Loading...
Note: File does not exist in v3.1.
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23#include <linux/latencytop.h>
24#include <linux/sched.h>
25#include <linux/cpumask.h>
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
29
30#include <trace/events/sched.h>
31
32#include "sched.h"
33
34/*
35 * Targeted preemption latency for CPU-bound tasks:
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37 *
38 * NOTE: this latency value is not the same as the concept of
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
42 *
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
45 */
46unsigned int sysctl_sched_latency = 6000000ULL;
47unsigned int normalized_sysctl_sched_latency = 6000000ULL;
48
49/*
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 *
53 * Options are:
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57 */
58enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
60
61/*
62 * Minimal preemption granularity for CPU-bound tasks:
63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
64 */
65unsigned int sysctl_sched_min_granularity = 750000ULL;
66unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
67
68/*
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70 */
71static unsigned int sched_nr_latency = 8;
72
73/*
74 * After fork, child runs first. If set to 0 (default) then
75 * parent will (try to) run first.
76 */
77unsigned int sysctl_sched_child_runs_first __read_mostly;
78
79/*
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
92/*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
99#ifdef CONFIG_CFS_BANDWIDTH
100/*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
108 * default: 5 msec, units: microseconds
109 */
110unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111#endif
112
113/*
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
118 * number of CPUs.
119 *
120 * This idea comes from the SD scheduler of Con Kolivas:
121 */
122static int get_update_sysctl_factor(void)
123{
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 unsigned int factor;
126
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
129 factor = 1;
130 break;
131 case SCHED_TUNABLESCALING_LINEAR:
132 factor = cpus;
133 break;
134 case SCHED_TUNABLESCALING_LOG:
135 default:
136 factor = 1 + ilog2(cpus);
137 break;
138 }
139
140 return factor;
141}
142
143static void update_sysctl(void)
144{
145 unsigned int factor = get_update_sysctl_factor();
146
147#define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
152#undef SET_SYSCTL
153}
154
155void sched_init_granularity(void)
156{
157 update_sysctl();
158}
159
160#if BITS_PER_LONG == 32
161# define WMULT_CONST (~0UL)
162#else
163# define WMULT_CONST (1UL << 32)
164#endif
165
166#define WMULT_SHIFT 32
167
168/*
169 * Shift right and round:
170 */
171#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172
173/*
174 * delta *= weight / lw
175 */
176static unsigned long
177calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
179{
180 u64 tmp;
181
182 /*
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
186 */
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
189 else
190 tmp = (u64)delta_exec;
191
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
194
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 lw->inv_weight = 1;
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
199 else
200 lw->inv_weight = WMULT_CONST / w;
201 }
202
203 /*
204 * Check whether we'd overflow the 64-bit multiplication:
205 */
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 WMULT_SHIFT/2);
209 else
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213}
214
215
216const struct sched_class fair_sched_class;
217
218/**************************************************************
219 * CFS operations on generic schedulable entities:
220 */
221
222#ifdef CONFIG_FAIR_GROUP_SCHED
223
224/* cpu runqueue to which this cfs_rq is attached */
225static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226{
227 return cfs_rq->rq;
228}
229
230/* An entity is a task if it doesn't "own" a runqueue */
231#define entity_is_task(se) (!se->my_q)
232
233static inline struct task_struct *task_of(struct sched_entity *se)
234{
235#ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se));
237#endif
238 return container_of(se, struct task_struct, se);
239}
240
241/* Walk up scheduling entities hierarchy */
242#define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
244
245static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246{
247 return p->se.cfs_rq;
248}
249
250/* runqueue on which this entity is (to be) queued */
251static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252{
253 return se->cfs_rq;
254}
255
256/* runqueue "owned" by this group */
257static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258{
259 return grp->my_q;
260}
261
262static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
263{
264 if (!cfs_rq->on_list) {
265 /*
266 * Ensure we either appear before our parent (if already
267 * enqueued) or force our parent to appear after us when it is
268 * enqueued. The fact that we always enqueue bottom-up
269 * reduces this to two cases.
270 */
271 if (cfs_rq->tg->parent &&
272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 &rq_of(cfs_rq)->leaf_cfs_rq_list);
275 } else {
276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
278 }
279
280 cfs_rq->on_list = 1;
281 }
282}
283
284static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285{
286 if (cfs_rq->on_list) {
287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
288 cfs_rq->on_list = 0;
289 }
290}
291
292/* Iterate thr' all leaf cfs_rq's on a runqueue */
293#define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
295
296/* Do the two (enqueued) entities belong to the same group ? */
297static inline int
298is_same_group(struct sched_entity *se, struct sched_entity *pse)
299{
300 if (se->cfs_rq == pse->cfs_rq)
301 return 1;
302
303 return 0;
304}
305
306static inline struct sched_entity *parent_entity(struct sched_entity *se)
307{
308 return se->parent;
309}
310
311/* return depth at which a sched entity is present in the hierarchy */
312static inline int depth_se(struct sched_entity *se)
313{
314 int depth = 0;
315
316 for_each_sched_entity(se)
317 depth++;
318
319 return depth;
320}
321
322static void
323find_matching_se(struct sched_entity **se, struct sched_entity **pse)
324{
325 int se_depth, pse_depth;
326
327 /*
328 * preemption test can be made between sibling entities who are in the
329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 * both tasks until we find their ancestors who are siblings of common
331 * parent.
332 */
333
334 /* First walk up until both entities are at same depth */
335 se_depth = depth_se(*se);
336 pse_depth = depth_se(*pse);
337
338 while (se_depth > pse_depth) {
339 se_depth--;
340 *se = parent_entity(*se);
341 }
342
343 while (pse_depth > se_depth) {
344 pse_depth--;
345 *pse = parent_entity(*pse);
346 }
347
348 while (!is_same_group(*se, *pse)) {
349 *se = parent_entity(*se);
350 *pse = parent_entity(*pse);
351 }
352}
353
354#else /* !CONFIG_FAIR_GROUP_SCHED */
355
356static inline struct task_struct *task_of(struct sched_entity *se)
357{
358 return container_of(se, struct task_struct, se);
359}
360
361static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
362{
363 return container_of(cfs_rq, struct rq, cfs);
364}
365
366#define entity_is_task(se) 1
367
368#define for_each_sched_entity(se) \
369 for (; se; se = NULL)
370
371static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
372{
373 return &task_rq(p)->cfs;
374}
375
376static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
377{
378 struct task_struct *p = task_of(se);
379 struct rq *rq = task_rq(p);
380
381 return &rq->cfs;
382}
383
384/* runqueue "owned" by this group */
385static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
386{
387 return NULL;
388}
389
390static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
391{
392}
393
394static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
395{
396}
397
398#define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
400
401static inline int
402is_same_group(struct sched_entity *se, struct sched_entity *pse)
403{
404 return 1;
405}
406
407static inline struct sched_entity *parent_entity(struct sched_entity *se)
408{
409 return NULL;
410}
411
412static inline void
413find_matching_se(struct sched_entity **se, struct sched_entity **pse)
414{
415}
416
417#endif /* CONFIG_FAIR_GROUP_SCHED */
418
419static __always_inline
420void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
421
422/**************************************************************
423 * Scheduling class tree data structure manipulation methods:
424 */
425
426static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
427{
428 s64 delta = (s64)(vruntime - min_vruntime);
429 if (delta > 0)
430 min_vruntime = vruntime;
431
432 return min_vruntime;
433}
434
435static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
436{
437 s64 delta = (s64)(vruntime - min_vruntime);
438 if (delta < 0)
439 min_vruntime = vruntime;
440
441 return min_vruntime;
442}
443
444static inline int entity_before(struct sched_entity *a,
445 struct sched_entity *b)
446{
447 return (s64)(a->vruntime - b->vruntime) < 0;
448}
449
450static void update_min_vruntime(struct cfs_rq *cfs_rq)
451{
452 u64 vruntime = cfs_rq->min_vruntime;
453
454 if (cfs_rq->curr)
455 vruntime = cfs_rq->curr->vruntime;
456
457 if (cfs_rq->rb_leftmost) {
458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
459 struct sched_entity,
460 run_node);
461
462 if (!cfs_rq->curr)
463 vruntime = se->vruntime;
464 else
465 vruntime = min_vruntime(vruntime, se->vruntime);
466 }
467
468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
469#ifndef CONFIG_64BIT
470 smp_wmb();
471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
472#endif
473}
474
475/*
476 * Enqueue an entity into the rb-tree:
477 */
478static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
479{
480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 struct rb_node *parent = NULL;
482 struct sched_entity *entry;
483 int leftmost = 1;
484
485 /*
486 * Find the right place in the rbtree:
487 */
488 while (*link) {
489 parent = *link;
490 entry = rb_entry(parent, struct sched_entity, run_node);
491 /*
492 * We dont care about collisions. Nodes with
493 * the same key stay together.
494 */
495 if (entity_before(se, entry)) {
496 link = &parent->rb_left;
497 } else {
498 link = &parent->rb_right;
499 leftmost = 0;
500 }
501 }
502
503 /*
504 * Maintain a cache of leftmost tree entries (it is frequently
505 * used):
506 */
507 if (leftmost)
508 cfs_rq->rb_leftmost = &se->run_node;
509
510 rb_link_node(&se->run_node, parent, link);
511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
512}
513
514static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
515{
516 if (cfs_rq->rb_leftmost == &se->run_node) {
517 struct rb_node *next_node;
518
519 next_node = rb_next(&se->run_node);
520 cfs_rq->rb_leftmost = next_node;
521 }
522
523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
524}
525
526struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
527{
528 struct rb_node *left = cfs_rq->rb_leftmost;
529
530 if (!left)
531 return NULL;
532
533 return rb_entry(left, struct sched_entity, run_node);
534}
535
536static struct sched_entity *__pick_next_entity(struct sched_entity *se)
537{
538 struct rb_node *next = rb_next(&se->run_node);
539
540 if (!next)
541 return NULL;
542
543 return rb_entry(next, struct sched_entity, run_node);
544}
545
546#ifdef CONFIG_SCHED_DEBUG
547struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
548{
549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
550
551 if (!last)
552 return NULL;
553
554 return rb_entry(last, struct sched_entity, run_node);
555}
556
557/**************************************************************
558 * Scheduling class statistics methods:
559 */
560
561int sched_proc_update_handler(struct ctl_table *table, int write,
562 void __user *buffer, size_t *lenp,
563 loff_t *ppos)
564{
565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
566 int factor = get_update_sysctl_factor();
567
568 if (ret || !write)
569 return ret;
570
571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 sysctl_sched_min_granularity);
573
574#define WRT_SYSCTL(name) \
575 (normalized_sysctl_##name = sysctl_##name / (factor))
576 WRT_SYSCTL(sched_min_granularity);
577 WRT_SYSCTL(sched_latency);
578 WRT_SYSCTL(sched_wakeup_granularity);
579#undef WRT_SYSCTL
580
581 return 0;
582}
583#endif
584
585/*
586 * delta /= w
587 */
588static inline unsigned long
589calc_delta_fair(unsigned long delta, struct sched_entity *se)
590{
591 if (unlikely(se->load.weight != NICE_0_LOAD))
592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
593
594 return delta;
595}
596
597/*
598 * The idea is to set a period in which each task runs once.
599 *
600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
601 * this period because otherwise the slices get too small.
602 *
603 * p = (nr <= nl) ? l : l*nr/nl
604 */
605static u64 __sched_period(unsigned long nr_running)
606{
607 u64 period = sysctl_sched_latency;
608 unsigned long nr_latency = sched_nr_latency;
609
610 if (unlikely(nr_running > nr_latency)) {
611 period = sysctl_sched_min_granularity;
612 period *= nr_running;
613 }
614
615 return period;
616}
617
618/*
619 * We calculate the wall-time slice from the period by taking a part
620 * proportional to the weight.
621 *
622 * s = p*P[w/rw]
623 */
624static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
625{
626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
627
628 for_each_sched_entity(se) {
629 struct load_weight *load;
630 struct load_weight lw;
631
632 cfs_rq = cfs_rq_of(se);
633 load = &cfs_rq->load;
634
635 if (unlikely(!se->on_rq)) {
636 lw = cfs_rq->load;
637
638 update_load_add(&lw, se->load.weight);
639 load = &lw;
640 }
641 slice = calc_delta_mine(slice, se->load.weight, load);
642 }
643 return slice;
644}
645
646/*
647 * We calculate the vruntime slice of a to be inserted task
648 *
649 * vs = s/w
650 */
651static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652{
653 return calc_delta_fair(sched_slice(cfs_rq, se), se);
654}
655
656static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
657static void update_cfs_shares(struct cfs_rq *cfs_rq);
658
659/*
660 * Update the current task's runtime statistics. Skip current tasks that
661 * are not in our scheduling class.
662 */
663static inline void
664__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 unsigned long delta_exec)
666{
667 unsigned long delta_exec_weighted;
668
669 schedstat_set(curr->statistics.exec_max,
670 max((u64)delta_exec, curr->statistics.exec_max));
671
672 curr->sum_exec_runtime += delta_exec;
673 schedstat_add(cfs_rq, exec_clock, delta_exec);
674 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
675
676 curr->vruntime += delta_exec_weighted;
677 update_min_vruntime(cfs_rq);
678
679#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
680 cfs_rq->load_unacc_exec_time += delta_exec;
681#endif
682}
683
684static void update_curr(struct cfs_rq *cfs_rq)
685{
686 struct sched_entity *curr = cfs_rq->curr;
687 u64 now = rq_of(cfs_rq)->clock_task;
688 unsigned long delta_exec;
689
690 if (unlikely(!curr))
691 return;
692
693 /*
694 * Get the amount of time the current task was running
695 * since the last time we changed load (this cannot
696 * overflow on 32 bits):
697 */
698 delta_exec = (unsigned long)(now - curr->exec_start);
699 if (!delta_exec)
700 return;
701
702 __update_curr(cfs_rq, curr, delta_exec);
703 curr->exec_start = now;
704
705 if (entity_is_task(curr)) {
706 struct task_struct *curtask = task_of(curr);
707
708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
709 cpuacct_charge(curtask, delta_exec);
710 account_group_exec_runtime(curtask, delta_exec);
711 }
712
713 account_cfs_rq_runtime(cfs_rq, delta_exec);
714}
715
716static inline void
717update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
718{
719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
720}
721
722/*
723 * Task is being enqueued - update stats:
724 */
725static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
726{
727 /*
728 * Are we enqueueing a waiting task? (for current tasks
729 * a dequeue/enqueue event is a NOP)
730 */
731 if (se != cfs_rq->curr)
732 update_stats_wait_start(cfs_rq, se);
733}
734
735static void
736update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
737{
738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 rq_of(cfs_rq)->clock - se->statistics.wait_start);
743#ifdef CONFIG_SCHEDSTATS
744 if (entity_is_task(se)) {
745 trace_sched_stat_wait(task_of(se),
746 rq_of(cfs_rq)->clock - se->statistics.wait_start);
747 }
748#endif
749 schedstat_set(se->statistics.wait_start, 0);
750}
751
752static inline void
753update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
754{
755 /*
756 * Mark the end of the wait period if dequeueing a
757 * waiting task:
758 */
759 if (se != cfs_rq->curr)
760 update_stats_wait_end(cfs_rq, se);
761}
762
763/*
764 * We are picking a new current task - update its stats:
765 */
766static inline void
767update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
768{
769 /*
770 * We are starting a new run period:
771 */
772 se->exec_start = rq_of(cfs_rq)->clock_task;
773}
774
775/**************************************************
776 * Scheduling class queueing methods:
777 */
778
779static void
780account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
781{
782 update_load_add(&cfs_rq->load, se->load.weight);
783 if (!parent_entity(se))
784 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
785#ifdef CONFIG_SMP
786 if (entity_is_task(se))
787 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
788#endif
789 cfs_rq->nr_running++;
790}
791
792static void
793account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794{
795 update_load_sub(&cfs_rq->load, se->load.weight);
796 if (!parent_entity(se))
797 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
798 if (entity_is_task(se))
799 list_del_init(&se->group_node);
800 cfs_rq->nr_running--;
801}
802
803#ifdef CONFIG_FAIR_GROUP_SCHED
804/* we need this in update_cfs_load and load-balance functions below */
805static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
806# ifdef CONFIG_SMP
807static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
808 int global_update)
809{
810 struct task_group *tg = cfs_rq->tg;
811 long load_avg;
812
813 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
814 load_avg -= cfs_rq->load_contribution;
815
816 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
817 atomic_add(load_avg, &tg->load_weight);
818 cfs_rq->load_contribution += load_avg;
819 }
820}
821
822static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
823{
824 u64 period = sysctl_sched_shares_window;
825 u64 now, delta;
826 unsigned long load = cfs_rq->load.weight;
827
828 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
829 return;
830
831 now = rq_of(cfs_rq)->clock_task;
832 delta = now - cfs_rq->load_stamp;
833
834 /* truncate load history at 4 idle periods */
835 if (cfs_rq->load_stamp > cfs_rq->load_last &&
836 now - cfs_rq->load_last > 4 * period) {
837 cfs_rq->load_period = 0;
838 cfs_rq->load_avg = 0;
839 delta = period - 1;
840 }
841
842 cfs_rq->load_stamp = now;
843 cfs_rq->load_unacc_exec_time = 0;
844 cfs_rq->load_period += delta;
845 if (load) {
846 cfs_rq->load_last = now;
847 cfs_rq->load_avg += delta * load;
848 }
849
850 /* consider updating load contribution on each fold or truncate */
851 if (global_update || cfs_rq->load_period > period
852 || !cfs_rq->load_period)
853 update_cfs_rq_load_contribution(cfs_rq, global_update);
854
855 while (cfs_rq->load_period > period) {
856 /*
857 * Inline assembly required to prevent the compiler
858 * optimising this loop into a divmod call.
859 * See __iter_div_u64_rem() for another example of this.
860 */
861 asm("" : "+rm" (cfs_rq->load_period));
862 cfs_rq->load_period /= 2;
863 cfs_rq->load_avg /= 2;
864 }
865
866 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
867 list_del_leaf_cfs_rq(cfs_rq);
868}
869
870static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
871{
872 long tg_weight;
873
874 /*
875 * Use this CPU's actual weight instead of the last load_contribution
876 * to gain a more accurate current total weight. See
877 * update_cfs_rq_load_contribution().
