Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
   3 *
   4 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   5 *
   6 *  Interactivity improvements by Mike Galbraith
   7 *  (C) 2007 Mike Galbraith <efault@gmx.de>
   8 *
   9 *  Various enhancements by Dmitry Adamushko.
  10 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11 *
  12 *  Group scheduling enhancements by Srivatsa Vaddagiri
  13 *  Copyright IBM Corporation, 2007
  14 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15 *
  16 *  Scaled math optimizations by Thomas Gleixner
  17 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18 *
  19 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21 */
  22
  23#include <linux/latencytop.h>
  24#include <linux/sched.h>
  25#include <linux/cpumask.h>
  26#include <linux/slab.h>
  27#include <linux/profile.h>
  28#include <linux/interrupt.h>
  29
  30#include <trace/events/sched.h>
  31
  32#include "sched.h"
  33
  34/*
  35 * Targeted preemption latency for CPU-bound tasks:
  36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  37 *
  38 * NOTE: this latency value is not the same as the concept of
  39 * 'timeslice length' - timeslices in CFS are of variable length
  40 * and have no persistent notion like in traditional, time-slice
  41 * based scheduling concepts.
  42 *
  43 * (to see the precise effective timeslice length of your workload,
  44 *  run vmstat and monitor the context-switches (cs) field)
  45 */
  46unsigned int sysctl_sched_latency = 6000000ULL;
  47unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  48
  49/*
  50 * The initial- and re-scaling of tunables is configurable
  51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  52 *
  53 * Options are:
  54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  57 */
  58enum sched_tunable_scaling sysctl_sched_tunable_scaling
  59	= SCHED_TUNABLESCALING_LOG;
  60
  61/*
  62 * Minimal preemption granularity for CPU-bound tasks:
  63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  64 */
  65unsigned int sysctl_sched_min_granularity = 750000ULL;
  66unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  67
  68/*
  69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  70 */
  71static unsigned int sched_nr_latency = 8;
  72
  73/*
  74 * After fork, child runs first. If set to 0 (default) then
  75 * parent will (try to) run first.
  76 */
  77unsigned int sysctl_sched_child_runs_first __read_mostly;
  78
  79/*
  80 * SCHED_OTHER wake-up granularity.
  81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  82 *
  83 * This option delays the preemption effects of decoupled workloads
  84 * and reduces their over-scheduling. Synchronous workloads will still
  85 * have immediate wakeup/sleep latencies.
  86 */
  87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  89
  90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  91
  92/*
  93 * The exponential sliding  window over which load is averaged for shares
  94 * distribution.
  95 * (default: 10msec)
  96 */
  97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  98
  99#ifdef CONFIG_CFS_BANDWIDTH
 100/*
 101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 102 * each time a cfs_rq requests quota.
 103 *
 104 * Note: in the case that the slice exceeds the runtime remaining (either due
 105 * to consumption or the quota being specified to be smaller than the slice)
 106 * we will always only issue the remaining available time.
 107 *
 108 * default: 5 msec, units: microseconds
 109  */
 110unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
 111#endif
 112
 113/*
 114 * Increase the granularity value when there are more CPUs,
 115 * because with more CPUs the 'effective latency' as visible
 116 * to users decreases. But the relationship is not linear,
 117 * so pick a second-best guess by going with the log2 of the
 118 * number of CPUs.
 119 *
 120 * This idea comes from the SD scheduler of Con Kolivas:
 121 */
 122static int get_update_sysctl_factor(void)
 123{
 124	unsigned int cpus = min_t(int, num_online_cpus(), 8);
 125	unsigned int factor;
 126
 127	switch (sysctl_sched_tunable_scaling) {
 128	case SCHED_TUNABLESCALING_NONE:
 129		factor = 1;
 130		break;
 131	case SCHED_TUNABLESCALING_LINEAR:
 132		factor = cpus;
 133		break;
 134	case SCHED_TUNABLESCALING_LOG:
 135	default:
 136		factor = 1 + ilog2(cpus);
 137		break;
 138	}
 139
 140	return factor;
 141}
 142
 143static void update_sysctl(void)
 144{
 145	unsigned int factor = get_update_sysctl_factor();
 146
 147#define SET_SYSCTL(name) \
 148	(sysctl_##name = (factor) * normalized_sysctl_##name)
 149	SET_SYSCTL(sched_min_granularity);
 150	SET_SYSCTL(sched_latency);
 151	SET_SYSCTL(sched_wakeup_granularity);
 152#undef SET_SYSCTL
 153}
 154
 155void sched_init_granularity(void)
 156{
 157	update_sysctl();
 158}
 159
 160#if BITS_PER_LONG == 32
 161# define WMULT_CONST	(~0UL)
 162#else
 163# define WMULT_CONST	(1UL << 32)
 164#endif
 165
 166#define WMULT_SHIFT	32
 167
 168/*
 169 * Shift right and round:
 170 */
 171#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
 172
 173/*
 174 * delta *= weight / lw
 175 */
 176static unsigned long
 177calc_delta_mine(unsigned long delta_exec, unsigned long weight,
 178		struct load_weight *lw)
 179{
 180	u64 tmp;
 181
 182	/*
 183	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
 184	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
 185	 * 2^SCHED_LOAD_RESOLUTION.
 186	 */
 187	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
 188		tmp = (u64)delta_exec * scale_load_down(weight);
 189	else
 190		tmp = (u64)delta_exec;
 191
 192	if (!lw->inv_weight) {
 193		unsigned long w = scale_load_down(lw->weight);
 194
 195		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
 196			lw->inv_weight = 1;
 197		else if (unlikely(!w))
 198			lw->inv_weight = WMULT_CONST;
 199		else
 200			lw->inv_weight = WMULT_CONST / w;
 201	}
 202
 203	/*
 204	 * Check whether we'd overflow the 64-bit multiplication:
 205	 */
 206	if (unlikely(tmp > WMULT_CONST))
 207		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
 208			WMULT_SHIFT/2);
 209	else
 210		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
 211
 212	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
 213}
 214
 215
 216const struct sched_class fair_sched_class;
 217
 218/**************************************************************
 219 * CFS operations on generic schedulable entities:
 220 */
 221
 222#ifdef CONFIG_FAIR_GROUP_SCHED
 223
 224/* cpu runqueue to which this cfs_rq is attached */
 225static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 226{
 227	return cfs_rq->rq;
 228}
 229
 230/* An entity is a task if it doesn't "own" a runqueue */
 231#define entity_is_task(se)	(!se->my_q)
 232
 233static inline struct task_struct *task_of(struct sched_entity *se)
 234{
 235#ifdef CONFIG_SCHED_DEBUG
 236	WARN_ON_ONCE(!entity_is_task(se));
 237#endif
 238	return container_of(se, struct task_struct, se);
 239}
 240
 241/* Walk up scheduling entities hierarchy */
 242#define for_each_sched_entity(se) \
 243		for (; se; se = se->parent)
 244
 245static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 246{
 247	return p->se.cfs_rq;
 248}
 249
 250/* runqueue on which this entity is (to be) queued */
 251static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 252{
 253	return se->cfs_rq;
 254}
 255
 256/* runqueue "owned" by this group */
 257static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 258{
 259	return grp->my_q;
 260}
 261
 262static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 263{
 264	if (!cfs_rq->on_list) {
 265		/*
 266		 * Ensure we either appear before our parent (if already
 267		 * enqueued) or force our parent to appear after us when it is
 268		 * enqueued.  The fact that we always enqueue bottom-up
 269		 * reduces this to two cases.
 270		 */
 271		if (cfs_rq->tg->parent &&
 272		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
 273			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
 274				&rq_of(cfs_rq)->leaf_cfs_rq_list);
 275		} else {
 276			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 277				&rq_of(cfs_rq)->leaf_cfs_rq_list);
 278		}
 279
 280		cfs_rq->on_list = 1;
 281	}
 282}
 283
 284static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 285{
 286	if (cfs_rq->on_list) {
 287		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
 288		cfs_rq->on_list = 0;
 289	}
 290}
 291
 292/* Iterate thr' all leaf cfs_rq's on a runqueue */
 293#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 294	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
 295
 296/* Do the two (enqueued) entities belong to the same group ? */
 297static inline int
 298is_same_group(struct sched_entity *se, struct sched_entity *pse)
 299{
 300	if (se->cfs_rq == pse->cfs_rq)
 301		return 1;
 302
 303	return 0;
 304}
 305
 306static inline struct sched_entity *parent_entity(struct sched_entity *se)
 307{
 308	return se->parent;
 309}
 310
 311/* return depth at which a sched entity is present in the hierarchy */
 312static inline int depth_se(struct sched_entity *se)
 313{
 314	int depth = 0;
 315
 316	for_each_sched_entity(se)
 317		depth++;
 318
 319	return depth;
 320}
 321
 322static void
 323find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 324{
 325	int se_depth, pse_depth;
 326
 327	/*
 328	 * preemption test can be made between sibling entities who are in the
 329	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 330	 * both tasks until we find their ancestors who are siblings of common
 331	 * parent.
 332	 */
 333
 334	/* First walk up until both entities are at same depth */
 335	se_depth = depth_se(*se);
 336	pse_depth = depth_se(*pse);
 337
 338	while (se_depth > pse_depth) {
 339		se_depth--;
 340		*se = parent_entity(*se);
 341	}
 342
 343	while (pse_depth > se_depth) {
 344		pse_depth--;
 345		*pse = parent_entity(*pse);
 346	}
 347
 348	while (!is_same_group(*se, *pse)) {
 349		*se = parent_entity(*se);
 350		*pse = parent_entity(*pse);
 351	}
 352}
 353
 354#else	/* !CONFIG_FAIR_GROUP_SCHED */
 355
 356static inline struct task_struct *task_of(struct sched_entity *se)
 357{
 358	return container_of(se, struct task_struct, se);
 359}
 360
 361static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 362{
 363	return container_of(cfs_rq, struct rq, cfs);
 364}
 365
 366#define entity_is_task(se)	1
 367
 368#define for_each_sched_entity(se) \
 369		for (; se; se = NULL)
 370
 371static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 372{
 373	return &task_rq(p)->cfs;
 374}
 375
 376static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 377{
 378	struct task_struct *p = task_of(se);
 379	struct rq *rq = task_rq(p);
 380
 381	return &rq->cfs;
 382}
 383
 384/* runqueue "owned" by this group */
 385static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 386{
 387	return NULL;
 388}
 389
 390static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 391{
 392}
 393
 394static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 395{
 396}
 397
 398#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 399		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 400
 401static inline int
 402is_same_group(struct sched_entity *se, struct sched_entity *pse)
 403{
 404	return 1;
 405}
 406
 407static inline struct sched_entity *parent_entity(struct sched_entity *se)
 408{
 409	return NULL;
 410}
 411
 412static inline void
 413find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 414{
 415}
 416
 417#endif	/* CONFIG_FAIR_GROUP_SCHED */
 418
 419static __always_inline
 420void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
 421
 422/**************************************************************
 423 * Scheduling class tree data structure manipulation methods:
 424 */
 425
 426static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
 427{
 428	s64 delta = (s64)(vruntime - min_vruntime);
 429	if (delta > 0)
 430		min_vruntime = vruntime;
 431
 432	return min_vruntime;
 433}
 434
 435static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 436{
 437	s64 delta = (s64)(vruntime - min_vruntime);
 438	if (delta < 0)
 439		min_vruntime = vruntime;
 440
 441	return min_vruntime;
 442}
 443
 444static inline int entity_before(struct sched_entity *a,
 445				struct sched_entity *b)
 446{
 447	return (s64)(a->vruntime - b->vruntime) < 0;
 448}
 449
 450static void update_min_vruntime(struct cfs_rq *cfs_rq)
 451{
 452	u64 vruntime = cfs_rq->min_vruntime;
 453
 454	if (cfs_rq->curr)
 455		vruntime = cfs_rq->curr->vruntime;
 456
 457	if (cfs_rq->rb_leftmost) {
 458		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
 459						   struct sched_entity,
 460						   run_node);
 461
 462		if (!cfs_rq->curr)
 463			vruntime = se->vruntime;
 464		else
 465			vruntime = min_vruntime(vruntime, se->vruntime);
 466	}
 467
 468	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 469#ifndef CONFIG_64BIT
 470	smp_wmb();
 471	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 472#endif
 473}
 474
 475/*
 476 * Enqueue an entity into the rb-tree:
 477 */
 478static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 479{
 480	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
 481	struct rb_node *parent = NULL;
 482	struct sched_entity *entry;
 483	int leftmost = 1;
 484
 485	/*
 486	 * Find the right place in the rbtree:
 487	 */
 488	while (*link) {
 489		parent = *link;
 490		entry = rb_entry(parent, struct sched_entity, run_node);
 491		/*
 492		 * We dont care about collisions. Nodes with
 493		 * the same key stay together.
 494		 */
 495		if (entity_before(se, entry)) {
 496			link = &parent->rb_left;
 497		} else {
 498			link = &parent->rb_right;
 499			leftmost = 0;
 500		}
 501	}
 502
 503	/*
 504	 * Maintain a cache of leftmost tree entries (it is frequently
 505	 * used):
 506	 */
 507	if (leftmost)
 508		cfs_rq->rb_leftmost = &se->run_node;
 509
 510	rb_link_node(&se->run_node, parent, link);
 511	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
 512}
 513
 514static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 515{
 516	if (cfs_rq->rb_leftmost == &se->run_node) {
 517		struct rb_node *next_node;
 518
 519		next_node = rb_next(&se->run_node);
 520		cfs_rq->rb_leftmost = next_node;
 521	}
 522
 523	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 524}
 525
 526struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
 527{
 528	struct rb_node *left = cfs_rq->rb_leftmost;
 529
 530	if (!left)
 531		return NULL;
 532
 533	return rb_entry(left, struct sched_entity, run_node);
 534}
 535
 536static struct sched_entity *__pick_next_entity(struct sched_entity *se)
 537{
 538	struct rb_node *next = rb_next(&se->run_node);
 539
 540	if (!next)
 541		return NULL;
 542
 543	return rb_entry(next, struct sched_entity, run_node);
 544}
 545
 546#ifdef CONFIG_SCHED_DEBUG
 547struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 548{
 549	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
 550
 551	if (!last)
 552		return NULL;
 553
 554	return rb_entry(last, struct sched_entity, run_node);
 555}
 556
 557/**************************************************************
 558 * Scheduling class statistics methods:
 559 */
 560
 561int sched_proc_update_handler(struct ctl_table *table, int write,
 562		void __user *buffer, size_t *lenp,
 563		loff_t *ppos)
 564{
 565	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 566	int factor = get_update_sysctl_factor();
 567
 568	if (ret || !write)
 569		return ret;
 570
 571	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 572					sysctl_sched_min_granularity);
 573
 574#define WRT_SYSCTL(name) \
 575	(normalized_sysctl_##name = sysctl_##name / (factor))
 576	WRT_SYSCTL(sched_min_granularity);
 577	WRT_SYSCTL(sched_latency);
 578	WRT_SYSCTL(sched_wakeup_granularity);
 579#undef WRT_SYSCTL
 580
 581	return 0;
 582}
 583#endif
 584
 585/*
 586 * delta /= w
 587 */
 588static inline unsigned long
 589calc_delta_fair(unsigned long delta, struct sched_entity *se)
 590{
 591	if (unlikely(se->load.weight != NICE_0_LOAD))
 592		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
 593
 594	return delta;
 595}
 596
 597/*
 598 * The idea is to set a period in which each task runs once.
 599 *
 600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 601 * this period because otherwise the slices get too small.
 602 *
 603 * p = (nr <= nl) ? l : l*nr/nl
 604 */
 605static u64 __sched_period(unsigned long nr_running)
 606{
 607	u64 period = sysctl_sched_latency;
 608	unsigned long nr_latency = sched_nr_latency;
 609
 610	if (unlikely(nr_running > nr_latency)) {
 611		period = sysctl_sched_min_granularity;
 612		period *= nr_running;
 613	}
 614
 615	return period;
 616}
 617
 618/*
 619 * We calculate the wall-time slice from the period by taking a part
 620 * proportional to the weight.
 621 *
 622 * s = p*P[w/rw]
 623 */
 624static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 625{
 626	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
 627
 628	for_each_sched_entity(se) {
 629		struct load_weight *load;
 630		struct load_weight lw;
 631
 632		cfs_rq = cfs_rq_of(se);
 633		load = &cfs_rq->load;
 634
 635		if (unlikely(!se->on_rq)) {
 636			lw = cfs_rq->load;
 637
 638			update_load_add(&lw, se->load.weight);
 639			load = &lw;
 640		}
 641		slice = calc_delta_mine(slice, se->load.weight, load);
 642	}
 643	return slice;
 644}
 645
 646/*
 647 * We calculate the vruntime slice of a to be inserted task
 648 *
 649 * vs = s/w
 650 */
 651static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 652{
 653	return calc_delta_fair(sched_slice(cfs_rq, se), se);
 654}
 655
 656static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
 657static void update_cfs_shares(struct cfs_rq *cfs_rq);
 658
 659/*
 660 * Update the current task's runtime statistics. Skip current tasks that
 661 * are not in our scheduling class.
