
662 * ARMv6mpcore is almost identical to single core ARMv6 with the exception
663 * that some of the events have different enumerations and that there is no
664 * *hack* to stop the programmable counters. To stop the counters we simply
665 * disable the interrupt reporting and update the event. When unthrottling we
666 * reset the period and enable the interrupt reporting.
667 */
668static const struct arm_pmu armv6mpcore_pmu = {
 
 
 
 
 
 
 
669	.id			= ARM_PERF_PMU_ID_V6MP,
670	.name			= "v6mpcore",
671	.handle_irq		= armv6pmu_handle_irq,
672	.enable			= armv6pmu_enable_event,
673	.disable		= armv6mpcore_pmu_disable_event,
674	.read_counter		= armv6pmu_read_counter,
675	.write_counter		= armv6pmu_write_counter,
676	.get_event_idx		= armv6pmu_get_event_idx,
677	.start			= armv6pmu_start,
678	.stop			= armv6pmu_stop,
679	.cache_map		= &armv6mpcore_perf_cache_map,
680	.event_map		= &armv6mpcore_perf_map,
681	.raw_event_mask		= 0xFF,
682	.num_events		= 3,
683	.max_period		= (1LLU << 32) - 1,
684};
685
686static const struct arm_pmu *__init armv6mpcore_pmu_init(void)
687{
688	return &armv6mpcore_pmu;
689}
690#else
691static const struct arm_pmu *__init armv6pmu_init(void)
692{
693	return NULL;
694}
695
696static const struct arm_pmu *__init armv6mpcore_pmu_init(void)
697{
698	return NULL;
699}
700#endif	/* CONFIG_CPU_V6 || CONFIG_CPU_V6K */
v3.5.6
  1/*
  2 * ARMv6 Performance counter handling code.
  3 *
  4 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  5 *
  6 * ARMv6 has 2 configurable performance counters and a single cycle counter.
  7 * They all share a single reset bit but can be written to zero so we can use
  8 * that for a reset.
  9 *
 10 * The counters can't be individually enabled or disabled so when we remove
 11 * one event and replace it with another we could get spurious counts from the
 12 * wrong event. However, we can take advantage of the fact that the
 13 * performance counters can export events to the event bus, and the event bus
 14 * itself can be monitored. This requires that we *don't* export the events to
 15 * the event bus. The procedure for disabling a configurable counter is:
 16 *	- change the counter to count the ETMEXTOUT[0] signal (0x20). This
 17 *	  effectively stops the counter from counting.
 18 *	- disable the counter's interrupt generation (each counter has it's
 19 *	  own interrupt enable bit).
 20 * Once stopped, the counter value can be written as 0 to reset.
 21 *
 22 * To enable a counter:
 23 *	- enable the counter's interrupt generation.
 24 *	- set the new event type.
 25 *
 26 * Note: the dedicated cycle counter only counts cycles and can't be
 27 * enabled/disabled independently of the others. When we want to disable the
 28 * cycle counter, we have to just disable the interrupt reporting and start
 29 * ignoring that counter. When re-enabling, we have to reset the value and
 30 * enable the interrupt.
 31 */
 32
 33#if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K)
 34enum armv6_perf_types {
 35	ARMV6_PERFCTR_ICACHE_MISS	    = 0x0,
 36	ARMV6_PERFCTR_IBUF_STALL	    = 0x1,
 37	ARMV6_PERFCTR_DDEP_STALL	    = 0x2,
 38	ARMV6_PERFCTR_ITLB_MISS		    = 0x3,
 39	ARMV6_PERFCTR_DTLB_MISS		    = 0x4,
 40	ARMV6_PERFCTR_BR_EXEC		    = 0x5,
 41	ARMV6_PERFCTR_BR_MISPREDICT	    = 0x6,
 42	ARMV6_PERFCTR_INSTR_EXEC	    = 0x7,
 43	ARMV6_PERFCTR_DCACHE_HIT	    = 0x9,
 44	ARMV6_PERFCTR_DCACHE_ACCESS	    = 0xA,
 45	ARMV6_PERFCTR_DCACHE_MISS	    = 0xB,
 46	ARMV6_PERFCTR_DCACHE_WBACK	    = 0xC,
 47	ARMV6_PERFCTR_SW_PC_CHANGE	    = 0xD,
 48	ARMV6_PERFCTR_MAIN_TLB_MISS	    = 0xF,
 49	ARMV6_PERFCTR_EXPL_D_ACCESS	    = 0x10,
 50	ARMV6_PERFCTR_LSU_FULL_STALL	    = 0x11,
 51	ARMV6_PERFCTR_WBUF_DRAINED	    = 0x12,
 52	ARMV6_PERFCTR_CPU_CYCLES	    = 0xFF,
 53	ARMV6_PERFCTR_NOP		    = 0x20,
 54};
 55
 56enum armv6_counters {
 57	ARMV6_CYCLE_COUNTER = 0,
 58	ARMV6_COUNTER0,
 59	ARMV6_COUNTER1,
 60};
 61
 62/*
 63 * The hardware events that we support. We do support cache operations but
 64 * we have harvard caches and no way to combine instruction and data
 65 * accesses/misses in hardware.