878 */
879 tg_weight = atomic_read(&tg->load_weight);
880 tg_weight -= cfs_rq->load_contribution;
881 tg_weight += cfs_rq->load.weight;
882
883 return tg_weight;
884}
885
886static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
887{
888 long tg_weight, load, shares;
889
890 tg_weight = calc_tg_weight(tg, cfs_rq);
891 load = cfs_rq->load.weight;
892
893 shares = (tg->shares * load);
894 if (tg_weight)
895 shares /= tg_weight;
896
897 if (shares < MIN_SHARES)
898 shares = MIN_SHARES;
899 if (shares > tg->shares)
900 shares = tg->shares;
901
902 return shares;
903}
904
905static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
906{
907 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
908 update_cfs_load(cfs_rq, 0);
909 update_cfs_shares(cfs_rq);
910 }
911}
912# else /* CONFIG_SMP */
913static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
914{
915}
916
917static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
918{
919 return tg->shares;
920}
921
922static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
923{
924}
925# endif /* CONFIG_SMP */
926static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
927 unsigned long weight)
928{
929 if (se->on_rq) {
930 /* commit outstanding execution time */
931 if (cfs_rq->curr == se)
932 update_curr(cfs_rq);
933 account_entity_dequeue(cfs_rq, se);
934 }
935
936 update_load_set(&se->load, weight);
937
938 if (se->on_rq)
939 account_entity_enqueue(cfs_rq, se);
940}
941
942static void update_cfs_shares(struct cfs_rq *cfs_rq)
943{
944 struct task_group *tg;
945 struct sched_entity *se;
946 long shares;
947
948 tg = cfs_rq->tg;
949 se = tg->se[cpu_of(rq_of(cfs_rq))];
950 if (!se || throttled_hierarchy(cfs_rq))
951 return;
952#ifndef CONFIG_SMP
953 if (likely(se->load.weight == tg->shares))
954 return;
955#endif
956 shares = calc_cfs_shares(cfs_rq, tg);
957
958 reweight_entity(cfs_rq_of(se), se, shares);
959}
960#else /* CONFIG_FAIR_GROUP_SCHED */
961static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
962{
963}
964
965static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
966{
967}
968
969static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
970{
971}
972#endif /* CONFIG_FAIR_GROUP_SCHED */
973
974static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
975{
976#ifdef CONFIG_SCHEDSTATS
977 struct task_struct *tsk = NULL;
978
979 if (entity_is_task(se))
980 tsk = task_of(se);
981
982 if (se->statistics.sleep_start) {
983 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
984
985 if ((s64)delta < 0)
986 delta = 0;
987
988 if (unlikely(delta > se->statistics.sleep_max))
989 se->statistics.sleep_max = delta;
990
991 se->statistics.sleep_start = 0;
992 se->statistics.sum_sleep_runtime += delta;
993
994 if (tsk) {
995 account_scheduler_latency(tsk, delta >> 10, 1);
996 trace_sched_stat_sleep(tsk, delta);
997 }
998 }
999 if (se->statistics.block_start) {
1000 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1001
1002 if ((s64)delta < 0)
1003 delta = 0;
1004
1005 if (unlikely(delta > se->statistics.block_max))
1006 se->statistics.block_max = delta;
1007
1008 se->statistics.block_start = 0;
1009 se->statistics.sum_sleep_runtime += delta;
1010
1011 if (tsk) {
1012 if (tsk->in_iowait) {
1013 se->statistics.iowait_sum += delta;
1014 se->statistics.iowait_count++;
1015 trace_sched_stat_iowait(tsk, delta);
1016 }
1017
1018 trace_sched_stat_blocked(tsk, delta);
1019
1020 /*
1021 * Blocking time is in units of nanosecs, so shift by
1022 * 20 to get a milliseconds-range estimation of the
1023 * amount of time that the task spent sleeping:
1024 */
1025 if (unlikely(prof_on == SLEEP_PROFILING)) {
1026 profile_hits(SLEEP_PROFILING,
1027 (void *)get_wchan(tsk),
1028 delta >> 20);
1029 }
1030 account_scheduler_latency(tsk, delta >> 10, 0);
1031 }
1032 }
1033#endif
1034}
1035
1036static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1037{
1038#ifdef CONFIG_SCHED_DEBUG
1039 s64 d = se->vruntime - cfs_rq->min_vruntime;
1040
1041 if (d < 0)
1042 d = -d;
1043
1044 if (d > 3*sysctl_sched_latency)
1045 schedstat_inc(cfs_rq, nr_spread_over);
1046#endif
1047}
1048
1049static void
1050place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1051{
1052 u64 vruntime = cfs_rq->min_vruntime;
1053
1054 /*
1055 * The 'current' period is already promised to the current tasks,
1056 * however the extra weight of the new task will slow them down a
1057 * little, place the new task so that it fits in the slot that
1058 * stays open at the end.
1059 */
1060 if (initial && sched_feat(START_DEBIT))
1061 vruntime += sched_vslice(cfs_rq, se);
1062
1063 /* sleeps up to a single latency don't count. */
1064 if (!initial) {
1065 unsigned long thresh = sysctl_sched_latency;
1066
1067 /*
1068 * Halve their sleep time's effect, to allow
1069 * for a gentler effect of sleepers:
1070 */
1071 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1072 thresh >>= 1;
1073
1074 vruntime -= thresh;
1075 }
1076
1077 /* ensure we never gain time by being placed backwards. */
1078 vruntime = max_vruntime(se->vruntime, vruntime);
1079
1080 se->vruntime = vruntime;
1081}
1082
1083static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1084
1085static void
1086enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1087{
1088 /*
1089 * Update the normalized vruntime before updating min_vruntime
1090 * through callig update_curr().
1091 */
1092 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1093 se->vruntime += cfs_rq->min_vruntime;
1094
1095 /*
1096 * Update run-time statistics of the 'current'.
1097 */
1098 update_curr(cfs_rq);
1099 update_cfs_load(cfs_rq, 0);
1100 account_entity_enqueue(cfs_rq, se);
1101 update_cfs_shares(cfs_rq);
1102
1103 if (flags & ENQUEUE_WAKEUP) {
1104 place_entity(cfs_rq, se, 0);
1105 enqueue_sleeper(cfs_rq, se);
1106 }
1107
1108 update_stats_enqueue(cfs_rq, se);
1109 check_spread(cfs_rq, se);
1110 if (se != cfs_rq->curr)
1111 __enqueue_entity(cfs_rq, se);
1112 se->on_rq = 1;
1113
1114 if (cfs_rq->nr_running == 1) {
1115 list_add_leaf_cfs_rq(cfs_rq);
1116 check_enqueue_throttle(cfs_rq);
1117 }
1118}
1119
1120static void __clear_buddies_last(struct sched_entity *se)
1121{
1122 for_each_sched_entity(se) {
1123 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1124 if (cfs_rq->last == se)
1125 cfs_rq->last = NULL;
1126 else
1127 break;
1128 }
1129}
1130
1131static void __clear_buddies_next(struct sched_entity *se)
1132{
1133 for_each_sched_entity(se) {
1134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1135 if (cfs_rq->next == se)
1136 cfs_rq->next = NULL;
1137 else
1138 break;
1139 }
1140}
1141
1142static void __clear_buddies_skip(struct sched_entity *se)
1143{
1144 for_each_sched_entity(se) {
1145 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1146 if (cfs_rq->skip == se)
1147 cfs_rq->skip = NULL;
1148 else
1149 break;
1150 }
1151}
1152
1153static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1154{
1155 if (cfs_rq->last == se)
1156 __clear_buddies_last(se);
1157
1158 if (cfs_rq->next == se)
1159 __clear_buddies_next(se);
1160
1161 if (cfs_rq->skip == se)
1162 __clear_buddies_skip(se);
1163}
1164
1165static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1166
1167static void
1168dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1169{
1170 /*
1171 * Update run-time statistics of the 'current'.
1172 */
1173 update_curr(cfs_rq);
1174
1175 update_stats_dequeue(cfs_rq, se);
1176 if (flags & DEQUEUE_SLEEP) {
1177#ifdef CONFIG_SCHEDSTATS
1178 if (entity_is_task(se)) {
1179 struct task_struct *tsk = task_of(se);
1180
1181 if (tsk->state & TASK_INTERRUPTIBLE)
1182 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1183 if (tsk->state & TASK_UNINTERRUPTIBLE)
1184 se->statistics.block_start = rq_of(cfs_rq)->clock;
1185 }
1186#endif
1187 }
1188
1189 clear_buddies(cfs_rq, se);
1190
1191 if (se != cfs_rq->curr)
1192 __dequeue_entity(cfs_rq, se);
1193 se->on_rq = 0;
1194 update_cfs_load(cfs_rq, 0);
1195 account_entity_dequeue(cfs_rq, se);
1196
1197 /*
1198 * Normalize the entity after updating the min_vruntime because the
1199 * update can refer to the ->curr item and we need to reflect this
1200 * movement in our normalized position.
1201 */
1202 if (!(flags & DEQUEUE_SLEEP))
1203 se->vruntime -= cfs_rq->min_vruntime;
1204
1205 /* return excess runtime on last dequeue */
1206 return_cfs_rq_runtime(cfs_rq);
1207
1208 update_min_vruntime(cfs_rq);
1209 update_cfs_shares(cfs_rq);
1210}
1211
1212/*
1213 * Preempt the current task with a newly woken task if needed:
1214 */
1215static void
1216check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1217{
1218 unsigned long ideal_runtime, delta_exec;
1219 struct sched_entity *se;
1220 s64 delta;
1221
1222 ideal_runtime = sched_slice(cfs_rq, curr);
1223 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1224 if (delta_exec > ideal_runtime) {
1225 resched_task(rq_of(cfs_rq)->curr);
1226 /*
1227 * The current task ran long enough, ensure it doesn't get
1228 * re-elected due to buddy favours.
1229 */
1230 clear_buddies(cfs_rq, curr);
1231 return;
1232 }
1233
1234 /*
1235 * Ensure that a task that missed wakeup preemption by a
1236 * narrow margin doesn't have to wait for a full slice.
1237 * This also mitigates buddy induced latencies under load.
1238 */
1239 if (delta_exec < sysctl_sched_min_granularity)
1240 return;
1241
1242 se = __pick_first_entity(cfs_rq);
1243 delta = curr->vruntime - se->vruntime;
1244
1245 if (delta < 0)
1246 return;
1247
1248 if (delta > ideal_runtime)
1249 resched_task(rq_of(cfs_rq)->curr);
1250}
1251
1252static void
1253set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1254{
1255 /* 'current' is not kept within the tree. */
1256 if (se->on_rq) {
1257 /*
1258 * Any task has to be enqueued before it get to execute on
1259 * a CPU. So account for the time it spent waiting on the
1260 * runqueue.
1261 */
1262 update_stats_wait_end(cfs_rq, se);
1263 __dequeue_entity(cfs_rq, se);
1264 }
1265
1266 update_stats_curr_start(cfs_rq, se);
1267 cfs_rq->curr = se;
1268#ifdef CONFIG_SCHEDSTATS
1269 /*
1270 * Track our maximum slice length, if the CPU's load is at
1271 * least twice that of our own weight (i.e. dont track it
1272 * when there are only lesser-weight tasks around):
1273 */
1274 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1275 se->statistics.slice_max = max(se->statistics.slice_max,
1276 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1277 }
1278#endif
1279 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1280}
1281
1282static int
1283wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1284
1285/*
1286 * Pick the next process, keeping these things in mind, in this order:
1287 * 1) keep things fair between processes/task groups
1288 * 2) pick the "next" process, since someone really wants that to run
1289 * 3) pick the "last" process, for cache locality
1290 * 4) do not run the "skip" process, if something else is available
1291 */
1292static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1293{
1294 struct sched_entity *se = __pick_first_entity(cfs_rq);
1295 struct sched_entity *left = se;
1296
1297 /*
1298 * Avoid running the skip buddy, if running something else can
1299 * be done without getting too unfair.
1300 */
1301 if (cfs_rq->skip == se) {
1302 struct sched_entity *second = __pick_next_entity(se);
1303 if (second && wakeup_preempt_entity(second, left) < 1)
1304 se = second;
1305 }
1306
1307 /*
1308 * Prefer last buddy, try to return the CPU to a preempted task.
1309 */
1310 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1311 se = cfs_rq->last;
1312
1313 /*
1314 * Someone really wants this to run. If it's not unfair, run it.
1315 */
1316 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1317 se = cfs_rq->next;
1318
1319 clear_buddies(cfs_rq, se);
1320
1321 return se;
1322}
1323
1324static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1325
1326static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1327{
1328 /*
1329 * If still on the runqueue then deactivate_task()
1330 * was not called and update_curr() has to be done:
1331 */
1332 if (prev->on_rq)
1333 update_curr(cfs_rq);
1334
1335 /* throttle cfs_rqs exceeding runtime */
1336 check_cfs_rq_runtime(cfs_rq);
1337
1338 check_spread(cfs_rq, prev);
1339 if (prev->on_rq) {
1340 update_stats_wait_start(cfs_rq, prev);
1341 /* Put 'current' back into the tree. */
1342 __enqueue_entity(cfs_rq, prev);
1343 }
1344 cfs_rq->curr = NULL;
1345}
1346
1347static void
1348entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1349{
1350 /*
1351 * Update run-time statistics of the 'current'.
1352 */
1353 update_curr(cfs_rq);
1354
1355 /*
1356 * Update share accounting for long-running entities.
1357 */
1358 update_entity_shares_tick(cfs_rq);
1359
1360#ifdef CONFIG_SCHED_HRTICK
1361 /*
1362 * queued ticks are scheduled to match the slice, so don't bother
1363 * validating it and just reschedule.
1364 */
1365 if (queued) {
1366 resched_task(rq_of(cfs_rq)->curr);
1367 return;
1368 }
1369 /*
1370 * don't let the period tick interfere with the hrtick preemption
1371 */
1372 if (!sched_feat(DOUBLE_TICK) &&
1373 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1374 return;
1375#endif
1376
1377 if (cfs_rq->nr_running > 1)
1378 check_preempt_tick(cfs_rq, curr);
1379}
1380
1381
1382/**************************************************
1383 * CFS bandwidth control machinery
1384 */
1385
1386#ifdef CONFIG_CFS_BANDWIDTH
1387
1388#ifdef HAVE_JUMP_LABEL
1389static struct static_key __cfs_bandwidth_used;
1390
1391static inline bool cfs_bandwidth_used(void)
1392{
1393 return static_key_false(&__cfs_bandwidth_used);
1394}
1395
1396void account_cfs_bandwidth_used(int enabled, int was_enabled)
1397{
1398 /* only need to count groups transitioning between enabled/!enabled */
1399 if (enabled && !was_enabled)
1400 static_key_slow_inc(&__cfs_bandwidth_used);
1401 else if (!enabled && was_enabled)
1402 static_key_slow_dec(&__cfs_bandwidth_used);
1403}
1404#else /* HAVE_JUMP_LABEL */
1405static bool cfs_bandwidth_used(void)
1406{
1407 return true;
1408}
1409
1410void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1411#endif /* HAVE_JUMP_LABEL */
1412
1413/*
1414 * default period for cfs group bandwidth.
1415 * default: 0.1s, units: nanoseconds
1416 */
1417static inline u64 default_cfs_period(void)
1418{
1419 return 100000000ULL;
1420}
1421
1422static inline u64 sched_cfs_bandwidth_slice(void)
1423{
1424 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1425}
1426
1427/*
1428 * Replenish runtime according to assigned quota and update expiration time.
1429 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1430 * additional synchronization around rq->lock.
1431 *
1432 * requires cfs_b->lock
1433 */
1434void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1435{
1436 u64 now;
1437
1438 if (cfs_b->quota == RUNTIME_INF)
1439 return;
1440
1441 now = sched_clock_cpu(smp_processor_id());
1442 cfs_b->runtime = cfs_b->quota;
1443 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1444}
1445
1446static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1447{
1448 return &tg->cfs_bandwidth;
1449}
1450
1451/* returns 0 on failure to allocate runtime */
1452static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1453{
1454 struct task_group *tg = cfs_rq->tg;
1455 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
1456 u64 amount = 0, min_amount, expires;
1457
1458 /* note: this is a positive sum as runtime_remaining <= 0 */
1459 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1460
1461 raw_spin_lock(&cfs_b->lock);
1462 if (cfs_b->quota == RUNTIME_INF)
1463 amount = min_amount;
1464 else {
1465 /*
1466 * If the bandwidth pool has become inactive, then at least one
1467 * period must have elapsed since the last consumption.
1468 * Refresh the global state and ensure bandwidth timer becomes
1469 * active.
1470 */
1471 if (!cfs_b->timer_active) {
1472 __refill_cfs_bandwidth_runtime(cfs_b);
1473 __start_cfs_bandwidth(cfs_b);
1474 }
1475
1476 if (cfs_b->runtime > 0) {
1477 amount = min(cfs_b->runtime, min_amount);
1478 cfs_b->runtime -= amount;
1479 cfs_b->idle = 0;
1480 }
1481 }
1482 expires = cfs_b->runtime_expires;
1483 raw_spin_unlock(&cfs_b->lock);
1484
1485 cfs_rq->runtime_remaining += amount;
1486 /*
1487 * we may have advanced our local expiration to account for allowed
1488 * spread between our sched_clock and the one on which runtime was
1489 * issued.
1490 */
1491 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1492 cfs_rq->runtime_expires = expires;
1493
1494 return cfs_rq->runtime_remaining > 0;
1495}
1496
1497/*
1498 * Note: This depends on the synchronization provided by sched_clock and the
1499 * fact that rq->clock snapshots this value.
1500 */
1501static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1502{
1503 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1504 struct rq *rq = rq_of(cfs_rq);
1505
1506 /* if the deadline is ahead of our clock, nothing to do */
1507 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1508 return;
1509
1510 if (cfs_rq->runtime_remaining < 0)
1511 return;
1512
1513 /*
1514 * If the local deadline has passed we have to consider the
1515 * possibility that our sched_clock is 'fast' and the global deadline
1516 * has not truly expired.
1517 *
1518 * Fortunately we can check determine whether this the case by checking
1519 * whether the global deadline has advanced.
1520 */
1521
1522 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1523 /* extend local deadline, drift is bounded above by 2 ticks */
1524 cfs_rq->runtime_expires += TICK_NSEC;
1525 } else {
1526 /* global deadline is ahead, expiration has passed */
1527 cfs_rq->runtime_remaining = 0;
1528 }
1529}
1530
1531static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1532 unsigned long delta_exec)
1533{
1534 /* dock delta_exec before expiring quota (as it could span periods) */
1535 cfs_rq->runtime_remaining -= delta_exec;
1536 expire_cfs_rq_runtime(cfs_rq);
1537
1538 if (likely(cfs_rq->runtime_remaining > 0))
1539 return;
1540
1541 /*
1542 * if we're unable to extend our runtime we resched so that the active
1543 * hierarchy can be throttled
1544 */
1545 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1546 resched_task(rq_of(cfs_rq)->curr);
1547}
1548
1549static __always_inline
1550void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
1551{
1552 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1553 return;
1554
1555 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1556}
1557
1558static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1559{
1560 return cfs_bandwidth_used() && cfs_rq->throttled;
1561}
1562
1563/* check whether cfs_rq, or any parent, is throttled */
1564static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1565{
1566 return cfs_bandwidth_used() && cfs_rq->throttle_count;
1567}
1568
1569/*
1570 * Ensure that neither of the group entities corresponding to src_cpu or
1571 * dest_cpu are members of a throttled hierarchy when performing group
1572 * load-balance operations.