 662 */
 663static inline void
 664__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
 665	      unsigned long delta_exec)
 666{
 667	unsigned long delta_exec_weighted;
 668
 669	schedstat_set(curr->statistics.exec_max,
 670		      max((u64)delta_exec, curr->statistics.exec_max));
 671
 672	curr->sum_exec_runtime += delta_exec;
 673	schedstat_add(cfs_rq, exec_clock, delta_exec);
 674	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
 675
 676	curr->vruntime += delta_exec_weighted;
 677	update_min_vruntime(cfs_rq);
 678
 679#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
 680	cfs_rq->load_unacc_exec_time += delta_exec;
 681#endif
 682}
 683
 684static void update_curr(struct cfs_rq *cfs_rq)
 685{
 686	struct sched_entity *curr = cfs_rq->curr;
 687	u64 now = rq_of(cfs_rq)->clock_task;
 688	unsigned long delta_exec;
 689
 690	if (unlikely(!curr))
 691		return;
 692
 693	/*
 694	 * Get the amount of time the current task was running
 695	 * since the last time we changed load (this cannot
 696	 * overflow on 32 bits):
 697	 */
 698	delta_exec = (unsigned long)(now - curr->exec_start);
 699	if (!delta_exec)
 700		return;
 701
 702	__update_curr(cfs_rq, curr, delta_exec);
 703	curr->exec_start = now;
 704
 705	if (entity_is_task(curr)) {
 706		struct task_struct *curtask = task_of(curr);
 707
 708		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
 709		cpuacct_charge(curtask, delta_exec);
 710		account_group_exec_runtime(curtask, delta_exec);
 711	}
 712
 713	account_cfs_rq_runtime(cfs_rq, delta_exec);
 714}
 715
 716static inline void
 717update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 718{
 719	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
 720}
 721
 722/*
 723 * Task is being enqueued - update stats:
 724 */
 725static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 726{
 727	/*
 728	 * Are we enqueueing a waiting task? (for current tasks
 729	 * a dequeue/enqueue event is a NOP)
 730	 */
 731	if (se != cfs_rq->curr)
 732		update_stats_wait_start(cfs_rq, se);
 733}
 734
 735static void
 736update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 737{
 738	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
 739			rq_of(cfs_rq)->clock - se->statistics.wait_start));
 740	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
 741	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
 742			rq_of(cfs_rq)->clock - se->statistics.wait_start);
 743#ifdef CONFIG_SCHEDSTATS
 744	if (entity_is_task(se)) {
 745		trace_sched_stat_wait(task_of(se),
 746			rq_of(cfs_rq)->clock - se->statistics.wait_start);
 747	}
 748#endif
 749	schedstat_set(se->statistics.wait_start, 0);
 750}
 751
 752static inline void
 753update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 754{
 755	/*
 756	 * Mark the end of the wait period if dequeueing a
 757	 * waiting task:
 758	 */
 759	if (se != cfs_rq->curr)
 760		update_stats_wait_end(cfs_rq, se);
 761}
 762
 763/*
 764 * We are picking a new current task - update its stats:
 765 */
 766static inline void
 767update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 768{
 769	/*
 770	 * We are starting a new run period:
 771	 */
 772	se->exec_start = rq_of(cfs_rq)->clock_task;
 773}
 774
 775/**************************************************
 776 * Scheduling class queueing methods:
 777 */
 778
 779static void
 780account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 781{
 782	update_load_add(&cfs_rq->load, se->load.weight);
 783	if (!parent_entity(se))
 784		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
 785#ifdef CONFIG_SMP
 786	if (entity_is_task(se))
 787		list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
 788#endif
 789	cfs_rq->nr_running++;
 790}
 791
 792static void
 793account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 794{
 795	update_load_sub(&cfs_rq->load, se->load.weight);
 796	if (!parent_entity(se))
 797		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
 798	if (entity_is_task(se))
 799		list_del_init(&se->group_node);
 800	cfs_rq->nr_running--;
 801}
 802
 803#ifdef CONFIG_FAIR_GROUP_SCHED
 804/* we need this in update_cfs_load and load-balance functions below */
 805static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
 806# ifdef CONFIG_SMP
 807static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
 808					    int global_update)
 809{
 810	struct task_group *tg = cfs_rq->tg;
 811	long load_avg;
 812
 813	load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
 814	load_avg -= cfs_rq->load_contribution;
 815
 816	if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
 817		atomic_add(load_avg, &tg->load_weight);
 818		cfs_rq->load_contribution += load_avg;
 819	}
 820}
 821
 822static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
 823{
 824	u64 period = sysctl_sched_shares_window;
 825	u64 now, delta;
 826	unsigned long load = cfs_rq->load.weight;
 827
 828	if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
 829		return;
 830
 831	now = rq_of(cfs_rq)->clock_task;
 832	delta = now - cfs_rq->load_stamp;
 833
 834	/* truncate load history at 4 idle periods */
 835	if (cfs_rq->load_stamp > cfs_rq->load_last &&
 836	    now - cfs_rq->load_last > 4 * period) {
 837		cfs_rq->load_period = 0;
 838		cfs_rq->load_avg = 0;
 839		delta = period - 1;
 840	}
 841
 842	cfs_rq->load_stamp = now;
 843	cfs_rq->load_unacc_exec_time = 0;
 844	cfs_rq->load_period += delta;
 845	if (load) {
 846		cfs_rq->load_last = now;
 847		cfs_rq->load_avg += delta * load;
 848	}
 849
 850	/* consider updating load contribution on each fold or truncate */
 851	if (global_update || cfs_rq->load_period > period
 852	    || !cfs_rq->load_period)
 853		update_cfs_rq_load_contribution(cfs_rq, global_update);
 854
 855	while (cfs_rq->load_period > period) {
 856		/*
 857		 * Inline assembly required to prevent the compiler
 858		 * optimising this loop into a divmod call.
 859		 * See __iter_div_u64_rem() for another example of this.
 860		 */
 861		asm("" : "+rm" (cfs_rq->load_period));
 862		cfs_rq->load_period /= 2;
 863		cfs_rq->load_avg /= 2;
 864	}
 865
 866	if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
 867		list_del_leaf_cfs_rq(cfs_rq);
 868}
 869
 870static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
 871{
 872	long tg_weight;
 873
 874	/*
 875	 * Use this CPU's actual weight instead of the last load_contribution
 876	 * to gain a more accurate current total weight. See
 877	 * update_cfs_rq_load_contribution().
 878	 */
 879	tg_weight = atomic_read(&tg->load_weight);
 880	tg_weight -= cfs_rq->load_contribution;
 881	tg_weight += cfs_rq->load.weight;
 882
 883	return tg_weight;
 884}
 885
 886static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
 887{
 888	long tg_weight, load, shares;
 889
 890	tg_weight = calc_tg_weight(tg, cfs_rq);
 891	load = cfs_rq->load.weight;
 892
 893	shares = (tg->shares * load);
 894	if (tg_weight)
 895		shares /= tg_weight;
 896
 897	if (shares < MIN_SHARES)
 898		shares = MIN_SHARES;
 899	if (shares > tg->shares)
 900		shares = tg->shares;
 901
 902	return shares;
 903}
 904
 905static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
 906{
 907	if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
 908		update_cfs_load(cfs_rq, 0);
 909		update_cfs_shares(cfs_rq);
 910	}
 911}
 912# else /* CONFIG_SMP */
 913static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
 914{
 915}
 916
 917static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
 918{
 919	return tg->shares;
 920}
 921
 922static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
 923{
 924}
 925# endif /* CONFIG_SMP */
 926static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
 927			    unsigned long weight)
 928{
 929	if (se->on_rq) {
 930		/* commit outstanding execution time */
 931		if (cfs_rq->curr == se)
 932			update_curr(cfs_rq);
 933		account_entity_dequeue(cfs_rq, se);
 934	}
 935
 936	update_load_set(&se->load, weight);
 937
 938	if (se->on_rq)
 939		account_entity_enqueue(cfs_rq, se);
 940}
 941
 942static void update_cfs_shares(struct cfs_rq *cfs_rq)
 943{
 944	struct task_group *tg;
 945	struct sched_entity *se;
 946	long shares;
 947
 948	tg = cfs_rq->tg;
 949	se = tg->se[cpu_of(rq_of(cfs_rq))];
 950	if (!se || throttled_hierarchy(cfs_rq))
 951		return;
 952#ifndef CONFIG_SMP
 953	if (likely(se->load.weight == tg->shares))
 954		return;
 955#endif
 956	shares = calc_cfs_shares(cfs_rq, tg);
 957
 958	reweight_entity(cfs_rq_of(se), se, shares);
 959}
 960#else /* CONFIG_FAIR_GROUP_SCHED */
 961static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
 962{
 963}
 964
 965static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
 966{
 967}
 968
 969static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
 970{
 971}
 972#endif /* CONFIG_FAIR_GROUP_SCHED */
 973
 974static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 975{
 976#ifdef CONFIG_SCHEDSTATS
 977	struct task_struct *tsk = NULL;
 978
 979	if (entity_is_task(se))
 980		tsk = task_of(se);
 981
 982	if (se->statistics.sleep_start) {
 983		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
 984
 985		if ((s64)delta < 0)
 986			delta = 0;
 987
 988		if (unlikely(delta > se->statistics.sleep_max))
 989			se->statistics.sleep_max = delta;
 990
 991		se->statistics.sleep_start = 0;
 992		se->statistics.sum_sleep_runtime += delta;
 993
 994		if (tsk) {
 995			account_scheduler_latency(tsk, delta >> 10, 1);
 996			trace_sched_stat_sleep(tsk, delta);
 997		}
 998	}
 999	if (se->statistics.block_start) {
1000		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1001
1002		if ((s64)delta < 0)
1003			delta = 0;
1004
1005		if (unlikely(delta > se->statistics.block_max))
1006			se->statistics.block_max = delta;
1007
1008		se->statistics.block_start = 0;
1009		se->statistics.sum_sleep_runtime += delta;
1010
1011		if (tsk) {
1012			if (tsk->in_iowait) {
1013				se->statistics.iowait_sum += delta;
1014				se->statistics.iowait_count++;
1015				trace_sched_stat_iowait(tsk, delta);
1016			}
1017
1018			trace_sched_stat_blocked(tsk, delta);
1019
1020			/*
1021			 * Blocking time is in units of nanosecs, so shift by
1022			 * 20 to get a milliseconds-range estimation of the
1023			 * amount of time that the task spent sleeping:
1024			 */
1025			if (unlikely(prof_on == SLEEP_PROFILING)) {
1026				profile_hits(SLEEP_PROFILING,
1027						(void *)get_wchan(tsk),
1028						delta >> 20);
1029			}
1030			account_scheduler_latency(tsk, delta >> 10, 0);
1031		}
1032	}
1033#endif
1034}
1035
1036static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1037{
1038#ifdef CONFIG_SCHED_DEBUG
1039	s64 d = se->vruntime - cfs_rq->min_vruntime;
1040
1041	if (d < 0)
1042		d = -d;
1043
1044	if (d > 3*sysctl_sched_latency)
1045		schedstat_inc(cfs_rq, nr_spread_over);
1046#endif
1047}
1048
1049static void
1050place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1051{
1052	u64 vruntime = cfs_rq->min_vruntime;
1053
1054	/*
1055	 * The 'current' period is already promised to the current tasks,
1056	 * however the extra weight of the new task will slow them down a
1057	 * little, place the new task so that it fits in the slot that
1058	 * stays open at the end.
1059	 */
1060	if (initial && sched_feat(START_DEBIT))
1061		vruntime += sched_vslice(cfs_rq, se);
1062
1063	/* sleeps up to a single latency don't count. */
1064	if (!initial) {
1065		unsigned long thresh = sysctl_sched_latency;
1066
1067		/*
1068		 * Halve their sleep time's effect, to allow
1069		 * for a gentler effect of sleepers:
1070		 */
1071		if (sched_feat(GENTLE_FAIR_SLEEPERS))
1072			thresh >>= 1;
1073
1074		vruntime -= thresh;
1075	}
1076
1077	/* ensure we never gain time by being placed backwards. */
1078	vruntime = max_vruntime(se->vruntime, vruntime);
1079
1080	se->vruntime = vruntime;
1081}
1082
1083static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1084
1085static void
1086enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1087{
1088	/*
1089	 * Update the normalized vruntime before updating min_vruntime
1090	 * through callig update_curr().
1091	 */
1092	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1093		se->vruntime += cfs_rq->min_vruntime;
1094
1095	/*
1096	 * Update run-time statistics of the 'current'.
1097	 */
1098	update_curr(cfs_rq);
1099	update_cfs_load(cfs_rq, 0);
1100	account_entity_enqueue(cfs_rq, se);
1101	update_cfs_shares(cfs_rq);
1102
1103	if (flags & ENQUEUE_WAKEUP) {
1104		place_entity(cfs_rq, se, 0);
1105		enqueue_sleeper(cfs_rq, se);
1106	}
1107
1108	update_stats_enqueue(cfs_rq, se);
1109	check_spread(cfs_rq, se);
1110	if (se != cfs_rq->curr)
1111		__enqueue_entity(cfs_rq, se);
1112	se->on_rq = 1;
1113
1114	if (cfs_rq->nr_running == 1) {
1115		list_add_leaf_cfs_rq(cfs_rq);
1116		check_enqueue_throttle(cfs_rq);
1117	}
1118}
1119
1120static void __clear_buddies_last(struct sched_entity *se)
1121{
1122	for_each_sched_entity(se) {
1123		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1124		if (cfs_rq->last == se)
1125			cfs_rq->last = NULL;
1126		else
1127			break;
1128	}
1129}
1130
1131static void __clear_buddies_next(struct sched_entity *se)
1132{
1133	for_each_sched_entity(se) {
1134		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1135		if (cfs_rq->next == se)
1136			cfs_rq->next = NULL;
1137		else
1138			break;
1139	}
1140}
1141
1142static void __clear_buddies_skip(struct sched_entity *se)
1143{
1144	for_each_sched_entity(se) {
1145		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1146		if (cfs_rq->skip == se)
1147			cfs_rq->skip = NULL;
1148		else
1149			break;
1150	}
1151}
1152
1153static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1154{
1155	if (cfs_rq->last == se)
1156		__clear_buddies_last(se);
1157
1158	if (cfs_rq->next == se)
1159		__clear_buddies_next(se);
1160
1161	if (cfs_rq->skip == se)
1162		__clear_buddies_skip(se);
1163}
1164
1165static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1166
1167static void
1168dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1169{
1170	/*
1171	 * Update run-time statistics of the 'current'.
1172	 */
1173	update_curr(cfs_rq);
1174
1175	update_stats_dequeue(cfs_rq, se);
1176	if (flags & DEQUEUE_SLEEP) {
1177#ifdef CONFIG_SCHEDSTATS
1178		if (entity_is_task(se)) {
1179			struct task_struct *tsk = task_of(se);
1180
1181			if (tsk->state & TASK_INTERRUPTIBLE)
1182				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1183			if (tsk->state & TASK_UNINTERRUPTIBLE)
1184				se->statistics.block_start = rq_of(cfs_rq)->clock;
1185		}
1186#endif
1187	}
1188
1189	clear_buddies(cfs_rq, se);
1190
1191	if (se != cfs_rq->curr)
1192		__dequeue_entity(cfs_rq, se);
1193	se->on_rq = 0;
1194	update_cfs_load(cfs_rq, 0);
1195	account_entity_dequeue(cfs_rq, se);
1196
1197	/*
1198	 * Normalize the entity after updating the min_vruntime because the
1199	 * update can refer to the ->curr item and we need to reflect this
1200	 * movement in our normalized position.
1201	 */
1202	if (!(flags & DEQUEUE_SLEEP))
1203		se->vruntime -= cfs_rq->min_vruntime;
1204
1205	/* return excess runtime on last dequeue */
1206	return_cfs_rq_runtime(cfs_rq);
1207
1208	update_min_vruntime(cfs_rq);
1209	update_cfs_shares(cfs_rq);
1210}
1211
1212/*
1213 * Preempt the current task with a newly woken task if needed:
1214 */
1215static void
1216check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1217{
1218	unsigned long ideal_runtime, delta_exec;
1219	struct sched_entity *se;
1220	s64 delta;
1221
1222	ideal_runtime = sched_slice(cfs_rq, curr);
1223	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1224	if (delta_exec > ideal_runtime) {
1225		resched_task(rq_of(cfs_rq)->curr);
1226		/*
1227		 * The current task ran long enough, ensure it doesn't get
1228		 * re-elected due to buddy favours.
1229		 */
1230		clear_buddies(cfs_rq, curr);
1231		return;
1232	}
1233
1234	/*
1235	 * Ensure that a task that missed wakeup preemption by a
1236	 * narrow margin doesn't have to wait for a full slice.
1237	 * This also mitigates buddy induced latencies under load.
1238	 */
1239	if (delta_exec < sysctl_sched_min_granularity)
1240		return;
1241
1242	se = __pick_first_entity(cfs_rq);
1243	delta = curr->vruntime - se->vruntime;
1244
1245	if (delta < 0)
1246		return;
1247
1248	if (delta > ideal_runtime)
1249		resched_task(rq_of(cfs_rq)->curr);
1250}
1251
1252static void
1253set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1254{
1255	/* 'current' is not kept within the tree. */
1256	if (se->on_rq) {
1257		/*
1258		 * Any task has to be enqueued before it get to execute on
1259		 * a CPU. So account for the time it spent waiting on the
1260		 * runqueue.
1261		 */
1262		update_stats_wait_end(cfs_rq, se);
1263		__dequeue_entity(cfs_rq, se);
1264	}
1265
1266	update_stats_curr_start(cfs_rq, se);
1267	cfs_rq->curr = se;
1268#ifdef CONFIG_SCHEDSTATS
1269	/*
1270	 * Track our maximum slice length, if the CPU's load is at
1271	 * least twice that of our own weight (i.e. dont track it
1272	 * when there are only lesser-weight tasks around):
1273	 */
1274	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1275		se->statistics.slice_max = max(se->statistics.slice_max,
1276			se->sum_exec_runtime - se->prev_sum_exec_runtime);
1277	}
1278#endif
1279	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1280}
1281
1282static int
1283wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1284
1285/*
1286 * Pick the next process, keeping these things in mind, in this order:
1287 * 1) keep things fair between processes/task groups
1288 * 2) pick the "next" process, since someone really wants that to run
1289 * 3) pick the "last" process, for cache locality
1290 * 4) do not run the "skip" process, if something else is available
1291 */
1292static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1293{
1294	struct sched_entity *se = __pick_first_entity(cfs_rq);
1295	struct sched_entity *left = se;
1296
1297	/*
1298	 * Avoid running the skip buddy, if running something else can
1299	 * be done without getting too unfair.
1300	 */
1301	if (cfs_rq->skip == se) {
1302		struct sched_entity *second = __pick_next_entity(se);
1303		if (second && wakeup_preempt_entity(second, left) < 1)
1304			se = second;
1305	}
1306
1307	/*
1308	 * Prefer last buddy, try to return the CPU to a preempted task.
1309	 */
1310	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1311		se = cfs_rq->last;
1312
1313	/*
1314	 * Someone really wants this to run. If it's not unfair, run it.
