Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * arch/arm/kernel/kprobes.h
  3 *
  4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
  5 *
  6 * Some contents moved here from arch/arm/include/asm/kprobes.h which is
  7 * Copyright (C) 2006, 2007 Motorola Inc.
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 16 * General Public License for more details.
 17 */
 18
 19#ifndef _ARM_KERNEL_KPROBES_H
 20#define _ARM_KERNEL_KPROBES_H
 21
 22/*
 23 * These undefined instructions must be unique and
 24 * reserved solely for kprobes' use.
 25 */
 26#define KPROBE_ARM_BREAKPOINT_INSTRUCTION	0x07f001f8
 27#define KPROBE_THUMB16_BREAKPOINT_INSTRUCTION	0xde18
 28#define KPROBE_THUMB32_BREAKPOINT_INSTRUCTION	0xf7f0a018
 29
 30
 31enum kprobe_insn {
 32	INSN_REJECTED,
 33	INSN_GOOD,
 34	INSN_GOOD_NO_SLOT
 35};
 36
 37typedef enum kprobe_insn (kprobe_decode_insn_t)(kprobe_opcode_t,
 38						struct arch_specific_insn *);
 39
 40#ifdef CONFIG_THUMB2_KERNEL
 41
 42enum kprobe_insn thumb16_kprobe_decode_insn(kprobe_opcode_t,
 43						struct arch_specific_insn *);
 44enum kprobe_insn thumb32_kprobe_decode_insn(kprobe_opcode_t,
 45						struct arch_specific_insn *);
 46
 47#else /* !CONFIG_THUMB2_KERNEL */
 48
 49enum kprobe_insn arm_kprobe_decode_insn(kprobe_opcode_t,
 50					struct arch_specific_insn *);
 51#endif
 52
 53void __init arm_kprobe_decode_init(void);
 54
 55extern kprobe_check_cc * const kprobe_condition_checks[16];
 56
 57
 58#if __LINUX_ARM_ARCH__ >= 7
 59
 60/* str_pc_offset is architecturally defined from ARMv7 onwards */
 61#define str_pc_offset 8
 62#define find_str_pc_offset()
 63
 64#else /* __LINUX_ARM_ARCH__ < 7 */
 65
 66/* We need a run-time check to determine str_pc_offset */
 67extern int str_pc_offset;
 68void __init find_str_pc_offset(void);
 69
 70#endif
 71
 72
 73/*
 74 * Update ITSTATE after normal execution of an IT block instruction.
 75 *
 76 * The 8 IT state bits are split into two parts in CPSR:
 77 *	ITSTATE<1:0> are in CPSR<26:25>
 78 *	ITSTATE<7:2> are in CPSR<15:10>
 79 */
 80static inline unsigned long it_advance(unsigned long cpsr)
 81	{
 82	if ((cpsr & 0x06000400) == 0) {
 83		/* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */
 84		cpsr &= ~PSR_IT_MASK;
 85	} else {
 86		/* We need to shift left ITSTATE<4:0> */
 87		const unsigned long mask = 0x06001c00;  /* Mask ITSTATE<4:0> */
 88		unsigned long it = cpsr & mask;
 89		it <<= 1;
 90		it |= it >> (27 - 10);  /* Carry ITSTATE<2> to correct place */
 91		it &= mask;
 92		cpsr &= ~mask;
 93		cpsr |= it;
 94	}
 95	return cpsr;
 96}
 97
 98static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs)
 99{
100	long cpsr = regs->ARM_cpsr;
101	if (pcv & 0x1) {
102		cpsr |= PSR_T_BIT;
103		pcv &= ~0x1;
104	} else {
105		cpsr &= ~PSR_T_BIT;
106		pcv &= ~0x2;	/* Avoid UNPREDICTABLE address allignment */
107	}
108	regs->ARM_cpsr = cpsr;
109	regs->ARM_pc = pcv;
110}
111
112
113#if __LINUX_ARM_ARCH__ >= 6
114
115/* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
116#define load_write_pc_interworks true
117#define test_load_write_pc_interworking()
118
119#else /* __LINUX_ARM_ARCH__ < 6 */
120
121/* We need run-time testing to determine if load_write_pc() should interwork. */
122extern bool load_write_pc_interworks;
123void __init test_load_write_pc_interworking(void);
124
125#endif
126
127static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs)
128{
129	if (load_write_pc_interworks)
130		bx_write_pc(pcv, regs);
131	else
132		regs->ARM_pc = pcv;
133}
134
135
136#if __LINUX_ARM_ARCH__ >= 7
137
138#define alu_write_pc_interworks true
139#define test_alu_write_pc_interworking()
140
141#elif __LINUX_ARM_ARCH__ <= 5
142
143/* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */
144#define alu_write_pc_interworks false