 66 */
 67static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = {
 68	[PERF_COUNT_HW_CPU_CYCLES]		= ARMV6_PERFCTR_CPU_CYCLES,
 69	[PERF_COUNT_HW_INSTRUCTIONS]		= ARMV6_PERFCTR_INSTR_EXEC,
 70	[PERF_COUNT_HW_CACHE_REFERENCES]	= HW_OP_UNSUPPORTED,
 71	[PERF_COUNT_HW_CACHE_MISSES]		= HW_OP_UNSUPPORTED,
 72	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= ARMV6_PERFCTR_BR_EXEC,
 73	[PERF_COUNT_HW_BRANCH_MISSES]		= ARMV6_PERFCTR_BR_MISPREDICT,
 74	[PERF_COUNT_HW_BUS_CYCLES]		= HW_OP_UNSUPPORTED,
 75	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= ARMV6_PERFCTR_IBUF_STALL,
 76	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= ARMV6_PERFCTR_LSU_FULL_STALL,
 77};
 78
 79static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
 80					  [PERF_COUNT_HW_CACHE_OP_MAX]
 81					  [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 82	[C(L1D)] = {
 83		/*
 84		 * The performance counters don't differentiate between read
 85		 * and write accesses/misses so this isn't strictly correct,
 86		 * but it's the best we can do. Writes and reads get
 87		 * combined.
 88		 */
 89		[C(OP_READ)] = {
 90			[C(RESULT_ACCESS)]	= ARMV6_PERFCTR_DCACHE_ACCESS,
 91			[C(RESULT_MISS)]	= ARMV6_PERFCTR_DCACHE_MISS,
 92		},
 93		[C(OP_WRITE)] = {
 94			[C(RESULT_ACCESS)]	= ARMV6_PERFCTR_DCACHE_ACCESS,
 95			[C(RESULT_MISS)]	= ARMV6_PERFCTR_DCACHE_MISS,
 96		},
 97		[C(OP_PREFETCH)] = {
 98			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
 99			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
100		},
101	},
102	[C(L1I)] = {
103		[C(OP_READ)] = {
104			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
105			[C(RESULT_MISS)]	= ARMV6_PERFCTR_ICACHE_MISS,
106		},
107		[C(OP_WRITE)] = {
108			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
109			[C(RESULT_MISS)]	= ARMV6_PERFCTR_ICACHE_MISS,
110		},
111		[C(OP_PREFETCH)] = {
112			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
113			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
114		},
115	},
116	[C(LL)] = {
117		[C(OP_READ)] = {
118			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
119			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
120		},
121		[C(OP_WRITE)] = {
122			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
123			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
124		},
125		[C(OP_PREFETCH)] = {
126			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
127			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
128		},
129	},
130	[C(DTLB)] = {
131		/*
132		 * The ARM performance counters can count micro DTLB misses,
133		 * micro ITLB misses and main TLB misses. There isn't an event
134		 * for TLB misses, so use the micro misses here and if users
135		 * want the main TLB misses they can use a raw counter.
