Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/module.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
  17#include <linux/fs.h>
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/security.h>
  21#include <linux/syscalls.h>
  22#include <linux/ptrace.h>
  23#include <linux/signal.h>
  24#include <linux/signalfd.h>
  25#include <linux/ratelimit.h>
  26#include <linux/tracehook.h>
  27#include <linux/capability.h>
  28#include <linux/freezer.h>
  29#include <linux/pid_namespace.h>
  30#include <linux/nsproxy.h>
 
 
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/signal.h>
  33
  34#include <asm/param.h>
  35#include <asm/uaccess.h>
  36#include <asm/unistd.h>
  37#include <asm/siginfo.h>
 
  38#include "audit.h"	/* audit_signal_info() */
  39
  40/*
  41 * SLAB caches for signal bits.
  42 */
  43
  44static struct kmem_cache *sigqueue_cachep;
  45
  46int print_fatal_signals __read_mostly;
  47
  48static void __user *sig_handler(struct task_struct *t, int sig)
  49{
  50	return t->sighand->action[sig - 1].sa.sa_handler;
  51}
  52
  53static int sig_handler_ignored(void __user *handler, int sig)
  54{
  55	/* Is it explicitly or implicitly ignored? */
  56	return handler == SIG_IGN ||
  57		(handler == SIG_DFL && sig_kernel_ignore(sig));
  58}
  59
  60static int sig_task_ignored(struct task_struct *t, int sig,
  61		int from_ancestor_ns)
  62{
  63	void __user *handler;
  64
  65	handler = sig_handler(t, sig);
  66
  67	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  68			handler == SIG_DFL && !from_ancestor_ns)
  69		return 1;
  70
  71	return sig_handler_ignored(handler, sig);
  72}
  73
  74static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
  75{
  76	/*
  77	 * Blocked signals are never ignored, since the
  78	 * signal handler may change by the time it is
  79	 * unblocked.
  80	 */
  81	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  82		return 0;
  83
  84	if (!sig_task_ignored(t, sig, from_ancestor_ns))
  85		return 0;
  86
  87	/*
  88	 * Tracers may want to know about even ignored signals.
  89	 */
  90	return !t->ptrace;
  91}
  92
  93/*
  94 * Re-calculate pending state from the set of locally pending
  95 * signals, globally pending signals, and blocked signals.
  96 */
  97static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
  98{
  99	unsigned long ready;
 100	long i;
 101
 102	switch (_NSIG_WORDS) {
 103	default:
 104		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 105			ready |= signal->sig[i] &~ blocked->sig[i];
 106		break;
 107
 108	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 109		ready |= signal->sig[2] &~ blocked->sig[2];
 110		ready |= signal->sig[1] &~ blocked->sig[1];
 111		ready |= signal->sig[0] &~ blocked->sig[0];
 112		break;
 113
 114	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 115		ready |= signal->sig[0] &~ blocked->sig[0];
 116		break;
 117
 118	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 119	}
 120	return ready !=	0;
 121}
 122
 123#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 124
 125static int recalc_sigpending_tsk(struct task_struct *t)
 126{
 127	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 128	    PENDING(&t->pending, &t->blocked) ||
 129	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 130		set_tsk_thread_flag(t, TIF_SIGPENDING);
 131		return 1;
 132	}
 133	/*
 134	 * We must never clear the flag in another thread, or in current
 135	 * when it's possible the current syscall is returning -ERESTART*.
 136	 * So we don't clear it here, and only callers who know they should do.
 137	 */
 138	return 0;
 139}
 140
 141/*
 142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 143 * This is superfluous when called on current, the wakeup is a harmless no-op.
 144 */
 145void recalc_sigpending_and_wake(struct task_struct *t)
 146{
 147	if (recalc_sigpending_tsk(t))
 148		signal_wake_up(t, 0);
 149}
 150
 151void recalc_sigpending(void)
 152{
 153	if (!recalc_sigpending_tsk(current) && !freezing(current))
 154		clear_thread_flag(TIF_SIGPENDING);
 155
 156}
 157
 158/* Given the mask, find the first available signal that should be serviced. */
 159
 160#define SYNCHRONOUS_MASK \
 161	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 162	 sigmask(SIGTRAP) | sigmask(SIGFPE))
 163
 164int next_signal(struct sigpending *pending, sigset_t *mask)
 165{
 166	unsigned long i, *s, *m, x;
 167	int sig = 0;
 168
 169	s = pending->signal.sig;
 170	m = mask->sig;
 171
 172	/*
 173	 * Handle the first word specially: it contains the
 174	 * synchronous signals that need to be dequeued first.
 175	 */
 176	x = *s &~ *m;
 177	if (x) {
 178		if (x & SYNCHRONOUS_MASK)
 179			x &= SYNCHRONOUS_MASK;
 180		sig = ffz(~x) + 1;
 181		return sig;
 182	}
 183
 184	switch (_NSIG_WORDS) {
 185	default:
 186		for (i = 1; i < _NSIG_WORDS; ++i) {
 187			x = *++s &~ *++m;
 188			if (!x)
 189				continue;
 190			sig = ffz(~x) + i*_NSIG_BPW + 1;
 191			break;
 192		}
 193		break;
 194
 195	case 2:
 196		x = s[1] &~ m[1];
 197		if (!x)
 198			break;
 199		sig = ffz(~x) + _NSIG_BPW + 1;
 200		break;
 201
 202	case 1:
 203		/* Nothing to do */
 204		break;
 205	}
 206
 207	return sig;
 208}
 209
 210static inline void print_dropped_signal(int sig)
 211{
 212	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 213
 214	if (!print_fatal_signals)
 215		return;
 216
 217	if (!__ratelimit(&ratelimit_state))
 218		return;
 219
 220	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 221				current->comm, current->pid, sig);
 222}
 223
 224/**
 225 * task_set_jobctl_pending - set jobctl pending bits
 226 * @task: target task
 227 * @mask: pending bits to set
 228 *
 229 * Clear @mask from @task->jobctl.  @mask must be subset of
 230 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 231 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 232 * cleared.  If @task is already being killed or exiting, this function
 233 * becomes noop.
 234 *
 235 * CONTEXT:
 236 * Must be called with @task->sighand->siglock held.
 237 *
 238 * RETURNS:
 239 * %true if @mask is set, %false if made noop because @task was dying.
 240 */
 241bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
 242{
 243	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 244			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 245	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 246
 247	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 248		return false;
 249
 250	if (mask & JOBCTL_STOP_SIGMASK)
 251		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 252
 253	task->jobctl |= mask;
 254	return true;
 255}
 256
 257/**
 258 * task_clear_jobctl_trapping - clear jobctl trapping bit
 259 * @task: target task
 260 *
 261 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 262 * Clear it and wake up the ptracer.  Note that we don't need any further
 263 * locking.  @task->siglock guarantees that @task->parent points to the
 264 * ptracer.
 265 *
 266 * CONTEXT:
 267 * Must be called with @task->sighand->siglock held.
 268 */
 269void task_clear_jobctl_trapping(struct task_struct *task)
 270{
 271	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 272		task->jobctl &= ~JOBCTL_TRAPPING;
 273		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 274	}
 275}
 276
 277/**
 278 * task_clear_jobctl_pending - clear jobctl pending bits
 279 * @task: target task
 280 * @mask: pending bits to clear
 281 *
 282 * Clear @mask from @task->jobctl.  @mask must be subset of
 283 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 284 * STOP bits are cleared together.
 285 *
 286 * If clearing of @mask leaves no stop or trap pending, this function calls
 287 * task_clear_jobctl_trapping().
 288 *
 289 * CONTEXT:
 290 * Must be called with @task->sighand->siglock held.
 291 */
 292void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
 293{
 294	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 295
 296	if (mask & JOBCTL_STOP_PENDING)
 297		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 298
 299	task->jobctl &= ~mask;
 300
 301	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 302		task_clear_jobctl_trapping(task);
 303}
 304
 305/**
 306 * task_participate_group_stop - participate in a group stop
 307 * @task: task participating in a group stop
 308 *
 309 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 310 * Group stop states are cleared and the group stop count is consumed if
 311 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 312 * stop, the appropriate %SIGNAL_* flags are set.
 313 *
 314 * CONTEXT:
 315 * Must be called with @task->sighand->siglock held.
 316 *
 317 * RETURNS:
 318 * %true if group stop completion should be notified to the parent, %false
 319 * otherwise.
 320 */
 321static bool task_participate_group_stop(struct task_struct *task)
 322{
 323	struct signal_struct *sig = task->signal;
 324	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 325
 326	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 327
 328	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 329
 330	if (!consume)
 331		return false;
 332
 333	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 334		sig->group_stop_count--;
 335
 336	/*
 337	 * Tell the caller to notify completion iff we are entering into a
 338	 * fresh group stop.  Read comment in do_signal_stop() for details.
 339	 */
 340	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 341		sig->flags = SIGNAL_STOP_STOPPED;
 342		return true;
 343	}
 344	return false;
 345}
 346
 347/*
 348 * allocate a new signal queue record
 349 * - this may be called without locks if and only if t == current, otherwise an
 350 *   appropriate lock must be held to stop the target task from exiting
 351 */
 352static struct sigqueue *
 353__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 354{
 355	struct sigqueue *q = NULL;
 356	struct user_struct *user;
 357
 358	/*
 359	 * Protect access to @t credentials. This can go away when all
 360	 * callers hold rcu read lock.
 361	 */
 362	rcu_read_lock();
 363	user = get_uid(__task_cred(t)->user);
 364	atomic_inc(&user->sigpending);
 365	rcu_read_unlock();
 366
 367	if (override_rlimit ||
 368	    atomic_read(&user->sigpending) <=
 369			task_rlimit(t, RLIMIT_SIGPENDING)) {
 370		q = kmem_cache_alloc(sigqueue_cachep, flags);
 371	} else {
 372		print_dropped_signal(sig);
 373	}
 374
 375	if (unlikely(q == NULL)) {
 376		atomic_dec(&user->sigpending);
 377		free_uid(user);
 378	} else {
 379		INIT_LIST_HEAD(&q->list);
 380		q->flags = 0;
 381		q->user = user;
 382	}
 383
 384	return q;
 385}
 386
 387static void __sigqueue_free(struct sigqueue *q)
 388{
 389	if (q->flags & SIGQUEUE_PREALLOC)
 390		return;
 391	atomic_dec(&q->user->sigpending);
 392	free_uid(q->user);
 393	kmem_cache_free(sigqueue_cachep, q);
 394}
 395
 396void flush_sigqueue(struct sigpending *queue)
 397{
 398	struct sigqueue *q;
 399
 400	sigemptyset(&queue->signal);
 401	while (!list_empty(&queue->list)) {
 402		q = list_entry(queue->list.next, struct sigqueue , list);
 403		list_del_init(&q->list);
 404		__sigqueue_free(q);
 405	}
 406}
 407
 408/*
 409 * Flush all pending signals for a task.
 410 */
 411void __flush_signals(struct task_struct *t)
 412{
 413	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 414	flush_sigqueue(&t->pending);
 415	flush_sigqueue(&t->signal->shared_pending);
 416}
 417
 418void flush_signals(struct task_struct *t)
 419{
 420	unsigned long flags;
 421
 422	spin_lock_irqsave(&t->sighand->siglock, flags);
 423	__flush_signals(t);
 424	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 425}
 426
 427static void __flush_itimer_signals(struct sigpending *pending)
 428{
 429	sigset_t signal, retain;
 430	struct sigqueue *q, *n;
 431
 432	signal = pending->signal;
 433	sigemptyset(&retain);
 434
 435	list_for_each_entry_safe(q, n, &pending->list, list) {
 436		int sig = q->info.si_signo;
 437
 438		if (likely(q->info.si_code != SI_TIMER)) {
 439			sigaddset(&retain, sig);
 440		} else {
 441			sigdelset(&signal, sig);
 442			list_del_init(&q->list);
 443			__sigqueue_free(q);
 444		}
 445	}
 446
 447	sigorsets(&pending->signal, &signal, &retain);
 448}
 449
 450void flush_itimer_signals(void)
 451{
 452	struct task_struct *tsk = current;
 453	unsigned long flags;
 454
 455	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 456	__flush_itimer_signals(&tsk->pending);
 457	__flush_itimer_signals(&tsk->signal->shared_pending);
 458	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 459}
 460
 461void ignore_signals(struct task_struct *t)
 462{
 463	int i;
 464
 465	for (i = 0; i < _NSIG; ++i)
 466		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 467
 468	flush_signals(t);
 469}
 470
 471/*
 472 * Flush all handlers for a task.
 473 */
 474
 475void
 476flush_signal_handlers(struct task_struct *t, int force_default)
 477{
 478	int i;
 479	struct k_sigaction *ka = &t->sighand->action[0];
 480	for (i = _NSIG ; i != 0 ; i--) {
 481		if (force_default || ka->sa.sa_handler != SIG_IGN)
 482			ka->sa.sa_handler = SIG_DFL;
 483		ka->sa.sa_flags = 0;
 484		sigemptyset(&ka->sa.sa_mask);
 485		ka++;
 486	}
 487}
 488
 489int unhandled_signal(struct task_struct *tsk, int sig)
 490{
 491	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 492	if (is_global_init(tsk))
 493		return 1;
 494	if (handler != SIG_IGN && handler != SIG_DFL)
 495		return 0;
 496	/* if ptraced, let the tracer determine */
 497	return !tsk->ptrace;
 498}
 499
 500/*
 501 * Notify the system that a driver wants to block all signals for this
 502 * process, and wants to be notified if any signals at all were to be
 503 * sent/acted upon.  If the notifier routine returns non-zero, then the
 504 * signal will be acted upon after all.  If the notifier routine returns 0,
 505 * then then signal will be blocked.  Only one block per process is
 506 * allowed.  priv is a pointer to private data that the notifier routine
 507 * can use to determine if the signal should be blocked or not.
 508 */
 509void
 510block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 511{
 512	unsigned long flags;
 513
 514	spin_lock_irqsave(&current->sighand->siglock, flags);
 515	current->notifier_mask = mask;
 516	current->notifier_data = priv;
 517	current->notifier = notifier;
 518	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 519}
 520
 521/* Notify the system that blocking has ended. */
 522
 523void
 524unblock_all_signals(void)
 525{
 526	unsigned long flags;
 527
 528	spin_lock_irqsave(&current->sighand->siglock, flags);
 529	current->notifier = NULL;
 530	current->notifier_data = NULL;
 531	recalc_sigpending();
 532	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 533}
 534
 535static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 536{
 537	struct sigqueue *q, *first = NULL;
 538
 539	/*
 540	 * Collect the siginfo appropriate to this signal.  Check if
 541	 * there is another siginfo for the same signal.
 542	*/
 543	list_for_each_entry(q, &list->list, list) {
 544		if (q->info.si_signo == sig) {
 545			if (first)
 546				goto still_pending;
 547			first = q;
 548		}
 549	}
 550
 551	sigdelset(&list->signal, sig);
 552
 553	if (first) {
 554still_pending:
 555		list_del_init(&first->list);
 556		copy_siginfo(info, &first->info);
 557		__sigqueue_free(first);
 558	} else {
 559		/*
 560		 * Ok, it wasn't in the queue.  This must be
 561		 * a fast-pathed signal or we must have been
 562		 * out of queue space.  So zero out the info.
 563		 */
 564		info->si_signo = sig;
 565		info->si_errno = 0;
 566		info->si_code = SI_USER;
 567		info->si_pid = 0;
 568		info->si_uid = 0;
 569	}
 570}
 571
 572static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 573			siginfo_t *info)
 574{
 575	int sig = next_signal(pending, mask);
 576
 577	if (sig) {
 578		if (current->notifier) {
 579			if (sigismember(current->notifier_mask, sig)) {
 580				if (!(current->notifier)(current->notifier_data)) {
 581					clear_thread_flag(TIF_SIGPENDING);
 582					return 0;
 583				}
 584			}
 585		}
 586
 587		collect_signal(sig, pending, info);
 588	}
 589
 590	return sig;
 591}
 592
 593/*
 594 * Dequeue a signal and return the element to the caller, which is
 595 * expected to free it.
 596 *
 597 * All callers have to hold the siglock.
 598 */
 599int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 600{
 601	int signr;
 602
 603	/* We only dequeue private signals from ourselves, we don't let
 604	 * signalfd steal them
 605	 */
 606	signr = __dequeue_signal(&tsk->pending, mask, info);
 607	if (!signr) {
 608		signr = __dequeue_signal(&tsk->signal->shared_pending,
 609					 mask, info);
 610		/*
 611		 * itimer signal ?
 612		 *
 613		 * itimers are process shared and we restart periodic
 614		 * itimers in the signal delivery path to prevent DoS
 615		 * attacks in the high resolution timer case. This is
 616		 * compliant with the old way of self-restarting
 617		 * itimers, as the SIGALRM is a legacy signal and only
 618		 * queued once. Changing the restart behaviour to
 619		 * restart the timer in the signal dequeue path is
 620		 * reducing the timer noise on heavy loaded !highres
 621		 * systems too.
 622		 */
 623		if (unlikely(signr == SIGALRM)) {
 624			struct hrtimer *tmr = &tsk->signal->real_timer;
 625
 626			if (!hrtimer_is_queued(tmr) &&
 627			    tsk->signal->it_real_incr.tv64 != 0) {
 628				hrtimer_forward(tmr, tmr->base->get_time(),
 629						tsk->signal->it_real_incr);
 630				hrtimer_restart(tmr);
 631			}
 632		}
 633	}
 634
 635	recalc_sigpending();
 636	if (!signr)
 637		return 0;
 638
 639	if (unlikely(sig_kernel_stop(signr))) {
 640		/*
 641		 * Set a marker that we have dequeued a stop signal.  Our
 642		 * caller might release the siglock and then the pending
 643		 * stop signal it is about to process is no longer in the
 644		 * pending bitmasks, but must still be cleared by a SIGCONT
 645		 * (and overruled by a SIGKILL).  So those cases clear this
 646		 * shared flag after we've set it.  Note that this flag may
 647		 * remain set after the signal we return is ignored or
 648		 * handled.  That doesn't matter because its only purpose
 649		 * is to alert stop-signal processing code when another
 650		 * processor has come along and cleared the flag.
 651		 */
 652		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 653	}
 654	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 655		/*
 656		 * Release the siglock to ensure proper locking order
 657		 * of timer locks outside of siglocks.  Note, we leave
 658		 * irqs disabled here, since the posix-timers code is
 659		 * about to disable them again anyway.
 660		 */
 661		spin_unlock(&tsk->sighand->siglock);
 662		do_schedule_next_timer(info);
 663		spin_lock(&tsk->sighand->siglock);
 664	}
 665	return signr;
 666}
 667
 668/*
 669 * Tell a process that it has a new active signal..
 670 *
 671 * NOTE! we rely on the previous spin_lock to
 672 * lock interrupts for us! We can only be called with
 673 * "siglock" held, and the local interrupt must
 674 * have been disabled when that got acquired!
 675 *
 676 * No need to set need_resched since signal event passing
 677 * goes through ->blocked
 678 */
 679void signal_wake_up(struct task_struct *t, int resume)
 680{
 681	unsigned int mask;
 682
 683	set_tsk_thread_flag(t, TIF_SIGPENDING);
 684
 685	/*
 686	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
 687	 * case. We don't check t->state here because there is a race with it
 688	 * executing another processor and just now entering stopped state.
 689	 * By using wake_up_state, we ensure the process will wake up and
 690	 * handle its death signal.
 691	 */
 692	mask = TASK_INTERRUPTIBLE;
 693	if (resume)
 694		mask |= TASK_WAKEKILL;
 695	if (!wake_up_state(t, mask))
 696		kick_process(t);
 697}
 698
 699/*
 700 * Remove signals in mask from the pending set and queue.
 701 * Returns 1 if any signals were found.
 702 *
 703 * All callers must be holding the siglock.
 704 *
 705 * This version takes a sigset mask and looks at all signals,
 706 * not just those in the first mask word.
 707 */
 708static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
 709{
 710	struct sigqueue *q, *n;
 711	sigset_t m;
 712
 713	sigandsets(&m, mask, &s->signal);
 714	if (sigisemptyset(&m))
 715		return 0;
 716
 717	sigandnsets(&s->signal, &s->signal, mask);
 718	list_for_each_entry_safe(q, n, &s->list, list) {
 719		if (sigismember(mask, q->info.si_signo)) {
 720			list_del_init(&q->list);
 721			__sigqueue_free(q);
 722		}
 723	}
 724	return 1;
 725}
 726/*
 727 * Remove signals in mask from the pending set and queue.
 728 * Returns 1 if any signals were found.
 729 *
 730 * All callers must be holding the siglock.
 731 */
 732static int rm_from_queue(unsigned long mask, struct sigpending *s)
 733{
 734	struct sigqueue *q, *n;
 735
 736	if (!sigtestsetmask(&s->signal, mask))
 737		return 0;
 738
 739	sigdelsetmask(&s->signal, mask);
 740	list_for_each_entry_safe(q, n, &s->list, list) {
 741		if (q->info.si_signo < SIGRTMIN &&
 742		    (mask & sigmask(q->info.si_signo))) {
 743			list_del_init(&q->list);
 744			__sigqueue_free(q);
 745		}
 746	}
 747	return 1;
 748}
 749
 750static inline int is_si_special(const struct siginfo *info)
 751{
 752	return info <= SEND_SIG_FORCED;
 753}
 754
 755static inline bool si_fromuser(const struct siginfo *info)
 756{
 757	return info == SEND_SIG_NOINFO ||
 758		(!is_si_special(info) && SI_FROMUSER(info));
 759}
 760
 761/*
 762 * called with RCU read lock from check_kill_permission()
 763 */
 764static int kill_ok_by_cred(struct task_struct *t)
 765{
 766	const struct cred *cred = current_cred();
 767	const struct cred *tcred = __task_cred(t);
 768
 769	if (cred->user->user_ns == tcred->user->user_ns &&
 770	    (cred->euid == tcred->suid ||
 771	     cred->euid == tcred->uid ||
 772	     cred->uid  == tcred->suid ||
 773	     cred->uid  == tcred->uid))
 774		return 1;
 775
 776	if (ns_capable(tcred->user->user_ns, CAP_KILL))
 777		return 1;
 778
 779	return 0;
 780}
 781
 782/*
 783 * Bad permissions for sending the signal
 784 * - the caller must hold the RCU read lock
 785 */
 786static int check_kill_permission(int sig, struct siginfo *info,
 787				 struct task_struct *t)
 788{
 789	struct pid *sid;
 790	int error;
 791
 792	if (!valid_signal(sig))
 793		return -EINVAL;
 794
 795	if (!si_fromuser(info))
 796		return 0;
 797
 798	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 799	if (error)
 800		return error;
 801
 802	if (!same_thread_group(current, t) &&
 803	    !kill_ok_by_cred(t)) {
 804		switch (sig) {
 805		case SIGCONT:
 806			sid = task_session(t);
 807			/*
 808			 * We don't return the error if sid == NULL. The
 809			 * task was unhashed, the caller must notice this.
 810			 */
 811			if (!sid || sid == task_session(current))
 812				break;
 813		default:
 814			return -EPERM;
 815		}
 816	}
 817
 818	return security_task_kill(t, info, sig, 0);
 819}
 820
 821/**
 822 * ptrace_trap_notify - schedule trap to notify ptracer
 823 * @t: tracee wanting to notify tracer
 824 *
 825 * This function schedules sticky ptrace trap which is cleared on the next
 826 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 827 * ptracer.
 828 *
 829 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 830 * ptracer is listening for events, tracee is woken up so that it can
 831 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 832 * eventually taken without returning to userland after the existing traps
 833 * are finished by PTRACE_CONT.
 834 *
 835 * CONTEXT:
 836 * Must be called with @task->sighand->siglock held.
 837 */
 838static void ptrace_trap_notify(struct task_struct *t)
 839{
 840	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 841	assert_spin_locked(&t->sighand->siglock);
 842
 843	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 844	signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 845}
 846
 847/*
 848 * Handle magic process-wide effects of stop/continue signals. Unlike
 849 * the signal actions, these happen immediately at signal-generation
 850 * time regardless of blocking, ignoring, or handling.  This does the
 851 * actual continuing for SIGCONT, but not the actual stopping for stop
 852 * signals. The process stop is done as a signal action for SIG_DFL.
 853 *
 854 * Returns true if the signal should be actually delivered, otherwise
 855 * it should be dropped.
 856 */
 857static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
 858{
 859	struct signal_struct *signal = p->signal;
 860	struct task_struct *t;
 861
 862	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
 863		/*
 864		 * The process is in the middle of dying, nothing to do.
 865		 */
 866	} else if (sig_kernel_stop(sig)) {
 867		/*
 868		 * This is a stop signal.  Remove SIGCONT from all queues.
 869		 */
 870		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
 871		t = p;
 872		do {
 873			rm_from_queue(sigmask(SIGCONT), &t->pending);
 874		} while_each_thread(p, t);
 875	} else if (sig == SIGCONT) {
 876		unsigned int why;
 877		/*
 878		 * Remove all stop signals from all queues, wake all threads.
 879		 */
 880		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
 881		t = p;
 882		do {
 883			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 884			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
 885			if (likely(!(t->ptrace & PT_SEIZED)))
 886				wake_up_state(t, __TASK_STOPPED);
 887			else
 888				ptrace_trap_notify(t);
 889		} while_each_thread(p, t);
 890
 891		/*
 892		 * Notify the parent with CLD_CONTINUED if we were stopped.
 893		 *
 894		 * If we were in the middle of a group stop, we pretend it
 895		 * was already finished, and then continued. Since SIGCHLD
 896		 * doesn't queue we report only CLD_STOPPED, as if the next
 897		 * CLD_CONTINUED was dropped.
 898		 */
 899		why = 0;
 900		if (signal->flags & SIGNAL_STOP_STOPPED)
 901			why |= SIGNAL_CLD_CONTINUED;
 902		else if (signal->group_stop_count)
 903			why |= SIGNAL_CLD_STOPPED;
 904
 905		if (why) {
 906			/*
 907			 * The first thread which returns from do_signal_stop()
 908			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 909			 * notify its parent. See get_signal_to_deliver().
 910			 */
 911			signal->flags = why | SIGNAL_STOP_CONTINUED;
 912			signal->group_stop_count = 0;
 913			signal->group_exit_code = 0;
 914		}
 915	}
 916
 917	return !sig_ignored(p, sig, from_ancestor_ns);
 918}
 919
 920/*
 921 * Test if P wants to take SIG.  After we've checked all threads with this,
 922 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 923 * blocking SIG were ruled out because they are not running and already
 924 * have pending signals.  Such threads will dequeue from the shared queue
 925 * as soon as they're available, so putting the signal on the shared queue
 926 * will be equivalent to sending it to one such thread.
 927 */
 928static inline int wants_signal(int sig, struct task_struct *p)
 929{
 930	if (sigismember(&p->blocked, sig))
 931		return 0;
 932	if (p->flags & PF_EXITING)
 933		return 0;
 934	if (sig == SIGKILL)
 935		return 1;
 936	if (task_is_stopped_or_traced(p))
 937		return 0;
 938	return task_curr(p) || !signal_pending(p);
 939}
 940
 941static void complete_signal(int sig, struct task_struct *p, int group)
 942{
 943	struct signal_struct *signal = p->signal;
 944	struct task_struct *t;
 945
 946	/*
 947	 * Now find a thread we can wake up to take the signal off the queue.
 948	 *
 949	 * If the main thread wants the signal, it gets first crack.
 950	 * Probably the least surprising to the average bear.
 951	 */
 952	if (wants_signal(sig, p))
 953		t = p;
 954	else if (!group || thread_group_empty(p))
 955		/*
 956		 * There is just one thread and it does not need to be woken.
 957		 * It will dequeue unblocked signals before it runs again.
 958		 */
 959		return;
 960	else {
 961		/*
 962		 * Otherwise try to find a suitable thread.
 963		 */
 964		t = signal->curr_target;
 965		while (!wants_signal(sig, t)) {
 966			t = next_thread(t);
 967			if (t == signal->curr_target)
 968				/*
 969				 * No thread needs to be woken.
 970				 * Any eligible threads will see
 971				 * the signal in the queue soon.
 972				 */
 973				return;
 974		}
 975		signal->curr_target = t;
 976	}
 977
 978	/*
 979	 * Found a killable thread.  If the signal will be fatal,
 980	 * then start taking the whole group down immediately.
 981	 */
 982	if (sig_fatal(p, sig) &&
 983	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 984	    !sigismember(&t->real_blocked, sig) &&
 985	    (sig == SIGKILL || !t->ptrace)) {
 986		/*
 987		 * This signal will be fatal to the whole group.
 988		 */
 989		if (!sig_kernel_coredump(sig)) {
 990			/*
 991			 * Start a group exit and wake everybody up.
 992			 * This way we don't have other threads
 993			 * running and doing things after a slower
 994			 * thread has the fatal signal pending.
 995			 */
 996			signal->flags = SIGNAL_GROUP_EXIT;
 997			signal->group_exit_code = sig;
 998			signal->group_stop_count = 0;
 999			t = p;
1000			do {
1001				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1002				sigaddset(&t->pending.signal, SIGKILL);
1003				signal_wake_up(t, 1);
1004			} while_each_thread(p, t);
1005			return;
1006		}
1007	}
1008
1009	/*
1010	 * The signal is already in the shared-pending queue.
1011	 * Tell the chosen thread to wake up and dequeue it.
1012	 */
1013	signal_wake_up(t, sig == SIGKILL);
1014	return;
1015}
1016
1017static inline int legacy_queue(struct sigpending *signals, int sig)
1018{
1019	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1020}
1021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1023			int group, int from_ancestor_ns)
1024{
1025	struct sigpending *pending;
1026	struct sigqueue *q;
1027	int override_rlimit;
1028
1029	trace_signal_generate(sig, info, t);
1030
1031	assert_spin_locked(&t->sighand->siglock);
1032
1033	if (!prepare_signal(sig, t, from_ancestor_ns))
1034		return 0;
 