1315	 */
1316	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1317		se = cfs_rq->next;
1318
1319	clear_buddies(cfs_rq, se);
1320
1321	return se;
1322}
1323
1324static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1325
1326static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1327{
1328	/*
1329	 * If still on the runqueue then deactivate_task()
1330	 * was not called and update_curr() has to be done:
1331	 */
1332	if (prev->on_rq)
1333		update_curr(cfs_rq);
1334
1335	/* throttle cfs_rqs exceeding runtime */
1336	check_cfs_rq_runtime(cfs_rq);
1337
1338	check_spread(cfs_rq, prev);
1339	if (prev->on_rq) {
1340		update_stats_wait_start(cfs_rq, prev);
1341		/* Put 'current' back into the tree. */
1342		__enqueue_entity(cfs_rq, prev);
1343	}
1344	cfs_rq->curr = NULL;
1345}
1346
1347static void
1348entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1349{
1350	/*
1351	 * Update run-time statistics of the 'current'.
1352	 */
1353	update_curr(cfs_rq);
1354
1355	/*
1356	 * Update share accounting for long-running entities.
1357	 */
1358	update_entity_shares_tick(cfs_rq);
1359
1360#ifdef CONFIG_SCHED_HRTICK
1361	/*
1362	 * queued ticks are scheduled to match the slice, so don't bother
1363	 * validating it and just reschedule.
1364	 */
1365	if (queued) {
1366		resched_task(rq_of(cfs_rq)->curr);
1367		return;
1368	}
1369	/*
1370	 * don't let the period tick interfere with the hrtick preemption
1371	 */
1372	if (!sched_feat(DOUBLE_TICK) &&
1373			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1374		return;
1375#endif
1376
1377	if (cfs_rq->nr_running > 1)
1378		check_preempt_tick(cfs_rq, curr);
1379}
1380
1381
1382/**************************************************
1383 * CFS bandwidth control machinery
1384 */
1385
1386#ifdef CONFIG_CFS_BANDWIDTH
1387
1388#ifdef HAVE_JUMP_LABEL
1389static struct static_key __cfs_bandwidth_used;
1390
1391static inline bool cfs_bandwidth_used(void)
1392{
1393	return static_key_false(&__cfs_bandwidth_used);
1394}
1395
1396void account_cfs_bandwidth_used(int enabled, int was_enabled)
1397{
1398	/* only need to count groups transitioning between enabled/!enabled */
1399	if (enabled && !was_enabled)
1400		static_key_slow_inc(&__cfs_bandwidth_used);
1401	else if (!enabled && was_enabled)
1402		static_key_slow_dec(&__cfs_bandwidth_used);
1403}
1404#else /* HAVE_JUMP_LABEL */
1405static bool cfs_bandwidth_used(void)
1406{
1407	return true;
1408}
1409
1410void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1411#endif /* HAVE_JUMP_LABEL */
1412
1413/*
1414 * default period for cfs group bandwidth.
1415 * default: 0.1s, units: nanoseconds
1416 */
1417static inline u64 default_cfs_period(void)
1418{
1419	return 100000000ULL;
1420}
1421
1422static inline u64 sched_cfs_bandwidth_slice(void)
1423{
1424	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1425}
1426
1427/*
1428 * Replenish runtime according to assigned quota and update expiration time.
1429 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1430 * additional synchronization around rq->lock.
1431 *
1432 * requires cfs_b->lock
1433 */
1434void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1435{
1436	u64 now;
1437
1438	if (cfs_b->quota == RUNTIME_INF)
1439		return;
1440
1441	now = sched_clock_cpu(smp_processor_id());
1442	cfs_b->runtime = cfs_b->quota;
1443	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1444}
1445
1446static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1447{
1448	return &tg->cfs_bandwidth;
1449}
1450
1451/* returns 0 on failure to allocate runtime */
1452static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1453{
1454	struct task_group *tg = cfs_rq->tg;
1455	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
1456	u64 amount = 0, min_amount, expires;
1457
1458	/* note: this is a positive sum as runtime_remaining <= 0 */
1459	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1460
1461	raw_spin_lock(&cfs_b->lock);
1462	if (cfs_b->quota == RUNTIME_INF)
1463		amount = min_amount;
1464	else {
1465		/*
1466		 * If the bandwidth pool has become inactive, then at least one
1467		 * period must have elapsed since the last consumption.
1468		 * Refresh the global state and ensure bandwidth timer becomes
1469		 * active.
1470		 */
1471		if (!cfs_b->timer_active) {
1472			__refill_cfs_bandwidth_runtime(cfs_b);
1473			__start_cfs_bandwidth(cfs_b);
1474		}
1475
1476		if (cfs_b->runtime > 0) {
1477			amount = min(cfs_b->runtime, min_amount);
1478			cfs_b->runtime -= amount;
1479			cfs_b->idle = 0;
1480		}
1481	}
1482	expires = cfs_b->runtime_expires;
1483	raw_spin_unlock(&cfs_b->lock);
1484
1485	cfs_rq->runtime_remaining += amount;
1486	/*
1487	 * we may have advanced our local expiration to account for allowed
1488	 * spread between our sched_clock and the one on which runtime was
1489	 * issued.
1490	 */
1491	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1492		cfs_rq->runtime_expires = expires;
1493
1494	return cfs_rq->runtime_remaining > 0;
1495}
1496
1497/*
1498 * Note: This depends on the synchronization provided by sched_clock and the
1499 * fact that rq->clock snapshots this value.
1500 */
1501static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1502{
1503	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1504	struct rq *rq = rq_of(cfs_rq);
1505
1506	/* if the deadline is ahead of our clock, nothing to do */
1507	if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1508		return;
1509
1510	if (cfs_rq->runtime_remaining < 0)
1511		return;
1512
1513	/*
1514	 * If the local deadline has passed we have to consider the
1515	 * possibility that our sched_clock is 'fast' and the global deadline
1516	 * has not truly expired.
1517	 *
1518	 * Fortunately we can check determine whether this the case by checking
1519	 * whether the global deadline has advanced.
1520	 */
1521
1522	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1523		/* extend local deadline, drift is bounded above by 2 ticks */
1524		cfs_rq->runtime_expires += TICK_NSEC;
1525	} else {
1526		/* global deadline is ahead, expiration has passed */
1527		cfs_rq->runtime_remaining = 0;
1528	}
1529}
1530
1531static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1532				     unsigned long delta_exec)
1533{
1534	/* dock delta_exec before expiring quota (as it could span periods) */
1535	cfs_rq->runtime_remaining -= delta_exec;
1536	expire_cfs_rq_runtime(cfs_rq);
1537
1538	if (likely(cfs_rq->runtime_remaining > 0))
1539		return;
1540
1541	/*
1542	 * if we're unable to extend our runtime we resched so that the active
1543	 * hierarchy can be throttled
1544	 */
1545	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1546		resched_task(rq_of(cfs_rq)->curr);
1547}
1548
1549static __always_inline
1550void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
1551{
1552	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1553		return;
1554
1555	__account_cfs_rq_runtime(cfs_rq, delta_exec);
1556}
1557
1558static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1559{
1560	return cfs_bandwidth_used() && cfs_rq->throttled;
1561}
1562
1563/* check whether cfs_rq, or any parent, is throttled */
1564static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1565{
1566	return cfs_bandwidth_used() && cfs_rq->throttle_count;
1567}
1568
1569/*
1570 * Ensure that neither of the group entities corresponding to src_cpu or
1571 * dest_cpu are members of a throttled hierarchy when performing group
1572 * load-balance operations.
1573 */
1574static inline int throttled_lb_pair(struct task_group *tg,
1575				    int src_cpu, int dest_cpu)
1576{
1577	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1578
1579	src_cfs_rq = tg->cfs_rq[src_cpu];
1580	dest_cfs_rq = tg->cfs_rq[dest_cpu];
1581
1582	return throttled_hierarchy(src_cfs_rq) ||
1583	       throttled_hierarchy(dest_cfs_rq);
1584}
1585
1586/* updated child weight may affect parent so we have to do this bottom up */
1587static int tg_unthrottle_up(struct task_group *tg, void *data)
1588{
1589	struct rq *rq = data;
1590	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1591
1592	cfs_rq->throttle_count--;
1593#ifdef CONFIG_SMP
1594	if (!cfs_rq->throttle_count) {
1595		u64 delta = rq->clock_task - cfs_rq->load_stamp;
1596
1597		/* leaving throttled state, advance shares averaging windows */
1598		cfs_rq->load_stamp += delta;
1599		cfs_rq->load_last += delta;
1600
1601		/* update entity weight now that we are on_rq again */
1602		update_cfs_shares(cfs_rq);
1603	}
1604#endif
1605
1606	return 0;
1607}
1608
1609static int tg_throttle_down(struct task_group *tg, void *data)
1610{
1611	struct rq *rq = data;
1612	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1613
1614	/* group is entering throttled state, record last load */
1615	if (!cfs_rq->throttle_count)
1616		update_cfs_load(cfs_rq, 0);
1617	cfs_rq->throttle_count++;
1618
1619	return 0;
1620}
1621
1622static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1623{
1624	struct rq *rq = rq_of(cfs_rq);
1625	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1626	struct sched_entity *se;
1627	long task_delta, dequeue = 1;
1628
1629	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1630
1631	/* account load preceding throttle */
1632	rcu_read_lock();
1633	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1634	rcu_read_unlock();
1635
1636	task_delta = cfs_rq->h_nr_running;
1637	for_each_sched_entity(se) {
1638		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1639		/* throttled entity or throttle-on-deactivate */
1640		if (!se->on_rq)
1641			break;
1642
1643		if (dequeue)
1644			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1645		qcfs_rq->h_nr_running -= task_delta;
1646
1647		if (qcfs_rq->load.weight)
1648			dequeue = 0;
1649	}
1650
1651	if (!se)
1652		rq->nr_running -= task_delta;
1653
1654	cfs_rq->throttled = 1;
1655	cfs_rq->throttled_timestamp = rq->clock;
1656	raw_spin_lock(&cfs_b->lock);
1657	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1658	raw_spin_unlock(&cfs_b->lock);
1659}
1660
1661void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1662{
1663	struct rq *rq = rq_of(cfs_rq);
1664	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1665	struct sched_entity *se;
1666	int enqueue = 1;
1667	long task_delta;
1668
1669	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1670
1671	cfs_rq->throttled = 0;
1672	raw_spin_lock(&cfs_b->lock);
1673	cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1674	list_del_rcu(&cfs_rq->throttled_list);
1675	raw_spin_unlock(&cfs_b->lock);
1676	cfs_rq->throttled_timestamp = 0;
1677
1678	update_rq_clock(rq);
1679	/* update hierarchical throttle state */
1680	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1681
1682	if (!cfs_rq->load.weight)
1683		return;
1684
1685	task_delta = cfs_rq->h_nr_running;
1686	for_each_sched_entity(se) {
1687		if (se->on_rq)
1688			enqueue = 0;
1689
1690		cfs_rq = cfs_rq_of(se);
1691		if (enqueue)
1692			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1693		cfs_rq->h_nr_running += task_delta;
1694
1695		if (cfs_rq_throttled(cfs_rq))
1696			break;
1697	}
1698
1699	if (!se)
1700		rq->nr_running += task_delta;
1701
1702	/* determine whether we need to wake up potentially idle cpu */
1703	if (rq->curr == rq->idle && rq->cfs.nr_running)
1704		resched_task(rq->curr);
1705}
1706
1707static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1708		u64 remaining, u64 expires)
1709{
1710	struct cfs_rq *cfs_rq;
1711	u64 runtime = remaining;
1712
1713	rcu_read_lock();
1714	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1715				throttled_list) {
1716		struct rq *rq = rq_of(cfs_rq);
1717
1718		raw_spin_lock(&rq->lock);
1719		if (!cfs_rq_throttled(cfs_rq))
1720			goto next;
1721
1722		runtime = -cfs_rq->runtime_remaining + 1;
1723		if (runtime > remaining)
1724			runtime = remaining;
1725		remaining -= runtime;
1726
1727		cfs_rq->runtime_remaining += runtime;
1728		cfs_rq->runtime_expires = expires;
1729
1730		/* we check whether we're throttled above */
1731		if (cfs_rq->runtime_remaining > 0)
1732			unthrottle_cfs_rq(cfs_rq);
1733
1734next:
1735		raw_spin_unlock(&rq->lock);
1736
1737		if (!remaining)
1738			break;
1739	}
1740	rcu_read_unlock();
1741
1742	return remaining;
1743}
1744
1745/*
1746 * Responsible for refilling a task_group's bandwidth and unthrottling its
1747 * cfs_rqs as appropriate. If there has been no activity within the last
1748 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1749 * used to track this state.
1750 */
1751static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1752{
1753	u64 runtime, runtime_expires;
1754	int idle = 1, throttled;
1755
1756	raw_spin_lock(&cfs_b->lock);
1757	/* no need to continue the timer with no bandwidth constraint */
1758	if (cfs_b->quota == RUNTIME_INF)
1759		goto out_unlock;
1760
1761	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1762	/* idle depends on !throttled (for the case of a large deficit) */
1763	idle = cfs_b->idle && !throttled;
1764	cfs_b->nr_periods += overrun;
1765
1766	/* if we're going inactive then everything else can be deferred */
1767	if (idle)
1768		goto out_unlock;
1769
1770	__refill_cfs_bandwidth_runtime(cfs_b);
1771
1772	if (!throttled) {
1773		/* mark as potentially idle for the upcoming period */
1774		cfs_b->idle = 1;
1775		goto out_unlock;
1776	}
1777
1778	/* account preceding periods in which throttling occurred */
1779	cfs_b->nr_throttled += overrun;
1780
1781	/*
1782	 * There are throttled entities so we must first use the new bandwidth
1783	 * to unthrottle them before making it generally available.  This
1784	 * ensures that all existing debts will be paid before a new cfs_rq is
1785	 * allowed to run.
1786	 */
1787	runtime = cfs_b->runtime;
1788	runtime_expires = cfs_b->runtime_expires;
1789	cfs_b->runtime = 0;
1790
1791	/*
1792	 * This check is repeated as we are holding onto the new bandwidth
1793	 * while we unthrottle.  This can potentially race with an unthrottled
1794	 * group trying to acquire new bandwidth from the global pool.
1795	 */
1796	while (throttled && runtime > 0) {
1797		raw_spin_unlock(&cfs_b->lock);
1798		/* we can't nest cfs_b->lock while distributing bandwidth */
1799		runtime = distribute_cfs_runtime(cfs_b, runtime,
1800						 runtime_expires);
1801		raw_spin_lock(&cfs_b->lock);
1802
1803		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1804	}
1805
1806	/* return (any) remaining runtime */
1807	cfs_b->runtime = runtime;
1808	/*
1809	 * While we are ensured activity in the period following an
1810	 * unthrottle, this also covers the case in which the new bandwidth is
1811	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
1812	 * timer to remain active while there are any throttled entities.)
1813	 */
1814	cfs_b->idle = 0;
1815out_unlock:
1816	if (idle)
1817		cfs_b->timer_active = 0;
1818	raw_spin_unlock(&cfs_b->lock);
1819
1820	return idle;
1821}
1822
1823/* a cfs_rq won't donate quota below this amount */
1824static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1825/* minimum remaining period time to redistribute slack quota */
1826static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1827/* how long we wait to gather additional slack before distributing */
1828static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1829
1830/* are we near the end of the current quota period? */
1831static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1832{
1833	struct hrtimer *refresh_timer = &cfs_b->period_timer;
1834	u64 remaining;
1835
1836	/* if the call-back is running a quota refresh is already occurring */
1837	if (hrtimer_callback_running(refresh_timer))
1838		return 1;
1839
1840	/* is a quota refresh about to occur? */
1841	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1842	if (remaining < min_expire)
1843		return 1;
1844
1845	return 0;
1846}
1847
1848static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1849{
1850	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1851
1852	/* if there's a quota refresh soon don't bother with slack */
1853	if (runtime_refresh_within(cfs_b, min_left))
1854		return;
1855
1856	start_bandwidth_timer(&cfs_b->slack_timer,
1857				ns_to_ktime(cfs_bandwidth_slack_period));
1858}
1859
1860/* we know any runtime found here is valid as update_curr() precedes return */
1861static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1862{
1863	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1864	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1865
1866	if (slack_runtime <= 0)
1867		return;
1868
1869	raw_spin_lock(&cfs_b->lock);
1870	if (cfs_b->quota != RUNTIME_INF &&
1871	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1872		cfs_b->runtime += slack_runtime;
1873
1874		/* we are under rq->lock, defer unthrottling using a timer */
1875		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1876		    !list_empty(&cfs_b->throttled_cfs_rq))
1877			start_cfs_slack_bandwidth(cfs_b);
1878	}
1879	raw_spin_unlock(&cfs_b->lock);
1880
1881	/* even if it's not valid for return we don't want to try again */
1882	cfs_rq->runtime_remaining -= slack_runtime;
1883}
1884
1885static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1886{
1887	if (!cfs_bandwidth_used())
1888		return;
1889
1890	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
1891		return;
1892
1893	__return_cfs_rq_runtime(cfs_rq);
1894}
1895
1896/*
1897 * This is done with a timer (instead of inline with bandwidth return) since
1898 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1899 */
1900static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1901{
1902	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1903	u64 expires;
1904
1905	/* confirm we're still not at a refresh boundary */
1906	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1907		return;
1908
1909	raw_spin_lock(&cfs_b->lock);
1910	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1911		runtime = cfs_b->runtime;
1912		cfs_b->runtime = 0;
1913	}
1914	expires = cfs_b->runtime_expires;
1915	raw_spin_unlock(&cfs_b->lock);
1916
1917	if (!runtime)
1918		return;
1919
1920	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1921
1922	raw_spin_lock(&cfs_b->lock);
1923	if (expires == cfs_b->runtime_expires)
1924		cfs_b->runtime = runtime;
1925	raw_spin_unlock(&cfs_b->lock);
1926}
1927
1928/*
1929 * When a group wakes up we want to make sure that its quota is not already
1930 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1931 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1932 */
1933static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1934{
1935	if (!cfs_bandwidth_used())
1936		return;
1937
1938	/* an active group must be handled by the update_curr()->put() path */
1939	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1940		return;
1941
1942	/* ensure the group is not already throttled */
1943	if (cfs_rq_throttled(cfs_rq))
1944		return;
1945
1946	/* update runtime allocation */
1947	account_cfs_rq_runtime(cfs_rq, 0);
1948	if (cfs_rq->runtime_remaining <= 0)
1949		throttle_cfs_rq(cfs_rq);
1950}
1951
1952/* conditionally throttle active cfs_rq's from put_prev_entity() */
1953static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1954{
1955	if (!cfs_bandwidth_used())
1956		return;
1957
1958	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1959		return;
1960
1961	/*
1962	 * it's possible for a throttled entity to be forced into a running
1963	 * state (e.g. set_curr_task), in this case we're finished.