136		 */
137		[C(OP_READ)] = {
138			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
139			[C(RESULT_MISS)]	= ARMV6_PERFCTR_DTLB_MISS,
140		},
141		[C(OP_WRITE)] = {
142			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
143			[C(RESULT_MISS)]	= ARMV6_PERFCTR_DTLB_MISS,
144		},
145		[C(OP_PREFETCH)] = {
146			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
147			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
148		},
149	},
150	[C(ITLB)] = {
151		[C(OP_READ)] = {
152			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
153			[C(RESULT_MISS)]	= ARMV6_PERFCTR_ITLB_MISS,
154		},
155		[C(OP_WRITE)] = {
156			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
157			[C(RESULT_MISS)]	= ARMV6_PERFCTR_ITLB_MISS,
158		},
159		[C(OP_PREFETCH)] = {
160			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
161			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
162		},
163	},
164	[C(BPU)] = {
165		[C(OP_READ)] = {
166			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
167			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
168		},
169		[C(OP_WRITE)] = {
170			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
171			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
172		},
173		[C(OP_PREFETCH)] = {
174			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
175			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
176		},
177	},
178	[C(NODE)] = {
179		[C(OP_READ)] = {
180			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
181			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
182		},
183		[C(OP_WRITE)] = {
184			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
185			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
186		},
187		[C(OP_PREFETCH)] = {
188			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
189			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
190		},
191	},
192};
193
194enum armv6mpcore_perf_types {
195	ARMV6MPCORE_PERFCTR_ICACHE_MISS	    = 0x0,
196	ARMV6MPCORE_PERFCTR_IBUF_STALL	    = 0x1,
197	ARMV6MPCORE_PERFCTR_DDEP_STALL	    = 0x2,
198	ARMV6MPCORE_PERFCTR_ITLB_MISS	    = 0x3,
199	ARMV6MPCORE_PERFCTR_DTLB_MISS	    = 0x4,
200	ARMV6MPCORE_PERFCTR_BR_EXEC	    = 0x5,
201	ARMV6MPCORE_PERFCTR_BR_NOTPREDICT   = 0x6,
202	ARMV6MPCORE_PERFCTR_BR_MISPREDICT   = 0x7,
203	ARMV6MPCORE_PERFCTR_INSTR_EXEC	    = 0x8,
204	ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS = 0xA,
205	ARMV6MPCORE_PERFCTR_DCACHE_RDMISS   = 0xB,
206	ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS = 0xC,
207	ARMV6MPCORE_PERFCTR_DCACHE_WRMISS   = 0xD,
208	ARMV6MPCORE_PERFCTR_DCACHE_EVICTION = 0xE,
209	ARMV6MPCORE_PERFCTR_SW_PC_CHANGE    = 0xF,
210	ARMV6MPCORE_PERFCTR_MAIN_TLB_MISS   = 0x10,
211	ARMV6MPCORE_PERFCTR_EXPL_MEM_ACCESS = 0x11,
212	ARMV6MPCORE_PERFCTR_LSU_FULL_STALL  = 0x12,
213	ARMV6MPCORE_PERFCTR_WBUF_DRAINED    = 0x13,
214	ARMV6MPCORE_PERFCTR_CPU_CYCLES	    = 0xFF,
215};
216
217/*
218 * The hardware events that we support. We do support cache operations but
219 * we have harvard caches and no way to combine instruction and data
220 * accesses/misses in hardware.