1573 */
1574static inline int throttled_lb_pair(struct task_group *tg,
1575 int src_cpu, int dest_cpu)
1576{
1577 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1578
1579 src_cfs_rq = tg->cfs_rq[src_cpu];
1580 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1581
1582 return throttled_hierarchy(src_cfs_rq) ||
1583 throttled_hierarchy(dest_cfs_rq);
1584}
1585
1586/* updated child weight may affect parent so we have to do this bottom up */
1587static int tg_unthrottle_up(struct task_group *tg, void *data)
1588{
1589 struct rq *rq = data;
1590 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1591
1592 cfs_rq->throttle_count--;
1593#ifdef CONFIG_SMP
1594 if (!cfs_rq->throttle_count) {
1595 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1596
1597 /* leaving throttled state, advance shares averaging windows */
1598 cfs_rq->load_stamp += delta;
1599 cfs_rq->load_last += delta;
1600
1601 /* update entity weight now that we are on_rq again */
1602 update_cfs_shares(cfs_rq);
1603 }
1604#endif
1605
1606 return 0;
1607}
1608
1609static int tg_throttle_down(struct task_group *tg, void *data)
1610{
1611 struct rq *rq = data;
1612 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1613
1614 /* group is entering throttled state, record last load */
1615 if (!cfs_rq->throttle_count)
1616 update_cfs_load(cfs_rq, 0);
1617 cfs_rq->throttle_count++;
1618
1619 return 0;
1620}
1621
1622static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1623{
1624 struct rq *rq = rq_of(cfs_rq);
1625 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1626 struct sched_entity *se;
1627 long task_delta, dequeue = 1;
1628
1629 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1630
1631 /* account load preceding throttle */
1632 rcu_read_lock();
1633 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1634 rcu_read_unlock();
1635
1636 task_delta = cfs_rq->h_nr_running;
1637 for_each_sched_entity(se) {
1638 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1639 /* throttled entity or throttle-on-deactivate */
1640 if (!se->on_rq)
1641 break;
1642
1643 if (dequeue)
1644 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1645 qcfs_rq->h_nr_running -= task_delta;
1646
1647 if (qcfs_rq->load.weight)
1648 dequeue = 0;
1649 }
1650
1651 if (!se)
1652 rq->nr_running -= task_delta;
1653
1654 cfs_rq->throttled = 1;
1655 cfs_rq->throttled_timestamp = rq->clock;
1656 raw_spin_lock(&cfs_b->lock);
1657 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1658 raw_spin_unlock(&cfs_b->lock);
1659}
1660
1661void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1662{
1663 struct rq *rq = rq_of(cfs_rq);
1664 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1665 struct sched_entity *se;
1666 int enqueue = 1;
1667 long task_delta;
1668
1669 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1670
1671 cfs_rq->throttled = 0;
1672 raw_spin_lock(&cfs_b->lock);
1673 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1674 list_del_rcu(&cfs_rq->throttled_list);
1675 raw_spin_unlock(&cfs_b->lock);
1676 cfs_rq->throttled_timestamp = 0;
1677
1678 update_rq_clock(rq);
1679 /* update hierarchical throttle state */
1680 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1681
1682 if (!cfs_rq->load.weight)
1683 return;
1684
1685 task_delta = cfs_rq->h_nr_running;
1686 for_each_sched_entity(se) {
1687 if (se->on_rq)
1688 enqueue = 0;
1689
1690 cfs_rq = cfs_rq_of(se);
1691 if (enqueue)
1692 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1693 cfs_rq->h_nr_running += task_delta;
1694
1695 if (cfs_rq_throttled(cfs_rq))
1696 break;
1697 }
1698
1699 if (!se)
1700 rq->nr_running += task_delta;
1701
1702 /* determine whether we need to wake up potentially idle cpu */
1703 if (rq->curr == rq->idle && rq->cfs.nr_running)
1704 resched_task(rq->curr);
1705}
1706
1707static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1708 u64 remaining, u64 expires)
1709{
1710 struct cfs_rq *cfs_rq;
1711 u64 runtime = remaining;
1712
1713 rcu_read_lock();
1714 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1715 throttled_list) {
1716 struct rq *rq = rq_of(cfs_rq);
1717
1718 raw_spin_lock(&rq->lock);
1719 if (!cfs_rq_throttled(cfs_rq))
1720 goto next;
1721
1722 runtime = -cfs_rq->runtime_remaining + 1;
1723 if (runtime > remaining)
1724 runtime = remaining;
1725 remaining -= runtime;
1726
1727 cfs_rq->runtime_remaining += runtime;
1728 cfs_rq->runtime_expires = expires;
1729
1730 /* we check whether we're throttled above */
1731 if (cfs_rq->runtime_remaining > 0)
1732 unthrottle_cfs_rq(cfs_rq);
1733
1734next:
1735 raw_spin_unlock(&rq->lock);
1736
1737 if (!remaining)
1738 break;
1739 }
1740 rcu_read_unlock();
1741
1742 return remaining;
1743}
1744
1745/*
1746 * Responsible for refilling a task_group's bandwidth and unthrottling its
1747 * cfs_rqs as appropriate. If there has been no activity within the last
1748 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1749 * used to track this state.
1750 */
1751static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1752{
1753 u64 runtime, runtime_expires;
1754 int idle = 1, throttled;
1755
1756 raw_spin_lock(&cfs_b->lock);
1757 /* no need to continue the timer with no bandwidth constraint */
1758 if (cfs_b->quota == RUNTIME_INF)
1759 goto out_unlock;
1760
1761 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1762 /* idle depends on !throttled (for the case of a large deficit) */
1763 idle = cfs_b->idle && !throttled;
1764 cfs_b->nr_periods += overrun;
1765
1766 /* if we're going inactive then everything else can be deferred */
1767 if (idle)
1768 goto out_unlock;
1769
1770 __refill_cfs_bandwidth_runtime(cfs_b);
1771
1772 if (!throttled) {
1773 /* mark as potentially idle for the upcoming period */
1774 cfs_b->idle = 1;
1775 goto out_unlock;
1776 }
1777
1778 /* account preceding periods in which throttling occurred */
1779 cfs_b->nr_throttled += overrun;
1780
1781 /*
1782 * There are throttled entities so we must first use the new bandwidth
1783 * to unthrottle them before making it generally available. This
1784 * ensures that all existing debts will be paid before a new cfs_rq is
1785 * allowed to run.
1786 */
1787 runtime = cfs_b->runtime;
1788 runtime_expires = cfs_b->runtime_expires;
1789 cfs_b->runtime = 0;
1790
1791 /*
1792 * This check is repeated as we are holding onto the new bandwidth
1793 * while we unthrottle. This can potentially race with an unthrottled
1794 * group trying to acquire new bandwidth from the global pool.
1795 */
1796 while (throttled && runtime > 0) {
1797 raw_spin_unlock(&cfs_b->lock);
1798 /* we can't nest cfs_b->lock while distributing bandwidth */
1799 runtime = distribute_cfs_runtime(cfs_b, runtime,
1800 runtime_expires);
1801 raw_spin_lock(&cfs_b->lock);
1802
1803 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1804 }
1805
1806 /* return (any) remaining runtime */
1807 cfs_b->runtime = runtime;
1808 /*
1809 * While we are ensured activity in the period following an
1810 * unthrottle, this also covers the case in which the new bandwidth is
1811 * insufficient to cover the existing bandwidth deficit. (Forcing the
1812 * timer to remain active while there are any throttled entities.)
1813 */
1814 cfs_b->idle = 0;
1815out_unlock:
1816 if (idle)
1817 cfs_b->timer_active = 0;
1818 raw_spin_unlock(&cfs_b->lock);
1819
1820 return idle;
1821}
1822
1823/* a cfs_rq won't donate quota below this amount */
1824static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1825/* minimum remaining period time to redistribute slack quota */
1826static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1827/* how long we wait to gather additional slack before distributing */
1828static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1829
1830/* are we near the end of the current quota period? */
1831static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1832{
1833 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1834 u64 remaining;
1835
1836 /* if the call-back is running a quota refresh is already occurring */
1837 if (hrtimer_callback_running(refresh_timer))
1838 return 1;
1839
1840 /* is a quota refresh about to occur? */
1841 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1842 if (remaining < min_expire)
1843 return 1;
1844
1845 return 0;
1846}
1847
1848static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1849{
1850 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1851
1852 /* if there's a quota refresh soon don't bother with slack */
1853 if (runtime_refresh_within(cfs_b, min_left))
1854 return;
1855
1856 start_bandwidth_timer(&cfs_b->slack_timer,
1857 ns_to_ktime(cfs_bandwidth_slack_period));
1858}
1859
1860/* we know any runtime found here is valid as update_curr() precedes return */
1861static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1862{
1863 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1864 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1865
1866 if (slack_runtime <= 0)
1867 return;
1868
1869 raw_spin_lock(&cfs_b->lock);
1870 if (cfs_b->quota != RUNTIME_INF &&
1871 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1872 cfs_b->runtime += slack_runtime;
1873
1874 /* we are under rq->lock, defer unthrottling using a timer */
1875 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1876 !list_empty(&cfs_b->throttled_cfs_rq))
1877 start_cfs_slack_bandwidth(cfs_b);
1878 }
1879 raw_spin_unlock(&cfs_b->lock);
1880
1881 /* even if it's not valid for return we don't want to try again */
1882 cfs_rq->runtime_remaining -= slack_runtime;
1883}
1884
1885static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1886{
1887 if (!cfs_bandwidth_used())
1888 return;
1889
1890 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
1891 return;
1892
1893 __return_cfs_rq_runtime(cfs_rq);
1894}
1895
1896/*
1897 * This is done with a timer (instead of inline with bandwidth return) since
1898 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1899 */
1900static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1901{
1902 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1903 u64 expires;
1904
1905 /* confirm we're still not at a refresh boundary */
1906 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1907 return;
1908
1909 raw_spin_lock(&cfs_b->lock);
1910 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1911 runtime = cfs_b->runtime;
1912 cfs_b->runtime = 0;
1913 }
1914 expires = cfs_b->runtime_expires;
1915 raw_spin_unlock(&cfs_b->lock);
1916
1917 if (!runtime)
1918 return;
1919
1920 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1921
1922 raw_spin_lock(&cfs_b->lock);
1923 if (expires == cfs_b->runtime_expires)
1924 cfs_b->runtime = runtime;
1925 raw_spin_unlock(&cfs_b->lock);
1926}
1927
1928/*
1929 * When a group wakes up we want to make sure that its quota is not already
1930 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1931 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1932 */
1933static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1934{
1935 if (!cfs_bandwidth_used())
1936 return;
1937
1938 /* an active group must be handled by the update_curr()->put() path */
1939 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1940 return;
1941
1942 /* ensure the group is not already throttled */
1943 if (cfs_rq_throttled(cfs_rq))
1944 return;
1945
1946 /* update runtime allocation */
1947 account_cfs_rq_runtime(cfs_rq, 0);
1948 if (cfs_rq->runtime_remaining <= 0)
1949 throttle_cfs_rq(cfs_rq);
1950}
1951
1952/* conditionally throttle active cfs_rq's from put_prev_entity() */
1953static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1954{
1955 if (!cfs_bandwidth_used())
1956 return;
1957
1958 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1959 return;
1960
1961 /*
1962 * it's possible for a throttled entity to be forced into a running
1963 * state (e.g. set_curr_task), in this case we're finished.
1964 */
1965 if (cfs_rq_throttled(cfs_rq))
1966 return;
1967
1968 throttle_cfs_rq(cfs_rq);
1969}
1970
1971static inline u64 default_cfs_period(void);
1972static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1973static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1974
1975static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1976{
1977 struct cfs_bandwidth *cfs_b =
1978 container_of(timer, struct cfs_bandwidth, slack_timer);
1979 do_sched_cfs_slack_timer(cfs_b);
1980
1981 return HRTIMER_NORESTART;
1982}
1983
1984static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
1985{
1986 struct cfs_bandwidth *cfs_b =
1987 container_of(timer, struct cfs_bandwidth, period_timer);
1988 ktime_t now;
1989 int overrun;
1990 int idle = 0;
1991
1992 for (;;) {
1993 now = hrtimer_cb_get_time(timer);
1994 overrun = hrtimer_forward(timer, now, cfs_b->period);
1995
1996 if (!overrun)
1997 break;
1998
1999 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2000 }
2001
2002 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2003}
2004
2005void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2006{
2007 raw_spin_lock_init(&cfs_b->lock);
2008 cfs_b->runtime = 0;
2009 cfs_b->quota = RUNTIME_INF;
2010 cfs_b->period = ns_to_ktime(default_cfs_period());
2011
2012 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2013 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2014 cfs_b->period_timer.function = sched_cfs_period_timer;
2015 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2016 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2017}
2018
2019static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2020{
2021 cfs_rq->runtime_enabled = 0;
2022 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2023}
2024
2025/* requires cfs_b->lock, may release to reprogram timer */
2026void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2027{
2028 /*
2029 * The timer may be active because we're trying to set a new bandwidth
2030 * period or because we're racing with the tear-down path
2031 * (timer_active==0 becomes visible before the hrtimer call-back
2032 * terminates). In either case we ensure that it's re-programmed
2033 */
2034 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2035 raw_spin_unlock(&cfs_b->lock);
2036 /* ensure cfs_b->lock is available while we wait */
2037 hrtimer_cancel(&cfs_b->period_timer);
2038
2039 raw_spin_lock(&cfs_b->lock);
2040 /* if someone else restarted the timer then we're done */
2041 if (cfs_b->timer_active)
2042 return;
2043 }
2044
2045 cfs_b->timer_active = 1;
2046 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2047}
2048
2049static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2050{
2051 hrtimer_cancel(&cfs_b->period_timer);
2052 hrtimer_cancel(&cfs_b->slack_timer);
2053}
2054
2055void unthrottle_offline_cfs_rqs(struct rq *rq)
2056{
2057 struct cfs_rq *cfs_rq;
2058
2059 for_each_leaf_cfs_rq(rq, cfs_rq) {
2060 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2061
2062 if (!cfs_rq->runtime_enabled)
2063 continue;
2064
2065 /*
2066 * clock_task is not advancing so we just need to make sure
2067 * there's some valid quota amount
2068 */
2069 cfs_rq->runtime_remaining = cfs_b->quota;
2070 if (cfs_rq_throttled(cfs_rq))
2071 unthrottle_cfs_rq(cfs_rq);
2072 }
2073}
2074
2075#else /* CONFIG_CFS_BANDWIDTH */
2076static __always_inline
2077void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
2078static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2079static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2080static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2081
2082static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2083{
2084 return 0;
2085}
2086
2087static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2088{
2089 return 0;
2090}
2091
2092static inline int throttled_lb_pair(struct task_group *tg,
2093 int src_cpu, int dest_cpu)
2094{
2095 return 0;
2096}
2097
2098void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2099
2100#ifdef CONFIG_FAIR_GROUP_SCHED
2101static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2102#endif
2103
2104static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2105{
2106 return NULL;
2107}
2108static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2109void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2110
2111#endif /* CONFIG_CFS_BANDWIDTH */
2112
2113/**************************************************
2114 * CFS operations on tasks:
2115 */
2116
2117#ifdef CONFIG_SCHED_HRTICK
2118static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2119{
2120 struct sched_entity *se = &p->se;
2121 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2122
2123 WARN_ON(task_rq(p) != rq);
2124
2125 if (cfs_rq->nr_running > 1) {
2126 u64 slice = sched_slice(cfs_rq, se);
2127 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2128 s64 delta = slice - ran;
2129
2130 if (delta < 0) {
2131 if (rq->curr == p)
2132 resched_task(p);
2133 return;
2134 }
2135
2136 /*
2137 * Don't schedule slices shorter than 10000ns, that just
2138 * doesn't make sense. Rely on vruntime for fairness.
2139 */
2140 if (rq->curr != p)
2141 delta = max_t(s64, 10000LL, delta);
2142
2143 hrtick_start(rq, delta);
2144 }
2145}
2146
2147/*
2148 * called from enqueue/dequeue and updates the hrtick when the
2149 * current task is from our class and nr_running is low enough
2150 * to matter.
2151 */
2152static void hrtick_update(struct rq *rq)
2153{
2154 struct task_struct *curr = rq->curr;
2155
2156 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2157 return;
2158
2159 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2160 hrtick_start_fair(rq, curr);
2161}
2162#else /* !CONFIG_SCHED_HRTICK */
2163static inline void
2164hrtick_start_fair(struct rq *rq, struct task_struct *p)
2165{
2166}
2167
2168static inline void hrtick_update(struct rq *rq)
2169{
2170}
2171#endif
2172
2173/*
2174 * The enqueue_task method is called before nr_running is
2175 * increased. Here we update the fair scheduling stats and
2176 * then put the task into the rbtree:
2177 */
2178static void
2179enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2180{
2181 struct cfs_rq *cfs_rq;
2182 struct sched_entity *se = &p->se;
2183
2184 for_each_sched_entity(se) {
2185 if (se->on_rq)
2186 break;
2187 cfs_rq = cfs_rq_of(se);
2188 enqueue_entity(cfs_rq, se, flags);
2189
2190 /*
2191 * end evaluation on encountering a throttled cfs_rq
2192 *
2193 * note: in the case of encountering a throttled cfs_rq we will
2194 * post the final h_nr_running increment below.
2195 */
2196 if (cfs_rq_throttled(cfs_rq))
2197 break;
2198 cfs_rq->h_nr_running++;
2199
2200 flags = ENQUEUE_WAKEUP;
2201 }
2202
2203 for_each_sched_entity(se) {
2204 cfs_rq = cfs_rq_of(se);
2205 cfs_rq->h_nr_running++;
2206
2207 if (cfs_rq_throttled(cfs_rq))
2208 break;
2209
2210 update_cfs_load(cfs_rq, 0);
2211 update_cfs_shares(cfs_rq);
2212 }
2213
2214 if (!se)
2215 inc_nr_running(rq);
2216 hrtick_update(rq);
2217}
2218
2219static void set_next_buddy(struct sched_entity *se);
2220
2221/*
2222 * The dequeue_task method is called before nr_running is
2223 * decreased. We remove the task from the rbtree and
2224 * update the fair scheduling stats:
2225 */
2226static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2227{
2228 struct cfs_rq *cfs_rq;
2229 struct sched_entity *se = &p->se;
2230 int task_sleep = flags & DEQUEUE_SLEEP;
2231
2232 for_each_sched_entity(se) {
2233 cfs_rq = cfs_rq_of(se);
2234 dequeue_entity(cfs_rq, se, flags);
2235
2236 /*
2237 * end evaluation on encountering a throttled cfs_rq
2238 *
2239 * note: in the case of encountering a throttled cfs_rq we will
2240 * post the final h_nr_running decrement below.
