Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Generic ring buffer
   3 *
   4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   5 */
   6#include <linux/ring_buffer.h>
   7#include <linux/trace_clock.h>
   8#include <linux/spinlock.h>
   9#include <linux/debugfs.h>
  10#include <linux/uaccess.h>
  11#include <linux/hardirq.h>
  12#include <linux/kmemcheck.h>
  13#include <linux/module.h>
  14#include <linux/percpu.h>
  15#include <linux/mutex.h>
  16#include <linux/slab.h>
  17#include <linux/init.h>
  18#include <linux/hash.h>
  19#include <linux/list.h>
  20#include <linux/cpu.h>
  21#include <linux/fs.h>
  22
  23#include <asm/local.h>
  24#include "trace.h"
  25
 
 
  26/*
  27 * The ring buffer header is special. We must manually up keep it.
  28 */
  29int ring_buffer_print_entry_header(struct trace_seq *s)
  30{
  31	int ret;
  32
  33	ret = trace_seq_printf(s, "# compressed entry header\n");
  34	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
  35	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
  36	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
  37	ret = trace_seq_printf(s, "\n");
  38	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
  39			       RINGBUF_TYPE_PADDING);
  40	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
  41			       RINGBUF_TYPE_TIME_EXTEND);
  42	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
  43			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  44
  45	return ret;
  46}
  47
  48/*
  49 * The ring buffer is made up of a list of pages. A separate list of pages is
  50 * allocated for each CPU. A writer may only write to a buffer that is
  51 * associated with the CPU it is currently executing on.  A reader may read
  52 * from any per cpu buffer.
  53 *
  54 * The reader is special. For each per cpu buffer, the reader has its own
  55 * reader page. When a reader has read the entire reader page, this reader
  56 * page is swapped with another page in the ring buffer.
  57 *
  58 * Now, as long as the writer is off the reader page, the reader can do what
  59 * ever it wants with that page. The writer will never write to that page
  60 * again (as long as it is out of the ring buffer).
  61 *
  62 * Here's some silly ASCII art.
  63 *
  64 *   +------+
  65 *   |reader|          RING BUFFER
  66 *   |page  |
  67 *   +------+        +---+   +---+   +---+
  68 *                   |   |-->|   |-->|   |
  69 *                   +---+   +---+   +---+
  70 *                     ^               |
  71 *                     |               |
  72 *                     +---------------+
  73 *
  74 *
  75 *   +------+
  76 *   |reader|          RING BUFFER
  77 *   |page  |------------------v
  78 *   +------+        +---+   +---+   +---+
  79 *                   |   |-->|   |-->|   |
  80 *                   +---+   +---+   +---+
  81 *                     ^               |
  82 *                     |               |
  83 *                     +---------------+
  84 *
  85 *
  86 *   +------+
  87 *   |reader|          RING BUFFER
  88 *   |page  |------------------v
  89 *   +------+        +---+   +---+   +---+
  90 *      ^            |   |-->|   |-->|   |
  91 *      |            +---+   +---+   +---+
  92 *      |                              |
  93 *      |                              |
  94 *      +------------------------------+
  95 *
  96 *
  97 *   +------+
  98 *   |buffer|          RING BUFFER
  99 *   |page  |------------------v
 100 *   +------+        +---+   +---+   +---+
 101 *      ^            |   |   |   |-->|   |
 102 *      |   New      +---+   +---+   +---+
 103 *      |  Reader------^               |
 104 *      |   page                       |
 105 *      +------------------------------+
 106 *
 107 *
 108 * After we make this swap, the reader can hand this page off to the splice
 109 * code and be done with it. It can even allocate a new page if it needs to
 110 * and swap that into the ring buffer.
 111 *
 112 * We will be using cmpxchg soon to make all this lockless.
 113 *
 114 */
 115
 116/*
 117 * A fast way to enable or disable all ring buffers is to
 118 * call tracing_on or tracing_off. Turning off the ring buffers
 119 * prevents all ring buffers from being recorded to.
 120 * Turning this switch on, makes it OK to write to the
 121 * ring buffer, if the ring buffer is enabled itself.
 122 *
 123 * There's three layers that must be on in order to write
 124 * to the ring buffer.
 125 *
 126 * 1) This global flag must be set.
 127 * 2) The ring buffer must be enabled for recording.
 128 * 3) The per cpu buffer must be enabled for recording.
 129 *
 130 * In case of an anomaly, this global flag has a bit set that
 131 * will permantly disable all ring buffers.
 132 */
 133
 134/*
 135 * Global flag to disable all recording to ring buffers
 136 *  This has two bits: ON, DISABLED
 137 *
 138 *  ON   DISABLED
 139 * ---- ----------
 140 *   0      0        : ring buffers are off
 141 *   1      0        : ring buffers are on
 142 *   X      1        : ring buffers are permanently disabled
 143 */
 144
 145enum {
 146	RB_BUFFERS_ON_BIT	= 0,
 147	RB_BUFFERS_DISABLED_BIT	= 1,
 148};
 149
 150enum {
 151	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
 152	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
 153};
 154
 155static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
 156
 157#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 
 158
 159/**
 160 * tracing_on - enable all tracing buffers
 161 *
 162 * This function enables all tracing buffers that may have been
 163 * disabled with tracing_off.
 164 */
 165void tracing_on(void)
 166{
 167	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
 168}
 169EXPORT_SYMBOL_GPL(tracing_on);
 170
 171/**
 172 * tracing_off - turn off all tracing buffers
 173 *
 174 * This function stops all tracing buffers from recording data.
 175 * It does not disable any overhead the tracers themselves may
 176 * be causing. This function simply causes all recording to
 177 * the ring buffers to fail.
 178 */
 179void tracing_off(void)
 180{
 181	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
 182}
 183EXPORT_SYMBOL_GPL(tracing_off);
 184
 185/**
 186 * tracing_off_permanent - permanently disable ring buffers
 187 *
 188 * This function, once called, will disable all ring buffers
 189 * permanently.
 190 */
 191void tracing_off_permanent(void)
 192{
 193	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
 194}
 195
 196/**
 197 * tracing_is_on - show state of ring buffers enabled
 198 */
 199int tracing_is_on(void)
 200{
 201	return ring_buffer_flags == RB_BUFFERS_ON;
 202}
 203EXPORT_SYMBOL_GPL(tracing_is_on);
 204
 205#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 206#define RB_ALIGNMENT		4U
 207#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 208#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 209
 210#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
 211# define RB_FORCE_8BYTE_ALIGNMENT	0
 212# define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
 213#else
 214# define RB_FORCE_8BYTE_ALIGNMENT	1
 215# define RB_ARCH_ALIGNMENT		8U
 216#endif
 217
 218/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 219#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 220
 221enum {
 222	RB_LEN_TIME_EXTEND = 8,
 223	RB_LEN_TIME_STAMP = 16,
 224};
 225
 226#define skip_time_extend(event) \
 227	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 228
 229static inline int rb_null_event(struct ring_buffer_event *event)
 230{
 231	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 232}
 233
 234static void rb_event_set_padding(struct ring_buffer_event *event)
 235{
 236	/* padding has a NULL time_delta */
 237	event->type_len = RINGBUF_TYPE_PADDING;
 238	event->time_delta = 0;
 239}
 240
 241static unsigned
 242rb_event_data_length(struct ring_buffer_event *event)
 243{
 244	unsigned length;
 245
 246	if (event->type_len)
 247		length = event->type_len * RB_ALIGNMENT;
 248	else
 249		length = event->array[0];
 250	return length + RB_EVNT_HDR_SIZE;
 251}
 252
 253/*
 254 * Return the length of the given event. Will return
 255 * the length of the time extend if the event is a
 256 * time extend.
 257 */
 258static inline unsigned
 259rb_event_length(struct ring_buffer_event *event)
 260{
 261	switch (event->type_len) {
 262	case RINGBUF_TYPE_PADDING:
 263		if (rb_null_event(event))
 264			/* undefined */
 265			return -1;
 266		return  event->array[0] + RB_EVNT_HDR_SIZE;
 267
 268	case RINGBUF_TYPE_TIME_EXTEND:
 269		return RB_LEN_TIME_EXTEND;
 270
 271	case RINGBUF_TYPE_TIME_STAMP:
 272		return RB_LEN_TIME_STAMP;
 273
 274	case RINGBUF_TYPE_DATA:
 275		return rb_event_data_length(event);
 276	default:
 277		BUG();
 278	}
 279	/* not hit */
 280	return 0;
 281}
 282
 283/*
 284 * Return total length of time extend and data,
 285 *   or just the event length for all other events.
 286 */
 287static inline unsigned
 288rb_event_ts_length(struct ring_buffer_event *event)
 289{
 290	unsigned len = 0;
 291
 292	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
 293		/* time extends include the data event after it */
 294		len = RB_LEN_TIME_EXTEND;
 295		event = skip_time_extend(event);
 296	}
 297	return len + rb_event_length(event);
 298}
 299
 300/**
 301 * ring_buffer_event_length - return the length of the event
 302 * @event: the event to get the length of
 303 *
 304 * Returns the size of the data load of a data event.
 305 * If the event is something other than a data event, it
 306 * returns the size of the event itself. With the exception
 307 * of a TIME EXTEND, where it still returns the size of the
 308 * data load of the data event after it.
 309 */
 310unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 311{
 312	unsigned length;
 313
 314	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 315		event = skip_time_extend(event);
 316
 317	length = rb_event_length(event);
 318	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 319		return length;
 320	length -= RB_EVNT_HDR_SIZE;
 321	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 322                length -= sizeof(event->array[0]);
 323	return length;
 324}
 325EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 326
 327/* inline for ring buffer fast paths */
 328static void *
 329rb_event_data(struct ring_buffer_event *event)
 330{
 331	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 332		event = skip_time_extend(event);
 333	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 334	/* If length is in len field, then array[0] has the data */
 335	if (event->type_len)
 336		return (void *)&event->array[0];
 337	/* Otherwise length is in array[0] and array[1] has the data */
 338	return (void *)&event->array[1];
 339}
 340
 341/**
 342 * ring_buffer_event_data - return the data of the event
 343 * @event: the event to get the data from
 344 */
 345void *ring_buffer_event_data(struct ring_buffer_event *event)
 346{
 347	return rb_event_data(event);
 348}
 349EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 350
 351#define for_each_buffer_cpu(buffer, cpu)		\
 352	for_each_cpu(cpu, buffer->cpumask)
 353
 354#define TS_SHIFT	27
 355#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 356#define TS_DELTA_TEST	(~TS_MASK)
 357
 358/* Flag when events were overwritten */
 359#define RB_MISSED_EVENTS	(1 << 31)
 360/* Missed count stored at end */
 361#define RB_MISSED_STORED	(1 << 30)
 362
 363struct buffer_data_page {
 364	u64		 time_stamp;	/* page time stamp */
 365	local_t		 commit;	/* write committed index */
 366	unsigned char	 data[];	/* data of buffer page */
 367};
 368
 369/*
 370 * Note, the buffer_page list must be first. The buffer pages
 371 * are allocated in cache lines, which means that each buffer
 372 * page will be at the beginning of a cache line, and thus
 373 * the least significant bits will be zero. We use this to
 374 * add flags in the list struct pointers, to make the ring buffer
 375 * lockless.
 376 */
 377struct buffer_page {
 378	struct list_head list;		/* list of buffer pages */
 379	local_t		 write;		/* index for next write */
 380	unsigned	 read;		/* index for next read */
 381	local_t		 entries;	/* entries on this page */
 382	unsigned long	 real_end;	/* real end of data */
 383	struct buffer_data_page *page;	/* Actual data page */
 384};
 385
 386/*
 387 * The buffer page counters, write and entries, must be reset
 388 * atomically when crossing page boundaries. To synchronize this
 389 * update, two counters are inserted into the number. One is
 390 * the actual counter for the write position or count on the page.
 391 *
 392 * The other is a counter of updaters. Before an update happens
 393 * the update partition of the counter is incremented. This will
 394 * allow the updater to update the counter atomically.
 395 *
 396 * The counter is 20 bits, and the state data is 12.
 397 */
 398#define RB_WRITE_MASK		0xfffff
 399#define RB_WRITE_INTCNT		(1 << 20)
 400
 401static void rb_init_page(struct buffer_data_page *bpage)
 402{
 403	local_set(&bpage->commit, 0);
 404}
 405
 406/**
 407 * ring_buffer_page_len - the size of data on the page.
 408 * @page: The page to read
 409 *
 410 * Returns the amount of data on the page, including buffer page header.
 411 */
 412size_t ring_buffer_page_len(void *page)
 413{
 414	return local_read(&((struct buffer_data_page *)page)->commit)
 415		+ BUF_PAGE_HDR_SIZE;
 416}
 417
 418/*
 419 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 420 * this issue out.
 421 */
 422static void free_buffer_page(struct buffer_page *bpage)
 423{
 424	free_page((unsigned long)bpage->page);
 425	kfree(bpage);
 426}
 427
 428/*
 429 * We need to fit the time_stamp delta into 27 bits.
 430 */
 431static inline int test_time_stamp(u64 delta)
 432{
 433	if (delta & TS_DELTA_TEST)
 434		return 1;
 435	return 0;
 436}
 437
 438#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 439
 440/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 441#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 442
 443int ring_buffer_print_page_header(struct trace_seq *s)
 444{
 445	struct buffer_data_page field;
 446	int ret;
 447
 448	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 449			       "offset:0;\tsize:%u;\tsigned:%u;\n",
 450			       (unsigned int)sizeof(field.time_stamp),
 451			       (unsigned int)is_signed_type(u64));
 452
 453	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
 454			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
 455			       (unsigned int)offsetof(typeof(field), commit),
 456			       (unsigned int)sizeof(field.commit),
 457			       (unsigned int)is_signed_type(long));
 458
 459	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
 460			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
 461			       (unsigned int)offsetof(typeof(field), commit),
 462			       1,
 463			       (unsigned int)is_signed_type(long));
 464
 465	ret = trace_seq_printf(s, "\tfield: char data;\t"
 466			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
 467			       (unsigned int)offsetof(typeof(field), data),
 468			       (unsigned int)BUF_PAGE_SIZE,
 469			       (unsigned int)is_signed_type(char));
 470
 471	return ret;
 472}
 473
 474/*
 475 * head_page == tail_page && head == tail then buffer is empty.
 476 */
 477struct ring_buffer_per_cpu {
 478	int				cpu;
 479	atomic_t			record_disabled;
 480	struct ring_buffer		*buffer;
 481	spinlock_t			reader_lock;	/* serialize readers */
 482	arch_spinlock_t			lock;
 483	struct lock_class_key		lock_key;
 
 484	struct list_head		*pages;
 485	struct buffer_page		*head_page;	/* read from head */
 486	struct buffer_page		*tail_page;	/* write to tail */
 487	struct buffer_page		*commit_page;	/* committed pages */
 488	struct buffer_page		*reader_page;
 489	unsigned long			lost_events;
 490	unsigned long			last_overrun;
 
 491	local_t				commit_overrun;
 492	local_t				overrun;
 493	local_t				entries;
 494	local_t				committing;
 495	local_t				commits;
 496	unsigned long			read;
 
 497	u64				write_stamp;
 498	u64				read_stamp;
 
 
 
 
 
 499};
 500
 501struct ring_buffer {
 502	unsigned			pages;
 503	unsigned			flags;
 504	int				cpus;
 505	atomic_t			record_disabled;
 
 506	cpumask_var_t			cpumask;
 507
 508	struct lock_class_key		*reader_lock_key;
 509
 510	struct mutex			mutex;
 511
 512	struct ring_buffer_per_cpu	**buffers;
 513
 514#ifdef CONFIG_HOTPLUG_CPU
 515	struct notifier_block		cpu_notify;
 516#endif
 517	u64				(*clock)(void);
 518};
 519
 520struct ring_buffer_iter {
 521	struct ring_buffer_per_cpu	*cpu_buffer;
 522	unsigned long			head;
 523	struct buffer_page		*head_page;
 524	struct buffer_page		*cache_reader_page;
 525	unsigned long			cache_read;
 526	u64				read_stamp;
 527};
 528
 529/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 530#define RB_WARN_ON(b, cond)						\
 531	({								\
 532		int _____ret = unlikely(cond);				\
 533		if (_____ret) {						\
 534			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 535				struct ring_buffer_per_cpu *__b =	\
 536					(void *)b;			\
 537				atomic_inc(&__b->buffer->record_disabled); \
 538			} else						\
 539				atomic_inc(&b->record_disabled);	\
 540			WARN_ON(1);					\
 541		}							\
 542		_____ret;						\
 543	})
 544
 545/* Up this if you want to test the TIME_EXTENTS and normalization */
 546#define DEBUG_SHIFT 0
 547
 548static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 549{
 550	/* shift to debug/test normalization and TIME_EXTENTS */
 551	return buffer->clock() << DEBUG_SHIFT;
 552}
 553
 554u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 555{
 556	u64 time;
 557
 558	preempt_disable_notrace();
 559	time = rb_time_stamp(buffer);
 560	preempt_enable_no_resched_notrace();
 561
 562	return time;
 563}
 564EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 565
 566void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 567				      int cpu, u64 *ts)
 568{
 569	/* Just stupid testing the normalize function and deltas */
 570	*ts >>= DEBUG_SHIFT;
 571}
 572EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 573
 574/*
 575 * Making the ring buffer lockless makes things tricky.
 576 * Although writes only happen on the CPU that they are on,
 577 * and they only need to worry about interrupts. Reads can
 578 * happen on any CPU.
 579 *
 580 * The reader page is always off the ring buffer, but when the
 581 * reader finishes with a page, it needs to swap its page with
 582 * a new one from the buffer. The reader needs to take from
 583 * the head (writes go to the tail). But if a writer is in overwrite
 584 * mode and wraps, it must push the head page forward.
 585 *
 586 * Here lies the problem.
 587 *
 588 * The reader must be careful to replace only the head page, and
 589 * not another one. As described at the top of the file in the
 590 * ASCII art, the reader sets its old page to point to the next
 591 * page after head. It then sets the page after head to point to
 592 * the old reader page. But if the writer moves the head page
 593 * during this operation, the reader could end up with the tail.
 594 *
 595 * We use cmpxchg to help prevent this race. We also do something
 596 * special with the page before head. We set the LSB to 1.
 597 *
 598 * When the writer must push the page forward, it will clear the
 599 * bit that points to the head page, move the head, and then set
 600 * the bit that points to the new head page.
 601 *
 602 * We also don't want an interrupt coming in and moving the head
 603 * page on another writer. Thus we use the second LSB to catch
 604 * that too. Thus:
 605 *
 606 * head->list->prev->next        bit 1          bit 0
 607 *                              -------        -------
 608 * Normal page                     0              0
 609 * Points to head page             0              1
 610 * New head page                   1              0
 611 *
 612 * Note we can not trust the prev pointer of the head page, because:
 613 *
 614 * +----+       +-----+        +-----+
 615 * |    |------>|  T  |---X--->|  N  |
 616 * |    |<------|     |        |     |
 617 * +----+       +-----+        +-----+
 618 *   ^                           ^ |
 619 *   |          +-----+          | |
 620 *   +----------|  R  |----------+ |
 621 *              |     |<-----------+
 622 *              +-----+
 623 *
 624 * Key:  ---X-->  HEAD flag set in pointer
 625 *         T      Tail page
 626 *         R      Reader page
 627 *         N      Next page
 628 *
 629 * (see __rb_reserve_next() to see where this happens)
 630 *
 631 *  What the above shows is that the reader just swapped out
 632 *  the reader page with a page in the buffer, but before it
 633 *  could make the new header point back to the new page added
 634 *  it was preempted by a writer. The writer moved forward onto
 635 *  the new page added by the reader and is about to move forward
 636 *  again.
 637 *
 638 *  You can see, it is legitimate for the previous pointer of
 639 *  the head (or any page) not to point back to itself. But only
 640 *  temporarially.
 641 */
 642
 643#define RB_PAGE_NORMAL		0UL
 644#define RB_PAGE_HEAD		1UL
 645#define RB_PAGE_UPDATE		2UL
 646
 647
 648#define RB_FLAG_MASK		3UL
 649
 650/* PAGE_MOVED is not part of the mask */
 651#define RB_PAGE_MOVED		4UL
 652
 653/*
 654 * rb_list_head - remove any bit
 655 */
 656static struct list_head *rb_list_head(struct list_head *list)
 657{
 658	unsigned long val = (unsigned long)list;
 659
 660	return (struct list_head *)(val & ~RB_FLAG_MASK);
 661}
 662
 663/*
 664 * rb_is_head_page - test if the given page is the head page
 665 *
 666 * Because the reader may move the head_page pointer, we can
 667 * not trust what the head page is (it may be pointing to
 668 * the reader page). But if the next page is a header page,
 669 * its flags will be non zero.
 670 */
 671static inline int
 672rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 673		struct buffer_page *page, struct list_head *list)
 674{
 675	unsigned long val;
 676
 677	val = (unsigned long)list->next;
 678
 679	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 680		return RB_PAGE_MOVED;
 681
 682	return val & RB_FLAG_MASK;
 683}
 684
 685/*
 686 * rb_is_reader_page
 687 *
 688 * The unique thing about the reader page, is that, if the
 689 * writer is ever on it, the previous pointer never points
 690 * back to the reader page.
 691 */
 692static int rb_is_reader_page(struct buffer_page *page)
 693{
 694	struct list_head *list = page->list.prev;
 695
 696	return rb_list_head(list->next) != &page->list;
 697}
 698
 699/*
 700 * rb_set_list_to_head - set a list_head to be pointing to head.
 701 */
 702static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 703				struct list_head *list)
 704{
 705	unsigned long *ptr;
 706
 707	ptr = (unsigned long *)&list->next;
 708	*ptr |= RB_PAGE_HEAD;
 709	*ptr &= ~RB_PAGE_UPDATE;
 710}
 711
 712/*
 713 * rb_head_page_activate - sets up head page
 714 */
 715static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 716{
 717	struct buffer_page *head;
 718
 719	head = cpu_buffer->head_page;
 720	if (!head)
 721		return;
 722
 723	/*
 724	 * Set the previous list pointer to have the HEAD flag.
 725	 */
 726	rb_set_list_to_head(cpu_buffer, head->list.prev);
 727}
 728
 729static void rb_list_head_clear(struct list_head *list)
 730{
 731	unsigned long *ptr = (unsigned long *)&list->next;
 732
 733	*ptr &= ~RB_FLAG_MASK;
 734}
 735
 736/*
 737 * rb_head_page_dactivate - clears head page ptr (for free list)
 738 */
 739static void
 740rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 741{
 742	struct list_head *hd;
 743
 744	/* Go through the whole list and clear any pointers found. */
 745	rb_list_head_clear(cpu_buffer->pages);
 746
 747	list_for_each(hd, cpu_buffer->pages)
 748		rb_list_head_clear(hd);
 749}
 750
 751static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 752			    struct buffer_page *head,
 753			    struct buffer_page *prev,
 754			    int old_flag, int new_flag)
 755{
 756	struct list_head *list;
 757	unsigned long val = (unsigned long)&head->list;
 758	unsigned long ret;
 759
 760	list = &prev->list;
 761
 762	val &= ~RB_FLAG_MASK;
 763
 764	ret = cmpxchg((unsigned long *)&list->next,
 765		      val | old_flag, val | new_flag);
 766
 767	/* check if the reader took the page */
 768	if ((ret & ~RB_FLAG_MASK) != val)
 769		return RB_PAGE_MOVED;
 770
 771	return ret & RB_FLAG_MASK;
 772}
 773
 774static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 775				   struct buffer_page *head,
 776				   struct buffer_page *prev,
 777				   int old_flag)
 778{
 779	return rb_head_page_set(cpu_buffer, head, prev,
 780				old_flag, RB_PAGE_UPDATE);
 781}
 782
 783static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 784				 struct buffer_page *head,
 785				 struct buffer_page *prev,
 786				 int old_flag)
 787{
 788	return rb_head_page_set(cpu_buffer, head, prev,
 789				old_flag, RB_PAGE_HEAD);
 790}
 791
 792static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 793				   struct buffer_page *head,
 794				   struct buffer_page *prev,
 795				   int old_flag)
 796{
 797	return rb_head_page_set(cpu_buffer, head, prev,
 798				old_flag, RB_PAGE_NORMAL);
 799}
 800
 801static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 802			       struct buffer_page **bpage)
 803{
 804	struct list_head *p = rb_list_head((*bpage)->list.next);
 805
 806	*bpage = list_entry(p, struct buffer_page, list);
 807}
 808
 809static struct buffer_page *
 810rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
 811{
 812	struct buffer_page *head;
 813	struct buffer_page *page;
 814	struct list_head *list;
 815	int i;
 816
 817	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
 818		return NULL;
 819
 820	/* sanity check */
 821	list = cpu_buffer->pages;
 822	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
 823		return NULL;
 824
 825	page = head = cpu_buffer->head_page;
 826	/*
 827	 * It is possible that the writer moves the header behind
 828	 * where we started, and we miss in one loop.
 829	 * A second loop should grab the header, but we'll do
 830	 * three loops just because I'm paranoid.
 831	 */
 832	for (i = 0; i < 3; i++) {
 833		do {
 834			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
 835				cpu_buffer->head_page = page;
 836				return page;
 837			}
 838			rb_inc_page(cpu_buffer, &page);
 839		} while (page != head);
 840	}
 841
 842	RB_WARN_ON(cpu_buffer, 1);
 843
 844	return NULL;
 845}
 846
 847static int rb_head_page_replace(struct buffer_page *old,
 848				struct buffer_page *new)
 849{
 850	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
 851	unsigned long val;
 852	unsigned long ret;
 853
 854	val = *ptr & ~RB_FLAG_MASK;
 855	val |= RB_PAGE_HEAD;
 856
 857	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
 858
 859	return ret == val;
 860}
 861
 862/*
 863 * rb_tail_page_update - move the tail page forward
 864 *
 865 * Returns 1 if moved tail page, 0 if someone else did.
 866 */
 867static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
 868			       struct buffer_page *tail_page,
 869			       struct buffer_page *next_page)
 870{
 871	struct buffer_page *old_tail;
 872	unsigned long old_entries;
 873	unsigned long old_write;
 874	int ret = 0;
 875
 876	/*
 877	 * The tail page now needs to be moved forward.
 878	 *
 879	 * We need to reset the tail page, but without messing
 880	 * with possible erasing of data brought in by interrupts
 881	 * that have moved the tail page and are currently on it.
 882	 *
 883	 * We add a counter to the write field to denote this.
 884	 */
 885	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
 886	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
 887
 888	/*
 889	 * Just make sure we have seen our old_write and synchronize
 890	 * with any interrupts that come in.
 891	 */
 892	barrier();
 893
 894	/*
 895	 * If the tail page is still the same as what we think
 896	 * it is, then it is up to us to update the tail
 897	 * pointer.
 898	 */
 899	if (tail_page == cpu_buffer->tail_page) {
 900		/* Zero the write counter */
 901		unsigned long val = old_write & ~RB_WRITE_MASK;
 902		unsigned long eval = old_entries & ~RB_WRITE_MASK;
 903
 904		/*
 905		 * This will only succeed if an interrupt did
 906		 * not come in and change it. In which case, we
 907		 * do not want to modify it.
 908		 *
 909		 * We add (void) to let the compiler know that we do not care
 910		 * about the return value of these functions. We use the
 911		 * cmpxchg to only update if an interrupt did not already
 912		 * do it for us. If the cmpxchg fails, we don't care.
 913		 */
 914		(void)local_cmpxchg(&next_page->write, old_write, val);
 915		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
 916
 917		/*
 918		 * No need to worry about races with clearing out the commit.
 919		 * it only can increment when a commit takes place. But that
 920		 * only happens in the outer most nested commit.
 921		 */
 922		local_set(&next_page->page->commit, 0);
 923
 924		old_tail = cmpxchg(&cpu_buffer->tail_page,
 925				   tail_page, next_page);
 926
 927		if (old_tail == tail_page)
 928			ret = 1;
 929	}
 930
 931	return ret;
 932}
 933
 934static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
 935			  struct buffer_page *bpage)
 936{
 937	unsigned long val = (unsigned long)bpage;
 938
 939	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
 940		return 1;
 941
 942	return 0;
 943}
 944
 945/**
 946 * rb_check_list - make sure a pointer to a list has the last bits zero
 947 */
 948static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
 949			 struct list_head *list)
 950{
 951	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
 952		return 1;
 953	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
 954		return 1;
 955	return 0;
 956}
 957
 958/**
 959 * check_pages - integrity check of buffer pages
 960 * @cpu_buffer: CPU buffer with pages to test
 961 *
 962 * As a safety measure we check to make sure the data pages have not
 963 * been corrupted.
 964 */
 965static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
 966{
 967	struct list_head *head = cpu_buffer->pages;
 968	struct buffer_page *bpage, *tmp;
 969
 
 
 
 
 970	rb_head_page_deactivate(cpu_buffer);
 971
 972	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
 973		return -1;
 974	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
 975		return -1;
 976
 977	if (rb_check_list(cpu_buffer, head))
 978		return -1;
 979
 980	list_for_each_entry_safe(bpage, tmp, head, list) {
 981		if (RB_WARN_ON(cpu_buffer,
 982			       bpage->list.next->prev != &bpage->list))
 983			return -1;
 984		if (RB_WARN_ON(cpu_buffer,
 985			       bpage->list.prev->next != &bpage->list))
 986			return -1;
 987		if (rb_check_list(cpu_buffer, &bpage->list))
 988			return -1;
 989	}
 990
 991	rb_head_page_activate(cpu_buffer);
 992
 993	return 0;
 994}
 995
 996static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
 997			     unsigned nr_pages)
 998{
 
 999	struct buffer_page *bpage, *tmp;
1000	LIST_HEAD(pages);
1001	unsigned i;
1002
1003	WARN_ON(!nr_pages);
1004
1005	for (i = 0; i < nr_pages; i++) {
1006		struct page *page;
1007		/*
1008		 * __GFP_NORETRY flag makes sure that the allocation fails
1009		 * gracefully without invoking oom-killer and the system is
1010		 * not destabilized.
1011		 */
1012		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1013				    GFP_KERNEL | __GFP_NORETRY,
1014				    cpu_to_node(cpu_buffer->cpu));
1015		if (!bpage)
1016			goto free_pages;
1017
1018		rb_check_bpage(cpu_buffer, bpage);
1019
1020		list_add(&bpage->list, &pages);
1021
1022		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
1023					GFP_KERNEL | __GFP_NORETRY, 0);
1024		if (!page)
1025			goto free_pages;
1026		bpage->page = page_address(page);
1027		rb_init_page(bpage->page);
1028	}
1029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1030	/*
1031	 * The ring buffer page list is a circular list that does not
1032	 * start and end with a list head. All page list items point to
1033	 * other pages.
1034	 */
1035	cpu_buffer->pages = pages.next;
1036	list_del(&pages);
1037
 