221 */
222static const unsigned armv6mpcore_perf_map[PERF_COUNT_HW_MAX] = {
223	[PERF_COUNT_HW_CPU_CYCLES]		= ARMV6MPCORE_PERFCTR_CPU_CYCLES,
224	[PERF_COUNT_HW_INSTRUCTIONS]		= ARMV6MPCORE_PERFCTR_INSTR_EXEC,
225	[PERF_COUNT_HW_CACHE_REFERENCES]	= HW_OP_UNSUPPORTED,
226	[PERF_COUNT_HW_CACHE_MISSES]		= HW_OP_UNSUPPORTED,
227	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= ARMV6MPCORE_PERFCTR_BR_EXEC,
228	[PERF_COUNT_HW_BRANCH_MISSES]		= ARMV6MPCORE_PERFCTR_BR_MISPREDICT,
229	[PERF_COUNT_HW_BUS_CYCLES]		= HW_OP_UNSUPPORTED,
230	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= ARMV6MPCORE_PERFCTR_IBUF_STALL,
231	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= ARMV6MPCORE_PERFCTR_LSU_FULL_STALL,
232};
233
234static const unsigned armv6mpcore_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
235					[PERF_COUNT_HW_CACHE_OP_MAX]
236					[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
237	[C(L1D)] = {
238		[C(OP_READ)] = {
239			[C(RESULT_ACCESS)]  =
240				ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS,
241			[C(RESULT_MISS)]    =
242				ARMV6MPCORE_PERFCTR_DCACHE_RDMISS,
243		},
244		[C(OP_WRITE)] = {
245			[C(RESULT_ACCESS)]  =
246				ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS,
247			[C(RESULT_MISS)]    =
248				ARMV6MPCORE_PERFCTR_DCACHE_WRMISS,
249		},
250		[C(OP_PREFETCH)] = {
251			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
252			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
253		},
254	},
255	[C(L1I)] = {
256		[C(OP_READ)] = {
257			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
258			[C(RESULT_MISS)]    = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
259		},
260		[C(OP_WRITE)] = {
261			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
262			[C(RESULT_MISS)]    = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
263		},
264		[C(OP_PREFETCH)] = {
265			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
266			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
267		},
268	},
269	[C(LL)] = {
270		[C(OP_READ)] = {
271			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
272			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
273		},
274		[C(OP_WRITE)] = {
275			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
276			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
277		},
278		[C(OP_PREFETCH)] = {
279			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
280			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
281		},
282	},
283	[C(DTLB)] = {
284		/*
285		 * The ARM performance counters can count micro DTLB misses,
286		 * micro ITLB misses and main TLB misses. There isn't an event
287		 * for TLB misses, so use the micro misses here and if users
288		 * want the main TLB misses they can use a raw counter.
289		 */
290		[C(OP_READ)] = {
291			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
292			[C(RESULT_MISS)]    = ARMV6MPCORE_PERFCTR_DTLB_MISS,
293		},
294		[C(OP_WRITE)] = {
295			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
296			[C(RESULT_MISS)]    = ARMV6MPCORE_PERFCTR_DTLB_MISS,
297		},
298		[C(OP_PREFETCH)] = {
299			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
300			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
301		},
302	},
303	[C(ITLB)] = {
304		[C(OP_READ)] = {
305			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
306			[C(RESULT_MISS)]    = ARMV6MPCORE_PERFCTR_ITLB_MISS,
307		},
308		[C(OP_WRITE)] = {
309			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
310			[C(RESULT_MISS)]    = ARMV6MPCORE_PERFCTR_ITLB_MISS,
311		},
312		[C(OP_PREFETCH)] = {
313			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
314			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
315		},
316	},
317	[C(BPU)] = {
318		[C(OP_READ)] = {
319			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
320			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
321		},
322		[C(OP_WRITE)] = {
323			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
324			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
325		},
326		[C(OP_PREFETCH)] = {
327			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
328			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