1964	 */
1965	if (cfs_rq_throttled(cfs_rq))
1966		return;
1967
1968	throttle_cfs_rq(cfs_rq);
1969}
1970
1971static inline u64 default_cfs_period(void);
1972static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1973static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1974
1975static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1976{
1977	struct cfs_bandwidth *cfs_b =
1978		container_of(timer, struct cfs_bandwidth, slack_timer);
1979	do_sched_cfs_slack_timer(cfs_b);
1980
1981	return HRTIMER_NORESTART;
1982}
1983
1984static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
1985{
1986	struct cfs_bandwidth *cfs_b =
1987		container_of(timer, struct cfs_bandwidth, period_timer);
1988	ktime_t now;
1989	int overrun;
1990	int idle = 0;
1991
1992	for (;;) {
1993		now = hrtimer_cb_get_time(timer);
1994		overrun = hrtimer_forward(timer, now, cfs_b->period);
1995
1996		if (!overrun)
1997			break;
1998
1999		idle = do_sched_cfs_period_timer(cfs_b, overrun);
2000	}
2001
2002	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2003}
2004
2005void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2006{
2007	raw_spin_lock_init(&cfs_b->lock);
2008	cfs_b->runtime = 0;
2009	cfs_b->quota = RUNTIME_INF;
2010	cfs_b->period = ns_to_ktime(default_cfs_period());
2011
2012	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2013	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2014	cfs_b->period_timer.function = sched_cfs_period_timer;
2015	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2016	cfs_b->slack_timer.function = sched_cfs_slack_timer;
2017}
2018
2019static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2020{
2021	cfs_rq->runtime_enabled = 0;
2022	INIT_LIST_HEAD(&cfs_rq->throttled_list);
2023}
2024
2025/* requires cfs_b->lock, may release to reprogram timer */
2026void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2027{
2028	/*
2029	 * The timer may be active because we're trying to set a new bandwidth
2030	 * period or because we're racing with the tear-down path
2031	 * (timer_active==0 becomes visible before the hrtimer call-back
2032	 * terminates).  In either case we ensure that it's re-programmed
2033	 */
2034	while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2035		raw_spin_unlock(&cfs_b->lock);
2036		/* ensure cfs_b->lock is available while we wait */
2037		hrtimer_cancel(&cfs_b->period_timer);
2038
2039		raw_spin_lock(&cfs_b->lock);
2040		/* if someone else restarted the timer then we're done */
2041		if (cfs_b->timer_active)
2042			return;
2043	}
2044
2045	cfs_b->timer_active = 1;
2046	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2047}
2048
2049static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2050{
2051	hrtimer_cancel(&cfs_b->period_timer);
2052	hrtimer_cancel(&cfs_b->slack_timer);
2053}
2054
2055void unthrottle_offline_cfs_rqs(struct rq *rq)
2056{
2057	struct cfs_rq *cfs_rq;
2058
2059	for_each_leaf_cfs_rq(rq, cfs_rq) {
2060		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2061
2062		if (!cfs_rq->runtime_enabled)
2063			continue;
2064
2065		/*
2066		 * clock_task is not advancing so we just need to make sure
2067		 * there's some valid quota amount
2068		 */
2069		cfs_rq->runtime_remaining = cfs_b->quota;
2070		if (cfs_rq_throttled(cfs_rq))
2071			unthrottle_cfs_rq(cfs_rq);
2072	}
2073}
2074
2075#else /* CONFIG_CFS_BANDWIDTH */
2076static __always_inline
2077void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
2078static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2079static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2080static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2081
2082static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2083{
2084	return 0;
2085}
2086
2087static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2088{
2089	return 0;
2090}
2091
2092static inline int throttled_lb_pair(struct task_group *tg,
2093				    int src_cpu, int dest_cpu)
2094{
2095	return 0;
2096}
2097
2098void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2099
2100#ifdef CONFIG_FAIR_GROUP_SCHED
2101static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2102#endif
2103
2104static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2105{
2106	return NULL;
2107}
2108static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2109void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2110
2111#endif /* CONFIG_CFS_BANDWIDTH */
2112
2113/**************************************************
2114 * CFS operations on tasks:
2115 */
2116
2117#ifdef CONFIG_SCHED_HRTICK
2118static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2119{
2120	struct sched_entity *se = &p->se;
2121	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2122
2123	WARN_ON(task_rq(p) != rq);
2124
2125	if (cfs_rq->nr_running > 1) {
2126		u64 slice = sched_slice(cfs_rq, se);
2127		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2128		s64 delta = slice - ran;
2129
2130		if (delta < 0) {
2131			if (rq->curr == p)
2132				resched_task(p);
2133			return;
2134		}
2135
2136		/*
2137		 * Don't schedule slices shorter than 10000ns, that just
2138		 * doesn't make sense. Rely on vruntime for fairness.
2139		 */
2140		if (rq->curr != p)
2141			delta = max_t(s64, 10000LL, delta);
2142
2143		hrtick_start(rq, delta);
2144	}
2145}
2146
2147/*
2148 * called from enqueue/dequeue and updates the hrtick when the
2149 * current task is from our class and nr_running is low enough
2150 * to matter.
2151 */
2152static void hrtick_update(struct rq *rq)
2153{
2154	struct task_struct *curr = rq->curr;
2155
2156	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2157		return;
2158
2159	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2160		hrtick_start_fair(rq, curr);
2161}
2162#else /* !CONFIG_SCHED_HRTICK */
2163static inline void
2164hrtick_start_fair(struct rq *rq, struct task_struct *p)
2165{
2166}
2167
2168static inline void hrtick_update(struct rq *rq)
2169{
2170}
2171#endif
2172
2173/*
2174 * The enqueue_task method is called before nr_running is
2175 * increased. Here we update the fair scheduling stats and
2176 * then put the task into the rbtree:
2177 */
2178static void
2179enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2180{
2181	struct cfs_rq *cfs_rq;
2182	struct sched_entity *se = &p->se;
2183
2184	for_each_sched_entity(se) {
2185		if (se->on_rq)
2186			break;
2187		cfs_rq = cfs_rq_of(se);
2188		enqueue_entity(cfs_rq, se, flags);
2189
2190		/*
2191		 * end evaluation on encountering a throttled cfs_rq
2192		 *
2193		 * note: in the case of encountering a throttled cfs_rq we will
2194		 * post the final h_nr_running increment below.
2195		*/
2196		if (cfs_rq_throttled(cfs_rq))
2197			break;
2198		cfs_rq->h_nr_running++;
2199
2200		flags = ENQUEUE_WAKEUP;
2201	}
2202
2203	for_each_sched_entity(se) {
2204		cfs_rq = cfs_rq_of(se);
2205		cfs_rq->h_nr_running++;
2206
2207		if (cfs_rq_throttled(cfs_rq))
2208			break;
2209
2210		update_cfs_load(cfs_rq, 0);
2211		update_cfs_shares(cfs_rq);
2212	}
2213
2214	if (!se)
2215		inc_nr_running(rq);
2216	hrtick_update(rq);
2217}
2218
2219static void set_next_buddy(struct sched_entity *se);
2220
2221/*
2222 * The dequeue_task method is called before nr_running is
2223 * decreased. We remove the task from the rbtree and
2224 * update the fair scheduling stats:
2225 */
2226static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2227{
2228	struct cfs_rq *cfs_rq;
2229	struct sched_entity *se = &p->se;
2230	int task_sleep = flags & DEQUEUE_SLEEP;
2231
2232	for_each_sched_entity(se) {
2233		cfs_rq = cfs_rq_of(se);
2234		dequeue_entity(cfs_rq, se, flags);
2235
2236		/*
2237		 * end evaluation on encountering a throttled cfs_rq
2238		 *
2239		 * note: in the case of encountering a throttled cfs_rq we will
2240		 * post the final h_nr_running decrement below.
2241		*/
2242		if (cfs_rq_throttled(cfs_rq))
2243			break;
2244		cfs_rq->h_nr_running--;
2245
2246		/* Don't dequeue parent if it has other entities besides us */
2247		if (cfs_rq->load.weight) {
2248			/*
2249			 * Bias pick_next to pick a task from this cfs_rq, as
2250			 * p is sleeping when it is within its sched_slice.
2251			 */
2252			if (task_sleep && parent_entity(se))
2253				set_next_buddy(parent_entity(se));
2254
2255			/* avoid re-evaluating load for this entity */
2256			se = parent_entity(se);
2257			break;
2258		}
2259		flags |= DEQUEUE_SLEEP;
2260	}
2261
2262	for_each_sched_entity(se) {
2263		cfs_rq = cfs_rq_of(se);
2264		cfs_rq->h_nr_running--;
2265
2266		if (cfs_rq_throttled(cfs_rq))
2267			break;
2268
2269		update_cfs_load(cfs_rq, 0);
2270		update_cfs_shares(cfs_rq);
2271	}
2272
2273	if (!se)
2274		dec_nr_running(rq);
2275	hrtick_update(rq);
2276}
2277
2278#ifdef CONFIG_SMP
2279/* Used instead of source_load when we know the type == 0 */
2280static unsigned long weighted_cpuload(const int cpu)
2281{
2282	return cpu_rq(cpu)->load.weight;
2283}
2284
2285/*
2286 * Return a low guess at the load of a migration-source cpu weighted
2287 * according to the scheduling class and "nice" value.
2288 *
2289 * We want to under-estimate the load of migration sources, to
2290 * balance conservatively.
2291 */
2292static unsigned long source_load(int cpu, int type)
2293{
2294	struct rq *rq = cpu_rq(cpu);
2295	unsigned long total = weighted_cpuload(cpu);
2296
2297	if (type == 0 || !sched_feat(LB_BIAS))
2298		return total;
2299
2300	return min(rq->cpu_load[type-1], total);
2301}
2302
2303/*
2304 * Return a high guess at the load of a migration-target cpu weighted
2305 * according to the scheduling class and "nice" value.
2306 */
2307static unsigned long target_load(int cpu, int type)
2308{
2309	struct rq *rq = cpu_rq(cpu);
2310	unsigned long total = weighted_cpuload(cpu);
2311
2312	if (type == 0 || !sched_feat(LB_BIAS))
2313		return total;
2314
2315	return max(rq->cpu_load[type-1], total);
2316}
2317
2318static unsigned long power_of(int cpu)
2319{
2320	return cpu_rq(cpu)->cpu_power;
2321}
2322
2323static unsigned long cpu_avg_load_per_task(int cpu)
2324{
2325	struct rq *rq = cpu_rq(cpu);
2326	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2327
2328	if (nr_running)
2329		return rq->load.weight / nr_running;
2330
2331	return 0;
2332}
2333
2334
2335static void task_waking_fair(struct task_struct *p)
2336{
2337	struct sched_entity *se = &p->se;
2338	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2339	u64 min_vruntime;
2340
2341#ifndef CONFIG_64BIT
2342	u64 min_vruntime_copy;
2343
2344	do {
2345		min_vruntime_copy = cfs_rq->min_vruntime_copy;
2346		smp_rmb();
2347		min_vruntime = cfs_rq->min_vruntime;
2348	} while (min_vruntime != min_vruntime_copy);
2349#else
2350	min_vruntime = cfs_rq->min_vruntime;
2351#endif
2352
2353	se->vruntime -= min_vruntime;
2354}
2355
2356#ifdef CONFIG_FAIR_GROUP_SCHED
2357/*
2358 * effective_load() calculates the load change as seen from the root_task_group
2359 *
2360 * Adding load to a group doesn't make a group heavier, but can cause movement
2361 * of group shares between cpus. Assuming the shares were perfectly aligned one
2362 * can calculate the shift in shares.
2363 *
2364 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2365 * on this @cpu and results in a total addition (subtraction) of @wg to the
2366 * total group weight.
2367 *
2368 * Given a runqueue weight distribution (rw_i) we can compute a shares
2369 * distribution (s_i) using:
2370 *
2371 *   s_i = rw_i / \Sum rw_j						(1)
2372 *
2373 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2374 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2375 * shares distribution (s_i):
2376 *
2377 *   rw_i = {   2,   4,   1,   0 }
2378 *   s_i  = { 2/7, 4/7, 1/7,   0 }
2379 *
2380 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2381 * task used to run on and the CPU the waker is running on), we need to
2382 * compute the effect of waking a task on either CPU and, in case of a sync
2383 * wakeup, compute the effect of the current task going to sleep.
2384 *
2385 * So for a change of @wl to the local @cpu with an overall group weight change
2386 * of @wl we can compute the new shares distribution (s'_i) using:
2387 *
2388 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
2389 *
2390 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2391 * differences in waking a task to CPU 0. The additional task changes the
2392 * weight and shares distributions like:
2393 *
2394 *   rw'_i = {   3,   4,   1,   0 }
2395 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
2396 *
2397 * We can then compute the difference in effective weight by using:
2398 *
2399 *   dw_i = S * (s'_i - s_i)						(3)
2400 *
2401 * Where 'S' is the group weight as seen by its parent.
2402 *
2403 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2404 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2405 * 4/7) times the weight of the group.
2406 */
2407static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2408{
2409	struct sched_entity *se = tg->se[cpu];
2410
2411	if (!tg->parent)	/* the trivial, non-cgroup case */
2412		return wl;
2413
2414	for_each_sched_entity(se) {
2415		long w, W;
2416
2417		tg = se->my_q->tg;
2418
2419		/*
2420		 * W = @wg + \Sum rw_j
2421		 */
2422		W = wg + calc_tg_weight(tg, se->my_q);
2423
2424		/*
2425		 * w = rw_i + @wl
2426		 */
2427		w = se->my_q->load.weight + wl;
2428
2429		/*
2430		 * wl = S * s'_i; see (2)
2431		 */
2432		if (W > 0 && w < W)
2433			wl = (w * tg->shares) / W;
2434		else
2435			wl = tg->shares;
2436
2437		/*
2438		 * Per the above, wl is the new se->load.weight value; since
2439		 * those are clipped to [MIN_SHARES, ...) do so now. See
2440		 * calc_cfs_shares().
2441		 */
2442		if (wl < MIN_SHARES)
2443			wl = MIN_SHARES;
2444
2445		/*
2446		 * wl = dw_i = S * (s'_i - s_i); see (3)
2447		 */
2448		wl -= se->load.weight;
2449
2450		/*
2451		 * Recursively apply this logic to all parent groups to compute
2452		 * the final effective load change on the root group. Since
2453		 * only the @tg group gets extra weight, all parent groups can
2454		 * only redistribute existing shares. @wl is the shift in shares
2455		 * resulting from this level per the above.
2456		 */
2457		wg = 0;
2458	}
2459
2460	return wl;
2461}
2462#else
2463
2464static inline unsigned long effective_load(struct task_group *tg, int cpu,
2465		unsigned long wl, unsigned long wg)
2466{
2467	return wl;
2468}
2469
2470#endif
2471
2472static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2473{
2474	s64 this_load, load;
2475	int idx, this_cpu, prev_cpu;
2476	unsigned long tl_per_task;
2477	struct task_group *tg;
2478	unsigned long weight;
2479	int balanced;
2480
2481	idx	  = sd->wake_idx;
2482	this_cpu  = smp_processor_id();
2483	prev_cpu  = task_cpu(p);
2484	load	  = source_load(prev_cpu, idx);
2485	this_load = target_load(this_cpu, idx);
2486
2487	/*
2488	 * If sync wakeup then subtract the (maximum possible)
2489	 * effect of the currently running task from the load
2490	 * of the current CPU:
2491	 */
2492	if (sync) {
2493		tg = task_group(current);
2494		weight = current->se.load.weight;
2495
2496		this_load += effective_load(tg, this_cpu, -weight, -weight);
2497		load += effective_load(tg, prev_cpu, 0, -weight);
2498	}
2499
2500	tg = task_group(p);
2501	weight = p->se.load.weight;
2502
2503	/*
2504	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2505	 * due to the sync cause above having dropped this_load to 0, we'll
2506	 * always have an imbalance, but there's really nothing you can do
2507	 * about that, so that's good too.
2508	 *
2509	 * Otherwise check if either cpus are near enough in load to allow this
2510	 * task to be woken on this_cpu.
2511	 */
2512	if (this_load > 0) {
2513		s64 this_eff_load, prev_eff_load;
2514
2515		this_eff_load = 100;
2516		this_eff_load *= power_of(prev_cpu);
2517		this_eff_load *= this_load +
2518			effective_load(tg, this_cpu, weight, weight);
2519
2520		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2521		prev_eff_load *= power_of(this_cpu);
2522		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2523
2524		balanced = this_eff_load <= prev_eff_load;
2525	} else
2526		balanced = true;
2527
2528	/*
2529	 * If the currently running task will sleep within
2530	 * a reasonable amount of time then attract this newly
2531	 * woken task:
2532	 */
2533	if (sync && balanced)
2534		return 1;
2535
2536	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2537	tl_per_task = cpu_avg_load_per_task(this_cpu);
2538
2539	if (balanced ||
2540	    (this_load <= load &&
2541	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2542		/*
2543		 * This domain has SD_WAKE_AFFINE and
2544		 * p is cache cold in this domain, and
2545		 * there is no bad imbalance.
2546		 */
2547		schedstat_inc(sd, ttwu_move_affine);
2548		schedstat_inc(p, se.statistics.nr_wakeups_affine);
2549
2550		return 1;
2551	}
2552	return 0;
2553}
2554
2555/*
2556 * find_idlest_group finds and returns the least busy CPU group within the
2557 * domain.