 
1038	rb_check_pages(cpu_buffer);
1039
1040	return 0;
1041
1042 free_pages:
1043	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1044		list_del_init(&bpage->list);
1045		free_buffer_page(bpage);
1046	}
1047	return -ENOMEM;
1048}
1049
1050static struct ring_buffer_per_cpu *
1051rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1052{
1053	struct ring_buffer_per_cpu *cpu_buffer;
1054	struct buffer_page *bpage;
1055	struct page *page;
1056	int ret;
1057
1058	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1059				  GFP_KERNEL, cpu_to_node(cpu));
1060	if (!cpu_buffer)
1061		return NULL;
1062
1063	cpu_buffer->cpu = cpu;
1064	cpu_buffer->buffer = buffer;
1065	spin_lock_init(&cpu_buffer->reader_lock);
1066	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1067	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
 
 
1068
1069	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1070			    GFP_KERNEL, cpu_to_node(cpu));
1071	if (!bpage)
1072		goto fail_free_buffer;
1073
1074	rb_check_bpage(cpu_buffer, bpage);
1075
1076	cpu_buffer->reader_page = bpage;
1077	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1078	if (!page)
1079		goto fail_free_reader;
1080	bpage->page = page_address(page);
1081	rb_init_page(bpage->page);
1082
1083	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
 
1084
1085	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1086	if (ret < 0)
1087		goto fail_free_reader;
1088
1089	cpu_buffer->head_page
1090		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1091	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1092
1093	rb_head_page_activate(cpu_buffer);
1094
1095	return cpu_buffer;
1096
1097 fail_free_reader:
1098	free_buffer_page(cpu_buffer->reader_page);
1099
1100 fail_free_buffer:
1101	kfree(cpu_buffer);
1102	return NULL;
1103}
1104
1105static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1106{
1107	struct list_head *head = cpu_buffer->pages;
1108	struct buffer_page *bpage, *tmp;
1109
1110	free_buffer_page(cpu_buffer->reader_page);
1111
1112	rb_head_page_deactivate(cpu_buffer);
1113
1114	if (head) {
1115		list_for_each_entry_safe(bpage, tmp, head, list) {
1116			list_del_init(&bpage->list);
1117			free_buffer_page(bpage);
1118		}
1119		bpage = list_entry(head, struct buffer_page, list);
1120		free_buffer_page(bpage);
1121	}
1122
1123	kfree(cpu_buffer);
1124}
1125
1126#ifdef CONFIG_HOTPLUG_CPU
1127static int rb_cpu_notify(struct notifier_block *self,
1128			 unsigned long action, void *hcpu);
1129#endif
1130
1131/**
1132 * ring_buffer_alloc - allocate a new ring_buffer
1133 * @size: the size in bytes per cpu that is needed.
1134 * @flags: attributes to set for the ring buffer.
1135 *
1136 * Currently the only flag that is available is the RB_FL_OVERWRITE
1137 * flag. This flag means that the buffer will overwrite old data
1138 * when the buffer wraps. If this flag is not set, the buffer will
1139 * drop data when the tail hits the head.
1140 */
1141struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1142					struct lock_class_key *key)
1143{
1144	struct ring_buffer *buffer;
1145	int bsize;
1146	int cpu;
1147
1148	/* keep it in its own cache line */
1149	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1150			 GFP_KERNEL);
1151	if (!buffer)
1152		return NULL;
1153
1154	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1155		goto fail_free_buffer;
1156
1157	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1158	buffer->flags = flags;
1159	buffer->clock = trace_clock_local;
1160	buffer->reader_lock_key = key;
1161
1162	/* need at least two pages */
1163	if (buffer->pages < 2)
1164		buffer->pages = 2;
1165
1166	/*
1167	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1168	 * in early initcall, it will not be notified of secondary cpus.
1169	 * In that off case, we need to allocate for all possible cpus.
1170	 */
1171#ifdef CONFIG_HOTPLUG_CPU
1172	get_online_cpus();
1173	cpumask_copy(buffer->cpumask, cpu_online_mask);
1174#else
1175	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1176#endif
1177	buffer->cpus = nr_cpu_ids;
1178
1179	bsize = sizeof(void *) * nr_cpu_ids;
1180	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1181				  GFP_KERNEL);
1182	if (!buffer->buffers)
1183		goto fail_free_cpumask;
1184
1185	for_each_buffer_cpu(buffer, cpu) {
1186		buffer->buffers[cpu] =
1187			rb_allocate_cpu_buffer(buffer, cpu);
1188		if (!buffer->buffers[cpu])
1189			goto fail_free_buffers;
1190	}
1191
1192#ifdef CONFIG_HOTPLUG_CPU
1193	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1194	buffer->cpu_notify.priority = 0;
1195	register_cpu_notifier(&buffer->cpu_notify);
1196#endif
1197
1198	put_online_cpus();
1199	mutex_init(&buffer->mutex);
1200
1201	return buffer;
1202
1203 fail_free_buffers:
1204	for_each_buffer_cpu(buffer, cpu) {
1205		if (buffer->buffers[cpu])
1206			rb_free_cpu_buffer(buffer->buffers[cpu]);
1207	}
1208	kfree(buffer->buffers);
1209
1210 fail_free_cpumask:
1211	free_cpumask_var(buffer->cpumask);
1212	put_online_cpus();
1213
1214 fail_free_buffer:
1215	kfree(buffer);
1216	return NULL;
1217}
1218EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1219
1220/**
1221 * ring_buffer_free - free a ring buffer.
1222 * @buffer: the buffer to free.
1223 */
1224void
1225ring_buffer_free(struct ring_buffer *buffer)
1226{
1227	int cpu;
1228
1229	get_online_cpus();
1230
1231#ifdef CONFIG_HOTPLUG_CPU
1232	unregister_cpu_notifier(&buffer->cpu_notify);
1233#endif
1234
1235	for_each_buffer_cpu(buffer, cpu)
1236		rb_free_cpu_buffer(buffer->buffers[cpu]);
1237
1238	put_online_cpus();
1239
1240	kfree(buffer->buffers);
1241	free_cpumask_var(buffer->cpumask);
1242
1243	kfree(buffer);
1244}
1245EXPORT_SYMBOL_GPL(ring_buffer_free);
1246
1247void ring_buffer_set_clock(struct ring_buffer *buffer,
1248			   u64 (*clock)(void))
1249{
1250	buffer->clock = clock;
1251}
1252
1253static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1254
1255static void
1256rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1257{
1258	struct buffer_page *bpage;
1259	struct list_head *p;
1260	unsigned i;
1261
1262	spin_lock_irq(&cpu_buffer->reader_lock);
1263	rb_head_page_deactivate(cpu_buffer);
 
 
1264
1265	for (i = 0; i < nr_pages; i++) {
1266		if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1267			goto out;
1268		p = cpu_buffer->pages->next;
1269		bpage = list_entry(p, struct buffer_page, list);
1270		list_del_init(&bpage->list);
1271		free_buffer_page(bpage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272	}
1273	if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1274		goto out;
1275
1276	rb_reset_cpu(cpu_buffer);
1277	rb_check_pages(cpu_buffer);
1278
1279out:
1280	spin_unlock_irq(&cpu_buffer->reader_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1281}
1282
1283static void
1284rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1285		struct list_head *pages, unsigned nr_pages)
1286{
1287	struct buffer_page *bpage;
1288	struct list_head *p;
1289	unsigned i;
1290
1291	spin_lock_irq(&cpu_buffer->reader_lock);
1292	rb_head_page_deactivate(cpu_buffer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1293
1294	for (i = 0; i < nr_pages; i++) {
1295		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1296			goto out;
1297		p = pages->next;
1298		bpage = list_entry(p, struct buffer_page, list);
1299		list_del_init(&bpage->list);
1300		list_add_tail(&bpage->list, cpu_buffer->pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1301	}
1302	rb_reset_cpu(cpu_buffer);
1303	rb_check_pages(cpu_buffer);
1304
1305out:
1306	spin_unlock_irq(&cpu_buffer->reader_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1307}
1308
1309/**
1310 * ring_buffer_resize - resize the ring buffer
1311 * @buffer: the buffer to resize.
1312 * @size: the new size.
1313 *
1314 * Minimum size is 2 * BUF_PAGE_SIZE.
1315 *
1316 * Returns -1 on failure.
1317 */
1318int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
 
1319{
1320	struct ring_buffer_per_cpu *cpu_buffer;
1321	unsigned nr_pages, rm_pages, new_pages;
1322	struct buffer_page *bpage, *tmp;
1323	unsigned long buffer_size;
1324	LIST_HEAD(pages);
1325	int i, cpu;
1326
1327	/*
1328	 * Always succeed at resizing a non-existent buffer:
1329	 */
1330	if (!buffer)
1331		return size;
1332
 
 
 
 
 
1333	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1334	size *= BUF_PAGE_SIZE;
1335	buffer_size = buffer->pages * BUF_PAGE_SIZE;
1336
1337	/* we need a minimum of two pages */
1338	if (size < BUF_PAGE_SIZE * 2)
1339		size = BUF_PAGE_SIZE * 2;
1340
1341	if (size == buffer_size)
1342		return size;
1343
1344	atomic_inc(&buffer->record_disabled);
1345
1346	/* Make sure all writers are done with this buffer. */
1347	synchronize_sched();
 
 
 
 
 
1348
 
1349	mutex_lock(&buffer->mutex);
1350	get_online_cpus();
1351
1352	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
 
 
 
1353
1354	if (size < buffer_size) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1355
1356		/* easy case, just free pages */
1357		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1358			goto out_fail;
 
 
 
 
 
 
 
1359
1360		rm_pages = buffer->pages - nr_pages;
 
 
 
 
 
1361
 
1362		for_each_buffer_cpu(buffer, cpu) {
1363			cpu_buffer = buffer->buffers[cpu];
1364			rb_remove_pages(cpu_buffer, rm_pages);
 
 
 
 
 
1365		}
1366		goto out;
1367	}
1368
1369	/*
1370	 * This is a bit more difficult. We only want to add pages
1371	 * when we can allocate enough for all CPUs. We do this
1372	 * by allocating all the pages and storing them on a local
1373	 * link list. If we succeed in our allocation, then we
1374	 * add these pages to the cpu_buffers. Otherwise we just free
1375	 * them all and return -ENOMEM;
1376	 */
1377	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1378		goto out_fail;
1379
1380	new_pages = nr_pages - buffer->pages;
 
1381
1382	for_each_buffer_cpu(buffer, cpu) {
1383		for (i = 0; i < new_pages; i++) {
1384			struct page *page;
1385			/*
1386			 * __GFP_NORETRY flag makes sure that the allocation
1387			 * fails gracefully without invoking oom-killer and
1388			 * the system is not destabilized.
1389			 */
1390			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1391						  cache_line_size()),
1392					    GFP_KERNEL | __GFP_NORETRY,
1393					    cpu_to_node(cpu));
1394			if (!bpage)
1395				goto free_pages;
1396			list_add(&bpage->list, &pages);
1397			page = alloc_pages_node(cpu_to_node(cpu),
1398						GFP_KERNEL | __GFP_NORETRY, 0);
1399			if (!page)
1400				goto free_pages;
1401			bpage->page = page_address(page);
1402			rb_init_page(bpage->page);
1403		}
1404	}
1405
1406	for_each_buffer_cpu(buffer, cpu) {
1407		cpu_buffer = buffer->buffers[cpu];
1408		rb_insert_pages(cpu_buffer, &pages, new_pages);
1409	}
1410
1411	if (RB_WARN_ON(buffer, !list_empty(&pages)))
1412		goto out_fail;
 
 
 
 
 
 
 
 
1413
1414 out:
1415	buffer->pages = nr_pages;
1416	put_online_cpus();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1417	mutex_unlock(&buffer->mutex);
 
1418
1419	atomic_dec(&buffer->record_disabled);
 
 
1420
1421	return size;
 
1422
1423 free_pages:
1424	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1425		list_del_init(&bpage->list);
1426		free_buffer_page(bpage);
1427	}
1428	put_online_cpus();
1429	mutex_unlock(&buffer->mutex);
1430	atomic_dec(&buffer->record_disabled);
1431	return -ENOMEM;
1432
1433	/*
1434	 * Something went totally wrong, and we are too paranoid
1435	 * to even clean up the mess.
1436	 */
1437 out_fail:
1438	put_online_cpus();
1439	mutex_unlock(&buffer->mutex);
1440	atomic_dec(&buffer->record_disabled);
1441	return -1;
1442}
1443EXPORT_SYMBOL_GPL(ring_buffer_resize);
1444
1445void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1446{
1447	mutex_lock(&buffer->mutex);
1448	if (val)
1449		buffer->flags |= RB_FL_OVERWRITE;
1450	else
1451		buffer->flags &= ~RB_FL_OVERWRITE;
1452	mutex_unlock(&buffer->mutex);
1453}
1454EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1455
1456static inline void *
1457__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1458{
1459	return bpage->data + index;
1460}
1461
1462static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1463{
1464	return bpage->page->data + index;
1465}
1466
1467static inline struct ring_buffer_event *
1468rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1469{
1470	return __rb_page_index(cpu_buffer->reader_page,
1471			       cpu_buffer->reader_page->read);
1472}
1473
1474static inline struct ring_buffer_event *
1475rb_iter_head_event(struct ring_buffer_iter *iter)
1476{
1477	return __rb_page_index(iter->head_page, iter->head);
1478}
1479
1480static inline unsigned long rb_page_write(struct buffer_page *bpage)
1481{
1482	return local_read(&bpage->write) & RB_WRITE_MASK;
1483}
1484
1485static inline unsigned rb_page_commit(struct buffer_page *bpage)
1486{
1487	return local_read(&bpage->page->commit);
1488}
1489
1490static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1491{
1492	return local_read(&bpage->entries) & RB_WRITE_MASK;
1493}
1494
1495/* Size is determined by what has been committed */
1496static inline unsigned rb_page_size(struct buffer_page *bpage)
1497{
1498	return rb_page_commit(bpage);
1499}
1500
1501static inline unsigned
1502rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1503{
1504	return rb_page_commit(cpu_buffer->commit_page);
1505}
1506
1507static inline unsigned
1508rb_event_index(struct ring_buffer_event *event)
1509{
1510	unsigned long addr = (unsigned long)event;
1511
1512	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1513}
1514
1515static inline int
1516rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1517		   struct ring_buffer_event *event)
1518{
1519	unsigned long addr = (unsigned long)event;
1520	unsigned long index;
1521
1522	index = rb_event_index(event);
1523	addr &= PAGE_MASK;
1524
1525	return cpu_buffer->commit_page->page == (void *)addr &&
1526		rb_commit_index(cpu_buffer) == index;
1527}
1528
1529static void
1530rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1531{
1532	unsigned long max_count;
1533
1534	/*
1535	 * We only race with interrupts and NMIs on this CPU.
1536	 * If we own the commit event, then we can commit
1537	 * all others that interrupted us, since the interruptions
1538	 * are in stack format (they finish before they come
1539	 * back to us). This allows us to do a simple loop to
1540	 * assign the commit to the tail.
1541	 */
1542 again:
1543	max_count = cpu_buffer->buffer->pages * 100;
1544
1545	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1546		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1547			return;
1548		if (RB_WARN_ON(cpu_buffer,
1549			       rb_is_reader_page(cpu_buffer->tail_page)))
1550			return;
1551		local_set(&cpu_buffer->commit_page->page->commit,
1552			  rb_page_write(cpu_buffer->commit_page));
1553		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1554		cpu_buffer->write_stamp =
1555			cpu_buffer->commit_page->page->time_stamp;
1556		/* add barrier to keep gcc from optimizing too much */
1557		barrier();
1558	}
1559	while (rb_commit_index(cpu_buffer) !=
1560	       rb_page_write(cpu_buffer->commit_page)) {
1561
1562		local_set(&cpu_buffer->commit_page->page->commit,
1563			  rb_page_write(cpu_buffer->commit_page));
1564		RB_WARN_ON(cpu_buffer,
1565			   local_read(&cpu_buffer->commit_page->page->commit) &
1566			   ~RB_WRITE_MASK);
1567		barrier();
1568	}
1569
1570	/* again, keep gcc from optimizing */
1571	barrier();
1572
1573	/*
1574	 * If an interrupt came in just after the first while loop
1575	 * and pushed the tail page forward, we will be left with
1576	 * a dangling commit that will never go forward.
1577	 */
1578	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1579		goto again;
1580}
1581
1582static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1583{
1584	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1585	cpu_buffer->reader_page->read = 0;
1586}
1587
1588static void rb_inc_iter(struct ring_buffer_iter *iter)
1589{
1590	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1591
1592	/*
1593	 * The iterator could be on the reader page (it starts there).
1594	 * But the head could have moved, since the reader was
1595	 * found. Check for this case and assign the iterator
1596	 * to the head page instead of next.
1597	 */
1598	if (iter->head_page == cpu_buffer->reader_page)
1599		iter->head_page = rb_set_head_page(cpu_buffer);
1600	else
1601		rb_inc_page(cpu_buffer, &iter->head_page);
1602
1603	iter->read_stamp = iter->head_page->page->time_stamp;
1604	iter->head = 0;
1605}
1606
1607/* Slow path, do not inline */
1608static noinline struct ring_buffer_event *
1609rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1610{
1611	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1612
1613	/* Not the first event on the page? */
1614	if (rb_event_index(event)) {
1615		event->time_delta = delta & TS_MASK;
1616		event->array[0] = delta >> TS_SHIFT;
1617	} else {
1618		/* nope, just zero it */
1619		event->time_delta = 0;
1620		event->array[0] = 0;
1621	}
1622
1623	return skip_time_extend(event);
1624}
1625
1626/**
1627 * ring_buffer_update_event - update event type and data
1628 * @event: the even to update
1629 * @type: the type of event
1630 * @length: the size of the event field in the ring buffer
1631 *
1632 * Update the type and data fields of the event. The length
1633 * is the actual size that is written to the ring buffer,
1634 * and with this, we can determine what to place into the
1635 * data field.
1636 */
1637static void
1638rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1639		struct ring_buffer_event *event, unsigned length,
1640		int add_timestamp, u64 delta)
1641{
1642	/* Only a commit updates the timestamp */
1643	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1644		delta = 0;
1645
1646	/*
1647	 * If we need to add a timestamp, then we
1648	 * add it to the start of the resevered space.
1649	 */
1650	if (unlikely(add_timestamp)) {
1651		event = rb_add_time_stamp(event, delta);
1652		length -= RB_LEN_TIME_EXTEND;
1653		delta = 0;
1654	}
1655
1656	event->time_delta = delta;
1657	length -= RB_EVNT_HDR_SIZE;
1658	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1659		event->type_len = 0;
1660		event->array[0] = length;
1661	} else
1662		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1663}
1664
1665/*
1666 * rb_handle_head_page - writer hit the head page
1667 *
1668 * Returns: +1 to retry page
1669 *           0 to continue
1670 *          -1 on error
1671 */
1672static int
1673rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1674		    struct buffer_page *tail_page,
1675		    struct buffer_page *next_page)
1676{
1677	struct buffer_page *new_head;
1678	int entries;
1679	int type;
1680	int ret;
1681
1682	entries = rb_page_entries(next_page);
1683
1684	/*
1685	 * The hard part is here. We need to move the head
1686	 * forward, and protect against both readers on
1687	 * other CPUs and writers coming in via interrupts.
1688	 */
1689	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1690				       RB_PAGE_HEAD);
1691
1692	/*
1693	 * type can be one of four:
1694	 *  NORMAL - an interrupt already moved it for us
1695	 *  HEAD   - we are the first to get here.
1696	 *  UPDATE - we are the interrupt interrupting
1697	 *           a current move.
1698	 *  MOVED  - a reader on another CPU moved the next
1699	 *           pointer to its reader page. Give up
1700	 *           and try again.
1701	 */
1702
1703	switch (type) {
1704	case RB_PAGE_HEAD:
1705		/*
1706		 * We changed the head to UPDATE, thus
1707		 * it is our responsibility to update
1708		 * the counters.
1709		 */
1710		local_add(entries, &cpu_buffer->overrun);
 
1711
1712		/*
1713		 * The entries will be zeroed out when we move the
1714		 * tail page.
1715		 */
1716
1717		/* still more to do */
1718		break;
1719
1720	case RB_PAGE_UPDATE:
1721		/*
1722		 * This is an interrupt that interrupt the
1723		 * previous update. Still more to do.
1724		 */
1725		break;
1726	case RB_PAGE_NORMAL:
1727		/*
1728		 * An interrupt came in before the update
1729		 * and processed this for us.
1730		 * Nothing left to do.
1731		 */
1732		return 1;
1733	case RB_PAGE_MOVED:
1734		/*
1735		 * The reader is on another CPU and just did
1736		 * a swap with our next_page.
1737		 * Try again.
1738		 */
1739		return 1;
1740	default:
1741		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1742		return -1;
1743	}
1744
1745	/*
1746	 * Now that we are here, the old head pointer is
1747	 * set to UPDATE. This will keep the reader from
1748	 * swapping the head page with the reader page.
1749	 * The reader (on another CPU) will spin till
1750	 * we are finished.
1751	 *
1752	 * We just need to protect against interrupts
1753	 * doing the job. We will set the next pointer
1754	 * to HEAD. After that, we set the old pointer
1755	 * to NORMAL, but only if it was HEAD before.
1756	 * otherwise we are an interrupt, and only
1757	 * want the outer most commit to reset it.
1758	 */
1759	new_head = next_page;
1760	rb_inc_page(cpu_buffer, &new_head);
1761
1762	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1763				    RB_PAGE_NORMAL);
1764
1765	/*
1766	 * Valid returns are:
1767	 *  HEAD   - an interrupt came in and already set it.
1768	 *  NORMAL - One of two things:
1769	 *            1) We really set it.
1770	 *            2) A bunch of interrupts came in and moved
1771	 *               the page forward again.
1772	 */
1773	switch (ret) {
1774	case RB_PAGE_HEAD:
1775	case RB_PAGE_NORMAL:
1776		/* OK */
1777		break;
1778	default:
1779		RB_WARN_ON(cpu_buffer, 1);
1780		return -1;
1781	}
1782
1783	/*
1784	 * It is possible that an interrupt came in,
1785	 * set the head up, then more interrupts came in
1786	 * and moved it again. When we get back here,
1787	 * the page would have been set to NORMAL but we
1788	 * just set it back to HEAD.
1789	 *
1790	 * How do you detect this? Well, if that happened
1791	 * the tail page would have moved.
1792	 */
1793	if (ret == RB_PAGE_NORMAL) {
1794		/*
1795		 * If the tail had moved passed next, then we need
1796		 * to reset the pointer.
1797		 */
1798		if (cpu_buffer->tail_page != tail_page &&
1799		    cpu_buffer->tail_page != next_page)
1800			rb_head_page_set_normal(cpu_buffer, new_head,
1801						next_page,
1802						RB_PAGE_HEAD);
1803	}
1804
1805	/*
1806	 * If this was the outer most commit (the one that
1807	 * changed the original pointer from HEAD to UPDATE),
1808	 * then it is up to us to reset it to NORMAL.
1809	 */
1810	if (type == RB_PAGE_HEAD) {
1811		ret = rb_head_page_set_normal(cpu_buffer, next_page,
1812					      tail_page,
1813					      RB_PAGE_UPDATE);
1814		if (RB_WARN_ON(cpu_buffer,
1815			       ret != RB_PAGE_UPDATE))
1816			return -1;
1817	}
1818
1819	return 0;
1820}
1821
1822static unsigned rb_calculate_event_length(unsigned length)
1823{
1824	struct ring_buffer_event event; /* Used only for sizeof array */
1825
1826	/* zero length can cause confusions */
1827	if (!length)
1828		length = 1;
1829
1830	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1831		length += sizeof(event.array[0]);
1832
1833	length += RB_EVNT_HDR_SIZE;
1834	length = ALIGN(length, RB_ARCH_ALIGNMENT);
1835
1836	return length;
1837}
1838
1839static inline void
1840rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1841	      struct buffer_page *tail_page,
1842	      unsigned long tail, unsigned long length)
1843{
1844	struct ring_buffer_event *event;
1845
1846	/*
1847	 * Only the event that crossed the page boundary
1848	 * must fill the old tail_page with padding.
1849	 */
1850	if (tail >= BUF_PAGE_SIZE) {
1851		/*
1852		 * If the page was filled, then we still need
1853		 * to update the real_end. Reset it to zero
1854		 * and the reader will ignore it.
1855		 */
1856		if (tail == BUF_PAGE_SIZE)
1857			tail_page->real_end = 0;
1858
1859		local_sub(length, &tail_page->write);
1860		return;
1861	}
1862
1863	event = __rb_page_index(tail_page, tail);
1864	kmemcheck_annotate_bitfield(event, bitfield);
1865
 
 
 
1866	/*
1867	 * Save the original length to the meta data.
1868	 * This will be used by the reader to add lost event
1869	 * counter.
1870	 */
1871	tail_page->real_end = tail;
1872
1873	/*
1874	 * If this event is bigger than the minimum size, then
1875	 * we need to be careful that we don't subtract the
1876	 * write counter enough to allow another writer to slip
1877	 * in on this page.
1878	 * We put in a discarded commit instead, to make sure
1879	 * that this space is not used again.
1880	 *
1881	 * If we are less than the minimum size, we don't need to
1882	 * worry about it.
1883	 */
1884	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1885		/* No room for any events */
1886
1887		/* Mark the rest of the page with padding */
1888		rb_event_set_padding(event);
1889
1890		/* Set the write back to the previous setting */
1891		local_sub(length, &tail_page->write);
1892		return;
1893	}
1894
1895	/* Put in a discarded event */
1896	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1897	event->type_len = RINGBUF_TYPE_PADDING;
1898	/* time delta must be non zero */
1899	event->time_delta = 1;
1900
1901	/* Set write to end of buffer */
1902	length = (tail + length) - BUF_PAGE_SIZE;
1903	local_sub(length, &tail_page->write);
1904}
1905
1906/*
1907 * This is the slow path, force gcc not to inline it.
1908 */
1909static noinline struct ring_buffer_event *
1910rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1911	     unsigned long length, unsigned long tail,
1912	     struct buffer_page *tail_page, u64 ts)
1913{
1914	struct buffer_page *commit_page = cpu_buffer->commit_page;
1915	struct ring_buffer *buffer = cpu_buffer->buffer;
1916	struct buffer_page *next_page;
1917	int ret;
1918
1919	next_page = tail_page;
1920
1921	rb_inc_page(cpu_buffer, &next_page);
1922
1923	/*
1924	 * If for some reason, we had an interrupt storm that made
1925	 * it all the way around the buffer, bail, and warn
1926	 * about it.
1927	 */
1928	if (unlikely(next_page == commit_page)) {
1929		local_inc(&cpu_buffer->commit_overrun);
1930		goto out_reset;
1931	}
1932
1933	/*
1934	 * This is where the fun begins!
1935	 *
1936	 * We are fighting against races between a reader that
1937	 * could be on another CPU trying to swap its reader
1938	 * page with the buffer head.
1939	 *
1940	 * We are also fighting against interrupts coming in and
1941	 * moving the head or tail on us as well.
1942	 *
1943	 * If the next page is the head page then we have filled
1944	 * the buffer, unless the commit page is still on the
1945	 * reader page.
1946	 */
1947	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1948
1949		/*
1950		 * If the commit is not on the reader page, then
1951		 * move the header page.
1952		 */
1953		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1954			/*
1955			 * If we are not in overwrite mode,
1956			 * this is easy, just stop here.
1957			 */
1958			if (!(buffer->flags & RB_FL_OVERWRITE))
1959				goto out_reset;
1960
1961			ret = rb_handle_head_page(cpu_buffer,
1962						  tail_page,
1963						  next_page);
1964			if (ret < 0)
1965				goto out_reset;
1966			if (ret)
1967				goto out_again;
1968		} else {
1969			/*
1970			 * We need to be careful here too. The
1971			 * commit page could still be on the reader
1972			 * page. We could have a small buffer, and
1973			 * have filled up the buffer with events
1974			 * from interrupts and such, and wrapped.
1975			 *
1976			 * Note, if the tail page is also the on the
1977			 * reader_page, we let it move out.
1978			 */
1979			if (unlikely((cpu_buffer->commit_page !=
1980				      cpu_buffer->tail_page) &&
1981				     (cpu_buffer->commit_page ==
1982				      cpu_buffer->reader_page))) {
1983				local_inc(&cpu_buffer->commit_overrun);
1984				goto out_reset;
1985			}
1986		}
1987	}
1988
1989	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1990	if (ret) {
1991		/*
1992		 * Nested commits always have zero deltas, so
1993		 * just reread the time stamp
1994		 */
1995		ts = rb_time_stamp(buffer);
1996		next_page->page->time_stamp = ts;
1997	}
1998
1999 out_again:
2000
2001	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2002
2003	/* fail and let the caller try again */
2004	return ERR_PTR(-EAGAIN);
2005
2006 out_reset:
2007	/* reset write */
2008	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2009
2010	return NULL;
2011}
2012
2013static struct ring_buffer_event *
2014__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2015		  unsigned long length, u64 ts,
2016		  u64 delta, int add_timestamp)
2017{
2018	struct buffer_page *tail_page;
2019	struct ring_buffer_event *event;
2020	unsigned long tail, write;
2021
2022	/*
2023	 * If the time delta since the last event is too big to
2024	 * hold in the time field of the event, then we append a
2025	 * TIME EXTEND event ahead of the data event.
2026	 */
2027	if (unlikely(add_timestamp))
2028		length += RB_LEN_TIME_EXTEND;
2029
2030	tail_page = cpu_buffer->tail_page;
2031	write = local_add_return(length, &tail_page->write);
2032
2033	/* set write to only the index of the write */
2034	write &= RB_WRITE_MASK;
2035	tail = write - length;
2036
2037	/* See if we shot pass the end of this buffer page */
2038	if (unlikely(write > BUF_PAGE_SIZE))
2039		return rb_move_tail(cpu_buffer, length, tail,
2040				    tail_page, ts);
2041
2042	/* We reserved something on the buffer */
2043
2044	event = __rb_page_index(tail_page, tail);
2045	kmemcheck_annotate_bitfield(event, bitfield);
2046	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2047
2048	local_inc(&tail_page->entries);
2049
2050	/*
2051	 * If this is the first commit on the page, then update
2052	 * its timestamp.
2053	 */
2054	if (!tail)
2055		tail_page->page->time_stamp = ts;
2056
 
 
 
2057	return event;
2058}
2059
2060static inline int
2061rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2062		  struct ring_buffer_event *event)
2063{
2064	unsigned long new_index, old_index;
2065	struct buffer_page *bpage;
2066	unsigned long index;
2067	unsigned long addr;
2068
2069	new_index = rb_event_index(event);
2070	old_index = new_index + rb_event_ts_length(event);
2071	addr = (unsigned long)event;
2072	addr &= PAGE_MASK;
2073
2074	bpage = cpu_buffer->tail_page;
2075
2076	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2077		unsigned long write_mask =
2078			local_read(&bpage->write) & ~RB_WRITE_MASK;
 
2079		/*
2080		 * This is on the tail page. It is possible that
2081		 * a write could come in and move the tail page
2082		 * and write to the next page. That is fine
2083		 * because we just shorten what is on this page.
2084		 */
2085		old_index += write_mask;
2086		new_index += write_mask;
2087		index = local_cmpxchg(&bpage->write, old_index, new_index);
2088		if (index == old_index)
 
 
2089			return 1;
 