 
1035
1036	pending = group ? &t->signal->shared_pending : &t->pending;
1037	/*
1038	 * Short-circuit ignored signals and support queuing
1039	 * exactly one non-rt signal, so that we can get more
1040	 * detailed information about the cause of the signal.
1041	 */
 
1042	if (legacy_queue(pending, sig))
1043		return 0;
 
 
1044	/*
1045	 * fast-pathed signals for kernel-internal things like SIGSTOP
1046	 * or SIGKILL.
1047	 */
1048	if (info == SEND_SIG_FORCED)
1049		goto out_set;
1050
1051	/*
1052	 * Real-time signals must be queued if sent by sigqueue, or
1053	 * some other real-time mechanism.  It is implementation
1054	 * defined whether kill() does so.  We attempt to do so, on
1055	 * the principle of least surprise, but since kill is not
1056	 * allowed to fail with EAGAIN when low on memory we just
1057	 * make sure at least one signal gets delivered and don't
1058	 * pass on the info struct.
1059	 */
1060	if (sig < SIGRTMIN)
1061		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1062	else
1063		override_rlimit = 0;
1064
1065	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1066		override_rlimit);
1067	if (q) {
1068		list_add_tail(&q->list, &pending->list);
1069		switch ((unsigned long) info) {
1070		case (unsigned long) SEND_SIG_NOINFO:
1071			q->info.si_signo = sig;
1072			q->info.si_errno = 0;
1073			q->info.si_code = SI_USER;
1074			q->info.si_pid = task_tgid_nr_ns(current,
1075							task_active_pid_ns(t));
1076			q->info.si_uid = current_uid();
1077			break;
1078		case (unsigned long) SEND_SIG_PRIV:
1079			q->info.si_signo = sig;
1080			q->info.si_errno = 0;
1081			q->info.si_code = SI_KERNEL;
1082			q->info.si_pid = 0;
1083			q->info.si_uid = 0;
1084			break;
1085		default:
1086			copy_siginfo(&q->info, info);
1087			if (from_ancestor_ns)
1088				q->info.si_pid = 0;
1089			break;
1090		}
 
 
 
1091	} else if (!is_si_special(info)) {
1092		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1093			/*
1094			 * Queue overflow, abort.  We may abort if the
1095			 * signal was rt and sent by user using something
1096			 * other than kill().
1097			 */
1098			trace_signal_overflow_fail(sig, group, info);
1099			return -EAGAIN;
 
1100		} else {
1101			/*
1102			 * This is a silent loss of information.  We still
1103			 * send the signal, but the *info bits are lost.
1104			 */
1105			trace_signal_lose_info(sig, group, info);
1106		}
1107	}
1108
1109out_set:
1110	signalfd_notify(t, sig);
1111	sigaddset(&pending->signal, sig);
1112	complete_signal(sig, t, group);
1113	return 0;
 
 
1114}
1115
1116static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1117			int group)
1118{
1119	int from_ancestor_ns = 0;
1120
1121#ifdef CONFIG_PID_NS
1122	from_ancestor_ns = si_fromuser(info) &&
1123			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1124#endif
1125
1126	return __send_signal(sig, info, t, group, from_ancestor_ns);
1127}
1128
1129static void print_fatal_signal(struct pt_regs *regs, int signr)
1130{
1131	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1132		current->comm, task_pid_nr(current), signr);
1133
1134#if defined(__i386__) && !defined(__arch_um__)
1135	printk("code at %08lx: ", regs->ip);
1136	{
1137		int i;
1138		for (i = 0; i < 16; i++) {
1139			unsigned char insn;
1140
1141			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1142				break;
1143			printk("%02x ", insn);
1144		}
1145	}
1146#endif
1147	printk("\n");
1148	preempt_disable();
1149	show_regs(regs);
1150	preempt_enable();
1151}
1152
1153static int __init setup_print_fatal_signals(char *str)
1154{
1155	get_option (&str, &print_fatal_signals);
1156
1157	return 1;
1158}
1159
1160__setup("print-fatal-signals=", setup_print_fatal_signals);
1161
1162int
1163__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1164{
1165	return send_signal(sig, info, p, 1);
1166}
1167
1168static int
1169specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1170{
1171	return send_signal(sig, info, t, 0);
1172}
1173
1174int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1175			bool group)
1176{
1177	unsigned long flags;
1178	int ret = -ESRCH;
1179
1180	if (lock_task_sighand(p, &flags)) {
1181		ret = send_signal(sig, info, p, group);
1182		unlock_task_sighand(p, &flags);
1183	}
1184
1185	return ret;
1186}
1187
1188/*
1189 * Force a signal that the process can't ignore: if necessary
1190 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1191 *
1192 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1193 * since we do not want to have a signal handler that was blocked
1194 * be invoked when user space had explicitly blocked it.
1195 *
1196 * We don't want to have recursive SIGSEGV's etc, for example,
1197 * that is why we also clear SIGNAL_UNKILLABLE.
1198 */
1199int
1200force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1201{
1202	unsigned long int flags;
1203	int ret, blocked, ignored;
1204	struct k_sigaction *action;
1205
1206	spin_lock_irqsave(&t->sighand->siglock, flags);
1207	action = &t->sighand->action[sig-1];
1208	ignored = action->sa.sa_handler == SIG_IGN;
1209	blocked = sigismember(&t->blocked, sig);
1210	if (blocked || ignored) {
1211		action->sa.sa_handler = SIG_DFL;
1212		if (blocked) {
1213			sigdelset(&t->blocked, sig);
1214			recalc_sigpending_and_wake(t);
1215		}
1216	}
1217	if (action->sa.sa_handler == SIG_DFL)
1218		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1219	ret = specific_send_sig_info(sig, info, t);
1220	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1221
1222	return ret;
1223}
1224
1225/*
1226 * Nuke all other threads in the group.
1227 */
1228int zap_other_threads(struct task_struct *p)
1229{
1230	struct task_struct *t = p;
1231	int count = 0;
1232
1233	p->signal->group_stop_count = 0;
1234
1235	while_each_thread(p, t) {
1236		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1237		count++;
1238
1239		/* Don't bother with already dead threads */
1240		if (t->exit_state)
1241			continue;
1242		sigaddset(&t->pending.signal, SIGKILL);
1243		signal_wake_up(t, 1);
1244	}
1245
1246	return count;
1247}
1248
1249struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1250					   unsigned long *flags)
1251{
1252	struct sighand_struct *sighand;
1253
1254	for (;;) {
1255		local_irq_save(*flags);
1256		rcu_read_lock();
1257		sighand = rcu_dereference(tsk->sighand);
1258		if (unlikely(sighand == NULL)) {
1259			rcu_read_unlock();
1260			local_irq_restore(*flags);
1261			break;
1262		}
1263
1264		spin_lock(&sighand->siglock);
1265		if (likely(sighand == tsk->sighand)) {
1266			rcu_read_unlock();
1267			break;
1268		}
1269		spin_unlock(&sighand->siglock);
1270		rcu_read_unlock();
1271		local_irq_restore(*flags);
1272	}
1273
1274	return sighand;
1275}
1276
1277/*
1278 * send signal info to all the members of a group
1279 */
1280int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1281{
1282	int ret;
1283
1284	rcu_read_lock();
1285	ret = check_kill_permission(sig, info, p);
1286	rcu_read_unlock();
1287
1288	if (!ret && sig)
1289		ret = do_send_sig_info(sig, info, p, true);
1290
1291	return ret;
1292}
1293
1294/*
1295 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1296 * control characters do (^C, ^Z etc)
1297 * - the caller must hold at least a readlock on tasklist_lock
1298 */
1299int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1300{
1301	struct task_struct *p = NULL;
1302	int retval, success;
1303
1304	success = 0;
1305	retval = -ESRCH;
1306	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1307		int err = group_send_sig_info(sig, info, p);
1308		success |= !err;
1309		retval = err;
1310	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1311	return success ? 0 : retval;
1312}
1313
1314int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1315{
1316	int error = -ESRCH;
1317	struct task_struct *p;
1318
1319	rcu_read_lock();
1320retry:
1321	p = pid_task(pid, PIDTYPE_PID);
1322	if (p) {
1323		error = group_send_sig_info(sig, info, p);
1324		if (unlikely(error == -ESRCH))
1325			/*
1326			 * The task was unhashed in between, try again.
1327			 * If it is dead, pid_task() will return NULL,
1328			 * if we race with de_thread() it will find the
1329			 * new leader.
1330			 */
1331			goto retry;
1332	}
1333	rcu_read_unlock();
1334
1335	return error;
1336}
1337
1338int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1339{
1340	int error;
1341	rcu_read_lock();
1342	error = kill_pid_info(sig, info, find_vpid(pid));
1343	rcu_read_unlock();
1344	return error;
1345}
1346
 
 
 
 
 
 
 
 
 
 
1347/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1348int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1349		      uid_t uid, uid_t euid, u32 secid)
1350{
1351	int ret = -EINVAL;
1352	struct task_struct *p;
1353	const struct cred *pcred;
1354	unsigned long flags;
1355
1356	if (!valid_signal(sig))
1357		return ret;
1358
1359	rcu_read_lock();
1360	p = pid_task(pid, PIDTYPE_PID);
1361	if (!p) {
1362		ret = -ESRCH;
1363		goto out_unlock;
1364	}
1365	pcred = __task_cred(p);
1366	if (si_fromuser(info) &&
1367	    euid != pcred->suid && euid != pcred->uid &&
1368	    uid  != pcred->suid && uid  != pcred->uid) {
1369		ret = -EPERM;
1370		goto out_unlock;
1371	}
1372	ret = security_task_kill(p, info, sig, secid);
1373	if (ret)
1374		goto out_unlock;
1375
1376	if (sig) {
1377		if (lock_task_sighand(p, &flags)) {
1378			ret = __send_signal(sig, info, p, 1, 0);
1379			unlock_task_sighand(p, &flags);
1380		} else
1381			ret = -ESRCH;
1382	}
1383out_unlock:
1384	rcu_read_unlock();
1385	return ret;
1386}
1387EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1388
1389/*
1390 * kill_something_info() interprets pid in interesting ways just like kill(2).
1391 *
1392 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1393 * is probably wrong.  Should make it like BSD or SYSV.
1394 */
1395
1396static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1397{
1398	int ret;
1399
1400	if (pid > 0) {
1401		rcu_read_lock();
1402		ret = kill_pid_info(sig, info, find_vpid(pid));
1403		rcu_read_unlock();
1404		return ret;
1405	}
1406
1407	read_lock(&tasklist_lock);
1408	if (pid != -1) {
1409		ret = __kill_pgrp_info(sig, info,
1410				pid ? find_vpid(-pid) : task_pgrp(current));
1411	} else {
1412		int retval = 0, count = 0;
1413		struct task_struct * p;
1414
1415		for_each_process(p) {
1416			if (task_pid_vnr(p) > 1 &&
1417					!same_thread_group(p, current)) {
1418				int err = group_send_sig_info(sig, info, p);
1419				++count;
1420				if (err != -EPERM)
1421					retval = err;
1422			}
1423		}
1424		ret = count ? retval : -ESRCH;
1425	}
1426	read_unlock(&tasklist_lock);
1427
1428	return ret;
1429}
1430
1431/*
1432 * These are for backward compatibility with the rest of the kernel source.
1433 */
1434
1435int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1436{
1437	/*
1438	 * Make sure legacy kernel users don't send in bad values
1439	 * (normal paths check this in check_kill_permission).
1440	 */
1441	if (!valid_signal(sig))
1442		return -EINVAL;
1443
1444	return do_send_sig_info(sig, info, p, false);
1445}
1446
1447#define __si_special(priv) \
1448	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1449
1450int
1451send_sig(int sig, struct task_struct *p, int priv)
1452{
1453	return send_sig_info(sig, __si_special(priv), p);
1454}
1455
1456void
1457force_sig(int sig, struct task_struct *p)
1458{
1459	force_sig_info(sig, SEND_SIG_PRIV, p);
1460}
1461
1462/*
1463 * When things go south during signal handling, we
1464 * will force a SIGSEGV. And if the signal that caused
1465 * the problem was already a SIGSEGV, we'll want to
1466 * make sure we don't even try to deliver the signal..
1467 */
1468int
1469force_sigsegv(int sig, struct task_struct *p)
1470{
1471	if (sig == SIGSEGV) {
1472		unsigned long flags;
1473		spin_lock_irqsave(&p->sighand->siglock, flags);
1474		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1475		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1476	}
1477	force_sig(SIGSEGV, p);
1478	return 0;
1479}
1480
1481int kill_pgrp(struct pid *pid, int sig, int priv)
1482{
1483	int ret;
1484
1485	read_lock(&tasklist_lock);
1486	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1487	read_unlock(&tasklist_lock);
1488
1489	return ret;
1490}
1491EXPORT_SYMBOL(kill_pgrp);
1492
1493int kill_pid(struct pid *pid, int sig, int priv)
1494{
1495	return kill_pid_info(sig, __si_special(priv), pid);
1496}
1497EXPORT_SYMBOL(kill_pid);
1498
1499/*
1500 * These functions support sending signals using preallocated sigqueue
1501 * structures.  This is needed "because realtime applications cannot
1502 * afford to lose notifications of asynchronous events, like timer
1503 * expirations or I/O completions".  In the case of POSIX Timers
1504 * we allocate the sigqueue structure from the timer_create.  If this
1505 * allocation fails we are able to report the failure to the application
1506 * with an EAGAIN error.
1507 */
1508struct sigqueue *sigqueue_alloc(void)
1509{
1510	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1511
1512	if (q)
1513		q->flags |= SIGQUEUE_PREALLOC;
1514
1515	return q;
1516}
1517
1518void sigqueue_free(struct sigqueue *q)
1519{
1520	unsigned long flags;
1521	spinlock_t *lock = &current->sighand->siglock;
1522
1523	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1524	/*
1525	 * We must hold ->siglock while testing q->list
1526	 * to serialize with collect_signal() or with
1527	 * __exit_signal()->flush_sigqueue().
1528	 */
1529	spin_lock_irqsave(lock, flags);
1530	q->flags &= ~SIGQUEUE_PREALLOC;
1531	/*
1532	 * If it is queued it will be freed when dequeued,
1533	 * like the "regular" sigqueue.
1534	 */
1535	if (!list_empty(&q->list))
1536		q = NULL;
1537	spin_unlock_irqrestore(lock, flags);
1538
1539	if (q)
1540		__sigqueue_free(q);
1541}
1542
1543int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1544{
1545	int sig = q->info.si_signo;
1546	struct sigpending *pending;
1547	unsigned long flags;
1548	int ret;
1549
1550	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1551
1552	ret = -1;
1553	if (!likely(lock_task_sighand(t, &flags)))
1554		goto ret;
1555
1556	ret = 1; /* the signal is ignored */
1557	if (!prepare_signal(sig, t, 0))
 
1558		goto out;
1559
1560	ret = 0;
1561	if (unlikely(!list_empty(&q->list))) {
1562		/*
1563		 * If an SI_TIMER entry is already queue just increment
1564		 * the overrun count.
1565		 */
1566		BUG_ON(q->info.si_code != SI_TIMER);
1567		q->info.si_overrun++;
 
1568		goto out;
1569	}
1570	q->info.si_overrun = 0;
1571
1572	signalfd_notify(t, sig);
1573	pending = group ? &t->signal->shared_pending : &t->pending;
1574	list_add_tail(&q->list, &pending->list);
1575	sigaddset(&pending->signal, sig);
1576	complete_signal(sig, t, group);
 
1577out:
 
1578	unlock_task_sighand(t, &flags);
1579ret:
1580	return ret;
1581}
1582
1583/*
1584 * Let a parent know about the death of a child.
1585 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1586 *
1587 * Returns true if our parent ignored us and so we've switched to
1588 * self-reaping.
1589 */
1590bool do_notify_parent(struct task_struct *tsk, int sig)
1591{
1592	struct siginfo info;
1593	unsigned long flags;
1594	struct sighand_struct *psig;
1595	bool autoreap = false;
1596
1597	BUG_ON(sig == -1);
1598
1599 	/* do_notify_parent_cldstop should have been called instead.  */
1600 	BUG_ON(task_is_stopped_or_traced(tsk));
1601
1602	BUG_ON(!tsk->ptrace &&
1603	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1604
 
 
 
 
 
 
 
 
 
1605	info.si_signo = sig;
1606	info.si_errno = 0;
1607	/*
1608	 * we are under tasklist_lock here so our parent is tied to
1609	 * us and cannot exit and release its namespace.
1610	 *
1611	 * the only it can is to switch its nsproxy with sys_unshare,
1612	 * bu uncharing pid namespaces is not allowed, so we'll always
1613	 * see relevant namespace
1614	 *
1615	 * write_lock() currently calls preempt_disable() which is the
1616	 * same as rcu_read_lock(), but according to Oleg, this is not
1617	 * correct to rely on this
1618	 */
1619	rcu_read_lock();
1620	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1621	info.si_uid = __task_cred(tsk)->uid;
 