2558 */
2559static struct sched_group *
2560find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2561		  int this_cpu, int load_idx)
2562{
2563	struct sched_group *idlest = NULL, *group = sd->groups;
2564	unsigned long min_load = ULONG_MAX, this_load = 0;
2565	int imbalance = 100 + (sd->imbalance_pct-100)/2;
2566
2567	do {
2568		unsigned long load, avg_load;
2569		int local_group;
2570		int i;
2571
2572		/* Skip over this group if it has no CPUs allowed */
2573		if (!cpumask_intersects(sched_group_cpus(group),
2574					tsk_cpus_allowed(p)))
2575			continue;
2576
2577		local_group = cpumask_test_cpu(this_cpu,
2578					       sched_group_cpus(group));
2579
2580		/* Tally up the load of all CPUs in the group */
2581		avg_load = 0;
2582
2583		for_each_cpu(i, sched_group_cpus(group)) {
2584			/* Bias balancing toward cpus of our domain */
2585			if (local_group)
2586				load = source_load(i, load_idx);
2587			else
2588				load = target_load(i, load_idx);
2589
2590			avg_load += load;
2591		}
2592
2593		/* Adjust by relative CPU power of the group */
2594		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2595
2596		if (local_group) {
2597			this_load = avg_load;
2598		} else if (avg_load < min_load) {
2599			min_load = avg_load;
2600			idlest = group;
2601		}
2602	} while (group = group->next, group != sd->groups);
2603
2604	if (!idlest || 100*this_load < imbalance*min_load)
2605		return NULL;
2606	return idlest;
2607}
2608
2609/*
2610 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2611 */
2612static int
2613find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2614{
2615	unsigned long load, min_load = ULONG_MAX;
2616	int idlest = -1;
2617	int i;
2618
2619	/* Traverse only the allowed CPUs */
2620	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2621		load = weighted_cpuload(i);
2622
2623		if (load < min_load || (load == min_load && i == this_cpu)) {
2624			min_load = load;
2625			idlest = i;
2626		}
2627	}
2628
2629	return idlest;
2630}
2631
2632/*
2633 * Try and locate an idle CPU in the sched_domain.
2634 */
2635static int select_idle_sibling(struct task_struct *p, int target)
2636{
2637	int cpu = smp_processor_id();
2638	int prev_cpu = task_cpu(p);
2639	struct sched_domain *sd;
2640	struct sched_group *sg;
2641	int i;
2642
2643	/*
2644	 * If the task is going to be woken-up on this cpu and if it is
2645	 * already idle, then it is the right target.
2646	 */
2647	if (target == cpu && idle_cpu(cpu))
2648		return cpu;
2649
2650	/*
2651	 * If the task is going to be woken-up on the cpu where it previously
2652	 * ran and if it is currently idle, then it the right target.
2653	 */
2654	if (target == prev_cpu && idle_cpu(prev_cpu))
2655		return prev_cpu;
2656
2657	/*
2658	 * Otherwise, iterate the domains and find an elegible idle cpu.
2659	 */
2660	sd = rcu_dereference(per_cpu(sd_llc, target));
2661	for_each_lower_domain(sd) {
2662		sg = sd->groups;
2663		do {
2664			if (!cpumask_intersects(sched_group_cpus(sg),
2665						tsk_cpus_allowed(p)))
2666				goto next;
2667
2668			for_each_cpu(i, sched_group_cpus(sg)) {
2669				if (!idle_cpu(i))
2670					goto next;
2671			}
2672
2673			target = cpumask_first_and(sched_group_cpus(sg),
2674					tsk_cpus_allowed(p));
2675			goto done;
2676next:
2677			sg = sg->next;
2678		} while (sg != sd->groups);
2679	}
2680done:
2681	return target;
2682}
2683
2684/*
2685 * sched_balance_self: balance the current task (running on cpu) in domains
2686 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2687 * SD_BALANCE_EXEC.
2688 *
2689 * Balance, ie. select the least loaded group.
2690 *
2691 * Returns the target CPU number, or the same CPU if no balancing is needed.
2692 *
2693 * preempt must be disabled.
2694 */
2695static int
2696select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2697{
2698	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2699	int cpu = smp_processor_id();
2700	int prev_cpu = task_cpu(p);
2701	int new_cpu = cpu;
2702	int want_affine = 0;
2703	int want_sd = 1;
2704	int sync = wake_flags & WF_SYNC;
2705
2706	if (p->nr_cpus_allowed == 1)
2707		return prev_cpu;
2708
2709	if (sd_flag & SD_BALANCE_WAKE) {
2710		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2711			want_affine = 1;
2712		new_cpu = prev_cpu;
2713	}
2714
2715	rcu_read_lock();
2716	for_each_domain(cpu, tmp) {
2717		if (!(tmp->flags & SD_LOAD_BALANCE))
2718			continue;
2719
2720		/*
2721		 * If power savings logic is enabled for a domain, see if we
2722		 * are not overloaded, if so, don't balance wider.
2723		 */
2724		if (tmp->flags & (SD_PREFER_LOCAL)) {
2725			unsigned long power = 0;
2726			unsigned long nr_running = 0;
2727			unsigned long capacity;
2728			int i;
2729
2730			for_each_cpu(i, sched_domain_span(tmp)) {
2731				power += power_of(i);
2732				nr_running += cpu_rq(i)->cfs.nr_running;
2733			}
2734
2735			capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
2736
2737			if (nr_running < capacity)
2738				want_sd = 0;
2739		}
2740
2741		/*
2742		 * If both cpu and prev_cpu are part of this domain,
2743		 * cpu is a valid SD_WAKE_AFFINE target.
2744		 */
2745		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2746		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2747			affine_sd = tmp;
2748			want_affine = 0;
2749		}
2750
2751		if (!want_sd && !want_affine)
2752			break;
2753
2754		if (!(tmp->flags & sd_flag))
2755			continue;
2756
2757		if (want_sd)
2758			sd = tmp;
2759	}
2760
2761	if (affine_sd) {
2762		if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
2763			prev_cpu = cpu;
2764
2765		new_cpu = select_idle_sibling(p, prev_cpu);
2766		goto unlock;
2767	}
2768
2769	while (sd) {
2770		int load_idx = sd->forkexec_idx;
2771		struct sched_group *group;
2772		int weight;
2773
2774		if (!(sd->flags & sd_flag)) {
2775			sd = sd->child;
2776			continue;
2777		}
2778
2779		if (sd_flag & SD_BALANCE_WAKE)
2780			load_idx = sd->wake_idx;
2781
2782		group = find_idlest_group(sd, p, cpu, load_idx);
2783		if (!group) {
2784			sd = sd->child;
2785			continue;
2786		}
2787
2788		new_cpu = find_idlest_cpu(group, p, cpu);
2789		if (new_cpu == -1 || new_cpu == cpu) {
2790			/* Now try balancing at a lower domain level of cpu */
2791			sd = sd->child;
2792			continue;
2793		}
2794
2795		/* Now try balancing at a lower domain level of new_cpu */
2796		cpu = new_cpu;
2797		weight = sd->span_weight;
2798		sd = NULL;
2799		for_each_domain(cpu, tmp) {
2800			if (weight <= tmp->span_weight)
2801				break;
2802			if (tmp->flags & sd_flag)
2803				sd = tmp;
2804		}
2805		/* while loop will break here if sd == NULL */
2806	}
2807unlock:
2808	rcu_read_unlock();
2809
2810	return new_cpu;
2811}
2812#endif /* CONFIG_SMP */
2813
2814static unsigned long
2815wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2816{
2817	unsigned long gran = sysctl_sched_wakeup_granularity;
2818
2819	/*
2820	 * Since its curr running now, convert the gran from real-time
2821	 * to virtual-time in his units.
2822	 *
2823	 * By using 'se' instead of 'curr' we penalize light tasks, so
2824	 * they get preempted easier. That is, if 'se' < 'curr' then
2825	 * the resulting gran will be larger, therefore penalizing the
2826	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2827	 * be smaller, again penalizing the lighter task.
2828	 *
2829	 * This is especially important for buddies when the leftmost
2830	 * task is higher priority than the buddy.
2831	 */
2832	return calc_delta_fair(gran, se);
2833}
2834
2835/*
2836 * Should 'se' preempt 'curr'.
2837 *
2838 *             |s1
2839 *        |s2
2840 *   |s3
2841 *         g
2842 *      |<--->|c
2843 *
2844 *  w(c, s1) = -1
2845 *  w(c, s2) =  0
2846 *  w(c, s3) =  1
2847 *
2848 */
2849static int
2850wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2851{
2852	s64 gran, vdiff = curr->vruntime - se->vruntime;
2853
2854	if (vdiff <= 0)
2855		return -1;
2856
2857	gran = wakeup_gran(curr, se);
2858	if (vdiff > gran)
2859		return 1;
2860
2861	return 0;
2862}
2863
2864static void set_last_buddy(struct sched_entity *se)
2865{
2866	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2867		return;
2868
2869	for_each_sched_entity(se)
2870		cfs_rq_of(se)->last = se;
2871}
2872
2873static void set_next_buddy(struct sched_entity *se)
2874{
2875	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2876		return;
2877
2878	for_each_sched_entity(se)
2879		cfs_rq_of(se)->next = se;
2880}
2881
2882static void set_skip_buddy(struct sched_entity *se)
2883{
2884	for_each_sched_entity(se)
2885		cfs_rq_of(se)->skip = se;
2886}
2887
2888/*
2889 * Preempt the current task with a newly woken task if needed:
2890 */
2891static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2892{
2893	struct task_struct *curr = rq->curr;
2894	struct sched_entity *se = &curr->se, *pse = &p->se;
2895	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2896	int scale = cfs_rq->nr_running >= sched_nr_latency;
2897	int next_buddy_marked = 0;
2898
2899	if (unlikely(se == pse))
2900		return;
2901
2902	/*
2903	 * This is possible from callers such as move_task(), in which we
2904	 * unconditionally check_prempt_curr() after an enqueue (which may have
2905	 * lead to a throttle).  This both saves work and prevents false
2906	 * next-buddy nomination below.
2907	 */
2908	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2909		return;
2910
2911	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
2912		set_next_buddy(pse);
2913		next_buddy_marked = 1;
2914	}
2915
2916	/*
2917	 * We can come here with TIF_NEED_RESCHED already set from new task
2918	 * wake up path.
2919	 *
2920	 * Note: this also catches the edge-case of curr being in a throttled
2921	 * group (e.g. via set_curr_task), since update_curr() (in the
2922	 * enqueue of curr) will have resulted in resched being set.  This
2923	 * prevents us from potentially nominating it as a false LAST_BUDDY
2924	 * below.
2925	 */
2926	if (test_tsk_need_resched(curr))
2927		return;
2928
2929	/* Idle tasks are by definition preempted by non-idle tasks. */
2930	if (unlikely(curr->policy == SCHED_IDLE) &&
2931	    likely(p->policy != SCHED_IDLE))
2932		goto preempt;
2933
2934	/*
2935	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2936	 * is driven by the tick):
2937	 */
2938	if (unlikely(p->policy != SCHED_NORMAL))
2939		return;
2940
2941	find_matching_se(&se, &pse);
2942	update_curr(cfs_rq_of(se));
2943	BUG_ON(!pse);
2944	if (wakeup_preempt_entity(se, pse) == 1) {
2945		/*
2946		 * Bias pick_next to pick the sched entity that is
2947		 * triggering this preemption.
2948		 */
2949		if (!next_buddy_marked)
2950			set_next_buddy(pse);
2951		goto preempt;
2952	}
2953
2954	return;
2955
2956preempt:
2957	resched_task(curr);
2958	/*
2959	 * Only set the backward buddy when the current task is still
2960	 * on the rq. This can happen when a wakeup gets interleaved
2961	 * with schedule on the ->pre_schedule() or idle_balance()
2962	 * point, either of which can * drop the rq lock.
2963	 *
2964	 * Also, during early boot the idle thread is in the fair class,
2965	 * for obvious reasons its a bad idea to schedule back to it.
2966	 */
2967	if (unlikely(!se->on_rq || curr == rq->idle))
2968		return;
2969
2970	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2971		set_last_buddy(se);
2972}
2973
2974static struct task_struct *pick_next_task_fair(struct rq *rq)
2975{
2976	struct task_struct *p;
2977	struct cfs_rq *cfs_rq = &rq->cfs;
2978	struct sched_entity *se;
2979
2980	if (!cfs_rq->nr_running)
2981		return NULL;
2982
2983	do {
2984		se = pick_next_entity(cfs_rq);
2985		set_next_entity(cfs_rq, se);
2986		cfs_rq = group_cfs_rq(se);
2987	} while (cfs_rq);
2988
2989	p = task_of(se);
2990	if (hrtick_enabled(rq))
2991		hrtick_start_fair(rq, p);
2992
2993	return p;
2994}
2995
2996/*
2997 * Account for a descheduled task:
2998 */
2999static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3000{
3001	struct sched_entity *se = &prev->se;
3002	struct cfs_rq *cfs_rq;
3003
3004	for_each_sched_entity(se) {
3005		cfs_rq = cfs_rq_of(se);
3006		put_prev_entity(cfs_rq, se);
3007	}
3008}
3009
3010/*
3011 * sched_yield() is very simple
3012 *
3013 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3014 */
3015static void yield_task_fair(struct rq *rq)
3016{
3017	struct task_struct *curr = rq->curr;
3018	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3019	struct sched_entity *se = &curr->se;
3020
3021	/*
3022	 * Are we the only task in the tree?
3023	 */
3024	if (unlikely(rq->nr_running == 1))
3025		return;
3026
3027	clear_buddies(cfs_rq, se);
3028
3029	if (curr->policy != SCHED_BATCH) {
3030		update_rq_clock(rq);
3031		/*
3032		 * Update run-time statistics of the 'current'.
3033		 */
3034		update_curr(cfs_rq);
3035		/*
3036		 * Tell update_rq_clock() that we've just updated,
3037		 * so we don't do microscopic update in schedule()
3038		 * and double the fastpath cost.
3039		 */
3040		 rq->skip_clock_update = 1;
3041	}
3042
3043	set_skip_buddy(se);
3044}
3045
3046static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3047{
3048	struct sched_entity *se = &p->se;
3049
3050	/* throttled hierarchies are not runnable */
3051	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3052		return false;
3053
3054	/* Tell the scheduler that we'd really like pse to run next. */
3055	set_next_buddy(se);
3056
3057	yield_task_fair(rq);
3058
3059	return true;
3060}
3061
3062#ifdef CONFIG_SMP
3063/**************************************************
3064 * Fair scheduling class load-balancing methods:
3065 */
3066
3067static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3068
3069#define LBF_ALL_PINNED	0x01
3070#define LBF_NEED_BREAK	0x02
3071
3072struct lb_env {
3073	struct sched_domain	*sd;
3074
3075	int			src_cpu;
3076	struct rq		*src_rq;
3077
3078	int			dst_cpu;
3079	struct rq		*dst_rq;
3080
3081	enum cpu_idle_type	idle;
3082	long			imbalance;
3083	unsigned int		flags;
3084
3085	unsigned int		loop;
3086	unsigned int		loop_break;
3087	unsigned int		loop_max;
3088};
3089
3090/*
3091 * move_task - move a task from one runqueue to another runqueue.
3092 * Both runqueues must be locked.
3093 */
3094static void move_task(struct task_struct *p, struct lb_env *env)
3095{
3096	deactivate_task(env->src_rq, p, 0);
3097	set_task_cpu(p, env->dst_cpu);
3098	activate_task(env->dst_rq, p, 0);
3099	check_preempt_curr(env->dst_rq, p, 0);
3100}
3101
3102/*
3103 * Is this task likely cache-hot:
3104 */
3105static int
3106task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3107{
3108	s64 delta;
3109
3110	if (p->sched_class != &fair_sched_class)
3111		return 0;
3112
3113	if (unlikely(p->policy == SCHED_IDLE))
3114		return 0;
3115
3116	/*
3117	 * Buddy candidates are cache hot:
3118	 */
3119	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3120			(&p->se == cfs_rq_of(&p->se)->next ||
3121			 &p->se == cfs_rq_of(&p->se)->last))
3122		return 1;
3123
3124	if (sysctl_sched_migration_cost == -1)
3125		return 1;
3126	if (sysctl_sched_migration_cost == 0)
3127		return 0;
3128
3129	delta = now - p->se.exec_start;
3130
3131	return delta < (s64)sysctl_sched_migration_cost;
3132}
3133
3134/*
3135 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3136 */
3137static
3138int can_migrate_task(struct task_struct *p, struct lb_env *env)
3139{
3140	int tsk_cache_hot = 0;
3141	/*
3142	 * We do not migrate tasks that are:
3143	 * 1) running (obviously), or
3144	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3145	 * 3) are cache-hot on their current CPU.
3146	 */
3147	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3148		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3149		return 0;
3150	}
3151	env->flags &= ~LBF_ALL_PINNED;
3152
3153	if (task_running(env->src_rq, p)) {
3154		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3155		return 0;
3156	}
3157
3158	/*
3159	 * Aggressive migration if:
3160	 * 1) task is cache cold, or
3161	 * 2) too many balance attempts have failed.
3162	 */
3163
3164	tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3165	if (!tsk_cache_hot ||
3166		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3167#ifdef CONFIG_SCHEDSTATS
3168		if (tsk_cache_hot) {
3169			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3170			schedstat_inc(p, se.statistics.nr_forced_migrations);
3171		}
3172#endif
3173		return 1;
3174	}
3175
3176	if (tsk_cache_hot) {
3177		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3178		return 0;
3179	}
3180	return 1;
3181}
3182
3183/*
3184 * move_one_task tries to move exactly one task from busiest to this_rq, as
3185 * part of active balancing operations within "domain".
3186 * Returns 1 if successful and 0 otherwise.
3187 *
3188 * Called with both runqueues locked.
3189 */
3190static int move_one_task(struct lb_env *env)
3191{
3192	struct task_struct *p, *n;
3193
3194	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3195		if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3196			continue;
3197
3198		if (!can_migrate_task(p, env))
3199			continue;
3200
3201		move_task(p, env);
3202		/*
3203		 * Right now, this is only the second place move_task()
3204		 * is called, so we can safely collect move_task()
3205		 * stats here rather than inside move_task().
3206		 */
3207		schedstat_inc(env->sd, lb_gained[env->idle]);
3208		return 1;
3209	}
3210	return 0;
3211}
3212
3213static unsigned long task_h_load(struct task_struct *p);
3214
3215static const unsigned int sched_nr_migrate_break = 32;
3216
3217/*
3218 * move_tasks tries to move up to imbalance weighted load from busiest to
3219 * this_rq, as part of a balancing operation within domain "sd".