329		},
330	},
331	[C(NODE)] = {
332		[C(OP_READ)] = {
333			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
334			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
335		},
336		[C(OP_WRITE)] = {
337			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
338			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
339		},
340		[C(OP_PREFETCH)] = {
341			[C(RESULT_ACCESS)]  = CACHE_OP_UNSUPPORTED,
342			[C(RESULT_MISS)]    = CACHE_OP_UNSUPPORTED,
343		},
344	},
345};
346
347static inline unsigned long
348armv6_pmcr_read(void)
349{
350	u32 val;
351	asm volatile("mrc   p15, 0, %0, c15, c12, 0" : "=r"(val));
352	return val;
353}
354
355static inline void
356armv6_pmcr_write(unsigned long val)
357{
358	asm volatile("mcr   p15, 0, %0, c15, c12, 0" : : "r"(val));
359}
360
361#define ARMV6_PMCR_ENABLE		(1 << 0)
362#define ARMV6_PMCR_CTR01_RESET		(1 << 1)
363#define ARMV6_PMCR_CCOUNT_RESET		(1 << 2)
364#define ARMV6_PMCR_CCOUNT_DIV		(1 << 3)
365#define ARMV6_PMCR_COUNT0_IEN		(1 << 4)
366#define ARMV6_PMCR_COUNT1_IEN		(1 << 5)
367#define ARMV6_PMCR_CCOUNT_IEN		(1 << 6)
368#define ARMV6_PMCR_COUNT0_OVERFLOW	(1 << 8)
369#define ARMV6_PMCR_COUNT1_OVERFLOW	(1 << 9)
370#define ARMV6_PMCR_CCOUNT_OVERFLOW	(1 << 10)
371#define ARMV6_PMCR_EVT_COUNT0_SHIFT	20
372#define ARMV6_PMCR_EVT_COUNT0_MASK	(0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT)
373#define ARMV6_PMCR_EVT_COUNT1_SHIFT	12
374#define ARMV6_PMCR_EVT_COUNT1_MASK	(0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT)
375
376#define ARMV6_PMCR_OVERFLOWED_MASK \
377	(ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \
378	 ARMV6_PMCR_CCOUNT_OVERFLOW)
379
380static inline int
381armv6_pmcr_has_overflowed(unsigned long pmcr)
382{
383	return pmcr & ARMV6_PMCR_OVERFLOWED_MASK;
384}
385
386static inline int
387armv6_pmcr_counter_has_overflowed(unsigned long pmcr,
388				  enum armv6_counters counter)
389{
390	int ret = 0;
391
392	if (ARMV6_CYCLE_COUNTER == counter)
393		ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW;
394	else if (ARMV6_COUNTER0 == counter)
395		ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW;
396	else if (ARMV6_COUNTER1 == counter)
397		ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW;
398	else
399		WARN_ONCE(1, "invalid counter number (%d)\n", counter);
400
401	return ret;
402}
403
404static inline u32
405armv6pmu_read_counter(int counter)
406{
407	unsigned long value = 0;
408
409	if (ARMV6_CYCLE_COUNTER == counter)
410		asm volatile("mrc   p15, 0, %0, c15, c12, 1" : "=r"(value));
411	else if (ARMV6_COUNTER0 == counter)
412		asm volatile("mrc   p15, 0, %0, c15, c12, 2" : "=r"(value));
413	else if (ARMV6_COUNTER1 == counter)
414		asm volatile("mrc   p15, 0, %0, c15, c12, 3" : "=r"(value));
415	else
416		WARN_ONCE(1, "invalid counter number (%d)\n", counter);
417
418	return value;
419}
420
421static inline void
422armv6pmu_write_counter(int counter,
423		       u32 value)
424{
425	if (ARMV6_CYCLE_COUNTER == counter)
426		asm volatile("mcr   p15, 0, %0, c15, c12, 1" : : "r"(value));
427	else if (ARMV6_COUNTER0 == counter)
428		asm volatile("mcr   p15, 0, %0, c15, c12, 2" : : "r"(value));
429	else if (ARMV6_COUNTER1 == counter)
430		asm volatile("mcr   p15, 0, %0, c15, c12, 3" : : "r"(value));
431	else
432		WARN_ONCE(1, "invalid counter number (%d)\n", counter);
433}
434
435static void
436armv6pmu_enable_event(struct hw_perf_event *hwc,
437		      int idx)
438{
439	unsigned long val, mask, evt, flags;
440	struct pmu_hw_events *events = cpu_pmu->get_hw_events();
441
442	if (ARMV6_CYCLE_COUNTER == idx) {
443		mask	= 0;
444		evt	= ARMV6_PMCR_CCOUNT_IEN;
445	} else if (ARMV6_COUNTER0 == idx) {
446		mask	= ARMV6_PMCR_EVT_COUNT0_MASK;
447		evt	= (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) |
448			  ARMV6_PMCR_COUNT0_IEN;
449	} else if (ARMV6_COUNTER1 == idx) {
450		mask	= ARMV6_PMCR_EVT_COUNT1_MASK;
451		evt	= (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) |
452			  ARMV6_PMCR_COUNT1_IEN;
453	} else {
454		WARN_ONCE(1, "invalid counter number (%d)\n", idx);
455		return;
456	}
457
458	/*
459	 * Mask out the current event and set the counter to count the event
460	 * that we're interested in.