145#define test_alu_write_pc_interworking()
146
147#else /* __LINUX_ARM_ARCH__ == 6 */
148
149/* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */
150extern bool alu_write_pc_interworks;
151void __init test_alu_write_pc_interworking(void);
152
153#endif /* __LINUX_ARM_ARCH__ == 6 */
154
155static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs)
156{
157	if (alu_write_pc_interworks)
158		bx_write_pc(pcv, regs);
159	else
160		regs->ARM_pc = pcv;
161}
162
163
164void __kprobes kprobe_simulate_nop(struct kprobe *p, struct pt_regs *regs);
165void __kprobes kprobe_emulate_none(struct kprobe *p, struct pt_regs *regs);
166
167enum kprobe_insn __kprobes
168kprobe_decode_ldmstm(kprobe_opcode_t insn, struct arch_specific_insn *asi);
169
170/*
171 * Test if load/store instructions writeback the address register.
172 * if P (bit 24) == 0 or W (bit 21) == 1
173 */
174#define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
175
176/*
177 * The following definitions and macros are used to build instruction
178 * decoding tables for use by kprobe_decode_insn.
179 *
180 * These tables are a concatenation of entries each of which consist of one of
181 * the decode_* structs. All of the fields in every type of decode structure
182 * are of the union type decode_item, therefore the entire decode table can be
183 * viewed as an array of these and declared like:
184 *
185 *	static const union decode_item table_name[] = {};
186 *
187 * In order to construct each entry in the table, macros are used to
188 * initialise a number of sequential decode_item values in a layout which
189 * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
190 * decode_simulate by initialising four decode_item objects like this...
191 *
192 *	{.bits = _type},
193 *	{.bits = _mask},
194 *	{.bits = _value},
195 *	{.handler = _handler},
196 *
197 * Initialising a specified member of the union means that the compiler
198 * will produce a warning if the argument is of an incorrect type.
199 *
200 * Below is a list of each of the macros used to initialise entries and a
201 * description of the action performed when that entry is matched to an
202 * instruction. A match is found when (instruction & mask) == value.
203 *
204 * DECODE_TABLE(mask, value, table)
205 *	Instruction decoding jumps to parsing the new sub-table 'table'.
206 *
207 * DECODE_CUSTOM(mask, value, decoder)
208 *	The custom function 'decoder' is called to the complete decoding
209 *	of an instruction.
210 *
211 * DECODE_SIMULATE(mask, value, handler)
212 *	Set the probes instruction handler to 'handler', this will be used
213 *	to simulate the instruction when the probe is hit. Decoding returns
214 *	with INSN_GOOD_NO_SLOT.
215 *
216 * DECODE_EMULATE(mask, value, handler)
217 *	Set the probes instruction handler to 'handler', this will be used
218 *	to emulate the instruction when the probe is hit. The modified
219 *	instruction (see below) is placed in the probes instruction slot so it
220 *	may be called by the emulation code. Decoding returns with INSN_GOOD.
221 *
222 * DECODE_REJECT(mask, value)
223 *	Instruction decoding fails with INSN_REJECTED
224 *
225 * DECODE_OR(mask, value)
226 *	This allows the mask/value test of multiple table entries to be
227 *	logically ORed. Once an 'or' entry is matched the decoding action to
228 *	be performed is that of the next entry which isn't an 'or'. E.g.
229 *
230 *		DECODE_OR	(mask1, value1)
231 *		DECODE_OR	(mask2, value2)
232 *		DECODE_SIMULATE	(mask3, value3, simulation_handler)
233 *
234 *	This means that if any of the three mask/value pairs match the
235 *	instruction being decoded, then 'simulation_handler' will be used
236 *	for it.
237 *
238 * Both the SIMULATE and EMULATE macros have a second form which take an
239 * additional 'regs' argument.