1622	rcu_read_unlock();
1623
1624	info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1625				tsk->signal->utime));
1626	info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1627				tsk->signal->stime));
1628
1629	info.si_status = tsk->exit_code & 0x7f;
1630	if (tsk->exit_code & 0x80)
1631		info.si_code = CLD_DUMPED;
1632	else if (tsk->exit_code & 0x7f)
1633		info.si_code = CLD_KILLED;
1634	else {
1635		info.si_code = CLD_EXITED;
1636		info.si_status = tsk->exit_code >> 8;
1637	}
1638
1639	psig = tsk->parent->sighand;
1640	spin_lock_irqsave(&psig->siglock, flags);
1641	if (!tsk->ptrace && sig == SIGCHLD &&
1642	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1643	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1644		/*
1645		 * We are exiting and our parent doesn't care.  POSIX.1
1646		 * defines special semantics for setting SIGCHLD to SIG_IGN
1647		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1648		 * automatically and not left for our parent's wait4 call.
1649		 * Rather than having the parent do it as a magic kind of
1650		 * signal handler, we just set this to tell do_exit that we
1651		 * can be cleaned up without becoming a zombie.  Note that
1652		 * we still call __wake_up_parent in this case, because a
1653		 * blocked sys_wait4 might now return -ECHILD.
1654		 *
1655		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1656		 * is implementation-defined: we do (if you don't want
1657		 * it, just use SIG_IGN instead).
1658		 */
1659		autoreap = true;
1660		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1661			sig = 0;
1662	}
1663	if (valid_signal(sig) && sig)
1664		__group_send_sig_info(sig, &info, tsk->parent);
1665	__wake_up_parent(tsk, tsk->parent);
1666	spin_unlock_irqrestore(&psig->siglock, flags);
1667
1668	return autoreap;
1669}
1670
1671/**
1672 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1673 * @tsk: task reporting the state change
1674 * @for_ptracer: the notification is for ptracer
1675 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1676 *
1677 * Notify @tsk's parent that the stopped/continued state has changed.  If
1678 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1679 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1680 *
1681 * CONTEXT:
1682 * Must be called with tasklist_lock at least read locked.
1683 */
1684static void do_notify_parent_cldstop(struct task_struct *tsk,
1685				     bool for_ptracer, int why)
1686{
1687	struct siginfo info;
1688	unsigned long flags;
1689	struct task_struct *parent;
1690	struct sighand_struct *sighand;
1691
1692	if (for_ptracer) {
1693		parent = tsk->parent;
1694	} else {
1695		tsk = tsk->group_leader;
1696		parent = tsk->real_parent;
1697	}
1698
1699	info.si_signo = SIGCHLD;
1700	info.si_errno = 0;
1701	/*
1702	 * see comment in do_notify_parent() about the following 4 lines
1703	 */
1704	rcu_read_lock();
1705	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1706	info.si_uid = __task_cred(tsk)->uid;
1707	rcu_read_unlock();
1708
1709	info.si_utime = cputime_to_clock_t(tsk->utime);
1710	info.si_stime = cputime_to_clock_t(tsk->stime);
1711
1712 	info.si_code = why;
1713 	switch (why) {
1714 	case CLD_CONTINUED:
1715 		info.si_status = SIGCONT;
1716 		break;
1717 	case CLD_STOPPED:
1718 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1719 		break;
1720 	case CLD_TRAPPED:
1721 		info.si_status = tsk->exit_code & 0x7f;
1722 		break;
1723 	default:
1724 		BUG();
1725 	}
1726
1727	sighand = parent->sighand;
1728	spin_lock_irqsave(&sighand->siglock, flags);
1729	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1730	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1731		__group_send_sig_info(SIGCHLD, &info, parent);
1732	/*
1733	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1734	 */
1735	__wake_up_parent(tsk, parent);
1736	spin_unlock_irqrestore(&sighand->siglock, flags);
1737}
1738
1739static inline int may_ptrace_stop(void)
1740{
1741	if (!likely(current->ptrace))
1742		return 0;
1743	/*
1744	 * Are we in the middle of do_coredump?
1745	 * If so and our tracer is also part of the coredump stopping
1746	 * is a deadlock situation, and pointless because our tracer
1747	 * is dead so don't allow us to stop.
1748	 * If SIGKILL was already sent before the caller unlocked
1749	 * ->siglock we must see ->core_state != NULL. Otherwise it
1750	 * is safe to enter schedule().
1751	 */
1752	if (unlikely(current->mm->core_state) &&
1753	    unlikely(current->mm == current->parent->mm))
1754		return 0;
1755
1756	return 1;
1757}
1758
1759/*
1760 * Return non-zero if there is a SIGKILL that should be waking us up.
1761 * Called with the siglock held.
1762 */
1763static int sigkill_pending(struct task_struct *tsk)
1764{
1765	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1766		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1767}
1768
1769/*
1770 * This must be called with current->sighand->siglock held.
1771 *
1772 * This should be the path for all ptrace stops.
1773 * We always set current->last_siginfo while stopped here.
1774 * That makes it a way to test a stopped process for
1775 * being ptrace-stopped vs being job-control-stopped.
1776 *
1777 * If we actually decide not to stop at all because the tracer
1778 * is gone, we keep current->exit_code unless clear_code.
1779 */
1780static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1781	__releases(&current->sighand->siglock)
1782	__acquires(&current->sighand->siglock)
1783{
1784	bool gstop_done = false;
1785
1786	if (arch_ptrace_stop_needed(exit_code, info)) {
1787		/*
1788		 * The arch code has something special to do before a
1789		 * ptrace stop.  This is allowed to block, e.g. for faults
1790		 * on user stack pages.  We can't keep the siglock while
1791		 * calling arch_ptrace_stop, so we must release it now.
1792		 * To preserve proper semantics, we must do this before
1793		 * any signal bookkeeping like checking group_stop_count.
1794		 * Meanwhile, a SIGKILL could come in before we retake the
1795		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1796		 * So after regaining the lock, we must check for SIGKILL.
1797		 */
1798		spin_unlock_irq(&current->sighand->siglock);
1799		arch_ptrace_stop(exit_code, info);
1800		spin_lock_irq(&current->sighand->siglock);
1801		if (sigkill_pending(current))
1802			return;
1803	}
1804
1805	/*
1806	 * We're committing to trapping.  TRACED should be visible before
1807	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1808	 * Also, transition to TRACED and updates to ->jobctl should be
1809	 * atomic with respect to siglock and should be done after the arch
1810	 * hook as siglock is released and regrabbed across it.
1811	 */
1812	set_current_state(TASK_TRACED);
1813
1814	current->last_siginfo = info;
1815	current->exit_code = exit_code;
1816
1817	/*
1818	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1819	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1820	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1821	 * could be clear now.  We act as if SIGCONT is received after
1822	 * TASK_TRACED is entered - ignore it.
1823	 */
1824	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1825		gstop_done = task_participate_group_stop(current);
1826
1827	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1828	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1829	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1830		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1831
1832	/* entering a trap, clear TRAPPING */
1833	task_clear_jobctl_trapping(current);
1834
1835	spin_unlock_irq(&current->sighand->siglock);
1836	read_lock(&tasklist_lock);
1837	if (may_ptrace_stop()) {
1838		/*
1839		 * Notify parents of the stop.
1840		 *
1841		 * While ptraced, there are two parents - the ptracer and
1842		 * the real_parent of the group_leader.  The ptracer should
1843		 * know about every stop while the real parent is only
1844		 * interested in the completion of group stop.  The states
1845		 * for the two don't interact with each other.  Notify
1846		 * separately unless they're gonna be duplicates.
1847		 */
1848		do_notify_parent_cldstop(current, true, why);
1849		if (gstop_done && ptrace_reparented(current))
1850			do_notify_parent_cldstop(current, false, why);
1851
1852		/*
1853		 * Don't want to allow preemption here, because
1854		 * sys_ptrace() needs this task to be inactive.
1855		 *
1856		 * XXX: implement read_unlock_no_resched().
1857		 */
1858		preempt_disable();
1859		read_unlock(&tasklist_lock);
1860		preempt_enable_no_resched();
1861		schedule();
1862	} else {
1863		/*
1864		 * By the time we got the lock, our tracer went away.
1865		 * Don't drop the lock yet, another tracer may come.
1866		 *
1867		 * If @gstop_done, the ptracer went away between group stop
1868		 * completion and here.  During detach, it would have set
1869		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1870		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1871		 * the real parent of the group stop completion is enough.
1872		 */
1873		if (gstop_done)
1874			do_notify_parent_cldstop(current, false, why);
1875
1876		__set_current_state(TASK_RUNNING);
1877		if (clear_code)
1878			current->exit_code = 0;
1879		read_unlock(&tasklist_lock);
1880	}
1881
1882	/*
1883	 * While in TASK_TRACED, we were considered "frozen enough".
1884	 * Now that we woke up, it's crucial if we're supposed to be
1885	 * frozen that we freeze now before running anything substantial.
1886	 */
1887	try_to_freeze();
1888
1889	/*
1890	 * We are back.  Now reacquire the siglock before touching
1891	 * last_siginfo, so that we are sure to have synchronized with
1892	 * any signal-sending on another CPU that wants to examine it.
1893	 */
1894	spin_lock_irq(&current->sighand->siglock);
1895	current->last_siginfo = NULL;
1896
1897	/* LISTENING can be set only during STOP traps, clear it */
1898	current->jobctl &= ~JOBCTL_LISTENING;
1899
1900	/*
1901	 * Queued signals ignored us while we were stopped for tracing.
1902	 * So check for any that we should take before resuming user mode.
1903	 * This sets TIF_SIGPENDING, but never clears it.
1904	 */
1905	recalc_sigpending_tsk(current);
1906}
1907
1908static void ptrace_do_notify(int signr, int exit_code, int why)
1909{
1910	siginfo_t info;
1911
1912	memset(&info, 0, sizeof info);
1913	info.si_signo = signr;
1914	info.si_code = exit_code;
1915	info.si_pid = task_pid_vnr(current);
1916	info.si_uid = current_uid();
1917
1918	/* Let the debugger run.  */
1919	ptrace_stop(exit_code, why, 1, &info);
1920}
1921
1922void ptrace_notify(int exit_code)
1923{
1924	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1925
1926	spin_lock_irq(&current->sighand->siglock);
1927	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1928	spin_unlock_irq(&current->sighand->siglock);
1929}
1930
1931/**
1932 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1933 * @signr: signr causing group stop if initiating
1934 *
1935 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1936 * and participate in it.  If already set, participate in the existing
1937 * group stop.  If participated in a group stop (and thus slept), %true is
1938 * returned with siglock released.
1939 *
1940 * If ptraced, this function doesn't handle stop itself.  Instead,
1941 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1942 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1943 * places afterwards.
1944 *
1945 * CONTEXT:
1946 * Must be called with @current->sighand->siglock held, which is released
1947 * on %true return.
1948 *
1949 * RETURNS:
1950 * %false if group stop is already cancelled or ptrace trap is scheduled.
1951 * %true if participated in group stop.
1952 */
1953static bool do_signal_stop(int signr)
1954	__releases(&current->sighand->siglock)
1955{
1956	struct signal_struct *sig = current->signal;
1957
1958	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1959		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1960		struct task_struct *t;
1961
1962		/* signr will be recorded in task->jobctl for retries */
1963		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1964
1965		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1966		    unlikely(signal_group_exit(sig)))
1967			return false;
1968		/*
1969		 * There is no group stop already in progress.  We must
1970		 * initiate one now.
1971		 *
1972		 * While ptraced, a task may be resumed while group stop is
1973		 * still in effect and then receive a stop signal and
1974		 * initiate another group stop.  This deviates from the
1975		 * usual behavior as two consecutive stop signals can't
1976		 * cause two group stops when !ptraced.  That is why we
1977		 * also check !task_is_stopped(t) below.
1978		 *
1979		 * The condition can be distinguished by testing whether
1980		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1981		 * group_exit_code in such case.
1982		 *
1983		 * This is not necessary for SIGNAL_STOP_CONTINUED because
1984		 * an intervening stop signal is required to cause two
1985		 * continued events regardless of ptrace.
1986		 */
1987		if (!(sig->flags & SIGNAL_STOP_STOPPED))
1988			sig->group_exit_code = signr;
1989		else
1990			WARN_ON_ONCE(!current->ptrace);
1991
1992		sig->group_stop_count = 0;
1993
1994		if (task_set_jobctl_pending(current, signr | gstop))
1995			sig->group_stop_count++;
1996
1997		for (t = next_thread(current); t != current;
1998		     t = next_thread(t)) {
1999			/*
2000			 * Setting state to TASK_STOPPED for a group
2001			 * stop is always done with the siglock held,
2002			 * so this check has no races.
2003			 */
2004			if (!task_is_stopped(t) &&
2005			    task_set_jobctl_pending(t, signr | gstop)) {
2006				sig->group_stop_count++;
2007				if (likely(!(t->ptrace & PT_SEIZED)))
2008					signal_wake_up(t, 0);
2009				else
2010					ptrace_trap_notify(t);
2011			}
2012		}
2013	}
2014
2015	if (likely(!current->ptrace)) {
2016		int notify = 0;
2017
2018		/*
2019		 * If there are no other threads in the group, or if there
2020		 * is a group stop in progress and we are the last to stop,
2021		 * report to the parent.
2022		 */
2023		if (task_participate_group_stop(current))
2024			notify = CLD_STOPPED;
2025
2026		__set_current_state(TASK_STOPPED);
2027		spin_unlock_irq(&current->sighand->siglock);
2028
2029		/*
2030		 * Notify the parent of the group stop completion.  Because
2031		 * we're not holding either the siglock or tasklist_lock
2032		 * here, ptracer may attach inbetween; however, this is for
2033		 * group stop and should always be delivered to the real
2034		 * parent of the group leader.  The new ptracer will get
2035		 * its notification when this task transitions into
2036		 * TASK_TRACED.
2037		 */
2038		if (notify) {
2039			read_lock(&tasklist_lock);
2040			do_notify_parent_cldstop(current, false, notify);
2041			read_unlock(&tasklist_lock);
2042		}
2043
2044		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2045		schedule();
2046		return true;
2047	} else {
2048		/*
2049		 * While ptraced, group stop is handled by STOP trap.
2050		 * Schedule it and let the caller deal with it.
2051		 */
2052		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2053		return false;
2054	}
2055}
2056
2057/**
2058 * do_jobctl_trap - take care of ptrace jobctl traps
2059 *
2060 * When PT_SEIZED, it's used for both group stop and explicit
2061 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2062 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2063 * the stop signal; otherwise, %SIGTRAP.
2064 *
2065 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2066 * number as exit_code and no siginfo.
2067 *
2068 * CONTEXT:
2069 * Must be called with @current->sighand->siglock held, which may be
2070 * released and re-acquired before returning with intervening sleep.
2071 */
2072static void do_jobctl_trap(void)
2073{
2074	struct signal_struct *signal = current->signal;
2075	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2076
2077	if (current->ptrace & PT_SEIZED) {
2078		if (!signal->group_stop_count &&
2079		    !(signal->flags & SIGNAL_STOP_STOPPED))
2080			signr = SIGTRAP;
2081		WARN_ON_ONCE(!signr);
2082		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2083				 CLD_STOPPED);
2084	} else {
2085		WARN_ON_ONCE(!signr);
2086		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2087		current->exit_code = 0;
2088	}
2089}
2090
2091static int ptrace_signal(int signr, siginfo_t *info,
2092			 struct pt_regs *regs, void *cookie)
2093{
2094	ptrace_signal_deliver(regs, cookie);
2095	/*
2096	 * We do not check sig_kernel_stop(signr) but set this marker
2097	 * unconditionally because we do not know whether debugger will
2098	 * change signr. This flag has no meaning unless we are going
2099	 * to stop after return from ptrace_stop(). In this case it will
2100	 * be checked in do_signal_stop(), we should only stop if it was
2101	 * not cleared by SIGCONT while we were sleeping. See also the
2102	 * comment in dequeue_signal().
2103	 */
2104	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2105	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2106
2107	/* We're back.  Did the debugger cancel the sig?  */
2108	signr = current->exit_code;
2109	if (signr == 0)
2110		return signr;
2111
2112	current->exit_code = 0;
2113
2114	/*
2115	 * Update the siginfo structure if the signal has
2116	 * changed.  If the debugger wanted something
2117	 * specific in the siginfo structure then it should
2118	 * have updated *info via PTRACE_SETSIGINFO.
2119	 */
2120	if (signr != info->si_signo) {
2121		info->si_signo = signr;
2122		info->si_errno = 0;
2123		info->si_code = SI_USER;
 
2124		info->si_pid = task_pid_vnr(current->parent);
2125		info->si_uid = task_uid(current->parent);
 
 
2126	}
2127
2128	/* If the (new) signal is now blocked, requeue it.  */
2129	if (sigismember(&current->blocked, signr)) {
2130		specific_send_sig_info(signr, info, current);
2131		signr = 0;
2132	}
2133
2134	return signr;
2135}
2136
2137int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2138			  struct pt_regs *regs, void *cookie)
2139{
2140	struct sighand_struct *sighand = current->sighand;
2141	struct signal_struct *signal = current->signal;
2142	int signr;
2143
 
 
 
2144relock:
2145	/*
2146	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2147	 * While in TASK_STOPPED, we were considered "frozen enough".
2148	 * Now that we woke up, it's crucial if we're supposed to be
2149	 * frozen that we freeze now before running anything substantial.
2150	 */
2151	try_to_freeze();
2152
2153	spin_lock_irq(&sighand->siglock);
2154	/*
2155	 * Every stopped thread goes here after wakeup. Check to see if
2156	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2157	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2158	 */
2159	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2160		int why;
2161
2162		if (signal->flags & SIGNAL_CLD_CONTINUED)
2163			why = CLD_CONTINUED;
2164		else
2165			why = CLD_STOPPED;
2166
2167		signal->flags &= ~SIGNAL_CLD_MASK;
2168
2169		spin_unlock_irq(&sighand->siglock);
2170
2171		/*
2172		 * Notify the parent that we're continuing.  This event is
2173		 * always per-process and doesn't make whole lot of sense
2174		 * for ptracers, who shouldn't consume the state via
2175		 * wait(2) either, but, for backward compatibility, notify
2176		 * the ptracer of the group leader too unless it's gonna be
2177		 * a duplicate.
2178		 */
2179		read_lock(&tasklist_lock);
2180		do_notify_parent_cldstop(current, false, why);
2181
2182		if (ptrace_reparented(current->group_leader))
2183			do_notify_parent_cldstop(current->group_leader,
2184						true, why);
2185		read_unlock(&tasklist_lock);
2186
2187		goto relock;
2188	}
2189
2190	for (;;) {
2191		struct k_sigaction *ka;
2192
2193		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2194		    do_signal_stop(0))
2195			goto relock;
2196
2197		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2198			do_jobctl_trap();
2199			spin_unlock_irq(&sighand->siglock);
2200			goto relock;
2201		}
2202
2203		signr = dequeue_signal(current, &current->blocked, info);
2204
2205		if (!signr)
2206			break; /* will return 0 */
2207
2208		if (unlikely(current->ptrace) && signr != SIGKILL) {
2209			signr = ptrace_signal(signr, info,
2210					      regs, cookie);
2211			if (!signr)
2212				continue;
2213		}
2214
2215		ka = &sighand->action[signr-1];
2216
2217		/* Trace actually delivered signals. */
2218		trace_signal_deliver(signr, info, ka);
2219
2220		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2221			continue;
2222		if (ka->sa.sa_handler != SIG_DFL) {
2223			/* Run the handler.  */
2224			*return_ka = *ka;
2225
2226			if (ka->sa.sa_flags & SA_ONESHOT)
2227				ka->sa.sa_handler = SIG_DFL;
2228
2229			break; /* will return non-zero "signr" value */
2230		}
2231
2232		/*
2233		 * Now we are doing the default action for this signal.
2234		 */
2235		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2236			continue;
2237
2238		/*
2239		 * Global init gets no signals it doesn't want.
2240		 * Container-init gets no signals it doesn't want from same
2241		 * container.
2242		 *
2243		 * Note that if global/container-init sees a sig_kernel_only()
2244		 * signal here, the signal must have been generated internally
2245		 * or must have come from an ancestor namespace. In either
2246		 * case, the signal cannot be dropped.
2247		 */
2248		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2249				!sig_kernel_only(signr))
2250			continue;
2251
2252		if (sig_kernel_stop(signr)) {
2253			/*
2254			 * The default action is to stop all threads in
2255			 * the thread group.  The job control signals
2256			 * do nothing in an orphaned pgrp, but SIGSTOP
2257			 * always works.  Note that siglock needs to be
2258			 * dropped during the call to is_orphaned_pgrp()
2259			 * because of lock ordering with tasklist_lock.
2260			 * This allows an intervening SIGCONT to be posted.
2261			 * We need to check for that and bail out if necessary.
2262			 */
2263			if (signr != SIGSTOP) {
2264				spin_unlock_irq(&sighand->siglock);
2265
2266				/* signals can be posted during this window */
2267
2268				if (is_current_pgrp_orphaned())
2269					goto relock;
2270
2271				spin_lock_irq(&sighand->siglock);
2272			}
2273
2274			if (likely(do_signal_stop(info->si_signo))) {
2275				/* It released the siglock.  */
2276				goto relock;
2277			}
2278
2279			/*
2280			 * We didn't actually stop, due to a race
2281			 * with SIGCONT or something like that.
2282			 */
2283			continue;
2284		}
2285
2286		spin_unlock_irq(&sighand->siglock);
2287
2288		/*
2289		 * Anything else is fatal, maybe with a core dump.
2290		 */
2291		current->flags |= PF_SIGNALED;
2292
2293		if (sig_kernel_coredump(signr)) {
2294			if (print_fatal_signals)
2295				print_fatal_signal(regs, info->si_signo);
2296			/*
2297			 * If it was able to dump core, this kills all
2298			 * other threads in the group and synchronizes with
2299			 * their demise.  If we lost the race with another
2300			 * thread getting here, it set group_exit_code
2301			 * first and our do_group_exit call below will use
2302			 * that value and ignore the one we pass it.
2303			 */
2304			do_coredump(info->si_signo, info->si_signo, regs);
2305		}
2306
2307		/*
2308		 * Death signals, no core dump.
2309		 */
2310		do_group_exit(info->si_signo);
2311		/* NOTREACHED */
2312	}
2313	spin_unlock_irq(&sighand->siglock);
2314	return signr;
2315}
2316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2317/*
2318 * It could be that complete_signal() picked us to notify about the
2319 * group-wide signal. Other threads should be notified now to take
2320 * the shared signals in @which since we will not.
2321 */
2322static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2323{
2324	sigset_t retarget;
2325	struct task_struct *t;
2326
2327	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2328	if (sigisemptyset(&retarget))
2329		return;
2330
2331	t = tsk;
2332	while_each_thread(tsk, t) {
2333		if (t->flags & PF_EXITING)
2334			continue;
2335
2336		if (!has_pending_signals(&retarget, &t->blocked))
2337			continue;
2338		/* Remove the signals this thread can handle. */
2339		sigandsets(&retarget, &retarget, &t->blocked);
2340
2341		if (!signal_pending(t))
2342			signal_wake_up(t, 0);
2343
2344		if (sigisemptyset(&retarget))
2345			break;
2346	}
2347}
2348
2349void exit_signals(struct task_struct *tsk)
2350{
2351	int group_stop = 0;
2352	sigset_t unblocked;
2353
 
 
 
 
 
 
2354	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2355		tsk->flags |= PF_EXITING;
 
2356		return;
2357	}
2358
2359	spin_lock_irq(&tsk->sighand->siglock);
2360	/*
2361	 * From now this task is not visible for group-wide signals,
2362	 * see wants_signal(), do_signal_stop().
2363	 */
2364	tsk->flags |= PF_EXITING;
 
 
 
2365	if (!signal_pending(tsk))
2366		goto out;
2367
2368	unblocked = tsk->blocked;
2369	signotset(&unblocked);
2370	retarget_shared_pending(tsk, &unblocked);
2371
2372	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2373	    task_participate_group_stop(tsk))
2374		group_stop = CLD_STOPPED;
2375out:
2376	spin_unlock_irq(&tsk->sighand->siglock);
2377
2378	/*
2379	 * If group stop has completed, deliver the notification.  This
2380	 * should always go to the real parent of the group leader.
2381	 */
2382	if (unlikely(group_stop)) {
2383		read_lock(&tasklist_lock);
2384		do_notify_parent_cldstop(tsk, false, group_stop);
2385		read_unlock(&tasklist_lock);
2386	}
2387}
2388
2389EXPORT_SYMBOL(recalc_sigpending);
2390EXPORT_SYMBOL_GPL(dequeue_signal);
2391EXPORT_SYMBOL(flush_signals);
2392EXPORT_SYMBOL(force_sig);
2393EXPORT_SYMBOL(send_sig);
2394EXPORT_SYMBOL(send_sig_info);
2395EXPORT_SYMBOL(sigprocmask);
2396EXPORT_SYMBOL(block_all_signals);
2397EXPORT_SYMBOL(unblock_all_signals);
2398
2399
2400/*
2401 * System call entry points.
2402 */
2403
2404/**
2405 *  sys_restart_syscall - restart a system call
2406 */
2407SYSCALL_DEFINE0(restart_syscall)
2408{
2409	struct restart_block *restart = &current_thread_info()->restart_block;
2410	return restart->fn(restart);
2411}
2412
2413long do_no_restart_syscall(struct restart_block *param)
2414{
2415	return -EINTR;
2416}
2417
2418static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2419{
2420	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2421		sigset_t newblocked;
2422		/* A set of now blocked but previously unblocked signals. */
2423		sigandnsets(&newblocked, newset, &current->blocked);
2424		retarget_shared_pending(tsk, &newblocked);
2425	}
2426	tsk->blocked = *newset;
2427	recalc_sigpending();
2428}
2429
2430/**
2431 * set_current_blocked - change current->blocked mask
2432 * @newset: new mask
2433 *
2434 * It is wrong to change ->blocked directly, this helper should be used
2435 * to ensure the process can't miss a shared signal we are going to block.
2436 */
2437void set_current_blocked(const sigset_t *newset)
 
 
 
 
 
 
 
 
 