461	 */
462	raw_spin_lock_irqsave(&events->pmu_lock, flags);
463	val = armv6_pmcr_read();
464	val &= ~mask;
465	val |= evt;
466	armv6_pmcr_write(val);
467	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
468}
469
470static irqreturn_t
471armv6pmu_handle_irq(int irq_num,
472		    void *dev)
473{
474	unsigned long pmcr = armv6_pmcr_read();
475	struct perf_sample_data data;
476	struct pmu_hw_events *cpuc;
477	struct pt_regs *regs;
478	int idx;
479
480	if (!armv6_pmcr_has_overflowed(pmcr))
481		return IRQ_NONE;
482
483	regs = get_irq_regs();
484
485	/*
486	 * The interrupts are cleared by writing the overflow flags back to
487	 * the control register. All of the other bits don't have any effect
488	 * if they are rewritten, so write the whole value back.
489	 */
490	armv6_pmcr_write(pmcr);
491
 
 
492	cpuc = &__get_cpu_var(cpu_hw_events);
493	for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
494		struct perf_event *event = cpuc->events[idx];
495		struct hw_perf_event *hwc;
496
497		/* Ignore if we don't have an event. */
498		if (!event)
499			continue;
500
501		/*
502		 * We have a single interrupt for all counters. Check that
503		 * each counter has overflowed before we process it.
504		 */
505		if (!armv6_pmcr_counter_has_overflowed(pmcr, idx))
506			continue;
507
508		hwc = &event->hw;
509		armpmu_event_update(event, hwc, idx);
510		perf_sample_data_init(&data, 0, hwc->last_period);
511		if (!armpmu_event_set_period(event, hwc, idx))
512			continue;
513
514		if (perf_event_overflow(event, &data, regs))
515			cpu_pmu->disable(hwc, idx);
516	}
517
518	/*
519	 * Handle the pending perf events.
520	 *
521	 * Note: this call *must* be run with interrupts disabled. For
522	 * platforms that can have the PMU interrupts raised as an NMI, this
523	 * will not work.
524	 */
525	irq_work_run();
526
527	return IRQ_HANDLED;
528}
529
530static void
531armv6pmu_start(void)
532{
533	unsigned long flags, val;
534	struct pmu_hw_events *events = cpu_pmu->get_hw_events();
535
536	raw_spin_lock_irqsave(&events->pmu_lock, flags);
537	val = armv6_pmcr_read();
538	val |= ARMV6_PMCR_ENABLE;
539	armv6_pmcr_write(val);
540	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
541}
542
543static void
544armv6pmu_stop(void)
545{
546	unsigned long flags, val;
547	struct pmu_hw_events *events = cpu_pmu->get_hw_events();
548
549	raw_spin_lock_irqsave(&events->pmu_lock, flags);
550	val = armv6_pmcr_read();
551	val &= ~ARMV6_PMCR_ENABLE;
552	armv6_pmcr_write(val);
553	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
554}
555
556static int
557armv6pmu_get_event_idx(struct pmu_hw_events *cpuc,
558		       struct hw_perf_event *event)
559{
560	/* Always place a cycle counter into the cycle counter. */
561	if (ARMV6_PERFCTR_CPU_CYCLES == event->config_base) {
562		if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask))
563			return -EAGAIN;
564
565		return ARMV6_CYCLE_COUNTER;
566	} else {
567		/*
568		 * For anything other than a cycle counter, try and use
569		 * counter0 and counter1.
570		 */
571		if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask))
572			return ARMV6_COUNTER1;
573
574		if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask))
575			return ARMV6_COUNTER0;
576
577		/* The counters are all in use. */
578		return -EAGAIN;
579	}
580}
581
582static void
583armv6pmu_disable_event(struct hw_perf_event *hwc,
584		       int idx)
585{
586	unsigned long val, mask, evt, flags;
587	struct pmu_hw_events *events = cpu_pmu->get_hw_events();
588
589	if (ARMV6_CYCLE_COUNTER == idx) {
590		mask	= ARMV6_PMCR_CCOUNT_IEN;
591		evt	= 0;
592	} else if (ARMV6_COUNTER0 == idx) {
593		mask	= ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK;
594		evt	= ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT;
595	} else if (ARMV6_COUNTER1 == idx) {
596		mask	= ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK;
597		evt	= ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT;
598	} else {
599		WARN_ONCE(1, "invalid counter number (%d)\n", idx);
600		return;
601	}
602
603	/*
604	 * Mask out the current event and set the counter to count the number
605	 * of ETM bus signal assertion cycles. The external reporting should
606	 * be disabled and so this should never increment.