240 *
241 *	DECODE_SIMULATEX(mask, value, handler, regs)
242 *	DECODE_EMULATEX	(mask, value, handler, regs)
243 *
244 * These are used to specify what kind of CPU register is encoded in each of the
245 * least significant 5 nibbles of the instruction being decoded. The regs value
246 * is specified using the REGS macro, this takes any of the REG_TYPE_* values
247 * from enum decode_reg_type as arguments; only the '*' part of the name is
248 * given. E.g.
249 *
250 *	REGS(0, ANY, NOPC, 0, ANY)
251 *
252 * This indicates an instruction is encoded like:
253 *
254 *	bits 19..16	ignore
255 *	bits 15..12	any register allowed here
256 *	bits 11.. 8	any register except PC allowed here
257 *	bits  7.. 4	ignore
258 *	bits  3.. 0	any register allowed here
259 *
260 * This register specification is checked after a decode table entry is found to
261 * match an instruction (through the mask/value test). Any invalid register then
262 * found in the instruction will cause decoding to fail with INSN_REJECTED. In
263 * the above example this would happen if bits 11..8 of the instruction were
264 * 1111, indicating R15 or PC.
265 *
266 * As well as checking for legal combinations of registers, this data is also
267 * used to modify the registers encoded in the instructions so that an
268 * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
269 *
270 * Here is a real example which matches ARM instructions of the form
271 * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
272 *
273 *	DECODE_EMULATEX	(0x0e000090, 0x00000010, emulate_rd12rn16rm0rs8_rwflags,
274 *						 REGS(ANY, ANY, NOPC, 0, ANY)),
275 *						      ^    ^    ^        ^
276 *						      Rn   Rd   Rs       Rm
277 *
278 * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
279 * Rs == R15
280 *
281 * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
282 * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
283 * the kprobes instruction slot. This can then be called later by the handler
284 * function emulate_rd12rn16rm0rs8_rwflags in order to simulate the instruction.
285 */
286
287enum decode_type {
288	DECODE_TYPE_END,
289	DECODE_TYPE_TABLE,
290	DECODE_TYPE_CUSTOM,
291	DECODE_TYPE_SIMULATE,
292	DECODE_TYPE_EMULATE,
293	DECODE_TYPE_OR,
294	DECODE_TYPE_REJECT,
295	NUM_DECODE_TYPES /* Must be last enum */
296};
297
298#define DECODE_TYPE_BITS	4
299#define DECODE_TYPE_MASK	((1 << DECODE_TYPE_BITS) - 1)
300
301enum decode_reg_type {
302	REG_TYPE_NONE = 0, /* Not a register, ignore */
303	REG_TYPE_ANY,	   /* Any register allowed */
304	REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */
305	REG_TYPE_SP,	   /* Register must be SP */
306	REG_TYPE_PC,	   /* Register must be PC */
307	REG_TYPE_NOSP,	   /* Register must not be SP */
308	REG_TYPE_NOSPPC,   /* Register must not be SP or PC */
309	REG_TYPE_NOPC,	   /* Register must not be PC */
310	REG_TYPE_NOPCWB,   /* No PC if load/store write-back flag also set */
311
312	/* The following types are used when the encoding for PC indicates
313	 * another instruction form. This distiction only matters for test
314	 * case coverage checks.