2241 */
2242 if (cfs_rq_throttled(cfs_rq))
2243 break;
2244 cfs_rq->h_nr_running--;
2245
2246 /* Don't dequeue parent if it has other entities besides us */
2247 if (cfs_rq->load.weight) {
2248 /*
2249 * Bias pick_next to pick a task from this cfs_rq, as
2250 * p is sleeping when it is within its sched_slice.
2251 */
2252 if (task_sleep && parent_entity(se))
2253 set_next_buddy(parent_entity(se));
2254
2255 /* avoid re-evaluating load for this entity */
2256 se = parent_entity(se);
2257 break;
2258 }
2259 flags |= DEQUEUE_SLEEP;
2260 }
2261
2262 for_each_sched_entity(se) {
2263 cfs_rq = cfs_rq_of(se);
2264 cfs_rq->h_nr_running--;
2265
2266 if (cfs_rq_throttled(cfs_rq))
2267 break;
2268
2269 update_cfs_load(cfs_rq, 0);
2270 update_cfs_shares(cfs_rq);
2271 }
2272
2273 if (!se)
2274 dec_nr_running(rq);
2275 hrtick_update(rq);
2276}
2277
2278#ifdef CONFIG_SMP
2279/* Used instead of source_load when we know the type == 0 */
2280static unsigned long weighted_cpuload(const int cpu)
2281{
2282 return cpu_rq(cpu)->load.weight;
2283}
2284
2285/*
2286 * Return a low guess at the load of a migration-source cpu weighted
2287 * according to the scheduling class and "nice" value.
2288 *
2289 * We want to under-estimate the load of migration sources, to
2290 * balance conservatively.
2291 */
2292static unsigned long source_load(int cpu, int type)
2293{
2294 struct rq *rq = cpu_rq(cpu);
2295 unsigned long total = weighted_cpuload(cpu);
2296
2297 if (type == 0 || !sched_feat(LB_BIAS))
2298 return total;
2299
2300 return min(rq->cpu_load[type-1], total);
2301}
2302
2303/*
2304 * Return a high guess at the load of a migration-target cpu weighted
2305 * according to the scheduling class and "nice" value.
2306 */
2307static unsigned long target_load(int cpu, int type)
2308{
2309 struct rq *rq = cpu_rq(cpu);
2310 unsigned long total = weighted_cpuload(cpu);
2311
2312 if (type == 0 || !sched_feat(LB_BIAS))
2313 return total;
2314
2315 return max(rq->cpu_load[type-1], total);
2316}
2317
2318static unsigned long power_of(int cpu)
2319{
2320 return cpu_rq(cpu)->cpu_power;
2321}
2322
2323static unsigned long cpu_avg_load_per_task(int cpu)
2324{
2325 struct rq *rq = cpu_rq(cpu);
2326 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2327
2328 if (nr_running)
2329 return rq->load.weight / nr_running;
2330
2331 return 0;
2332}
2333
2334
2335static void task_waking_fair(struct task_struct *p)
2336{
2337 struct sched_entity *se = &p->se;
2338 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2339 u64 min_vruntime;
2340
2341#ifndef CONFIG_64BIT
2342 u64 min_vruntime_copy;
2343
2344 do {
2345 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2346 smp_rmb();
2347 min_vruntime = cfs_rq->min_vruntime;
2348 } while (min_vruntime != min_vruntime_copy);
2349#else
2350 min_vruntime = cfs_rq->min_vruntime;
2351#endif
2352
2353 se->vruntime -= min_vruntime;
2354}
2355
2356#ifdef CONFIG_FAIR_GROUP_SCHED
2357/*
2358 * effective_load() calculates the load change as seen from the root_task_group
2359 *
2360 * Adding load to a group doesn't make a group heavier, but can cause movement
2361 * of group shares between cpus. Assuming the shares were perfectly aligned one
2362 * can calculate the shift in shares.
2363 *
2364 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2365 * on this @cpu and results in a total addition (subtraction) of @wg to the
2366 * total group weight.
2367 *
2368 * Given a runqueue weight distribution (rw_i) we can compute a shares
2369 * distribution (s_i) using:
2370 *
2371 * s_i = rw_i / \Sum rw_j (1)
2372 *
2373 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2374 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2375 * shares distribution (s_i):
2376 *
2377 * rw_i = { 2, 4, 1, 0 }
2378 * s_i = { 2/7, 4/7, 1/7, 0 }
2379 *
2380 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2381 * task used to run on and the CPU the waker is running on), we need to
2382 * compute the effect of waking a task on either CPU and, in case of a sync
2383 * wakeup, compute the effect of the current task going to sleep.
2384 *
2385 * So for a change of @wl to the local @cpu with an overall group weight change
2386 * of @wl we can compute the new shares distribution (s'_i) using:
2387 *
2388 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2389 *
2390 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2391 * differences in waking a task to CPU 0. The additional task changes the
2392 * weight and shares distributions like:
2393 *
2394 * rw'_i = { 3, 4, 1, 0 }
2395 * s'_i = { 3/8, 4/8, 1/8, 0 }
2396 *
2397 * We can then compute the difference in effective weight by using:
2398 *
2399 * dw_i = S * (s'_i - s_i) (3)
2400 *
2401 * Where 'S' is the group weight as seen by its parent.
2402 *
2403 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2404 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2405 * 4/7) times the weight of the group.
2406 */
2407static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2408{
2409 struct sched_entity *se = tg->se[cpu];
2410
2411 if (!tg->parent) /* the trivial, non-cgroup case */
2412 return wl;
2413
2414 for_each_sched_entity(se) {
2415 long w, W;
2416
2417 tg = se->my_q->tg;
2418
2419 /*
2420 * W = @wg + \Sum rw_j
2421 */
2422 W = wg + calc_tg_weight(tg, se->my_q);
2423
2424 /*
2425 * w = rw_i + @wl
2426 */
2427 w = se->my_q->load.weight + wl;
2428
2429 /*
2430 * wl = S * s'_i; see (2)
2431 */
2432 if (W > 0 && w < W)
2433 wl = (w * tg->shares) / W;
2434 else
2435 wl = tg->shares;
2436
2437 /*
2438 * Per the above, wl is the new se->load.weight value; since
2439 * those are clipped to [MIN_SHARES, ...) do so now. See
2440 * calc_cfs_shares().
2441 */
2442 if (wl < MIN_SHARES)
2443 wl = MIN_SHARES;
2444
2445 /*
2446 * wl = dw_i = S * (s'_i - s_i); see (3)
2447 */
2448 wl -= se->load.weight;
2449
2450 /*
2451 * Recursively apply this logic to all parent groups to compute
2452 * the final effective load change on the root group. Since
2453 * only the @tg group gets extra weight, all parent groups can
2454 * only redistribute existing shares. @wl is the shift in shares
2455 * resulting from this level per the above.
2456 */
2457 wg = 0;
2458 }
2459
2460 return wl;
2461}
2462#else
2463
2464static inline unsigned long effective_load(struct task_group *tg, int cpu,
2465 unsigned long wl, unsigned long wg)
2466{
2467 return wl;
2468}
2469
2470#endif
2471
2472static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2473{
2474 s64 this_load, load;
2475 int idx, this_cpu, prev_cpu;
2476 unsigned long tl_per_task;
2477 struct task_group *tg;
2478 unsigned long weight;
2479 int balanced;
2480
2481 idx = sd->wake_idx;
2482 this_cpu = smp_processor_id();
2483 prev_cpu = task_cpu(p);
2484 load = source_load(prev_cpu, idx);
2485 this_load = target_load(this_cpu, idx);
2486
2487 /*
2488 * If sync wakeup then subtract the (maximum possible)
2489 * effect of the currently running task from the load
2490 * of the current CPU:
2491 */
2492 if (sync) {
2493 tg = task_group(current);
2494 weight = current->se.load.weight;
2495
2496 this_load += effective_load(tg, this_cpu, -weight, -weight);
2497 load += effective_load(tg, prev_cpu, 0, -weight);
2498 }
2499
2500 tg = task_group(p);
2501 weight = p->se.load.weight;
2502
2503 /*
2504 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2505 * due to the sync cause above having dropped this_load to 0, we'll
2506 * always have an imbalance, but there's really nothing you can do
2507 * about that, so that's good too.
2508 *
2509 * Otherwise check if either cpus are near enough in load to allow this
2510 * task to be woken on this_cpu.
2511 */
2512 if (this_load > 0) {
2513 s64 this_eff_load, prev_eff_load;
2514
2515 this_eff_load = 100;
2516 this_eff_load *= power_of(prev_cpu);
2517 this_eff_load *= this_load +
2518 effective_load(tg, this_cpu, weight, weight);
2519
2520 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2521 prev_eff_load *= power_of(this_cpu);
2522 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2523
2524 balanced = this_eff_load <= prev_eff_load;
2525 } else
2526 balanced = true;
2527
2528 /*
2529 * If the currently running task will sleep within
2530 * a reasonable amount of time then attract this newly
2531 * woken task:
2532 */
2533 if (sync && balanced)
2534 return 1;
2535
2536 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2537 tl_per_task = cpu_avg_load_per_task(this_cpu);
2538
2539 if (balanced ||
2540 (this_load <= load &&
2541 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2542 /*
2543 * This domain has SD_WAKE_AFFINE and
2544 * p is cache cold in this domain, and
2545 * there is no bad imbalance.
2546 */
2547 schedstat_inc(sd, ttwu_move_affine);
2548 schedstat_inc(p, se.statistics.nr_wakeups_affine);
2549
2550 return 1;
2551 }
2552 return 0;
2553}
2554
2555/*
2556 * find_idlest_group finds and returns the least busy CPU group within the
2557 * domain.
2558 */
2559static struct sched_group *
2560find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2561 int this_cpu, int load_idx)
2562{
2563 struct sched_group *idlest = NULL, *group = sd->groups;
2564 unsigned long min_load = ULONG_MAX, this_load = 0;
2565 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2566
2567 do {
2568 unsigned long load, avg_load;
2569 int local_group;
2570 int i;
2571
2572 /* Skip over this group if it has no CPUs allowed */
2573 if (!cpumask_intersects(sched_group_cpus(group),
2574 tsk_cpus_allowed(p)))
2575 continue;
2576
2577 local_group = cpumask_test_cpu(this_cpu,
2578 sched_group_cpus(group));
2579
2580 /* Tally up the load of all CPUs in the group */
2581 avg_load = 0;
2582
2583 for_each_cpu(i, sched_group_cpus(group)) {
2584 /* Bias balancing toward cpus of our domain */
2585 if (local_group)
2586 load = source_load(i, load_idx);
2587 else
2588 load = target_load(i, load_idx);
2589
2590 avg_load += load;
2591 }
2592
2593 /* Adjust by relative CPU power of the group */
2594 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2595
2596 if (local_group) {
2597 this_load = avg_load;
2598 } else if (avg_load < min_load) {
2599 min_load = avg_load;
2600 idlest = group;
2601 }
2602 } while (group = group->next, group != sd->groups);
2603
2604 if (!idlest || 100*this_load < imbalance*min_load)
2605 return NULL;
2606 return idlest;
2607}
2608
2609/*
2610 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2611 */
2612static int
2613find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2614{
2615 unsigned long load, min_load = ULONG_MAX;
2616 int idlest = -1;
2617 int i;
2618
2619 /* Traverse only the allowed CPUs */
2620 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2621 load = weighted_cpuload(i);
2622
2623 if (load < min_load || (load == min_load && i == this_cpu)) {
2624 min_load = load;
2625 idlest = i;
2626 }
2627 }
2628
2629 return idlest;
2630}
2631
2632/*
2633 * Try and locate an idle CPU in the sched_domain.
2634 */
2635static int select_idle_sibling(struct task_struct *p, int target)
2636{
2637 int cpu = smp_processor_id();
2638 int prev_cpu = task_cpu(p);
2639 struct sched_domain *sd;
2640 struct sched_group *sg;
2641 int i;
2642
2643 /*
2644 * If the task is going to be woken-up on this cpu and if it is
2645 * already idle, then it is the right target.
2646 */
2647 if (target == cpu && idle_cpu(cpu))
2648 return cpu;
2649
2650 /*
2651 * If the task is going to be woken-up on the cpu where it previously
2652 * ran and if it is currently idle, then it the right target.
2653 */
2654 if (target == prev_cpu && idle_cpu(prev_cpu))
2655 return prev_cpu;
2656
2657 /*
2658 * Otherwise, iterate the domains and find an elegible idle cpu.
2659 */
2660 sd = rcu_dereference(per_cpu(sd_llc, target));
2661 for_each_lower_domain(sd) {
2662 sg = sd->groups;
2663 do {
2664 if (!cpumask_intersects(sched_group_cpus(sg),
2665 tsk_cpus_allowed(p)))
2666 goto next;
2667
2668 for_each_cpu(i, sched_group_cpus(sg)) {
2669 if (!idle_cpu(i))
2670 goto next;
2671 }
2672
2673 target = cpumask_first_and(sched_group_cpus(sg),
2674 tsk_cpus_allowed(p));
2675 goto done;
2676next:
2677 sg = sg->next;
2678 } while (sg != sd->groups);
2679 }
2680done:
2681 return target;
2682}
2683
2684/*
2685 * sched_balance_self: balance the current task (running on cpu) in domains
2686 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2687 * SD_BALANCE_EXEC.
2688 *
2689 * Balance, ie. select the least loaded group.
2690 *
2691 * Returns the target CPU number, or the same CPU if no balancing is needed.
2692 *
2693 * preempt must be disabled.
2694 */
2695static int
2696select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2697{
2698 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2699 int cpu = smp_processor_id();
2700 int prev_cpu = task_cpu(p);
2701 int new_cpu = cpu;
2702 int want_affine = 0;
2703 int want_sd = 1;
2704 int sync = wake_flags & WF_SYNC;
2705
2706 if (p->nr_cpus_allowed == 1)
2707 return prev_cpu;
2708
2709 if (sd_flag & SD_BALANCE_WAKE) {
2710 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2711 want_affine = 1;
2712 new_cpu = prev_cpu;
2713 }
2714
2715 rcu_read_lock();
2716 for_each_domain(cpu, tmp) {
2717 if (!(tmp->flags & SD_LOAD_BALANCE))
2718 continue;
2719
2720 /*
2721 * If power savings logic is enabled for a domain, see if we
2722 * are not overloaded, if so, don't balance wider.
2723 */
2724 if (tmp->flags & (SD_PREFER_LOCAL)) {
2725 unsigned long power = 0;
2726 unsigned long nr_running = 0;
2727 unsigned long capacity;
2728 int i;
2729
2730 for_each_cpu(i, sched_domain_span(tmp)) {
2731 power += power_of(i);
2732 nr_running += cpu_rq(i)->cfs.nr_running;
2733 }
2734
2735 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
2736
2737 if (nr_running < capacity)
2738 want_sd = 0;
2739 }
2740
2741 /*
2742 * If both cpu and prev_cpu are part of this domain,
2743 * cpu is a valid SD_WAKE_AFFINE target.
2744 */
2745 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2746 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2747 affine_sd = tmp;
2748 want_affine = 0;
2749 }
2750
2751 if (!want_sd && !want_affine)
2752 break;
2753
2754 if (!(tmp->flags & sd_flag))
2755 continue;
2756
2757 if (want_sd)
2758 sd = tmp;
2759 }
2760
2761 if (affine_sd) {
2762 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
2763 prev_cpu = cpu;
2764
2765 new_cpu = select_idle_sibling(p, prev_cpu);
2766 goto unlock;
2767 }
2768
2769 while (sd) {
2770 int load_idx = sd->forkexec_idx;
2771 struct sched_group *group;
2772 int weight;
2773
2774 if (!(sd->flags & sd_flag)) {
2775 sd = sd->child;
2776 continue;
2777 }
2778
2779 if (sd_flag & SD_BALANCE_WAKE)
2780 load_idx = sd->wake_idx;
2781
2782 group = find_idlest_group(sd, p, cpu, load_idx);
2783 if (!group) {
2784 sd = sd->child;
2785 continue;
2786 }
2787
2788 new_cpu = find_idlest_cpu(group, p, cpu);
2789 if (new_cpu == -1 || new_cpu == cpu) {
2790 /* Now try balancing at a lower domain level of cpu */
2791 sd = sd->child;
2792 continue;
2793 }
2794
2795 /* Now try balancing at a lower domain level of new_cpu */
2796 cpu = new_cpu;
2797 weight = sd->span_weight;
2798 sd = NULL;
2799 for_each_domain(cpu, tmp) {
2800 if (weight <= tmp->span_weight)
2801 break;
2802 if (tmp->flags & sd_flag)
2803 sd = tmp;
2804 }
2805 /* while loop will break here if sd == NULL */
2806 }
2807unlock:
2808 rcu_read_unlock();
2809
2810 return new_cpu;
2811}
2812#endif /* CONFIG_SMP */
2813
2814static unsigned long
2815wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2816{
2817 unsigned long gran = sysctl_sched_wakeup_granularity;
2818
2819 /*
2820 * Since its curr running now, convert the gran from real-time
2821 * to virtual-time in his units.
2822 *
2823 * By using 'se' instead of 'curr' we penalize light tasks, so
2824 * they get preempted easier. That is, if 'se' < 'curr' then
2825 * the resulting gran will be larger, therefore penalizing the
2826 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2827 * be smaller, again penalizing the lighter task.
2828 *
2829 * This is especially important for buddies when the leftmost
2830 * task is higher priority than the buddy.
2831 */
2832 return calc_delta_fair(gran, se);
2833}
2834
2835/*
2836 * Should 'se' preempt 'curr'.