3220 * Returns 1 if successful and 0 otherwise.
3221 *
3222 * Called with both runqueues locked.
3223 */
3224static int move_tasks(struct lb_env *env)
3225{
3226	struct list_head *tasks = &env->src_rq->cfs_tasks;
3227	struct task_struct *p;
3228	unsigned long load;
3229	int pulled = 0;
3230
3231	if (env->imbalance <= 0)
3232		return 0;
3233
3234	while (!list_empty(tasks)) {
3235		p = list_first_entry(tasks, struct task_struct, se.group_node);
3236
3237		env->loop++;
3238		/* We've more or less seen every task there is, call it quits */
3239		if (env->loop > env->loop_max)
3240			break;
3241
3242		/* take a breather every nr_migrate tasks */
3243		if (env->loop > env->loop_break) {
3244			env->loop_break += sched_nr_migrate_break;
3245			env->flags |= LBF_NEED_BREAK;
3246			break;
3247		}
3248
3249		if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3250			goto next;
3251
3252		load = task_h_load(p);
3253
3254		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
3255			goto next;
3256
3257		if ((load / 2) > env->imbalance)
3258			goto next;
3259
3260		if (!can_migrate_task(p, env))
3261			goto next;
3262
3263		move_task(p, env);
3264		pulled++;
3265		env->imbalance -= load;
3266
3267#ifdef CONFIG_PREEMPT
3268		/*
3269		 * NEWIDLE balancing is a source of latency, so preemptible
3270		 * kernels will stop after the first task is pulled to minimize
3271		 * the critical section.
3272		 */
3273		if (env->idle == CPU_NEWLY_IDLE)
3274			break;
3275#endif
3276
3277		/*
3278		 * We only want to steal up to the prescribed amount of
3279		 * weighted load.
3280		 */
3281		if (env->imbalance <= 0)
3282			break;
3283
3284		continue;
3285next:
3286		list_move_tail(&p->se.group_node, tasks);
3287	}
3288
3289	/*
3290	 * Right now, this is one of only two places move_task() is called,
3291	 * so we can safely collect move_task() stats here rather than
3292	 * inside move_task().
3293	 */
3294	schedstat_add(env->sd, lb_gained[env->idle], pulled);
3295
3296	return pulled;
3297}
3298
3299#ifdef CONFIG_FAIR_GROUP_SCHED
3300/*
3301 * update tg->load_weight by folding this cpu's load_avg
3302 */
3303static int update_shares_cpu(struct task_group *tg, int cpu)
3304{
3305	struct cfs_rq *cfs_rq;
3306	unsigned long flags;
3307	struct rq *rq;
3308
3309	if (!tg->se[cpu])
3310		return 0;
3311
3312	rq = cpu_rq(cpu);
3313	cfs_rq = tg->cfs_rq[cpu];
3314
3315	raw_spin_lock_irqsave(&rq->lock, flags);
3316
3317	update_rq_clock(rq);
3318	update_cfs_load(cfs_rq, 1);
3319
3320	/*
3321	 * We need to update shares after updating tg->load_weight in
3322	 * order to adjust the weight of groups with long running tasks.
3323	 */
3324	update_cfs_shares(cfs_rq);
3325
3326	raw_spin_unlock_irqrestore(&rq->lock, flags);
3327
3328	return 0;
3329}
3330
3331static void update_shares(int cpu)
3332{
3333	struct cfs_rq *cfs_rq;
3334	struct rq *rq = cpu_rq(cpu);
3335
3336	rcu_read_lock();
3337	/*
3338	 * Iterates the task_group tree in a bottom up fashion, see
3339	 * list_add_leaf_cfs_rq() for details.
3340	 */
3341	for_each_leaf_cfs_rq(rq, cfs_rq) {
3342		/* throttled entities do not contribute to load */
3343		if (throttled_hierarchy(cfs_rq))
3344			continue;
3345
3346		update_shares_cpu(cfs_rq->tg, cpu);
3347	}
3348	rcu_read_unlock();
3349}
3350
3351/*
3352 * Compute the cpu's hierarchical load factor for each task group.
3353 * This needs to be done in a top-down fashion because the load of a child
3354 * group is a fraction of its parents load.
3355 */
3356static int tg_load_down(struct task_group *tg, void *data)
3357{
3358	unsigned long load;
3359	long cpu = (long)data;
3360
3361	if (!tg->parent) {
3362		load = cpu_rq(cpu)->load.weight;
3363	} else {
3364		load = tg->parent->cfs_rq[cpu]->h_load;
3365		load *= tg->se[cpu]->load.weight;
3366		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3367	}
3368
3369	tg->cfs_rq[cpu]->h_load = load;
3370
3371	return 0;
3372}
3373
3374static void update_h_load(long cpu)
3375{
3376	rcu_read_lock();
3377	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3378	rcu_read_unlock();
3379}
3380
3381static unsigned long task_h_load(struct task_struct *p)
3382{
3383	struct cfs_rq *cfs_rq = task_cfs_rq(p);
3384	unsigned long load;
3385
3386	load = p->se.load.weight;
3387	load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
3388
3389	return load;
3390}
3391#else
3392static inline void update_shares(int cpu)
3393{
3394}
3395
3396static inline void update_h_load(long cpu)
3397{
3398}
3399
3400static unsigned long task_h_load(struct task_struct *p)
3401{
3402	return p->se.load.weight;
3403}
3404#endif
3405
3406/********** Helpers for find_busiest_group ************************/
3407/*
3408 * sd_lb_stats - Structure to store the statistics of a sched_domain
3409 * 		during load balancing.
3410 */
3411struct sd_lb_stats {
3412	struct sched_group *busiest; /* Busiest group in this sd */
3413	struct sched_group *this;  /* Local group in this sd */
3414	unsigned long total_load;  /* Total load of all groups in sd */
3415	unsigned long total_pwr;   /*	Total power of all groups in sd */
3416	unsigned long avg_load;	   /* Average load across all groups in sd */
3417
3418	/** Statistics of this group */
3419	unsigned long this_load;
3420	unsigned long this_load_per_task;
3421	unsigned long this_nr_running;
3422	unsigned long this_has_capacity;
3423	unsigned int  this_idle_cpus;
3424
3425	/* Statistics of the busiest group */
3426	unsigned int  busiest_idle_cpus;
3427	unsigned long max_load;
3428	unsigned long busiest_load_per_task;
3429	unsigned long busiest_nr_running;
3430	unsigned long busiest_group_capacity;
3431	unsigned long busiest_has_capacity;
3432	unsigned int  busiest_group_weight;
3433
3434	int group_imb; /* Is there imbalance in this sd */
3435};
3436
3437/*
3438 * sg_lb_stats - stats of a sched_group required for load_balancing
3439 */
3440struct sg_lb_stats {
3441	unsigned long avg_load; /*Avg load across the CPUs of the group */
3442	unsigned long group_load; /* Total load over the CPUs of the group */
3443	unsigned long sum_nr_running; /* Nr tasks running in the group */
3444	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3445	unsigned long group_capacity;
3446	unsigned long idle_cpus;
3447	unsigned long group_weight;
3448	int group_imb; /* Is there an imbalance in the group ? */
3449	int group_has_capacity; /* Is there extra capacity in the group? */
3450};
3451
3452/**
3453 * get_sd_load_idx - Obtain the load index for a given sched domain.
3454 * @sd: The sched_domain whose load_idx is to be obtained.
3455 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3456 */
3457static inline int get_sd_load_idx(struct sched_domain *sd,
3458					enum cpu_idle_type idle)
3459{
3460	int load_idx;
3461
3462	switch (idle) {
3463	case CPU_NOT_IDLE:
3464		load_idx = sd->busy_idx;
3465		break;
3466
3467	case CPU_NEWLY_IDLE:
3468		load_idx = sd->newidle_idx;
3469		break;
3470	default:
3471		load_idx = sd->idle_idx;
3472		break;
3473	}
3474
3475	return load_idx;
3476}
3477
3478unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3479{
3480	return SCHED_POWER_SCALE;
3481}
3482
3483unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3484{
3485	return default_scale_freq_power(sd, cpu);
3486}
3487
3488unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3489{
3490	unsigned long weight = sd->span_weight;
3491	unsigned long smt_gain = sd->smt_gain;
3492
3493	smt_gain /= weight;
3494
3495	return smt_gain;
3496}
3497
3498unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3499{
3500	return default_scale_smt_power(sd, cpu);
3501}
3502
3503unsigned long scale_rt_power(int cpu)
3504{
3505	struct rq *rq = cpu_rq(cpu);
3506	u64 total, available, age_stamp, avg;
3507
3508	/*
3509	 * Since we're reading these variables without serialization make sure
3510	 * we read them once before doing sanity checks on them.
3511	 */
3512	age_stamp = ACCESS_ONCE(rq->age_stamp);
3513	avg = ACCESS_ONCE(rq->rt_avg);
3514
3515	total = sched_avg_period() + (rq->clock - age_stamp);
3516
3517	if (unlikely(total < avg)) {
3518		/* Ensures that power won't end up being negative */
3519		available = 0;
3520	} else {
3521		available = total - avg;
3522	}
3523
3524	if (unlikely((s64)total < SCHED_POWER_SCALE))
3525		total = SCHED_POWER_SCALE;
3526
3527	total >>= SCHED_POWER_SHIFT;
3528
3529	return div_u64(available, total);
3530}
3531
3532static void update_cpu_power(struct sched_domain *sd, int cpu)
3533{
3534	unsigned long weight = sd->span_weight;
3535	unsigned long power = SCHED_POWER_SCALE;
3536	struct sched_group *sdg = sd->groups;
3537
3538	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3539		if (sched_feat(ARCH_POWER))
3540			power *= arch_scale_smt_power(sd, cpu);
3541		else
3542			power *= default_scale_smt_power(sd, cpu);
3543
3544		power >>= SCHED_POWER_SHIFT;
3545	}
3546
3547	sdg->sgp->power_orig = power;
3548
3549	if (sched_feat(ARCH_POWER))
3550		power *= arch_scale_freq_power(sd, cpu);
3551	else
3552		power *= default_scale_freq_power(sd, cpu);
3553
3554	power >>= SCHED_POWER_SHIFT;
3555
3556	power *= scale_rt_power(cpu);
3557	power >>= SCHED_POWER_SHIFT;
3558
3559	if (!power)
3560		power = 1;
3561
3562	cpu_rq(cpu)->cpu_power = power;
3563	sdg->sgp->power = power;
3564}
3565
3566void update_group_power(struct sched_domain *sd, int cpu)
3567{
3568	struct sched_domain *child = sd->child;
3569	struct sched_group *group, *sdg = sd->groups;
3570	unsigned long power;
3571	unsigned long interval;
3572
3573	interval = msecs_to_jiffies(sd->balance_interval);
3574	interval = clamp(interval, 1UL, max_load_balance_interval);
3575	sdg->sgp->next_update = jiffies + interval;
3576
3577	if (!child) {
3578		update_cpu_power(sd, cpu);
3579		return;
3580	}
3581
3582	power = 0;
3583
3584	if (child->flags & SD_OVERLAP) {
3585		/*
3586		 * SD_OVERLAP domains cannot assume that child groups
3587		 * span the current group.
3588		 */
3589
3590		for_each_cpu(cpu, sched_group_cpus(sdg))
3591			power += power_of(cpu);
3592	} else  {
3593		/*
3594		 * !SD_OVERLAP domains can assume that child groups
3595		 * span the current group.
3596		 */ 
3597
3598		group = child->groups;
3599		do {
3600			power += group->sgp->power;
3601			group = group->next;
3602		} while (group != child->groups);
3603	}
3604
3605	sdg->sgp->power_orig = sdg->sgp->power = power;
3606}
3607
3608/*
3609 * Try and fix up capacity for tiny siblings, this is needed when
3610 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3611 * which on its own isn't powerful enough.
3612 *
3613 * See update_sd_pick_busiest() and check_asym_packing().
3614 */
3615static inline int
3616fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3617{
3618	/*
3619	 * Only siblings can have significantly less than SCHED_POWER_SCALE
3620	 */
3621	if (!(sd->flags & SD_SHARE_CPUPOWER))
3622		return 0;
3623
3624	/*
3625	 * If ~90% of the cpu_power is still there, we're good.
3626	 */
3627	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3628		return 1;
3629
3630	return 0;
3631}
3632
3633/**
3634 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3635 * @env: The load balancing environment.
3636 * @group: sched_group whose statistics are to be updated.
3637 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3638 * @local_group: Does group contain this_cpu.
3639 * @cpus: Set of cpus considered for load balancing.
3640 * @balance: Should we balance.
3641 * @sgs: variable to hold the statistics for this group.
3642 */
3643static inline void update_sg_lb_stats(struct lb_env *env,
3644			struct sched_group *group, int load_idx,
3645			int local_group, const struct cpumask *cpus,
3646			int *balance, struct sg_lb_stats *sgs)
3647{
3648	unsigned long nr_running, max_nr_running, min_nr_running;
3649	unsigned long load, max_cpu_load, min_cpu_load;
3650	unsigned int balance_cpu = -1, first_idle_cpu = 0;
3651	unsigned long avg_load_per_task = 0;
3652	int i;
3653
3654	if (local_group)
3655		balance_cpu = group_balance_cpu(group);
3656
3657	/* Tally up the load of all CPUs in the group */
3658	max_cpu_load = 0;
3659	min_cpu_load = ~0UL;
3660	max_nr_running = 0;
3661	min_nr_running = ~0UL;
3662
3663	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3664		struct rq *rq = cpu_rq(i);
3665
3666		nr_running = rq->nr_running;
3667
3668		/* Bias balancing toward cpus of our domain */
3669		if (local_group) {
3670			if (idle_cpu(i) && !first_idle_cpu &&
3671					cpumask_test_cpu(i, sched_group_mask(group))) {
3672				first_idle_cpu = 1;
3673				balance_cpu = i;
3674			}
3675
3676			load = target_load(i, load_idx);
3677		} else {
3678			load = source_load(i, load_idx);
3679			if (load > max_cpu_load)
3680				max_cpu_load = load;
3681			if (min_cpu_load > load)
3682				min_cpu_load = load;
3683
3684			if (nr_running > max_nr_running)
3685				max_nr_running = nr_running;
3686			if (min_nr_running > nr_running)
3687				min_nr_running = nr_running;
3688		}
3689
3690		sgs->group_load += load;
3691		sgs->sum_nr_running += nr_running;
3692		sgs->sum_weighted_load += weighted_cpuload(i);
3693		if (idle_cpu(i))
3694			sgs->idle_cpus++;
3695	}
3696
3697	/*
3698	 * First idle cpu or the first cpu(busiest) in this sched group
3699	 * is eligible for doing load balancing at this and above
3700	 * domains. In the newly idle case, we will allow all the cpu's
3701	 * to do the newly idle load balance.
3702	 */
3703	if (local_group) {
3704		if (env->idle != CPU_NEWLY_IDLE) {
3705			if (balance_cpu != env->dst_cpu) {
3706				*balance = 0;
3707				return;
3708			}
3709			update_group_power(env->sd, env->dst_cpu);
3710		} else if (time_after_eq(jiffies, group->sgp->next_update))
3711			update_group_power(env->sd, env->dst_cpu);
3712	}
3713
3714	/* Adjust by relative CPU power of the group */
3715	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3716
3717	/*
3718	 * Consider the group unbalanced when the imbalance is larger
3719	 * than the average weight of a task.
3720	 *
3721	 * APZ: with cgroup the avg task weight can vary wildly and
3722	 *      might not be a suitable number - should we keep a
3723	 *      normalized nr_running number somewhere that negates
3724	 *      the hierarchy?
3725	 */
3726	if (sgs->sum_nr_running)
3727		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3728
3729	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
3730	    (max_nr_running - min_nr_running) > 1)
3731		sgs->group_imb = 1;
3732
3733	sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3734						SCHED_POWER_SCALE);
3735	if (!sgs->group_capacity)
3736		sgs->group_capacity = fix_small_capacity(env->sd, group);
3737	sgs->group_weight = group->group_weight;
3738
3739	if (sgs->group_capacity > sgs->sum_nr_running)
3740		sgs->group_has_capacity = 1;
3741}
3742
3743/**
3744 * update_sd_pick_busiest - return 1 on busiest group
3745 * @env: The load balancing environment.
3746 * @sds: sched_domain statistics
3747 * @sg: sched_group candidate to be checked for being the busiest
3748 * @sgs: sched_group statistics
3749 *
3750 * Determine if @sg is a busier group than the previously selected
3751 * busiest group.
3752 */
3753static bool update_sd_pick_busiest(struct lb_env *env,
3754				   struct sd_lb_stats *sds,
3755				   struct sched_group *sg,
3756				   struct sg_lb_stats *sgs)
3757{
3758	if (sgs->avg_load <= sds->max_load)
3759		return false;
3760
3761	if (sgs->sum_nr_running > sgs->group_capacity)
3762		return true;
3763
3764	if (sgs->group_imb)
3765		return true;
3766
3767	/*
3768	 * ASYM_PACKING needs to move all the work to the lowest
3769	 * numbered CPUs in the group, therefore mark all groups
3770	 * higher than ourself as busy.
3771	 */
3772	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3773	    env->dst_cpu < group_first_cpu(sg)) {
3774		if (!sds->busiest)
3775			return true;
3776
3777		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3778			return true;
3779	}
3780
3781	return false;
3782}
3783
3784/**
3785 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3786 * @env: The load balancing environment.
3787 * @cpus: Set of cpus considered for load balancing.
3788 * @balance: Should we balance.
3789 * @sds: variable to hold the statistics for this sched_domain.