2438{
2439	struct task_struct *tsk = current;
2440
2441	spin_lock_irq(&tsk->sighand->siglock);
2442	__set_task_blocked(tsk, newset);
2443	spin_unlock_irq(&tsk->sighand->siglock);
2444}
2445
2446/*
2447 * This is also useful for kernel threads that want to temporarily
2448 * (or permanently) block certain signals.
2449 *
2450 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2451 * interface happily blocks "unblockable" signals like SIGKILL
2452 * and friends.
2453 */
2454int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2455{
2456	struct task_struct *tsk = current;
2457	sigset_t newset;
2458
2459	/* Lockless, only current can change ->blocked, never from irq */
2460	if (oldset)
2461		*oldset = tsk->blocked;
2462
2463	switch (how) {
2464	case SIG_BLOCK:
2465		sigorsets(&newset, &tsk->blocked, set);
2466		break;
2467	case SIG_UNBLOCK:
2468		sigandnsets(&newset, &tsk->blocked, set);
2469		break;
2470	case SIG_SETMASK:
2471		newset = *set;
2472		break;
2473	default:
2474		return -EINVAL;
2475	}
2476
2477	set_current_blocked(&newset);
2478	return 0;
2479}
2480
2481/**
2482 *  sys_rt_sigprocmask - change the list of currently blocked signals
2483 *  @how: whether to add, remove, or set signals
2484 *  @nset: stores pending signals
2485 *  @oset: previous value of signal mask if non-null
2486 *  @sigsetsize: size of sigset_t type
2487 */
2488SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2489		sigset_t __user *, oset, size_t, sigsetsize)
2490{
2491	sigset_t old_set, new_set;
2492	int error;
2493
2494	/* XXX: Don't preclude handling different sized sigset_t's.  */
2495	if (sigsetsize != sizeof(sigset_t))
2496		return -EINVAL;
2497
2498	old_set = current->blocked;
2499
2500	if (nset) {
2501		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2502			return -EFAULT;
2503		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2504
2505		error = sigprocmask(how, &new_set, NULL);
2506		if (error)
2507			return error;
2508	}
2509
2510	if (oset) {
2511		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2512			return -EFAULT;
2513	}
2514
2515	return 0;
2516}
2517
2518long do_sigpending(void __user *set, unsigned long sigsetsize)
2519{
2520	long error = -EINVAL;
2521	sigset_t pending;
2522
2523	if (sigsetsize > sizeof(sigset_t))
2524		goto out;
2525
2526	spin_lock_irq(&current->sighand->siglock);
2527	sigorsets(&pending, &current->pending.signal,
2528		  &current->signal->shared_pending.signal);
2529	spin_unlock_irq(&current->sighand->siglock);
2530
2531	/* Outside the lock because only this thread touches it.  */
2532	sigandsets(&pending, &current->blocked, &pending);
2533
2534	error = -EFAULT;
2535	if (!copy_to_user(set, &pending, sigsetsize))
2536		error = 0;
2537
2538out:
2539	return error;
2540}
2541
2542/**
2543 *  sys_rt_sigpending - examine a pending signal that has been raised
2544 *			while blocked
2545 *  @set: stores pending signals
2546 *  @sigsetsize: size of sigset_t type or larger
2547 */
2548SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2549{
2550	return do_sigpending(set, sigsetsize);
2551}
2552
2553#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2554
2555int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2556{
2557	int err;
2558
2559	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2560		return -EFAULT;
2561	if (from->si_code < 0)
2562		return __copy_to_user(to, from, sizeof(siginfo_t))
2563			? -EFAULT : 0;
2564	/*
2565	 * If you change siginfo_t structure, please be sure
2566	 * this code is fixed accordingly.
2567	 * Please remember to update the signalfd_copyinfo() function
2568	 * inside fs/signalfd.c too, in case siginfo_t changes.
2569	 * It should never copy any pad contained in the structure
2570	 * to avoid security leaks, but must copy the generic
2571	 * 3 ints plus the relevant union member.
2572	 */
2573	err = __put_user(from->si_signo, &to->si_signo);
2574	err |= __put_user(from->si_errno, &to->si_errno);
2575	err |= __put_user((short)from->si_code, &to->si_code);
2576	switch (from->si_code & __SI_MASK) {
2577	case __SI_KILL:
2578		err |= __put_user(from->si_pid, &to->si_pid);
2579		err |= __put_user(from->si_uid, &to->si_uid);
2580		break;
2581	case __SI_TIMER:
2582		 err |= __put_user(from->si_tid, &to->si_tid);
2583		 err |= __put_user(from->si_overrun, &to->si_overrun);
2584		 err |= __put_user(from->si_ptr, &to->si_ptr);
2585		break;
2586	case __SI_POLL:
2587		err |= __put_user(from->si_band, &to->si_band);
2588		err |= __put_user(from->si_fd, &to->si_fd);
2589		break;
2590	case __SI_FAULT:
2591		err |= __put_user(from->si_addr, &to->si_addr);
2592#ifdef __ARCH_SI_TRAPNO
2593		err |= __put_user(from->si_trapno, &to->si_trapno);
2594#endif
2595#ifdef BUS_MCEERR_AO
2596		/*
2597		 * Other callers might not initialize the si_lsb field,
2598		 * so check explicitly for the right codes here.
2599		 */
2600		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2601			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2602#endif
2603		break;
2604	case __SI_CHLD:
2605		err |= __put_user(from->si_pid, &to->si_pid);
2606		err |= __put_user(from->si_uid, &to->si_uid);
2607		err |= __put_user(from->si_status, &to->si_status);
2608		err |= __put_user(from->si_utime, &to->si_utime);
2609		err |= __put_user(from->si_stime, &to->si_stime);
2610		break;
2611	case __SI_RT: /* This is not generated by the kernel as of now. */
2612	case __SI_MESGQ: /* But this is */
2613		err |= __put_user(from->si_pid, &to->si_pid);
2614		err |= __put_user(from->si_uid, &to->si_uid);
2615		err |= __put_user(from->si_ptr, &to->si_ptr);
2616		break;
 
 
 
 
 
 
 
2617	default: /* this is just in case for now ... */
2618		err |= __put_user(from->si_pid, &to->si_pid);
2619		err |= __put_user(from->si_uid, &to->si_uid);
2620		break;
2621	}
2622	return err;
2623}
2624
2625#endif
2626
2627/**
2628 *  do_sigtimedwait - wait for queued signals specified in @which
2629 *  @which: queued signals to wait for
2630 *  @info: if non-null, the signal's siginfo is returned here
2631 *  @ts: upper bound on process time suspension
2632 */
2633int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2634			const struct timespec *ts)
2635{
2636	struct task_struct *tsk = current;
2637	long timeout = MAX_SCHEDULE_TIMEOUT;
2638	sigset_t mask = *which;
2639	int sig;
2640
2641	if (ts) {
2642		if (!timespec_valid(ts))
2643			return -EINVAL;
2644		timeout = timespec_to_jiffies(ts);
2645		/*
2646		 * We can be close to the next tick, add another one
2647		 * to ensure we will wait at least the time asked for.
2648		 */
2649		if (ts->tv_sec || ts->tv_nsec)
2650			timeout++;
2651	}
2652
2653	/*
2654	 * Invert the set of allowed signals to get those we want to block.
2655	 */
2656	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2657	signotset(&mask);
2658
2659	spin_lock_irq(&tsk->sighand->siglock);
2660	sig = dequeue_signal(tsk, &mask, info);
2661	if (!sig && timeout) {
2662		/*
2663		 * None ready, temporarily unblock those we're interested
2664		 * while we are sleeping in so that we'll be awakened when
2665		 * they arrive. Unblocking is always fine, we can avoid
2666		 * set_current_blocked().
2667		 */
2668		tsk->real_blocked = tsk->blocked;
2669		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2670		recalc_sigpending();
2671		spin_unlock_irq(&tsk->sighand->siglock);
2672
2673		timeout = schedule_timeout_interruptible(timeout);
2674
2675		spin_lock_irq(&tsk->sighand->siglock);
2676		__set_task_blocked(tsk, &tsk->real_blocked);
2677		siginitset(&tsk->real_blocked, 0);
2678		sig = dequeue_signal(tsk, &mask, info);
2679	}
2680	spin_unlock_irq(&tsk->sighand->siglock);
2681
2682	if (sig)
2683		return sig;
2684	return timeout ? -EINTR : -EAGAIN;
2685}
2686
2687/**
2688 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2689 *			in @uthese
2690 *  @uthese: queued signals to wait for
2691 *  @uinfo: if non-null, the signal's siginfo is returned here
2692 *  @uts: upper bound on process time suspension
2693 *  @sigsetsize: size of sigset_t type
2694 */
2695SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2696		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2697		size_t, sigsetsize)
2698{
2699	sigset_t these;
2700	struct timespec ts;
2701	siginfo_t info;
2702	int ret;
2703
2704	/* XXX: Don't preclude handling different sized sigset_t's.  */
2705	if (sigsetsize != sizeof(sigset_t))
2706		return -EINVAL;
2707
2708	if (copy_from_user(&these, uthese, sizeof(these)))
2709		return -EFAULT;
2710
2711	if (uts) {
2712		if (copy_from_user(&ts, uts, sizeof(ts)))
2713			return -EFAULT;
2714	}
2715
2716	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2717
2718	if (ret > 0 && uinfo) {
2719		if (copy_siginfo_to_user(uinfo, &info))
2720			ret = -EFAULT;
2721	}
2722
2723	return ret;
2724}
2725
2726/**
2727 *  sys_kill - send a signal to a process
2728 *  @pid: the PID of the process
2729 *  @sig: signal to be sent
2730 */
2731SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2732{
2733	struct siginfo info;
2734
2735	info.si_signo = sig;
2736	info.si_errno = 0;
2737	info.si_code = SI_USER;
2738	info.si_pid = task_tgid_vnr(current);
2739	info.si_uid = current_uid();
2740
2741	return kill_something_info(sig, &info, pid);
2742}
2743
2744static int
2745do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2746{
2747	struct task_struct *p;
2748	int error = -ESRCH;
2749
2750	rcu_read_lock();
2751	p = find_task_by_vpid(pid);
2752	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2753		error = check_kill_permission(sig, info, p);
2754		/*
2755		 * The null signal is a permissions and process existence
2756		 * probe.  No signal is actually delivered.
2757		 */
2758		if (!error && sig) {
2759			error = do_send_sig_info(sig, info, p, false);
2760			/*
2761			 * If lock_task_sighand() failed we pretend the task
2762			 * dies after receiving the signal. The window is tiny,
2763			 * and the signal is private anyway.
2764			 */
2765			if (unlikely(error == -ESRCH))
2766				error = 0;
2767		}
2768	}
2769	rcu_read_unlock();
2770
2771	return error;
2772}
2773
2774static int do_tkill(pid_t tgid, pid_t pid, int sig)
2775{
2776	struct siginfo info;
2777
2778	info.si_signo = sig;
2779	info.si_errno = 0;
2780	info.si_code = SI_TKILL;
2781	info.si_pid = task_tgid_vnr(current);
2782	info.si_uid = current_uid();
2783
2784	return do_send_specific(tgid, pid, sig, &info);
2785}
2786
2787/**
2788 *  sys_tgkill - send signal to one specific thread
2789 *  @tgid: the thread group ID of the thread
2790 *  @pid: the PID of the thread
2791 *  @sig: signal to be sent
2792 *
2793 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2794 *  exists but it's not belonging to the target process anymore. This
2795 *  method solves the problem of threads exiting and PIDs getting reused.
2796 */
2797SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2798{
2799	/* This is only valid for single tasks */
2800	if (pid <= 0 || tgid <= 0)
2801		return -EINVAL;
2802
2803	return do_tkill(tgid, pid, sig);
2804}
2805
2806/**
2807 *  sys_tkill - send signal to one specific task
2808 *  @pid: the PID of the task
2809 *  @sig: signal to be sent
2810 *
2811 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2812 */
2813SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2814{
2815	/* This is only valid for single tasks */
2816	if (pid <= 0)
2817		return -EINVAL;
2818
2819	return do_tkill(0, pid, sig);
2820}
2821
2822/**
2823 *  sys_rt_sigqueueinfo - send signal information to a signal
2824 *  @pid: the PID of the thread
2825 *  @sig: signal to be sent
2826 *  @uinfo: signal info to be sent
2827 */
2828SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2829		siginfo_t __user *, uinfo)
2830{
2831	siginfo_t info;
2832
2833	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2834		return -EFAULT;
2835
2836	/* Not even root can pretend to send signals from the kernel.
2837	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2838	 */
2839	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2840		/* We used to allow any < 0 si_code */
2841		WARN_ON_ONCE(info.si_code < 0);
2842		return -EPERM;
2843	}
2844	info.si_signo = sig;
2845
2846	/* POSIX.1b doesn't mention process groups.  */
2847	return kill_proc_info(sig, &info, pid);
2848}
2849
2850long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2851{
2852	/* This is only valid for single tasks */
2853	if (pid <= 0 || tgid <= 0)
2854		return -EINVAL;
2855
2856	/* Not even root can pretend to send signals from the kernel.
2857	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2858	 */
2859	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2860		/* We used to allow any < 0 si_code */
2861		WARN_ON_ONCE(info->si_code < 0);
2862		return -EPERM;
2863	}
2864	info->si_signo = sig;
2865
2866	return do_send_specific(tgid, pid, sig, info);
2867}
2868
2869SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2870		siginfo_t __user *, uinfo)
2871{
2872	siginfo_t info;
2873
2874	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2875		return -EFAULT;
2876
2877	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2878}
2879
2880int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2881{
2882	struct task_struct *t = current;
2883	struct k_sigaction *k;
2884	sigset_t mask;
2885
2886	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2887		return -EINVAL;
2888
2889	k = &t->sighand->action[sig-1];
2890
2891	spin_lock_irq(&current->sighand->siglock);
2892	if (oact)
2893		*oact = *k;
2894
2895	if (act) {
2896		sigdelsetmask(&act->sa.sa_mask,
2897			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2898		*k = *act;
2899		/*
2900		 * POSIX 3.3.1.3:
2901		 *  "Setting a signal action to SIG_IGN for a signal that is
2902		 *   pending shall cause the pending signal to be discarded,
2903		 *   whether or not it is blocked."
2904		 *
2905		 *  "Setting a signal action to SIG_DFL for a signal that is
2906		 *   pending and whose default action is to ignore the signal
2907		 *   (for example, SIGCHLD), shall cause the pending signal to
2908		 *   be discarded, whether or not it is blocked"
2909		 */
2910		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2911			sigemptyset(&mask);
2912			sigaddset(&mask, sig);
2913			rm_from_queue_full(&mask, &t->signal->shared_pending);
2914			do {
2915				rm_from_queue_full(&mask, &t->pending);
2916				t = next_thread(t);
2917			} while (t != current);
2918		}
2919	}
2920
2921	spin_unlock_irq(&current->sighand->siglock);
2922	return 0;
2923}
2924
2925int 
2926do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2927{
2928	stack_t oss;
2929	int error;
2930
2931	oss.ss_sp = (void __user *) current->sas_ss_sp;
2932	oss.ss_size = current->sas_ss_size;
2933	oss.ss_flags = sas_ss_flags(sp);
2934
2935	if (uss) {
2936		void __user *ss_sp;
2937		size_t ss_size;
2938		int ss_flags;
2939
2940		error = -EFAULT;
2941		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2942			goto out;
2943		error = __get_user(ss_sp, &uss->ss_sp) |
2944			__get_user(ss_flags, &uss->ss_flags) |
2945			__get_user(ss_size, &uss->ss_size);
2946		if (error)
2947			goto out;
2948
2949		error = -EPERM;
2950		if (on_sig_stack(sp))
2951			goto out;
2952
2953		error = -EINVAL;
2954		/*
2955		 * Note - this code used to test ss_flags incorrectly:
2956		 *  	  old code may have been written using ss_flags==0
2957		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2958		 *	  way that worked) - this fix preserves that older
2959		 *	  mechanism.
2960		 */
2961		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2962			goto out;
2963
2964		if (ss_flags == SS_DISABLE) {
2965			ss_size = 0;
2966			ss_sp = NULL;
2967		} else {
2968			error = -ENOMEM;
2969			if (ss_size < MINSIGSTKSZ)
2970				goto out;
2971		}
2972
2973		current->sas_ss_sp = (unsigned long) ss_sp;
2974		current->sas_ss_size = ss_size;
2975	}
2976
2977	error = 0;
2978	if (uoss) {
2979		error = -EFAULT;
2980		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2981			goto out;
2982		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2983			__put_user(oss.ss_size, &uoss->ss_size) |
2984			__put_user(oss.ss_flags, &uoss->ss_flags);
2985	}
2986
2987out:
2988	return error;
2989}
2990
2991#ifdef __ARCH_WANT_SYS_SIGPENDING
2992
2993/**
2994 *  sys_sigpending - examine pending signals
2995 *  @set: where mask of pending signal is returned
2996 */
2997SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2998{
2999	return do_sigpending(set, sizeof(*set));
3000}
3001
3002#endif
3003
3004#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3005/**
3006 *  sys_sigprocmask - examine and change blocked signals
3007 *  @how: whether to add, remove, or set signals
3008 *  @nset: signals to add or remove (if non-null)
3009 *  @oset: previous value of signal mask if non-null
3010 *
3011 * Some platforms have their own version with special arguments;
3012 * others support only sys_rt_sigprocmask.
3013 */
3014
3015SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3016		old_sigset_t __user *, oset)
3017{
3018	old_sigset_t old_set, new_set;
3019	sigset_t new_blocked;
3020
3021	old_set = current->blocked.sig[0];
3022
3023	if (nset) {
3024		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3025			return -EFAULT;
3026		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3027
3028		new_blocked = current->blocked;
3029
3030		switch (how) {
3031		case SIG_BLOCK:
3032			sigaddsetmask(&new_blocked, new_set);
3033			break;
3034		case SIG_UNBLOCK:
3035			sigdelsetmask(&new_blocked, new_set);
3036			break;
3037		case SIG_SETMASK:
3038			new_blocked.sig[0] = new_set;
3039			break;
3040		default:
3041			return -EINVAL;
3042		}
3043
3044		set_current_blocked(&new_blocked);
3045	}
3046
3047	if (oset) {
3048		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3049			return -EFAULT;
3050	}
3051
3052	return 0;
3053}
3054#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3055
3056#ifdef __ARCH_WANT_SYS_RT_SIGACTION
3057/**
3058 *  sys_rt_sigaction - alter an action taken by a process
3059 *  @sig: signal to be sent
3060 *  @act: new sigaction
3061 *  @oact: used to save the previous sigaction
3062 *  @sigsetsize: size of sigset_t type
3063 */
3064SYSCALL_DEFINE4(rt_sigaction, int, sig,
3065		const struct sigaction __user *, act,
3066		struct sigaction __user *, oact,
3067		size_t, sigsetsize)
3068{
3069	struct k_sigaction new_sa, old_sa;
3070	int ret = -EINVAL;
3071
3072	/* XXX: Don't preclude handling different sized sigset_t's.  */
3073	if (sigsetsize != sizeof(sigset_t))
3074		goto out;
3075
3076	if (act) {
3077		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3078			return -EFAULT;
3079	}
3080
3081	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3082
3083	if (!ret && oact) {
3084		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3085			return -EFAULT;
3086	}
3087out:
3088	return ret;
3089}
3090#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3091
3092#ifdef __ARCH_WANT_SYS_SGETMASK
3093
3094/*
3095 * For backwards compatibility.  Functionality superseded by sigprocmask.
3096 */
3097SYSCALL_DEFINE0(sgetmask)
3098{
3099	/* SMP safe */
3100	return current->blocked.sig[0];
3101}
3102
3103SYSCALL_DEFINE1(ssetmask, int, newmask)
3104{
3105	int old = current->blocked.sig[0];
3106	sigset_t newset;
3107
3108	siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP)));
3109	set_current_blocked(&newset);
3110
3111	return old;
3112}
3113#endif /* __ARCH_WANT_SGETMASK */
3114
3115#ifdef __ARCH_WANT_SYS_SIGNAL
3116/*
3117 * For backwards compatibility.  Functionality superseded by sigaction.
3118 */
3119SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3120{
3121	struct k_sigaction new_sa, old_sa;
3122	int ret;
3123
3124	new_sa.sa.sa_handler = handler;
3125	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3126	sigemptyset(&new_sa.sa.sa_mask);
3127
3128	ret = do_sigaction(sig, &new_sa, &old_sa);
3129
3130	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3131}
3132#endif /* __ARCH_WANT_SYS_SIGNAL */
3133
3134#ifdef __ARCH_WANT_SYS_PAUSE
3135
3136SYSCALL_DEFINE0(pause)
3137{
3138	while (!signal_pending(current)) {
3139		current->state = TASK_INTERRUPTIBLE;
3140		schedule();
3141	}
3142	return -ERESTARTNOHAND;
3143}
3144
3145#endif
3146
 
 
 
 
 
 
 
 
 
 
 
3147#ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3148/**
3149 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3150 *	@unewset value until a signal is received
3151 *  @unewset: new signal mask value
3152 *  @sigsetsize: size of sigset_t type
3153 */
3154SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3155{
3156	sigset_t newset;
3157
3158	/* XXX: Don't preclude handling different sized sigset_t's.  */
3159	if (sigsetsize != sizeof(sigset_t))
3160		return -EINVAL;
3161
3162	if (copy_from_user(&newset, unewset, sizeof(newset)))
3163		return -EFAULT;
3164	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3165
3166	current->saved_sigmask = current->blocked;
3167	set_current_blocked(&newset);
3168
3169	current->state = TASK_INTERRUPTIBLE;
3170	schedule();
3171	set_restore_sigmask();
3172	return -ERESTARTNOHAND;
3173}
3174#endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3175
3176__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3177{
3178	return NULL;
3179}
3180
3181void __init signals_init(void)
3182{
3183	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3184}
3185
3186#ifdef CONFIG_KGDB_KDB
3187#include <linux/kdb.h>
3188/*
3189 * kdb_send_sig_info - Allows kdb to send signals without exposing
3190 * signal internals.  This function checks if the required locks are
3191 * available before calling the main signal code, to avoid kdb
3192 * deadlocks.
3193 */
3194void
3195kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3196{
3197	static struct task_struct *kdb_prev_t;
3198	int sig, new_t;
3199	if (!spin_trylock(&t->sighand->siglock)) {
3200		kdb_printf("Can't do kill command now.\n"
3201			   "The sigmask lock is held somewhere else in "
3202			   "kernel, try again later\n");
3203		return;
3204	}
3205	spin_unlock(&t->sighand->siglock);
3206	new_t = kdb_prev_t != t;
3207	kdb_prev_t = t;
3208	if (t->state != TASK_RUNNING && new_t) {
3209		kdb_printf("Process is not RUNNING, sending a signal from "
3210			   "kdb risks deadlock\n"
3211			   "on the run queue locks. "
3212			   "The signal has _not_ been sent.\n"
3213			   "Reissue the kill command if you want to risk "
3214			   "the deadlock.\n");
3215		return;
3216	}
3217	sig = info->si_signo;
3218	if (send_sig_info(sig, info, t))
3219		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3220			   sig, t->pid);
3221	else
3222		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3223}
3224#endif	/* CONFIG_KGDB_KDB */
v3.5.6
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
  17#include <linux/fs.h>
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/security.h>
  21#include <linux/syscalls.h>
  22#include <linux/ptrace.h>
  23#include <linux/signal.h>
  24#include <linux/signalfd.h>
  25#include <linux/ratelimit.h>
  26#include <linux/tracehook.h>
  27#include <linux/capability.h>
  28#include <linux/freezer.h>
  29#include <linux/pid_namespace.h>
  30#include <linux/nsproxy.h>
  31#include <linux/user_namespace.h>
  32#include <linux/uprobes.h>
  33#define CREATE_TRACE_POINTS
  34#include <trace/events/signal.h>
  35
  36#include <asm/param.h>
  37#include <asm/uaccess.h>
  38#include <asm/unistd.h>
  39#include <asm/siginfo.h>
  40#include <asm/cacheflush.h>
  41#include "audit.h"	/* audit_signal_info() */
  42
  43/*
  44 * SLAB caches for signal bits.
  45 */
  46
  47static struct kmem_cache *sigqueue_cachep;
  48
  49int print_fatal_signals __read_mostly;
  50
  51static void __user *sig_handler(struct task_struct *t, int sig)
  52{
  53	return t->sighand->action[sig - 1].sa.sa_handler;
  54}
  55
  56static int sig_handler_ignored(void __user *handler, int sig)
  57{
  58	/* Is it explicitly or implicitly ignored? */
  59	return handler == SIG_IGN ||
  60		(handler == SIG_DFL && sig_kernel_ignore(sig));
  61}
  62
  63static int sig_task_ignored(struct task_struct *t, int sig, bool force)
 