2090	}
2091
2092	/* could not discard */
2093	return 0;
2094}
2095
2096static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2097{
2098	local_inc(&cpu_buffer->committing);
2099	local_inc(&cpu_buffer->commits);
2100}
2101
2102static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2103{
2104	unsigned long commits;
2105
2106	if (RB_WARN_ON(cpu_buffer,
2107		       !local_read(&cpu_buffer->committing)))
2108		return;
2109
2110 again:
2111	commits = local_read(&cpu_buffer->commits);
2112	/* synchronize with interrupts */
2113	barrier();
2114	if (local_read(&cpu_buffer->committing) == 1)
2115		rb_set_commit_to_write(cpu_buffer);
2116
2117	local_dec(&cpu_buffer->committing);
2118
2119	/* synchronize with interrupts */
2120	barrier();
2121
2122	/*
2123	 * Need to account for interrupts coming in between the
2124	 * updating of the commit page and the clearing of the
2125	 * committing counter.
2126	 */
2127	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2128	    !local_read(&cpu_buffer->committing)) {
2129		local_inc(&cpu_buffer->committing);
2130		goto again;
2131	}
2132}
2133
2134static struct ring_buffer_event *
2135rb_reserve_next_event(struct ring_buffer *buffer,
2136		      struct ring_buffer_per_cpu *cpu_buffer,
2137		      unsigned long length)
2138{
2139	struct ring_buffer_event *event;
2140	u64 ts, delta;
2141	int nr_loops = 0;
2142	int add_timestamp;
2143	u64 diff;
2144
2145	rb_start_commit(cpu_buffer);
2146
2147#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2148	/*
2149	 * Due to the ability to swap a cpu buffer from a buffer
2150	 * it is possible it was swapped before we committed.
2151	 * (committing stops a swap). We check for it here and
2152	 * if it happened, we have to fail the write.
2153	 */
2154	barrier();
2155	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2156		local_dec(&cpu_buffer->committing);
2157		local_dec(&cpu_buffer->commits);
2158		return NULL;
2159	}
2160#endif
2161
2162	length = rb_calculate_event_length(length);
2163 again:
2164	add_timestamp = 0;
2165	delta = 0;
2166
2167	/*
2168	 * We allow for interrupts to reenter here and do a trace.
2169	 * If one does, it will cause this original code to loop
2170	 * back here. Even with heavy interrupts happening, this
2171	 * should only happen a few times in a row. If this happens
2172	 * 1000 times in a row, there must be either an interrupt
2173	 * storm or we have something buggy.
2174	 * Bail!
2175	 */
2176	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2177		goto out_fail;
2178
2179	ts = rb_time_stamp(cpu_buffer->buffer);
2180	diff = ts - cpu_buffer->write_stamp;
2181
2182	/* make sure this diff is calculated here */
2183	barrier();
2184
2185	/* Did the write stamp get updated already? */
2186	if (likely(ts >= cpu_buffer->write_stamp)) {
2187		delta = diff;
2188		if (unlikely(test_time_stamp(delta))) {
2189			int local_clock_stable = 1;
2190#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2191			local_clock_stable = sched_clock_stable;
2192#endif
2193			WARN_ONCE(delta > (1ULL << 59),
2194				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2195				  (unsigned long long)delta,
2196				  (unsigned long long)ts,
2197				  (unsigned long long)cpu_buffer->write_stamp,
2198				  local_clock_stable ? "" :
2199				  "If you just came from a suspend/resume,\n"
2200				  "please switch to the trace global clock:\n"
2201				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2202			add_timestamp = 1;
2203		}
2204	}
2205
2206	event = __rb_reserve_next(cpu_buffer, length, ts,
2207				  delta, add_timestamp);
2208	if (unlikely(PTR_ERR(event) == -EAGAIN))
2209		goto again;
2210
2211	if (!event)
2212		goto out_fail;
2213
2214	return event;
2215
2216 out_fail:
2217	rb_end_commit(cpu_buffer);
2218	return NULL;
2219}
2220
2221#ifdef CONFIG_TRACING
2222
2223#define TRACE_RECURSIVE_DEPTH 16
2224
2225/* Keep this code out of the fast path cache */
2226static noinline void trace_recursive_fail(void)
2227{
2228	/* Disable all tracing before we do anything else */
2229	tracing_off_permanent();
2230
2231	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2232		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2233		    trace_recursion_buffer(),
2234		    hardirq_count() >> HARDIRQ_SHIFT,
2235		    softirq_count() >> SOFTIRQ_SHIFT,
2236		    in_nmi());
2237
2238	WARN_ON_ONCE(1);
2239}
2240
2241static inline int trace_recursive_lock(void)
2242{
2243	trace_recursion_inc();
2244
2245	if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2246		return 0;
2247
2248	trace_recursive_fail();
2249
2250	return -1;
2251}
2252
2253static inline void trace_recursive_unlock(void)
2254{
2255	WARN_ON_ONCE(!trace_recursion_buffer());
2256
2257	trace_recursion_dec();
2258}
2259
2260#else
2261
2262#define trace_recursive_lock()		(0)
2263#define trace_recursive_unlock()	do { } while (0)
2264
2265#endif
2266
2267/**
2268 * ring_buffer_lock_reserve - reserve a part of the buffer
2269 * @buffer: the ring buffer to reserve from
2270 * @length: the length of the data to reserve (excluding event header)
2271 *
2272 * Returns a reseverd event on the ring buffer to copy directly to.
2273 * The user of this interface will need to get the body to write into
2274 * and can use the ring_buffer_event_data() interface.
2275 *
2276 * The length is the length of the data needed, not the event length
2277 * which also includes the event header.
2278 *
2279 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2280 * If NULL is returned, then nothing has been allocated or locked.
2281 */
2282struct ring_buffer_event *
2283ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2284{
2285	struct ring_buffer_per_cpu *cpu_buffer;
2286	struct ring_buffer_event *event;
2287	int cpu;
2288
2289	if (ring_buffer_flags != RB_BUFFERS_ON)
2290		return NULL;
2291
2292	/* If we are tracing schedule, we don't want to recurse */
2293	preempt_disable_notrace();
2294
2295	if (atomic_read(&buffer->record_disabled))
2296		goto out_nocheck;
2297
2298	if (trace_recursive_lock())
2299		goto out_nocheck;
2300
2301	cpu = raw_smp_processor_id();
2302
2303	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2304		goto out;
2305
2306	cpu_buffer = buffer->buffers[cpu];
2307
2308	if (atomic_read(&cpu_buffer->record_disabled))
2309		goto out;
2310
2311	if (length > BUF_MAX_DATA_SIZE)
2312		goto out;
2313
2314	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2315	if (!event)
2316		goto out;
2317
2318	return event;
2319
2320 out:
2321	trace_recursive_unlock();
2322
2323 out_nocheck:
2324	preempt_enable_notrace();
2325	return NULL;
2326}
2327EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2328
2329static void
2330rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2331		      struct ring_buffer_event *event)
2332{
2333	u64 delta;
2334
2335	/*
2336	 * The event first in the commit queue updates the
2337	 * time stamp.
2338	 */
2339	if (rb_event_is_commit(cpu_buffer, event)) {
2340		/*
2341		 * A commit event that is first on a page
2342		 * updates the write timestamp with the page stamp
2343		 */
2344		if (!rb_event_index(event))
2345			cpu_buffer->write_stamp =
2346				cpu_buffer->commit_page->page->time_stamp;
2347		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2348			delta = event->array[0];
2349			delta <<= TS_SHIFT;
2350			delta += event->time_delta;
2351			cpu_buffer->write_stamp += delta;
2352		} else
2353			cpu_buffer->write_stamp += event->time_delta;
2354	}
2355}
2356
2357static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2358		      struct ring_buffer_event *event)
2359{
2360	local_inc(&cpu_buffer->entries);
2361	rb_update_write_stamp(cpu_buffer, event);
2362	rb_end_commit(cpu_buffer);
2363}
2364
2365/**
2366 * ring_buffer_unlock_commit - commit a reserved
2367 * @buffer: The buffer to commit to
2368 * @event: The event pointer to commit.
2369 *
2370 * This commits the data to the ring buffer, and releases any locks held.
2371 *
2372 * Must be paired with ring_buffer_lock_reserve.
2373 */
2374int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2375			      struct ring_buffer_event *event)
2376{
2377	struct ring_buffer_per_cpu *cpu_buffer;
2378	int cpu = raw_smp_processor_id();
2379
2380	cpu_buffer = buffer->buffers[cpu];
2381
2382	rb_commit(cpu_buffer, event);
2383
2384	trace_recursive_unlock();
2385
2386	preempt_enable_notrace();
2387
2388	return 0;
2389}
2390EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2391
2392static inline void rb_event_discard(struct ring_buffer_event *event)
2393{
2394	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2395		event = skip_time_extend(event);
2396
2397	/* array[0] holds the actual length for the discarded event */
2398	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2399	event->type_len = RINGBUF_TYPE_PADDING;
2400	/* time delta must be non zero */
2401	if (!event->time_delta)
2402		event->time_delta = 1;
2403}
2404
2405/*
2406 * Decrement the entries to the page that an event is on.
2407 * The event does not even need to exist, only the pointer
2408 * to the page it is on. This may only be called before the commit
2409 * takes place.
2410 */
2411static inline void
2412rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2413		   struct ring_buffer_event *event)
2414{
2415	unsigned long addr = (unsigned long)event;
2416	struct buffer_page *bpage = cpu_buffer->commit_page;
2417	struct buffer_page *start;
2418
2419	addr &= PAGE_MASK;
2420
2421	/* Do the likely case first */
2422	if (likely(bpage->page == (void *)addr)) {
2423		local_dec(&bpage->entries);
2424		return;
2425	}
2426
2427	/*
2428	 * Because the commit page may be on the reader page we
2429	 * start with the next page and check the end loop there.
2430	 */
2431	rb_inc_page(cpu_buffer, &bpage);
2432	start = bpage;
2433	do {
2434		if (bpage->page == (void *)addr) {
2435			local_dec(&bpage->entries);
2436			return;
2437		}
2438		rb_inc_page(cpu_buffer, &bpage);
2439	} while (bpage != start);
2440
2441	/* commit not part of this buffer?? */
2442	RB_WARN_ON(cpu_buffer, 1);
2443}
2444
2445/**
2446 * ring_buffer_commit_discard - discard an event that has not been committed
2447 * @buffer: the ring buffer
2448 * @event: non committed event to discard
2449 *
2450 * Sometimes an event that is in the ring buffer needs to be ignored.
2451 * This function lets the user discard an event in the ring buffer
2452 * and then that event will not be read later.
2453 *
2454 * This function only works if it is called before the the item has been
2455 * committed. It will try to free the event from the ring buffer
2456 * if another event has not been added behind it.
2457 *
2458 * If another event has been added behind it, it will set the event
2459 * up as discarded, and perform the commit.
2460 *
2461 * If this function is called, do not call ring_buffer_unlock_commit on
2462 * the event.
2463 */
2464void ring_buffer_discard_commit(struct ring_buffer *buffer,
2465				struct ring_buffer_event *event)
2466{
2467	struct ring_buffer_per_cpu *cpu_buffer;
2468	int cpu;
2469
2470	/* The event is discarded regardless */
2471	rb_event_discard(event);
2472
2473	cpu = smp_processor_id();
2474	cpu_buffer = buffer->buffers[cpu];
2475
2476	/*
2477	 * This must only be called if the event has not been
2478	 * committed yet. Thus we can assume that preemption
2479	 * is still disabled.
2480	 */
2481	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2482
2483	rb_decrement_entry(cpu_buffer, event);
2484	if (rb_try_to_discard(cpu_buffer, event))
2485		goto out;
2486
2487	/*
2488	 * The commit is still visible by the reader, so we
2489	 * must still update the timestamp.
2490	 */
2491	rb_update_write_stamp(cpu_buffer, event);
2492 out:
2493	rb_end_commit(cpu_buffer);
2494
2495	trace_recursive_unlock();
2496
2497	preempt_enable_notrace();
2498
2499}
2500EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2501
2502/**
2503 * ring_buffer_write - write data to the buffer without reserving
2504 * @buffer: The ring buffer to write to.
2505 * @length: The length of the data being written (excluding the event header)
2506 * @data: The data to write to the buffer.
2507 *
2508 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2509 * one function. If you already have the data to write to the buffer, it
2510 * may be easier to simply call this function.
2511 *
2512 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2513 * and not the length of the event which would hold the header.
2514 */
2515int ring_buffer_write(struct ring_buffer *buffer,
2516			unsigned long length,
2517			void *data)
2518{
2519	struct ring_buffer_per_cpu *cpu_buffer;
2520	struct ring_buffer_event *event;
2521	void *body;
2522	int ret = -EBUSY;
2523	int cpu;
2524
2525	if (ring_buffer_flags != RB_BUFFERS_ON)
2526		return -EBUSY;
2527
2528	preempt_disable_notrace();
2529
2530	if (atomic_read(&buffer->record_disabled))
2531		goto out;
2532
2533	cpu = raw_smp_processor_id();
2534
2535	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2536		goto out;
2537
2538	cpu_buffer = buffer->buffers[cpu];
2539
2540	if (atomic_read(&cpu_buffer->record_disabled))
2541		goto out;
2542
2543	if (length > BUF_MAX_DATA_SIZE)
2544		goto out;
2545
2546	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2547	if (!event)
2548		goto out;
2549
2550	body = rb_event_data(event);
2551
2552	memcpy(body, data, length);
2553
2554	rb_commit(cpu_buffer, event);
2555
2556	ret = 0;
2557 out:
2558	preempt_enable_notrace();
2559
2560	return ret;
2561}
2562EXPORT_SYMBOL_GPL(ring_buffer_write);
2563
2564static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2565{
2566	struct buffer_page *reader = cpu_buffer->reader_page;
2567	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2568	struct buffer_page *commit = cpu_buffer->commit_page;
2569
2570	/* In case of error, head will be NULL */
2571	if (unlikely(!head))
2572		return 1;
2573
2574	return reader->read == rb_page_commit(reader) &&
2575		(commit == reader ||
2576		 (commit == head &&
2577		  head->read == rb_page_commit(commit)));
2578}
2579
2580/**
2581 * ring_buffer_record_disable - stop all writes into the buffer
2582 * @buffer: The ring buffer to stop writes to.
2583 *
2584 * This prevents all writes to the buffer. Any attempt to write
2585 * to the buffer after this will fail and return NULL.
2586 *
2587 * The caller should call synchronize_sched() after this.
2588 */
2589void ring_buffer_record_disable(struct ring_buffer *buffer)
2590{
2591	atomic_inc(&buffer->record_disabled);
2592}
2593EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2594
2595/**
2596 * ring_buffer_record_enable - enable writes to the buffer
2597 * @buffer: The ring buffer to enable writes
2598 *
2599 * Note, multiple disables will need the same number of enables
2600 * to truly enable the writing (much like preempt_disable).
2601 */
2602void ring_buffer_record_enable(struct ring_buffer *buffer)
2603{
2604	atomic_dec(&buffer->record_disabled);
2605}
2606EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2607
2608/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2609 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2610 * @buffer: The ring buffer to stop writes to.
2611 * @cpu: The CPU buffer to stop
2612 *
2613 * This prevents all writes to the buffer. Any attempt to write
2614 * to the buffer after this will fail and return NULL.
2615 *
2616 * The caller should call synchronize_sched() after this.
2617 */
2618void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2619{
2620	struct ring_buffer_per_cpu *cpu_buffer;
2621
2622	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2623		return;
2624
2625	cpu_buffer = buffer->buffers[cpu];
2626	atomic_inc(&cpu_buffer->record_disabled);
2627}
2628EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2629
2630/**
2631 * ring_buffer_record_enable_cpu - enable writes to the buffer
2632 * @buffer: The ring buffer to enable writes
2633 * @cpu: The CPU to enable.
2634 *
2635 * Note, multiple disables will need the same number of enables
2636 * to truly enable the writing (much like preempt_disable).
2637 */
2638void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2639{
2640	struct ring_buffer_per_cpu *cpu_buffer;
2641
2642	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2643		return;
2644
2645	cpu_buffer = buffer->buffers[cpu];
2646	atomic_dec(&cpu_buffer->record_disabled);
2647}
2648EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2649
2650/*
2651 * The total entries in the ring buffer is the running counter
2652 * of entries entered into the ring buffer, minus the sum of
2653 * the entries read from the ring buffer and the number of
2654 * entries that were overwritten.
2655 */
2656static inline unsigned long
2657rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2658{
2659	return local_read(&cpu_buffer->entries) -
2660		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2661}
2662
2663/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2664 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2665 * @buffer: The ring buffer
2666 * @cpu: The per CPU buffer to get the entries from.
2667 */
2668unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2669{
2670	struct ring_buffer_per_cpu *cpu_buffer;
2671
2672	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2673		return 0;
2674
2675	cpu_buffer = buffer->buffers[cpu];
2676
2677	return rb_num_of_entries(cpu_buffer);
2678}
2679EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2680
2681/**
2682 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2683 * @buffer: The ring buffer
2684 * @cpu: The per CPU buffer to get the number of overruns from
2685 */
2686unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2687{
2688	struct ring_buffer_per_cpu *cpu_buffer;
2689	unsigned long ret;
2690
2691	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2692		return 0;
2693
2694	cpu_buffer = buffer->buffers[cpu];
2695	ret = local_read(&cpu_buffer->overrun);
2696
2697	return ret;
2698}
2699EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2700
2701/**
2702 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2703 * @buffer: The ring buffer
2704 * @cpu: The per CPU buffer to get the number of overruns from
2705 */
2706unsigned long
2707ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2708{
2709	struct ring_buffer_per_cpu *cpu_buffer;
2710	unsigned long ret;
2711
2712	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2713		return 0;
2714
2715	cpu_buffer = buffer->buffers[cpu];
2716	ret = local_read(&cpu_buffer->commit_overrun);
2717
2718	return ret;
2719}
2720EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2721
2722/**
2723 * ring_buffer_entries - get the number of entries in a buffer
2724 * @buffer: The ring buffer
2725 *
2726 * Returns the total number of entries in the ring buffer
2727 * (all CPU entries)
2728 */
2729unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2730{
2731	struct ring_buffer_per_cpu *cpu_buffer;
2732	unsigned long entries = 0;
2733	int cpu;
2734
2735	/* if you care about this being correct, lock the buffer */
2736	for_each_buffer_cpu(buffer, cpu) {
2737		cpu_buffer = buffer->buffers[cpu];
2738		entries += rb_num_of_entries(cpu_buffer);
2739	}
2740
2741	return entries;
2742}
2743EXPORT_SYMBOL_GPL(ring_buffer_entries);
2744
2745/**
2746 * ring_buffer_overruns - get the number of overruns in buffer
2747 * @buffer: The ring buffer
2748 *
2749 * Returns the total number of overruns in the ring buffer
2750 * (all CPU entries)
2751 */
2752unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2753{
2754	struct ring_buffer_per_cpu *cpu_buffer;
2755	unsigned long overruns = 0;
2756	int cpu;
2757
2758	/* if you care about this being correct, lock the buffer */
2759	for_each_buffer_cpu(buffer, cpu) {
2760		cpu_buffer = buffer->buffers[cpu];
2761		overruns += local_read(&cpu_buffer->overrun);
2762	}
2763
2764	return overruns;
2765}
2766EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2767
2768static void rb_iter_reset(struct ring_buffer_iter *iter)
2769{
2770	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2771
2772	/* Iterator usage is expected to have record disabled */
2773	if (list_empty(&cpu_buffer->reader_page->list)) {
2774		iter->head_page = rb_set_head_page(cpu_buffer);
2775		if (unlikely(!iter->head_page))
2776			return;
2777		iter->head = iter->head_page->read;
2778	} else {
2779		iter->head_page = cpu_buffer->reader_page;
2780		iter->head = cpu_buffer->reader_page->read;
2781	}
2782	if (iter->head)
2783		iter->read_stamp = cpu_buffer->read_stamp;
2784	else
2785		iter->read_stamp = iter->head_page->page->time_stamp;
2786	iter->cache_reader_page = cpu_buffer->reader_page;
2787	iter->cache_read = cpu_buffer->read;
2788}
2789
2790/**
2791 * ring_buffer_iter_reset - reset an iterator
2792 * @iter: The iterator to reset
2793 *
2794 * Resets the iterator, so that it will start from the beginning
2795 * again.
2796 */
2797void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2798{
2799	struct ring_buffer_per_cpu *cpu_buffer;
2800	unsigned long flags;
2801
2802	if (!iter)
2803		return;
2804
2805	cpu_buffer = iter->cpu_buffer;
2806
2807	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2808	rb_iter_reset(iter);
2809	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2810}
2811EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2812
2813/**
2814 * ring_buffer_iter_empty - check if an iterator has no more to read
2815 * @iter: The iterator to check
2816 */
2817int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2818{
2819	struct ring_buffer_per_cpu *cpu_buffer;
2820
2821	cpu_buffer = iter->cpu_buffer;
2822
2823	return iter->head_page == cpu_buffer->commit_page &&
2824		iter->head == rb_commit_index(cpu_buffer);
2825}
2826EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2827
2828static void
2829rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2830		     struct ring_buffer_event *event)
2831{
2832	u64 delta;
2833
2834	switch (event->type_len) {
2835	case RINGBUF_TYPE_PADDING:
2836		return;
2837
2838	case RINGBUF_TYPE_TIME_EXTEND:
2839		delta = event->array[0];
2840		delta <<= TS_SHIFT;
2841		delta += event->time_delta;
2842		cpu_buffer->read_stamp += delta;
2843		return;
2844
2845	case RINGBUF_TYPE_TIME_STAMP:
2846		/* FIXME: not implemented */
2847		return;
2848
2849	case RINGBUF_TYPE_DATA:
2850		cpu_buffer->read_stamp += event->time_delta;
2851		return;
2852
2853	default:
2854		BUG();
2855	}
2856	return;
2857}
2858
2859static void
2860rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2861			  struct ring_buffer_event *event)
2862{
2863	u64 delta;
2864
2865	switch (event->type_len) {
2866	case RINGBUF_TYPE_PADDING:
2867		return;
2868
2869	case RINGBUF_TYPE_TIME_EXTEND:
2870		delta = event->array[0];
2871		delta <<= TS_SHIFT;
2872		delta += event->time_delta;
2873		iter->read_stamp += delta;
2874		return;
2875
2876	case RINGBUF_TYPE_TIME_STAMP:
2877		/* FIXME: not implemented */
2878		return;
2879
2880	case RINGBUF_TYPE_DATA:
2881		iter->read_stamp += event->time_delta;
2882		return;
2883
2884	default:
2885		BUG();
2886	}
2887	return;
2888}
2889
2890static struct buffer_page *
2891rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2892{
2893	struct buffer_page *reader = NULL;
2894	unsigned long overwrite;
2895	unsigned long flags;
2896	int nr_loops = 0;
2897	int ret;
2898
2899	local_irq_save(flags);
2900	arch_spin_lock(&cpu_buffer->lock);
2901
2902 again:
2903	/*
2904	 * This should normally only loop twice. But because the
2905	 * start of the reader inserts an empty page, it causes
2906	 * a case where we will loop three times. There should be no
2907	 * reason to loop four times (that I know of).
2908	 */
2909	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2910		reader = NULL;
2911		goto out;
2912	}
2913
2914	reader = cpu_buffer->reader_page;
2915
2916	/* If there's more to read, return this page */
2917	if (cpu_buffer->reader_page->read < rb_page_size(reader))
2918		goto out;
2919
2920	/* Never should we have an index greater than the size */
2921	if (RB_WARN_ON(cpu_buffer,
2922		       cpu_buffer->reader_page->read > rb_page_size(reader)))
2923		goto out;
2924
2925	/* check if we caught up to the tail */
2926	reader = NULL;
2927	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2928		goto out;
2929
2930	/*
2931	 * Reset the reader page to size zero.
2932	 */
2933	local_set(&cpu_buffer->reader_page->write, 0);
2934	local_set(&cpu_buffer->reader_page->entries, 0);
2935	local_set(&cpu_buffer->reader_page->page->commit, 0);
2936	cpu_buffer->reader_page->real_end = 0;
2937
2938 spin:
2939	/*
2940	 * Splice the empty reader page into the list around the head.
2941	 */
2942	reader = rb_set_head_page(cpu_buffer);
2943	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2944	cpu_buffer->reader_page->list.prev = reader->list.prev;
2945
2946	/*
2947	 * cpu_buffer->pages just needs to point to the buffer, it
2948	 *  has no specific buffer page to point to. Lets move it out
2949	 *  of our way so we don't accidentally swap it.
2950	 */
2951	cpu_buffer->pages = reader->list.prev;
2952
2953	/* The reader page will be pointing to the new head */
2954	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2955
2956	/*
2957	 * We want to make sure we read the overruns after we set up our
2958	 * pointers to the next object. The writer side does a
2959	 * cmpxchg to cross pages which acts as the mb on the writer
2960	 * side. Note, the reader will constantly fail the swap
2961	 * while the writer is updating the pointers, so this
2962	 * guarantees that the overwrite recorded here is the one we
2963	 * want to compare with the last_overrun.
2964	 */
2965	smp_mb();
2966	overwrite = local_read(&(cpu_buffer->overrun));
2967
2968	/*
2969	 * Here's the tricky part.
2970	 *
2971	 * We need to move the pointer past the header page.
2972	 * But we can only do that if a writer is not currently
2973	 * moving it. The page before the header page has the
2974	 * flag bit '1' set if it is pointing to the page we want.
2975	 * but if the writer is in the process of moving it
2976	 * than it will be '2' or already moved '0'.
2977	 */
2978
2979	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2980
2981	/*
2982	 * If we did not convert it, then we must try again.
2983	 */
2984	if (!ret)
2985		goto spin;
2986
2987	/*
2988	 * Yeah! We succeeded in replacing the page.
2989	 *
2990	 * Now make the new head point back to the reader page.
2991	 */
2992	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2993	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2994
2995	/* Finally update the reader page to the new head */
2996	cpu_buffer->reader_page = reader;
2997	rb_reset_reader_page(cpu_buffer);
2998
2999	if (overwrite != cpu_buffer->last_overrun) {
3000		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3001		cpu_buffer->last_overrun = overwrite;
3002	}
3003
3004	goto again;
3005
3006 out:
3007	arch_spin_unlock(&cpu_buffer->lock);
3008	local_irq_restore(flags);
3009
3010	return reader;
3011}
3012
3013static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3014{
3015	struct ring_buffer_event *event;
3016	struct buffer_page *reader;
3017	unsigned length;
3018
3019	reader = rb_get_reader_page(cpu_buffer);
3020
3021	/* This function should not be called when buffer is empty */
3022	if (RB_WARN_ON(cpu_buffer, !reader))
3023		return;
3024
3025	event = rb_reader_event(cpu_buffer);
3026
3027	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3028		cpu_buffer->read++;
3029
3030	rb_update_read_stamp(cpu_buffer, event);
3031
3032	length = rb_event_length(event);
3033	cpu_buffer->reader_page->read += length;
3034}
3035
3036static void rb_advance_iter(struct ring_buffer_iter *iter)
3037{
3038	struct ring_buffer_per_cpu *cpu_buffer;
3039	struct ring_buffer_event *event;
3040	unsigned length;
3041
3042	cpu_buffer = iter->cpu_buffer;
3043
3044	/*
3045	 * Check if we are at the end of the buffer.
3046	 */
3047	if (iter->head >= rb_page_size(iter->head_page)) {
3048		/* discarded commits can make the page empty */
3049		if (iter->head_page == cpu_buffer->commit_page)
3050			return;
3051		rb_inc_iter(iter);
3052		return;
3053	}
3054
3055	event = rb_iter_head_event(iter);
3056
3057	length = rb_event_length(event);
3058
3059	/*
3060	 * This should not be called to advance the header if we are
3061	 * at the tail of the buffer.
3062	 */
3063	if (RB_WARN_ON(cpu_buffer,
3064		       (iter->head_page == cpu_buffer->commit_page) &&
3065		       (iter->head + length > rb_commit_index(cpu_buffer))))
3066		return;
3067
3068	rb_update_iter_read_stamp(iter, event);
3069
3070	iter->head += length;
3071
3072	/* check for end of page padding */
3073	if ((iter->head >= rb_page_size(iter->head_page)) &&
3074	    (iter->head_page != cpu_buffer->commit_page))
3075		rb_advance_iter(iter);
3076}
3077
3078static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3079{
3080	return cpu_buffer->lost_events;
3081}
3082
3083static struct ring_buffer_event *
3084rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3085	       unsigned long *lost_events)
3086{
3087	struct ring_buffer_event *event;
3088	struct buffer_page *reader;
3089	int nr_loops = 0;
3090
3091 again:
3092	/*
3093	 * We repeat when a time extend is encountered.
3094	 * Since the time extend is always attached to a data event,
3095	 * we should never loop more than once.
3096	 * (We never hit the following condition more than twice).
3097	 */
3098	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3099		return NULL;
3100
3101	reader = rb_get_reader_page(cpu_buffer);
3102	if (!reader)
3103		return NULL;
3104
3105	event = rb_reader_event(cpu_buffer);
3106
3107	switch (event->type_len) {
3108	case RINGBUF_TYPE_PADDING:
3109		if (rb_null_event(event))
3110			RB_WARN_ON(cpu_buffer, 1);
3111		/*
3112		 * Because the writer could be discarding every
3113		 * event it creates (which would probably be bad)
3114		 * if we were to go back to "again" then we may never
3115		 * catch up, and will trigger the warn on, or lock
3116		 * the box. Return the padding, and we will release
3117		 * the current locks, and try again.
3118		 */
3119		return event;
3120
3121	case RINGBUF_TYPE_TIME_EXTEND:
3122		/* Internal data, OK to advance */
3123		rb_advance_reader(cpu_buffer);
3124		goto again;
3125
3126	case RINGBUF_TYPE_TIME_STAMP:
3127		/* FIXME: not implemented */
3128		rb_advance_reader(cpu_buffer);
3129		goto again;
3130
3131	case RINGBUF_TYPE_DATA:
3132		if (ts) {
3133			*ts = cpu_buffer->read_stamp + event->time_delta;
3134			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3135							 cpu_buffer->cpu, ts);
3136		}
3137		if (lost_events)
3138			*lost_events = rb_lost_events(cpu_buffer);
3139		return event;
3140
3141	default:
3142		BUG();
3143	}
3144
3145	return NULL;
3146}
3147EXPORT_SYMBOL_GPL(ring_buffer_peek);
3148
3149static struct ring_buffer_event *
3150rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3151{
3152	struct ring_buffer *buffer;
3153	struct ring_buffer_per_cpu *cpu_buffer;
3154	struct ring_buffer_event *event;
3155	int nr_loops = 0;
3156
3157	cpu_buffer = iter->cpu_buffer;
3158	buffer = cpu_buffer->buffer;
3159
3160	/*
3161	 * Check if someone performed a consuming read to
3162	 * the buffer. A consuming read invalidates the iterator
3163	 * and we need to reset the iterator in this case.
3164	 */
3165	if (unlikely(iter->cache_read != cpu_buffer->read ||
3166		     iter->cache_reader_page != cpu_buffer->reader_page))
3167		rb_iter_reset(iter);
3168
3169 again:
3170	if (ring_buffer_iter_empty(iter))
3171		return NULL;
3172
3173	/*
3174	 * We repeat when a time extend is encountered.
3175	 * Since the time extend is always attached to a data event,
3176	 * we should never loop more than once.
3177	 * (We never hit the following condition more than twice).
3178	 */
3179	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3180		return NULL;
3181
3182	if (rb_per_cpu_empty(cpu_buffer))
3183		return NULL;
3184
3185	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3186		rb_inc_iter(iter);
3187		goto again;
3188	}
3189
3190	event = rb_iter_head_event(iter);
3191
3192	switch (event->type_len) {
3193	case RINGBUF_TYPE_PADDING:
3194		if (rb_null_event(event)) {
3195			rb_inc_iter(iter);
3196			goto again;
3197		}
3198		rb_advance_iter(iter);
3199		return event;
3200
3201	case RINGBUF_TYPE_TIME_EXTEND:
3202		/* Internal data, OK to advance */
3203		rb_advance_iter(iter);
3204		goto again;
3205
3206	case RINGBUF_TYPE_TIME_STAMP:
3207		/* FIXME: not implemented */
3208		rb_advance_iter(iter);
3209		goto again;
3210
3211	case RINGBUF_TYPE_DATA:
3212		if (ts) {
3213			*ts = iter->read_stamp + event->time_delta;
3214			ring_buffer_normalize_time_stamp(buffer,
3215							 cpu_buffer->cpu, ts);
3216		}
3217		return event;
3218
3219	default:
3220		BUG();
3221	}
3222
3223	return NULL;
3224}
3225EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3226
3227static inline int rb_ok_to_lock(void)
3228{
3229	/*
3230	 * If an NMI die dumps out the content of the ring buffer
3231	 * do not grab locks. We also permanently disable the ring
3232	 * buffer too. A one time deal is all you get from reading
3233	 * the ring buffer from an NMI.
3234	 */
3235	if (likely(!in_nmi()))
3236		return 1;
3237
3238	tracing_off_permanent();
3239	return 0;
3240}
3241
3242/**
3243 * ring_buffer_peek - peek at the next event to be read
3244 * @buffer: The ring buffer to read
3245 * @cpu: The cpu to peak at
3246 * @ts: The timestamp counter of this event.
3247 * @lost_events: a variable to store if events were lost (may be NULL)
3248 *
3249 * This will return the event that will be read next, but does
3250 * not consume the data.
3251 */
3252struct ring_buffer_event *
3253ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3254		 unsigned long *lost_events)
3255{
3256	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3257	struct ring_buffer_event *event;
3258	unsigned long flags;
3259	int dolock;
3260
3261	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3262		return NULL;
3263
3264	dolock = rb_ok_to_lock();
3265 again:
3266	local_irq_save(flags);
3267	if (dolock)
3268		spin_lock(&cpu_buffer->reader_lock);
3269	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3270	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3271		rb_advance_reader(cpu_buffer);
3272	if (dolock)
3273		spin_unlock(&cpu_buffer->reader_lock);
3274	local_irq_restore(flags);
3275
3276	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3277		goto again;
3278
3279	return event;
3280}
3281
3282/**
3283 * ring_buffer_iter_peek - peek at the next event to be read
3284 * @iter: The ring buffer iterator
3285 * @ts: The timestamp counter of this event.
3286 *
3287 * This will return the event that will be read next, but does
3288 * not increment the iterator.
3289 */
3290struct ring_buffer_event *
3291ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3292{
3293	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3294	struct ring_buffer_event *event;
3295	unsigned long flags;
3296
3297 again:
3298	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3299	event = rb_iter_peek(iter, ts);
3300	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3301
3302	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3303		goto again;
3304
3305	return event;
3306}
3307
3308/**
3309 * ring_buffer_consume - return an event and consume it
3310 * @buffer: The ring buffer to get the next event from
3311 * @cpu: the cpu to read the buffer from
3312 * @ts: a variable to store the timestamp (may be NULL)
3313 * @lost_events: a variable to store if events were lost (may be NULL)
3314 *
3315 * Returns the next event in the ring buffer, and that event is consumed.
3316 * Meaning, that sequential reads will keep returning a different event,
3317 * and eventually empty the ring buffer if the producer is slower.
3318 */
3319struct ring_buffer_event *
3320ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3321		    unsigned long *lost_events)
3322{
3323	struct ring_buffer_per_cpu *cpu_buffer;
3324	struct ring_buffer_event *event = NULL;
3325	unsigned long flags;
3326	int dolock;
3327
3328	dolock = rb_ok_to_lock();
3329
3330 again:
3331	/* might be called in atomic */
3332	preempt_disable();
3333
3334	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3335		goto out;
3336
3337	cpu_buffer = buffer->buffers[cpu];
3338	local_irq_save(flags);
3339	if (dolock)
3340		spin_lock(&cpu_buffer->reader_lock);
3341
3342	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3343	if (event) {
3344		cpu_buffer->lost_events = 0;
3345		rb_advance_reader(cpu_buffer);
3346	}
3347
3348	if (dolock)
3349		spin_unlock(&cpu_buffer->reader_lock);
3350	local_irq_restore(flags);
3351
3352 out:
3353	preempt_enable();
3354
3355	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3356		goto again;
3357
3358	return event;
3359}
3360EXPORT_SYMBOL_GPL(ring_buffer_consume);
3361
3362/**
3363 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3364 * @buffer: The ring buffer to read from
3365 * @cpu: The cpu buffer to iterate over
3366 *
3367 * This performs the initial preparations necessary to iterate
3368 * through the buffer.  Memory is allocated, buffer recording
3369 * is disabled, and the iterator pointer is returned to the caller.
3370 *
3371 * Disabling buffer recordng prevents the reading from being
3372 * corrupted. This is not a consuming read, so a producer is not
3373 * expected.
3374 *
3375 * After a sequence of ring_buffer_read_prepare calls, the user is
3376 * expected to make at least one call to ring_buffer_prepare_sync.
3377 * Afterwards, ring_buffer_read_start is invoked to get things going
3378 * for real.
3379 *
3380 * This overall must be paired with ring_buffer_finish.
3381 */
3382struct ring_buffer_iter *
3383ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3384{
3385	struct ring_buffer_per_cpu *cpu_buffer;
3386	struct ring_buffer_iter *iter;
3387
3388	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3389		return NULL;
3390
3391	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3392	if (!iter)
3393		return NULL;
3394
3395	cpu_buffer = buffer->buffers[cpu];
3396
3397	iter->cpu_buffer = cpu_buffer;
3398
 