2837 *
2838 * |s1
2839 * |s2
2840 * |s3
2841 * g
2842 * |<--->|c
2843 *
2844 * w(c, s1) = -1
2845 * w(c, s2) = 0
2846 * w(c, s3) = 1
2847 *
2848 */
2849static int
2850wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2851{
2852 s64 gran, vdiff = curr->vruntime - se->vruntime;
2853
2854 if (vdiff <= 0)
2855 return -1;
2856
2857 gran = wakeup_gran(curr, se);
2858 if (vdiff > gran)
2859 return 1;
2860
2861 return 0;
2862}
2863
2864static void set_last_buddy(struct sched_entity *se)
2865{
2866 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2867 return;
2868
2869 for_each_sched_entity(se)
2870 cfs_rq_of(se)->last = se;
2871}
2872
2873static void set_next_buddy(struct sched_entity *se)
2874{
2875 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2876 return;
2877
2878 for_each_sched_entity(se)
2879 cfs_rq_of(se)->next = se;
2880}
2881
2882static void set_skip_buddy(struct sched_entity *se)
2883{
2884 for_each_sched_entity(se)
2885 cfs_rq_of(se)->skip = se;
2886}
2887
2888/*
2889 * Preempt the current task with a newly woken task if needed:
2890 */
2891static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2892{
2893 struct task_struct *curr = rq->curr;
2894 struct sched_entity *se = &curr->se, *pse = &p->se;
2895 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2896 int scale = cfs_rq->nr_running >= sched_nr_latency;
2897 int next_buddy_marked = 0;
2898
2899 if (unlikely(se == pse))
2900 return;
2901
2902 /*
2903 * This is possible from callers such as move_task(), in which we
2904 * unconditionally check_prempt_curr() after an enqueue (which may have
2905 * lead to a throttle). This both saves work and prevents false
2906 * next-buddy nomination below.
2907 */
2908 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2909 return;
2910
2911 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
2912 set_next_buddy(pse);
2913 next_buddy_marked = 1;
2914 }
2915
2916 /*
2917 * We can come here with TIF_NEED_RESCHED already set from new task
2918 * wake up path.
2919 *
2920 * Note: this also catches the edge-case of curr being in a throttled
2921 * group (e.g. via set_curr_task), since update_curr() (in the
2922 * enqueue of curr) will have resulted in resched being set. This
2923 * prevents us from potentially nominating it as a false LAST_BUDDY
2924 * below.
2925 */
2926 if (test_tsk_need_resched(curr))
2927 return;
2928
2929 /* Idle tasks are by definition preempted by non-idle tasks. */
2930 if (unlikely(curr->policy == SCHED_IDLE) &&
2931 likely(p->policy != SCHED_IDLE))
2932 goto preempt;
2933
2934 /*
2935 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2936 * is driven by the tick):
2937 */
2938 if (unlikely(p->policy != SCHED_NORMAL))
2939 return;
2940
2941 find_matching_se(&se, &pse);
2942 update_curr(cfs_rq_of(se));
2943 BUG_ON(!pse);
2944 if (wakeup_preempt_entity(se, pse) == 1) {
2945 /*
2946 * Bias pick_next to pick the sched entity that is
2947 * triggering this preemption.
2948 */
2949 if (!next_buddy_marked)
2950 set_next_buddy(pse);
2951 goto preempt;
2952 }
2953
2954 return;
2955
2956preempt:
2957 resched_task(curr);
2958 /*
2959 * Only set the backward buddy when the current task is still
2960 * on the rq. This can happen when a wakeup gets interleaved
2961 * with schedule on the ->pre_schedule() or idle_balance()
2962 * point, either of which can * drop the rq lock.
2963 *
2964 * Also, during early boot the idle thread is in the fair class,
2965 * for obvious reasons its a bad idea to schedule back to it.
2966 */
2967 if (unlikely(!se->on_rq || curr == rq->idle))
2968 return;
2969
2970 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2971 set_last_buddy(se);
2972}
2973
2974static struct task_struct *pick_next_task_fair(struct rq *rq)
2975{
2976 struct task_struct *p;
2977 struct cfs_rq *cfs_rq = &rq->cfs;
2978 struct sched_entity *se;
2979
2980 if (!cfs_rq->nr_running)
2981 return NULL;
2982
2983 do {
2984 se = pick_next_entity(cfs_rq);
2985 set_next_entity(cfs_rq, se);
2986 cfs_rq = group_cfs_rq(se);
2987 } while (cfs_rq);
2988
2989 p = task_of(se);
2990 if (hrtick_enabled(rq))
2991 hrtick_start_fair(rq, p);
2992
2993 return p;
2994}
2995
2996/*
2997 * Account for a descheduled task:
2998 */
2999static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3000{
3001 struct sched_entity *se = &prev->se;
3002 struct cfs_rq *cfs_rq;
3003
3004 for_each_sched_entity(se) {
3005 cfs_rq = cfs_rq_of(se);
3006 put_prev_entity(cfs_rq, se);
3007 }
3008}
3009
3010/*
3011 * sched_yield() is very simple
3012 *
3013 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3014 */
3015static void yield_task_fair(struct rq *rq)
3016{
3017 struct task_struct *curr = rq->curr;
3018 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3019 struct sched_entity *se = &curr->se;
3020
3021 /*
3022 * Are we the only task in the tree?
3023 */
3024 if (unlikely(rq->nr_running == 1))
3025 return;
3026
3027 clear_buddies(cfs_rq, se);
3028
3029 if (curr->policy != SCHED_BATCH) {
3030 update_rq_clock(rq);
3031 /*
3032 * Update run-time statistics of the 'current'.
3033 */
3034 update_curr(cfs_rq);
3035 /*
3036 * Tell update_rq_clock() that we've just updated,
3037 * so we don't do microscopic update in schedule()
3038 * and double the fastpath cost.
3039 */
3040 rq->skip_clock_update = 1;
3041 }
3042
3043 set_skip_buddy(se);
3044}
3045
3046static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3047{
3048 struct sched_entity *se = &p->se;
3049
3050 /* throttled hierarchies are not runnable */
3051 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3052 return false;
3053
3054 /* Tell the scheduler that we'd really like pse to run next. */
3055 set_next_buddy(se);
3056
3057 yield_task_fair(rq);
3058
3059 return true;
3060}
3061
3062#ifdef CONFIG_SMP
3063/**************************************************
3064 * Fair scheduling class load-balancing methods:
3065 */
3066
3067static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3068
3069#define LBF_ALL_PINNED 0x01
3070#define LBF_NEED_BREAK 0x02
3071
3072struct lb_env {
3073 struct sched_domain *sd;
3074
3075 int src_cpu;
3076 struct rq *src_rq;
3077
3078 int dst_cpu;
3079 struct rq *dst_rq;
3080
3081 enum cpu_idle_type idle;
3082 long imbalance;
3083 unsigned int flags;
3084
3085 unsigned int loop;
3086 unsigned int loop_break;
3087 unsigned int loop_max;
3088};
3089
3090/*
3091 * move_task - move a task from one runqueue to another runqueue.
3092 * Both runqueues must be locked.
3093 */
3094static void move_task(struct task_struct *p, struct lb_env *env)
3095{
3096 deactivate_task(env->src_rq, p, 0);
3097 set_task_cpu(p, env->dst_cpu);
3098 activate_task(env->dst_rq, p, 0);
3099 check_preempt_curr(env->dst_rq, p, 0);
3100}
3101
3102/*
3103 * Is this task likely cache-hot:
3104 */
3105static int
3106task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3107{
3108 s64 delta;
3109
3110 if (p->sched_class != &fair_sched_class)
3111 return 0;
3112
3113 if (unlikely(p->policy == SCHED_IDLE))
3114 return 0;
3115
3116 /*
3117 * Buddy candidates are cache hot:
3118 */
3119 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3120 (&p->se == cfs_rq_of(&p->se)->next ||
3121 &p->se == cfs_rq_of(&p->se)->last))
3122 return 1;
3123
3124 if (sysctl_sched_migration_cost == -1)
3125 return 1;
3126 if (sysctl_sched_migration_cost == 0)
3127 return 0;
3128
3129 delta = now - p->se.exec_start;
3130
3131 return delta < (s64)sysctl_sched_migration_cost;
3132}
3133
3134/*
3135 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3136 */
3137static
3138int can_migrate_task(struct task_struct *p, struct lb_env *env)
3139{
3140 int tsk_cache_hot = 0;
3141 /*
3142 * We do not migrate tasks that are:
3143 * 1) running (obviously), or
3144 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3145 * 3) are cache-hot on their current CPU.
3146 */
3147 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3148 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3149 return 0;
3150 }
3151 env->flags &= ~LBF_ALL_PINNED;
3152
3153 if (task_running(env->src_rq, p)) {
3154 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3155 return 0;
3156 }
3157
3158 /*
3159 * Aggressive migration if:
3160 * 1) task is cache cold, or
3161 * 2) too many balance attempts have failed.
3162 */
3163
3164 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3165 if (!tsk_cache_hot ||
3166 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3167#ifdef CONFIG_SCHEDSTATS
3168 if (tsk_cache_hot) {
3169 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3170 schedstat_inc(p, se.statistics.nr_forced_migrations);
3171 }
3172#endif
3173 return 1;
3174 }
3175
3176 if (tsk_cache_hot) {
3177 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3178 return 0;
3179 }
3180 return 1;
3181}
3182
3183/*
3184 * move_one_task tries to move exactly one task from busiest to this_rq, as
3185 * part of active balancing operations within "domain".
3186 * Returns 1 if successful and 0 otherwise.
3187 *
3188 * Called with both runqueues locked.
3189 */
3190static int move_one_task(struct lb_env *env)
3191{
3192 struct task_struct *p, *n;
3193
3194 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3195 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3196 continue;
3197
3198 if (!can_migrate_task(p, env))
3199 continue;
3200
3201 move_task(p, env);
3202 /*
3203 * Right now, this is only the second place move_task()
3204 * is called, so we can safely collect move_task()
3205 * stats here rather than inside move_task().
3206 */
3207 schedstat_inc(env->sd, lb_gained[env->idle]);
3208 return 1;
3209 }
3210 return 0;
3211}
3212
3213static unsigned long task_h_load(struct task_struct *p);
3214
3215static const unsigned int sched_nr_migrate_break = 32;
3216
3217/*
3218 * move_tasks tries to move up to imbalance weighted load from busiest to
3219 * this_rq, as part of a balancing operation within domain "sd".
3220 * Returns 1 if successful and 0 otherwise.
3221 *
3222 * Called with both runqueues locked.
3223 */
3224static int move_tasks(struct lb_env *env)
3225{
3226 struct list_head *tasks = &env->src_rq->cfs_tasks;
3227 struct task_struct *p;
3228 unsigned long load;
3229 int pulled = 0;
3230
3231 if (env->imbalance <= 0)
3232 return 0;
3233
3234 while (!list_empty(tasks)) {
3235 p = list_first_entry(tasks, struct task_struct, se.group_node);
3236
3237 env->loop++;
3238 /* We've more or less seen every task there is, call it quits */
3239 if (env->loop > env->loop_max)
3240 break;
3241
3242 /* take a breather every nr_migrate tasks */
3243 if (env->loop > env->loop_break) {
3244 env->loop_break += sched_nr_migrate_break;
3245 env->flags |= LBF_NEED_BREAK;
3246 break;
3247 }
3248
3249 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3250 goto next;
3251
3252 load = task_h_load(p);
3253
3254 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
3255 goto next;
3256
3257 if ((load / 2) > env->imbalance)
3258 goto next;
3259
3260 if (!can_migrate_task(p, env))
3261 goto next;
3262
3263 move_task(p, env);
3264 pulled++;
3265 env->imbalance -= load;
3266
3267#ifdef CONFIG_PREEMPT
3268 /*
3269 * NEWIDLE balancing is a source of latency, so preemptible
3270 * kernels will stop after the first task is pulled to minimize
3271 * the critical section.
3272 */
3273 if (env->idle == CPU_NEWLY_IDLE)
3274 break;
3275#endif
3276
3277 /*
3278 * We only want to steal up to the prescribed amount of
3279 * weighted load.
3280 */
3281 if (env->imbalance <= 0)
3282 break;
3283
3284 continue;
3285next:
3286 list_move_tail(&p->se.group_node, tasks);
3287 }
3288
3289 /*
3290 * Right now, this is one of only two places move_task() is called,
3291 * so we can safely collect move_task() stats here rather than
3292 * inside move_task().
3293 */
3294 schedstat_add(env->sd, lb_gained[env->idle], pulled);
3295
3296 return pulled;
3297}
3298
3299#ifdef CONFIG_FAIR_GROUP_SCHED
3300/*
3301 * update tg->load_weight by folding this cpu's load_avg
3302 */
3303static int update_shares_cpu(struct task_group *tg, int cpu)
3304{
3305 struct cfs_rq *cfs_rq;
3306 unsigned long flags;
3307 struct rq *rq;
3308
3309 if (!tg->se[cpu])
3310 return 0;
3311
3312 rq = cpu_rq(cpu);
3313 cfs_rq = tg->cfs_rq[cpu];
3314
3315 raw_spin_lock_irqsave(&rq->lock, flags);
3316
3317 update_rq_clock(rq);
3318 update_cfs_load(cfs_rq, 1);
3319
3320 /*
3321 * We need to update shares after updating tg->load_weight in
3322 * order to adjust the weight of groups with long running tasks.
3323 */
3324 update_cfs_shares(cfs_rq);
3325
3326 raw_spin_unlock_irqrestore(&rq->lock, flags);
3327
3328 return 0;
3329}
3330
3331static void update_shares(int cpu)
3332{
3333 struct cfs_rq *cfs_rq;
3334 struct rq *rq = cpu_rq(cpu);
3335
3336 rcu_read_lock();
3337 /*
3338 * Iterates the task_group tree in a bottom up fashion, see
3339 * list_add_leaf_cfs_rq() for details.
3340 */
3341 for_each_leaf_cfs_rq(rq, cfs_rq) {
3342 /* throttled entities do not contribute to load */
3343 if (throttled_hierarchy(cfs_rq))
3344 continue;
3345
3346 update_shares_cpu(cfs_rq->tg, cpu);
3347 }
3348 rcu_read_unlock();
3349}
3350
3351/*
3352 * Compute the cpu's hierarchical load factor for each task group.
3353 * This needs to be done in a top-down fashion because the load of a child
3354 * group is a fraction of its parents load.
3355 */
3356static int tg_load_down(struct task_group *tg, void *data)
3357{
3358 unsigned long load;
3359 long cpu = (long)data;
3360
3361 if (!tg->parent) {
3362 load = cpu_rq(cpu)->load.weight;
3363 } else {
3364 load = tg->parent->cfs_rq[cpu]->h_load;
3365 load *= tg->se[cpu]->load.weight;
3366 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3367 }
3368
3369 tg->cfs_rq[cpu]->h_load = load;
3370
3371 return 0;
3372}
3373
3374static void update_h_load(long cpu)
3375{
3376 rcu_read_lock();
3377 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3378 rcu_read_unlock();
3379}
3380
3381static unsigned long task_h_load(struct task_struct *p)
3382{
3383 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3384 unsigned long load;
3385
3386 load = p->se.load.weight;
3387 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
3388
3389 return load;
3390}
3391#else
3392static inline void update_shares(int cpu)
3393{
3394}
3395
3396static inline void update_h_load(long cpu)
3397{
3398}
3399
3400static unsigned long task_h_load(struct task_struct *p)
3401{
3402 return p->se.load.weight;
3403}
3404#endif
3405
3406/********** Helpers for find_busiest_group ************************/
3407/*
3408 * sd_lb_stats - Structure to store the statistics of a sched_domain
3409 * during load balancing.
3410 */
3411struct sd_lb_stats {
3412 struct sched_group *busiest; /* Busiest group in this sd */
3413 struct sched_group *this; /* Local group in this sd */
3414 unsigned long total_load; /* Total load of all groups in sd */
3415 unsigned long total_pwr; /* Total power of all groups in sd */
3416 unsigned long avg_load; /* Average load across all groups in sd */
3417
3418 /** Statistics of this group */
3419 unsigned long this_load;
3420 unsigned long this_load_per_task;
3421 unsigned long this_nr_running;
3422 unsigned long this_has_capacity;
3423 unsigned int this_idle_cpus;
3424
3425 /* Statistics of the busiest group */
3426 unsigned int busiest_idle_cpus;
3427 unsigned long max_load;
3428 unsigned long busiest_load_per_task;
3429 unsigned long busiest_nr_running;
3430 unsigned long busiest_group_capacity;
3431 unsigned long busiest_has_capacity;
3432 unsigned int busiest_group_weight;
3433
3434 int group_imb; /* Is there imbalance in this sd */
3435};
3436
3437/*
3438 * sg_lb_stats - stats of a sched_group required for load_balancing
3439 */
3440struct sg_lb_stats {
3441 unsigned long avg_load; /*Avg load across the CPUs of the group */
3442 unsigned long group_load; /* Total load over the CPUs of the group */
3443 unsigned long sum_nr_running; /* Nr tasks running in the group */
3444 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3445 unsigned long group_capacity;
3446 unsigned long idle_cpus;
3447 unsigned long group_weight;
3448 int group_imb; /* Is there an imbalance in the group ? */
3449 int group_has_capacity; /* Is there extra capacity in the group? */
3450};
3451
3452/**
3453 * get_sd_load_idx - Obtain the load index for a given sched domain.
3454 * @sd: The sched_domain whose load_idx is to be obtained.
3455 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3456 */
3457static inline int get_sd_load_idx(struct sched_domain *sd,
3458 enum cpu_idle_type idle)
3459{
3460 int load_idx;
3461
3462 switch (idle) {
3463 case CPU_NOT_IDLE:
3464 load_idx = sd->busy_idx;
3465 break;
3466
3467 case CPU_NEWLY_IDLE:
3468 load_idx = sd->newidle_idx;
3469 break;
3470 default:
3471 load_idx = sd->idle_idx;
3472 break;
3473 }
3474
3475 return load_idx;
3476}
3477
3478unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3479{
3480 return SCHED_POWER_SCALE;
3481}
3482
3483unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3484{
3485 return default_scale_freq_power(sd, cpu);
3486}
3487
3488unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3489{
3490 unsigned long weight = sd->span_weight;
3491 unsigned long smt_gain = sd->smt_gain;
3492
3493 smt_gain /= weight;
3494
3495 return smt_gain;
3496}
3497
3498unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3499{
3500 return default_scale_smt_power(sd, cpu);
3501}
3502
3503unsigned long scale_rt_power(int cpu)
3504{
3505 struct rq *rq = cpu_rq(cpu);
3506 u64 total, available, age_stamp, avg;
3507
3508 /*
3509 * Since we're reading these variables without serialization make sure
3510 * we read them once before doing sanity checks on them.