315	 */
316	REG_TYPE_NOPCX,	   /* Register must not be PC */
317	REG_TYPE_NOSPPCX,  /* Register must not be SP or PC */
318
319	/* Alias to allow '0' arg to be used in REGS macro. */
320	REG_TYPE_0 = REG_TYPE_NONE
321};
322
323#define REGS(r16, r12, r8, r4, r0)	\
324	((REG_TYPE_##r16) << 16) +	\
325	((REG_TYPE_##r12) << 12) +	\
326	((REG_TYPE_##r8) << 8) +	\
327	((REG_TYPE_##r4) << 4) +	\
328	(REG_TYPE_##r0)
329
330union decode_item {
331	u32			bits;
332	const union decode_item	*table;
333	kprobe_insn_handler_t	*handler;
334	kprobe_decode_insn_t	*decoder;
335};
336
337
338#define DECODE_END			\
339	{.bits = DECODE_TYPE_END}
340
341
342struct decode_header {
343	union decode_item	type_regs;
344	union decode_item	mask;
345	union decode_item	value;
346};
347
348#define DECODE_HEADER(_type, _mask, _value, _regs)		\
349	{.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)},	\
350	{.bits = (_mask)},					\
351	{.bits = (_value)}
352
353
354struct decode_table {
355	struct decode_header	header;
356	union decode_item	table;
357};
358
359#define DECODE_TABLE(_mask, _value, _table)			\
360	DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0),	\
361	{.table = (_table)}
362
363
364struct decode_custom {
365	struct decode_header	header;
366	union decode_item	decoder;
367};
368
369#define DECODE_CUSTOM(_mask, _value, _decoder)			\
370	DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0),	\
371	{.decoder = (_decoder)}
372
373
374struct decode_simulate {
375	struct decode_header	header;
376	union decode_item	handler;
377};
378
379#define DECODE_SIMULATEX(_mask, _value, _handler, _regs)		\
380	DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs),	\
381	{.handler = (_handler)}
382
383#define DECODE_SIMULATE(_mask, _value, _handler)	\
384	DECODE_SIMULATEX(_mask, _value, _handler, 0)
385
386
387struct decode_emulate {
388	struct decode_header	header;
389	union decode_item	handler;
390};
391
392#define DECODE_EMULATEX(_mask, _value, _handler, _regs)			\
393	DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs),	\
394	{.handler = (_handler)}
395
396#define DECODE_EMULATE(_mask, _value, _handler)		\
397	DECODE_EMULATEX(_mask, _value, _handler, 0)
398
399
400struct decode_or {
401	struct decode_header	header;
402};
403
404#define DECODE_OR(_mask, _value)				\
405	DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
406
407
408struct decode_reject {
409	struct decode_header	header;
410};
411
412#define DECODE_REJECT(_mask, _value)				\
413	DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
414
415
 
 
 
 
 
 
 
 
416int kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi,
417			const union decode_item *table, bool thumb16);
418
419
420#endif /* _ARM_KERNEL_KPROBES_H */
v3.5.6
  1/*
  2 * arch/arm/kernel/kprobes.h
  3 *
  4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
  5 *
  6 * Some contents moved here from arch/arm/include/asm/kprobes.h which is
  7 * Copyright (C) 2006, 2007 Motorola Inc.
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 16 * General Public License for more details.
 17 */
 18
 19#ifndef _ARM_KERNEL_KPROBES_H
 20#define _ARM_KERNEL_KPROBES_H
 21
 22/*
 23 * These undefined instructions must be unique and
 24 * reserved solely for kprobes' use.
 25 */
 26#define KPROBE_ARM_BREAKPOINT_INSTRUCTION	0x07f001f8
 27#define KPROBE_THUMB16_BREAKPOINT_INSTRUCTION	0xde18
 28#define KPROBE_THUMB32_BREAKPOINT_INSTRUCTION	0xf7f0a018
 29
 30
 31enum kprobe_insn {
 32	INSN_REJECTED,
 33	INSN_GOOD,
 34	INSN_GOOD_NO_SLOT
 35};
 36
 37typedef enum kprobe_insn (kprobe_decode_insn_t)(kprobe_opcode_t,
 38						struct arch_specific_insn *);
 39
 40#ifdef CONFIG_THUMB2_KERNEL
 41
 42enum kprobe_insn thumb16_kprobe_decode_insn(kprobe_opcode_t,
 43						struct arch_specific_insn *);
 44enum kprobe_insn thumb32_kprobe_decode_insn(kprobe_opcode_t,
 45						struct arch_specific_insn *);
 46
 47#else /* !CONFIG_THUMB2_KERNEL */
 48
 49enum kprobe_insn arm_kprobe_decode_insn(kprobe_opcode_t,
 50					struct arch_specific_insn *);
 51#endif
 52
 53void __init arm_kprobe_decode_init(void);
 54
 55extern kprobe_check_cc * const kprobe_condition_checks[16];
 56
 57
 58#if __LINUX_ARM_ARCH__ >= 7
 59
 60/* str_pc_offset is architecturally defined from ARMv7 onwards */
 61#define str_pc_offset 8
 62#define find_str_pc_offset()
 63
 64#else /* __LINUX_ARM_ARCH__ < 7 */
 65
 66/* We need a run-time check to determine str_pc_offset */
 67extern int str_pc_offset;
 68void __init find_str_pc_offset(void);
 69
 70#endif
 71
 72
 73/*
 74 * Update ITSTATE after normal execution of an IT block instruction.