3399	atomic_inc(&cpu_buffer->record_disabled);
3400
3401	return iter;
3402}
3403EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3404
3405/**
3406 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3407 *
3408 * All previously invoked ring_buffer_read_prepare calls to prepare
3409 * iterators will be synchronized.  Afterwards, read_buffer_read_start
3410 * calls on those iterators are allowed.
3411 */
3412void
3413ring_buffer_read_prepare_sync(void)
3414{
3415	synchronize_sched();
3416}
3417EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3418
3419/**
3420 * ring_buffer_read_start - start a non consuming read of the buffer
3421 * @iter: The iterator returned by ring_buffer_read_prepare
3422 *
3423 * This finalizes the startup of an iteration through the buffer.
3424 * The iterator comes from a call to ring_buffer_read_prepare and
3425 * an intervening ring_buffer_read_prepare_sync must have been
3426 * performed.
3427 *
3428 * Must be paired with ring_buffer_finish.
3429 */
3430void
3431ring_buffer_read_start(struct ring_buffer_iter *iter)
3432{
3433	struct ring_buffer_per_cpu *cpu_buffer;
3434	unsigned long flags;
3435
3436	if (!iter)
3437		return;
3438
3439	cpu_buffer = iter->cpu_buffer;
3440
3441	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3442	arch_spin_lock(&cpu_buffer->lock);
3443	rb_iter_reset(iter);
3444	arch_spin_unlock(&cpu_buffer->lock);
3445	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3446}
3447EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3448
3449/**
3450 * ring_buffer_finish - finish reading the iterator of the buffer
3451 * @iter: The iterator retrieved by ring_buffer_start
3452 *
3453 * This re-enables the recording to the buffer, and frees the
3454 * iterator.
3455 */
3456void
3457ring_buffer_read_finish(struct ring_buffer_iter *iter)
3458{
3459	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3460
 
 
 
 
 
 
3461	atomic_dec(&cpu_buffer->record_disabled);
 
3462	kfree(iter);
3463}
3464EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3465
3466/**
3467 * ring_buffer_read - read the next item in the ring buffer by the iterator
3468 * @iter: The ring buffer iterator
3469 * @ts: The time stamp of the event read.
3470 *
3471 * This reads the next event in the ring buffer and increments the iterator.
3472 */
3473struct ring_buffer_event *
3474ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3475{
3476	struct ring_buffer_event *event;
3477	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3478	unsigned long flags;
3479
3480	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3481 again:
3482	event = rb_iter_peek(iter, ts);
3483	if (!event)
3484		goto out;
3485
3486	if (event->type_len == RINGBUF_TYPE_PADDING)
3487		goto again;
3488
3489	rb_advance_iter(iter);
3490 out:
3491	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3492
3493	return event;
3494}
3495EXPORT_SYMBOL_GPL(ring_buffer_read);
3496
3497/**
3498 * ring_buffer_size - return the size of the ring buffer (in bytes)
3499 * @buffer: The ring buffer.
3500 */
3501unsigned long ring_buffer_size(struct ring_buffer *buffer)
3502{
3503	return BUF_PAGE_SIZE * buffer->pages;
 
 
 
 
 
 
 
 
 
3504}
3505EXPORT_SYMBOL_GPL(ring_buffer_size);
3506
3507static void
3508rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3509{
3510	rb_head_page_deactivate(cpu_buffer);
3511
3512	cpu_buffer->head_page
3513		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3514	local_set(&cpu_buffer->head_page->write, 0);
3515	local_set(&cpu_buffer->head_page->entries, 0);
3516	local_set(&cpu_buffer->head_page->page->commit, 0);
3517
3518	cpu_buffer->head_page->read = 0;
3519
3520	cpu_buffer->tail_page = cpu_buffer->head_page;
3521	cpu_buffer->commit_page = cpu_buffer->head_page;
3522
3523	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
 
3524	local_set(&cpu_buffer->reader_page->write, 0);
3525	local_set(&cpu_buffer->reader_page->entries, 0);
3526	local_set(&cpu_buffer->reader_page->page->commit, 0);
3527	cpu_buffer->reader_page->read = 0;
3528
3529	local_set(&cpu_buffer->commit_overrun, 0);
 
3530	local_set(&cpu_buffer->overrun, 0);
3531	local_set(&cpu_buffer->entries, 0);
3532	local_set(&cpu_buffer->committing, 0);
3533	local_set(&cpu_buffer->commits, 0);
3534	cpu_buffer->read = 0;
 
3535
3536	cpu_buffer->write_stamp = 0;
3537	cpu_buffer->read_stamp = 0;
3538
3539	cpu_buffer->lost_events = 0;
3540	cpu_buffer->last_overrun = 0;
3541
3542	rb_head_page_activate(cpu_buffer);
3543}
3544
3545/**
3546 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3547 * @buffer: The ring buffer to reset a per cpu buffer of
3548 * @cpu: The CPU buffer to be reset
3549 */
3550void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3551{
3552	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3553	unsigned long flags;
3554
3555	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3556		return;
3557
 
3558	atomic_inc(&cpu_buffer->record_disabled);
3559
3560	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 
 
 
3561
3562	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3563		goto out;
3564
3565	arch_spin_lock(&cpu_buffer->lock);
3566
3567	rb_reset_cpu(cpu_buffer);
3568
3569	arch_spin_unlock(&cpu_buffer->lock);
3570
3571 out:
3572	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3573
3574	atomic_dec(&cpu_buffer->record_disabled);
 
3575}
3576EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3577
3578/**
3579 * ring_buffer_reset - reset a ring buffer
3580 * @buffer: The ring buffer to reset all cpu buffers
3581 */
3582void ring_buffer_reset(struct ring_buffer *buffer)
3583{
3584	int cpu;
3585
3586	for_each_buffer_cpu(buffer, cpu)
3587		ring_buffer_reset_cpu(buffer, cpu);
3588}
3589EXPORT_SYMBOL_GPL(ring_buffer_reset);
3590
3591/**
3592 * rind_buffer_empty - is the ring buffer empty?
3593 * @buffer: The ring buffer to test
3594 */
3595int ring_buffer_empty(struct ring_buffer *buffer)
3596{
3597	struct ring_buffer_per_cpu *cpu_buffer;
3598	unsigned long flags;
3599	int dolock;
3600	int cpu;
3601	int ret;
3602
3603	dolock = rb_ok_to_lock();
3604
3605	/* yes this is racy, but if you don't like the race, lock the buffer */
3606	for_each_buffer_cpu(buffer, cpu) {
3607		cpu_buffer = buffer->buffers[cpu];
3608		local_irq_save(flags);
3609		if (dolock)
3610			spin_lock(&cpu_buffer->reader_lock);
3611		ret = rb_per_cpu_empty(cpu_buffer);
3612		if (dolock)
3613			spin_unlock(&cpu_buffer->reader_lock);
3614		local_irq_restore(flags);
3615
3616		if (!ret)
3617			return 0;
3618	}
3619
3620	return 1;
3621}
3622EXPORT_SYMBOL_GPL(ring_buffer_empty);
3623
3624/**
3625 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3626 * @buffer: The ring buffer
3627 * @cpu: The CPU buffer to test
3628 */
3629int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3630{
3631	struct ring_buffer_per_cpu *cpu_buffer;
3632	unsigned long flags;
3633	int dolock;
3634	int ret;
3635
3636	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3637		return 1;
3638
3639	dolock = rb_ok_to_lock();
3640
3641	cpu_buffer = buffer->buffers[cpu];
3642	local_irq_save(flags);
3643	if (dolock)
3644		spin_lock(&cpu_buffer->reader_lock);
3645	ret = rb_per_cpu_empty(cpu_buffer);
3646	if (dolock)
3647		spin_unlock(&cpu_buffer->reader_lock);
3648	local_irq_restore(flags);
3649
3650	return ret;
3651}
3652EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3653
3654#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3655/**
3656 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3657 * @buffer_a: One buffer to swap with
3658 * @buffer_b: The other buffer to swap with
3659 *
3660 * This function is useful for tracers that want to take a "snapshot"
3661 * of a CPU buffer and has another back up buffer lying around.
3662 * it is expected that the tracer handles the cpu buffer not being
3663 * used at the moment.
3664 */
3665int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3666			 struct ring_buffer *buffer_b, int cpu)
3667{
3668	struct ring_buffer_per_cpu *cpu_buffer_a;
3669	struct ring_buffer_per_cpu *cpu_buffer_b;
3670	int ret = -EINVAL;
3671
3672	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3673	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
3674		goto out;
3675
 
 
 
3676	/* At least make sure the two buffers are somewhat the same */
3677	if (buffer_a->pages != buffer_b->pages)
3678		goto out;
3679
3680	ret = -EAGAIN;
3681
3682	if (ring_buffer_flags != RB_BUFFERS_ON)
3683		goto out;
3684
3685	if (atomic_read(&buffer_a->record_disabled))
3686		goto out;
3687
3688	if (atomic_read(&buffer_b->record_disabled))
3689		goto out;
3690
3691	cpu_buffer_a = buffer_a->buffers[cpu];
3692	cpu_buffer_b = buffer_b->buffers[cpu];
3693
3694	if (atomic_read(&cpu_buffer_a->record_disabled))
3695		goto out;
3696
3697	if (atomic_read(&cpu_buffer_b->record_disabled))
3698		goto out;
3699
3700	/*
3701	 * We can't do a synchronize_sched here because this
3702	 * function can be called in atomic context.
3703	 * Normally this will be called from the same CPU as cpu.
3704	 * If not it's up to the caller to protect this.
3705	 */
3706	atomic_inc(&cpu_buffer_a->record_disabled);
3707	atomic_inc(&cpu_buffer_b->record_disabled);
3708
3709	ret = -EBUSY;
3710	if (local_read(&cpu_buffer_a->committing))
3711		goto out_dec;
3712	if (local_read(&cpu_buffer_b->committing))
3713		goto out_dec;
3714
3715	buffer_a->buffers[cpu] = cpu_buffer_b;
3716	buffer_b->buffers[cpu] = cpu_buffer_a;
3717
3718	cpu_buffer_b->buffer = buffer_a;
3719	cpu_buffer_a->buffer = buffer_b;
3720
3721	ret = 0;
3722
3723out_dec:
3724	atomic_dec(&cpu_buffer_a->record_disabled);
3725	atomic_dec(&cpu_buffer_b->record_disabled);
3726out:
3727	return ret;
3728}
3729EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3730#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3731
3732/**
3733 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3734 * @buffer: the buffer to allocate for.
3735 *
3736 * This function is used in conjunction with ring_buffer_read_page.
3737 * When reading a full page from the ring buffer, these functions
3738 * can be used to speed up the process. The calling function should
3739 * allocate a few pages first with this function. Then when it
3740 * needs to get pages from the ring buffer, it passes the result
3741 * of this function into ring_buffer_read_page, which will swap
3742 * the page that was allocated, with the read page of the buffer.
3743 *
3744 * Returns:
3745 *  The page allocated, or NULL on error.
3746 */
3747void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
3748{
3749	struct buffer_data_page *bpage;
3750	struct page *page;
3751
3752	page = alloc_pages_node(cpu_to_node(cpu),
3753				GFP_KERNEL | __GFP_NORETRY, 0);
3754	if (!page)
3755		return NULL;
3756
3757	bpage = page_address(page);
3758
3759	rb_init_page(bpage);
3760
3761	return bpage;
3762}
3763EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3764
3765/**
3766 * ring_buffer_free_read_page - free an allocated read page
3767 * @buffer: the buffer the page was allocate for
3768 * @data: the page to free
3769 *
3770 * Free a page allocated from ring_buffer_alloc_read_page.
3771 */
3772void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3773{
3774	free_page((unsigned long)data);
3775}
3776EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3777
3778/**
3779 * ring_buffer_read_page - extract a page from the ring buffer
3780 * @buffer: buffer to extract from
3781 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3782 * @len: amount to extract
3783 * @cpu: the cpu of the buffer to extract
3784 * @full: should the extraction only happen when the page is full.
3785 *
3786 * This function will pull out a page from the ring buffer and consume it.
3787 * @data_page must be the address of the variable that was returned
3788 * from ring_buffer_alloc_read_page. This is because the page might be used
3789 * to swap with a page in the ring buffer.
3790 *
3791 * for example:
3792 *	rpage = ring_buffer_alloc_read_page(buffer);
3793 *	if (!rpage)
3794 *		return error;
3795 *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3796 *	if (ret >= 0)
3797 *		process_page(rpage, ret);
3798 *
3799 * When @full is set, the function will not return true unless
3800 * the writer is off the reader page.
3801 *
3802 * Note: it is up to the calling functions to handle sleeps and wakeups.
3803 *  The ring buffer can be used anywhere in the kernel and can not
3804 *  blindly call wake_up. The layer that uses the ring buffer must be
3805 *  responsible for that.
3806 *
3807 * Returns:
3808 *  >=0 if data has been transferred, returns the offset of consumed data.
3809 *  <0 if no data has been transferred.
3810 */
3811int ring_buffer_read_page(struct ring_buffer *buffer,
3812			  void **data_page, size_t len, int cpu, int full)
3813{
3814	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3815	struct ring_buffer_event *event;
3816	struct buffer_data_page *bpage;
3817	struct buffer_page *reader;
3818	unsigned long missed_events;
3819	unsigned long flags;
3820	unsigned int commit;
3821	unsigned int read;
3822	u64 save_timestamp;
3823	int ret = -1;
3824
3825	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3826		goto out;
3827
3828	/*
3829	 * If len is not big enough to hold the page header, then
3830	 * we can not copy anything.
3831	 */
3832	if (len <= BUF_PAGE_HDR_SIZE)
3833		goto out;
3834
3835	len -= BUF_PAGE_HDR_SIZE;
3836
3837	if (!data_page)
3838		goto out;
3839
3840	bpage = *data_page;
3841	if (!bpage)
3842		goto out;
3843
3844	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3845
3846	reader = rb_get_reader_page(cpu_buffer);
3847	if (!reader)
3848		goto out_unlock;
3849
3850	event = rb_reader_event(cpu_buffer);
3851
3852	read = reader->read;
3853	commit = rb_page_commit(reader);
3854
3855	/* Check if any events were dropped */
3856	missed_events = cpu_buffer->lost_events;
3857
3858	/*
3859	 * If this page has been partially read or
3860	 * if len is not big enough to read the rest of the page or
3861	 * a writer is still on the page, then
3862	 * we must copy the data from the page to the buffer.
3863	 * Otherwise, we can simply swap the page with the one passed in.
3864	 */
3865	if (read || (len < (commit - read)) ||
3866	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
3867		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3868		unsigned int rpos = read;
3869		unsigned int pos = 0;
3870		unsigned int size;
3871
3872		if (full)
3873			goto out_unlock;
3874
3875		if (len > (commit - read))
3876			len = (commit - read);
3877
3878		/* Always keep the time extend and data together */
3879		size = rb_event_ts_length(event);
3880
3881		if (len < size)
3882			goto out_unlock;
3883
3884		/* save the current timestamp, since the user will need it */
3885		save_timestamp = cpu_buffer->read_stamp;
3886
3887		/* Need to copy one event at a time */
3888		do {
3889			/* We need the size of one event, because
3890			 * rb_advance_reader only advances by one event,
3891			 * whereas rb_event_ts_length may include the size of
3892			 * one or two events.
3893			 * We have already ensured there's enough space if this
3894			 * is a time extend. */
3895			size = rb_event_length(event);
3896			memcpy(bpage->data + pos, rpage->data + rpos, size);
3897
3898			len -= size;
3899
3900			rb_advance_reader(cpu_buffer);
3901			rpos = reader->read;
3902			pos += size;
3903
3904			if (rpos >= commit)
3905				break;
3906
3907			event = rb_reader_event(cpu_buffer);
3908			/* Always keep the time extend and data together */
3909			size = rb_event_ts_length(event);
3910		} while (len >= size);
3911
3912		/* update bpage */
3913		local_set(&bpage->commit, pos);
3914		bpage->time_stamp = save_timestamp;
3915
3916		/* we copied everything to the beginning */
3917		read = 0;
3918	} else {
3919		/* update the entry counter */
3920		cpu_buffer->read += rb_page_entries(reader);
 
3921
3922		/* swap the pages */
3923		rb_init_page(bpage);
3924		bpage = reader->page;
3925		reader->page = *data_page;
3926		local_set(&reader->write, 0);
3927		local_set(&reader->entries, 0);
3928		reader->read = 0;
3929		*data_page = bpage;
3930
3931		/*
3932		 * Use the real_end for the data size,
3933		 * This gives us a chance to store the lost events
3934		 * on the page.
3935		 */
3936		if (reader->real_end)
3937			local_set(&bpage->commit, reader->real_end);
3938	}
3939	ret = read;
3940
3941	cpu_buffer->lost_events = 0;
3942
3943	commit = local_read(&bpage->commit);
3944	/*
3945	 * Set a flag in the commit field if we lost events
3946	 */
3947	if (missed_events) {
3948		/* If there is room at the end of the page to save the
3949		 * missed events, then record it there.
3950		 */
3951		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3952			memcpy(&bpage->data[commit], &missed_events,
3953			       sizeof(missed_events));
3954			local_add(RB_MISSED_STORED, &bpage->commit);
3955			commit += sizeof(missed_events);
3956		}
3957		local_add(RB_MISSED_EVENTS, &bpage->commit);
3958	}
3959
3960	/*
3961	 * This page may be off to user land. Zero it out here.
3962	 */
3963	if (commit < BUF_PAGE_SIZE)
3964		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
3965
3966 out_unlock:
3967	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3968
3969 out:
3970	return ret;
3971}
3972EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3973
3974#ifdef CONFIG_TRACING
3975static ssize_t
3976rb_simple_read(struct file *filp, char __user *ubuf,
3977	       size_t cnt, loff_t *ppos)
3978{
3979	unsigned long *p = filp->private_data;
3980	char buf[64];
3981	int r;
3982
3983	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3984		r = sprintf(buf, "permanently disabled\n");
3985	else
3986		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3987
3988	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3989}
3990
3991static ssize_t
3992rb_simple_write(struct file *filp, const char __user *ubuf,
3993		size_t cnt, loff_t *ppos)
3994{
3995	unsigned long *p = filp->private_data;
3996	unsigned long val;
3997	int ret;
3998
3999	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
4000	if (ret)
4001		return ret;
4002
4003	if (val)
4004		set_bit(RB_BUFFERS_ON_BIT, p);
4005	else
4006		clear_bit(RB_BUFFERS_ON_BIT, p);
4007
4008	(*ppos)++;
4009
4010	return cnt;
4011}
4012
4013static const struct file_operations rb_simple_fops = {
4014	.open		= tracing_open_generic,
4015	.read		= rb_simple_read,
4016	.write		= rb_simple_write,
4017	.llseek		= default_llseek,
4018};
4019
4020
4021static __init int rb_init_debugfs(void)
4022{
4023	struct dentry *d_tracer;
4024
4025	d_tracer = tracing_init_dentry();
4026
4027	trace_create_file("tracing_on", 0644, d_tracer,
4028			    &ring_buffer_flags, &rb_simple_fops);
4029
4030	return 0;
4031}
4032
4033fs_initcall(rb_init_debugfs);
4034#endif
4035
4036#ifdef CONFIG_HOTPLUG_CPU
4037static int rb_cpu_notify(struct notifier_block *self,
4038			 unsigned long action, void *hcpu)
4039{
4040	struct ring_buffer *buffer =
4041		container_of(self, struct ring_buffer, cpu_notify);
4042	long cpu = (long)hcpu;
 
 
4043
4044	switch (action) {
4045	case CPU_UP_PREPARE:
4046	case CPU_UP_PREPARE_FROZEN:
4047		if (cpumask_test_cpu(cpu, buffer->cpumask))
4048			return NOTIFY_OK;
4049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4050		buffer->buffers[cpu] =
4051			rb_allocate_cpu_buffer(buffer, cpu);
4052		if (!buffer->buffers[cpu]) {
4053			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4054			     cpu);
4055			return NOTIFY_OK;
4056		}
4057		smp_wmb();
4058		cpumask_set_cpu(cpu, buffer->cpumask);
4059		break;
4060	case CPU_DOWN_PREPARE:
4061	case CPU_DOWN_PREPARE_FROZEN:
4062		/*
4063		 * Do nothing.
4064		 *  If we were to free the buffer, then the user would
4065		 *  lose any trace that was in the buffer.
4066		 */
4067		break;
4068	default:
4069		break;
4070	}
4071	return NOTIFY_OK;
4072}
4073#endif
v3.5.6
   1/*
   2 * Generic ring buffer
   3 *
   4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   5 */
   6#include <linux/ring_buffer.h>
   7#include <linux/trace_clock.h>
   8#include <linux/spinlock.h>
   9#include <linux/debugfs.h>
  10#include <linux/uaccess.h>
  11#include <linux/hardirq.h>
  12#include <linux/kmemcheck.h>
  13#include <linux/module.h>
  14#include <linux/percpu.h>
  15#include <linux/mutex.h>
  16#include <linux/slab.h>
  17#include <linux/init.h>
  18#include <linux/hash.h>
  19#include <linux/list.h>
  20#include <linux/cpu.h>
  21#include <linux/fs.h>
  22
  23#include <asm/local.h>
  24#include "trace.h"
  25
  26static void update_pages_handler(struct work_struct *work);
  27
  28/*
  29 * The ring buffer header is special. We must manually up keep it.
  30 */
  31int ring_buffer_print_entry_header(struct trace_seq *s)
  32{
  33	int ret;
  34
  35	ret = trace_seq_printf(s, "# compressed entry header\n");
  36	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
  37	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
  38	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
  39	ret = trace_seq_printf(s, "\n");
  40	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
  41			       RINGBUF_TYPE_PADDING);
  42	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
  43			       RINGBUF_TYPE_TIME_EXTEND);
  44	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
  45			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  46
  47	return ret;
  48}
  49
  50/*
  51 * The ring buffer is made up of a list of pages. A separate list of pages is
  52 * allocated for each CPU. A writer may only write to a buffer that is
  53 * associated with the CPU it is currently executing on.  A reader may read
  54 * from any per cpu buffer.
  55 *
  56 * The reader is special. For each per cpu buffer, the reader has its own
  57 * reader page. When a reader has read the entire reader page, this reader
  58 * page is swapped with another page in the ring buffer.
  59 *
  60 * Now, as long as the writer is off the reader page, the reader can do what
  61 * ever it wants with that page. The writer will never write to that page
  62 * again (as long as it is out of the ring buffer).
  63 *
  64 * Here's some silly ASCII art.
  65 *
  66 *   +------+
  67 *   |reader|          RING BUFFER
  68 *   |page  |
  69 *   +------+        +---+   +---+   +---+
  70 *                   |   |-->|   |-->|   |
  71 *                   +---+   +---+   +---+
  72 *                     ^               |
  73 *                     |               |
  74 *                     +---------------+
  75 *
  76 *
  77 *   +------+
  78 *   |reader|          RING BUFFER
  79 *   |page  |------------------v
  80 *   +------+        +---+   +---+   +---+
  81 *                   |   |-->|   |-->|   |
  82 *                   +---+   +---+   +---+
  83 *                     ^               |
  84 *                     |               |
  85 *                     +---------------+
  86 *
  87 *
  88 *   +------+
  89 *   |reader|          RING BUFFER
  90 *   |page  |------------------v
  91 *   +------+        +---+   +---+   +---+
  92 *      ^            |   |-->|   |-->|   |
  93 *      |            +---+   +---+   +---+
  94 *      |                              |
  95 *      |                              |
  96 *      +------------------------------+
  97 *
  98 *
  99 *   +------+
 100 *   |buffer|          RING BUFFER
 101 *   |page  |------------------v
 102 *   +------+        +---+   +---+   +---+
 103 *      ^            |   |   |   |-->|   |
 104 *      |   New      +---+   +---+   +---+
 105 *      |  Reader------^               |
 106 *      |   page                       |
 107 *      +------------------------------+
 108 *
 109 *
 110 * After we make this swap, the reader can hand this page off to the splice
 111 * code and be done with it. It can even allocate a new page if it needs to
 112 * and swap that into the ring buffer.
 113 *
 114 * We will be using cmpxchg soon to make all this lockless.
 115 *
 116 */
 117
 118/*
 119 * A fast way to enable or disable all ring buffers is to
 120 * call tracing_on or tracing_off. Turning off the ring buffers
 121 * prevents all ring buffers from being recorded to.
 122 * Turning this switch on, makes it OK to write to the
 123 * ring buffer, if the ring buffer is enabled itself.
 124 *
 125 * There's three layers that must be on in order to write
 126 * to the ring buffer.
 127 *
 128 * 1) This global flag must be set.
 129 * 2) The ring buffer must be enabled for recording.
 130 * 3) The per cpu buffer must be enabled for recording.
 131 *
 132 * In case of an anomaly, this global flag has a bit set that
 133 * will permantly disable all ring buffers.
 134 */
 135
 136/*
 137 * Global flag to disable all recording to ring buffers
 138 *  This has two bits: ON, DISABLED
 139 *
 140 *  ON   DISABLED
 141 * ---- ----------
 142 *   0      0        : ring buffers are off
 143 *   1      0        : ring buffers are on
 144 *   X      1        : ring buffers are permanently disabled
 145 */
 146
 147enum {
 148	RB_BUFFERS_ON_BIT	= 0,
 149	RB_BUFFERS_DISABLED_BIT	= 1,
 150};
 151
 152enum {
 153	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
 154	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
 155};
 156
 157static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
 158
 159/* Used for individual buffers (after the counter) */
 160#define RB_BUFFER_OFF		(1 << 20)
 161
 162#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 163
 164/**
 165 * tracing_off_permanent - permanently disable ring buffers
 166 *
 167 * This function, once called, will disable all ring buffers
 168 * permanently.
 169 */
 170void tracing_off_permanent(void)
 171{
 172	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
 173}
 174
 