3511 */
3512 age_stamp = ACCESS_ONCE(rq->age_stamp);
3513 avg = ACCESS_ONCE(rq->rt_avg);
3514
3515 total = sched_avg_period() + (rq->clock - age_stamp);
3516
3517 if (unlikely(total < avg)) {
3518 /* Ensures that power won't end up being negative */
3519 available = 0;
3520 } else {
3521 available = total - avg;
3522 }
3523
3524 if (unlikely((s64)total < SCHED_POWER_SCALE))
3525 total = SCHED_POWER_SCALE;
3526
3527 total >>= SCHED_POWER_SHIFT;
3528
3529 return div_u64(available, total);
3530}
3531
3532static void update_cpu_power(struct sched_domain *sd, int cpu)
3533{
3534 unsigned long weight = sd->span_weight;
3535 unsigned long power = SCHED_POWER_SCALE;
3536 struct sched_group *sdg = sd->groups;
3537
3538 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3539 if (sched_feat(ARCH_POWER))
3540 power *= arch_scale_smt_power(sd, cpu);
3541 else
3542 power *= default_scale_smt_power(sd, cpu);
3543
3544 power >>= SCHED_POWER_SHIFT;
3545 }
3546
3547 sdg->sgp->power_orig = power;
3548
3549 if (sched_feat(ARCH_POWER))
3550 power *= arch_scale_freq_power(sd, cpu);
3551 else
3552 power *= default_scale_freq_power(sd, cpu);
3553
3554 power >>= SCHED_POWER_SHIFT;
3555
3556 power *= scale_rt_power(cpu);
3557 power >>= SCHED_POWER_SHIFT;
3558
3559 if (!power)
3560 power = 1;
3561
3562 cpu_rq(cpu)->cpu_power = power;
3563 sdg->sgp->power = power;
3564}
3565
3566void update_group_power(struct sched_domain *sd, int cpu)
3567{
3568 struct sched_domain *child = sd->child;
3569 struct sched_group *group, *sdg = sd->groups;
3570 unsigned long power;
3571 unsigned long interval;
3572
3573 interval = msecs_to_jiffies(sd->balance_interval);
3574 interval = clamp(interval, 1UL, max_load_balance_interval);
3575 sdg->sgp->next_update = jiffies + interval;
3576
3577 if (!child) {
3578 update_cpu_power(sd, cpu);
3579 return;
3580 }
3581
3582 power = 0;
3583
3584 if (child->flags & SD_OVERLAP) {
3585 /*
3586 * SD_OVERLAP domains cannot assume that child groups
3587 * span the current group.
3588 */
3589
3590 for_each_cpu(cpu, sched_group_cpus(sdg))
3591 power += power_of(cpu);
3592 } else {
3593 /*
3594 * !SD_OVERLAP domains can assume that child groups
3595 * span the current group.
3596 */
3597
3598 group = child->groups;
3599 do {
3600 power += group->sgp->power;
3601 group = group->next;
3602 } while (group != child->groups);
3603 }
3604
3605 sdg->sgp->power_orig = sdg->sgp->power = power;
3606}
3607
3608/*
3609 * Try and fix up capacity for tiny siblings, this is needed when
3610 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3611 * which on its own isn't powerful enough.
3612 *
3613 * See update_sd_pick_busiest() and check_asym_packing().
3614 */
3615static inline int
3616fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3617{
3618 /*
3619 * Only siblings can have significantly less than SCHED_POWER_SCALE
3620 */
3621 if (!(sd->flags & SD_SHARE_CPUPOWER))
3622 return 0;
3623
3624 /*
3625 * If ~90% of the cpu_power is still there, we're good.
3626 */
3627 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3628 return 1;
3629
3630 return 0;
3631}
3632
3633/**
3634 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3635 * @env: The load balancing environment.
3636 * @group: sched_group whose statistics are to be updated.
3637 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3638 * @local_group: Does group contain this_cpu.
3639 * @cpus: Set of cpus considered for load balancing.
3640 * @balance: Should we balance.
3641 * @sgs: variable to hold the statistics for this group.
3642 */
3643static inline void update_sg_lb_stats(struct lb_env *env,
3644 struct sched_group *group, int load_idx,
3645 int local_group, const struct cpumask *cpus,
3646 int *balance, struct sg_lb_stats *sgs)
3647{
3648 unsigned long nr_running, max_nr_running, min_nr_running;
3649 unsigned long load, max_cpu_load, min_cpu_load;
3650 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3651 unsigned long avg_load_per_task = 0;
3652 int i;
3653
3654 if (local_group)
3655 balance_cpu = group_balance_cpu(group);
3656
3657 /* Tally up the load of all CPUs in the group */
3658 max_cpu_load = 0;
3659 min_cpu_load = ~0UL;
3660 max_nr_running = 0;
3661 min_nr_running = ~0UL;
3662
3663 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3664 struct rq *rq = cpu_rq(i);
3665
3666 nr_running = rq->nr_running;
3667
3668 /* Bias balancing toward cpus of our domain */
3669 if (local_group) {
3670 if (idle_cpu(i) && !first_idle_cpu &&
3671 cpumask_test_cpu(i, sched_group_mask(group))) {
3672 first_idle_cpu = 1;
3673 balance_cpu = i;
3674 }
3675
3676 load = target_load(i, load_idx);
3677 } else {
3678 load = source_load(i, load_idx);
3679 if (load > max_cpu_load)
3680 max_cpu_load = load;
3681 if (min_cpu_load > load)
3682 min_cpu_load = load;
3683
3684 if (nr_running > max_nr_running)
3685 max_nr_running = nr_running;
3686 if (min_nr_running > nr_running)
3687 min_nr_running = nr_running;
3688 }
3689
3690 sgs->group_load += load;
3691 sgs->sum_nr_running += nr_running;
3692 sgs->sum_weighted_load += weighted_cpuload(i);
3693 if (idle_cpu(i))
3694 sgs->idle_cpus++;
3695 }
3696
3697 /*
3698 * First idle cpu or the first cpu(busiest) in this sched group
3699 * is eligible for doing load balancing at this and above
3700 * domains. In the newly idle case, we will allow all the cpu's
3701 * to do the newly idle load balance.
3702 */
3703 if (local_group) {
3704 if (env->idle != CPU_NEWLY_IDLE) {
3705 if (balance_cpu != env->dst_cpu) {
3706 *balance = 0;
3707 return;
3708 }
3709 update_group_power(env->sd, env->dst_cpu);
3710 } else if (time_after_eq(jiffies, group->sgp->next_update))
3711 update_group_power(env->sd, env->dst_cpu);
3712 }
3713
3714 /* Adjust by relative CPU power of the group */
3715 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3716
3717 /*
3718 * Consider the group unbalanced when the imbalance is larger
3719 * than the average weight of a task.
3720 *
3721 * APZ: with cgroup the avg task weight can vary wildly and
3722 * might not be a suitable number - should we keep a
3723 * normalized nr_running number somewhere that negates
3724 * the hierarchy?
3725 */
3726 if (sgs->sum_nr_running)
3727 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3728
3729 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
3730 (max_nr_running - min_nr_running) > 1)
3731 sgs->group_imb = 1;
3732
3733 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3734 SCHED_POWER_SCALE);
3735 if (!sgs->group_capacity)
3736 sgs->group_capacity = fix_small_capacity(env->sd, group);
3737 sgs->group_weight = group->group_weight;
3738
3739 if (sgs->group_capacity > sgs->sum_nr_running)
3740 sgs->group_has_capacity = 1;
3741}
3742
3743/**
3744 * update_sd_pick_busiest - return 1 on busiest group
3745 * @env: The load balancing environment.
3746 * @sds: sched_domain statistics
3747 * @sg: sched_group candidate to be checked for being the busiest
3748 * @sgs: sched_group statistics
3749 *
3750 * Determine if @sg is a busier group than the previously selected
3751 * busiest group.
3752 */
3753static bool update_sd_pick_busiest(struct lb_env *env,
3754 struct sd_lb_stats *sds,
3755 struct sched_group *sg,
3756 struct sg_lb_stats *sgs)
3757{
3758 if (sgs->avg_load <= sds->max_load)
3759 return false;
3760
3761 if (sgs->sum_nr_running > sgs->group_capacity)
3762 return true;
3763
3764 if (sgs->group_imb)
3765 return true;
3766
3767 /*
3768 * ASYM_PACKING needs to move all the work to the lowest
3769 * numbered CPUs in the group, therefore mark all groups
3770 * higher than ourself as busy.
3771 */
3772 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3773 env->dst_cpu < group_first_cpu(sg)) {
3774 if (!sds->busiest)
3775 return true;
3776
3777 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3778 return true;
3779 }
3780
3781 return false;
3782}
3783
3784/**
3785 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3786 * @env: The load balancing environment.
3787 * @cpus: Set of cpus considered for load balancing.
3788 * @balance: Should we balance.
3789 * @sds: variable to hold the statistics for this sched_domain.
3790 */
3791static inline void update_sd_lb_stats(struct lb_env *env,
3792 const struct cpumask *cpus,
3793 int *balance, struct sd_lb_stats *sds)
3794{
3795 struct sched_domain *child = env->sd->child;
3796 struct sched_group *sg = env->sd->groups;
3797 struct sg_lb_stats sgs;
3798 int load_idx, prefer_sibling = 0;
3799
3800 if (child && child->flags & SD_PREFER_SIBLING)
3801 prefer_sibling = 1;
3802
3803 load_idx = get_sd_load_idx(env->sd, env->idle);
3804
3805 do {
3806 int local_group;
3807
3808 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
3809 memset(&sgs, 0, sizeof(sgs));
3810 update_sg_lb_stats(env, sg, load_idx, local_group,
3811 cpus, balance, &sgs);
3812
3813 if (local_group && !(*balance))
3814 return;
3815
3816 sds->total_load += sgs.group_load;
3817 sds->total_pwr += sg->sgp->power;
3818
3819 /*
3820 * In case the child domain prefers tasks go to siblings
3821 * first, lower the sg capacity to one so that we'll try
3822 * and move all the excess tasks away. We lower the capacity
3823 * of a group only if the local group has the capacity to fit
3824 * these excess tasks, i.e. nr_running < group_capacity. The
3825 * extra check prevents the case where you always pull from the
3826 * heaviest group when it is already under-utilized (possible
3827 * with a large weight task outweighs the tasks on the system).
3828 */
3829 if (prefer_sibling && !local_group && sds->this_has_capacity)
3830 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3831
3832 if (local_group) {
3833 sds->this_load = sgs.avg_load;
3834 sds->this = sg;
3835 sds->this_nr_running = sgs.sum_nr_running;
3836 sds->this_load_per_task = sgs.sum_weighted_load;
3837 sds->this_has_capacity = sgs.group_has_capacity;
3838 sds->this_idle_cpus = sgs.idle_cpus;
3839 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
3840 sds->max_load = sgs.avg_load;
3841 sds->busiest = sg;
3842 sds->busiest_nr_running = sgs.sum_nr_running;
3843 sds->busiest_idle_cpus = sgs.idle_cpus;
3844 sds->busiest_group_capacity = sgs.group_capacity;
3845 sds->busiest_load_per_task = sgs.sum_weighted_load;
3846 sds->busiest_has_capacity = sgs.group_has_capacity;
3847 sds->busiest_group_weight = sgs.group_weight;
3848 sds->group_imb = sgs.group_imb;
3849 }
3850
3851 sg = sg->next;
3852 } while (sg != env->sd->groups);
3853}
3854
3855/**
3856 * check_asym_packing - Check to see if the group is packed into the
3857 * sched doman.
3858 *
3859 * This is primarily intended to used at the sibling level. Some
3860 * cores like POWER7 prefer to use lower numbered SMT threads. In the
3861 * case of POWER7, it can move to lower SMT modes only when higher
3862 * threads are idle. When in lower SMT modes, the threads will
3863 * perform better since they share less core resources. Hence when we
3864 * have idle threads, we want them to be the higher ones.
3865 *
3866 * This packing function is run on idle threads. It checks to see if
3867 * the busiest CPU in this domain (core in the P7 case) has a higher
3868 * CPU number than the packing function is being run on. Here we are
3869 * assuming lower CPU number will be equivalent to lower a SMT thread
3870 * number.
3871 *
3872 * Returns 1 when packing is required and a task should be moved to
3873 * this CPU. The amount of the imbalance is returned in *imbalance.
3874 *
3875 * @env: The load balancing environment.
3876 * @sds: Statistics of the sched_domain which is to be packed
3877 */
3878static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
3879{
3880 int busiest_cpu;
3881
3882 if (!(env->sd->flags & SD_ASYM_PACKING))
3883 return 0;
3884
3885 if (!sds->busiest)
3886 return 0;
3887
3888 busiest_cpu = group_first_cpu(sds->busiest);
3889 if (env->dst_cpu > busiest_cpu)
3890 return 0;
3891
3892 env->imbalance = DIV_ROUND_CLOSEST(
3893 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
3894
3895 return 1;
3896}
3897
3898/**
3899 * fix_small_imbalance - Calculate the minor imbalance that exists
3900 * amongst the groups of a sched_domain, during
3901 * load balancing.
3902 * @env: The load balancing environment.
3903 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3904 */
3905static inline
3906void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
3907{
3908 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3909 unsigned int imbn = 2;
3910 unsigned long scaled_busy_load_per_task;
3911
3912 if (sds->this_nr_running) {
3913 sds->this_load_per_task /= sds->this_nr_running;
3914 if (sds->busiest_load_per_task >
3915 sds->this_load_per_task)
3916 imbn = 1;
3917 } else {
3918 sds->this_load_per_task =
3919 cpu_avg_load_per_task(env->dst_cpu);
3920 }
3921
3922 scaled_busy_load_per_task = sds->busiest_load_per_task
3923 * SCHED_POWER_SCALE;
3924 scaled_busy_load_per_task /= sds->busiest->sgp->power;
3925
3926 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3927 (scaled_busy_load_per_task * imbn)) {
3928 env->imbalance = sds->busiest_load_per_task;
3929 return;
3930 }
3931
3932 /*
3933 * OK, we don't have enough imbalance to justify moving tasks,
3934 * however we may be able to increase total CPU power used by
3935 * moving them.
3936 */
3937
3938 pwr_now += sds->busiest->sgp->power *
3939 min(sds->busiest_load_per_task, sds->max_load);
3940 pwr_now += sds->this->sgp->power *
3941 min(sds->this_load_per_task, sds->this_load);
3942 pwr_now /= SCHED_POWER_SCALE;
3943
3944 /* Amount of load we'd subtract */
3945 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3946 sds->busiest->sgp->power;
3947 if (sds->max_load > tmp)
3948 pwr_move += sds->busiest->sgp->power *
3949 min(sds->busiest_load_per_task, sds->max_load - tmp);
3950
3951 /* Amount of load we'd add */
3952 if (sds->max_load * sds->busiest->sgp->power <
3953 sds->busiest_load_per_task * SCHED_POWER_SCALE)
3954 tmp = (sds->max_load * sds->busiest->sgp->power) /
3955 sds->this->sgp->power;
3956 else
3957 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3958 sds->this->sgp->power;
3959 pwr_move += sds->this->sgp->power *
3960 min(sds->this_load_per_task, sds->this_load + tmp);
3961 pwr_move /= SCHED_POWER_SCALE;
3962
3963 /* Move if we gain throughput */
3964 if (pwr_move > pwr_now)
3965 env->imbalance = sds->busiest_load_per_task;
3966}
3967
3968/**
3969 * calculate_imbalance - Calculate the amount of imbalance present within the
3970 * groups of a given sched_domain during load balance.
3971 * @env: load balance environment
3972 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3973 */
3974static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
3975{
3976 unsigned long max_pull, load_above_capacity = ~0UL;
3977
3978 sds->busiest_load_per_task /= sds->busiest_nr_running;
3979 if (sds->group_imb) {
3980 sds->busiest_load_per_task =
3981 min(sds->busiest_load_per_task, sds->avg_load);
3982 }
3983
3984 /*
3985 * In the presence of smp nice balancing, certain scenarios can have
3986 * max load less than avg load(as we skip the groups at or below
3987 * its cpu_power, while calculating max_load..)
3988 */
3989 if (sds->max_load < sds->avg_load) {
3990 env->imbalance = 0;
3991 return fix_small_imbalance(env, sds);
3992 }
3993
3994 if (!sds->group_imb) {
3995 /*
3996 * Don't want to pull so many tasks that a group would go idle.
3997 */
3998 load_above_capacity = (sds->busiest_nr_running -
3999 sds->busiest_group_capacity);
4000
4001 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4002
4003 load_above_capacity /= sds->busiest->sgp->power;
4004 }
4005
4006 /*
4007 * We're trying to get all the cpus to the average_load, so we don't
4008 * want to push ourselves above the average load, nor do we wish to
4009 * reduce the max loaded cpu below the average load. At the same time,
4010 * we also don't want to reduce the group load below the group capacity
4011 * (so that we can implement power-savings policies etc). Thus we look
4012 * for the minimum possible imbalance.
4013 * Be careful of negative numbers as they'll appear as very large values
4014 * with unsigned longs.
4015 */
4016 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4017
4018 /* How much load to actually move to equalise the imbalance */
4019 env->imbalance = min(max_pull * sds->busiest->sgp->power,
4020 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4021 / SCHED_POWER_SCALE;
4022
4023 /*
4024 * if *imbalance is less than the average load per runnable task
4025 * there is no guarantee that any tasks will be moved so we'll have
4026 * a think about bumping its value to force at least one task to be
4027 * moved
4028 */
4029 if (env->imbalance < sds->busiest_load_per_task)
4030 return fix_small_imbalance(env, sds);
4031
4032}
4033
4034/******* find_busiest_group() helpers end here *********************/
4035
4036/**
4037 * find_busiest_group - Returns the busiest group within the sched_domain
4038 * if there is an imbalance. If there isn't an imbalance, and
4039 * the user has opted for power-savings, it returns a group whose
4040 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4041 * such a group exists.
4042 *
4043 * Also calculates the amount of weighted load which should be moved
4044 * to restore balance.
4045 *
4046 * @env: The load balancing environment.
4047 * @cpus: The set of CPUs under consideration for load-balancing.
4048 * @balance: Pointer to a variable indicating if this_cpu
4049 * is the appropriate cpu to perform load balancing at this_level.
4050 *
4051 * Returns: - the busiest group if imbalance exists.
4052 * - If no imbalance and user has opted for power-savings balance,
4053 * return the least loaded group whose CPUs can be
4054 * put to idle by rebalancing its tasks onto our group.
4055 */
4056static struct sched_group *
4057find_busiest_group(struct lb_env *env, const struct cpumask *cpus, int *balance)
4058{
4059 struct sd_lb_stats sds;
4060
4061 memset(&sds, 0, sizeof(sds));
4062
4063 /*
4064 * Compute the various statistics relavent for load balancing at
4065 * this level.