 75 *
 76 * The 8 IT state bits are split into two parts in CPSR:
 77 *	ITSTATE<1:0> are in CPSR<26:25>
 78 *	ITSTATE<7:2> are in CPSR<15:10>
 79 */
 80static inline unsigned long it_advance(unsigned long cpsr)
 81	{
 82	if ((cpsr & 0x06000400) == 0) {
 83		/* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */
 84		cpsr &= ~PSR_IT_MASK;
 85	} else {
 86		/* We need to shift left ITSTATE<4:0> */
 87		const unsigned long mask = 0x06001c00;  /* Mask ITSTATE<4:0> */
 88		unsigned long it = cpsr & mask;
 89		it <<= 1;
 90		it |= it >> (27 - 10);  /* Carry ITSTATE<2> to correct place */
 91		it &= mask;
 92		cpsr &= ~mask;
 93		cpsr |= it;
 94	}
 95	return cpsr;
 96}
 97
 98static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs)
 99{
100	long cpsr = regs->ARM_cpsr;
101	if (pcv & 0x1) {
102		cpsr |= PSR_T_BIT;
103		pcv &= ~0x1;
104	} else {
105		cpsr &= ~PSR_T_BIT;
106		pcv &= ~0x2;	/* Avoid UNPREDICTABLE address allignment */
107	}
108	regs->ARM_cpsr = cpsr;
109	regs->ARM_pc = pcv;
110}
111
112
113#if __LINUX_ARM_ARCH__ >= 6
114
115/* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
116#define load_write_pc_interworks true
117#define test_load_write_pc_interworking()
118
119#else /* __LINUX_ARM_ARCH__ < 6 */
120
121/* We need run-time testing to determine if load_write_pc() should interwork. */
122extern bool load_write_pc_interworks;
123void __init test_load_write_pc_interworking(void);
124
125#endif
126
127static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs)
128{
129	if (load_write_pc_interworks)
130		bx_write_pc(pcv, regs);
131	else
132		regs->ARM_pc = pcv;
133}
134
135
136#if __LINUX_ARM_ARCH__ >= 7
137
138#define alu_write_pc_interworks true
139#define test_alu_write_pc_interworking()
140
141#elif __LINUX_ARM_ARCH__ <= 5
142
143/* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */
144#define alu_write_pc_interworks false
145#define test_alu_write_pc_interworking()
146
147#else /* __LINUX_ARM_ARCH__ == 6 */
148
149/* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */
150extern bool alu_write_pc_interworks;
151void __init test_alu_write_pc_interworking(void);
152
153#endif /* __LINUX_ARM_ARCH__ == 6 */
154
155static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs)
156{
157	if (alu_write_pc_interworks)
158		bx_write_pc(pcv, regs);
159	else
160		regs->ARM_pc = pcv;
161}
162
163
164void __kprobes kprobe_simulate_nop(struct kprobe *p, struct pt_regs *regs);
165void __kprobes kprobe_emulate_none(struct kprobe *p, struct pt_regs *regs);
166
167enum kprobe_insn __kprobes
168kprobe_decode_ldmstm(kprobe_opcode_t insn, struct arch_specific_insn *asi);
169
170/*
171 * Test if load/store instructions writeback the address register.
172 * if P (bit 24) == 0 or W (bit 21) == 1
173 */
174#define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
175
176/*
177 * The following definitions and macros are used to build instruction
178 * decoding tables for use by kprobe_decode_insn.
179 *
180 * These tables are a concatenation of entries each of which consist of one of
181 * the decode_* structs. All of the fields in every type of decode structure
182 * are of the union type decode_item, therefore the entire decode table can be
183 * viewed as an array of these and declared like:
184 *
185 *	static const union decode_item table_name[] = {};
186 *
187 * In order to construct each entry in the table, macros are used to
188 * initialise a number of sequential decode_item values in a layout which
189 * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
190 * decode_simulate by initialising four decode_item objects like this...
191 *
192 *	{.bits = _type},
193 *	{.bits = _mask},
194 *	{.bits = _value},
195 *	{.handler = _handler},
196 *
197 * Initialising a specified member of the union means that the compiler
198 * will produce a warning if the argument is of an incorrect type.