  64{
  65	void __user *handler;
  66
  67	handler = sig_handler(t, sig);
  68
  69	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  70			handler == SIG_DFL && !force)
  71		return 1;
  72
  73	return sig_handler_ignored(handler, sig);
  74}
  75
  76static int sig_ignored(struct task_struct *t, int sig, bool force)
  77{
  78	/*
  79	 * Blocked signals are never ignored, since the
  80	 * signal handler may change by the time it is
  81	 * unblocked.
  82	 */
  83	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  84		return 0;
  85
  86	if (!sig_task_ignored(t, sig, force))
  87		return 0;
  88
  89	/*
  90	 * Tracers may want to know about even ignored signals.
  91	 */
  92	return !t->ptrace;
  93}
  94
  95/*
  96 * Re-calculate pending state from the set of locally pending
  97 * signals, globally pending signals, and blocked signals.
  98 */
  99static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 100{
 101	unsigned long ready;
 102	long i;
 103
 104	switch (_NSIG_WORDS) {
 105	default:
 106		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 107			ready |= signal->sig[i] &~ blocked->sig[i];
 108		break;
 109
 110	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 111		ready |= signal->sig[2] &~ blocked->sig[2];
 112		ready |= signal->sig[1] &~ blocked->sig[1];
 113		ready |= signal->sig[0] &~ blocked->sig[0];
 114		break;
 115
 116	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 117		ready |= signal->sig[0] &~ blocked->sig[0];
 118		break;
 119
 120	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 121	}
 122	return ready !=	0;
 123}
 124
 125#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 126
 127static int recalc_sigpending_tsk(struct task_struct *t)
 128{
 129	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 130	    PENDING(&t->pending, &t->blocked) ||
 131	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 132		set_tsk_thread_flag(t, TIF_SIGPENDING);
 133		return 1;
 134	}
 135	/*
 136	 * We must never clear the flag in another thread, or in current
 137	 * when it's possible the current syscall is returning -ERESTART*.
 138	 * So we don't clear it here, and only callers who know they should do.
 139	 */
 140	return 0;
 141}
 142
 143/*
 144 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 145 * This is superfluous when called on current, the wakeup is a harmless no-op.
 146 */
 147void recalc_sigpending_and_wake(struct task_struct *t)
 148{
 149	if (recalc_sigpending_tsk(t))
 150		signal_wake_up(t, 0);
 151}
 152
 153void recalc_sigpending(void)
 154{
 155	if (!recalc_sigpending_tsk(current) && !freezing(current))
 156		clear_thread_flag(TIF_SIGPENDING);
 157
 158}
 159
 160/* Given the mask, find the first available signal that should be serviced. */
 161
 162#define SYNCHRONOUS_MASK \
 163	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 164	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 165
 166int next_signal(struct sigpending *pending, sigset_t *mask)
 167{
 168	unsigned long i, *s, *m, x;
 169	int sig = 0;
 170
 171	s = pending->signal.sig;
 172	m = mask->sig;
 173
 174	/*
 175	 * Handle the first word specially: it contains the
 176	 * synchronous signals that need to be dequeued first.
 177	 */
 178	x = *s &~ *m;
 179	if (x) {
 180		if (x & SYNCHRONOUS_MASK)
 181			x &= SYNCHRONOUS_MASK;
 182		sig = ffz(~x) + 1;
 183		return sig;
 184	}
 185
 186	switch (_NSIG_WORDS) {
 187	default:
 188		for (i = 1; i < _NSIG_WORDS; ++i) {
 189			x = *++s &~ *++m;
 190			if (!x)
 191				continue;
 192			sig = ffz(~x) + i*_NSIG_BPW + 1;
 193			break;
 194		}
 195		break;
 196
 197	case 2:
 198		x = s[1] &~ m[1];
 199		if (!x)
 200			break;
 201		sig = ffz(~x) + _NSIG_BPW + 1;
 202		break;
 203
 204	case 1:
 205		/* Nothing to do */
 206		break;
 207	}
 208
 209	return sig;
 210}
 211
 212static inline void print_dropped_signal(int sig)
 213{
 214	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 215
 216	if (!print_fatal_signals)
 217		return;
 218
 219	if (!__ratelimit(&ratelimit_state))
 220		return;
 221
 222	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 223				current->comm, current->pid, sig);
 224}
 225
 226/**
 227 * task_set_jobctl_pending - set jobctl pending bits
 228 * @task: target task
 229 * @mask: pending bits to set
 230 *
 231 * Clear @mask from @task->jobctl.  @mask must be subset of
 232 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 233 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 234 * cleared.  If @task is already being killed or exiting, this function
 235 * becomes noop.
 236 *
 237 * CONTEXT:
 238 * Must be called with @task->sighand->siglock held.
 239 *
 240 * RETURNS:
 241 * %true if @mask is set, %false if made noop because @task was dying.
 242 */
 243bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
 244{
 245	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 246			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 247	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 248
 249	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 250		return false;
 251
 252	if (mask & JOBCTL_STOP_SIGMASK)
 253		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 254
 255	task->jobctl |= mask;
 256	return true;
 257}
 258
 259/**
 260 * task_clear_jobctl_trapping - clear jobctl trapping bit
 261 * @task: target task
 262 *
 263 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 264 * Clear it and wake up the ptracer.  Note that we don't need any further
 265 * locking.  @task->siglock guarantees that @task->parent points to the
 266 * ptracer.
 267 *
 268 * CONTEXT:
 269 * Must be called with @task->sighand->siglock held.
 270 */
 271void task_clear_jobctl_trapping(struct task_struct *task)
 272{
 273	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 274		task->jobctl &= ~JOBCTL_TRAPPING;
 275		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 276	}
 277}
 278
 279/**
 280 * task_clear_jobctl_pending - clear jobctl pending bits
 281 * @task: target task
 282 * @mask: pending bits to clear
 283 *
 284 * Clear @mask from @task->jobctl.  @mask must be subset of
 285 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 286 * STOP bits are cleared together.
 287 *
 288 * If clearing of @mask leaves no stop or trap pending, this function calls
 289 * task_clear_jobctl_trapping().
 290 *
 291 * CONTEXT:
 292 * Must be called with @task->sighand->siglock held.
 293 */
 294void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
 295{
 296	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 297
 298	if (mask & JOBCTL_STOP_PENDING)
 299		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 300
 301	task->jobctl &= ~mask;
 302
 303	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 304		task_clear_jobctl_trapping(task);
 305}
 306
 307/**
 308 * task_participate_group_stop - participate in a group stop
 309 * @task: task participating in a group stop
 310 *
 311 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 312 * Group stop states are cleared and the group stop count is consumed if
 313 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 314 * stop, the appropriate %SIGNAL_* flags are set.
 315 *
 316 * CONTEXT:
 317 * Must be called with @task->sighand->siglock held.
 318 *
 319 * RETURNS:
 320 * %true if group stop completion should be notified to the parent, %false
 321 * otherwise.
 322 */
 323static bool task_participate_group_stop(struct task_struct *task)
 324{
 325	struct signal_struct *sig = task->signal;
 326	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 327
 328	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 329
 330	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 331
 332	if (!consume)
 333		return false;
 334
 335	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 336		sig->group_stop_count--;
 337
 338	/*
 339	 * Tell the caller to notify completion iff we are entering into a
 340	 * fresh group stop.  Read comment in do_signal_stop() for details.
 341	 */
 342	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 343		sig->flags = SIGNAL_STOP_STOPPED;
 344		return true;
 345	}
 346	return false;
 347}
 348
 349/*
 350 * allocate a new signal queue record
 351 * - this may be called without locks if and only if t == current, otherwise an
 352 *   appropriate lock must be held to stop the target task from exiting
 353 */
 354static struct sigqueue *
 355__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 356{
 357	struct sigqueue *q = NULL;
 358	struct user_struct *user;
 359
 360	/*
 361	 * Protect access to @t credentials. This can go away when all
 362	 * callers hold rcu read lock.
 363	 */
 364	rcu_read_lock();
 365	user = get_uid(__task_cred(t)->user);
 366	atomic_inc(&user->sigpending);
 367	rcu_read_unlock();
 368
 369	if (override_rlimit ||
 370	    atomic_read(&user->sigpending) <=
 371			task_rlimit(t, RLIMIT_SIGPENDING)) {
 372		q = kmem_cache_alloc(sigqueue_cachep, flags);
 373	} else {
 374		print_dropped_signal(sig);
 375	}
 376
 377	if (unlikely(q == NULL)) {
 378		atomic_dec(&user->sigpending);
 379		free_uid(user);
 380	} else {
 381		INIT_LIST_HEAD(&q->list);
 382		q->flags = 0;
 383		q->user = user;
 384	}
 385
 386	return q;
 387}
 388
 389static void __sigqueue_free(struct sigqueue *q)
 390{
 391	if (q->flags & SIGQUEUE_PREALLOC)
 392		return;
 393	atomic_dec(&q->user->sigpending);
 394	free_uid(q->user);
 395	kmem_cache_free(sigqueue_cachep, q);
 396}
 397
 398void flush_sigqueue(struct sigpending *queue)
 399{
 400	struct sigqueue *q;
 401
 402	sigemptyset(&queue->signal);
 403	while (!list_empty(&queue->list)) {
 404		q = list_entry(queue->list.next, struct sigqueue , list);
 405		list_del_init(&q->list);
 406		__sigqueue_free(q);
 407	}
 408}
 409
 410/*
 411 * Flush all pending signals for a task.
 412 */
 413void __flush_signals(struct task_struct *t)
 414{
 415	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 416	flush_sigqueue(&t->pending);
 417	flush_sigqueue(&t->signal->shared_pending);
 418}
 419
 420void flush_signals(struct task_struct *t)
 421{
 422	unsigned long flags;
 423
 424	spin_lock_irqsave(&t->sighand->siglock, flags);
 425	__flush_signals(t);
 426	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 427}
 428
 429static void __flush_itimer_signals(struct sigpending *pending)
 430{
 431	sigset_t signal, retain;
 432	struct sigqueue *q, *n;
 433
 434	signal = pending->signal;
 435	sigemptyset(&retain);
 436
 437	list_for_each_entry_safe(q, n, &pending->list, list) {
 438		int sig = q->info.si_signo;
 439
 440		if (likely(q->info.si_code != SI_TIMER)) {
 441			sigaddset(&retain, sig);
 442		} else {
 443			sigdelset(&signal, sig);
 444			list_del_init(&q->list);
 445			__sigqueue_free(q);
 446		}
 447	}
 448
 449	sigorsets(&pending->signal, &signal, &retain);
 450}
 451
 452void flush_itimer_signals(void)
 453{
 454	struct task_struct *tsk = current;
 455	unsigned long flags;
 456
 457	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 458	__flush_itimer_signals(&tsk->pending);
 459	__flush_itimer_signals(&tsk->signal->shared_pending);
 460	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 461}
 462
 463void ignore_signals(struct task_struct *t)
 464{
 465	int i;
 466
 467	for (i = 0; i < _NSIG; ++i)
 468		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 469
 470	flush_signals(t);
 471}
 472
 473/*
 474 * Flush all handlers for a task.
 475 */
 476
 477void
 478flush_signal_handlers(struct task_struct *t, int force_default)
 479{
 480	int i;
 481	struct k_sigaction *ka = &t->sighand->action[0];
 482	for (i = _NSIG ; i != 0 ; i--) {
 483		if (force_default || ka->sa.sa_handler != SIG_IGN)
 484			ka->sa.sa_handler = SIG_DFL;
 485		ka->sa.sa_flags = 0;
 486		sigemptyset(&ka->sa.sa_mask);
 487		ka++;
 488	}
 489}
 490
 491int unhandled_signal(struct task_struct *tsk, int sig)
 492{
 493	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 494	if (is_global_init(tsk))
 495		return 1;
 496	if (handler != SIG_IGN && handler != SIG_DFL)
 497		return 0;
 498	/* if ptraced, let the tracer determine */
 499	return !tsk->ptrace;
 500}
 501
 502/*
 503 * Notify the system that a driver wants to block all signals for this
 504 * process, and wants to be notified if any signals at all were to be
 505 * sent/acted upon.  If the notifier routine returns non-zero, then the
 506 * signal will be acted upon after all.  If the notifier routine returns 0,
 507 * then then signal will be blocked.  Only one block per process is
 508 * allowed.  priv is a pointer to private data that the notifier routine
 509 * can use to determine if the signal should be blocked or not.
 510 */
 511void
 512block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 513{
 514	unsigned long flags;
 515
 516	spin_lock_irqsave(&current->sighand->siglock, flags);
 517	current->notifier_mask = mask;
 518	current->notifier_data = priv;
 519	current->notifier = notifier;
 520	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 521}
 522
 523/* Notify the system that blocking has ended. */
 524
 525void
 526unblock_all_signals(void)
 527{
 528	unsigned long flags;
 529
 530	spin_lock_irqsave(&current->sighand->siglock, flags);
 531	current->notifier = NULL;
 532	current->notifier_data = NULL;
 533	recalc_sigpending();
 534	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 535}
 536
 537static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 538{
 539	struct sigqueue *q, *first = NULL;
 540
 541	/*
 542	 * Collect the siginfo appropriate to this signal.  Check if
 543	 * there is another siginfo for the same signal.
 544	*/
 545	list_for_each_entry(q, &list->list, list) {
 546		if (q->info.si_signo == sig) {
 547			if (first)
 548				goto still_pending;
 549			first = q;
 550		}
 551	}
 552
 553	sigdelset(&list->signal, sig);
 554
 555	if (first) {
 556still_pending:
 557		list_del_init(&first->list);
 558		copy_siginfo(info, &first->info);
 559		__sigqueue_free(first);
 560	} else {
 561		/*
 562		 * Ok, it wasn't in the queue.  This must be
 563		 * a fast-pathed signal or we must have been
 564		 * out of queue space.  So zero out the info.
 565		 */
 566		info->si_signo = sig;
 567		info->si_errno = 0;
 568		info->si_code = SI_USER;
 569		info->si_pid = 0;
 570		info->si_uid = 0;
 571	}
 572}
 573
 574static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 575			siginfo_t *info)
 576{
 577	int sig = next_signal(pending, mask);
 578
 579	if (sig) {
 580		if (current->notifier) {
 581			if (sigismember(current->notifier_mask, sig)) {
 582				if (!(current->notifier)(current->notifier_data)) {
 583					clear_thread_flag(TIF_SIGPENDING);
 584					return 0;
 585				}
 586			}
 587		}
 588
 589		collect_signal(sig, pending, info);
 590	}
 591
 592	return sig;
 593}
 594
 595/*
 596 * Dequeue a signal and return the element to the caller, which is
 597 * expected to free it.
 598 *
 599 * All callers have to hold the siglock.
 600 */
 601int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 602{
 603	int signr;
 604
 605	/* We only dequeue private signals from ourselves, we don't let
 606	 * signalfd steal them
 607	 */
 608	signr = __dequeue_signal(&tsk->pending, mask, info);
 609	if (!signr) {
 610		signr = __dequeue_signal(&tsk->signal->shared_pending,
 611					 mask, info);
 612		/*
 613		 * itimer signal ?
 614		 *
 615		 * itimers are process shared and we restart periodic
 616		 * itimers in the signal delivery path to prevent DoS
 617		 * attacks in the high resolution timer case. This is
 618		 * compliant with the old way of self-restarting
 619		 * itimers, as the SIGALRM is a legacy signal and only
 620		 * queued once. Changing the restart behaviour to
 621		 * restart the timer in the signal dequeue path is
 622		 * reducing the timer noise on heavy loaded !highres
 623		 * systems too.
 624		 */
 625		if (unlikely(signr == SIGALRM)) {
 626			struct hrtimer *tmr = &tsk->signal->real_timer;
 627
 628			if (!hrtimer_is_queued(tmr) &&
 629			    tsk->signal->it_real_incr.tv64 != 0) {
 630				hrtimer_forward(tmr, tmr->base->get_time(),
 631						tsk->signal->it_real_incr);
 632				hrtimer_restart(tmr);
 633			}
 634		}
 635	}
 636
 637	recalc_sigpending();
 638	if (!signr)
 639		return 0;
 640
 641	if (unlikely(sig_kernel_stop(signr))) {
 642		/*
 643		 * Set a marker that we have dequeued a stop signal.  Our
 644		 * caller might release the siglock and then the pending
 645		 * stop signal it is about to process is no longer in the
 646		 * pending bitmasks, but must still be cleared by a SIGCONT
 647		 * (and overruled by a SIGKILL).  So those cases clear this
 648		 * shared flag after we've set it.  Note that this flag may
 649		 * remain set after the signal we return is ignored or
 650		 * handled.  That doesn't matter because its only purpose
 651		 * is to alert stop-signal processing code when another
 652		 * processor has come along and cleared the flag.
 653		 */
 654		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 655	}
 656	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 657		/*
 658		 * Release the siglock to ensure proper locking order
 659		 * of timer locks outside of siglocks.  Note, we leave
 660		 * irqs disabled here, since the posix-timers code is
 661		 * about to disable them again anyway.
 662		 */
 663		spin_unlock(&tsk->sighand->siglock);
 664		do_schedule_next_timer(info);
 665		spin_lock(&tsk->sighand->siglock);
 666	}
 667	return signr;
 668}
 669
 670/*
 671 * Tell a process that it has a new active signal..
 672 *
 673 * NOTE! we rely on the previous spin_lock to
 674 * lock interrupts for us! We can only be called with
 675 * "siglock" held, and the local interrupt must
 676 * have been disabled when that got acquired!
 677 *
 678 * No need to set need_resched since signal event passing
 679 * goes through ->blocked
 680 */
 681void signal_wake_up(struct task_struct *t, int resume)
 682{
 683	unsigned int mask;
 684
 685	set_tsk_thread_flag(t, TIF_SIGPENDING);
 686
 687	/*
 688	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
 689	 * case. We don't check t->state here because there is a race with it
 690	 * executing another processor and just now entering stopped state.
 691	 * By using wake_up_state, we ensure the process will wake up and
 692	 * handle its death signal.
 693	 */
 694	mask = TASK_INTERRUPTIBLE;
 695	if (resume)
 696		mask |= TASK_WAKEKILL;
 697	if (!wake_up_state(t, mask))
 698		kick_process(t);
 699}
 700
 701/*
 702 * Remove signals in mask from the pending set and queue.
 703 * Returns 1 if any signals were found.
 704 *
 705 * All callers must be holding the siglock.
 706 *
 707 * This version takes a sigset mask and looks at all signals,
 708 * not just those in the first mask word.
 709 */
 710static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
 711{
 712	struct sigqueue *q, *n;
 713	sigset_t m;
 714
 715	sigandsets(&m, mask, &s->signal);
 716	if (sigisemptyset(&m))
 717		return 0;
 718
 719	sigandnsets(&s->signal, &s->signal, mask);
 720	list_for_each_entry_safe(q, n, &s->list, list) {
 721		if (sigismember(mask, q->info.si_signo)) {
 722			list_del_init(&q->list);
 723			__sigqueue_free(q);
 724		}
 725	}
 726	return 1;
 727}
 728/*
 729 * Remove signals in mask from the pending set and queue.
 730 * Returns 1 if any signals were found.
 731 *
 732 * All callers must be holding the siglock.
 733 */
 734static int rm_from_queue(unsigned long mask, struct sigpending *s)
 735{
 736	struct sigqueue *q, *n;
 737
 738	if (!sigtestsetmask(&s->signal, mask))
 739		return 0;
 740
 741	sigdelsetmask(&s->signal, mask);
 742	list_for_each_entry_safe(q, n, &s->list, list) {
 743		if (q->info.si_signo < SIGRTMIN &&
 744		    (mask & sigmask(q->info.si_signo))) {
 745			list_del_init(&q->list);
 746			__sigqueue_free(q);
 747		}
 748	}
 749	return 1;
 750}
 751
 752static inline int is_si_special(const struct siginfo *info)
 753{
 754	return info <= SEND_SIG_FORCED;
 755}
 756
 757static inline bool si_fromuser(const struct siginfo *info)
 758{
 759	return info == SEND_SIG_NOINFO ||
 760		(!is_si_special(info) && SI_FROMUSER(info));
 761}
 762
 763/*
 764 * called with RCU read lock from check_kill_permission()
 765 */
 766static int kill_ok_by_cred(struct task_struct *t)
 767{
 768	const struct cred *cred = current_cred();
 769	const struct cred *tcred = __task_cred(t);
 770
 771	if (uid_eq(cred->euid, tcred->suid) ||
 772	    uid_eq(cred->euid, tcred->uid)  ||
 773	    uid_eq(cred->uid,  tcred->suid) ||
 774	    uid_eq(cred->uid,  tcred->uid))
 