 
 
 
 
 
 
 
 
 175#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 176#define RB_ALIGNMENT		4U
 177#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 178#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 179
 180#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
 181# define RB_FORCE_8BYTE_ALIGNMENT	0
 182# define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
 183#else
 184# define RB_FORCE_8BYTE_ALIGNMENT	1
 185# define RB_ARCH_ALIGNMENT		8U
 186#endif
 187
 188/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 189#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 190
 191enum {
 192	RB_LEN_TIME_EXTEND = 8,
 193	RB_LEN_TIME_STAMP = 16,
 194};
 195
 196#define skip_time_extend(event) \
 197	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 198
 199static inline int rb_null_event(struct ring_buffer_event *event)
 200{
 201	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 202}
 203
 204static void rb_event_set_padding(struct ring_buffer_event *event)
 205{
 206	/* padding has a NULL time_delta */
 207	event->type_len = RINGBUF_TYPE_PADDING;
 208	event->time_delta = 0;
 209}
 210
 211static unsigned
 212rb_event_data_length(struct ring_buffer_event *event)
 213{
 214	unsigned length;
 215
 216	if (event->type_len)
 217		length = event->type_len * RB_ALIGNMENT;
 218	else
 219		length = event->array[0];
 220	return length + RB_EVNT_HDR_SIZE;
 221}
 222
 223/*
 224 * Return the length of the given event. Will return
 225 * the length of the time extend if the event is a
 226 * time extend.
 227 */
 228static inline unsigned
 229rb_event_length(struct ring_buffer_event *event)
 230{
 231	switch (event->type_len) {
 232	case RINGBUF_TYPE_PADDING:
 233		if (rb_null_event(event))
 234			/* undefined */
 235			return -1;
 236		return  event->array[0] + RB_EVNT_HDR_SIZE;
 237
 238	case RINGBUF_TYPE_TIME_EXTEND:
 239		return RB_LEN_TIME_EXTEND;
 240
 241	case RINGBUF_TYPE_TIME_STAMP:
 242		return RB_LEN_TIME_STAMP;
 243
 244	case RINGBUF_TYPE_DATA:
 245		return rb_event_data_length(event);
 246	default:
 247		BUG();
 248	}
 249	/* not hit */
 250	return 0;
 251}
 252
 253/*
 254 * Return total length of time extend and data,
 255 *   or just the event length for all other events.
 256 */
 257static inline unsigned
 258rb_event_ts_length(struct ring_buffer_event *event)
 259{
 260	unsigned len = 0;
 261
 262	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
 263		/* time extends include the data event after it */
 264		len = RB_LEN_TIME_EXTEND;
 265		event = skip_time_extend(event);
 266	}
 267	return len + rb_event_length(event);
 268}
 269
 270/**
 271 * ring_buffer_event_length - return the length of the event
 272 * @event: the event to get the length of
 273 *
 274 * Returns the size of the data load of a data event.
 275 * If the event is something other than a data event, it
 276 * returns the size of the event itself. With the exception
 277 * of a TIME EXTEND, where it still returns the size of the
 278 * data load of the data event after it.
 279 */
 280unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 281{
 282	unsigned length;
 283
 284	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 285		event = skip_time_extend(event);
 286
 287	length = rb_event_length(event);
 288	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 289		return length;
 290	length -= RB_EVNT_HDR_SIZE;
 291	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 292                length -= sizeof(event->array[0]);
 293	return length;
 294}
 295EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 296
 297/* inline for ring buffer fast paths */
 298static void *
 299rb_event_data(struct ring_buffer_event *event)
 300{
 301	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 302		event = skip_time_extend(event);
 303	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 304	/* If length is in len field, then array[0] has the data */
 305	if (event->type_len)
 306		return (void *)&event->array[0];
 307	/* Otherwise length is in array[0] and array[1] has the data */
 308	return (void *)&event->array[1];
 309}
 310
 311/**
 312 * ring_buffer_event_data - return the data of the event
 313 * @event: the event to get the data from
 314 */
 315void *ring_buffer_event_data(struct ring_buffer_event *event)
 316{
 317	return rb_event_data(event);
 318}
 319EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 320
 321#define for_each_buffer_cpu(buffer, cpu)		\
 322	for_each_cpu(cpu, buffer->cpumask)
 323
 324#define TS_SHIFT	27
 325#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 326#define TS_DELTA_TEST	(~TS_MASK)
 327
 328/* Flag when events were overwritten */
 329#define RB_MISSED_EVENTS	(1 << 31)
 330/* Missed count stored at end */
 331#define RB_MISSED_STORED	(1 << 30)
 332
 333struct buffer_data_page {
 334	u64		 time_stamp;	/* page time stamp */
 335	local_t		 commit;	/* write committed index */
 336	unsigned char	 data[];	/* data of buffer page */
 337};
 338
 339/*
 340 * Note, the buffer_page list must be first. The buffer pages
 341 * are allocated in cache lines, which means that each buffer
 342 * page will be at the beginning of a cache line, and thus
 343 * the least significant bits will be zero. We use this to
 344 * add flags in the list struct pointers, to make the ring buffer
 345 * lockless.
 346 */
 347struct buffer_page {
 348	struct list_head list;		/* list of buffer pages */
 349	local_t		 write;		/* index for next write */
 350	unsigned	 read;		/* index for next read */
 351	local_t		 entries;	/* entries on this page */
 352	unsigned long	 real_end;	/* real end of data */
 353	struct buffer_data_page *page;	/* Actual data page */
 354};
 355
 356/*
 357 * The buffer page counters, write and entries, must be reset
 358 * atomically when crossing page boundaries. To synchronize this
 359 * update, two counters are inserted into the number. One is
 360 * the actual counter for the write position or count on the page.
 361 *
 362 * The other is a counter of updaters. Before an update happens
 363 * the update partition of the counter is incremented. This will
 364 * allow the updater to update the counter atomically.
 365 *
 366 * The counter is 20 bits, and the state data is 12.
 367 */
 368#define RB_WRITE_MASK		0xfffff
 369#define RB_WRITE_INTCNT		(1 << 20)
 370
 371static void rb_init_page(struct buffer_data_page *bpage)
 372{
 373	local_set(&bpage->commit, 0);
 374}
 375
 376/**
 377 * ring_buffer_page_len - the size of data on the page.
 378 * @page: The page to read
 379 *
 380 * Returns the amount of data on the page, including buffer page header.
 381 */
 382size_t ring_buffer_page_len(void *page)
 383{
 384	return local_read(&((struct buffer_data_page *)page)->commit)
 385		+ BUF_PAGE_HDR_SIZE;
 386}
 387
 388/*
 389 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 390 * this issue out.
 391 */
 392static void free_buffer_page(struct buffer_page *bpage)
 393{
 394	free_page((unsigned long)bpage->page);
 395	kfree(bpage);
 396}
 397
 398/*
 399 * We need to fit the time_stamp delta into 27 bits.
 400 */
 401static inline int test_time_stamp(u64 delta)
 402{
 403	if (delta & TS_DELTA_TEST)
 404		return 1;
 405	return 0;
 406}
 407
 408#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 409
 410/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 411#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 412
 413int ring_buffer_print_page_header(struct trace_seq *s)
 414{
 415	struct buffer_data_page field;
 416	int ret;
 417
 418	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 419			       "offset:0;\tsize:%u;\tsigned:%u;\n",
 420			       (unsigned int)sizeof(field.time_stamp),
 421			       (unsigned int)is_signed_type(u64));
 422
 423	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
 424			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
 425			       (unsigned int)offsetof(typeof(field), commit),
 426			       (unsigned int)sizeof(field.commit),
 427			       (unsigned int)is_signed_type(long));
 428
 429	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
 430			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
 431			       (unsigned int)offsetof(typeof(field), commit),
 432			       1,
 433			       (unsigned int)is_signed_type(long));
 434
 435	ret = trace_seq_printf(s, "\tfield: char data;\t"
 436			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
 437			       (unsigned int)offsetof(typeof(field), data),
 438			       (unsigned int)BUF_PAGE_SIZE,
 439			       (unsigned int)is_signed_type(char));
 440
 441	return ret;
 442}
 443
 444/*
 445 * head_page == tail_page && head == tail then buffer is empty.
 446 */
 447struct ring_buffer_per_cpu {
 448	int				cpu;
 449	atomic_t			record_disabled;
 450	struct ring_buffer		*buffer;
 451	raw_spinlock_t			reader_lock;	/* serialize readers */
 452	arch_spinlock_t			lock;
 453	struct lock_class_key		lock_key;
 454	unsigned int			nr_pages;
 455	struct list_head		*pages;
 456	struct buffer_page		*head_page;	/* read from head */
 457	struct buffer_page		*tail_page;	/* write to tail */
 458	struct buffer_page		*commit_page;	/* committed pages */
 459	struct buffer_page		*reader_page;
 460	unsigned long			lost_events;
 461	unsigned long			last_overrun;
 462	local_t				entries_bytes;
 463	local_t				commit_overrun;
 464	local_t				overrun;
 465	local_t				entries;
 466	local_t				committing;
 467	local_t				commits;
 468	unsigned long			read;
 469	unsigned long			read_bytes;
 470	u64				write_stamp;
 471	u64				read_stamp;
 472	/* ring buffer pages to update, > 0 to add, < 0 to remove */
 473	int				nr_pages_to_update;
 474	struct list_head		new_pages; /* new pages to add */
 475	struct work_struct		update_pages_work;
 476	struct completion		update_done;
 477};
 478
 479struct ring_buffer {
 
 480	unsigned			flags;
 481	int				cpus;
 482	atomic_t			record_disabled;
 483	atomic_t			resize_disabled;
 484	cpumask_var_t			cpumask;
 485
 486	struct lock_class_key		*reader_lock_key;
 487
 488	struct mutex			mutex;
 489
 490	struct ring_buffer_per_cpu	**buffers;
 491
 492#ifdef CONFIG_HOTPLUG_CPU
 493	struct notifier_block		cpu_notify;
 494#endif
 495	u64				(*clock)(void);
 496};
 497
 498struct ring_buffer_iter {
 499	struct ring_buffer_per_cpu	*cpu_buffer;
 500	unsigned long			head;
 501	struct buffer_page		*head_page;
 502	struct buffer_page		*cache_reader_page;
 503	unsigned long			cache_read;
 504	u64				read_stamp;
 505};
 506
 507/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 508#define RB_WARN_ON(b, cond)						\
 509	({								\
 510		int _____ret = unlikely(cond);				\
 511		if (_____ret) {						\
 512			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 513				struct ring_buffer_per_cpu *__b =	\
 514					(void *)b;			\
 515				atomic_inc(&__b->buffer->record_disabled); \
 516			} else						\
 517				atomic_inc(&b->record_disabled);	\
 518			WARN_ON(1);					\
 519		}							\
 520		_____ret;						\
 521	})
 522
 523/* Up this if you want to test the TIME_EXTENTS and normalization */
 524#define DEBUG_SHIFT 0
 525
 526static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 527{
 528	/* shift to debug/test normalization and TIME_EXTENTS */
 529	return buffer->clock() << DEBUG_SHIFT;
 530}
 531
 532u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 533{
 534	u64 time;
 535
 536	preempt_disable_notrace();
 537	time = rb_time_stamp(buffer);
 538	preempt_enable_no_resched_notrace();
 539
 540	return time;
 541}
 542EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 543
 544void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 545				      int cpu, u64 *ts)
 546{
 547	/* Just stupid testing the normalize function and deltas */
 548	*ts >>= DEBUG_SHIFT;
 549}
 550EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 551
 552/*
 553 * Making the ring buffer lockless makes things tricky.
 554 * Although writes only happen on the CPU that they are on,
 555 * and they only need to worry about interrupts. Reads can
 556 * happen on any CPU.
 557 *
 558 * The reader page is always off the ring buffer, but when the
 559 * reader finishes with a page, it needs to swap its page with
 560 * a new one from the buffer. The reader needs to take from
 561 * the head (writes go to the tail). But if a writer is in overwrite
 562 * mode and wraps, it must push the head page forward.
 563 *
 564 * Here lies the problem.
 565 *
 566 * The reader must be careful to replace only the head page, and
 567 * not another one. As described at the top of the file in the
 568 * ASCII art, the reader sets its old page to point to the next
 569 * page after head. It then sets the page after head to point to
 570 * the old reader page. But if the writer moves the head page
 571 * during this operation, the reader could end up with the tail.
 572 *
 573 * We use cmpxchg to help prevent this race. We also do something
 574 * special with the page before head. We set the LSB to 1.
 575 *
 576 * When the writer must push the page forward, it will clear the
 577 * bit that points to the head page, move the head, and then set
 578 * the bit that points to the new head page.
 579 *
 580 * We also don't want an interrupt coming in and moving the head
 581 * page on another writer. Thus we use the second LSB to catch
 582 * that too. Thus:
 583 *
 584 * head->list->prev->next        bit 1          bit 0
 585 *                              -------        -------
 586 * Normal page                     0              0
 587 * Points to head page             0              1
 588 * New head page                   1              0
 589 *
 590 * Note we can not trust the prev pointer of the head page, because:
 591 *
 592 * +----+       +-----+        +-----+
 593 * |    |------>|  T  |---X--->|  N  |
 594 * |    |<------|     |        |     |
 595 * +----+       +-----+        +-----+
 596 *   ^                           ^ |
 597 *   |          +-----+          | |
 598 *   +----------|  R  |----------+ |
 599 *              |     |<-----------+
 600 *              +-----+
 601 *
 602 * Key:  ---X-->  HEAD flag set in pointer
 603 *         T      Tail page
 604 *         R      Reader page
 605 *         N      Next page
 606 *
 607 * (see __rb_reserve_next() to see where this happens)
 608 *
 609 *  What the above shows is that the reader just swapped out
 610 *  the reader page with a page in the buffer, but before it
 611 *  could make the new header point back to the new page added
 612 *  it was preempted by a writer. The writer moved forward onto
 613 *  the new page added by the reader and is about to move forward
 614 *  again.
 615 *
 616 *  You can see, it is legitimate for the previous pointer of
 617 *  the head (or any page) not to point back to itself. But only
 618 *  temporarially.
 619 */
 620
 621#define RB_PAGE_NORMAL		0UL
 622#define RB_PAGE_HEAD		1UL
 623#define RB_PAGE_UPDATE		2UL
 624
 625
 626#define RB_FLAG_MASK		3UL
 627
 628/* PAGE_MOVED is not part of the mask */
 629#define RB_PAGE_MOVED		4UL
 630
 631/*
 632 * rb_list_head - remove any bit
 633 */
 634static struct list_head *rb_list_head(struct list_head *list)
 635{
 636	unsigned long val = (unsigned long)list;
 637
 638	return (struct list_head *)(val & ~RB_FLAG_MASK);
 639}
 640
 641/*
 642 * rb_is_head_page - test if the given page is the head page
 643 *
 644 * Because the reader may move the head_page pointer, we can
 645 * not trust what the head page is (it may be pointing to
 646 * the reader page). But if the next page is a header page,
 647 * its flags will be non zero.
 648 */
 649static inline int
 650rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 651		struct buffer_page *page, struct list_head *list)
 652{
 653	unsigned long val;
 654
 655	val = (unsigned long)list->next;
 656
 657	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 658		return RB_PAGE_MOVED;
 659
 660	return val & RB_FLAG_MASK;
 661}
 662
 663/*
 664 * rb_is_reader_page
 665 *
 666 * The unique thing about the reader page, is that, if the
 667 * writer is ever on it, the previous pointer never points
 668 * back to the reader page.
 669 */
 670static int rb_is_reader_page(struct buffer_page *page)
 671{
 672	struct list_head *list = page->list.prev;
 673
 674	return rb_list_head(list->next) != &page->list;
 675}
 676
 677/*
 678 * rb_set_list_to_head - set a list_head to be pointing to head.
 679 */
 680static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 681				struct list_head *list)
 682{
 683	unsigned long *ptr;
 684
 685	ptr = (unsigned long *)&list->next;
 686	*ptr |= RB_PAGE_HEAD;
 687	*ptr &= ~RB_PAGE_UPDATE;
 688}
 689
 690/*
 691 * rb_head_page_activate - sets up head page
 692 */
 693static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 694{
 695	struct buffer_page *head;
 696
 697	head = cpu_buffer->head_page;
 698	if (!head)
 699		return;
 700
 701	/*
 702	 * Set the previous list pointer to have the HEAD flag.
 703	 */
 704	rb_set_list_to_head(cpu_buffer, head->list.prev);
 705}
 706
 707static void rb_list_head_clear(struct list_head *list)
 708{
 709	unsigned long *ptr = (unsigned long *)&list->next;
 710
 711	*ptr &= ~RB_FLAG_MASK;
 712}
 713
 714/*
 715 * rb_head_page_dactivate - clears head page ptr (for free list)
 716 */
 717static void
 718rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 719{
 720	struct list_head *hd;
 721
 722	/* Go through the whole list and clear any pointers found. */
 723	rb_list_head_clear(cpu_buffer->pages);
 724
 725	list_for_each(hd, cpu_buffer->pages)
 726		rb_list_head_clear(hd);
 727}
 728
 729static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 730			    struct buffer_page *head,
 731			    struct buffer_page *prev,
 732			    int old_flag, int new_flag)
 733{
 734	struct list_head *list;
 735	unsigned long val = (unsigned long)&head->list;
 736	unsigned long ret;
 737
 738	list = &prev->list;
 739
 740	val &= ~RB_FLAG_MASK;
 741
 742	ret = cmpxchg((unsigned long *)&list->next,
 743		      val | old_flag, val | new_flag);
 744
 745	/* check if the reader took the page */
 746	if ((ret & ~RB_FLAG_MASK) != val)
 747		return RB_PAGE_MOVED;
 748
 749	return ret & RB_FLAG_MASK;
 750}
 751
 752static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 753				   struct buffer_page *head,
 754				   struct buffer_page *prev,
 755				   int old_flag)
 756{
 757	return rb_head_page_set(cpu_buffer, head, prev,
 758				old_flag, RB_PAGE_UPDATE);
 759}
 760
 761static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 762				 struct buffer_page *head,
 763				 struct buffer_page *prev,
 764				 int old_flag)
 765{
 766	return rb_head_page_set(cpu_buffer, head, prev,
 767				old_flag, RB_PAGE_HEAD);
 768}
 769
 770static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 771				   struct buffer_page *head,
 772				   struct buffer_page *prev,
 773				   int old_flag)
 774{
 775	return rb_head_page_set(cpu_buffer, head, prev,
 776				old_flag, RB_PAGE_NORMAL);
 777}
 778
 779static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 780			       struct buffer_page **bpage)
 781{
 782	struct list_head *p = rb_list_head((*bpage)->list.next);
 783
 784	*bpage = list_entry(p, struct buffer_page, list);
 785}
 786
 787static struct buffer_page *
 788rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
 789{
 790	struct buffer_page *head;
 791	struct buffer_page *page;
 792	struct list_head *list;
 793	int i;
 794
 795	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
 796		return NULL;
 797
 798	/* sanity check */
 799	list = cpu_buffer->pages;
 800	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
 801		return NULL;
 802
 803	page = head = cpu_buffer->head_page;
 804	/*
 805	 * It is possible that the writer moves the header behind
 806	 * where we started, and we miss in one loop.
 807	 * A second loop should grab the header, but we'll do
 808	 * three loops just because I'm paranoid.
 809	 */
 810	for (i = 0; i < 3; i++) {
 811		do {
 812			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
 813				cpu_buffer->head_page = page;
 814				return page;
 815			}
 816			rb_inc_page(cpu_buffer, &page);
 817		} while (page != head);
 818	}
 819
 820	RB_WARN_ON(cpu_buffer, 1);
 821
 822	return NULL;
 823}
 824
 825static int rb_head_page_replace(struct buffer_page *old,
 826				struct buffer_page *new)
 827{
 828	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
 829	unsigned long val;
 830	unsigned long ret;
 831
 832	val = *ptr & ~RB_FLAG_MASK;
 833	val |= RB_PAGE_HEAD;
 834
 835	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
 836
 837	return ret == val;
 838}
 839
 840/*
 841 * rb_tail_page_update - move the tail page forward
 842 *
 843 * Returns 1 if moved tail page, 0 if someone else did.
 844 */
 845static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
 846			       struct buffer_page *tail_page,
 847			       struct buffer_page *next_page)
 848{
 849	struct buffer_page *old_tail;
 850	unsigned long old_entries;
 851	unsigned long old_write;
 852	int ret = 0;
 853
 854	/*
 855	 * The tail page now needs to be moved forward.
 856	 *
 857	 * We need to reset the tail page, but without messing
 858	 * with possible erasing of data brought in by interrupts
 859	 * that have moved the tail page and are currently on it.
 860	 *
 861	 * We add a counter to the write field to denote this.
 862	 */
 863	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
 864	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
 865
 866	/*
 867	 * Just make sure we have seen our old_write and synchronize
 868	 * with any interrupts that come in.
 869	 */
 870	barrier();
 871
 872	/*
 873	 * If the tail page is still the same as what we think
 874	 * it is, then it is up to us to update the tail
 875	 * pointer.
 876	 */
 877	if (tail_page == cpu_buffer->tail_page) {
 878		/* Zero the write counter */
 879		unsigned long val = old_write & ~RB_WRITE_MASK;
 880		unsigned long eval = old_entries & ~RB_WRITE_MASK;
 881
 882		/*
 883		 * This will only succeed if an interrupt did
 884		 * not come in and change it. In which case, we
 885		 * do not want to modify it.
 886		 *
 887		 * We add (void) to let the compiler know that we do not care
 888		 * about the return value of these functions. We use the
 889		 * cmpxchg to only update if an interrupt did not already
 890		 * do it for us. If the cmpxchg fails, we don't care.
 891		 */
 892		(void)local_cmpxchg(&next_page->write, old_write, val);
 893		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
 894
 895		/*
 896		 * No need to worry about races with clearing out the commit.
 897		 * it only can increment when a commit takes place. But that
 898		 * only happens in the outer most nested commit.
 899		 */
 900		local_set(&next_page->page->commit, 0);
 901
 902		old_tail = cmpxchg(&cpu_buffer->tail_page,
 903				   tail_page, next_page);
 904
 905		if (old_tail == tail_page)
 906			ret = 1;
 907	}
 908
 909	return ret;
 910}
 911
 912static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
 913			  struct buffer_page *bpage)
 914{
 915	unsigned long val = (unsigned long)bpage;
 916
 917	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
 918		return 1;
 919
 920	return 0;
 921}
 922
 923/**
 924 * rb_check_list - make sure a pointer to a list has the last bits zero
 925 */
 926static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
 927			 struct list_head *list)
 928{
 929	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
 930		return 1;
 931	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
 932		return 1;
 933	return 0;
 934}
 935
 936/**
 937 * check_pages - integrity check of buffer pages
 938 * @cpu_buffer: CPU buffer with pages to test
 939 *
 940 * As a safety measure we check to make sure the data pages have not
 941 * been corrupted.
 942 */
 943static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
 944{
 945	struct list_head *head = cpu_buffer->pages;
 946	struct buffer_page *bpage, *tmp;
 947
 948	/* Reset the head page if it exists */
 949	if (cpu_buffer->head_page)
 950		rb_set_head_page(cpu_buffer);
 951
 952	rb_head_page_deactivate(cpu_buffer);
 953
 954	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
 955		return -1;
 956	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
 957		return -1;
 958
 959	if (rb_check_list(cpu_buffer, head))
 960		return -1;
 961
 962	list_for_each_entry_safe(bpage, tmp, head, list) {
 963		if (RB_WARN_ON(cpu_buffer,
 964			       bpage->list.next->prev != &bpage->list))
 965			return -1;
 966		if (RB_WARN_ON(cpu_buffer,
 967			       bpage->list.prev->next != &bpage->list))
 968			return -1;
 969		if (rb_check_list(cpu_buffer, &bpage->list))
 970			return -1;
 971	}
 972
 973	rb_head_page_activate(cpu_buffer);
 974
 975	return 0;
 976}
 977
 978static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
 
 979{
 980	int i;
 981	struct buffer_page *bpage, *tmp;
 
 
 
 
 982
 983	for (i = 0; i < nr_pages; i++) {
 984		struct page *page;
 985		/*
 986		 * __GFP_NORETRY flag makes sure that the allocation fails
 987		 * gracefully without invoking oom-killer and the system is
 988		 * not destabilized.
 989		 */
 990		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
 991				    GFP_KERNEL | __GFP_NORETRY,
 992				    cpu_to_node(cpu));
 993		if (!bpage)
 994			goto free_pages;
 995
 996		list_add(&bpage->list, pages);
 
 
 997
 998		page = alloc_pages_node(cpu_to_node(cpu),
 999					GFP_KERNEL | __GFP_NORETRY, 0);
1000		if (!page)
1001			goto free_pages;
1002		bpage->page = page_address(page);
1003		rb_init_page(bpage->page);
1004	}
1005
1006	return 0;
1007
1008free_pages:
1009	list_for_each_entry_safe(bpage, tmp, pages, list) {
1010		list_del_init(&bpage->list);
1011		free_buffer_page(bpage);
1012	}
1013
1014	return -ENOMEM;
1015}
1016
1017static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1018			     unsigned nr_pages)
1019{
1020	LIST_HEAD(pages);
1021
1022	WARN_ON(!nr_pages);
1023
1024	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1025		return -ENOMEM;
1026
1027	/*
1028	 * The ring buffer page list is a circular list that does not
1029	 * start and end with a list head. All page list items point to
1030	 * other pages.
1031	 */
1032	cpu_buffer->pages = pages.next;
1033	list_del(&pages);
1034
1035	cpu_buffer->nr_pages = nr_pages;
1036
1037	rb_check_pages(cpu_buffer);
1038
1039	return 0;
 
 
 
 
 
 
 
1040}
1041
1042static struct ring_buffer_per_cpu *
1043rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1044{
1045	struct ring_buffer_per_cpu *cpu_buffer;
1046	struct buffer_page *bpage;
1047	struct page *page;
1048	int ret;
1049
1050	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1051				  GFP_KERNEL, cpu_to_node(cpu));
1052	if (!cpu_buffer)
1053		return NULL;
1054
1055	cpu_buffer->cpu = cpu;
1056	cpu_buffer->buffer = buffer;
1057	raw_spin_lock_init(&cpu_buffer->reader_lock);
1058	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1059	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1060	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1061	init_completion(&cpu_buffer->update_done);
1062
1063	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1064			    GFP_KERNEL, cpu_to_node(cpu));
1065	if (!bpage)
1066		goto fail_free_buffer;
1067
1068	rb_check_bpage(cpu_buffer, bpage);
1069
1070	cpu_buffer->reader_page = bpage;
1071	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1072	if (!page)
1073		goto fail_free_reader;
1074	bpage->page = page_address(page);
1075	rb_init_page(bpage->page);
1076
1077	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1078	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1079
1080	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1081	if (ret < 0)
1082		goto fail_free_reader;
1083
1084	cpu_buffer->head_page
1085		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1086	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1087
1088	rb_head_page_activate(cpu_buffer);
1089
1090	return cpu_buffer;
1091
1092 fail_free_reader:
1093	free_buffer_page(cpu_buffer->reader_page);
1094
1095 fail_free_buffer:
1096	kfree(cpu_buffer);
1097	return NULL;
1098}
1099
1100static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1101{
1102	struct list_head *head = cpu_buffer->pages;
1103	struct buffer_page *bpage, *tmp;
1104
1105	free_buffer_page(cpu_buffer->reader_page);
1106
1107	rb_head_page_deactivate(cpu_buffer);
1108
1109	if (head) {
1110		list_for_each_entry_safe(bpage, tmp, head, list) {
1111			list_del_init(&bpage->list);
1112			free_buffer_page(bpage);
1113		}
1114		bpage = list_entry(head, struct buffer_page, list);
1115		free_buffer_page(bpage);
1116	}
1117
1118	kfree(cpu_buffer);
1119}
1120
1121#ifdef CONFIG_HOTPLUG_CPU
1122static int rb_cpu_notify(struct notifier_block *self,
1123			 unsigned long action, void *hcpu);
1124#endif
1125
1126/**
1127 * ring_buffer_alloc - allocate a new ring_buffer
1128 * @size: the size in bytes per cpu that is needed.
1129 * @flags: attributes to set for the ring buffer.
1130 *
1131 * Currently the only flag that is available is the RB_FL_OVERWRITE
1132 * flag. This flag means that the buffer will overwrite old data
1133 * when the buffer wraps. If this flag is not set, the buffer will
1134 * drop data when the tail hits the head.
1135 */
1136struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1137					struct lock_class_key *key)
1138{
1139	struct ring_buffer *buffer;
1140	int bsize;
1141	int cpu, nr_pages;
1142
1143	/* keep it in its own cache line */
1144	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1145			 GFP_KERNEL);
1146	if (!buffer)
1147		return NULL;
1148
1149	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1150		goto fail_free_buffer;
1151
1152	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1153	buffer->flags = flags;
1154	buffer->clock = trace_clock_local;
1155	buffer->reader_lock_key = key;
1156
1157	/* need at least two pages */
1158	if (nr_pages < 2)
1159		nr_pages = 2;
1160
1161	/*
1162	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1163	 * in early initcall, it will not be notified of secondary cpus.
1164	 * In that off case, we need to allocate for all possible cpus.
1165	 */
1166#ifdef CONFIG_HOTPLUG_CPU
1167	get_online_cpus();
1168	cpumask_copy(buffer->cpumask, cpu_online_mask);
1169#else
1170	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1171#endif
1172	buffer->cpus = nr_cpu_ids;
1173
1174	bsize = sizeof(void *) * nr_cpu_ids;
1175	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1176				  GFP_KERNEL);
1177	if (!buffer->buffers)
1178		goto fail_free_cpumask;
1179
1180	for_each_buffer_cpu(buffer, cpu) {
1181		buffer->buffers[cpu] =
1182			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1183		if (!buffer->buffers[cpu])
1184			goto fail_free_buffers;
1185	}
1186
1187#ifdef CONFIG_HOTPLUG_CPU
1188	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1189	buffer->cpu_notify.priority = 0;
1190	register_cpu_notifier(&buffer->cpu_notify);
1191#endif
1192
1193	put_online_cpus();
1194	mutex_init(&buffer->mutex);
1195
1196	return buffer;
1197
1198 fail_free_buffers:
1199	for_each_buffer_cpu(buffer, cpu) {
1200		if (buffer->buffers[cpu])
1201			rb_free_cpu_buffer(buffer->buffers[cpu]);
1202	}
1203	kfree(buffer->buffers);
1204
1205 fail_free_cpumask:
1206	free_cpumask_var(buffer->cpumask);
1207	put_online_cpus();
1208
1209 fail_free_buffer:
1210	kfree(buffer);
1211	return NULL;
1212}
1213EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1214
1215/**
1216 * ring_buffer_free - free a ring buffer.
1217 * @buffer: the buffer to free.
1218 */
1219void
1220ring_buffer_free(struct ring_buffer *buffer)
1221{
1222	int cpu;
1223
1224	get_online_cpus();
1225
1226#ifdef CONFIG_HOTPLUG_CPU
1227	unregister_cpu_notifier(&buffer->cpu_notify);
1228#endif
1229
1230	for_each_buffer_cpu(buffer, cpu)
1231		rb_free_cpu_buffer(buffer->buffers[cpu]);
1232
1233	put_online_cpus();
1234
1235	kfree(buffer->buffers);
1236	free_cpumask_var(buffer->cpumask);
1237
1238	kfree(buffer);
1239}
1240EXPORT_SYMBOL_GPL(ring_buffer_free);
1241
1242void ring_buffer_set_clock(struct ring_buffer *buffer,
1243			   u64 (*clock)(void))
1244{
1245	buffer->clock = clock;
1246}
1247
1248static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1249
1250static inline unsigned long rb_page_entries(struct buffer_page *bpage)
 