4066 */
4067 update_sd_lb_stats(env, cpus, balance, &sds);
4068
4069 /*
4070 * this_cpu is not the appropriate cpu to perform load balancing at
4071 * this level.
4072 */
4073 if (!(*balance))
4074 goto ret;
4075
4076 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4077 check_asym_packing(env, &sds))
4078 return sds.busiest;
4079
4080 /* There is no busy sibling group to pull tasks from */
4081 if (!sds.busiest || sds.busiest_nr_running == 0)
4082 goto out_balanced;
4083
4084 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4085
4086 /*
4087 * If the busiest group is imbalanced the below checks don't
4088 * work because they assumes all things are equal, which typically
4089 * isn't true due to cpus_allowed constraints and the like.
4090 */
4091 if (sds.group_imb)
4092 goto force_balance;
4093
4094 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4095 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4096 !sds.busiest_has_capacity)
4097 goto force_balance;
4098
4099 /*
4100 * If the local group is more busy than the selected busiest group
4101 * don't try and pull any tasks.
4102 */
4103 if (sds.this_load >= sds.max_load)
4104 goto out_balanced;
4105
4106 /*
4107 * Don't pull any tasks if this group is already above the domain
4108 * average load.
4109 */
4110 if (sds.this_load >= sds.avg_load)
4111 goto out_balanced;
4112
4113 if (env->idle == CPU_IDLE) {
4114 /*
4115 * This cpu is idle. If the busiest group load doesn't
4116 * have more tasks than the number of available cpu's and
4117 * there is no imbalance between this and busiest group
4118 * wrt to idle cpu's, it is balanced.
4119 */
4120 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4121 sds.busiest_nr_running <= sds.busiest_group_weight)
4122 goto out_balanced;
4123 } else {
4124 /*
4125 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4126 * imbalance_pct to be conservative.
4127 */
4128 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4129 goto out_balanced;
4130 }
4131
4132force_balance:
4133 /* Looks like there is an imbalance. Compute it */
4134 calculate_imbalance(env, &sds);
4135 return sds.busiest;
4136
4137out_balanced:
4138ret:
4139 env->imbalance = 0;
4140 return NULL;
4141}
4142
4143/*
4144 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4145 */
4146static struct rq *find_busiest_queue(struct lb_env *env,
4147 struct sched_group *group,
4148 const struct cpumask *cpus)
4149{
4150 struct rq *busiest = NULL, *rq;
4151 unsigned long max_load = 0;
4152 int i;
4153
4154 for_each_cpu(i, sched_group_cpus(group)) {
4155 unsigned long power = power_of(i);
4156 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4157 SCHED_POWER_SCALE);
4158 unsigned long wl;
4159
4160 if (!capacity)
4161 capacity = fix_small_capacity(env->sd, group);
4162
4163 if (!cpumask_test_cpu(i, cpus))
4164 continue;
4165
4166 rq = cpu_rq(i);
4167 wl = weighted_cpuload(i);
4168
4169 /*
4170 * When comparing with imbalance, use weighted_cpuload()
4171 * which is not scaled with the cpu power.
4172 */
4173 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4174 continue;
4175
4176 /*
4177 * For the load comparisons with the other cpu's, consider
4178 * the weighted_cpuload() scaled with the cpu power, so that
4179 * the load can be moved away from the cpu that is potentially
4180 * running at a lower capacity.
4181 */
4182 wl = (wl * SCHED_POWER_SCALE) / power;
4183
4184 if (wl > max_load) {
4185 max_load = wl;
4186 busiest = rq;
4187 }
4188 }
4189
4190 return busiest;
4191}
4192
4193/*
4194 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4195 * so long as it is large enough.
4196 */
4197#define MAX_PINNED_INTERVAL 512
4198
4199/* Working cpumask for load_balance and load_balance_newidle. */
4200DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4201
4202static int need_active_balance(struct lb_env *env)
4203{
4204 struct sched_domain *sd = env->sd;
4205
4206 if (env->idle == CPU_NEWLY_IDLE) {
4207
4208 /*
4209 * ASYM_PACKING needs to force migrate tasks from busy but
4210 * higher numbered CPUs in order to pack all tasks in the
4211 * lowest numbered CPUs.
4212 */
4213 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4214 return 1;
4215 }
4216
4217 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4218}
4219
4220static int active_load_balance_cpu_stop(void *data);
4221
4222/*
4223 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4224 * tasks if there is an imbalance.
4225 */
4226static int load_balance(int this_cpu, struct rq *this_rq,
4227 struct sched_domain *sd, enum cpu_idle_type idle,
4228 int *balance)
4229{
4230 int ld_moved, active_balance = 0;
4231 struct sched_group *group;
4232 struct rq *busiest;
4233 unsigned long flags;
4234 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4235
4236 struct lb_env env = {
4237 .sd = sd,
4238 .dst_cpu = this_cpu,
4239 .dst_rq = this_rq,
4240 .idle = idle,
4241 .loop_break = sched_nr_migrate_break,
4242 };
4243
4244 cpumask_copy(cpus, cpu_active_mask);
4245
4246 schedstat_inc(sd, lb_count[idle]);
4247
4248redo:
4249 group = find_busiest_group(&env, cpus, balance);
4250
4251 if (*balance == 0)
4252 goto out_balanced;
4253
4254 if (!group) {
4255 schedstat_inc(sd, lb_nobusyg[idle]);
4256 goto out_balanced;
4257 }
4258
4259 busiest = find_busiest_queue(&env, group, cpus);
4260 if (!busiest) {
4261 schedstat_inc(sd, lb_nobusyq[idle]);
4262 goto out_balanced;
4263 }
4264
4265 BUG_ON(busiest == this_rq);
4266
4267 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
4268
4269 ld_moved = 0;
4270 if (busiest->nr_running > 1) {
4271 /*
4272 * Attempt to move tasks. If find_busiest_group has found
4273 * an imbalance but busiest->nr_running <= 1, the group is
4274 * still unbalanced. ld_moved simply stays zero, so it is
4275 * correctly treated as an imbalance.
4276 */
4277 env.flags |= LBF_ALL_PINNED;
4278 env.src_cpu = busiest->cpu;
4279 env.src_rq = busiest;
4280 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
4281
4282more_balance:
4283 local_irq_save(flags);
4284 double_rq_lock(this_rq, busiest);
4285 if (!env.loop)
4286 update_h_load(env.src_cpu);
4287 ld_moved += move_tasks(&env);
4288 double_rq_unlock(this_rq, busiest);
4289 local_irq_restore(flags);
4290
4291 if (env.flags & LBF_NEED_BREAK) {
4292 env.flags &= ~LBF_NEED_BREAK;
4293 goto more_balance;
4294 }
4295
4296 /*
4297 * some other cpu did the load balance for us.
4298 */
4299 if (ld_moved && this_cpu != smp_processor_id())
4300 resched_cpu(this_cpu);
4301
4302 /* All tasks on this runqueue were pinned by CPU affinity */
4303 if (unlikely(env.flags & LBF_ALL_PINNED)) {
4304 cpumask_clear_cpu(cpu_of(busiest), cpus);
4305 if (!cpumask_empty(cpus))
4306 goto redo;
4307 goto out_balanced;
4308 }
4309 }
4310
4311 if (!ld_moved) {
4312 schedstat_inc(sd, lb_failed[idle]);
4313 /*
4314 * Increment the failure counter only on periodic balance.
4315 * We do not want newidle balance, which can be very
4316 * frequent, pollute the failure counter causing
4317 * excessive cache_hot migrations and active balances.
4318 */
4319 if (idle != CPU_NEWLY_IDLE)
4320 sd->nr_balance_failed++;
4321
4322 if (need_active_balance(&env)) {
4323 raw_spin_lock_irqsave(&busiest->lock, flags);
4324
4325 /* don't kick the active_load_balance_cpu_stop,
4326 * if the curr task on busiest cpu can't be
4327 * moved to this_cpu
4328 */
4329 if (!cpumask_test_cpu(this_cpu,
4330 tsk_cpus_allowed(busiest->curr))) {
4331 raw_spin_unlock_irqrestore(&busiest->lock,
4332 flags);
4333 env.flags |= LBF_ALL_PINNED;
4334 goto out_one_pinned;
4335 }
4336
4337 /*
4338 * ->active_balance synchronizes accesses to
4339 * ->active_balance_work. Once set, it's cleared
4340 * only after active load balance is finished.
4341 */
4342 if (!busiest->active_balance) {
4343 busiest->active_balance = 1;
4344 busiest->push_cpu = this_cpu;
4345 active_balance = 1;
4346 }
4347 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4348
4349 if (active_balance) {
4350 stop_one_cpu_nowait(cpu_of(busiest),
4351 active_load_balance_cpu_stop, busiest,
4352 &busiest->active_balance_work);
4353 }
4354
4355 /*
4356 * We've kicked active balancing, reset the failure
4357 * counter.
4358 */
4359 sd->nr_balance_failed = sd->cache_nice_tries+1;
4360 }
4361 } else
4362 sd->nr_balance_failed = 0;
4363
4364 if (likely(!active_balance)) {
4365 /* We were unbalanced, so reset the balancing interval */
4366 sd->balance_interval = sd->min_interval;
4367 } else {
4368 /*
4369 * If we've begun active balancing, start to back off. This
4370 * case may not be covered by the all_pinned logic if there
4371 * is only 1 task on the busy runqueue (because we don't call
4372 * move_tasks).
4373 */
4374 if (sd->balance_interval < sd->max_interval)
4375 sd->balance_interval *= 2;
4376 }
4377
4378 goto out;
4379
4380out_balanced:
4381 schedstat_inc(sd, lb_balanced[idle]);
4382
4383 sd->nr_balance_failed = 0;
4384
4385out_one_pinned:
4386 /* tune up the balancing interval */
4387 if (((env.flags & LBF_ALL_PINNED) &&
4388 sd->balance_interval < MAX_PINNED_INTERVAL) ||
4389 (sd->balance_interval < sd->max_interval))
4390 sd->balance_interval *= 2;
4391
4392 ld_moved = 0;
4393out:
4394 return ld_moved;
4395}
4396
4397/*
4398 * idle_balance is called by schedule() if this_cpu is about to become
4399 * idle. Attempts to pull tasks from other CPUs.
4400 */
4401void idle_balance(int this_cpu, struct rq *this_rq)
4402{
4403 struct sched_domain *sd;
4404 int pulled_task = 0;
4405 unsigned long next_balance = jiffies + HZ;
4406
4407 this_rq->idle_stamp = this_rq->clock;
4408
4409 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4410 return;
4411
4412 /*
4413 * Drop the rq->lock, but keep IRQ/preempt disabled.
4414 */
4415 raw_spin_unlock(&this_rq->lock);
4416
4417 update_shares(this_cpu);
4418 rcu_read_lock();
4419 for_each_domain(this_cpu, sd) {
4420 unsigned long interval;
4421 int balance = 1;
4422
4423 if (!(sd->flags & SD_LOAD_BALANCE))
4424 continue;
4425
4426 if (sd->flags & SD_BALANCE_NEWIDLE) {
4427 /* If we've pulled tasks over stop searching: */
4428 pulled_task = load_balance(this_cpu, this_rq,
4429 sd, CPU_NEWLY_IDLE, &balance);
4430 }
4431
4432 interval = msecs_to_jiffies(sd->balance_interval);
4433 if (time_after(next_balance, sd->last_balance + interval))
4434 next_balance = sd->last_balance + interval;
4435 if (pulled_task) {
4436 this_rq->idle_stamp = 0;
4437 break;
4438 }
4439 }
4440 rcu_read_unlock();
4441
4442 raw_spin_lock(&this_rq->lock);
4443
4444 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4445 /*
4446 * We are going idle. next_balance may be set based on
4447 * a busy processor. So reset next_balance.
4448 */
4449 this_rq->next_balance = next_balance;
4450 }
4451}
4452
4453/*
4454 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4455 * running tasks off the busiest CPU onto idle CPUs. It requires at
4456 * least 1 task to be running on each physical CPU where possible, and
4457 * avoids physical / logical imbalances.
4458 */
4459static int active_load_balance_cpu_stop(void *data)
4460{
4461 struct rq *busiest_rq = data;
4462 int busiest_cpu = cpu_of(busiest_rq);
4463 int target_cpu = busiest_rq->push_cpu;
4464 struct rq *target_rq = cpu_rq(target_cpu);
4465 struct sched_domain *sd;
4466
4467 raw_spin_lock_irq(&busiest_rq->lock);
4468
4469 /* make sure the requested cpu hasn't gone down in the meantime */
4470 if (unlikely(busiest_cpu != smp_processor_id() ||
4471 !busiest_rq->active_balance))
4472 goto out_unlock;
4473
4474 /* Is there any task to move? */
4475 if (busiest_rq->nr_running <= 1)
4476 goto out_unlock;
4477
4478 /*
4479 * This condition is "impossible", if it occurs
4480 * we need to fix it. Originally reported by
4481 * Bjorn Helgaas on a 128-cpu setup.
4482 */
4483 BUG_ON(busiest_rq == target_rq);
4484
4485 /* move a task from busiest_rq to target_rq */
4486 double_lock_balance(busiest_rq, target_rq);
4487
4488 /* Search for an sd spanning us and the target CPU. */
4489 rcu_read_lock();
4490 for_each_domain(target_cpu, sd) {
4491 if ((sd->flags & SD_LOAD_BALANCE) &&
4492 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4493 break;
4494 }
4495
4496 if (likely(sd)) {
4497 struct lb_env env = {
4498 .sd = sd,
4499 .dst_cpu = target_cpu,
4500 .dst_rq = target_rq,
4501 .src_cpu = busiest_rq->cpu,
4502 .src_rq = busiest_rq,
4503 .idle = CPU_IDLE,
4504 };
4505
4506 schedstat_inc(sd, alb_count);
4507
4508 if (move_one_task(&env))
4509 schedstat_inc(sd, alb_pushed);
4510 else
4511 schedstat_inc(sd, alb_failed);
4512 }
4513 rcu_read_unlock();
4514 double_unlock_balance(busiest_rq, target_rq);
4515out_unlock:
4516 busiest_rq->active_balance = 0;
4517 raw_spin_unlock_irq(&busiest_rq->lock);
4518 return 0;
4519}
4520
4521#ifdef CONFIG_NO_HZ
4522/*
4523 * idle load balancing details
4524 * - When one of the busy CPUs notice that there may be an idle rebalancing
4525 * needed, they will kick the idle load balancer, which then does idle
4526 * load balancing for all the idle CPUs.
4527 */
4528static struct {
4529 cpumask_var_t idle_cpus_mask;
4530 atomic_t nr_cpus;
4531 unsigned long next_balance; /* in jiffy units */
4532} nohz ____cacheline_aligned;
4533
4534static inline int find_new_ilb(int call_cpu)
4535{
4536 int ilb = cpumask_first(nohz.idle_cpus_mask);
4537
4538 if (ilb < nr_cpu_ids && idle_cpu(ilb))
4539 return ilb;
4540
4541 return nr_cpu_ids;
4542}
4543
4544/*
4545 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4546 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4547 * CPU (if there is one).
4548 */
4549static void nohz_balancer_kick(int cpu)
4550{
4551 int ilb_cpu;
4552
4553 nohz.next_balance++;
4554
4555 ilb_cpu = find_new_ilb(cpu);
4556
4557 if (ilb_cpu >= nr_cpu_ids)
4558 return;
4559
4560 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
4561 return;
4562 /*
4563 * Use smp_send_reschedule() instead of resched_cpu().
4564 * This way we generate a sched IPI on the target cpu which
4565 * is idle. And the softirq performing nohz idle load balance
4566 * will be run before returning from the IPI.
4567 */
4568 smp_send_reschedule(ilb_cpu);
4569 return;
4570}
4571
4572static inline void clear_nohz_tick_stopped(int cpu)
4573{
4574 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
4575 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4576 atomic_dec(&nohz.nr_cpus);
4577 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4578 }
4579}
4580
4581static inline void set_cpu_sd_state_busy(void)
4582{
4583 struct sched_domain *sd;
4584 int cpu = smp_processor_id();
4585
4586 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4587 return;
4588 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4589
4590 rcu_read_lock();
4591 for_each_domain(cpu, sd)
4592 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4593 rcu_read_unlock();
4594}
4595
4596void set_cpu_sd_state_idle(void)
4597{
4598 struct sched_domain *sd;
4599 int cpu = smp_processor_id();
4600
4601 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4602 return;
4603 set_bit(NOHZ_IDLE, nohz_flags(cpu));
4604
4605 rcu_read_lock();
4606 for_each_domain(cpu, sd)
4607 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4608 rcu_read_unlock();
4609}
4610
4611/*
4612 * This routine will record that this cpu is going idle with tick stopped.
4613 * This info will be used in performing idle load balancing in the future.
4614 */
4615void select_nohz_load_balancer(int stop_tick)
4616{
4617 int cpu = smp_processor_id();
4618
4619 /*
4620 * If this cpu is going down, then nothing needs to be done.
4621 */
4622 if (!cpu_active(cpu))
4623 return;
4624
4625 if (stop_tick) {
4626 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
4627 return;
4628
4629 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4630 atomic_inc(&nohz.nr_cpus);
4631 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4632 }
4633 return;
4634}
4635
4636static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
4637 unsigned long action, void *hcpu)
4638{
4639 switch (action & ~CPU_TASKS_FROZEN) {
4640 case CPU_DYING:
4641 clear_nohz_tick_stopped(smp_processor_id());
4642 return NOTIFY_OK;
4643 default:
4644 return NOTIFY_DONE;
4645 }
4646}
4647#endif
4648
4649static DEFINE_SPINLOCK(balancing);
4650
4651/*
4652 * Scale the max load_balance interval with the number of CPUs in the system.
4653 * This trades load-balance latency on larger machines for less cross talk.
4654 */
4655void update_max_interval(void)
4656{
4657 max_load_balance_interval = HZ*num_online_cpus()/10;
4658}
4659
4660/*
4661 * It checks each scheduling domain to see if it is due to be balanced,
4662 * and initiates a balancing operation if so.
4663 *
4664 * Balancing parameters are set up in arch_init_sched_domains.
4665 */
4666static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4667{
4668 int balance = 1;
4669 struct rq *rq = cpu_rq(cpu);
4670 unsigned long interval;
4671 struct sched_domain *sd;
4672 /* Earliest time when we have to do rebalance again */
4673 unsigned long next_balance = jiffies + 60*HZ;
4674 int update_next_balance = 0;
4675 int need_serialize;
4676
4677 update_shares(cpu);
4678
4679 rcu_read_lock();
4680 for_each_domain(cpu, sd) {
4681 if (!(sd->flags & SD_LOAD_BALANCE))
4682 continue;
4683
4684 interval = sd->balance_interval;
4685 if (idle != CPU_IDLE)
4686 interval *= sd->busy_factor;
4687
4688 /* scale ms to jiffies */
4689 interval = msecs_to_jiffies(interval);
4690 interval = clamp(interval, 1UL, max_load_balance_interval);
4691
4692 need_serialize = sd->flags & SD_SERIALIZE;
4693
4694 if (need_serialize) {
4695 if (!spin_trylock(&balancing))
4696 goto out;
4697 }
4698
4699 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4700 if (load_balance(cpu, rq, sd, idle, &balance)) {
4701 /*
4702 * We've pulled tasks over so either we're no
4703 * longer idle.