3790 */
3791static inline void update_sd_lb_stats(struct lb_env *env,
3792				      const struct cpumask *cpus,
3793				      int *balance, struct sd_lb_stats *sds)
3794{
3795	struct sched_domain *child = env->sd->child;
3796	struct sched_group *sg = env->sd->groups;
3797	struct sg_lb_stats sgs;
3798	int load_idx, prefer_sibling = 0;
3799
3800	if (child && child->flags & SD_PREFER_SIBLING)
3801		prefer_sibling = 1;
3802
3803	load_idx = get_sd_load_idx(env->sd, env->idle);
3804
3805	do {
3806		int local_group;
3807
3808		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
3809		memset(&sgs, 0, sizeof(sgs));
3810		update_sg_lb_stats(env, sg, load_idx, local_group,
3811				   cpus, balance, &sgs);
3812
3813		if (local_group && !(*balance))
3814			return;
3815
3816		sds->total_load += sgs.group_load;
3817		sds->total_pwr += sg->sgp->power;
3818
3819		/*
3820		 * In case the child domain prefers tasks go to siblings
3821		 * first, lower the sg capacity to one so that we'll try
3822		 * and move all the excess tasks away. We lower the capacity
3823		 * of a group only if the local group has the capacity to fit
3824		 * these excess tasks, i.e. nr_running < group_capacity. The
3825		 * extra check prevents the case where you always pull from the
3826		 * heaviest group when it is already under-utilized (possible
3827		 * with a large weight task outweighs the tasks on the system).
3828		 */
3829		if (prefer_sibling && !local_group && sds->this_has_capacity)
3830			sgs.group_capacity = min(sgs.group_capacity, 1UL);
3831
3832		if (local_group) {
3833			sds->this_load = sgs.avg_load;
3834			sds->this = sg;
3835			sds->this_nr_running = sgs.sum_nr_running;
3836			sds->this_load_per_task = sgs.sum_weighted_load;
3837			sds->this_has_capacity = sgs.group_has_capacity;
3838			sds->this_idle_cpus = sgs.idle_cpus;
3839		} else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
3840			sds->max_load = sgs.avg_load;
3841			sds->busiest = sg;
3842			sds->busiest_nr_running = sgs.sum_nr_running;
3843			sds->busiest_idle_cpus = sgs.idle_cpus;
3844			sds->busiest_group_capacity = sgs.group_capacity;
3845			sds->busiest_load_per_task = sgs.sum_weighted_load;
3846			sds->busiest_has_capacity = sgs.group_has_capacity;
3847			sds->busiest_group_weight = sgs.group_weight;
3848			sds->group_imb = sgs.group_imb;
3849		}
3850
3851		sg = sg->next;
3852	} while (sg != env->sd->groups);
3853}
3854
3855/**
3856 * check_asym_packing - Check to see if the group is packed into the
3857 *			sched doman.
3858 *
3859 * This is primarily intended to used at the sibling level.  Some
3860 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
3861 * case of POWER7, it can move to lower SMT modes only when higher
3862 * threads are idle.  When in lower SMT modes, the threads will
3863 * perform better since they share less core resources.  Hence when we
3864 * have idle threads, we want them to be the higher ones.
3865 *
3866 * This packing function is run on idle threads.  It checks to see if
3867 * the busiest CPU in this domain (core in the P7 case) has a higher
3868 * CPU number than the packing function is being run on.  Here we are
3869 * assuming lower CPU number will be equivalent to lower a SMT thread
3870 * number.
3871 *
3872 * Returns 1 when packing is required and a task should be moved to
3873 * this CPU.  The amount of the imbalance is returned in *imbalance.
3874 *
3875 * @env: The load balancing environment.
3876 * @sds: Statistics of the sched_domain which is to be packed
3877 */
3878static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
3879{
3880	int busiest_cpu;
3881
3882	if (!(env->sd->flags & SD_ASYM_PACKING))
3883		return 0;
3884
3885	if (!sds->busiest)
3886		return 0;
3887
3888	busiest_cpu = group_first_cpu(sds->busiest);
3889	if (env->dst_cpu > busiest_cpu)
3890		return 0;
3891
3892	env->imbalance = DIV_ROUND_CLOSEST(
3893		sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
3894
3895	return 1;
3896}
3897
3898/**
3899 * fix_small_imbalance - Calculate the minor imbalance that exists
3900 *			amongst the groups of a sched_domain, during
3901 *			load balancing.
3902 * @env: The load balancing environment.
3903 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3904 */
3905static inline
3906void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
3907{
3908	unsigned long tmp, pwr_now = 0, pwr_move = 0;
3909	unsigned int imbn = 2;
3910	unsigned long scaled_busy_load_per_task;
3911
3912	if (sds->this_nr_running) {
3913		sds->this_load_per_task /= sds->this_nr_running;
3914		if (sds->busiest_load_per_task >
3915				sds->this_load_per_task)
3916			imbn = 1;
3917	} else {
3918		sds->this_load_per_task =
3919			cpu_avg_load_per_task(env->dst_cpu);
3920	}
3921
3922	scaled_busy_load_per_task = sds->busiest_load_per_task
3923					 * SCHED_POWER_SCALE;
3924	scaled_busy_load_per_task /= sds->busiest->sgp->power;
3925
3926	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3927			(scaled_busy_load_per_task * imbn)) {
3928		env->imbalance = sds->busiest_load_per_task;
3929		return;
3930	}
3931
3932	/*
3933	 * OK, we don't have enough imbalance to justify moving tasks,
3934	 * however we may be able to increase total CPU power used by
3935	 * moving them.
3936	 */
3937
3938	pwr_now += sds->busiest->sgp->power *
3939			min(sds->busiest_load_per_task, sds->max_load);
3940	pwr_now += sds->this->sgp->power *
3941			min(sds->this_load_per_task, sds->this_load);
3942	pwr_now /= SCHED_POWER_SCALE;
3943
3944	/* Amount of load we'd subtract */
3945	tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3946		sds->busiest->sgp->power;
3947	if (sds->max_load > tmp)
3948		pwr_move += sds->busiest->sgp->power *
3949			min(sds->busiest_load_per_task, sds->max_load - tmp);
3950
3951	/* Amount of load we'd add */
3952	if (sds->max_load * sds->busiest->sgp->power <
3953		sds->busiest_load_per_task * SCHED_POWER_SCALE)
3954		tmp = (sds->max_load * sds->busiest->sgp->power) /
3955			sds->this->sgp->power;
3956	else
3957		tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3958			sds->this->sgp->power;
3959	pwr_move += sds->this->sgp->power *
3960			min(sds->this_load_per_task, sds->this_load + tmp);
3961	pwr_move /= SCHED_POWER_SCALE;
3962
3963	/* Move if we gain throughput */
3964	if (pwr_move > pwr_now)
3965		env->imbalance = sds->busiest_load_per_task;
3966}
3967
3968/**
3969 * calculate_imbalance - Calculate the amount of imbalance present within the
3970 *			 groups of a given sched_domain during load balance.
3971 * @env: load balance environment
3972 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3973 */
3974static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
3975{
3976	unsigned long max_pull, load_above_capacity = ~0UL;
3977
3978	sds->busiest_load_per_task /= sds->busiest_nr_running;
3979	if (sds->group_imb) {
3980		sds->busiest_load_per_task =
3981			min(sds->busiest_load_per_task, sds->avg_load);
3982	}
3983
3984	/*
3985	 * In the presence of smp nice balancing, certain scenarios can have
3986	 * max load less than avg load(as we skip the groups at or below
3987	 * its cpu_power, while calculating max_load..)
3988	 */
3989	if (sds->max_load < sds->avg_load) {
3990		env->imbalance = 0;
3991		return fix_small_imbalance(env, sds);
3992	}
3993
3994	if (!sds->group_imb) {
3995		/*
3996		 * Don't want to pull so many tasks that a group would go idle.
3997		 */
3998		load_above_capacity = (sds->busiest_nr_running -
3999						sds->busiest_group_capacity);
4000
4001		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4002
4003		load_above_capacity /= sds->busiest->sgp->power;
4004	}
4005
4006	/*
4007	 * We're trying to get all the cpus to the average_load, so we don't
4008	 * want to push ourselves above the average load, nor do we wish to
4009	 * reduce the max loaded cpu below the average load. At the same time,
4010	 * we also don't want to reduce the group load below the group capacity
4011	 * (so that we can implement power-savings policies etc). Thus we look
4012	 * for the minimum possible imbalance.
4013	 * Be careful of negative numbers as they'll appear as very large values
4014	 * with unsigned longs.
4015	 */
4016	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4017
4018	/* How much load to actually move to equalise the imbalance */
4019	env->imbalance = min(max_pull * sds->busiest->sgp->power,
4020		(sds->avg_load - sds->this_load) * sds->this->sgp->power)
4021			/ SCHED_POWER_SCALE;
4022
4023	/*
4024	 * if *imbalance is less than the average load per runnable task
4025	 * there is no guarantee that any tasks will be moved so we'll have
4026	 * a think about bumping its value to force at least one task to be
4027	 * moved
4028	 */
4029	if (env->imbalance < sds->busiest_load_per_task)
4030		return fix_small_imbalance(env, sds);
4031
4032}
4033
4034/******* find_busiest_group() helpers end here *********************/
4035
4036/**
4037 * find_busiest_group - Returns the busiest group within the sched_domain
4038 * if there is an imbalance. If there isn't an imbalance, and
4039 * the user has opted for power-savings, it returns a group whose
4040 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4041 * such a group exists.
4042 *
4043 * Also calculates the amount of weighted load which should be moved
4044 * to restore balance.
4045 *
4046 * @env: The load balancing environment.
4047 * @cpus: The set of CPUs under consideration for load-balancing.
4048 * @balance: Pointer to a variable indicating if this_cpu
4049 *	is the appropriate cpu to perform load balancing at this_level.
4050 *
4051 * Returns:	- the busiest group if imbalance exists.
4052 *		- If no imbalance and user has opted for power-savings balance,
4053 *		   return the least loaded group whose CPUs can be
4054 *		   put to idle by rebalancing its tasks onto our group.
4055 */
4056static struct sched_group *
4057find_busiest_group(struct lb_env *env, const struct cpumask *cpus, int *balance)
4058{
4059	struct sd_lb_stats sds;
4060
4061	memset(&sds, 0, sizeof(sds));
4062
4063	/*
4064	 * Compute the various statistics relavent for load balancing at
4065	 * this level.
4066	 */
4067	update_sd_lb_stats(env, cpus, balance, &sds);
4068
4069	/*
4070	 * this_cpu is not the appropriate cpu to perform load balancing at
4071	 * this level.
4072	 */
4073	if (!(*balance))
4074		goto ret;
4075
4076	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4077	    check_asym_packing(env, &sds))
4078		return sds.busiest;
4079
4080	/* There is no busy sibling group to pull tasks from */
4081	if (!sds.busiest || sds.busiest_nr_running == 0)
4082		goto out_balanced;
4083
4084	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4085
4086	/*
4087	 * If the busiest group is imbalanced the below checks don't
4088	 * work because they assumes all things are equal, which typically
4089	 * isn't true due to cpus_allowed constraints and the like.
4090	 */
4091	if (sds.group_imb)
4092		goto force_balance;
4093
4094	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4095	if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4096			!sds.busiest_has_capacity)
4097		goto force_balance;
4098
4099	/*
4100	 * If the local group is more busy than the selected busiest group
4101	 * don't try and pull any tasks.
4102	 */
4103	if (sds.this_load >= sds.max_load)
4104		goto out_balanced;
4105
4106	/*
4107	 * Don't pull any tasks if this group is already above the domain
4108	 * average load.
4109	 */
4110	if (sds.this_load >= sds.avg_load)
4111		goto out_balanced;
4112
4113	if (env->idle == CPU_IDLE) {
4114		/*
4115		 * This cpu is idle. If the busiest group load doesn't
4116		 * have more tasks than the number of available cpu's and
4117		 * there is no imbalance between this and busiest group
4118		 * wrt to idle cpu's, it is balanced.
4119		 */
4120		if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4121		    sds.busiest_nr_running <= sds.busiest_group_weight)
4122			goto out_balanced;
4123	} else {
4124		/*
4125		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4126		 * imbalance_pct to be conservative.
4127		 */
4128		if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4129			goto out_balanced;
4130	}
4131
4132force_balance:
4133	/* Looks like there is an imbalance. Compute it */
4134	calculate_imbalance(env, &sds);
4135	return sds.busiest;
4136
4137out_balanced:
4138ret:
4139	env->imbalance = 0;
4140	return NULL;
4141}
4142
4143/*
4144 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4145 */
4146static struct rq *find_busiest_queue(struct lb_env *env,
4147				     struct sched_group *group,
4148				     const struct cpumask *cpus)
4149{
4150	struct rq *busiest = NULL, *rq;
4151	unsigned long max_load = 0;
4152	int i;
4153
4154	for_each_cpu(i, sched_group_cpus(group)) {
4155		unsigned long power = power_of(i);
4156		unsigned long capacity = DIV_ROUND_CLOSEST(power,
4157							   SCHED_POWER_SCALE);
4158		unsigned long wl;
4159
4160		if (!capacity)
4161			capacity = fix_small_capacity(env->sd, group);
4162
4163		if (!cpumask_test_cpu(i, cpus))
4164			continue;
4165
4166		rq = cpu_rq(i);
4167		wl = weighted_cpuload(i);
4168
4169		/*
4170		 * When comparing with imbalance, use weighted_cpuload()
4171		 * which is not scaled with the cpu power.
4172		 */
4173		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4174			continue;
4175
4176		/*
4177		 * For the load comparisons with the other cpu's, consider
4178		 * the weighted_cpuload() scaled with the cpu power, so that
4179		 * the load can be moved away from the cpu that is potentially
4180		 * running at a lower capacity.
4181		 */
4182		wl = (wl * SCHED_POWER_SCALE) / power;
4183
4184		if (wl > max_load) {
4185			max_load = wl;
4186			busiest = rq;
4187		}
4188	}
4189
4190	return busiest;
4191}
4192
4193/*
4194 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4195 * so long as it is large enough.
4196 */
4197#define MAX_PINNED_INTERVAL	512
4198
4199/* Working cpumask for load_balance and load_balance_newidle. */
4200DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4201
4202static int need_active_balance(struct lb_env *env)
4203{
4204	struct sched_domain *sd = env->sd;
4205
4206	if (env->idle == CPU_NEWLY_IDLE) {
4207
4208		/*
4209		 * ASYM_PACKING needs to force migrate tasks from busy but
4210		 * higher numbered CPUs in order to pack all tasks in the
4211		 * lowest numbered CPUs.
4212		 */
4213		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4214			return 1;
4215	}
4216
4217	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4218}
4219
4220static int active_load_balance_cpu_stop(void *data);
4221
4222/*
4223 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4224 * tasks if there is an imbalance.
4225 */
4226static int load_balance(int this_cpu, struct rq *this_rq,
4227			struct sched_domain *sd, enum cpu_idle_type idle,
4228			int *balance)
4229{
4230	int ld_moved, active_balance = 0;
4231	struct sched_group *group;
4232	struct rq *busiest;
4233	unsigned long flags;
4234	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4235
4236	struct lb_env env = {
4237		.sd		= sd,
4238		.dst_cpu	= this_cpu,
4239		.dst_rq		= this_rq,
4240		.idle		= idle,
4241		.loop_break	= sched_nr_migrate_break,
4242	};
4243
4244	cpumask_copy(cpus, cpu_active_mask);
4245
4246	schedstat_inc(sd, lb_count[idle]);
4247
4248redo:
4249	group = find_busiest_group(&env, cpus, balance);
4250
4251	if (*balance == 0)
4252		goto out_balanced;
4253
4254	if (!group) {
4255		schedstat_inc(sd, lb_nobusyg[idle]);
4256		goto out_balanced;
4257	}
4258
4259	busiest = find_busiest_queue(&env, group, cpus);
4260	if (!busiest) {
4261		schedstat_inc(sd, lb_nobusyq[idle]);
4262		goto out_balanced;
4263	}
4264
4265	BUG_ON(busiest == this_rq);
4266
4267	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
4268
4269	ld_moved = 0;
4270	if (busiest->nr_running > 1) {
4271		/*
4272		 * Attempt to move tasks. If find_busiest_group has found
4273		 * an imbalance but busiest->nr_running <= 1, the group is
4274		 * still unbalanced. ld_moved simply stays zero, so it is
4275		 * correctly treated as an imbalance.
4276		 */
4277		env.flags |= LBF_ALL_PINNED;
4278		env.src_cpu   = busiest->cpu;
4279		env.src_rq    = busiest;
4280		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
4281
4282more_balance:
4283		local_irq_save(flags);
4284		double_rq_lock(this_rq, busiest);
4285		if (!env.loop)
4286			update_h_load(env.src_cpu);
4287		ld_moved += move_tasks(&env);
4288		double_rq_unlock(this_rq, busiest);
4289		local_irq_restore(flags);
4290
4291		if (env.flags & LBF_NEED_BREAK) {
4292			env.flags &= ~LBF_NEED_BREAK;
4293			goto more_balance;
4294		}
4295
4296		/*
4297		 * some other cpu did the load balance for us.
4298		 */
4299		if (ld_moved && this_cpu != smp_processor_id())
4300			resched_cpu(this_cpu);
4301
4302		/* All tasks on this runqueue were pinned by CPU affinity */
4303		if (unlikely(env.flags & LBF_ALL_PINNED)) {
4304			cpumask_clear_cpu(cpu_of(busiest), cpus);
4305			if (!cpumask_empty(cpus))
4306				goto redo;
4307			goto out_balanced;
4308		}
4309	}
4310
4311	if (!ld_moved) {
4312		schedstat_inc(sd, lb_failed[idle]);
4313		/*
4314		 * Increment the failure counter only on periodic balance.
4315		 * We do not want newidle balance, which can be very
4316		 * frequent, pollute the failure counter causing
4317		 * excessive cache_hot migrations and active balances.
4318		 */
4319		if (idle != CPU_NEWLY_IDLE)
4320			sd->nr_balance_failed++;
4321
4322		if (need_active_balance(&env)) {
4323			raw_spin_lock_irqsave(&busiest->lock, flags);
4324
4325			/* don't kick the active_load_balance_cpu_stop,
4326			 * if the curr task on busiest cpu can't be
4327			 * moved to this_cpu
4328			 */
4329			if (!cpumask_test_cpu(this_cpu,
4330					tsk_cpus_allowed(busiest->curr))) {
4331				raw_spin_unlock_irqrestore(&busiest->lock,
4332							    flags);
4333				env.flags |= LBF_ALL_PINNED;
4334				goto out_one_pinned;
4335			}
4336
4337			/*
4338			 * ->active_balance synchronizes accesses to
4339			 * ->active_balance_work.  Once set, it's cleared
4340			 * only after active load balance is finished.