1251{
1252	return local_read(&bpage->entries) & RB_WRITE_MASK;
1253}
 
1254
1255static inline unsigned long rb_page_write(struct buffer_page *bpage)
1256{
1257	return local_read(&bpage->write) & RB_WRITE_MASK;
1258}
1259
1260static int
1261rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1262{
1263	struct list_head *tail_page, *to_remove, *next_page;
1264	struct buffer_page *to_remove_page, *tmp_iter_page;
1265	struct buffer_page *last_page, *first_page;
1266	unsigned int nr_removed;
1267	unsigned long head_bit;
1268	int page_entries;
1269
1270	head_bit = 0;
1271
1272	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1273	atomic_inc(&cpu_buffer->record_disabled);
1274	/*
1275	 * We don't race with the readers since we have acquired the reader
1276	 * lock. We also don't race with writers after disabling recording.
1277	 * This makes it easy to figure out the first and the last page to be
1278	 * removed from the list. We unlink all the pages in between including
1279	 * the first and last pages. This is done in a busy loop so that we
1280	 * lose the least number of traces.
1281	 * The pages are freed after we restart recording and unlock readers.
1282	 */
1283	tail_page = &cpu_buffer->tail_page->list;
1284
1285	/*
1286	 * tail page might be on reader page, we remove the next page
1287	 * from the ring buffer
1288	 */
1289	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1290		tail_page = rb_list_head(tail_page->next);
1291	to_remove = tail_page;
1292
1293	/* start of pages to remove */
1294	first_page = list_entry(rb_list_head(to_remove->next),
1295				struct buffer_page, list);
1296
1297	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1298		to_remove = rb_list_head(to_remove)->next;
1299		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1300	}
 
 
1301
1302	next_page = rb_list_head(to_remove)->next;
 
1303
1304	/*
1305	 * Now we remove all pages between tail_page and next_page.
1306	 * Make sure that we have head_bit value preserved for the
1307	 * next page
1308	 */
1309	tail_page->next = (struct list_head *)((unsigned long)next_page |
1310						head_bit);
1311	next_page = rb_list_head(next_page);
1312	next_page->prev = tail_page;
1313
1314	/* make sure pages points to a valid page in the ring buffer */
1315	cpu_buffer->pages = next_page;
1316
1317	/* update head page */
1318	if (head_bit)
1319		cpu_buffer->head_page = list_entry(next_page,
1320						struct buffer_page, list);
1321
1322	/*
1323	 * change read pointer to make sure any read iterators reset
1324	 * themselves
1325	 */
1326	cpu_buffer->read = 0;
1327
1328	/* pages are removed, resume tracing and then free the pages */
1329	atomic_dec(&cpu_buffer->record_disabled);
1330	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1331
1332	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1333
1334	/* last buffer page to remove */
1335	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1336				list);
1337	tmp_iter_page = first_page;
1338
1339	do {
1340		to_remove_page = tmp_iter_page;
1341		rb_inc_page(cpu_buffer, &tmp_iter_page);
1342
1343		/* update the counters */
1344		page_entries = rb_page_entries(to_remove_page);
1345		if (page_entries) {
1346			/*
1347			 * If something was added to this page, it was full
1348			 * since it is not the tail page. So we deduct the
1349			 * bytes consumed in ring buffer from here.
1350			 * Increment overrun to account for the lost events.
1351			 */
1352			local_add(page_entries, &cpu_buffer->overrun);
1353			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1354		}
1355
1356		/*
1357		 * We have already removed references to this list item, just
1358		 * free up the buffer_page and its page
1359		 */
1360		free_buffer_page(to_remove_page);
1361		nr_removed--;
1362
1363	} while (to_remove_page != last_page);
1364
1365	RB_WARN_ON(cpu_buffer, nr_removed);
1366
1367	return nr_removed == 0;
1368}
1369
1370static int
1371rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
 
1372{
1373	struct list_head *pages = &cpu_buffer->new_pages;
1374	int retries, success;
 
1375
1376	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1377	/*
1378	 * We are holding the reader lock, so the reader page won't be swapped
1379	 * in the ring buffer. Now we are racing with the writer trying to
1380	 * move head page and the tail page.
1381	 * We are going to adapt the reader page update process where:
1382	 * 1. We first splice the start and end of list of new pages between
1383	 *    the head page and its previous page.
1384	 * 2. We cmpxchg the prev_page->next to point from head page to the
1385	 *    start of new pages list.
1386	 * 3. Finally, we update the head->prev to the end of new list.
1387	 *
1388	 * We will try this process 10 times, to make sure that we don't keep
1389	 * spinning.
1390	 */
1391	retries = 10;
1392	success = 0;
1393	while (retries--) {
1394		struct list_head *head_page, *prev_page, *r;
1395		struct list_head *last_page, *first_page;
1396		struct list_head *head_page_with_bit;
1397
1398		head_page = &rb_set_head_page(cpu_buffer)->list;
1399		prev_page = head_page->prev;
1400
1401		first_page = pages->next;
1402		last_page  = pages->prev;
1403
1404		head_page_with_bit = (struct list_head *)
1405				     ((unsigned long)head_page | RB_PAGE_HEAD);
1406
1407		last_page->next = head_page_with_bit;
1408		first_page->prev = prev_page;
1409
1410		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1411
1412		if (r == head_page_with_bit) {
1413			/*
1414			 * yay, we replaced the page pointer to our new list,
1415			 * now, we just have to update to head page's prev
1416			 * pointer to point to end of list
1417			 */
1418			head_page->prev = last_page;
1419			success = 1;
1420			break;
1421		}
1422	}
 
 
1423
1424	if (success)
1425		INIT_LIST_HEAD(pages);
1426	/*
1427	 * If we weren't successful in adding in new pages, warn and stop
1428	 * tracing
1429	 */
1430	RB_WARN_ON(cpu_buffer, !success);
1431	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1432
1433	/* free pages if they weren't inserted */
1434	if (!success) {
1435		struct buffer_page *bpage, *tmp;
1436		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1437					 list) {
1438			list_del_init(&bpage->list);
1439			free_buffer_page(bpage);
1440		}
1441	}
1442	return success;
1443}
1444
1445static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1446{
1447	int success;
1448
1449	if (cpu_buffer->nr_pages_to_update > 0)
1450		success = rb_insert_pages(cpu_buffer);
1451	else
1452		success = rb_remove_pages(cpu_buffer,
1453					-cpu_buffer->nr_pages_to_update);
1454
1455	if (success)
1456		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1457}
1458
1459static void update_pages_handler(struct work_struct *work)
1460{
1461	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1462			struct ring_buffer_per_cpu, update_pages_work);
1463	rb_update_pages(cpu_buffer);
1464	complete(&cpu_buffer->update_done);
1465}
1466
1467/**
1468 * ring_buffer_resize - resize the ring buffer
1469 * @buffer: the buffer to resize.
1470 * @size: the new size.
1471 *
1472 * Minimum size is 2 * BUF_PAGE_SIZE.
1473 *
1474 * Returns 0 on success and < 0 on failure.
1475 */
1476int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1477			int cpu_id)
1478{
1479	struct ring_buffer_per_cpu *cpu_buffer;
1480	unsigned nr_pages;
1481	int cpu, err = 0;
 
 
 
1482
1483	/*
1484	 * Always succeed at resizing a non-existent buffer:
1485	 */
1486	if (!buffer)
1487		return size;
1488
1489	/* Make sure the requested buffer exists */
1490	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1491	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1492		return size;
1493
1494	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1495	size *= BUF_PAGE_SIZE;
 
1496
1497	/* we need a minimum of two pages */
1498	if (size < BUF_PAGE_SIZE * 2)
1499		size = BUF_PAGE_SIZE * 2;
1500
1501	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
 
 
 
1502
1503	/*
1504	 * Don't succeed if resizing is disabled, as a reader might be
1505	 * manipulating the ring buffer and is expecting a sane state while
1506	 * this is true.
1507	 */
1508	if (atomic_read(&buffer->resize_disabled))
1509		return -EBUSY;
1510
1511	/* prevent another thread from changing buffer sizes */
1512	mutex_lock(&buffer->mutex);
 
1513
1514	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1515		/* calculate the pages to update */
1516		for_each_buffer_cpu(buffer, cpu) {
1517			cpu_buffer = buffer->buffers[cpu];
1518
1519			cpu_buffer->nr_pages_to_update = nr_pages -
1520							cpu_buffer->nr_pages;
1521			/*
1522			 * nothing more to do for removing pages or no update
1523			 */
1524			if (cpu_buffer->nr_pages_to_update <= 0)
1525				continue;
1526			/*
1527			 * to add pages, make sure all new pages can be
1528			 * allocated without receiving ENOMEM
1529			 */
1530			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1531			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1532						&cpu_buffer->new_pages, cpu)) {
1533				/* not enough memory for new pages */
1534				err = -ENOMEM;
1535				goto out_err;
1536			}
1537		}
1538
1539		get_online_cpus();
1540		/*
1541		 * Fire off all the required work handlers
1542		 * We can't schedule on offline CPUs, but it's not necessary
1543		 * since we can change their buffer sizes without any race.
1544		 */
1545		for_each_buffer_cpu(buffer, cpu) {
1546			cpu_buffer = buffer->buffers[cpu];
1547			if (!cpu_buffer->nr_pages_to_update)
1548				continue;
1549
1550			if (cpu_online(cpu))
1551				schedule_work_on(cpu,
1552						&cpu_buffer->update_pages_work);
1553			else
1554				rb_update_pages(cpu_buffer);
1555		}
1556
1557		/* wait for all the updates to complete */
1558		for_each_buffer_cpu(buffer, cpu) {
1559			cpu_buffer = buffer->buffers[cpu];
1560			if (!cpu_buffer->nr_pages_to_update)
1561				continue;
1562
1563			if (cpu_online(cpu))
1564				wait_for_completion(&cpu_buffer->update_done);
1565			cpu_buffer->nr_pages_to_update = 0;
1566		}
 
 
1567
1568		put_online_cpus();
1569	} else {
1570		cpu_buffer = buffer->buffers[cpu_id];
 
 
 
 
 
 
 
1571
1572		if (nr_pages == cpu_buffer->nr_pages)
1573			goto out;
1574
1575		cpu_buffer->nr_pages_to_update = nr_pages -
1576						cpu_buffer->nr_pages;
1577
1578		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1579		if (cpu_buffer->nr_pages_to_update > 0 &&
1580			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1581					    &cpu_buffer->new_pages, cpu_id)) {
1582			err = -ENOMEM;
1583			goto out_err;
 
 
 
 
 
 
 
 
 
 
 
 
1584		}
 
1585
1586		get_online_cpus();
 
 
 
1587
1588		if (cpu_online(cpu_id)) {
1589			schedule_work_on(cpu_id,
1590					 &cpu_buffer->update_pages_work);
1591			wait_for_completion(&cpu_buffer->update_done);
1592		} else
1593			rb_update_pages(cpu_buffer);
1594
1595		cpu_buffer->nr_pages_to_update = 0;
1596		put_online_cpus();
1597	}
1598
1599 out:
1600	/*
1601	 * The ring buffer resize can happen with the ring buffer
1602	 * enabled, so that the update disturbs the tracing as little
1603	 * as possible. But if the buffer is disabled, we do not need
1604	 * to worry about that, and we can take the time to verify
1605	 * that the buffer is not corrupt.
1606	 */
1607	if (atomic_read(&buffer->record_disabled)) {
1608		atomic_inc(&buffer->record_disabled);
1609		/*
1610		 * Even though the buffer was disabled, we must make sure
1611		 * that it is truly disabled before calling rb_check_pages.
1612		 * There could have been a race between checking
1613		 * record_disable and incrementing it.
1614		 */
1615		synchronize_sched();
1616		for_each_buffer_cpu(buffer, cpu) {
1617			cpu_buffer = buffer->buffers[cpu];
1618			rb_check_pages(cpu_buffer);
1619		}
1620		atomic_dec(&buffer->record_disabled);
1621	}
1622
1623	mutex_unlock(&buffer->mutex);
1624	return size;
1625
1626 out_err:
1627	for_each_buffer_cpu(buffer, cpu) {
1628		struct buffer_page *bpage, *tmp;
1629
1630		cpu_buffer = buffer->buffers[cpu];
1631		cpu_buffer->nr_pages_to_update = 0;
1632
1633		if (list_empty(&cpu_buffer->new_pages))
1634			continue;
 
 
 
 
 
 
 
1635
1636		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1637					list) {
1638			list_del_init(&bpage->list);
1639			free_buffer_page(bpage);
1640		}
1641	}
1642	mutex_unlock(&buffer->mutex);
1643	return err;
 
1644}
1645EXPORT_SYMBOL_GPL(ring_buffer_resize);
1646
1647void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1648{
1649	mutex_lock(&buffer->mutex);
1650	if (val)
1651		buffer->flags |= RB_FL_OVERWRITE;
1652	else
1653		buffer->flags &= ~RB_FL_OVERWRITE;
1654	mutex_unlock(&buffer->mutex);
1655}
1656EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1657
1658static inline void *
1659__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1660{
1661	return bpage->data + index;
1662}
1663
1664static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1665{
1666	return bpage->page->data + index;
1667}
1668
1669static inline struct ring_buffer_event *
1670rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1671{
1672	return __rb_page_index(cpu_buffer->reader_page,
1673			       cpu_buffer->reader_page->read);
1674}
1675
1676static inline struct ring_buffer_event *
1677rb_iter_head_event(struct ring_buffer_iter *iter)
1678{
1679	return __rb_page_index(iter->head_page, iter->head);
1680}
1681
 
 
 
 
 
1682static inline unsigned rb_page_commit(struct buffer_page *bpage)
1683{
1684	return local_read(&bpage->page->commit);
1685}
1686
 
 
 
 
 