199 *
200 * Below is a list of each of the macros used to initialise entries and a
201 * description of the action performed when that entry is matched to an
202 * instruction. A match is found when (instruction & mask) == value.
203 *
204 * DECODE_TABLE(mask, value, table)
205 *	Instruction decoding jumps to parsing the new sub-table 'table'.
206 *
207 * DECODE_CUSTOM(mask, value, decoder)
208 *	The custom function 'decoder' is called to the complete decoding
209 *	of an instruction.
210 *
211 * DECODE_SIMULATE(mask, value, handler)
212 *	Set the probes instruction handler to 'handler', this will be used
213 *	to simulate the instruction when the probe is hit. Decoding returns
214 *	with INSN_GOOD_NO_SLOT.
215 *
216 * DECODE_EMULATE(mask, value, handler)
217 *	Set the probes instruction handler to 'handler', this will be used
218 *	to emulate the instruction when the probe is hit. The modified
219 *	instruction (see below) is placed in the probes instruction slot so it
220 *	may be called by the emulation code. Decoding returns with INSN_GOOD.
221 *
222 * DECODE_REJECT(mask, value)
223 *	Instruction decoding fails with INSN_REJECTED
224 *
225 * DECODE_OR(mask, value)
226 *	This allows the mask/value test of multiple table entries to be
227 *	logically ORed. Once an 'or' entry is matched the decoding action to
228 *	be performed is that of the next entry which isn't an 'or'. E.g.
229 *
230 *		DECODE_OR	(mask1, value1)
231 *		DECODE_OR	(mask2, value2)
232 *		DECODE_SIMULATE	(mask3, value3, simulation_handler)
233 *
234 *	This means that if any of the three mask/value pairs match the
235 *	instruction being decoded, then 'simulation_handler' will be used
236 *	for it.
237 *
238 * Both the SIMULATE and EMULATE macros have a second form which take an
239 * additional 'regs' argument.
240 *
241 *	DECODE_SIMULATEX(mask, value, handler, regs)
242 *	DECODE_EMULATEX	(mask, value, handler, regs)
243 *
244 * These are used to specify what kind of CPU register is encoded in each of the
245 * least significant 5 nibbles of the instruction being decoded. The regs value
246 * is specified using the REGS macro, this takes any of the REG_TYPE_* values
247 * from enum decode_reg_type as arguments; only the '*' part of the name is
248 * given. E.g.
249 *
250 *	REGS(0, ANY, NOPC, 0, ANY)
251 *
252 * This indicates an instruction is encoded like:
253 *
254 *	bits 19..16	ignore
255 *	bits 15..12	any register allowed here
256 *	bits 11.. 8	any register except PC allowed here
257 *	bits  7.. 4	ignore
258 *	bits  3.. 0	any register allowed here
259 *
260 * This register specification is checked after a decode table entry is found to
261 * match an instruction (through the mask/value test). Any invalid register then
262 * found in the instruction will cause decoding to fail with INSN_REJECTED. In
263 * the above example this would happen if bits 11..8 of the instruction were
264 * 1111, indicating R15 or PC.
265 *
266 * As well as checking for legal combinations of registers, this data is also
267 * used to modify the registers encoded in the instructions so that an
268 * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
269 *
270 * Here is a real example which matches ARM instructions of the form
271 * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
272 *
273 *	DECODE_EMULATEX	(0x0e000090, 0x00000010, emulate_rd12rn16rm0rs8_rwflags,
274 *						 REGS(ANY, ANY, NOPC, 0, ANY)),
275 *						      ^    ^    ^        ^
276 *						      Rn   Rd   Rs       Rm
277 *
278 * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
279 * Rs == R15
280 *
281 * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
282 * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
283 * the kprobes instruction slot. This can then be called later by the handler
284 * function emulate_rd12rn16rm0rs8_rwflags in order to simulate the instruction.