 775		return 1;
 776
 777	if (ns_capable(tcred->user_ns, CAP_KILL))
 778		return 1;
 779
 780	return 0;
 781}
 782
 783/*
 784 * Bad permissions for sending the signal
 785 * - the caller must hold the RCU read lock
 786 */
 787static int check_kill_permission(int sig, struct siginfo *info,
 788				 struct task_struct *t)
 789{
 790	struct pid *sid;
 791	int error;
 792
 793	if (!valid_signal(sig))
 794		return -EINVAL;
 795
 796	if (!si_fromuser(info))
 797		return 0;
 798
 799	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 800	if (error)
 801		return error;
 802
 803	if (!same_thread_group(current, t) &&
 804	    !kill_ok_by_cred(t)) {
 805		switch (sig) {
 806		case SIGCONT:
 807			sid = task_session(t);
 808			/*
 809			 * We don't return the error if sid == NULL. The
 810			 * task was unhashed, the caller must notice this.
 811			 */
 812			if (!sid || sid == task_session(current))
 813				break;
 814		default:
 815			return -EPERM;
 816		}
 817	}
 818
 819	return security_task_kill(t, info, sig, 0);
 820}
 821
 822/**
 823 * ptrace_trap_notify - schedule trap to notify ptracer
 824 * @t: tracee wanting to notify tracer
 825 *
 826 * This function schedules sticky ptrace trap which is cleared on the next
 827 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 828 * ptracer.
 829 *
 830 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 831 * ptracer is listening for events, tracee is woken up so that it can
 832 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 833 * eventually taken without returning to userland after the existing traps
 834 * are finished by PTRACE_CONT.
 835 *
 836 * CONTEXT:
 837 * Must be called with @task->sighand->siglock held.
 838 */
 839static void ptrace_trap_notify(struct task_struct *t)
 840{
 841	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 842	assert_spin_locked(&t->sighand->siglock);
 843
 844	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 845	signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 846}
 847
 848/*
 849 * Handle magic process-wide effects of stop/continue signals. Unlike
 850 * the signal actions, these happen immediately at signal-generation
 851 * time regardless of blocking, ignoring, or handling.  This does the
 852 * actual continuing for SIGCONT, but not the actual stopping for stop
 853 * signals. The process stop is done as a signal action for SIG_DFL.
 854 *
 855 * Returns true if the signal should be actually delivered, otherwise
 856 * it should be dropped.
 857 */
 858static int prepare_signal(int sig, struct task_struct *p, bool force)
 859{
 860	struct signal_struct *signal = p->signal;
 861	struct task_struct *t;
 862
 863	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
 864		/*
 865		 * The process is in the middle of dying, nothing to do.
 866		 */
 867	} else if (sig_kernel_stop(sig)) {
 868		/*
 869		 * This is a stop signal.  Remove SIGCONT from all queues.
 870		 */
 871		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
 872		t = p;
 873		do {
 874			rm_from_queue(sigmask(SIGCONT), &t->pending);
 875		} while_each_thread(p, t);
 876	} else if (sig == SIGCONT) {
 877		unsigned int why;
 878		/*
 879		 * Remove all stop signals from all queues, wake all threads.
 880		 */
 881		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
 882		t = p;
 883		do {
 884			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 885			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
 886			if (likely(!(t->ptrace & PT_SEIZED)))
 887				wake_up_state(t, __TASK_STOPPED);
 888			else
 889				ptrace_trap_notify(t);
 890		} while_each_thread(p, t);
 891
 892		/*
 893		 * Notify the parent with CLD_CONTINUED if we were stopped.
 894		 *
 895		 * If we were in the middle of a group stop, we pretend it
 896		 * was already finished, and then continued. Since SIGCHLD
 897		 * doesn't queue we report only CLD_STOPPED, as if the next
 898		 * CLD_CONTINUED was dropped.
 899		 */
 900		why = 0;
 901		if (signal->flags & SIGNAL_STOP_STOPPED)
 902			why |= SIGNAL_CLD_CONTINUED;
 903		else if (signal->group_stop_count)
 904			why |= SIGNAL_CLD_STOPPED;
 905
 906		if (why) {
 907			/*
 908			 * The first thread which returns from do_signal_stop()
 909			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 910			 * notify its parent. See get_signal_to_deliver().
 911			 */
 912			signal->flags = why | SIGNAL_STOP_CONTINUED;
 913			signal->group_stop_count = 0;
 914			signal->group_exit_code = 0;
 915		}
 916	}
 917
 918	return !sig_ignored(p, sig, force);
 919}
 920
 921/*
 922 * Test if P wants to take SIG.  After we've checked all threads with this,
 923 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 924 * blocking SIG were ruled out because they are not running and already
 925 * have pending signals.  Such threads will dequeue from the shared queue
 926 * as soon as they're available, so putting the signal on the shared queue
 927 * will be equivalent to sending it to one such thread.
 928 */
 929static inline int wants_signal(int sig, struct task_struct *p)
 930{
 931	if (sigismember(&p->blocked, sig))
 932		return 0;
 933	if (p->flags & PF_EXITING)
 934		return 0;
 935	if (sig == SIGKILL)
 936		return 1;
 937	if (task_is_stopped_or_traced(p))
 938		return 0;
 939	return task_curr(p) || !signal_pending(p);
 940}
 941
 942static void complete_signal(int sig, struct task_struct *p, int group)
 943{
 944	struct signal_struct *signal = p->signal;
 945	struct task_struct *t;
 946
 947	/*
 948	 * Now find a thread we can wake up to take the signal off the queue.
 949	 *
 950	 * If the main thread wants the signal, it gets first crack.
 951	 * Probably the least surprising to the average bear.
 952	 */
 953	if (wants_signal(sig, p))
 954		t = p;
 955	else if (!group || thread_group_empty(p))
 956		/*
 957		 * There is just one thread and it does not need to be woken.
 958		 * It will dequeue unblocked signals before it runs again.
 959		 */
 960		return;
 961	else {
 962		/*
 963		 * Otherwise try to find a suitable thread.
 964		 */
 965		t = signal->curr_target;
 966		while (!wants_signal(sig, t)) {
 967			t = next_thread(t);
 968			if (t == signal->curr_target)
 969				/*
 970				 * No thread needs to be woken.
 971				 * Any eligible threads will see
 972				 * the signal in the queue soon.
 973				 */
 974				return;
 975		}
 976		signal->curr_target = t;
 977	}
 978
 979	/*
 980	 * Found a killable thread.  If the signal will be fatal,
 981	 * then start taking the whole group down immediately.
 982	 */
 983	if (sig_fatal(p, sig) &&
 984	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 985	    !sigismember(&t->real_blocked, sig) &&
 986	    (sig == SIGKILL || !t->ptrace)) {
 987		/*
 988		 * This signal will be fatal to the whole group.
 989		 */
 990		if (!sig_kernel_coredump(sig)) {
 991			/*
 992			 * Start a group exit and wake everybody up.
 993			 * This way we don't have other threads
 994			 * running and doing things after a slower
 995			 * thread has the fatal signal pending.
 996			 */
 997			signal->flags = SIGNAL_GROUP_EXIT;
 998			signal->group_exit_code = sig;
 999			signal->group_stop_count = 0;
1000			t = p;
1001			do {
1002				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1003				sigaddset(&t->pending.signal, SIGKILL);
1004				signal_wake_up(t, 1);
1005			} while_each_thread(p, t);
1006			return;
1007		}
1008	}
1009
1010	/*
1011	 * The signal is already in the shared-pending queue.
1012	 * Tell the chosen thread to wake up and dequeue it.
1013	 */
1014	signal_wake_up(t, sig == SIGKILL);
1015	return;
1016}
1017
1018static inline int legacy_queue(struct sigpending *signals, int sig)
1019{
1020	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1021}
1022
1023#ifdef CONFIG_USER_NS
1024static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1025{
1026	if (current_user_ns() == task_cred_xxx(t, user_ns))
1027		return;
1028
1029	if (SI_FROMKERNEL(info))
1030		return;
1031
1032	rcu_read_lock();
1033	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1034					make_kuid(current_user_ns(), info->si_uid));
1035	rcu_read_unlock();
1036}
1037#else
1038static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1039{
1040	return;
1041}
1042#endif
1043
1044static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1045			int group, int from_ancestor_ns)
1046{
1047	struct sigpending *pending;
1048	struct sigqueue *q;
1049	int override_rlimit;
1050	int ret = 0, result;
 
1051
1052	assert_spin_locked(&t->sighand->siglock);
1053
1054	result = TRACE_SIGNAL_IGNORED;
1055	if (!prepare_signal(sig, t,
1056			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1057		goto ret;
1058
1059	pending = group ? &t->signal->shared_pending : &t->pending;
1060	/*
1061	 * Short-circuit ignored signals and support queuing
1062	 * exactly one non-rt signal, so that we can get more
1063	 * detailed information about the cause of the signal.
1064	 */
1065	result = TRACE_SIGNAL_ALREADY_PENDING;
1066	if (legacy_queue(pending, sig))
1067		goto ret;
1068
1069	result = TRACE_SIGNAL_DELIVERED;
1070	/*
1071	 * fast-pathed signals for kernel-internal things like SIGSTOP
1072	 * or SIGKILL.
1073	 */
1074	if (info == SEND_SIG_FORCED)
1075		goto out_set;
1076
1077	/*
1078	 * Real-time signals must be queued if sent by sigqueue, or
1079	 * some other real-time mechanism.  It is implementation
1080	 * defined whether kill() does so.  We attempt to do so, on
1081	 * the principle of least surprise, but since kill is not
1082	 * allowed to fail with EAGAIN when low on memory we just
1083	 * make sure at least one signal gets delivered and don't
1084	 * pass on the info struct.
1085	 */
1086	if (sig < SIGRTMIN)
1087		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1088	else
1089		override_rlimit = 0;
1090
1091	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1092		override_rlimit);
1093	if (q) {
1094		list_add_tail(&q->list, &pending->list);
1095		switch ((unsigned long) info) {
1096		case (unsigned long) SEND_SIG_NOINFO:
1097			q->info.si_signo = sig;
1098			q->info.si_errno = 0;
1099			q->info.si_code = SI_USER;
1100			q->info.si_pid = task_tgid_nr_ns(current,
1101							task_active_pid_ns(t));
1102			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1103			break;
1104		case (unsigned long) SEND_SIG_PRIV:
1105			q->info.si_signo = sig;
1106			q->info.si_errno = 0;
1107			q->info.si_code = SI_KERNEL;
1108			q->info.si_pid = 0;
1109			q->info.si_uid = 0;
1110			break;
1111		default:
1112			copy_siginfo(&q->info, info);
1113			if (from_ancestor_ns)
1114				q->info.si_pid = 0;
1115			break;
1116		}
1117
1118		userns_fixup_signal_uid(&q->info, t);
1119
1120	} else if (!is_si_special(info)) {
1121		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1122			/*
1123			 * Queue overflow, abort.  We may abort if the
1124			 * signal was rt and sent by user using something
1125			 * other than kill().
1126			 */
1127			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1128			ret = -EAGAIN;
1129			goto ret;
1130		} else {
1131			/*
1132			 * This is a silent loss of information.  We still
1133			 * send the signal, but the *info bits are lost.
1134			 */
1135			result = TRACE_SIGNAL_LOSE_INFO;
1136		}
1137	}
1138
1139out_set:
1140	signalfd_notify(t, sig);
1141	sigaddset(&pending->signal, sig);
1142	complete_signal(sig, t, group);
1143ret:
1144	trace_signal_generate(sig, info, t, group, result);
1145	return ret;
1146}
1147
1148static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1149			int group)
1150{
1151	int from_ancestor_ns = 0;
1152
1153#ifdef CONFIG_PID_NS
1154	from_ancestor_ns = si_fromuser(info) &&
1155			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1156#endif
1157
1158	return __send_signal(sig, info, t, group, from_ancestor_ns);
1159}
1160
1161static void print_fatal_signal(struct pt_regs *regs, int signr)
1162{
1163	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1164		current->comm, task_pid_nr(current), signr);
1165
1166#if defined(__i386__) && !defined(__arch_um__)
1167	printk("code at %08lx: ", regs->ip);
1168	{
1169		int i;
1170		for (i = 0; i < 16; i++) {
1171			unsigned char insn;
1172
1173			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1174				break;
1175			printk("%02x ", insn);
1176		}
1177	}
1178#endif
1179	printk("\n");
1180	preempt_disable();
1181	show_regs(regs);
1182	preempt_enable();
1183}
1184
1185static int __init setup_print_fatal_signals(char *str)
1186{
1187	get_option (&str, &print_fatal_signals);
1188
1189	return 1;
1190}
1191
1192__setup("print-fatal-signals=", setup_print_fatal_signals);
1193
1194int
1195__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1196{
1197	return send_signal(sig, info, p, 1);
1198}
1199
1200static int
1201specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1202{
1203	return send_signal(sig, info, t, 0);
1204}
1205
1206int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1207			bool group)
1208{
1209	unsigned long flags;
1210	int ret = -ESRCH;
1211
1212	if (lock_task_sighand(p, &flags)) {
1213		ret = send_signal(sig, info, p, group);
1214		unlock_task_sighand(p, &flags);
1215	}
1216
1217	return ret;
1218}
1219
1220/*
1221 * Force a signal that the process can't ignore: if necessary
1222 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1223 *
1224 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1225 * since we do not want to have a signal handler that was blocked
1226 * be invoked when user space had explicitly blocked it.
1227 *
1228 * We don't want to have recursive SIGSEGV's etc, for example,
1229 * that is why we also clear SIGNAL_UNKILLABLE.
1230 */
1231int
1232force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1233{
1234	unsigned long int flags;
1235	int ret, blocked, ignored;
1236	struct k_sigaction *action;
1237
1238	spin_lock_irqsave(&t->sighand->siglock, flags);
1239	action = &t->sighand->action[sig-1];
1240	ignored = action->sa.sa_handler == SIG_IGN;
1241	blocked = sigismember(&t->blocked, sig);
1242	if (blocked || ignored) {
1243		action->sa.sa_handler = SIG_DFL;
1244		if (blocked) {
1245			sigdelset(&t->blocked, sig);
1246			recalc_sigpending_and_wake(t);
1247		}
1248	}
1249	if (action->sa.sa_handler == SIG_DFL)
1250		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1251	ret = specific_send_sig_info(sig, info, t);
1252	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1253
1254	return ret;
1255}
1256
1257/*
1258 * Nuke all other threads in the group.
1259 */
1260int zap_other_threads(struct task_struct *p)
1261{
1262	struct task_struct *t = p;
1263	int count = 0;
1264
1265	p->signal->group_stop_count = 0;
1266
1267	while_each_thread(p, t) {
1268		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1269		count++;
1270
1271		/* Don't bother with already dead threads */
1272		if (t->exit_state)
1273			continue;
1274		sigaddset(&t->pending.signal, SIGKILL);
1275		signal_wake_up(t, 1);
1276	}
1277
1278	return count;
1279}
1280
1281struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1282					   unsigned long *flags)
1283{
1284	struct sighand_struct *sighand;
1285
1286	for (;;) {
1287		local_irq_save(*flags);
1288		rcu_read_lock();
1289		sighand = rcu_dereference(tsk->sighand);
1290		if (unlikely(sighand == NULL)) {
1291			rcu_read_unlock();
1292			local_irq_restore(*flags);
1293			break;
1294		}
1295
1296		spin_lock(&sighand->siglock);
1297		if (likely(sighand == tsk->sighand)) {
1298			rcu_read_unlock();
1299			break;
1300		}
1301		spin_unlock(&sighand->siglock);
1302		rcu_read_unlock();
1303		local_irq_restore(*flags);
1304	}
1305
1306	return sighand;
1307}
1308
1309/*
1310 * send signal info to all the members of a group
1311 */
1312int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1313{
1314	int ret;
1315
1316	rcu_read_lock();
1317	ret = check_kill_permission(sig, info, p);
1318	rcu_read_unlock();
1319
1320	if (!ret && sig)
1321		ret = do_send_sig_info(sig, info, p, true);
1322
1323	return ret;
1324}
1325
1326/*
1327 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1328 * control characters do (^C, ^Z etc)
1329 * - the caller must hold at least a readlock on tasklist_lock
1330 */
1331int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1332{
1333	struct task_struct *p = NULL;
1334	int retval, success;
1335
1336	success = 0;
1337	retval = -ESRCH;
1338	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1339		int err = group_send_sig_info(sig, info, p);
1340		success |= !err;
1341		retval = err;
1342	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1343	return success ? 0 : retval;
1344}
1345
1346int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1347{
1348	int error = -ESRCH;
1349	struct task_struct *p;
1350
1351	rcu_read_lock();
1352retry:
1353	p = pid_task(pid, PIDTYPE_PID);
1354	if (p) {
1355		error = group_send_sig_info(sig, info, p);
1356		if (unlikely(error == -ESRCH))
1357			/*
1358			 * The task was unhashed in between, try again.
1359			 * If it is dead, pid_task() will return NULL,
1360			 * if we race with de_thread() it will find the
1361			 * new leader.
1362			 */
1363			goto retry;
1364	}
1365	rcu_read_unlock();
1366
1367	return error;
1368}
1369
1370int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1371{
1372	int error;
1373	rcu_read_lock();
1374	error = kill_pid_info(sig, info, find_vpid(pid));
1375	rcu_read_unlock();
1376	return error;
1377}
1378
1379static int kill_as_cred_perm(const struct cred *cred,
1380			     struct task_struct *target)
1381{
1382	const struct cred *pcred = __task_cred(target);
1383	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1384	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1385		return 0;
1386	return 1;
1387}
1388
1389/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1390int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1391			 const struct cred *cred, u32 secid)
1392{
1393	int ret = -EINVAL;
1394	struct task_struct *p;
 
1395	unsigned long flags;
1396
1397	if (!valid_signal(sig))
1398		return ret;
1399
1400	rcu_read_lock();
1401	p = pid_task(pid, PIDTYPE_PID);
1402	if (!p) {
1403		ret = -ESRCH;
1404		goto out_unlock;
1405	}
1406	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
 
 
 
1407		ret = -EPERM;
1408		goto out_unlock;
1409	}
1410	ret = security_task_kill(p, info, sig, secid);
1411	if (ret)
1412		goto out_unlock;
1413
1414	if (sig) {
1415		if (lock_task_sighand(p, &flags)) {
1416			ret = __send_signal(sig, info, p, 1, 0);
1417			unlock_task_sighand(p, &flags);
1418		} else
1419			ret = -ESRCH;
1420	}
1421out_unlock:
1422	rcu_read_unlock();
1423	return ret;
1424}
1425EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1426
1427/*
1428 * kill_something_info() interprets pid in interesting ways just like kill(2).
1429 *
1430 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1431 * is probably wrong.  Should make it like BSD or SYSV.
1432 */
1433
1434static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1435{
1436	int ret;
1437
1438	if (pid > 0) {
1439		rcu_read_lock();
1440		ret = kill_pid_info(sig, info, find_vpid(pid));
1441		rcu_read_unlock();
1442		return ret;
1443	}
1444
1445	read_lock(&tasklist_lock);
1446	if (pid != -1) {
1447		ret = __kill_pgrp_info(sig, info,
1448				pid ? find_vpid(-pid) : task_pgrp(current));
1449	} else {
1450		int retval = 0, count = 0;
1451		struct task_struct * p;
1452
1453		for_each_process(p) {
1454			if (task_pid_vnr(p) > 1 &&
1455					!same_thread_group(p, current)) {
1456				int err = group_send_sig_info(sig, info, p);
1457				++count;
1458				if (err != -EPERM)
1459					retval = err;
1460			}
1461		}
1462		ret = count ? retval : -ESRCH;
1463	}
1464	read_unlock(&tasklist_lock);
1465
1466	return ret;
1467}
1468
1469/*
1470 * These are for backward compatibility with the rest of the kernel source.
1471 */
1472
1473int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1474{
1475	/*
1476	 * Make sure legacy kernel users don't send in bad values
1477	 * (normal paths check this in check_kill_permission).
1478	 */
1479	if (!valid_signal(sig))
1480		return -EINVAL;
1481
1482	return do_send_sig_info(sig, info, p, false);
1483}
1484
1485#define __si_special(priv) \
1486	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1487
1488int
1489send_sig(int sig, struct task_struct *p, int priv)
1490{
1491	return send_sig_info(sig, __si_special(priv), p);
1492}
1493
1494void
1495force_sig(int sig, struct task_struct *p)
1496{
1497	force_sig_info(sig, SEND_SIG_PRIV, p);
1498}
1499
1500/*
1501 * When things go south during signal handling, we
1502 * will force a SIGSEGV. And if the signal that caused
1503 * the problem was already a SIGSEGV, we'll want to
1504 * make sure we don't even try to deliver the signal..
1505 */
1506int
1507force_sigsegv(int sig, struct task_struct *p)
1508{
1509	if (sig == SIGSEGV) {
1510		unsigned long flags;
1511		spin_lock_irqsave(&p->sighand->siglock, flags);
1512		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1513		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1514	}
1515	force_sig(SIGSEGV, p);
1516	return 0;
1517}
1518
1519int kill_pgrp(struct pid *pid, int sig, int priv)
1520{
1521	int ret;
1522
1523	read_lock(&tasklist_lock);
1524	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1525	read_unlock(&tasklist_lock);
1526
1527	return ret;
1528}
1529EXPORT_SYMBOL(kill_pgrp);
1530
1531int kill_pid(struct pid *pid, int sig, int priv)
1532{
1533	return kill_pid_info(sig, __si_special(priv), pid);
1534}
1535EXPORT_SYMBOL(kill_pid);
1536
1537/*
1538 * These functions support sending signals using preallocated sigqueue
1539 * structures.  This is needed "because realtime applications cannot
1540 * afford to lose notifications of asynchronous events, like timer
1541 * expirations or I/O completions".  In the case of POSIX Timers
1542 * we allocate the sigqueue structure from the timer_create.  If this
1543 * allocation fails we are able to report the failure to the application
1544 * with an EAGAIN error.
1545 */
1546struct sigqueue *sigqueue_alloc(void)
1547{
1548	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1549
1550	if (q)
1551		q->flags |= SIGQUEUE_PREALLOC;
1552
1553	return q;
1554}
1555
1556void sigqueue_free(struct sigqueue *q)
1557{
1558	unsigned long flags;
1559	spinlock_t *lock = &current->sighand->siglock;
1560
1561	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1562	/*
1563	 * We must hold ->siglock while testing q->list
1564	 * to serialize with collect_signal() or with
1565	 * __exit_signal()->flush_sigqueue().
1566	 */
1567	spin_lock_irqsave(lock, flags);
1568	q->flags &= ~SIGQUEUE_PREALLOC;
1569	/*
1570	 * If it is queued it will be freed when dequeued,
1571	 * like the "regular" sigqueue.
1572	 */
1573	if (!list_empty(&q->list))
1574		q = NULL;
1575	spin_unlock_irqrestore(lock, flags);
1576
1577	if (q)
1578		__sigqueue_free(q);
1579}
1580
1581int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1582{
1583	int sig = q->info.si_signo;
1584	struct sigpending *pending;
1585	unsigned long flags;
1586	int ret, result;
1587
1588	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1589
1590	ret = -1;
1591	if (!likely(lock_task_sighand(t, &flags)))
1592		goto ret;
1593
1594	ret = 1; /* the signal is ignored */
1595	result = TRACE_SIGNAL_IGNORED;
1596	if (!prepare_signal(sig, t, false))
1597		goto out;
1598
1599	ret = 0;
1600	if (unlikely(!list_empty(&q->list))) {
1601		/*
1602		 * If an SI_TIMER entry is already queue just increment
1603		 * the overrun count.
1604		 */
1605		BUG_ON(q->info.si_code != SI_TIMER);
1606		q->info.si_overrun++;
1607		result = TRACE_SIGNAL_ALREADY_PENDING;
1608		goto out;
1609	}
1610	q->info.si_overrun = 0;
1611
1612	signalfd_notify(t, sig);
1613	pending = group ? &t->signal->shared_pending : &t->pending;
1614	list_add_tail(&q->list, &pending->list);
1615	sigaddset(&pending->signal, sig);
1616	complete_signal(sig, t, group);
1617	result = TRACE_SIGNAL_DELIVERED;
1618out:
1619	trace_signal_generate(sig, &q->info, t, group, result);
1620	unlock_task_sighand(t, &flags);
1621ret:
1622	return ret;
1623}
1624
1625/*
1626 * Let a parent know about the death of a child.
1627 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1628 *
1629 * Returns true if our parent ignored us and so we've switched to
1630 * self-reaping.
1631 */
1632bool do_notify_parent(struct task_struct *tsk, int sig)
1633{
1634	struct siginfo info;
1635	unsigned long flags;
1636	struct sighand_struct *psig;
1637	bool autoreap = false;
1638
1639	BUG_ON(sig == -1);
1640
1641 	/* do_notify_parent_cldstop should have been called instead.  */
1642 	BUG_ON(task_is_stopped_or_traced(tsk));
1643
1644	BUG_ON(!tsk->ptrace &&
1645	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1646
1647	if (sig != SIGCHLD) {
1648		/*
1649		 * This is only possible if parent == real_parent.
1650		 * Check if it has changed security domain.
1651		 */
1652		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1653			sig = SIGCHLD;
1654	}
1655
1656	info.si_signo = sig;
1657	info.si_errno = 0;
1658	/*
1659	 * We are under tasklist_lock here so our parent is tied to
1660	 * us and cannot change.
1661	 *
1662	 * task_active_pid_ns will always return the same pid namespace
1663	 * until a task passes through release_task.
 