1687/* Size is determined by what has been committed */
1688static inline unsigned rb_page_size(struct buffer_page *bpage)
1689{
1690	return rb_page_commit(bpage);
1691}
1692
1693static inline unsigned
1694rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1695{
1696	return rb_page_commit(cpu_buffer->commit_page);
1697}
1698
1699static inline unsigned
1700rb_event_index(struct ring_buffer_event *event)
1701{
1702	unsigned long addr = (unsigned long)event;
1703
1704	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1705}
1706
1707static inline int
1708rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1709		   struct ring_buffer_event *event)
1710{
1711	unsigned long addr = (unsigned long)event;
1712	unsigned long index;
1713
1714	index = rb_event_index(event);
1715	addr &= PAGE_MASK;
1716
1717	return cpu_buffer->commit_page->page == (void *)addr &&
1718		rb_commit_index(cpu_buffer) == index;
1719}
1720
1721static void
1722rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1723{
1724	unsigned long max_count;
1725
1726	/*
1727	 * We only race with interrupts and NMIs on this CPU.
1728	 * If we own the commit event, then we can commit
1729	 * all others that interrupted us, since the interruptions
1730	 * are in stack format (they finish before they come
1731	 * back to us). This allows us to do a simple loop to
1732	 * assign the commit to the tail.
1733	 */
1734 again:
1735	max_count = cpu_buffer->nr_pages * 100;
1736
1737	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1738		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1739			return;
1740		if (RB_WARN_ON(cpu_buffer,
1741			       rb_is_reader_page(cpu_buffer->tail_page)))
1742			return;
1743		local_set(&cpu_buffer->commit_page->page->commit,
1744			  rb_page_write(cpu_buffer->commit_page));
1745		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1746		cpu_buffer->write_stamp =
1747			cpu_buffer->commit_page->page->time_stamp;
1748		/* add barrier to keep gcc from optimizing too much */
1749		barrier();
1750	}
1751	while (rb_commit_index(cpu_buffer) !=
1752	       rb_page_write(cpu_buffer->commit_page)) {
1753
1754		local_set(&cpu_buffer->commit_page->page->commit,
1755			  rb_page_write(cpu_buffer->commit_page));
1756		RB_WARN_ON(cpu_buffer,
1757			   local_read(&cpu_buffer->commit_page->page->commit) &
1758			   ~RB_WRITE_MASK);
1759		barrier();
1760	}
1761
1762	/* again, keep gcc from optimizing */
1763	barrier();
1764
1765	/*
1766	 * If an interrupt came in just after the first while loop
1767	 * and pushed the tail page forward, we will be left with
1768	 * a dangling commit that will never go forward.
1769	 */
1770	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1771		goto again;
1772}
1773
1774static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1775{
1776	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1777	cpu_buffer->reader_page->read = 0;
1778}
1779
1780static void rb_inc_iter(struct ring_buffer_iter *iter)
1781{
1782	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1783
1784	/*
1785	 * The iterator could be on the reader page (it starts there).
1786	 * But the head could have moved, since the reader was
1787	 * found. Check for this case and assign the iterator
1788	 * to the head page instead of next.
1789	 */
1790	if (iter->head_page == cpu_buffer->reader_page)
1791		iter->head_page = rb_set_head_page(cpu_buffer);
1792	else
1793		rb_inc_page(cpu_buffer, &iter->head_page);
1794
1795	iter->read_stamp = iter->head_page->page->time_stamp;
1796	iter->head = 0;
1797}
1798
1799/* Slow path, do not inline */
1800static noinline struct ring_buffer_event *
1801rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1802{
1803	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1804
1805	/* Not the first event on the page? */
1806	if (rb_event_index(event)) {
1807		event->time_delta = delta & TS_MASK;
1808		event->array[0] = delta >> TS_SHIFT;
1809	} else {
1810		/* nope, just zero it */
1811		event->time_delta = 0;
1812		event->array[0] = 0;
1813	}
1814
1815	return skip_time_extend(event);
1816}
1817
1818/**
1819 * ring_buffer_update_event - update event type and data
1820 * @event: the even to update
1821 * @type: the type of event
1822 * @length: the size of the event field in the ring buffer
1823 *
1824 * Update the type and data fields of the event. The length
1825 * is the actual size that is written to the ring buffer,
1826 * and with this, we can determine what to place into the
1827 * data field.
1828 */
1829static void
1830rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1831		struct ring_buffer_event *event, unsigned length,
1832		int add_timestamp, u64 delta)
1833{
1834	/* Only a commit updates the timestamp */
1835	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1836		delta = 0;
1837
1838	/*
1839	 * If we need to add a timestamp, then we
1840	 * add it to the start of the resevered space.
1841	 */
1842	if (unlikely(add_timestamp)) {
1843		event = rb_add_time_stamp(event, delta);
1844		length -= RB_LEN_TIME_EXTEND;
1845		delta = 0;
1846	}
1847
1848	event->time_delta = delta;
1849	length -= RB_EVNT_HDR_SIZE;
1850	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1851		event->type_len = 0;
1852		event->array[0] = length;
1853	} else
1854		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1855}
1856
1857/*
1858 * rb_handle_head_page - writer hit the head page
1859 *
1860 * Returns: +1 to retry page
1861 *           0 to continue
1862 *          -1 on error
1863 */
1864static int
1865rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1866		    struct buffer_page *tail_page,
1867		    struct buffer_page *next_page)
1868{
1869	struct buffer_page *new_head;
1870	int entries;
1871	int type;
1872	int ret;
1873
1874	entries = rb_page_entries(next_page);
1875
1876	/*
1877	 * The hard part is here. We need to move the head
1878	 * forward, and protect against both readers on
1879	 * other CPUs and writers coming in via interrupts.
1880	 */
1881	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1882				       RB_PAGE_HEAD);
1883
1884	/*
1885	 * type can be one of four:
1886	 *  NORMAL - an interrupt already moved it for us
1887	 *  HEAD   - we are the first to get here.
1888	 *  UPDATE - we are the interrupt interrupting
1889	 *           a current move.
1890	 *  MOVED  - a reader on another CPU moved the next
1891	 *           pointer to its reader page. Give up
1892	 *           and try again.
1893	 */
1894
1895	switch (type) {
1896	case RB_PAGE_HEAD:
1897		/*
1898		 * We changed the head to UPDATE, thus
1899		 * it is our responsibility to update
1900		 * the counters.
1901		 */
1902		local_add(entries, &cpu_buffer->overrun);
1903		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1904
1905		/*
1906		 * The entries will be zeroed out when we move the
1907		 * tail page.
1908		 */
1909
1910		/* still more to do */
1911		break;
1912
1913	case RB_PAGE_UPDATE:
1914		/*
1915		 * This is an interrupt that interrupt the
1916		 * previous update. Still more to do.
1917		 */
1918		break;
1919	case RB_PAGE_NORMAL:
1920		/*
1921		 * An interrupt came in before the update
1922		 * and processed this for us.
1923		 * Nothing left to do.
1924		 */
1925		return 1;
1926	case RB_PAGE_MOVED:
1927		/*
1928		 * The reader is on another CPU and just did
1929		 * a swap with our next_page.
1930		 * Try again.
1931		 */
1932		return 1;
1933	default:
1934		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1935		return -1;
1936	}
1937
1938	/*
1939	 * Now that we are here, the old head pointer is
1940	 * set to UPDATE. This will keep the reader from
1941	 * swapping the head page with the reader page.
1942	 * The reader (on another CPU) will spin till
1943	 * we are finished.
1944	 *
1945	 * We just need to protect against interrupts
1946	 * doing the job. We will set the next pointer
1947	 * to HEAD. After that, we set the old pointer
1948	 * to NORMAL, but only if it was HEAD before.
1949	 * otherwise we are an interrupt, and only
1950	 * want the outer most commit to reset it.
1951	 */
1952	new_head = next_page;
1953	rb_inc_page(cpu_buffer, &new_head);
1954
1955	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1956				    RB_PAGE_NORMAL);
1957
1958	/*
1959	 * Valid returns are:
1960	 *  HEAD   - an interrupt came in and already set it.
1961	 *  NORMAL - One of two things:
1962	 *            1) We really set it.
1963	 *            2) A bunch of interrupts came in and moved
1964	 *               the page forward again.
1965	 */
1966	switch (ret) {
1967	case RB_PAGE_HEAD:
1968	case RB_PAGE_NORMAL:
1969		/* OK */
1970		break;
1971	default:
1972		RB_WARN_ON(cpu_buffer, 1);
1973		return -1;
1974	}
1975
1976	/*
1977	 * It is possible that an interrupt came in,
1978	 * set the head up, then more interrupts came in
1979	 * and moved it again. When we get back here,
1980	 * the page would have been set to NORMAL but we
1981	 * just set it back to HEAD.
1982	 *
1983	 * How do you detect this? Well, if that happened
1984	 * the tail page would have moved.
1985	 */
1986	if (ret == RB_PAGE_NORMAL) {
1987		/*
1988		 * If the tail had moved passed next, then we need
1989		 * to reset the pointer.
1990		 */
1991		if (cpu_buffer->tail_page != tail_page &&
1992		    cpu_buffer->tail_page != next_page)
1993			rb_head_page_set_normal(cpu_buffer, new_head,
1994						next_page,
1995						RB_PAGE_HEAD);
1996	}
1997
1998	/*
1999	 * If this was the outer most commit (the one that
2000	 * changed the original pointer from HEAD to UPDATE),
2001	 * then it is up to us to reset it to NORMAL.
2002	 */
2003	if (type == RB_PAGE_HEAD) {
2004		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2005					      tail_page,
2006					      RB_PAGE_UPDATE);
2007		if (RB_WARN_ON(cpu_buffer,
2008			       ret != RB_PAGE_UPDATE))
2009			return -1;
2010	}
2011
2012	return 0;
2013}
2014
2015static unsigned rb_calculate_event_length(unsigned length)
2016{
2017	struct ring_buffer_event event; /* Used only for sizeof array */
2018
2019	/* zero length can cause confusions */
2020	if (!length)
2021		length = 1;
2022
2023	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2024		length += sizeof(event.array[0]);
2025
2026	length += RB_EVNT_HDR_SIZE;
2027	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2028
2029	return length;
2030}
2031
2032static inline void
2033rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2034	      struct buffer_page *tail_page,
2035	      unsigned long tail, unsigned long length)
2036{
2037	struct ring_buffer_event *event;
2038
2039	/*
2040	 * Only the event that crossed the page boundary
2041	 * must fill the old tail_page with padding.
2042	 */
2043	if (tail >= BUF_PAGE_SIZE) {
2044		/*
2045		 * If the page was filled, then we still need
2046		 * to update the real_end. Reset it to zero
2047		 * and the reader will ignore it.
2048		 */
2049		if (tail == BUF_PAGE_SIZE)
2050			tail_page->real_end = 0;
2051
2052		local_sub(length, &tail_page->write);
2053		return;
2054	}
2055
2056	event = __rb_page_index(tail_page, tail);
2057	kmemcheck_annotate_bitfield(event, bitfield);
2058
2059	/* account for padding bytes */
2060	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2061
2062	/*
2063	 * Save the original length to the meta data.
2064	 * This will be used by the reader to add lost event
2065	 * counter.
2066	 */
2067	tail_page->real_end = tail;
2068
2069	/*
2070	 * If this event is bigger than the minimum size, then
2071	 * we need to be careful that we don't subtract the
2072	 * write counter enough to allow another writer to slip
2073	 * in on this page.
2074	 * We put in a discarded commit instead, to make sure
2075	 * that this space is not used again.
2076	 *
2077	 * If we are less than the minimum size, we don't need to
2078	 * worry about it.
2079	 */
2080	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2081		/* No room for any events */
2082
2083		/* Mark the rest of the page with padding */
2084		rb_event_set_padding(event);
2085
2086		/* Set the write back to the previous setting */
2087		local_sub(length, &tail_page->write);
2088		return;
2089	}
2090
2091	/* Put in a discarded event */
2092	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2093	event->type_len = RINGBUF_TYPE_PADDING;
2094	/* time delta must be non zero */
2095	event->time_delta = 1;
2096
2097	/* Set write to end of buffer */
2098	length = (tail + length) - BUF_PAGE_SIZE;
2099	local_sub(length, &tail_page->write);
2100}
2101
2102/*
2103 * This is the slow path, force gcc not to inline it.
2104 */
2105static noinline struct ring_buffer_event *
2106rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2107	     unsigned long length, unsigned long tail,
2108	     struct buffer_page *tail_page, u64 ts)
2109{
2110	struct buffer_page *commit_page = cpu_buffer->commit_page;
2111	struct ring_buffer *buffer = cpu_buffer->buffer;
2112	struct buffer_page *next_page;
2113	int ret;
2114
2115	next_page = tail_page;
2116
2117	rb_inc_page(cpu_buffer, &next_page);
2118
2119	/*
2120	 * If for some reason, we had an interrupt storm that made
2121	 * it all the way around the buffer, bail, and warn
2122	 * about it.
2123	 */
2124	if (unlikely(next_page == commit_page)) {
2125		local_inc(&cpu_buffer->commit_overrun);
2126		goto out_reset;
2127	}
2128
2129	/*
2130	 * This is where the fun begins!
2131	 *
2132	 * We are fighting against races between a reader that
2133	 * could be on another CPU trying to swap its reader
2134	 * page with the buffer head.
2135	 *
2136	 * We are also fighting against interrupts coming in and
2137	 * moving the head or tail on us as well.
2138	 *
2139	 * If the next page is the head page then we have filled
2140	 * the buffer, unless the commit page is still on the
2141	 * reader page.
2142	 */
2143	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2144
2145		/*
2146		 * If the commit is not on the reader page, then
2147		 * move the header page.
2148		 */
2149		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2150			/*
2151			 * If we are not in overwrite mode,
2152			 * this is easy, just stop here.
2153			 */
2154			if (!(buffer->flags & RB_FL_OVERWRITE))
2155				goto out_reset;
2156
2157			ret = rb_handle_head_page(cpu_buffer,
2158						  tail_page,
2159						  next_page);
2160			if (ret < 0)
2161				goto out_reset;
2162			if (ret)
2163				goto out_again;
2164		} else {
2165			/*
2166			 * We need to be careful here too. The
2167			 * commit page could still be on the reader
2168			 * page. We could have a small buffer, and
2169			 * have filled up the buffer with events
2170			 * from interrupts and such, and wrapped.
2171			 *
2172			 * Note, if the tail page is also the on the
2173			 * reader_page, we let it move out.
2174			 */
2175			if (unlikely((cpu_buffer->commit_page !=
2176				      cpu_buffer->tail_page) &&
2177				     (cpu_buffer->commit_page ==
2178				      cpu_buffer->reader_page))) {
2179				local_inc(&cpu_buffer->commit_overrun);
2180				goto out_reset;
2181			}
2182		}
2183	}
2184
2185	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2186	if (ret) {
2187		/*
2188		 * Nested commits always have zero deltas, so
2189		 * just reread the time stamp
2190		 */
2191		ts = rb_time_stamp(buffer);
2192		next_page->page->time_stamp = ts;
2193	}
2194
2195 out_again:
2196
2197	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2198
2199	/* fail and let the caller try again */
2200	return ERR_PTR(-EAGAIN);
2201
2202 out_reset:
2203	/* reset write */
2204	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2205
2206	return NULL;
2207}
2208
2209static struct ring_buffer_event *
2210__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2211		  unsigned long length, u64 ts,
2212		  u64 delta, int add_timestamp)
2213{
2214	struct buffer_page *tail_page;
2215	struct ring_buffer_event *event;
2216	unsigned long tail, write;
2217
2218	/*
2219	 * If the time delta since the last event is too big to
2220	 * hold in the time field of the event, then we append a
2221	 * TIME EXTEND event ahead of the data event.
2222	 */
2223	if (unlikely(add_timestamp))
2224		length += RB_LEN_TIME_EXTEND;
2225
2226	tail_page = cpu_buffer->tail_page;
2227	write = local_add_return(length, &tail_page->write);
2228
2229	/* set write to only the index of the write */
2230	write &= RB_WRITE_MASK;
2231	tail = write - length;
2232
2233	/* See if we shot pass the end of this buffer page */
2234	if (unlikely(write > BUF_PAGE_SIZE))
2235		return rb_move_tail(cpu_buffer, length, tail,
2236				    tail_page, ts);
2237
2238	/* We reserved something on the buffer */
2239
2240	event = __rb_page_index(tail_page, tail);
2241	kmemcheck_annotate_bitfield(event, bitfield);
2242	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2243
2244	local_inc(&tail_page->entries);
2245
2246	/*
2247	 * If this is the first commit on the page, then update
2248	 * its timestamp.
2249	 */
2250	if (!tail)
2251		tail_page->page->time_stamp = ts;
2252
2253	/* account for these added bytes */
2254	local_add(length, &cpu_buffer->entries_bytes);
2255
2256	return event;
2257}
2258
2259static inline int
2260rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2261		  struct ring_buffer_event *event)
2262{
2263	unsigned long new_index, old_index;
2264	struct buffer_page *bpage;
2265	unsigned long index;
2266	unsigned long addr;
2267
2268	new_index = rb_event_index(event);
2269	old_index = new_index + rb_event_ts_length(event);
2270	addr = (unsigned long)event;
2271	addr &= PAGE_MASK;
2272
2273	bpage = cpu_buffer->tail_page;
2274
2275	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2276		unsigned long write_mask =
2277			local_read(&bpage->write) & ~RB_WRITE_MASK;
2278		unsigned long event_length = rb_event_length(event);
2279		/*
2280		 * This is on the tail page. It is possible that
2281		 * a write could come in and move the tail page
2282		 * and write to the next page. That is fine
2283		 * because we just shorten what is on this page.
2284		 */
2285		old_index += write_mask;
2286		new_index += write_mask;
2287		index = local_cmpxchg(&bpage->write, old_index, new_index);
2288		if (index == old_index) {
2289			/* update counters */
2290			local_sub(event_length, &cpu_buffer->entries_bytes);
2291			return 1;
2292		}
2293	}
2294
2295	/* could not discard */
2296	return 0;
2297}
2298
2299static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2300{
2301	local_inc(&cpu_buffer->committing);
2302	local_inc(&cpu_buffer->commits);
2303}
2304
2305static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2306{
2307	unsigned long commits;
2308
2309	if (RB_WARN_ON(cpu_buffer,
2310		       !local_read(&cpu_buffer->committing)))
2311		return;
2312
2313 again:
2314	commits = local_read(&cpu_buffer->commits);
2315	/* synchronize with interrupts */
2316	barrier();
2317	if (local_read(&cpu_buffer->committing) == 1)
2318		rb_set_commit_to_write(cpu_buffer);
2319
2320	local_dec(&cpu_buffer->committing);
2321
2322	/* synchronize with interrupts */
2323	barrier();
2324
2325	/*
2326	 * Need to account for interrupts coming in between the
2327	 * updating of the commit page and the clearing of the
2328	 * committing counter.
2329	 */
2330	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2331	    !local_read(&cpu_buffer->committing)) {
2332		local_inc(&cpu_buffer->committing);
2333		goto again;
2334	}
2335}
2336
2337static struct ring_buffer_event *
2338rb_reserve_next_event(struct ring_buffer *buffer,
2339		      struct ring_buffer_per_cpu *cpu_buffer,
2340		      unsigned long length)
2341{
2342	struct ring_buffer_event *event;
2343	u64 ts, delta;
2344	int nr_loops = 0;
2345	int add_timestamp;
2346	u64 diff;
2347
2348	rb_start_commit(cpu_buffer);
2349
2350#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2351	/*
2352	 * Due to the ability to swap a cpu buffer from a buffer
2353	 * it is possible it was swapped before we committed.
2354	 * (committing stops a swap). We check for it here and
2355	 * if it happened, we have to fail the write.
2356	 */
2357	barrier();
2358	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2359		local_dec(&cpu_buffer->committing);
2360		local_dec(&cpu_buffer->commits);
2361		return NULL;
2362	}
2363#endif
2364
2365	length = rb_calculate_event_length(length);
2366 again:
2367	add_timestamp = 0;
2368	delta = 0;
2369
2370	/*
2371	 * We allow for interrupts to reenter here and do a trace.
2372	 * If one does, it will cause this original code to loop
2373	 * back here. Even with heavy interrupts happening, this
2374	 * should only happen a few times in a row. If this happens
2375	 * 1000 times in a row, there must be either an interrupt
2376	 * storm or we have something buggy.
2377	 * Bail!
2378	 */
2379	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2380		goto out_fail;
2381
2382	ts = rb_time_stamp(cpu_buffer->buffer);
2383	diff = ts - cpu_buffer->write_stamp;
2384
2385	/* make sure this diff is calculated here */
2386	barrier();
2387
2388	/* Did the write stamp get updated already? */
2389	if (likely(ts >= cpu_buffer->write_stamp)) {
2390		delta = diff;
2391		if (unlikely(test_time_stamp(delta))) {
2392			int local_clock_stable = 1;
2393#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2394			local_clock_stable = sched_clock_stable;
2395#endif
2396			WARN_ONCE(delta > (1ULL << 59),
2397				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2398				  (unsigned long long)delta,
2399				  (unsigned long long)ts,
2400				  (unsigned long long)cpu_buffer->write_stamp,
2401				  local_clock_stable ? "" :
2402				  "If you just came from a suspend/resume,\n"
2403				  "please switch to the trace global clock:\n"
2404				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2405			add_timestamp = 1;
2406		}
2407	}
2408
2409	event = __rb_reserve_next(cpu_buffer, length, ts,
2410				  delta, add_timestamp);
2411	if (unlikely(PTR_ERR(event) == -EAGAIN))
2412		goto again;
2413
2414	if (!event)
2415		goto out_fail;
2416
2417	return event;
2418
2419 out_fail:
2420	rb_end_commit(cpu_buffer);
2421	return NULL;
2422}
2423
2424#ifdef CONFIG_TRACING
2425
2426#define TRACE_RECURSIVE_DEPTH 16
2427
2428/* Keep this code out of the fast path cache */
2429static noinline void trace_recursive_fail(void)
2430{
2431	/* Disable all tracing before we do anything else */
2432	tracing_off_permanent();
2433
2434	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2435		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2436		    trace_recursion_buffer(),
2437		    hardirq_count() >> HARDIRQ_SHIFT,
2438		    softirq_count() >> SOFTIRQ_SHIFT,
2439		    in_nmi());
2440
2441	WARN_ON_ONCE(1);
2442}
2443
2444static inline int trace_recursive_lock(void)
2445{
2446	trace_recursion_inc();
2447
2448	if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2449		return 0;
2450
2451	trace_recursive_fail();
2452
2453	return -1;
2454}
2455
2456static inline void trace_recursive_unlock(void)
2457{
2458	WARN_ON_ONCE(!trace_recursion_buffer());
2459
2460	trace_recursion_dec();
2461}
2462
2463#else
2464
2465#define trace_recursive_lock()		(0)
2466#define trace_recursive_unlock()	do { } while (0)
2467
2468#endif
2469
2470/**
2471 * ring_buffer_lock_reserve - reserve a part of the buffer
2472 * @buffer: the ring buffer to reserve from
2473 * @length: the length of the data to reserve (excluding event header)
2474 *
2475 * Returns a reseverd event on the ring buffer to copy directly to.
2476 * The user of this interface will need to get the body to write into
2477 * and can use the ring_buffer_event_data() interface.
2478 *
2479 * The length is the length of the data needed, not the event length
2480 * which also includes the event header.
2481 *
2482 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2483 * If NULL is returned, then nothing has been allocated or locked.
2484 */
2485struct ring_buffer_event *
2486ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2487{
2488	struct ring_buffer_per_cpu *cpu_buffer;
2489	struct ring_buffer_event *event;
2490	int cpu;
2491
2492	if (ring_buffer_flags != RB_BUFFERS_ON)
2493		return NULL;
2494
2495	/* If we are tracing schedule, we don't want to recurse */
2496	preempt_disable_notrace();
2497
2498	if (atomic_read(&buffer->record_disabled))
2499		goto out_nocheck;
2500
2501	if (trace_recursive_lock())
2502		goto out_nocheck;
2503
2504	cpu = raw_smp_processor_id();
2505
2506	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2507		goto out;
2508
2509	cpu_buffer = buffer->buffers[cpu];
2510
2511	if (atomic_read(&cpu_buffer->record_disabled))
2512		goto out;
2513
2514	if (length > BUF_MAX_DATA_SIZE)
2515		goto out;
2516
2517	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2518	if (!event)
2519		goto out;
2520
2521	return event;
2522
2523 out:
2524	trace_recursive_unlock();
2525
2526 out_nocheck:
2527	preempt_enable_notrace();
2528	return NULL;
2529}
2530EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2531
2532static void
2533rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2534		      struct ring_buffer_event *event)
2535{
2536	u64 delta;
2537
2538	/*
2539	 * The event first in the commit queue updates the
2540	 * time stamp.
2541	 */
2542	if (rb_event_is_commit(cpu_buffer, event)) {
2543		/*
2544		 * A commit event that is first on a page
2545		 * updates the write timestamp with the page stamp
2546		 */
2547		if (!rb_event_index(event))
2548			cpu_buffer->write_stamp =
2549				cpu_buffer->commit_page->page->time_stamp;
2550		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2551			delta = event->array[0];
2552			delta <<= TS_SHIFT;
2553			delta += event->time_delta;
2554			cpu_buffer->write_stamp += delta;
2555		} else
2556			cpu_buffer->write_stamp += event->time_delta;
2557	}
2558}
2559
2560static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2561		      struct ring_buffer_event *event)
2562{
2563	local_inc(&cpu_buffer->entries);
2564	rb_update_write_stamp(cpu_buffer, event);
2565	rb_end_commit(cpu_buffer);
2566}
2567
2568/**
2569 * ring_buffer_unlock_commit - commit a reserved
2570 * @buffer: The buffer to commit to
2571 * @event: The event pointer to commit.
2572 *
2573 * This commits the data to the ring buffer, and releases any locks held.
2574 *
2575 * Must be paired with ring_buffer_lock_reserve.
2576 */
2577int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2578			      struct ring_buffer_event *event)
2579{
2580	struct ring_buffer_per_cpu *cpu_buffer;
2581	int cpu = raw_smp_processor_id();
2582
2583	cpu_buffer = buffer->buffers[cpu];
2584
2585	rb_commit(cpu_buffer, event);
2586
2587	trace_recursive_unlock();
2588
2589	preempt_enable_notrace();
2590
2591	return 0;
2592}
2593EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2594
2595static inline void rb_event_discard(struct ring_buffer_event *event)
2596{
2597	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2598		event = skip_time_extend(event);
2599
2600	/* array[0] holds the actual length for the discarded event */
2601	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2602	event->type_len = RINGBUF_TYPE_PADDING;
2603	/* time delta must be non zero */
2604	if (!event->time_delta)
2605		event->time_delta = 1;
2606}
2607
2608/*
2609 * Decrement the entries to the page that an event is on.
2610 * The event does not even need to exist, only the pointer
2611 * to the page it is on. This may only be called before the commit
2612 * takes place.
2613 */
2614static inline void
2615rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2616		   struct ring_buffer_event *event)
2617{
2618	unsigned long addr = (unsigned long)event;
2619	struct buffer_page *bpage = cpu_buffer->commit_page;
2620	struct buffer_page *start;
2621
2622	addr &= PAGE_MASK;
2623
2624	/* Do the likely case first */
2625	if (likely(bpage->page == (void *)addr)) {
2626		local_dec(&bpage->entries);
2627		return;
2628	}
2629
2630	/*
2631	 * Because the commit page may be on the reader page we
2632	 * start with the next page and check the end loop there.
2633	 */
2634	rb_inc_page(cpu_buffer, &bpage);
2635	start = bpage;
2636	do {
2637		if (bpage->page == (void *)addr) {
2638			local_dec(&bpage->entries);
2639			return;
2640		}
2641		rb_inc_page(cpu_buffer, &bpage);
2642	} while (bpage != start);
2643
2644	/* commit not part of this buffer?? */
2645	RB_WARN_ON(cpu_buffer, 1);
2646}
2647
2648/**
2649 * ring_buffer_commit_discard - discard an event that has not been committed
2650 * @buffer: the ring buffer
2651 * @event: non committed event to discard
2652 *
2653 * Sometimes an event that is in the ring buffer needs to be ignored.
2654 * This function lets the user discard an event in the ring buffer
2655 * and then that event will not be read later.
2656 *
2657 * This function only works if it is called before the the item has been
2658 * committed. It will try to free the event from the ring buffer
2659 * if another event has not been added behind it.
2660 *
2661 * If another event has been added behind it, it will set the event
2662 * up as discarded, and perform the commit.
2663 *
2664 * If this function is called, do not call ring_buffer_unlock_commit on
2665 * the event.
2666 */
2667void ring_buffer_discard_commit(struct ring_buffer *buffer,
2668				struct ring_buffer_event *event)
2669{
2670	struct ring_buffer_per_cpu *cpu_buffer;
2671	int cpu;
2672
2673	/* The event is discarded regardless */
2674	rb_event_discard(event);
2675
2676	cpu = smp_processor_id();
2677	cpu_buffer = buffer->buffers[cpu];
2678
2679	/*
2680	 * This must only be called if the event has not been
2681	 * committed yet. Thus we can assume that preemption
2682	 * is still disabled.
2683	 */
2684	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2685
2686	rb_decrement_entry(cpu_buffer, event);
2687	if (rb_try_to_discard(cpu_buffer, event))
2688		goto out;
2689
2690	/*
2691	 * The commit is still visible by the reader, so we
2692	 * must still update the timestamp.
2693	 */
2694	rb_update_write_stamp(cpu_buffer, event);
2695 out:
2696	rb_end_commit(cpu_buffer);
2697
2698	trace_recursive_unlock();
2699
2700	preempt_enable_notrace();
2701
2702}
2703EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2704
2705/**
2706 * ring_buffer_write - write data to the buffer without reserving
2707 * @buffer: The ring buffer to write to.
2708 * @length: The length of the data being written (excluding the event header)
2709 * @data: The data to write to the buffer.
2710 *
2711 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2712 * one function. If you already have the data to write to the buffer, it
2713 * may be easier to simply call this function.
2714 *
2715 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2716 * and not the length of the event which would hold the header.
2717 */
2718int ring_buffer_write(struct ring_buffer *buffer,
2719			unsigned long length,
2720			void *data)
2721{
2722	struct ring_buffer_per_cpu *cpu_buffer;
2723	struct ring_buffer_event *event;
2724	void *body;
2725	int ret = -EBUSY;
2726	int cpu;
2727
2728	if (ring_buffer_flags != RB_BUFFERS_ON)
2729		return -EBUSY;
2730
2731	preempt_disable_notrace();
2732
2733	if (atomic_read(&buffer->record_disabled))
2734		goto out;
2735
2736	cpu = raw_smp_processor_id();
2737
2738	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2739		goto out;
2740
2741	cpu_buffer = buffer->buffers[cpu];
2742
2743	if (atomic_read(&cpu_buffer->record_disabled))
2744		goto out;
2745
2746	if (length > BUF_MAX_DATA_SIZE)
2747		goto out;
2748
2749	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2750	if (!event)
2751		goto out;
2752
2753	body = rb_event_data(event);
2754
2755	memcpy(body, data, length);
2756
2757	rb_commit(cpu_buffer, event);
2758
2759	ret = 0;
2760 out:
2761	preempt_enable_notrace();
2762
2763	return ret;
2764}
2765EXPORT_SYMBOL_GPL(ring_buffer_write);
2766
2767static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2768{
2769	struct buffer_page *reader = cpu_buffer->reader_page;
2770	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2771	struct buffer_page *commit = cpu_buffer->commit_page;
2772
2773	/* In case of error, head will be NULL */
2774	if (unlikely(!head))
2775		return 1;
2776
2777	return reader->read == rb_page_commit(reader) &&
2778		(commit == reader ||
2779		 (commit == head &&
2780		  head->read == rb_page_commit(commit)));
2781}
2782
2783/**
2784 * ring_buffer_record_disable - stop all writes into the buffer
2785 * @buffer: The ring buffer to stop writes to.
2786 *
2787 * This prevents all writes to the buffer. Any attempt to write
2788 * to the buffer after this will fail and return NULL.
2789 *
2790 * The caller should call synchronize_sched() after this.
2791 */
2792void ring_buffer_record_disable(struct ring_buffer *buffer)
2793{
2794	atomic_inc(&buffer->record_disabled);
2795}
2796EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2797
2798/**
2799 * ring_buffer_record_enable - enable writes to the buffer
2800 * @buffer: The ring buffer to enable writes
2801 *
2802 * Note, multiple disables will need the same number of enables
2803 * to truly enable the writing (much like preempt_disable).
2804 */
2805void ring_buffer_record_enable(struct ring_buffer *buffer)
2806{
2807	atomic_dec(&buffer->record_disabled);
2808}
2809EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2810
2811/**
2812 * ring_buffer_record_off - stop all writes into the buffer
2813 * @buffer: The ring buffer to stop writes to.
2814 *
2815 * This prevents all writes to the buffer. Any attempt to write
2816 * to the buffer after this will fail and return NULL.
2817 *
2818 * This is different than ring_buffer_record_disable() as
2819 * it works like an on/off switch, where as the disable() verison
2820 * must be paired with a enable().
2821 */
2822void ring_buffer_record_off(struct ring_buffer *buffer)
2823{
2824	unsigned int rd;
2825	unsigned int new_rd;
2826
2827	do {
2828		rd = atomic_read(&buffer->record_disabled);
2829		new_rd = rd | RB_BUFFER_OFF;
2830	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2831}
2832EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2833
2834/**
2835 * ring_buffer_record_on - restart writes into the buffer
2836 * @buffer: The ring buffer to start writes to.
2837 *
2838 * This enables all writes to the buffer that was disabled by
2839 * ring_buffer_record_off().
2840 *
2841 * This is different than ring_buffer_record_enable() as
2842 * it works like an on/off switch, where as the enable() verison
2843 * must be paired with a disable().
2844 */
2845void ring_buffer_record_on(struct ring_buffer *buffer)
2846{
2847	unsigned int rd;
2848	unsigned int new_rd;
2849
2850	do {
2851		rd = atomic_read(&buffer->record_disabled);
2852		new_rd = rd & ~RB_BUFFER_OFF;
2853	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2854}
2855EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2856
2857/**
2858 * ring_buffer_record_is_on - return true if the ring buffer can write
2859 * @buffer: The ring buffer to see if write is enabled
2860 *
2861 * Returns true if the ring buffer is in a state that it accepts writes.
2862 */
2863int ring_buffer_record_is_on(struct ring_buffer *buffer)
2864{
2865	return !atomic_read(&buffer->record_disabled);
2866}
2867
2868/**
2869 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2870 * @buffer: The ring buffer to stop writes to.
2871 * @cpu: The CPU buffer to stop
2872 *
2873 * This prevents all writes to the buffer. Any attempt to write
2874 * to the buffer after this will fail and return NULL.
2875 *
2876 * The caller should call synchronize_sched() after this.
2877 */
2878void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2879{
2880	struct ring_buffer_per_cpu *cpu_buffer;
2881
2882	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2883		return;
2884
2885	cpu_buffer = buffer->buffers[cpu];
2886	atomic_inc(&cpu_buffer->record_disabled);
2887}
2888EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2889
2890/**
2891 * ring_buffer_record_enable_cpu - enable writes to the buffer
2892 * @buffer: The ring buffer to enable writes
2893 * @cpu: The CPU to enable.
2894 *
2895 * Note, multiple disables will need the same number of enables
2896 * to truly enable the writing (much like preempt_disable).
2897 */
2898void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2899{
2900	struct ring_buffer_per_cpu *cpu_buffer;
2901
2902	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2903		return;
2904
2905	cpu_buffer = buffer->buffers[cpu];
2906	atomic_dec(&cpu_buffer->record_disabled);
2907}
2908EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2909
2910/*
2911 * The total entries in the ring buffer is the running counter
2912 * of entries entered into the ring buffer, minus the sum of
2913 * the entries read from the ring buffer and the number of
2914 * entries that were overwritten.
2915 */
2916static inline unsigned long
2917rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2918{
2919	return local_read(&cpu_buffer->entries) -
2920		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2921}
2922
2923/**
2924 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2925 * @buffer: The ring buffer
2926 * @cpu: The per CPU buffer to read from.
2927 */
2928unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2929{
2930	unsigned long flags;
2931	struct ring_buffer_per_cpu *cpu_buffer;
2932	struct buffer_page *bpage;
2933	unsigned long ret;
2934
2935	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2936		return 0;
2937
2938	cpu_buffer = buffer->buffers[cpu];
2939	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2940	/*
2941	 * if the tail is on reader_page, oldest time stamp is on the reader
2942	 * page
2943	 */
2944	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2945		bpage = cpu_buffer->reader_page;
2946	else
2947		bpage = rb_set_head_page(cpu_buffer);
2948	ret = bpage->page->time_stamp;
2949	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2950
2951	return ret;
2952}
2953EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2954
2955/**
2956 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2957 * @buffer: The ring buffer
2958 * @cpu: The per CPU buffer to read from.
2959 */
2960unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2961{
2962	struct ring_buffer_per_cpu *cpu_buffer;
2963	unsigned long ret;
2964
2965	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2966		return 0;
2967
2968	cpu_buffer = buffer->buffers[cpu];
2969	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2970
2971	return ret;
2972}
2973EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2974
2975/**
2976 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2977 * @buffer: The ring buffer
2978 * @cpu: The per CPU buffer to get the entries from.
2979 */
2980unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2981{
2982	struct ring_buffer_per_cpu *cpu_buffer;
2983
2984	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2985		return 0;
2986
2987	cpu_buffer = buffer->buffers[cpu];
2988
2989	return rb_num_of_entries(cpu_buffer);
2990}
2991EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2992
2993/**
2994 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2995 * @buffer: The ring buffer
2996 * @cpu: The per CPU buffer to get the number of overruns from
2997 */
2998unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2999{
3000	struct ring_buffer_per_cpu *cpu_buffer;
3001	unsigned long ret;
3002
3003	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3004		return 0;
3005
3006	cpu_buffer = buffer->buffers[cpu];
3007	ret = local_read(&cpu_buffer->overrun);
3008
3009	return ret;
3010}
3011EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3012
3013/**
3014 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
3015 * @buffer: The ring buffer
3016 * @cpu: The per CPU buffer to get the number of overruns from
3017 */
3018unsigned long
3019ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3020{
3021	struct ring_buffer_per_cpu *cpu_buffer;
3022	unsigned long ret;
3023
3024	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3025		return 0;
3026
3027	cpu_buffer = buffer->buffers[cpu];
3028	ret = local_read(&cpu_buffer->commit_overrun);
3029
3030	return ret;
3031}
3032EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3033
3034/**
3035 * ring_buffer_entries - get the number of entries in a buffer
3036 * @buffer: The ring buffer
3037 *
3038 * Returns the total number of entries in the ring buffer
3039 * (all CPU entries)
3040 */
3041unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3042{
3043	struct ring_buffer_per_cpu *cpu_buffer;
3044	unsigned long entries = 0;
3045	int cpu;
3046
3047	/* if you care about this being correct, lock the buffer */
3048	for_each_buffer_cpu(buffer, cpu) {
3049		cpu_buffer = buffer->buffers[cpu];
3050		entries += rb_num_of_entries(cpu_buffer);
3051	}
3052
3053	return entries;
3054}
3055EXPORT_SYMBOL_GPL(ring_buffer_entries);
3056
3057/**
3058 * ring_buffer_overruns - get the number of overruns in buffer
3059 * @buffer: The ring buffer
3060 *
3061 * Returns the total number of overruns in the ring buffer
3062 * (all CPU entries)
3063 */
3064unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3065{
3066	struct ring_buffer_per_cpu *cpu_buffer;
3067	unsigned long overruns = 0;
3068	int cpu;
3069
3070	/* if you care about this being correct, lock the buffer */
3071	for_each_buffer_cpu(buffer, cpu) {
3072		cpu_buffer = buffer->buffers[cpu];
3073		overruns += local_read(&cpu_buffer->overrun);
3074	}
3075
3076	return overruns;
3077}
3078EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3079
3080static void rb_iter_reset(struct ring_buffer_iter *iter)
3081{
3082	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3083
3084	/* Iterator usage is expected to have record disabled */
3085	if (list_empty(&cpu_buffer->reader_page->list)) {
3086		iter->head_page = rb_set_head_page(cpu_buffer);
3087		if (unlikely(!iter->head_page))
3088			return;
3089		iter->head = iter->head_page->read;
3090	} else {
3091		iter->head_page = cpu_buffer->reader_page;
3092		iter->head = cpu_buffer->reader_page->read;
3093	}
3094	if (iter->head)
3095		iter->read_stamp = cpu_buffer->read_stamp;
3096	else
3097		iter->read_stamp = iter->head_page->page->time_stamp;
3098	iter->cache_reader_page = cpu_buffer->reader_page;
3099	iter->cache_read = cpu_buffer->read;
3100}
3101
3102/**
3103 * ring_buffer_iter_reset - reset an iterator
3104 * @iter: The iterator to reset
3105 *
3106 * Resets the iterator, so that it will start from the beginning
3107 * again.
3108 */
3109void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3110{
3111	struct ring_buffer_per_cpu *cpu_buffer;
3112	unsigned long flags;
3113
3114	if (!iter)
3115		return;
3116
3117	cpu_buffer = iter->cpu_buffer;
3118
3119	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3120	rb_iter_reset(iter);
3121	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3122}
3123EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3124
3125/**
3126 * ring_buffer_iter_empty - check if an iterator has no more to read
3127 * @iter: The iterator to check
3128 */
3129int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3130{
3131	struct ring_buffer_per_cpu *cpu_buffer;
3132
3133	cpu_buffer = iter->cpu_buffer;
3134
3135	return iter->head_page == cpu_buffer->commit_page &&
3136		iter->head == rb_commit_index(cpu_buffer);
3137}
3138EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3139
3140static void
3141rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3142		     struct ring_buffer_event *event)
3143{
3144	u64 delta;
3145
3146	switch (event->type_len) {
3147	case RINGBUF_TYPE_PADDING:
3148		return;
3149
3150	case RINGBUF_TYPE_TIME_EXTEND:
3151		delta = event->array[0];
3152		delta <<= TS_SHIFT;
3153		delta += event->time_delta;
3154		cpu_buffer->read_stamp += delta;
3155		return;
3156
3157	case RINGBUF_TYPE_TIME_STAMP:
3158		/* FIXME: not implemented */
3159		return;
3160
3161	case RINGBUF_TYPE_DATA:
3162		cpu_buffer->read_stamp += event->time_delta;
3163		return;
3164
3165	default:
3166		BUG();
3167	}
3168	return;
3169}
3170
3171static void
3172rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3173			  struct ring_buffer_event *event)
3174{
3175	u64 delta;
3176
3177	switch (event->type_len) {
3178	case RINGBUF_TYPE_PADDING:
3179		return;
3180
3181	case RINGBUF_TYPE_TIME_EXTEND:
3182		delta = event->array[0];
3183		delta <<= TS_SHIFT;
3184		delta += event->time_delta;
3185		iter->read_stamp += delta;
3186		return;
3187
3188	case RINGBUF_TYPE_TIME_STAMP:
3189		/* FIXME: not implemented */
3190		return;
3191
3192	case RINGBUF_TYPE_DATA:
3193		iter->read_stamp += event->time_delta;
3194		return;
3195
3196	default:
3197		BUG();
3198	}
3199	return;
3200}
3201
3202static struct buffer_page *
3203rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3204{
3205	struct buffer_page *reader = NULL;
3206	unsigned long overwrite;
3207	unsigned long flags;
3208	int nr_loops = 0;
3209	int ret;
3210
3211	local_irq_save(flags);
3212	arch_spin_lock(&cpu_buffer->lock);
3213
3214 again:
3215	/*
3216	 * This should normally only loop twice. But because the
3217	 * start of the reader inserts an empty page, it causes
3218	 * a case where we will loop three times. There should be no
3219	 * reason to loop four times (that I know of).
3220	 */
3221	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3222		reader = NULL;
3223		goto out;
3224	}
3225
3226	reader = cpu_buffer->reader_page;
3227
3228	/* If there's more to read, return this page */
3229	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3230		goto out;
3231
3232	/* Never should we have an index greater than the size */
3233	if (RB_WARN_ON(cpu_buffer,
3234		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3235		goto out;
3236
3237	/* check if we caught up to the tail */
3238	reader = NULL;
3239	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3240		goto out;
3241
3242	/*
3243	 * Reset the reader page to size zero.
3244	 */
3245	local_set(&cpu_buffer->reader_page->write, 0);
3246	local_set(&cpu_buffer->reader_page->entries, 0);
3247	local_set(&cpu_buffer->reader_page->page->commit, 0);
3248	cpu_buffer->reader_page->real_end = 0;
3249
3250 spin:
3251	/*
3252	 * Splice the empty reader page into the list around the head.
3253	 */
3254	reader = rb_set_head_page(cpu_buffer);
3255	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3256	cpu_buffer->reader_page->list.prev = reader->list.prev;
3257
3258	/*
3259	 * cpu_buffer->pages just needs to point to the buffer, it
3260	 *  has no specific buffer page to point to. Lets move it out
3261	 *  of our way so we don't accidentally swap it.
3262	 */
3263	cpu_buffer->pages = reader->list.prev;
3264
3265	/* The reader page will be pointing to the new head */
3266	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3267
3268	/*
3269	 * We want to make sure we read the overruns after we set up our
3270	 * pointers to the next object. The writer side does a
3271	 * cmpxchg to cross pages which acts as the mb on the writer
3272	 * side. Note, the reader will constantly fail the swap
3273	 * while the writer is updating the pointers, so this
3274	 * guarantees that the overwrite recorded here is the one we
3275	 * want to compare with the last_overrun.
3276	 */
3277	smp_mb();
3278	overwrite = local_read(&(cpu_buffer->overrun));
3279
3280	/*
3281	 * Here's the tricky part.
3282	 *
3283	 * We need to move the pointer past the header page.
3284	 * But we can only do that if a writer is not currently
3285	 * moving it. The page before the header page has the
3286	 * flag bit '1' set if it is pointing to the page we want.
3287	 * but if the writer is in the process of moving it
3288	 * than it will be '2' or already moved '0'.
3289	 */
3290
3291	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3292
3293	/*
3294	 * If we did not convert it, then we must try again.
3295	 */
3296	if (!ret)
3297		goto spin;
3298
3299	/*
3300	 * Yeah! We succeeded in replacing the page.
3301	 *
3302	 * Now make the new head point back to the reader page.
3303	 */
3304	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3305	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3306
3307	/* Finally update the reader page to the new head */
3308	cpu_buffer->reader_page = reader;
3309	rb_reset_reader_page(cpu_buffer);
3310
3311	if (overwrite != cpu_buffer->last_overrun) {
3312		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3313		cpu_buffer->last_overrun = overwrite;
3314	}
3315
3316	goto again;
3317
3318 out:
3319	arch_spin_unlock(&cpu_buffer->lock);
3320	local_irq_restore(flags);
3321
3322	return reader;
3323}
3324
3325static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3326{
3327	struct ring_buffer_event *event;
3328	struct buffer_page *reader;
3329	unsigned length;
3330
3331	reader = rb_get_reader_page(cpu_buffer);
3332
3333	/* This function should not be called when buffer is empty */
3334	if (RB_WARN_ON(cpu_buffer, !reader))
3335		return;
3336
3337	event = rb_reader_event(cpu_buffer);
3338
3339	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3340		cpu_buffer->read++;
3341
3342	rb_update_read_stamp(cpu_buffer, event);
3343
3344	length = rb_event_length(event);
3345	cpu_buffer->reader_page->read += length;
3346}
3347
3348static void rb_advance_iter(struct ring_buffer_iter *iter)
3349{
3350	struct ring_buffer_per_cpu *cpu_buffer;
3351	struct ring_buffer_event *event;
3352	unsigned length;
3353
3354	cpu_buffer = iter->cpu_buffer;
3355
3356	/*
3357	 * Check if we are at the end of the buffer.
3358	 */
3359	if (iter->head >= rb_page_size(iter->head_page)) {
3360		/* discarded commits can make the page empty */
3361		if (iter->head_page == cpu_buffer->commit_page)
3362			return;
3363		rb_inc_iter(iter);
3364		return;
3365	}
3366
3367	event = rb_iter_head_event(iter);
3368
3369	length = rb_event_length(event);
3370
3371	/*
3372	 * This should not be called to advance the header if we are
3373	 * at the tail of the buffer.
3374	 */
3375	if (RB_WARN_ON(cpu_buffer,
3376		       (iter->head_page == cpu_buffer->commit_page) &&
3377		       (iter->head + length > rb_commit_index(cpu_buffer))))
3378		return;
3379
3380	rb_update_iter_read_stamp(iter, event);
3381
3382	iter->head += length;
3383
3384	/* check for end of page padding */
3385	if ((iter->head >= rb_page_size(iter->head_page)) &&
3386	    (iter->head_page != cpu_buffer->commit_page))
3387		rb_advance_iter(iter);
3388}
3389
3390static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3391{
3392	return cpu_buffer->lost_events;
3393}
3394
3395static struct ring_buffer_event *
3396rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3397	       unsigned long *lost_events)
3398{
3399	struct ring_buffer_event *event;
3400	struct buffer_page *reader;
3401	int nr_loops = 0;
3402
3403 again:
3404	/*
3405	 * We repeat when a time extend is encountered.
3406	 * Since the time extend is always attached to a data event,
3407	 * we should never loop more than once.
3408	 * (We never hit the following condition more than twice).
3409	 */
3410	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3411		return NULL;
3412
3413	reader = rb_get_reader_page(cpu_buffer);
3414	if (!reader)
3415		return NULL;
3416
3417	event = rb_reader_event(cpu_buffer);
3418
3419	switch (event->type_len) {
3420	case RINGBUF_TYPE_PADDING:
3421		if (rb_null_event(event))
3422			RB_WARN_ON(cpu_buffer, 1);
3423		/*
3424		 * Because the writer could be discarding every
3425		 * event it creates (which would probably be bad)
3426		 * if we were to go back to "again" then we may never
3427		 * catch up, and will trigger the warn on, or lock
3428		 * the box. Return the padding, and we will release
3429		 * the current locks, and try again.
3430		 */
3431		return event;
3432
3433	case RINGBUF_TYPE_TIME_EXTEND:
3434		/* Internal data, OK to advance */
3435		rb_advance_reader(cpu_buffer);
3436		goto again;
3437
3438	case RINGBUF_TYPE_TIME_STAMP:
3439		/* FIXME: not implemented */
3440		rb_advance_reader(cpu_buffer);
3441		goto again;
3442
3443	case RINGBUF_TYPE_DATA:
3444		if (ts) {
3445			*ts = cpu_buffer->read_stamp + event->time_delta;
3446			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3447							 cpu_buffer->cpu, ts);
3448		}
3449		if (lost_events)
3450			*lost_events = rb_lost_events(cpu_buffer);
3451		return event;
3452
3453	default:
3454		BUG();
3455	}
3456
3457	return NULL;
3458}
3459EXPORT_SYMBOL_GPL(ring_buffer_peek);
3460
3461static struct ring_buffer_event *
3462rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3463{
3464	struct ring_buffer *buffer;
3465	struct ring_buffer_per_cpu *cpu_buffer;
3466	struct ring_buffer_event *event;
3467	int nr_loops = 0;
3468
3469	cpu_buffer = iter->cpu_buffer;
3470	buffer = cpu_buffer->buffer;
3471
3472	/*
3473	 * Check if someone performed a consuming read to
3474	 * the buffer. A consuming read invalidates the iterator
3475	 * and we need to reset the iterator in this case.
3476	 */
3477	if (unlikely(iter->cache_read != cpu_buffer->read ||
3478		     iter->cache_reader_page != cpu_buffer->reader_page))
3479		rb_iter_reset(iter);
3480
3481 again:
3482	if (ring_buffer_iter_empty(iter))
3483		return NULL;
3484
3485	/*
3486	 * We repeat when a time extend is encountered.
3487	 * Since the time extend is always attached to a data event,
3488	 * we should never loop more than once.
3489	 * (We never hit the following condition more than twice).
3490	 */
3491	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3492		return NULL;
3493
3494	if (rb_per_cpu_empty(cpu_buffer))
3495		return NULL;
3496
3497	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3498		rb_inc_iter(iter);
3499		goto again;
3500	}
3501
3502	event = rb_iter_head_event(iter);
3503
3504	switch (event->type_len) {
3505	case RINGBUF_TYPE_PADDING:
3506		if (rb_null_event(event)) {
3507			rb_inc_iter(iter);
3508			goto again;
3509		}
3510		rb_advance_iter(iter);
3511		return event;
3512
3513	case RINGBUF_TYPE_TIME_EXTEND:
3514		/* Internal data, OK to advance */
3515		rb_advance_iter(iter);
3516		goto again;
3517
3518	case RINGBUF_TYPE_TIME_STAMP:
3519		/* FIXME: not implemented */
3520		rb_advance_iter(iter);
3521		goto again;
3522
3523	case RINGBUF_TYPE_DATA:
3524		if (ts) {
3525			*ts = iter->read_stamp + event->time_delta;
3526			ring_buffer_normalize_time_stamp(buffer,
3527							 cpu_buffer->cpu, ts);
3528		}
3529		return event;
3530
3531	default:
3532		BUG();
3533	}
3534
3535	return NULL;
3536}
3537EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3538
3539static inline int rb_ok_to_lock(void)
3540{
3541	/*
3542	 * If an NMI die dumps out the content of the ring buffer
3543	 * do not grab locks. We also permanently disable the ring
3544	 * buffer too. A one time deal is all you get from reading
3545	 * the ring buffer from an NMI.
3546	 */
3547	if (likely(!in_nmi()))
3548		return 1;
3549
3550	tracing_off_permanent();
3551	return 0;
3552}
3553
3554/**
3555 * ring_buffer_peek - peek at the next event to be read
3556 * @buffer: The ring buffer to read
3557 * @cpu: The cpu to peak at
3558 * @ts: The timestamp counter of this event.
3559 * @lost_events: a variable to store if events were lost (may be NULL)
3560 *
3561 * This will return the event that will be read next, but does
3562 * not consume the data.
3563 */
3564struct ring_buffer_event *
3565ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3566		 unsigned long *lost_events)
3567{
3568	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3569	struct ring_buffer_event *event;
3570	unsigned long flags;
3571	int dolock;
3572
3573	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3574		return NULL;
3575
3576	dolock = rb_ok_to_lock();
3577 again:
3578	local_irq_save(flags);
3579	if (dolock)
3580		raw_spin_lock(&cpu_buffer->reader_lock);
3581	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3582	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3583		rb_advance_reader(cpu_buffer);
3584	if (dolock)
3585		raw_spin_unlock(&cpu_buffer->reader_lock);
3586	local_irq_restore(flags);
3587
3588	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3589		goto again;
3590
3591	return event;
3592}
3593
3594/**
3595 * ring_buffer_iter_peek - peek at the next event to be read
3596 * @iter: The ring buffer iterator
3597 * @ts: The timestamp counter of this event.
3598 *
3599 * This will return the event that will be read next, but does
3600 * not increment the iterator.
3601 */
3602struct ring_buffer_event *
3603ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3604{
3605	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3606	struct ring_buffer_event *event;
3607	unsigned long flags;
3608
3609 again:
3610	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3611	event = rb_iter_peek(iter, ts);
3612	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3613
3614	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3615		goto again;
3616
3617	return event;
3618}
3619
3620/**
3621 * ring_buffer_consume - return an event and consume it
3622 * @buffer: The ring buffer to get the next event from
3623 * @cpu: the cpu to read the buffer from
3624 * @ts: a variable to store the timestamp (may be NULL)
3625 * @lost_events: a variable to store if events were lost (may be NULL)
3626 *
3627 * Returns the next event in the ring buffer, and that event is consumed.
3628 * Meaning, that sequential reads will keep returning a different event,
3629 * and eventually empty the ring buffer if the producer is slower.
3630 */
3631struct ring_buffer_event *
3632ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3633		    unsigned long *lost_events)
3634{
3635	struct ring_buffer_per_cpu *cpu_buffer;
3636	struct ring_buffer_event *event = NULL;
3637	unsigned long flags;
3638	int dolock;
3639
3640	dolock = rb_ok_to_lock();
3641
3642 again:
3643	/* might be called in atomic */
3644	preempt_disable();
3645
3646	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3647		goto out;
3648
3649	cpu_buffer = buffer->buffers[cpu];
3650	local_irq_save(flags);
3651	if (dolock)
3652		raw_spin_lock(&cpu_buffer->reader_lock);
3653
3654	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3655	if (event) {
3656		cpu_buffer->lost_events = 0;
3657		rb_advance_reader(cpu_buffer);
3658	}
3659
3660	if (dolock)
3661		raw_spin_unlock(&cpu_buffer->reader_lock);
3662	local_irq_restore(flags);
3663
3664 out:
3665	preempt_enable();
3666
3667	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3668		goto again;
3669
3670	return event;
3671}
3672EXPORT_SYMBOL_GPL(ring_buffer_consume);
3673
3674/**
3675 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3676 * @buffer: The ring buffer to read from
3677 * @cpu: The cpu buffer to iterate over
3678 *
3679 * This performs the initial preparations necessary to iterate
3680 * through the buffer.  Memory is allocated, buffer recording
3681 * is disabled, and the iterator pointer is returned to the caller.
3682 *
3683 * Disabling buffer recordng prevents the reading from being
3684 * corrupted. This is not a consuming read, so a producer is not
3685 * expected.
3686 *
3687 * After a sequence of ring_buffer_read_prepare calls, the user is
3688 * expected to make at least one call to ring_buffer_prepare_sync.
3689 * Afterwards, ring_buffer_read_start is invoked to get things going
3690 * for real.
3691 *
3692 * This overall must be paired with ring_buffer_finish.
3693 */
3694struct ring_buffer_iter *
3695ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3696{
3697	struct ring_buffer_per_cpu *cpu_buffer;
3698	struct ring_buffer_iter *iter;
3699
3700	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3701		return NULL;
3702
3703	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3704	if (!iter)
3705		return NULL;
3706
3707	cpu_buffer = buffer->buffers[cpu];
3708
3709	iter->cpu_buffer = cpu_buffer;
3710
3711	atomic_inc(&buffer->resize_disabled);
3712	atomic_inc(&cpu_buffer->record_disabled);
3713
3714	return iter;
3715}
3716EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3717
3718/**
3719 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3720 *
3721 * All previously invoked ring_buffer_read_prepare calls to prepare
3722 * iterators will be synchronized.  Afterwards, read_buffer_read_start
3723 * calls on those iterators are allowed.
3724 */
3725void
3726ring_buffer_read_prepare_sync(void)
3727{
3728	synchronize_sched();
3729}
3730EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3731
3732/**
3733 * ring_buffer_read_start - start a non consuming read of the buffer
3734 * @iter: The iterator returned by ring_buffer_read_prepare
3735 *
3736 * This finalizes the startup of an iteration through the buffer.
3737 * The iterator comes from a call to ring_buffer_read_prepare and
3738 * an intervening ring_buffer_read_prepare_sync must have been
3739 * performed.
3740 *
3741 * Must be paired with ring_buffer_finish.
3742 */
3743void
3744ring_buffer_read_start(struct ring_buffer_iter *iter)
3745{
3746	struct ring_buffer_per_cpu *cpu_buffer;
3747	unsigned long flags;
3748
3749	if (!iter)
3750		return;
3751
3752	cpu_buffer = iter->cpu_buffer;
3753
3754	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3755	arch_spin_lock(&cpu_buffer->lock);
3756	rb_iter_reset(iter);
3757	arch_spin_unlock(&cpu_buffer->lock);
3758	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3759}
3760EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3761
3762/**
3763 * ring_buffer_finish - finish reading the iterator of the buffer
3764 * @iter: The iterator retrieved by ring_buffer_start
3765 *
3766 * This re-enables the recording to the buffer, and frees the
3767 * iterator.
3768 */
3769void
3770ring_buffer_read_finish(struct ring_buffer_iter *iter)
3771{
3772	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3773
3774	/*
3775	 * Ring buffer is disabled from recording, here's a good place
3776	 * to check the integrity of the ring buffer. 
3777	 */
3778	rb_check_pages(cpu_buffer);
3779
3780	atomic_dec(&cpu_buffer->record_disabled);
3781	atomic_dec(&cpu_buffer->buffer->resize_disabled);
3782	kfree(iter);
3783}
3784EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3785
3786/**
3787 * ring_buffer_read - read the next item in the ring buffer by the iterator
3788 * @iter: The ring buffer iterator
3789 * @ts: The time stamp of the event read.
3790 *
3791 * This reads the next event in the ring buffer and increments the iterator.
3792 */
3793struct ring_buffer_event *
3794ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3795{
3796	struct ring_buffer_event *event;
3797	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3798	unsigned long flags;
3799
3800	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3801 again:
3802	event = rb_iter_peek(iter, ts);
3803	if (!event)
3804		goto out;
3805
3806	if (event->type_len == RINGBUF_TYPE_PADDING)
3807		goto again;
3808
3809	rb_advance_iter(iter);
3810 out:
3811	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3812
3813	return event;
3814}
3815EXPORT_SYMBOL_GPL(ring_buffer_read);
3816
3817/**
3818 * ring_buffer_size - return the size of the ring buffer (in bytes)
3819 * @buffer: The ring buffer.
3820 */
3821unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
3822{
3823	/*
3824	 * Earlier, this method returned
3825	 *	BUF_PAGE_SIZE * buffer->nr_pages
3826	 * Since the nr_pages field is now removed, we have converted this to
3827	 * return the per cpu buffer value.
3828	 */
3829	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3830		return 0;
3831
3832	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
3833}
3834EXPORT_SYMBOL_GPL(ring_buffer_size);
3835
3836static void
3837rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3838{
3839	rb_head_page_deactivate(cpu_buffer);
3840
3841	cpu_buffer->head_page
3842		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3843	local_set(&cpu_buffer->head_page->write, 0);
3844	local_set(&cpu_buffer->head_page->entries, 0);
3845	local_set(&cpu_buffer->head_page->page->commit, 0);
3846
3847	cpu_buffer->head_page->read = 0;
3848
3849	cpu_buffer->tail_page = cpu_buffer->head_page;
3850	cpu_buffer->commit_page = cpu_buffer->head_page;
3851
3852	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3853	INIT_LIST_HEAD(&cpu_buffer->new_pages);
3854	local_set(&cpu_buffer->reader_page->write, 0);
3855	local_set(&cpu_buffer->reader_page->entries, 0);
3856	local_set(&cpu_buffer->reader_page->page->commit, 0);
3857	cpu_buffer->reader_page->read = 0;
3858
3859	local_set(&cpu_buffer->commit_overrun, 0);
3860	local_set(&cpu_buffer->entries_bytes, 0);
3861	local_set(&cpu_buffer->overrun, 0);
3862	local_set(&cpu_buffer->entries, 0);
3863	local_set(&cpu_buffer->committing, 0);
3864	local_set(&cpu_buffer->commits, 0);
3865	cpu_buffer->read = 0;
3866	cpu_buffer->read_bytes = 0;
3867
3868	cpu_buffer->write_stamp = 0;
3869	cpu_buffer->read_stamp = 0;
3870
3871	cpu_buffer->lost_events = 0;
3872	cpu_buffer->last_overrun = 0;
3873
3874	rb_head_page_activate(cpu_buffer);
3875}
3876
3877/**
3878 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3879 * @buffer: The ring buffer to reset a per cpu buffer of
3880 * @cpu: The CPU buffer to be reset
3881 */
3882void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3883{
3884	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3885	unsigned long flags;
3886
3887	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3888		return;
3889
3890	atomic_inc(&buffer->resize_disabled);
3891	atomic_inc(&cpu_buffer->record_disabled);
3892
3893	/* Make sure all commits have finished */
3894	synchronize_sched();
3895
3896	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3897
3898	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3899		goto out;
3900
3901	arch_spin_lock(&cpu_buffer->lock);
3902
3903	rb_reset_cpu(cpu_buffer);
3904
3905	arch_spin_unlock(&cpu_buffer->lock);
3906
3907 out:
3908	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3909
3910	atomic_dec(&cpu_buffer->record_disabled);
3911	atomic_dec(&buffer->resize_disabled);
3912}
3913EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3914
3915/**
3916 * ring_buffer_reset - reset a ring buffer
3917 * @buffer: The ring buffer to reset all cpu buffers
3918 */
3919void ring_buffer_reset(struct ring_buffer *buffer)
3920{
3921	int cpu;
3922
3923	for_each_buffer_cpu(buffer, cpu)
3924		ring_buffer_reset_cpu(buffer, cpu);
3925}
3926EXPORT_SYMBOL_GPL(ring_buffer_reset);
3927
3928/**
3929 * rind_buffer_empty - is the ring buffer empty?
3930 * @buffer: The ring buffer to test
3931 */
3932int ring_buffer_empty(struct ring_buffer *buffer)
3933{
3934	struct ring_buffer_per_cpu *cpu_buffer;
3935	unsigned long flags;
3936	int dolock;
3937	int cpu;
3938	int ret;
3939
3940	dolock = rb_ok_to_lock();
3941
3942	/* yes this is racy, but if you don't like the race, lock the buffer */
3943	for_each_buffer_cpu(buffer, cpu) {
3944		cpu_buffer = buffer->buffers[cpu];
3945		local_irq_save(flags);
3946		if (dolock)
3947			raw_spin_lock(&cpu_buffer->reader_lock);
3948		ret = rb_per_cpu_empty(cpu_buffer);
3949		if (dolock)
3950			raw_spin_unlock(&cpu_buffer->reader_lock);
3951		local_irq_restore(flags);
3952
3953		if (!ret)
3954			return 0;
3955	}
3956
3957	return 1;
3958}
3959EXPORT_SYMBOL_GPL(ring_buffer_empty);
3960
3961/**
3962 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3963 * @buffer: The ring buffer
3964 * @cpu: The CPU buffer to test
3965 */
3966int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3967{
3968	struct ring_buffer_per_cpu *cpu_buffer;
3969	unsigned long flags;
3970	int dolock;
3971	int ret;
3972
3973	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3974		return 1;
3975
3976	dolock = rb_ok_to_lock();
3977
3978	cpu_buffer = buffer->buffers[cpu];
3979	local_irq_save(flags);
3980	if (dolock)
3981		raw_spin_lock(&cpu_buffer->reader_lock);
3982	ret = rb_per_cpu_empty(cpu_buffer);
3983	if (dolock)
3984		raw_spin_unlock(&cpu_buffer->reader_lock);
3985	local_irq_restore(flags);
3986
3987	return ret;
3988}
3989EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3990
3991#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3992/**
3993 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3994 * @buffer_a: One buffer to swap with
3995 * @buffer_b: The other buffer to swap with
3996 *
3997 * This function is useful for tracers that want to take a "snapshot"
3998 * of a CPU buffer and has another back up buffer lying around.
3999 * it is expected that the tracer handles the cpu buffer not being
4000 * used at the moment.
4001 */
4002int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4003			 struct ring_buffer *buffer_b, int cpu)
4004{
4005	struct ring_buffer_per_cpu *cpu_buffer_a;
4006	struct ring_buffer_per_cpu *cpu_buffer_b;
4007	int ret = -EINVAL;
4008
4009	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4010	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4011		goto out;
4012
4013	cpu_buffer_a = buffer_a->buffers[cpu];
4014	cpu_buffer_b = buffer_b->buffers[cpu];
4015
4016	/* At least make sure the two buffers are somewhat the same */
4017	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4018		goto out;
4019
4020	ret = -EAGAIN;
4021
4022	if (ring_buffer_flags != RB_BUFFERS_ON)
4023		goto out;
4024
4025	if (atomic_read(&buffer_a->record_disabled))
4026		goto out;
4027
4028	if (atomic_read(&buffer_b->record_disabled))
4029		goto out;
4030
 