4704 */
4705 idle = CPU_NOT_IDLE;
4706 }
4707 sd->last_balance = jiffies;
4708 }
4709 if (need_serialize)
4710 spin_unlock(&balancing);
4711out:
4712 if (time_after(next_balance, sd->last_balance + interval)) {
4713 next_balance = sd->last_balance + interval;
4714 update_next_balance = 1;
4715 }
4716
4717 /*
4718 * Stop the load balance at this level. There is another
4719 * CPU in our sched group which is doing load balancing more
4720 * actively.
4721 */
4722 if (!balance)
4723 break;
4724 }
4725 rcu_read_unlock();
4726
4727 /*
4728 * next_balance will be updated only when there is a need.
4729 * When the cpu is attached to null domain for ex, it will not be
4730 * updated.
4731 */
4732 if (likely(update_next_balance))
4733 rq->next_balance = next_balance;
4734}
4735
4736#ifdef CONFIG_NO_HZ
4737/*
4738 * In CONFIG_NO_HZ case, the idle balance kickee will do the
4739 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4740 */
4741static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4742{
4743 struct rq *this_rq = cpu_rq(this_cpu);
4744 struct rq *rq;
4745 int balance_cpu;
4746
4747 if (idle != CPU_IDLE ||
4748 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
4749 goto end;
4750
4751 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
4752 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
4753 continue;
4754
4755 /*
4756 * If this cpu gets work to do, stop the load balancing
4757 * work being done for other cpus. Next load
4758 * balancing owner will pick it up.
4759 */
4760 if (need_resched())
4761 break;
4762
4763 raw_spin_lock_irq(&this_rq->lock);
4764 update_rq_clock(this_rq);
4765 update_idle_cpu_load(this_rq);
4766 raw_spin_unlock_irq(&this_rq->lock);
4767
4768 rebalance_domains(balance_cpu, CPU_IDLE);
4769
4770 rq = cpu_rq(balance_cpu);
4771 if (time_after(this_rq->next_balance, rq->next_balance))
4772 this_rq->next_balance = rq->next_balance;
4773 }
4774 nohz.next_balance = this_rq->next_balance;
4775end:
4776 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
4777}
4778
4779/*
4780 * Current heuristic for kicking the idle load balancer in the presence
4781 * of an idle cpu is the system.
4782 * - This rq has more than one task.
4783 * - At any scheduler domain level, this cpu's scheduler group has multiple
4784 * busy cpu's exceeding the group's power.
4785 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
4786 * domain span are idle.
4787 */
4788static inline int nohz_kick_needed(struct rq *rq, int cpu)
4789{
4790 unsigned long now = jiffies;
4791 struct sched_domain *sd;
4792
4793 if (unlikely(idle_cpu(cpu)))
4794 return 0;
4795
4796 /*
4797 * We may be recently in ticked or tickless idle mode. At the first
4798 * busy tick after returning from idle, we will update the busy stats.
4799 */
4800 set_cpu_sd_state_busy();
4801 clear_nohz_tick_stopped(cpu);
4802
4803 /*
4804 * None are in tickless mode and hence no need for NOHZ idle load
4805 * balancing.
4806 */
4807 if (likely(!atomic_read(&nohz.nr_cpus)))
4808 return 0;
4809
4810 if (time_before(now, nohz.next_balance))
4811 return 0;
4812
4813 if (rq->nr_running >= 2)
4814 goto need_kick;
4815
4816 rcu_read_lock();
4817 for_each_domain(cpu, sd) {
4818 struct sched_group *sg = sd->groups;
4819 struct sched_group_power *sgp = sg->sgp;
4820 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
4821
4822 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
4823 goto need_kick_unlock;
4824
4825 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
4826 && (cpumask_first_and(nohz.idle_cpus_mask,
4827 sched_domain_span(sd)) < cpu))
4828 goto need_kick_unlock;
4829
4830 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
4831 break;
4832 }
4833 rcu_read_unlock();
4834 return 0;
4835
4836need_kick_unlock:
4837 rcu_read_unlock();
4838need_kick:
4839 return 1;
4840}
4841#else
4842static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4843#endif
4844
4845/*
4846 * run_rebalance_domains is triggered when needed from the scheduler tick.
4847 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4848 */
4849static void run_rebalance_domains(struct softirq_action *h)
4850{
4851 int this_cpu = smp_processor_id();
4852 struct rq *this_rq = cpu_rq(this_cpu);
4853 enum cpu_idle_type idle = this_rq->idle_balance ?
4854 CPU_IDLE : CPU_NOT_IDLE;
4855
4856 rebalance_domains(this_cpu, idle);
4857
4858 /*
4859 * If this cpu has a pending nohz_balance_kick, then do the
4860 * balancing on behalf of the other idle cpus whose ticks are
4861 * stopped.
4862 */
4863 nohz_idle_balance(this_cpu, idle);
4864}
4865
4866static inline int on_null_domain(int cpu)
4867{
4868 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
4869}
4870
4871/*
4872 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4873 */
4874void trigger_load_balance(struct rq *rq, int cpu)
4875{
4876 /* Don't need to rebalance while attached to NULL domain */
4877 if (time_after_eq(jiffies, rq->next_balance) &&
4878 likely(!on_null_domain(cpu)))
4879 raise_softirq(SCHED_SOFTIRQ);
4880#ifdef CONFIG_NO_HZ
4881 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4882 nohz_balancer_kick(cpu);
4883#endif
4884}
4885
4886static void rq_online_fair(struct rq *rq)
4887{
4888 update_sysctl();
4889}
4890
4891static void rq_offline_fair(struct rq *rq)
4892{
4893 update_sysctl();
4894}
4895
4896#endif /* CONFIG_SMP */
4897
4898/*
4899 * scheduler tick hitting a task of our scheduling class:
4900 */
4901static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4902{
4903 struct cfs_rq *cfs_rq;
4904 struct sched_entity *se = &curr->se;
4905
4906 for_each_sched_entity(se) {
4907 cfs_rq = cfs_rq_of(se);
4908 entity_tick(cfs_rq, se, queued);
4909 }
4910}
4911
4912/*
4913 * called on fork with the child task as argument from the parent's context
4914 * - child not yet on the tasklist
4915 * - preemption disabled
4916 */
4917static void task_fork_fair(struct task_struct *p)
4918{
4919 struct cfs_rq *cfs_rq;
4920 struct sched_entity *se = &p->se, *curr;
4921 int this_cpu = smp_processor_id();
4922 struct rq *rq = this_rq();
4923 unsigned long flags;
4924
4925 raw_spin_lock_irqsave(&rq->lock, flags);
4926
4927 update_rq_clock(rq);
4928
4929 cfs_rq = task_cfs_rq(current);
4930 curr = cfs_rq->curr;
4931
4932 if (unlikely(task_cpu(p) != this_cpu)) {
4933 rcu_read_lock();
4934 __set_task_cpu(p, this_cpu);
4935 rcu_read_unlock();
4936 }
4937
4938 update_curr(cfs_rq);
4939
4940 if (curr)
4941 se->vruntime = curr->vruntime;
4942 place_entity(cfs_rq, se, 1);
4943
4944 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4945 /*
4946 * Upon rescheduling, sched_class::put_prev_task() will place
4947 * 'current' within the tree based on its new key value.
4948 */
4949 swap(curr->vruntime, se->vruntime);
4950 resched_task(rq->curr);
4951 }
4952
4953 se->vruntime -= cfs_rq->min_vruntime;
4954
4955 raw_spin_unlock_irqrestore(&rq->lock, flags);
4956}
4957
4958/*
4959 * Priority of the task has changed. Check to see if we preempt
4960 * the current task.
4961 */
4962static void
4963prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
4964{
4965 if (!p->se.on_rq)
4966 return;
4967
4968 /*
4969 * Reschedule if we are currently running on this runqueue and
4970 * our priority decreased, or if we are not currently running on
4971 * this runqueue and our priority is higher than the current's
4972 */
4973 if (rq->curr == p) {
4974 if (p->prio > oldprio)
4975 resched_task(rq->curr);
4976 } else
4977 check_preempt_curr(rq, p, 0);
4978}
4979
4980static void switched_from_fair(struct rq *rq, struct task_struct *p)
4981{
4982 struct sched_entity *se = &p->se;
4983 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4984
4985 /*
4986 * Ensure the task's vruntime is normalized, so that when its
4987 * switched back to the fair class the enqueue_entity(.flags=0) will
4988 * do the right thing.
4989 *
4990 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4991 * have normalized the vruntime, if it was !on_rq, then only when
4992 * the task is sleeping will it still have non-normalized vruntime.
4993 */
4994 if (!se->on_rq && p->state != TASK_RUNNING) {
4995 /*
4996 * Fix up our vruntime so that the current sleep doesn't
4997 * cause 'unlimited' sleep bonus.
4998 */
4999 place_entity(cfs_rq, se, 0);
5000 se->vruntime -= cfs_rq->min_vruntime;
5001 }
5002}
5003
5004/*
5005 * We switched to the sched_fair class.
5006 */
5007static void switched_to_fair(struct rq *rq, struct task_struct *p)
5008{
5009 if (!p->se.on_rq)
5010 return;
5011
5012 /*
5013 * We were most likely switched from sched_rt, so
5014 * kick off the schedule if running, otherwise just see
5015 * if we can still preempt the current task.
5016 */
5017 if (rq->curr == p)
5018 resched_task(rq->curr);
5019 else
5020 check_preempt_curr(rq, p, 0);
5021}
5022
5023/* Account for a task changing its policy or group.
5024 *
5025 * This routine is mostly called to set cfs_rq->curr field when a task
5026 * migrates between groups/classes.
5027 */
5028static void set_curr_task_fair(struct rq *rq)
5029{
5030 struct sched_entity *se = &rq->curr->se;
5031
5032 for_each_sched_entity(se) {
5033 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5034
5035 set_next_entity(cfs_rq, se);
5036 /* ensure bandwidth has been allocated on our new cfs_rq */
5037 account_cfs_rq_runtime(cfs_rq, 0);
5038 }
5039}
5040
5041void init_cfs_rq(struct cfs_rq *cfs_rq)
5042{
5043 cfs_rq->tasks_timeline = RB_ROOT;
5044 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5045#ifndef CONFIG_64BIT
5046 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5047#endif
5048}
5049
5050#ifdef CONFIG_FAIR_GROUP_SCHED
5051static void task_move_group_fair(struct task_struct *p, int on_rq)
5052{
5053 /*
5054 * If the task was not on the rq at the time of this cgroup movement
5055 * it must have been asleep, sleeping tasks keep their ->vruntime
5056 * absolute on their old rq until wakeup (needed for the fair sleeper
5057 * bonus in place_entity()).
5058 *
5059 * If it was on the rq, we've just 'preempted' it, which does convert
5060 * ->vruntime to a relative base.
5061 *
5062 * Make sure both cases convert their relative position when migrating
5063 * to another cgroup's rq. This does somewhat interfere with the
5064 * fair sleeper stuff for the first placement, but who cares.
5065 */
5066 /*
5067 * When !on_rq, vruntime of the task has usually NOT been normalized.
5068 * But there are some cases where it has already been normalized:
5069 *
5070 * - Moving a forked child which is waiting for being woken up by
5071 * wake_up_new_task().
5072 * - Moving a task which has been woken up by try_to_wake_up() and
5073 * waiting for actually being woken up by sched_ttwu_pending().
5074 *
5075 * To prevent boost or penalty in the new cfs_rq caused by delta
5076 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5077 */
5078 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5079 on_rq = 1;
5080
5081 if (!on_rq)
5082 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5083 set_task_rq(p, task_cpu(p));
5084 if (!on_rq)
5085 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
5086}
5087
5088void free_fair_sched_group(struct task_group *tg)
5089{
5090 int i;
5091
5092 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5093
5094 for_each_possible_cpu(i) {
5095 if (tg->cfs_rq)
5096 kfree(tg->cfs_rq[i]);
5097 if (tg->se)
5098 kfree(tg->se[i]);
5099 }
5100
5101 kfree(tg->cfs_rq);
5102 kfree(tg->se);
5103}
5104
5105int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5106{
5107 struct cfs_rq *cfs_rq;
5108 struct sched_entity *se;
5109 int i;
5110
5111 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5112 if (!tg->cfs_rq)
5113 goto err;
5114 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5115 if (!tg->se)
5116 goto err;
5117
5118 tg->shares = NICE_0_LOAD;
5119
5120 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5121
5122 for_each_possible_cpu(i) {
5123 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5124 GFP_KERNEL, cpu_to_node(i));
5125 if (!cfs_rq)
5126 goto err;
5127
5128 se = kzalloc_node(sizeof(struct sched_entity),
5129 GFP_KERNEL, cpu_to_node(i));
5130 if (!se)
5131 goto err_free_rq;
5132
5133 init_cfs_rq(cfs_rq);
5134 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5135 }
5136
5137 return 1;
5138
5139err_free_rq:
5140 kfree(cfs_rq);
5141err:
5142 return 0;
5143}
5144
5145void unregister_fair_sched_group(struct task_group *tg, int cpu)
5146{
5147 struct rq *rq = cpu_rq(cpu);
5148 unsigned long flags;
5149
5150 /*
5151 * Only empty task groups can be destroyed; so we can speculatively
5152 * check on_list without danger of it being re-added.
5153 */
5154 if (!tg->cfs_rq[cpu]->on_list)
5155 return;
5156
5157 raw_spin_lock_irqsave(&rq->lock, flags);
5158 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5159 raw_spin_unlock_irqrestore(&rq->lock, flags);
5160}
5161
5162void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5163 struct sched_entity *se, int cpu,
5164 struct sched_entity *parent)
5165{
5166 struct rq *rq = cpu_rq(cpu);
5167
5168 cfs_rq->tg = tg;
5169 cfs_rq->rq = rq;
5170#ifdef CONFIG_SMP
5171 /* allow initial update_cfs_load() to truncate */
5172 cfs_rq->load_stamp = 1;
5173#endif
5174 init_cfs_rq_runtime(cfs_rq);
5175
5176 tg->cfs_rq[cpu] = cfs_rq;
5177 tg->se[cpu] = se;
5178
5179 /* se could be NULL for root_task_group */
5180 if (!se)
5181 return;
5182
5183 if (!parent)
5184 se->cfs_rq = &rq->cfs;
5185 else
5186 se->cfs_rq = parent->my_q;
5187
5188 se->my_q = cfs_rq;
5189 update_load_set(&se->load, 0);
5190 se->parent = parent;
5191}
5192
5193static DEFINE_MUTEX(shares_mutex);
5194
5195int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5196{
5197 int i;
5198 unsigned long flags;
5199
5200 /*
5201 * We can't change the weight of the root cgroup.
5202 */
5203 if (!tg->se[0])
5204 return -EINVAL;
5205
5206 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5207
5208 mutex_lock(&shares_mutex);
5209 if (tg->shares == shares)
5210 goto done;
5211
5212 tg->shares = shares;
5213 for_each_possible_cpu(i) {
5214 struct rq *rq = cpu_rq(i);
5215 struct sched_entity *se;
5216
5217 se = tg->se[i];
5218 /* Propagate contribution to hierarchy */
5219 raw_spin_lock_irqsave(&rq->lock, flags);
5220 for_each_sched_entity(se)
5221 update_cfs_shares(group_cfs_rq(se));
5222 raw_spin_unlock_irqrestore(&rq->lock, flags);
5223 }
5224
5225done:
5226 mutex_unlock(&shares_mutex);
5227 return 0;
5228}
5229#else /* CONFIG_FAIR_GROUP_SCHED */
5230
5231void free_fair_sched_group(struct task_group *tg) { }
5232
5233int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5234{
5235 return 1;
5236}
5237
5238void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5239
5240#endif /* CONFIG_FAIR_GROUP_SCHED */
5241
5242
5243static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5244{
5245 struct sched_entity *se = &task->se;
5246 unsigned int rr_interval = 0;
5247
5248 /*
5249 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5250 * idle runqueue:
5251 */
5252 if (rq->cfs.load.weight)
5253 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5254
5255 return rr_interval;
5256}
5257
5258/*
5259 * All the scheduling class methods:
5260 */
5261const struct sched_class fair_sched_class = {
5262 .next = &idle_sched_class,
5263 .enqueue_task = enqueue_task_fair,
5264 .dequeue_task = dequeue_task_fair,
5265 .yield_task = yield_task_fair,
5266 .yield_to_task = yield_to_task_fair,
5267
5268 .check_preempt_curr = check_preempt_wakeup,
5269
5270 .pick_next_task = pick_next_task_fair,
5271 .put_prev_task = put_prev_task_fair,
5272
5273#ifdef CONFIG_SMP
5274 .select_task_rq = select_task_rq_fair,
5275
5276 .rq_online = rq_online_fair,
5277 .rq_offline = rq_offline_fair,
5278
5279 .task_waking = task_waking_fair,
5280#endif
5281
5282 .set_curr_task = set_curr_task_fair,
5283 .task_tick = task_tick_fair,
5284 .task_fork = task_fork_fair,
5285
5286 .prio_changed = prio_changed_fair,
5287 .switched_from = switched_from_fair,
5288 .switched_to = switched_to_fair,
5289
5290 .get_rr_interval = get_rr_interval_fair,
5291
5292#ifdef CONFIG_FAIR_GROUP_SCHED
5293 .task_move_group = task_move_group_fair,
5294#endif
5295};
5296
5297#ifdef CONFIG_SCHED_DEBUG
5298void print_cfs_stats(struct seq_file *m, int cpu)
5299{
5300 struct cfs_rq *cfs_rq;
5301
5302 rcu_read_lock();
5303 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5304 print_cfs_rq(m, cpu, cfs_rq);
5305 rcu_read_unlock();
5306}
5307#endif
5308
5309__init void init_sched_fair_class(void)
5310{
5311#ifdef CONFIG_SMP
5312 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5313
5314#ifdef CONFIG_NO_HZ
5315 nohz.next_balance = jiffies;
5316 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5317 cpu_notifier(sched_ilb_notifier, 0);
5318#endif
5319#endif /* SMP */
5320
5321}