1664	 *
1665	 * write_lock() currently calls preempt_disable() which is the
1666	 * same as rcu_read_lock(), but according to Oleg, this is not
1667	 * correct to rely on this
1668	 */
1669	rcu_read_lock();
1670	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1671	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1672				       task_uid(tsk));
1673	rcu_read_unlock();
1674
1675	info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1676	info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
 
 
1677
1678	info.si_status = tsk->exit_code & 0x7f;
1679	if (tsk->exit_code & 0x80)
1680		info.si_code = CLD_DUMPED;
1681	else if (tsk->exit_code & 0x7f)
1682		info.si_code = CLD_KILLED;
1683	else {
1684		info.si_code = CLD_EXITED;
1685		info.si_status = tsk->exit_code >> 8;
1686	}
1687
1688	psig = tsk->parent->sighand;
1689	spin_lock_irqsave(&psig->siglock, flags);
1690	if (!tsk->ptrace && sig == SIGCHLD &&
1691	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1692	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1693		/*
1694		 * We are exiting and our parent doesn't care.  POSIX.1
1695		 * defines special semantics for setting SIGCHLD to SIG_IGN
1696		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1697		 * automatically and not left for our parent's wait4 call.
1698		 * Rather than having the parent do it as a magic kind of
1699		 * signal handler, we just set this to tell do_exit that we
1700		 * can be cleaned up without becoming a zombie.  Note that
1701		 * we still call __wake_up_parent in this case, because a
1702		 * blocked sys_wait4 might now return -ECHILD.
1703		 *
1704		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1705		 * is implementation-defined: we do (if you don't want
1706		 * it, just use SIG_IGN instead).
1707		 */
1708		autoreap = true;
1709		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1710			sig = 0;
1711	}
1712	if (valid_signal(sig) && sig)
1713		__group_send_sig_info(sig, &info, tsk->parent);
1714	__wake_up_parent(tsk, tsk->parent);
1715	spin_unlock_irqrestore(&psig->siglock, flags);
1716
1717	return autoreap;
1718}
1719
1720/**
1721 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1722 * @tsk: task reporting the state change
1723 * @for_ptracer: the notification is for ptracer
1724 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1725 *
1726 * Notify @tsk's parent that the stopped/continued state has changed.  If
1727 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1728 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1729 *
1730 * CONTEXT:
1731 * Must be called with tasklist_lock at least read locked.
1732 */
1733static void do_notify_parent_cldstop(struct task_struct *tsk,
1734				     bool for_ptracer, int why)
1735{
1736	struct siginfo info;
1737	unsigned long flags;
1738	struct task_struct *parent;
1739	struct sighand_struct *sighand;
1740
1741	if (for_ptracer) {
1742		parent = tsk->parent;
1743	} else {
1744		tsk = tsk->group_leader;
1745		parent = tsk->real_parent;
1746	}
1747
1748	info.si_signo = SIGCHLD;
1749	info.si_errno = 0;
1750	/*
1751	 * see comment in do_notify_parent() about the following 4 lines
1752	 */
1753	rcu_read_lock();
1754	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1755	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1756	rcu_read_unlock();
1757
1758	info.si_utime = cputime_to_clock_t(tsk->utime);
1759	info.si_stime = cputime_to_clock_t(tsk->stime);
1760
1761 	info.si_code = why;
1762 	switch (why) {
1763 	case CLD_CONTINUED:
1764 		info.si_status = SIGCONT;
1765 		break;
1766 	case CLD_STOPPED:
1767 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1768 		break;
1769 	case CLD_TRAPPED:
1770 		info.si_status = tsk->exit_code & 0x7f;
1771 		break;
1772 	default:
1773 		BUG();
1774 	}
1775
1776	sighand = parent->sighand;
1777	spin_lock_irqsave(&sighand->siglock, flags);
1778	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1779	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1780		__group_send_sig_info(SIGCHLD, &info, parent);
1781	/*
1782	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1783	 */
1784	__wake_up_parent(tsk, parent);
1785	spin_unlock_irqrestore(&sighand->siglock, flags);
1786}
1787
1788static inline int may_ptrace_stop(void)
1789{
1790	if (!likely(current->ptrace))
1791		return 0;
1792	/*
1793	 * Are we in the middle of do_coredump?
1794	 * If so and our tracer is also part of the coredump stopping
1795	 * is a deadlock situation, and pointless because our tracer
1796	 * is dead so don't allow us to stop.
1797	 * If SIGKILL was already sent before the caller unlocked
1798	 * ->siglock we must see ->core_state != NULL. Otherwise it
1799	 * is safe to enter schedule().
1800	 */
1801	if (unlikely(current->mm->core_state) &&
1802	    unlikely(current->mm == current->parent->mm))
1803		return 0;
1804
1805	return 1;
1806}
1807
1808/*
1809 * Return non-zero if there is a SIGKILL that should be waking us up.
1810 * Called with the siglock held.
1811 */
1812static int sigkill_pending(struct task_struct *tsk)
1813{
1814	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1815		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1816}
1817
1818/*
1819 * This must be called with current->sighand->siglock held.
1820 *
1821 * This should be the path for all ptrace stops.
1822 * We always set current->last_siginfo while stopped here.
1823 * That makes it a way to test a stopped process for
1824 * being ptrace-stopped vs being job-control-stopped.
1825 *
1826 * If we actually decide not to stop at all because the tracer
1827 * is gone, we keep current->exit_code unless clear_code.
1828 */
1829static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1830	__releases(&current->sighand->siglock)
1831	__acquires(&current->sighand->siglock)
1832{
1833	bool gstop_done = false;
1834
1835	if (arch_ptrace_stop_needed(exit_code, info)) {
1836		/*
1837		 * The arch code has something special to do before a
1838		 * ptrace stop.  This is allowed to block, e.g. for faults
1839		 * on user stack pages.  We can't keep the siglock while
1840		 * calling arch_ptrace_stop, so we must release it now.
1841		 * To preserve proper semantics, we must do this before
1842		 * any signal bookkeeping like checking group_stop_count.
1843		 * Meanwhile, a SIGKILL could come in before we retake the
1844		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1845		 * So after regaining the lock, we must check for SIGKILL.
1846		 */
1847		spin_unlock_irq(&current->sighand->siglock);
1848		arch_ptrace_stop(exit_code, info);
1849		spin_lock_irq(&current->sighand->siglock);
1850		if (sigkill_pending(current))
1851			return;
1852	}
1853
1854	/*
1855	 * We're committing to trapping.  TRACED should be visible before
1856	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1857	 * Also, transition to TRACED and updates to ->jobctl should be
1858	 * atomic with respect to siglock and should be done after the arch
1859	 * hook as siglock is released and regrabbed across it.
1860	 */
1861	set_current_state(TASK_TRACED);
1862
1863	current->last_siginfo = info;
1864	current->exit_code = exit_code;
1865
1866	/*
1867	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1868	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1869	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1870	 * could be clear now.  We act as if SIGCONT is received after
1871	 * TASK_TRACED is entered - ignore it.
1872	 */
1873	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1874		gstop_done = task_participate_group_stop(current);
1875
1876	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1877	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1878	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1879		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1880
1881	/* entering a trap, clear TRAPPING */
1882	task_clear_jobctl_trapping(current);
1883
1884	spin_unlock_irq(&current->sighand->siglock);
1885	read_lock(&tasklist_lock);
1886	if (may_ptrace_stop()) {
1887		/*
1888		 * Notify parents of the stop.
1889		 *
1890		 * While ptraced, there are two parents - the ptracer and
1891		 * the real_parent of the group_leader.  The ptracer should
1892		 * know about every stop while the real parent is only
1893		 * interested in the completion of group stop.  The states
1894		 * for the two don't interact with each other.  Notify
1895		 * separately unless they're gonna be duplicates.
1896		 */
1897		do_notify_parent_cldstop(current, true, why);
1898		if (gstop_done && ptrace_reparented(current))
1899			do_notify_parent_cldstop(current, false, why);
1900
1901		/*
1902		 * Don't want to allow preemption here, because
1903		 * sys_ptrace() needs this task to be inactive.
1904		 *
1905		 * XXX: implement read_unlock_no_resched().
1906		 */
1907		preempt_disable();
1908		read_unlock(&tasklist_lock);
1909		preempt_enable_no_resched();
1910		schedule();
1911	} else {
1912		/*
1913		 * By the time we got the lock, our tracer went away.
1914		 * Don't drop the lock yet, another tracer may come.
1915		 *
1916		 * If @gstop_done, the ptracer went away between group stop
1917		 * completion and here.  During detach, it would have set
1918		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1919		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1920		 * the real parent of the group stop completion is enough.
1921		 */
1922		if (gstop_done)
1923			do_notify_parent_cldstop(current, false, why);
1924
1925		__set_current_state(TASK_RUNNING);
1926		if (clear_code)
1927			current->exit_code = 0;
1928		read_unlock(&tasklist_lock);
1929	}
1930
1931	/*
1932	 * While in TASK_TRACED, we were considered "frozen enough".
1933	 * Now that we woke up, it's crucial if we're supposed to be
1934	 * frozen that we freeze now before running anything substantial.
1935	 */
1936	try_to_freeze();
1937
1938	/*
1939	 * We are back.  Now reacquire the siglock before touching
1940	 * last_siginfo, so that we are sure to have synchronized with
1941	 * any signal-sending on another CPU that wants to examine it.
1942	 */
1943	spin_lock_irq(&current->sighand->siglock);
1944	current->last_siginfo = NULL;
1945
1946	/* LISTENING can be set only during STOP traps, clear it */
1947	current->jobctl &= ~JOBCTL_LISTENING;
1948
1949	/*
1950	 * Queued signals ignored us while we were stopped for tracing.
1951	 * So check for any that we should take before resuming user mode.
1952	 * This sets TIF_SIGPENDING, but never clears it.
1953	 */
1954	recalc_sigpending_tsk(current);
1955}
1956
1957static void ptrace_do_notify(int signr, int exit_code, int why)
1958{
1959	siginfo_t info;
1960
1961	memset(&info, 0, sizeof info);
1962	info.si_signo = signr;
1963	info.si_code = exit_code;
1964	info.si_pid = task_pid_vnr(current);
1965	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1966
1967	/* Let the debugger run.  */
1968	ptrace_stop(exit_code, why, 1, &info);
1969}
1970
1971void ptrace_notify(int exit_code)
1972{
1973	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1974
1975	spin_lock_irq(&current->sighand->siglock);
1976	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1977	spin_unlock_irq(&current->sighand->siglock);
1978}
1979
1980/**
1981 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1982 * @signr: signr causing group stop if initiating
1983 *
1984 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1985 * and participate in it.  If already set, participate in the existing
1986 * group stop.  If participated in a group stop (and thus slept), %true is
1987 * returned with siglock released.
1988 *
1989 * If ptraced, this function doesn't handle stop itself.  Instead,
1990 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1991 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1992 * places afterwards.
1993 *
1994 * CONTEXT:
1995 * Must be called with @current->sighand->siglock held, which is released
1996 * on %true return.
1997 *
1998 * RETURNS:
1999 * %false if group stop is already cancelled or ptrace trap is scheduled.
2000 * %true if participated in group stop.
2001 */
2002static bool do_signal_stop(int signr)
2003	__releases(&current->sighand->siglock)
2004{
2005	struct signal_struct *sig = current->signal;
2006
2007	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2008		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2009		struct task_struct *t;
2010
2011		/* signr will be recorded in task->jobctl for retries */
2012		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2013
2014		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2015		    unlikely(signal_group_exit(sig)))
2016			return false;
2017		/*
2018		 * There is no group stop already in progress.  We must
2019		 * initiate one now.
2020		 *
2021		 * While ptraced, a task may be resumed while group stop is
2022		 * still in effect and then receive a stop signal and
2023		 * initiate another group stop.  This deviates from the
2024		 * usual behavior as two consecutive stop signals can't
2025		 * cause two group stops when !ptraced.  That is why we
2026		 * also check !task_is_stopped(t) below.
2027		 *
2028		 * The condition can be distinguished by testing whether
2029		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2030		 * group_exit_code in such case.
2031		 *
2032		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2033		 * an intervening stop signal is required to cause two
2034		 * continued events regardless of ptrace.
2035		 */
2036		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2037			sig->group_exit_code = signr;
 