 
 
4031	if (atomic_read(&cpu_buffer_a->record_disabled))
4032		goto out;
4033
4034	if (atomic_read(&cpu_buffer_b->record_disabled))
4035		goto out;
4036
4037	/*
4038	 * We can't do a synchronize_sched here because this
4039	 * function can be called in atomic context.
4040	 * Normally this will be called from the same CPU as cpu.
4041	 * If not it's up to the caller to protect this.
4042	 */
4043	atomic_inc(&cpu_buffer_a->record_disabled);
4044	atomic_inc(&cpu_buffer_b->record_disabled);
4045
4046	ret = -EBUSY;
4047	if (local_read(&cpu_buffer_a->committing))
4048		goto out_dec;
4049	if (local_read(&cpu_buffer_b->committing))
4050		goto out_dec;
4051
4052	buffer_a->buffers[cpu] = cpu_buffer_b;
4053	buffer_b->buffers[cpu] = cpu_buffer_a;
4054
4055	cpu_buffer_b->buffer = buffer_a;
4056	cpu_buffer_a->buffer = buffer_b;
4057
4058	ret = 0;
4059
4060out_dec:
4061	atomic_dec(&cpu_buffer_a->record_disabled);
4062	atomic_dec(&cpu_buffer_b->record_disabled);
4063out:
4064	return ret;
4065}
4066EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4067#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4068
4069/**
4070 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4071 * @buffer: the buffer to allocate for.
4072 *
4073 * This function is used in conjunction with ring_buffer_read_page.
4074 * When reading a full page from the ring buffer, these functions
4075 * can be used to speed up the process. The calling function should
4076 * allocate a few pages first with this function. Then when it
4077 * needs to get pages from the ring buffer, it passes the result
4078 * of this function into ring_buffer_read_page, which will swap
4079 * the page that was allocated, with the read page of the buffer.
4080 *
4081 * Returns:
4082 *  The page allocated, or NULL on error.
4083 */
4084void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4085{
4086	struct buffer_data_page *bpage;
4087	struct page *page;
4088
4089	page = alloc_pages_node(cpu_to_node(cpu),
4090				GFP_KERNEL | __GFP_NORETRY, 0);
4091	if (!page)
4092		return NULL;
4093
4094	bpage = page_address(page);
4095
4096	rb_init_page(bpage);
4097
4098	return bpage;
4099}
4100EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4101
4102/**
4103 * ring_buffer_free_read_page - free an allocated read page
4104 * @buffer: the buffer the page was allocate for
4105 * @data: the page to free
4106 *
4107 * Free a page allocated from ring_buffer_alloc_read_page.
4108 */
4109void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4110{
4111	free_page((unsigned long)data);
4112}
4113EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4114
4115/**
4116 * ring_buffer_read_page - extract a page from the ring buffer
4117 * @buffer: buffer to extract from
4118 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4119 * @len: amount to extract
4120 * @cpu: the cpu of the buffer to extract
4121 * @full: should the extraction only happen when the page is full.
4122 *
4123 * This function will pull out a page from the ring buffer and consume it.
4124 * @data_page must be the address of the variable that was returned
4125 * from ring_buffer_alloc_read_page. This is because the page might be used
4126 * to swap with a page in the ring buffer.
4127 *
4128 * for example:
4129 *	rpage = ring_buffer_alloc_read_page(buffer);
4130 *	if (!rpage)
4131 *		return error;
4132 *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4133 *	if (ret >= 0)
4134 *		process_page(rpage, ret);
4135 *
4136 * When @full is set, the function will not return true unless
4137 * the writer is off the reader page.
4138 *
4139 * Note: it is up to the calling functions to handle sleeps and wakeups.
4140 *  The ring buffer can be used anywhere in the kernel and can not
4141 *  blindly call wake_up. The layer that uses the ring buffer must be
4142 *  responsible for that.
4143 *
4144 * Returns:
4145 *  >=0 if data has been transferred, returns the offset of consumed data.
4146 *  <0 if no data has been transferred.
4147 */
4148int ring_buffer_read_page(struct ring_buffer *buffer,
4149			  void **data_page, size_t len, int cpu, int full)
4150{
4151	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4152	struct ring_buffer_event *event;
4153	struct buffer_data_page *bpage;
4154	struct buffer_page *reader;
4155	unsigned long missed_events;
4156	unsigned long flags;
4157	unsigned int commit;
4158	unsigned int read;
4159	u64 save_timestamp;
4160	int ret = -1;
4161
4162	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4163		goto out;
4164
4165	/*
4166	 * If len is not big enough to hold the page header, then
4167	 * we can not copy anything.
4168	 */
4169	if (len <= BUF_PAGE_HDR_SIZE)
4170		goto out;
4171
4172	len -= BUF_PAGE_HDR_SIZE;
4173
4174	if (!data_page)
4175		goto out;
4176
4177	bpage = *data_page;
4178	if (!bpage)
4179		goto out;
4180
4181	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4182
4183	reader = rb_get_reader_page(cpu_buffer);
4184	if (!reader)
4185		goto out_unlock;
4186
4187	event = rb_reader_event(cpu_buffer);
4188
4189	read = reader->read;
4190	commit = rb_page_commit(reader);
4191
4192	/* Check if any events were dropped */
4193	missed_events = cpu_buffer->lost_events;
4194
4195	/*
4196	 * If this page has been partially read or
4197	 * if len is not big enough to read the rest of the page or
4198	 * a writer is still on the page, then
4199	 * we must copy the data from the page to the buffer.
4200	 * Otherwise, we can simply swap the page with the one passed in.
4201	 */
4202	if (read || (len < (commit - read)) ||
4203	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4204		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4205		unsigned int rpos = read;
4206		unsigned int pos = 0;
4207		unsigned int size;
4208
4209		if (full)
4210			goto out_unlock;
4211
4212		if (len > (commit - read))
4213			len = (commit - read);
4214
4215		/* Always keep the time extend and data together */
4216		size = rb_event_ts_length(event);
4217
4218		if (len < size)
4219			goto out_unlock;
4220
4221		/* save the current timestamp, since the user will need it */
4222		save_timestamp = cpu_buffer->read_stamp;
4223
4224		/* Need to copy one event at a time */
4225		do {
4226			/* We need the size of one event, because
4227			 * rb_advance_reader only advances by one event,
4228			 * whereas rb_event_ts_length may include the size of
4229			 * one or two events.
4230			 * We have already ensured there's enough space if this
4231			 * is a time extend. */
4232			size = rb_event_length(event);
4233			memcpy(bpage->data + pos, rpage->data + rpos, size);
4234
4235			len -= size;
4236
4237			rb_advance_reader(cpu_buffer);
4238			rpos = reader->read;
4239			pos += size;
4240
4241			if (rpos >= commit)
4242				break;
4243
4244			event = rb_reader_event(cpu_buffer);
4245			/* Always keep the time extend and data together */
4246			size = rb_event_ts_length(event);
4247		} while (len >= size);
4248
4249		/* update bpage */
4250		local_set(&bpage->commit, pos);
4251		bpage->time_stamp = save_timestamp;
4252
4253		/* we copied everything to the beginning */
4254		read = 0;
4255	} else {
4256		/* update the entry counter */
4257		cpu_buffer->read += rb_page_entries(reader);
4258		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4259
4260		/* swap the pages */
4261		rb_init_page(bpage);
4262		bpage = reader->page;
4263		reader->page = *data_page;
4264		local_set(&reader->write, 0);
4265		local_set(&reader->entries, 0);
4266		reader->read = 0;
4267		*data_page = bpage;
4268
4269		/*
4270		 * Use the real_end for the data size,
4271		 * This gives us a chance to store the lost events
4272		 * on the page.
4273		 */
4274		if (reader->real_end)
4275			local_set(&bpage->commit, reader->real_end);
4276	}
4277	ret = read;
4278
4279	cpu_buffer->lost_events = 0;
4280
4281	commit = local_read(&bpage->commit);
4282	/*
4283	 * Set a flag in the commit field if we lost events
4284	 */
4285	if (missed_events) {
4286		/* If there is room at the end of the page to save the
4287		 * missed events, then record it there.
4288		 */
4289		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4290			memcpy(&bpage->data[commit], &missed_events,
4291			       sizeof(missed_events));
4292			local_add(RB_MISSED_STORED, &bpage->commit);
4293			commit += sizeof(missed_events);
4294		}
4295		local_add(RB_MISSED_EVENTS, &bpage->commit);
4296	}
4297
4298	/*
4299	 * This page may be off to user land. Zero it out here.
4300	 */
4301	if (commit < BUF_PAGE_SIZE)
4302		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4303
4304 out_unlock:
4305	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4306
4307 out:
4308	return ret;
4309}
4310EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4312#ifdef CONFIG_HOTPLUG_CPU
4313static int rb_cpu_notify(struct notifier_block *self,
4314			 unsigned long action, void *hcpu)
4315{
4316	struct ring_buffer *buffer =
4317		container_of(self, struct ring_buffer, cpu_notify);
4318	long cpu = (long)hcpu;
4319	int cpu_i, nr_pages_same;
4320	unsigned int nr_pages;
4321
4322	switch (action) {
4323	case CPU_UP_PREPARE:
4324	case CPU_UP_PREPARE_FROZEN:
4325		if (cpumask_test_cpu(cpu, buffer->cpumask))
4326			return NOTIFY_OK;
4327
4328		nr_pages = 0;
4329		nr_pages_same = 1;
4330		/* check if all cpu sizes are same */
4331		for_each_buffer_cpu(buffer, cpu_i) {
4332			/* fill in the size from first enabled cpu */
4333			if (nr_pages == 0)
4334				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4335			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4336				nr_pages_same = 0;
4337				break;
4338			}
4339		}
4340		/* allocate minimum pages, user can later expand it */
4341		if (!nr_pages_same)
4342			nr_pages = 2;
4343		buffer->buffers[cpu] =
4344			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4345		if (!buffer->buffers[cpu]) {
4346			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4347			     cpu);
4348			return NOTIFY_OK;
4349		}
4350		smp_wmb();
4351		cpumask_set_cpu(cpu, buffer->cpumask);
4352		break;
4353	case CPU_DOWN_PREPARE:
4354	case CPU_DOWN_PREPARE_FROZEN:
4355		/*
4356		 * Do nothing.
4357		 *  If we were to free the buffer, then the user would
4358		 *  lose any trace that was in the buffer.
4359		 */
4360		break;
4361	default:
4362		break;
4363	}
4364	return NOTIFY_OK;
4365}
4366#endif