607	 */
608	raw_spin_lock_irqsave(&events->pmu_lock, flags);
609	val = armv6_pmcr_read();
610	val &= ~mask;
611	val |= evt;
612	armv6_pmcr_write(val);
613	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
614}
615
616static void
617armv6mpcore_pmu_disable_event(struct hw_perf_event *hwc,
618			      int idx)
619{
620	unsigned long val, mask, flags, evt = 0;
621	struct pmu_hw_events *events = cpu_pmu->get_hw_events();
622
623	if (ARMV6_CYCLE_COUNTER == idx) {
624		mask	= ARMV6_PMCR_CCOUNT_IEN;
625	} else if (ARMV6_COUNTER0 == idx) {
626		mask	= ARMV6_PMCR_COUNT0_IEN;
627	} else if (ARMV6_COUNTER1 == idx) {
628		mask	= ARMV6_PMCR_COUNT1_IEN;
629	} else {
630		WARN_ONCE(1, "invalid counter number (%d)\n", idx);
631		return;
632	}
633
634	/*
635	 * Unlike UP ARMv6, we don't have a way of stopping the counters. We
636	 * simply disable the interrupt reporting.
637	 */
638	raw_spin_lock_irqsave(&events->pmu_lock, flags);
639	val = armv6_pmcr_read();
640	val &= ~mask;
641	val |= evt;
642	armv6_pmcr_write(val);
643	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
644}
645
646static int armv6_map_event(struct perf_event *event)
647{
648	return map_cpu_event(event, &armv6_perf_map,
649				&armv6_perf_cache_map, 0xFF);
650}
651
652static struct arm_pmu armv6pmu = {
653	.id			= ARM_PERF_PMU_ID_V6,
654	.name			= "v6",
655	.handle_irq		= armv6pmu_handle_irq,
656	.enable			= armv6pmu_enable_event,
657	.disable		= armv6pmu_disable_event,
658	.read_counter		= armv6pmu_read_counter,
659	.write_counter		= armv6pmu_write_counter,
660	.get_event_idx		= armv6pmu_get_event_idx,
661	.start			= armv6pmu_start,
662	.stop			= armv6pmu_stop,
663	.map_event		= armv6_map_event,
 
 
664	.num_events		= 3,
665	.max_period		= (1LLU << 32) - 1,
666};
667
668static struct arm_pmu *__init armv6pmu_init(void)
669{
670	return &armv6pmu;
671}
672
673/*
674 * ARMv6mpcore is almost identical to single core ARMv6 with the exception
675 * that some of the events have different enumerations and that there is no
676 * *hack* to stop the programmable counters. To stop the counters we simply
677 * disable the interrupt reporting and update the event. When unthrottling we
678 * reset the period and enable the interrupt reporting.
679 */
680
681static int armv6mpcore_map_event(struct perf_event *event)
682{
683	return map_cpu_event(event, &armv6mpcore_perf_map,
684				&armv6mpcore_perf_cache_map, 0xFF);
685}
686
687static struct arm_pmu armv6mpcore_pmu = {
688	.id			= ARM_PERF_PMU_ID_V6MP,
689	.name			= "v6mpcore",
690	.handle_irq		= armv6pmu_handle_irq,
691	.enable			= armv6pmu_enable_event,
692	.disable		= armv6mpcore_pmu_disable_event,
693	.read_counter		= armv6pmu_read_counter,
694	.write_counter		= armv6pmu_write_counter,
695	.get_event_idx		= armv6pmu_get_event_idx,
696	.start			= armv6pmu_start,
697	.stop			= armv6pmu_stop,
698	.map_event		= armv6mpcore_map_event,
 
 
699	.num_events		= 3,
700	.max_period		= (1LLU << 32) - 1,
701};
702
703static struct arm_pmu *__init armv6mpcore_pmu_init(void)
704{
705	return &armv6mpcore_pmu;
706}
707#else
708static struct arm_pmu *__init armv6pmu_init(void)
709{
710	return NULL;
711}
712
713static struct arm_pmu *__init armv6mpcore_pmu_init(void)
714{
715	return NULL;
716}
717#endif	/* CONFIG_CPU_V6 || CONFIG_CPU_V6K */