 
2038
2039		sig->group_stop_count = 0;
2040
2041		if (task_set_jobctl_pending(current, signr | gstop))
2042			sig->group_stop_count++;
2043
2044		for (t = next_thread(current); t != current;
2045		     t = next_thread(t)) {
2046			/*
2047			 * Setting state to TASK_STOPPED for a group
2048			 * stop is always done with the siglock held,
2049			 * so this check has no races.
2050			 */
2051			if (!task_is_stopped(t) &&
2052			    task_set_jobctl_pending(t, signr | gstop)) {
2053				sig->group_stop_count++;
2054				if (likely(!(t->ptrace & PT_SEIZED)))
2055					signal_wake_up(t, 0);
2056				else
2057					ptrace_trap_notify(t);
2058			}
2059		}
2060	}
2061
2062	if (likely(!current->ptrace)) {
2063		int notify = 0;
2064
2065		/*
2066		 * If there are no other threads in the group, or if there
2067		 * is a group stop in progress and we are the last to stop,
2068		 * report to the parent.
2069		 */
2070		if (task_participate_group_stop(current))
2071			notify = CLD_STOPPED;
2072
2073		__set_current_state(TASK_STOPPED);
2074		spin_unlock_irq(&current->sighand->siglock);
2075
2076		/*
2077		 * Notify the parent of the group stop completion.  Because
2078		 * we're not holding either the siglock or tasklist_lock
2079		 * here, ptracer may attach inbetween; however, this is for
2080		 * group stop and should always be delivered to the real
2081		 * parent of the group leader.  The new ptracer will get
2082		 * its notification when this task transitions into
2083		 * TASK_TRACED.
2084		 */
2085		if (notify) {
2086			read_lock(&tasklist_lock);
2087			do_notify_parent_cldstop(current, false, notify);
2088			read_unlock(&tasklist_lock);
2089		}
2090
2091		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2092		schedule();
2093		return true;
2094	} else {
2095		/*
2096		 * While ptraced, group stop is handled by STOP trap.
2097		 * Schedule it and let the caller deal with it.
2098		 */
2099		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2100		return false;
2101	}
2102}
2103
2104/**
2105 * do_jobctl_trap - take care of ptrace jobctl traps
2106 *
2107 * When PT_SEIZED, it's used for both group stop and explicit
2108 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2109 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2110 * the stop signal; otherwise, %SIGTRAP.
2111 *
2112 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2113 * number as exit_code and no siginfo.
2114 *
2115 * CONTEXT:
2116 * Must be called with @current->sighand->siglock held, which may be
2117 * released and re-acquired before returning with intervening sleep.
2118 */
2119static void do_jobctl_trap(void)
2120{
2121	struct signal_struct *signal = current->signal;
2122	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2123
2124	if (current->ptrace & PT_SEIZED) {
2125		if (!signal->group_stop_count &&
2126		    !(signal->flags & SIGNAL_STOP_STOPPED))
2127			signr = SIGTRAP;
2128		WARN_ON_ONCE(!signr);
2129		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2130				 CLD_STOPPED);
2131	} else {
2132		WARN_ON_ONCE(!signr);
2133		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2134		current->exit_code = 0;
2135	}
2136}
2137
2138static int ptrace_signal(int signr, siginfo_t *info,
2139			 struct pt_regs *regs, void *cookie)
2140{
2141	ptrace_signal_deliver(regs, cookie);
2142	/*
2143	 * We do not check sig_kernel_stop(signr) but set this marker
2144	 * unconditionally because we do not know whether debugger will
2145	 * change signr. This flag has no meaning unless we are going
2146	 * to stop after return from ptrace_stop(). In this case it will
2147	 * be checked in do_signal_stop(), we should only stop if it was
2148	 * not cleared by SIGCONT while we were sleeping. See also the
2149	 * comment in dequeue_signal().
2150	 */
2151	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2152	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2153
2154	/* We're back.  Did the debugger cancel the sig?  */
2155	signr = current->exit_code;
2156	if (signr == 0)
2157		return signr;
2158
2159	current->exit_code = 0;
2160
2161	/*
2162	 * Update the siginfo structure if the signal has
2163	 * changed.  If the debugger wanted something
2164	 * specific in the siginfo structure then it should
2165	 * have updated *info via PTRACE_SETSIGINFO.
2166	 */
2167	if (signr != info->si_signo) {
2168		info->si_signo = signr;
2169		info->si_errno = 0;
2170		info->si_code = SI_USER;
2171		rcu_read_lock();
2172		info->si_pid = task_pid_vnr(current->parent);
2173		info->si_uid = from_kuid_munged(current_user_ns(),
2174						task_uid(current->parent));
2175		rcu_read_unlock();
2176	}
2177
2178	/* If the (new) signal is now blocked, requeue it.  */
2179	if (sigismember(&current->blocked, signr)) {
2180		specific_send_sig_info(signr, info, current);
2181		signr = 0;
2182	}
2183
2184	return signr;
2185}
2186
2187int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2188			  struct pt_regs *regs, void *cookie)
2189{
2190	struct sighand_struct *sighand = current->sighand;
2191	struct signal_struct *signal = current->signal;
2192	int signr;
2193
2194	if (unlikely(uprobe_deny_signal()))
2195		return 0;
2196
2197relock:
2198	/*
2199	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2200	 * While in TASK_STOPPED, we were considered "frozen enough".
2201	 * Now that we woke up, it's crucial if we're supposed to be
2202	 * frozen that we freeze now before running anything substantial.
2203	 */
2204	try_to_freeze();
2205
2206	spin_lock_irq(&sighand->siglock);
2207	/*
2208	 * Every stopped thread goes here after wakeup. Check to see if
2209	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2210	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2211	 */
2212	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2213		int why;
2214
2215		if (signal->flags & SIGNAL_CLD_CONTINUED)
2216			why = CLD_CONTINUED;
2217		else
2218			why = CLD_STOPPED;
2219
2220		signal->flags &= ~SIGNAL_CLD_MASK;
2221
2222		spin_unlock_irq(&sighand->siglock);
2223
2224		/*
2225		 * Notify the parent that we're continuing.  This event is
2226		 * always per-process and doesn't make whole lot of sense
2227		 * for ptracers, who shouldn't consume the state via
2228		 * wait(2) either, but, for backward compatibility, notify
2229		 * the ptracer of the group leader too unless it's gonna be
2230		 * a duplicate.
2231		 */
2232		read_lock(&tasklist_lock);
2233		do_notify_parent_cldstop(current, false, why);
2234
2235		if (ptrace_reparented(current->group_leader))
2236			do_notify_parent_cldstop(current->group_leader,
2237						true, why);
2238		read_unlock(&tasklist_lock);
2239
2240		goto relock;
2241	}
2242
2243	for (;;) {
2244		struct k_sigaction *ka;
2245
2246		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2247		    do_signal_stop(0))
2248			goto relock;
2249
2250		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2251			do_jobctl_trap();
2252			spin_unlock_irq(&sighand->siglock);
2253			goto relock;
2254		}
2255
2256		signr = dequeue_signal(current, &current->blocked, info);
2257
2258		if (!signr)
2259			break; /* will return 0 */
2260
2261		if (unlikely(current->ptrace) && signr != SIGKILL) {
2262			signr = ptrace_signal(signr, info,
2263					      regs, cookie);
2264			if (!signr)
2265				continue;
2266		}
2267
2268		ka = &sighand->action[signr-1];
2269
2270		/* Trace actually delivered signals. */
2271		trace_signal_deliver(signr, info, ka);
2272
2273		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2274			continue;
2275		if (ka->sa.sa_handler != SIG_DFL) {
2276			/* Run the handler.  */
2277			*return_ka = *ka;
2278
2279			if (ka->sa.sa_flags & SA_ONESHOT)
2280				ka->sa.sa_handler = SIG_DFL;
2281
2282			break; /* will return non-zero "signr" value */
2283		}
2284
2285		/*
2286		 * Now we are doing the default action for this signal.
2287		 */
2288		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2289			continue;
2290
2291		/*
2292		 * Global init gets no signals it doesn't want.
2293		 * Container-init gets no signals it doesn't want from same
2294		 * container.
2295		 *
2296		 * Note that if global/container-init sees a sig_kernel_only()
2297		 * signal here, the signal must have been generated internally
2298		 * or must have come from an ancestor namespace. In either
2299		 * case, the signal cannot be dropped.
2300		 */
2301		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2302				!sig_kernel_only(signr))
2303			continue;
2304
2305		if (sig_kernel_stop(signr)) {
2306			/*
2307			 * The default action is to stop all threads in
2308			 * the thread group.  The job control signals
2309			 * do nothing in an orphaned pgrp, but SIGSTOP
2310			 * always works.  Note that siglock needs to be
2311			 * dropped during the call to is_orphaned_pgrp()
2312			 * because of lock ordering with tasklist_lock.
2313			 * This allows an intervening SIGCONT to be posted.
2314			 * We need to check for that and bail out if necessary.
2315			 */
2316			if (signr != SIGSTOP) {
2317				spin_unlock_irq(&sighand->siglock);
2318
2319				/* signals can be posted during this window */
2320
2321				if (is_current_pgrp_orphaned())
2322					goto relock;
2323
2324				spin_lock_irq(&sighand->siglock);
2325			}
2326
2327			if (likely(do_signal_stop(info->si_signo))) {
2328				/* It released the siglock.  */
2329				goto relock;
2330			}
2331
2332			/*
2333			 * We didn't actually stop, due to a race
2334			 * with SIGCONT or something like that.
2335			 */
2336			continue;
2337		}
2338
2339		spin_unlock_irq(&sighand->siglock);
2340
2341		/*
2342		 * Anything else is fatal, maybe with a core dump.
2343		 */
2344		current->flags |= PF_SIGNALED;
2345
2346		if (sig_kernel_coredump(signr)) {
2347			if (print_fatal_signals)
2348				print_fatal_signal(regs, info->si_signo);
2349			/*
2350			 * If it was able to dump core, this kills all
2351			 * other threads in the group and synchronizes with
2352			 * their demise.  If we lost the race with another
2353			 * thread getting here, it set group_exit_code
2354			 * first and our do_group_exit call below will use
2355			 * that value and ignore the one we pass it.
2356			 */
2357			do_coredump(info->si_signo, info->si_signo, regs);
2358		}
2359
2360		/*
2361		 * Death signals, no core dump.
2362		 */
2363		do_group_exit(info->si_signo);
2364		/* NOTREACHED */
2365	}
2366	spin_unlock_irq(&sighand->siglock);
2367	return signr;
2368}
2369
2370/**
2371 * signal_delivered - 
2372 * @sig:		number of signal being delivered
2373 * @info:		siginfo_t of signal being delivered
2374 * @ka:			sigaction setting that chose the handler
2375 * @regs:		user register state
2376 * @stepping:		nonzero if debugger single-step or block-step in use
2377 *
2378 * This function should be called when a signal has succesfully been
2379 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2380 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2381 * is set in @ka->sa.sa_flags.  Tracing is notified.
2382 */
2383void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2384			struct pt_regs *regs, int stepping)
2385{
2386	sigset_t blocked;
2387
2388	/* A signal was successfully delivered, and the
2389	   saved sigmask was stored on the signal frame,
2390	   and will be restored by sigreturn.  So we can
2391	   simply clear the restore sigmask flag.  */
2392	clear_restore_sigmask();
2393
2394	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2395	if (!(ka->sa.sa_flags & SA_NODEFER))
2396		sigaddset(&blocked, sig);
2397	set_current_blocked(&blocked);
2398	tracehook_signal_handler(sig, info, ka, regs, stepping);
2399}
2400
2401/*
2402 * It could be that complete_signal() picked us to notify about the
2403 * group-wide signal. Other threads should be notified now to take
2404 * the shared signals in @which since we will not.
2405 */
2406static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2407{
2408	sigset_t retarget;
2409	struct task_struct *t;
2410
2411	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2412	if (sigisemptyset(&retarget))
2413		return;
2414
2415	t = tsk;
2416	while_each_thread(tsk, t) {
2417		if (t->flags & PF_EXITING)
2418			continue;
2419
2420		if (!has_pending_signals(&retarget, &t->blocked))
2421			continue;
2422		/* Remove the signals this thread can handle. */
2423		sigandsets(&retarget, &retarget, &t->blocked);
2424
2425		if (!signal_pending(t))
2426			signal_wake_up(t, 0);
2427
2428		if (sigisemptyset(&retarget))
2429			break;
2430	}
2431}
2432
2433void exit_signals(struct task_struct *tsk)
2434{
2435	int group_stop = 0;
2436	sigset_t unblocked;
2437
2438	/*
2439	 * @tsk is about to have PF_EXITING set - lock out users which
2440	 * expect stable threadgroup.
2441	 */
2442	threadgroup_change_begin(tsk);
2443
2444	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2445		tsk->flags |= PF_EXITING;
2446		threadgroup_change_end(tsk);
2447		return;
2448	}
2449
2450	spin_lock_irq(&tsk->sighand->siglock);
2451	/*
2452	 * From now this task is not visible for group-wide signals,
2453	 * see wants_signal(), do_signal_stop().
2454	 */
2455	tsk->flags |= PF_EXITING;
2456
2457	threadgroup_change_end(tsk);
2458
2459	if (!signal_pending(tsk))
2460		goto out;
2461
2462	unblocked = tsk->blocked;
2463	signotset(&unblocked);
2464	retarget_shared_pending(tsk, &unblocked);
2465
2466	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2467	    task_participate_group_stop(tsk))
2468		group_stop = CLD_STOPPED;
2469out:
2470	spin_unlock_irq(&tsk->sighand->siglock);
2471
2472	/*
2473	 * If group stop has completed, deliver the notification.  This
2474	 * should always go to the real parent of the group leader.
2475	 */
2476	if (unlikely(group_stop)) {
2477		read_lock(&tasklist_lock);
2478		do_notify_parent_cldstop(tsk, false, group_stop);
2479		read_unlock(&tasklist_lock);
2480	}
2481}
2482
2483EXPORT_SYMBOL(recalc_sigpending);
2484EXPORT_SYMBOL_GPL(dequeue_signal);
2485EXPORT_SYMBOL(flush_signals);
2486EXPORT_SYMBOL(force_sig);
2487EXPORT_SYMBOL(send_sig);
2488EXPORT_SYMBOL(send_sig_info);
2489EXPORT_SYMBOL(sigprocmask);
2490EXPORT_SYMBOL(block_all_signals);
2491EXPORT_SYMBOL(unblock_all_signals);
2492
2493
2494/*
2495 * System call entry points.
2496 */
2497
2498/**
2499 *  sys_restart_syscall - restart a system call
2500 */
2501SYSCALL_DEFINE0(restart_syscall)
2502{
2503	struct restart_block *restart = &current_thread_info()->restart_block;
2504	return restart->fn(restart);
2505}
2506
2507long do_no_restart_syscall(struct restart_block *param)
2508{
2509	return -EINTR;
2510}
2511
2512static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2513{
2514	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2515		sigset_t newblocked;
2516		/* A set of now blocked but previously unblocked signals. */
2517		sigandnsets(&newblocked, newset, &current->blocked);
2518		retarget_shared_pending(tsk, &newblocked);
2519	}
2520	tsk->blocked = *newset;
2521	recalc_sigpending();
2522}
2523
2524/**
2525 * set_current_blocked - change current->blocked mask
2526 * @newset: new mask
2527 *
2528 * It is wrong to change ->blocked directly, this helper should be used
2529 * to ensure the process can't miss a shared signal we are going to block.
2530 */
2531void set_current_blocked(sigset_t *newset)
2532{
2533	struct task_struct *tsk = current;
2534	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2535	spin_lock_irq(&tsk->sighand->siglock);
2536	__set_task_blocked(tsk, newset);
2537	spin_unlock_irq(&tsk->sighand->siglock);
2538}
2539
2540void __set_current_blocked(const sigset_t *newset)
2541{
2542	struct task_struct *tsk = current;
2543
2544	spin_lock_irq(&tsk->sighand->siglock);
2545	__set_task_blocked(tsk, newset);
2546	spin_unlock_irq(&tsk->sighand->siglock);
2547}
2548
2549/*
2550 * This is also useful for kernel threads that want to temporarily
2551 * (or permanently) block certain signals.
2552 *
2553 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2554 * interface happily blocks "unblockable" signals like SIGKILL
2555 * and friends.
2556 */
2557int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2558{
2559	struct task_struct *tsk = current;
2560	sigset_t newset;
2561
2562	/* Lockless, only current can change ->blocked, never from irq */
2563	if (oldset)
2564		*oldset = tsk->blocked;
2565
2566	switch (how) {
2567	case SIG_BLOCK:
2568		sigorsets(&newset, &tsk->blocked, set);
2569		break;
2570	case SIG_UNBLOCK:
2571		sigandnsets(&newset, &tsk->blocked, set);
2572		break;
2573	case SIG_SETMASK:
2574		newset = *set;
2575		break;
2576	default:
2577		return -EINVAL;
2578	}
2579
2580	__set_current_blocked(&newset);
2581	return 0;
2582}
2583
2584/**
2585 *  sys_rt_sigprocmask - change the list of currently blocked signals
2586 *  @how: whether to add, remove, or set signals
2587 *  @nset: stores pending signals
2588 *  @oset: previous value of signal mask if non-null
2589 *  @sigsetsize: size of sigset_t type
2590 */
2591SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2592		sigset_t __user *, oset, size_t, sigsetsize)
2593{
2594	sigset_t old_set, new_set;
2595	int error;
2596
2597	/* XXX: Don't preclude handling different sized sigset_t's.  */
2598	if (sigsetsize != sizeof(sigset_t))
2599		return -EINVAL;
2600
2601	old_set = current->blocked;
2602
2603	if (nset) {
2604		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2605			return -EFAULT;
2606		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2607
2608		error = sigprocmask(how, &new_set, NULL);
2609		if (error)
2610			return error;
2611	}
2612
2613	if (oset) {
2614		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2615			return -EFAULT;
2616	}
2617
2618	return 0;
2619}
2620
2621long do_sigpending(void __user *set, unsigned long sigsetsize)
2622{
2623	long error = -EINVAL;
2624	sigset_t pending;
2625
2626	if (sigsetsize > sizeof(sigset_t))
2627		goto out;
2628
2629	spin_lock_irq(&current->sighand->siglock);
2630	sigorsets(&pending, &current->pending.signal,
2631		  &current->signal->shared_pending.signal);
2632	spin_unlock_irq(&current->sighand->siglock);
2633
2634	/* Outside the lock because only this thread touches it.  */
2635	sigandsets(&pending, &current->blocked, &pending);
2636
2637	error = -EFAULT;
2638	if (!copy_to_user(set, &pending, sigsetsize))
2639		error = 0;
2640
2641out:
2642	return error;
2643}
2644
2645/**
2646 *  sys_rt_sigpending - examine a pending signal that has been raised
2647 *			while blocked
2648 *  @set: stores pending signals
2649 *  @sigsetsize: size of sigset_t type or larger
2650 */
2651SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2652{
2653	return do_sigpending(set, sigsetsize);
2654}
2655
2656#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2657
2658int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2659{
2660	int err;
2661
2662	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2663		return -EFAULT;
2664	if (from->si_code < 0)
2665		return __copy_to_user(to, from, sizeof(siginfo_t))
2666			? -EFAULT : 0;
2667	/*
2668	 * If you change siginfo_t structure, please be sure
2669	 * this code is fixed accordingly.
2670	 * Please remember to update the signalfd_copyinfo() function
2671	 * inside fs/signalfd.c too, in case siginfo_t changes.
2672	 * It should never copy any pad contained in the structure
2673	 * to avoid security leaks, but must copy the generic
2674	 * 3 ints plus the relevant union member.
2675	 */
2676	err = __put_user(from->si_signo, &to->si_signo);
2677	err |= __put_user(from->si_errno, &to->si_errno);
2678	err |= __put_user((short)from->si_code, &to->si_code);
2679	switch (from->si_code & __SI_MASK) {
2680	case __SI_KILL:
2681		err |= __put_user(from->si_pid, &to->si_pid);
2682		err |= __put_user(from->si_uid, &to->si_uid);
2683		break;
2684	case __SI_TIMER:
2685		 err |= __put_user(from->si_tid, &to->si_tid);
2686		 err |= __put_user(from->si_overrun, &to->si_overrun);
2687		 err |= __put_user(from->si_ptr, &to->si_ptr);
2688		break;
2689	case __SI_POLL:
2690		err |= __put_user(from->si_band, &to->si_band);
2691		err |= __put_user(from->si_fd, &to->si_fd);
2692		break;
2693	case __SI_FAULT:
2694		err |= __put_user(from->si_addr, &to->si_addr);
2695#ifdef __ARCH_SI_TRAPNO
2696		err |= __put_user(from->si_trapno, &to->si_trapno);
2697#endif
2698#ifdef BUS_MCEERR_AO
2699		/*
2700		 * Other callers might not initialize the si_lsb field,
2701		 * so check explicitly for the right codes here.
2702		 */
2703		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2704			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2705#endif
2706		break;
2707	case __SI_CHLD:
2708		err |= __put_user(from->si_pid, &to->si_pid);
2709		err |= __put_user(from->si_uid, &to->si_uid);
2710		err |= __put_user(from->si_status, &to->si_status);
2711		err |= __put_user(from->si_utime, &to->si_utime);
2712		err |= __put_user(from->si_stime, &to->si_stime);
2713		break;
2714	case __SI_RT: /* This is not generated by the kernel as of now. */
2715	case __SI_MESGQ: /* But this is */
2716		err |= __put_user(from->si_pid, &to->si_pid);
2717		err |= __put_user(from->si_uid, &to->si_uid);
2718		err |= __put_user(from->si_ptr, &to->si_ptr);
2719		break;
2720#ifdef __ARCH_SIGSYS
2721	case __SI_SYS:
2722		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2723		err |= __put_user(from->si_syscall, &to->si_syscall);
2724		err |= __put_user(from->si_arch, &to->si_arch);
2725		break;
2726#endif
2727	default: /* this is just in case for now ... */
2728		err |= __put_user(from->si_pid, &to->si_pid);
2729		err |= __put_user(from->si_uid, &to->si_uid);
2730		break;
2731	}
2732	return err;
2733}
2734
2735#endif
2736
2737/**
2738 *  do_sigtimedwait - wait for queued signals specified in @which
2739 *  @which: queued signals to wait for
2740 *  @info: if non-null, the signal's siginfo is returned here
2741 *  @ts: upper bound on process time suspension
2742 */
2743int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2744			const struct timespec *ts)
2745{
2746	struct task_struct *tsk = current;
2747	long timeout = MAX_SCHEDULE_TIMEOUT;
2748	sigset_t mask = *which;
2749	int sig;
2750
2751	if (ts) {
2752		if (!timespec_valid(ts))
2753			return -EINVAL;
2754		timeout = timespec_to_jiffies(ts);
2755		/*
2756		 * We can be close to the next tick, add another one
2757		 * to ensure we will wait at least the time asked for.
2758		 */
2759		if (ts->tv_sec || ts->tv_nsec)
2760			timeout++;
2761	}
2762
2763	/*
2764	 * Invert the set of allowed signals to get those we want to block.
2765	 */
2766	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2767	signotset(&mask);
2768
2769	spin_lock_irq(&tsk->sighand->siglock);
2770	sig = dequeue_signal(tsk, &mask, info);
2771	if (!sig && timeout) {
2772		/*
2773		 * None ready, temporarily unblock those we're interested
2774		 * while we are sleeping in so that we'll be awakened when
2775		 * they arrive. Unblocking is always fine, we can avoid
2776		 * set_current_blocked().
2777		 */
2778		tsk->real_blocked = tsk->blocked;
2779		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2780		recalc_sigpending();
2781		spin_unlock_irq(&tsk->sighand->siglock);
2782
2783		timeout = schedule_timeout_interruptible(timeout);
2784
2785		spin_lock_irq(&tsk->sighand->siglock);
2786		__set_task_blocked(tsk, &tsk->real_blocked);
2787		siginitset(&tsk->real_blocked, 0);
2788		sig = dequeue_signal(tsk, &mask, info);
2789	}
2790	spin_unlock_irq(&tsk->sighand->siglock);
2791
2792	if (sig)
2793		return sig;
2794	return timeout ? -EINTR : -EAGAIN;
2795}
2796
2797/**
2798 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2799 *			in @uthese
2800 *  @uthese: queued signals to wait for
2801 *  @uinfo: if non-null, the signal's siginfo is returned here
2802 *  @uts: upper bound on process time suspension
2803 *  @sigsetsize: size of sigset_t type
2804 */
2805SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2806		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2807		size_t, sigsetsize)
2808{
2809	sigset_t these;
2810	struct timespec ts;
2811	siginfo_t info;
2812	int ret;
2813
2814	/* XXX: Don't preclude handling different sized sigset_t's.  */
2815	if (sigsetsize != sizeof(sigset_t))
2816		return -EINVAL;
2817
2818	if (copy_from_user(&these, uthese, sizeof(these)))
2819		return -EFAULT;
2820
2821	if (uts) {
2822		if (copy_from_user(&ts, uts, sizeof(ts)))
2823			return -EFAULT;
2824	}
2825
2826	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2827
2828	if (ret > 0 && uinfo) {
2829		if (copy_siginfo_to_user(uinfo, &info))
2830			ret = -EFAULT;
2831	}
2832
2833	return ret;
2834}
2835
2836/**
2837 *  sys_kill - send a signal to a process
2838 *  @pid: the PID of the process
2839 *  @sig: signal to be sent
2840 */
2841SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2842{
2843	struct siginfo info;
2844
2845	info.si_signo = sig;
2846	info.si_errno = 0;
2847	info.si_code = SI_USER;
2848	info.si_pid = task_tgid_vnr(current);
2849	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2850
2851	return kill_something_info(sig, &info, pid);
2852}
2853
2854static int
2855do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2856{
2857	struct task_struct *p;
2858	int error = -ESRCH;
2859
2860	rcu_read_lock();
2861	p = find_task_by_vpid(pid);
2862	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2863		error = check_kill_permission(sig, info, p);
2864		/*
2865		 * The null signal is a permissions and process existence
2866		 * probe.  No signal is actually delivered.
2867		 */
2868		if (!error && sig) {
2869			error = do_send_sig_info(sig, info, p, false);
2870			/*
2871			 * If lock_task_sighand() failed we pretend the task
2872			 * dies after receiving the signal. The window is tiny,
2873			 * and the signal is private anyway.
2874			 */
2875			if (unlikely(error == -ESRCH))
2876				error = 0;
2877		}
2878	}
2879	rcu_read_unlock();
2880
2881	return error;
2882}
2883
2884static int do_tkill(pid_t tgid, pid_t pid, int sig)
2885{
2886	struct siginfo info;
2887
2888	info.si_signo = sig;
2889	info.si_errno = 0;
2890	info.si_code = SI_TKILL;
2891	info.si_pid = task_tgid_vnr(current);
2892	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2893
2894	return do_send_specific(tgid, pid, sig, &info);
2895}
2896
2897/**
2898 *  sys_tgkill - send signal to one specific thread
2899 *  @tgid: the thread group ID of the thread
2900 *  @pid: the PID of the thread
2901 *  @sig: signal to be sent
2902 *
2903 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2904 *  exists but it's not belonging to the target process anymore. This
2905 *  method solves the problem of threads exiting and PIDs getting reused.
2906 */
2907SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2908{
2909	/* This is only valid for single tasks */
2910	if (pid <= 0 || tgid <= 0)
2911		return -EINVAL;
2912
2913	return do_tkill(tgid, pid, sig);
2914}
2915
2916/**
2917 *  sys_tkill - send signal to one specific task
2918 *  @pid: the PID of the task
2919 *  @sig: signal to be sent
2920 *
2921 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2922 */
2923SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2924{
2925	/* This is only valid for single tasks */
2926	if (pid <= 0)
2927		return -EINVAL;
2928
2929	return do_tkill(0, pid, sig);
2930}
2931
2932/**
2933 *  sys_rt_sigqueueinfo - send signal information to a signal
2934 *  @pid: the PID of the thread
2935 *  @sig: signal to be sent
2936 *  @uinfo: signal info to be sent
2937 */
2938SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2939		siginfo_t __user *, uinfo)
2940{
2941	siginfo_t info;
2942
2943	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2944		return -EFAULT;
2945
2946	/* Not even root can pretend to send signals from the kernel.
2947	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2948	 */
2949	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2950		/* We used to allow any < 0 si_code */
2951		WARN_ON_ONCE(info.si_code < 0);
2952		return -EPERM;
2953	}
2954	info.si_signo = sig;
2955
2956	/* POSIX.1b doesn't mention process groups.  */
2957	return kill_proc_info(sig, &info, pid);
2958}
2959
2960long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2961{
2962	/* This is only valid for single tasks */
2963	if (pid <= 0 || tgid <= 0)
2964		return -EINVAL;
2965
2966	/* Not even root can pretend to send signals from the kernel.
2967	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2968	 */
2969	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2970		/* We used to allow any < 0 si_code */
2971		WARN_ON_ONCE(info->si_code < 0);
2972		return -EPERM;
2973	}
2974	info->si_signo = sig;
2975
2976	return do_send_specific(tgid, pid, sig, info);
2977}
2978
2979SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2980		siginfo_t __user *, uinfo)
2981{
2982	siginfo_t info;
2983
2984	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2985		return -EFAULT;
2986
2987	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2988}
2989
2990int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2991{
2992	struct task_struct *t = current;
2993	struct k_sigaction *k;
2994	sigset_t mask;
2995
2996	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2997		return -EINVAL;
2998
2999	k = &t->sighand->action[sig-1];
3000
3001	spin_lock_irq(&current->sighand->siglock);
3002	if (oact)
3003		*oact = *k;
3004
3005	if (act) {
3006		sigdelsetmask(&act->sa.sa_mask,
3007			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3008		*k = *act;
3009		/*
3010		 * POSIX 3.3.1.3:
3011		 *  "Setting a signal action to SIG_IGN for a signal that is
3012		 *   pending shall cause the pending signal to be discarded,
3013		 *   whether or not it is blocked."
3014		 *
3015		 *  "Setting a signal action to SIG_DFL for a signal that is
3016		 *   pending and whose default action is to ignore the signal
3017		 *   (for example, SIGCHLD), shall cause the pending signal to
3018		 *   be discarded, whether or not it is blocked"
3019		 */
3020		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3021			sigemptyset(&mask);
3022			sigaddset(&mask, sig);
3023			rm_from_queue_full(&mask, &t->signal->shared_pending);
3024			do {
3025				rm_from_queue_full(&mask, &t->pending);
3026				t = next_thread(t);
3027			} while (t != current);
3028		}
3029	}
3030
3031	spin_unlock_irq(&current->sighand->siglock);
3032	return 0;
3033}
3034
3035int 
3036do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3037{
3038	stack_t oss;
3039	int error;
3040
3041	oss.ss_sp = (void __user *) current->sas_ss_sp;
3042	oss.ss_size = current->sas_ss_size;
3043	oss.ss_flags = sas_ss_flags(sp);
3044
3045	if (uss) {
3046		void __user *ss_sp;
3047		size_t ss_size;
3048		int ss_flags;
3049
3050		error = -EFAULT;
3051		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3052			goto out;
3053		error = __get_user(ss_sp, &uss->ss_sp) |
3054			__get_user(ss_flags, &uss->ss_flags) |
3055			__get_user(ss_size, &uss->ss_size);
3056		if (error)
3057			goto out;
3058
3059		error = -EPERM;
3060		if (on_sig_stack(sp))
3061			goto out;
3062
3063		error = -EINVAL;
3064		/*
3065		 * Note - this code used to test ss_flags incorrectly:
3066		 *  	  old code may have been written using ss_flags==0
3067		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3068		 *	  way that worked) - this fix preserves that older
3069		 *	  mechanism.
3070		 */
3071		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3072			goto out;
3073
3074		if (ss_flags == SS_DISABLE) {
3075			ss_size = 0;
3076			ss_sp = NULL;
3077		} else {
3078			error = -ENOMEM;
3079			if (ss_size < MINSIGSTKSZ)
3080				goto out;
3081		}
3082
3083		current->sas_ss_sp = (unsigned long) ss_sp;
3084		current->sas_ss_size = ss_size;
3085	}
3086
3087	error = 0;
3088	if (uoss) {
3089		error = -EFAULT;
3090		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3091			goto out;
3092		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3093			__put_user(oss.ss_size, &uoss->ss_size) |
3094			__put_user(oss.ss_flags, &uoss->ss_flags);
3095	}
3096
3097out:
3098	return error;
3099}
3100
3101#ifdef __ARCH_WANT_SYS_SIGPENDING
3102
3103/**
3104 *  sys_sigpending - examine pending signals
3105 *  @set: where mask of pending signal is returned
3106 */
3107SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3108{
3109	return do_sigpending(set, sizeof(*set));
3110}
3111
3112#endif
3113
3114#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3115/**
3116 *  sys_sigprocmask - examine and change blocked signals
3117 *  @how: whether to add, remove, or set signals
3118 *  @nset: signals to add or remove (if non-null)
3119 *  @oset: previous value of signal mask if non-null
3120 *
3121 * Some platforms have their own version with special arguments;
3122 * others support only sys_rt_sigprocmask.
3123 */
3124
3125SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3126		old_sigset_t __user *, oset)
3127{
3128	old_sigset_t old_set, new_set;
3129	sigset_t new_blocked;
3130
3131	old_set = current->blocked.sig[0];
3132
3133	if (nset) {
3134		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3135			return -EFAULT;
3136		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3137
3138		new_blocked = current->blocked;
3139
3140		switch (how) {
3141		case SIG_BLOCK:
3142			sigaddsetmask(&new_blocked, new_set);
3143			break;
3144		case SIG_UNBLOCK:
3145			sigdelsetmask(&new_blocked, new_set);
3146			break;
3147		case SIG_SETMASK:
3148			new_blocked.sig[0] = new_set;
3149			break;
3150		default:
3151			return -EINVAL;
3152		}
3153
3154		__set_current_blocked(&new_blocked);
3155	}
3156
3157	if (oset) {
3158		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3159			return -EFAULT;
3160	}
3161
3162	return 0;
3163}
3164#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3165
3166#ifdef __ARCH_WANT_SYS_RT_SIGACTION
3167/**
3168 *  sys_rt_sigaction - alter an action taken by a process
3169 *  @sig: signal to be sent
3170 *  @act: new sigaction
3171 *  @oact: used to save the previous sigaction
3172 *  @sigsetsize: size of sigset_t type
3173 */
3174SYSCALL_DEFINE4(rt_sigaction, int, sig,
3175		const struct sigaction __user *, act,
3176		struct sigaction __user *, oact,
3177		size_t, sigsetsize)
3178{
3179	struct k_sigaction new_sa, old_sa;
3180	int ret = -EINVAL;
3181
3182	/* XXX: Don't preclude handling different sized sigset_t's.  */
3183	if (sigsetsize != sizeof(sigset_t))
3184		goto out;
3185
3186	if (act) {
3187		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3188			return -EFAULT;
3189	}
3190
3191	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3192
3193	if (!ret && oact) {
3194		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3195			return -EFAULT;
3196	}
3197out:
3198	return ret;
3199}
3200#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3201
3202#ifdef __ARCH_WANT_SYS_SGETMASK
3203
3204/*
3205 * For backwards compatibility.  Functionality superseded by sigprocmask.
3206 */
3207SYSCALL_DEFINE0(sgetmask)
3208{
3209	/* SMP safe */
3210	return current->blocked.sig[0];
3211}
3212
3213SYSCALL_DEFINE1(ssetmask, int, newmask)
3214{
3215	int old = current->blocked.sig[0];
3216	sigset_t newset;
3217
 
3218	set_current_blocked(&newset);
3219
3220	return old;
3221}
3222#endif /* __ARCH_WANT_SGETMASK */
3223
3224#ifdef __ARCH_WANT_SYS_SIGNAL
3225/*
3226 * For backwards compatibility.  Functionality superseded by sigaction.
3227 */
3228SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3229{
3230	struct k_sigaction new_sa, old_sa;
3231	int ret;
3232
3233	new_sa.sa.sa_handler = handler;
3234	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3235	sigemptyset(&new_sa.sa.sa_mask);
3236
3237	ret = do_sigaction(sig, &new_sa, &old_sa);
3238
3239	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3240}
3241#endif /* __ARCH_WANT_SYS_SIGNAL */
3242
3243#ifdef __ARCH_WANT_SYS_PAUSE
3244
3245SYSCALL_DEFINE0(pause)
3246{
3247	while (!signal_pending(current)) {
3248		current->state = TASK_INTERRUPTIBLE;
3249		schedule();
3250	}
3251	return -ERESTARTNOHAND;
3252}
3253
3254#endif
3255
3256int sigsuspend(sigset_t *set)
3257{
3258	current->saved_sigmask = current->blocked;
3259	set_current_blocked(set);
3260
3261	current->state = TASK_INTERRUPTIBLE;
3262	schedule();
3263	set_restore_sigmask();
3264	return -ERESTARTNOHAND;
3265}
3266
3267#ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3268/**
3269 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3270 *	@unewset value until a signal is received
3271 *  @unewset: new signal mask value
3272 *  @sigsetsize: size of sigset_t type
3273 */
3274SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3275{
3276	sigset_t newset;
3277
3278	/* XXX: Don't preclude handling different sized sigset_t's.  */
3279	if (sigsetsize != sizeof(sigset_t))
3280		return -EINVAL;
3281
3282	if (copy_from_user(&newset, unewset, sizeof(newset)))
3283		return -EFAULT;
3284	return sigsuspend(&newset);
 
 
 
 
 
 
 
 
3285}
3286#endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3287
3288__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3289{
3290	return NULL;
3291}
3292
3293void __init signals_init(void)
3294{
3295	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3296}
3297
3298#ifdef CONFIG_KGDB_KDB
3299#include <linux/kdb.h>
3300/*
3301 * kdb_send_sig_info - Allows kdb to send signals without exposing
3302 * signal internals.  This function checks if the required locks are
3303 * available before calling the main signal code, to avoid kdb
3304 * deadlocks.
3305 */
3306void
3307kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3308{
3309	static struct task_struct *kdb_prev_t;
3310	int sig, new_t;
3311	if (!spin_trylock(&t->sighand->siglock)) {
3312		kdb_printf("Can't do kill command now.\n"
3313			   "The sigmask lock is held somewhere else in "
3314			   "kernel, try again later\n");
3315		return;
3316	}
3317	spin_unlock(&t->sighand->siglock);
3318	new_t = kdb_prev_t != t;
3319	kdb_prev_t = t;
3320	if (t->state != TASK_RUNNING && new_t) {
3321		kdb_printf("Process is not RUNNING, sending a signal from "
3322			   "kdb risks deadlock\n"
3323			   "on the run queue locks. "
3324			   "The signal has _not_ been sent.\n"
3325			   "Reissue the kill command if you want to risk "
3326			   "the deadlock.\n");
3327		return;
3328	}
3329	sig = info->si_signo;
3330	if (send_sig_info(sig, info, t))
3331		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3332			   sig, t->pid);
3333	else
3334		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3335}
3336#endif	/* CONFIG_KGDB_KDB */