285 */
286
287enum decode_type {
288	DECODE_TYPE_END,
289	DECODE_TYPE_TABLE,
290	DECODE_TYPE_CUSTOM,
291	DECODE_TYPE_SIMULATE,
292	DECODE_TYPE_EMULATE,
293	DECODE_TYPE_OR,
294	DECODE_TYPE_REJECT,
295	NUM_DECODE_TYPES /* Must be last enum */
296};
297
298#define DECODE_TYPE_BITS	4
299#define DECODE_TYPE_MASK	((1 << DECODE_TYPE_BITS) - 1)
300
301enum decode_reg_type {
302	REG_TYPE_NONE = 0, /* Not a register, ignore */
303	REG_TYPE_ANY,	   /* Any register allowed */
304	REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */
305	REG_TYPE_SP,	   /* Register must be SP */
306	REG_TYPE_PC,	   /* Register must be PC */
307	REG_TYPE_NOSP,	   /* Register must not be SP */
308	REG_TYPE_NOSPPC,   /* Register must not be SP or PC */
309	REG_TYPE_NOPC,	   /* Register must not be PC */
310	REG_TYPE_NOPCWB,   /* No PC if load/store write-back flag also set */
311
312	/* The following types are used when the encoding for PC indicates
313	 * another instruction form. This distiction only matters for test
314	 * case coverage checks.
315	 */
316	REG_TYPE_NOPCX,	   /* Register must not be PC */
317	REG_TYPE_NOSPPCX,  /* Register must not be SP or PC */
318
319	/* Alias to allow '0' arg to be used in REGS macro. */
320	REG_TYPE_0 = REG_TYPE_NONE
321};
322
323#define REGS(r16, r12, r8, r4, r0)	\
324	((REG_TYPE_##r16) << 16) +	\
325	((REG_TYPE_##r12) << 12) +	\
326	((REG_TYPE_##r8) << 8) +	\
327	((REG_TYPE_##r4) << 4) +	\
328	(REG_TYPE_##r0)
329
330union decode_item {
331	u32			bits;
332	const union decode_item	*table;
333	kprobe_insn_handler_t	*handler;
334	kprobe_decode_insn_t	*decoder;
335};
336
337
338#define DECODE_END			\
339	{.bits = DECODE_TYPE_END}
340
341
342struct decode_header {
343	union decode_item	type_regs;
344	union decode_item	mask;
345	union decode_item	value;
346};
347
348#define DECODE_HEADER(_type, _mask, _value, _regs)		\
349	{.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)},	\
350	{.bits = (_mask)},					\
351	{.bits = (_value)}
352
353
354struct decode_table {
355	struct decode_header	header;
356	union decode_item	table;
357};
358
359#define DECODE_TABLE(_mask, _value, _table)			\
360	DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0),	\
361	{.table = (_table)}
362
363
364struct decode_custom {
365	struct decode_header	header;
366	union decode_item	decoder;
367};
368
369#define DECODE_CUSTOM(_mask, _value, _decoder)			\
370	DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0),	\
371	{.decoder = (_decoder)}
372
373
374struct decode_simulate {
375	struct decode_header	header;
376	union decode_item	handler;
377};
378
379#define DECODE_SIMULATEX(_mask, _value, _handler, _regs)		\
380	DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs),	\
381	{.handler = (_handler)}
382
383#define DECODE_SIMULATE(_mask, _value, _handler)	\
384	DECODE_SIMULATEX(_mask, _value, _handler, 0)
385
386
387struct decode_emulate {
388	struct decode_header	header;
389	union decode_item	handler;
390};
391
392#define DECODE_EMULATEX(_mask, _value, _handler, _regs)			\
393	DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs),	\
394	{.handler = (_handler)}
395
396#define DECODE_EMULATE(_mask, _value, _handler)		\
397	DECODE_EMULATEX(_mask, _value, _handler, 0)
398
399
400struct decode_or {
401	struct decode_header	header;
402};
403
404#define DECODE_OR(_mask, _value)				\
405	DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
406
407
408struct decode_reject {
409	struct decode_header	header;
410};
411
412#define DECODE_REJECT(_mask, _value)				\
413	DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
414
415
416#ifdef CONFIG_THUMB2_KERNEL
417extern const union decode_item kprobe_decode_thumb16_table[];
418extern const union decode_item kprobe_decode_thumb32_table[];
419#else
420extern const union decode_item kprobe_decode_arm_table[];
421#endif
422
423
424int kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi,
425			const union decode_item *table, bool thumb16);
426
427
428#endif /* _ARM_KERNEL_KPROBES_H */