4341			 */
4342			if (!busiest->active_balance) {
4343				busiest->active_balance = 1;
4344				busiest->push_cpu = this_cpu;
4345				active_balance = 1;
4346			}
4347			raw_spin_unlock_irqrestore(&busiest->lock, flags);
4348
4349			if (active_balance) {
4350				stop_one_cpu_nowait(cpu_of(busiest),
4351					active_load_balance_cpu_stop, busiest,
4352					&busiest->active_balance_work);
4353			}
4354
4355			/*
4356			 * We've kicked active balancing, reset the failure
4357			 * counter.
4358			 */
4359			sd->nr_balance_failed = sd->cache_nice_tries+1;
4360		}
4361	} else
4362		sd->nr_balance_failed = 0;
4363
4364	if (likely(!active_balance)) {
4365		/* We were unbalanced, so reset the balancing interval */
4366		sd->balance_interval = sd->min_interval;
4367	} else {
4368		/*
4369		 * If we've begun active balancing, start to back off. This
4370		 * case may not be covered by the all_pinned logic if there
4371		 * is only 1 task on the busy runqueue (because we don't call
4372		 * move_tasks).
4373		 */
4374		if (sd->balance_interval < sd->max_interval)
4375			sd->balance_interval *= 2;
4376	}
4377
4378	goto out;
4379
4380out_balanced:
4381	schedstat_inc(sd, lb_balanced[idle]);
4382
4383	sd->nr_balance_failed = 0;
4384
4385out_one_pinned:
4386	/* tune up the balancing interval */
4387	if (((env.flags & LBF_ALL_PINNED) &&
4388			sd->balance_interval < MAX_PINNED_INTERVAL) ||
4389			(sd->balance_interval < sd->max_interval))
4390		sd->balance_interval *= 2;
4391
4392	ld_moved = 0;
4393out:
4394	return ld_moved;
4395}
4396
4397/*
4398 * idle_balance is called by schedule() if this_cpu is about to become
4399 * idle. Attempts to pull tasks from other CPUs.
4400 */
4401void idle_balance(int this_cpu, struct rq *this_rq)
4402{
4403	struct sched_domain *sd;
4404	int pulled_task = 0;
4405	unsigned long next_balance = jiffies + HZ;
4406
4407	this_rq->idle_stamp = this_rq->clock;
4408
4409	if (this_rq->avg_idle < sysctl_sched_migration_cost)
4410		return;
4411
4412	/*
4413	 * Drop the rq->lock, but keep IRQ/preempt disabled.
4414	 */
4415	raw_spin_unlock(&this_rq->lock);
4416
4417	update_shares(this_cpu);
4418	rcu_read_lock();
4419	for_each_domain(this_cpu, sd) {
4420		unsigned long interval;
4421		int balance = 1;
4422
4423		if (!(sd->flags & SD_LOAD_BALANCE))
4424			continue;
4425
4426		if (sd->flags & SD_BALANCE_NEWIDLE) {
4427			/* If we've pulled tasks over stop searching: */
4428			pulled_task = load_balance(this_cpu, this_rq,
4429						   sd, CPU_NEWLY_IDLE, &balance);
4430		}
4431
4432		interval = msecs_to_jiffies(sd->balance_interval);
4433		if (time_after(next_balance, sd->last_balance + interval))
4434			next_balance = sd->last_balance + interval;
4435		if (pulled_task) {
4436			this_rq->idle_stamp = 0;
4437			break;
4438		}
4439	}
4440	rcu_read_unlock();
4441
4442	raw_spin_lock(&this_rq->lock);
4443
4444	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4445		/*
4446		 * We are going idle. next_balance may be set based on
4447		 * a busy processor. So reset next_balance.
4448		 */
4449		this_rq->next_balance = next_balance;
4450	}
4451}
4452
4453/*
4454 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4455 * running tasks off the busiest CPU onto idle CPUs. It requires at
4456 * least 1 task to be running on each physical CPU where possible, and
4457 * avoids physical / logical imbalances.
4458 */
4459static int active_load_balance_cpu_stop(void *data)
4460{
4461	struct rq *busiest_rq = data;
4462	int busiest_cpu = cpu_of(busiest_rq);
4463	int target_cpu = busiest_rq->push_cpu;
4464	struct rq *target_rq = cpu_rq(target_cpu);
4465	struct sched_domain *sd;
4466
4467	raw_spin_lock_irq(&busiest_rq->lock);
4468
4469	/* make sure the requested cpu hasn't gone down in the meantime */
4470	if (unlikely(busiest_cpu != smp_processor_id() ||
4471		     !busiest_rq->active_balance))
4472		goto out_unlock;
4473
4474	/* Is there any task to move? */
4475	if (busiest_rq->nr_running <= 1)
4476		goto out_unlock;
4477
4478	/*
4479	 * This condition is "impossible", if it occurs
4480	 * we need to fix it. Originally reported by
4481	 * Bjorn Helgaas on a 128-cpu setup.
4482	 */
4483	BUG_ON(busiest_rq == target_rq);
4484
4485	/* move a task from busiest_rq to target_rq */
4486	double_lock_balance(busiest_rq, target_rq);
4487
4488	/* Search for an sd spanning us and the target CPU. */
4489	rcu_read_lock();
4490	for_each_domain(target_cpu, sd) {
4491		if ((sd->flags & SD_LOAD_BALANCE) &&
4492		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4493				break;
4494	}
4495
4496	if (likely(sd)) {
4497		struct lb_env env = {
4498			.sd		= sd,
4499			.dst_cpu	= target_cpu,
4500			.dst_rq		= target_rq,
4501			.src_cpu	= busiest_rq->cpu,
4502			.src_rq		= busiest_rq,
4503			.idle		= CPU_IDLE,
4504		};
4505
4506		schedstat_inc(sd, alb_count);
4507
4508		if (move_one_task(&env))
4509			schedstat_inc(sd, alb_pushed);
4510		else
4511			schedstat_inc(sd, alb_failed);
4512	}
4513	rcu_read_unlock();
4514	double_unlock_balance(busiest_rq, target_rq);
4515out_unlock:
4516	busiest_rq->active_balance = 0;
4517	raw_spin_unlock_irq(&busiest_rq->lock);
4518	return 0;
4519}
4520
4521#ifdef CONFIG_NO_HZ
4522/*
4523 * idle load balancing details
4524 * - When one of the busy CPUs notice that there may be an idle rebalancing
4525 *   needed, they will kick the idle load balancer, which then does idle
4526 *   load balancing for all the idle CPUs.
4527 */
4528static struct {
4529	cpumask_var_t idle_cpus_mask;
4530	atomic_t nr_cpus;
4531	unsigned long next_balance;     /* in jiffy units */
4532} nohz ____cacheline_aligned;
4533
4534static inline int find_new_ilb(int call_cpu)
4535{
4536	int ilb = cpumask_first(nohz.idle_cpus_mask);
4537
4538	if (ilb < nr_cpu_ids && idle_cpu(ilb))
4539		return ilb;
4540
4541	return nr_cpu_ids;
4542}
4543
4544/*
4545 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4546 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4547 * CPU (if there is one).
4548 */
4549static void nohz_balancer_kick(int cpu)
4550{
4551	int ilb_cpu;
4552
4553	nohz.next_balance++;
4554
4555	ilb_cpu = find_new_ilb(cpu);
4556
4557	if (ilb_cpu >= nr_cpu_ids)
4558		return;
4559
4560	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
4561		return;
4562	/*
4563	 * Use smp_send_reschedule() instead of resched_cpu().
4564	 * This way we generate a sched IPI on the target cpu which
4565	 * is idle. And the softirq performing nohz idle load balance
4566	 * will be run before returning from the IPI.
4567	 */
4568	smp_send_reschedule(ilb_cpu);
4569	return;
4570}
4571
4572static inline void clear_nohz_tick_stopped(int cpu)
4573{
4574	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
4575		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4576		atomic_dec(&nohz.nr_cpus);
4577		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4578	}
4579}
4580
4581static inline void set_cpu_sd_state_busy(void)
4582{
4583	struct sched_domain *sd;
4584	int cpu = smp_processor_id();
4585
4586	if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4587		return;
4588	clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4589
4590	rcu_read_lock();
4591	for_each_domain(cpu, sd)
4592		atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4593	rcu_read_unlock();
4594}
4595
4596void set_cpu_sd_state_idle(void)
4597{
4598	struct sched_domain *sd;
4599	int cpu = smp_processor_id();
4600
4601	if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4602		return;
4603	set_bit(NOHZ_IDLE, nohz_flags(cpu));
4604
4605	rcu_read_lock();
4606	for_each_domain(cpu, sd)
4607		atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4608	rcu_read_unlock();
4609}
4610
4611/*
4612 * This routine will record that this cpu is going idle with tick stopped.
4613 * This info will be used in performing idle load balancing in the future.
4614 */
4615void select_nohz_load_balancer(int stop_tick)
4616{
4617	int cpu = smp_processor_id();
4618
4619	/*
4620	 * If this cpu is going down, then nothing needs to be done.
4621	 */
4622	if (!cpu_active(cpu))
4623		return;
4624
4625	if (stop_tick) {
4626		if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
4627			return;
4628
4629		cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4630		atomic_inc(&nohz.nr_cpus);
4631		set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4632	}
4633	return;
4634}
4635
4636static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
4637					unsigned long action, void *hcpu)
4638{
4639	switch (action & ~CPU_TASKS_FROZEN) {
4640	case CPU_DYING:
4641		clear_nohz_tick_stopped(smp_processor_id());
4642		return NOTIFY_OK;
4643	default:
4644		return NOTIFY_DONE;
4645	}
4646}
4647#endif
4648
4649static DEFINE_SPINLOCK(balancing);
4650
4651/*
4652 * Scale the max load_balance interval with the number of CPUs in the system.
4653 * This trades load-balance latency on larger machines for less cross talk.
4654 */
4655void update_max_interval(void)
4656{
4657	max_load_balance_interval = HZ*num_online_cpus()/10;
4658}
4659
4660/*
4661 * It checks each scheduling domain to see if it is due to be balanced,
4662 * and initiates a balancing operation if so.
4663 *
4664 * Balancing parameters are set up in arch_init_sched_domains.
4665 */
4666static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4667{
4668	int balance = 1;
4669	struct rq *rq = cpu_rq(cpu);
4670	unsigned long interval;
4671	struct sched_domain *sd;
4672	/* Earliest time when we have to do rebalance again */
4673	unsigned long next_balance = jiffies + 60*HZ;
4674	int update_next_balance = 0;
4675	int need_serialize;
4676
4677	update_shares(cpu);
4678
4679	rcu_read_lock();
4680	for_each_domain(cpu, sd) {
4681		if (!(sd->flags & SD_LOAD_BALANCE))
4682			continue;
4683
4684		interval = sd->balance_interval;
4685		if (idle != CPU_IDLE)
4686			interval *= sd->busy_factor;
4687
4688		/* scale ms to jiffies */
4689		interval = msecs_to_jiffies(interval);
4690		interval = clamp(interval, 1UL, max_load_balance_interval);
4691
4692		need_serialize = sd->flags & SD_SERIALIZE;
4693
4694		if (need_serialize) {
4695			if (!spin_trylock(&balancing))
4696				goto out;
4697		}
4698
4699		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4700			if (load_balance(cpu, rq, sd, idle, &balance)) {
4701				/*
4702				 * We've pulled tasks over so either we're no
4703				 * longer idle.
4704				 */
4705				idle = CPU_NOT_IDLE;
4706			}
4707			sd->last_balance = jiffies;
4708		}
4709		if (need_serialize)
4710			spin_unlock(&balancing);
4711out:
4712		if (time_after(next_balance, sd->last_balance + interval)) {
4713			next_balance = sd->last_balance + interval;
4714			update_next_balance = 1;
4715		}
4716
4717		/*
4718		 * Stop the load balance at this level. There is another
4719		 * CPU in our sched group which is doing load balancing more
4720		 * actively.
4721		 */
4722		if (!balance)
4723			break;
4724	}
4725	rcu_read_unlock();
4726
4727	/*
4728	 * next_balance will be updated only when there is a need.
4729	 * When the cpu is attached to null domain for ex, it will not be
4730	 * updated.
4731	 */
4732	if (likely(update_next_balance))
4733		rq->next_balance = next_balance;
4734}
4735
4736#ifdef CONFIG_NO_HZ
4737/*
4738 * In CONFIG_NO_HZ case, the idle balance kickee will do the
4739 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4740 */
4741static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4742{
4743	struct rq *this_rq = cpu_rq(this_cpu);
4744	struct rq *rq;
4745	int balance_cpu;
4746
4747	if (idle != CPU_IDLE ||
4748	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
4749		goto end;
4750
4751	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
4752		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
4753			continue;
4754
4755		/*
4756		 * If this cpu gets work to do, stop the load balancing
4757		 * work being done for other cpus. Next load
4758		 * balancing owner will pick it up.
4759		 */
4760		if (need_resched())
4761			break;
4762
4763		raw_spin_lock_irq(&this_rq->lock);
4764		update_rq_clock(this_rq);
4765		update_idle_cpu_load(this_rq);
4766		raw_spin_unlock_irq(&this_rq->lock);
4767
4768		rebalance_domains(balance_cpu, CPU_IDLE);
4769
4770		rq = cpu_rq(balance_cpu);
4771		if (time_after(this_rq->next_balance, rq->next_balance))
4772			this_rq->next_balance = rq->next_balance;
4773	}
4774	nohz.next_balance = this_rq->next_balance;
4775end:
4776	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
4777}
4778
4779/*
4780 * Current heuristic for kicking the idle load balancer in the presence
4781 * of an idle cpu is the system.
4782 *   - This rq has more than one task.
4783 *   - At any scheduler domain level, this cpu's scheduler group has multiple
4784 *     busy cpu's exceeding the group's power.
4785 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
4786 *     domain span are idle.
4787 */
4788static inline int nohz_kick_needed(struct rq *rq, int cpu)
4789{
4790	unsigned long now = jiffies;
4791	struct sched_domain *sd;
4792
4793	if (unlikely(idle_cpu(cpu)))
4794		return 0;
4795
4796       /*
4797	* We may be recently in ticked or tickless idle mode. At the first
4798	* busy tick after returning from idle, we will update the busy stats.
4799	*/
4800	set_cpu_sd_state_busy();
4801	clear_nohz_tick_stopped(cpu);
4802
4803	/*
4804	 * None are in tickless mode and hence no need for NOHZ idle load
4805	 * balancing.
4806	 */
4807	if (likely(!atomic_read(&nohz.nr_cpus)))
4808		return 0;
4809
4810	if (time_before(now, nohz.next_balance))
4811		return 0;
4812
4813	if (rq->nr_running >= 2)
4814		goto need_kick;
4815
4816	rcu_read_lock();
4817	for_each_domain(cpu, sd) {
4818		struct sched_group *sg = sd->groups;
4819		struct sched_group_power *sgp = sg->sgp;
4820		int nr_busy = atomic_read(&sgp->nr_busy_cpus);
4821
4822		if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
4823			goto need_kick_unlock;
4824
4825		if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
4826		    && (cpumask_first_and(nohz.idle_cpus_mask,
4827					  sched_domain_span(sd)) < cpu))
4828			goto need_kick_unlock;
4829
4830		if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
4831			break;
4832	}
4833	rcu_read_unlock();
4834	return 0;
4835
4836need_kick_unlock:
4837	rcu_read_unlock();
4838need_kick:
4839	return 1;
4840}
4841#else
4842static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4843#endif
4844
4845/*
4846 * run_rebalance_domains is triggered when needed from the scheduler tick.
4847 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4848 */
4849static void run_rebalance_domains(struct softirq_action *h)
4850{
4851	int this_cpu = smp_processor_id();
4852	struct rq *this_rq = cpu_rq(this_cpu);
4853	enum cpu_idle_type idle = this_rq->idle_balance ?
4854						CPU_IDLE : CPU_NOT_IDLE;
4855
4856	rebalance_domains(this_cpu, idle);
4857
4858	/*
4859	 * If this cpu has a pending nohz_balance_kick, then do the
4860	 * balancing on behalf of the other idle cpus whose ticks are
4861	 * stopped.
4862	 */
4863	nohz_idle_balance(this_cpu, idle);
4864}
4865
4866static inline int on_null_domain(int cpu)
4867{
4868	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
4869}
4870
4871/*
4872 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4873 */
4874void trigger_load_balance(struct rq *rq, int cpu)
4875{
4876	/* Don't need to rebalance while attached to NULL domain */
4877	if (time_after_eq(jiffies, rq->next_balance) &&
4878	    likely(!on_null_domain(cpu)))
4879		raise_softirq(SCHED_SOFTIRQ);
4880#ifdef CONFIG_NO_HZ
4881	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4882		nohz_balancer_kick(cpu);
4883#endif
4884}
4885
4886static void rq_online_fair(struct rq *rq)
4887{
4888	update_sysctl();
4889}
4890
4891static void rq_offline_fair(struct rq *rq)
4892{
4893	update_sysctl();
4894}
4895
4896#endif /* CONFIG_SMP */
4897
4898/*
4899 * scheduler tick hitting a task of our scheduling class:
4900 */
4901static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4902{
4903	struct cfs_rq *cfs_rq;
4904	struct sched_entity *se = &curr->se;
4905
4906	for_each_sched_entity(se) {
4907		cfs_rq = cfs_rq_of(se);
4908		entity_tick(cfs_rq, se, queued);
4909	}
4910}
4911
4912/*
4913 * called on fork with the child task as argument from the parent's context
4914 *  - child not yet on the tasklist
4915 *  - preemption disabled
4916 */
4917static void task_fork_fair(struct task_struct *p)
4918{
4919	struct cfs_rq *cfs_rq;
4920	struct sched_entity *se = &p->se, *curr;
4921	int this_cpu = smp_processor_id();
4922	struct rq *rq = this_rq();
4923	unsigned long flags;
4924
4925	raw_spin_lock_irqsave(&rq->lock, flags);
4926
4927	update_rq_clock(rq);
4928
4929	cfs_rq = task_cfs_rq(current);
4930	curr = cfs_rq->curr;
4931
4932	if (unlikely(task_cpu(p) != this_cpu)) {
4933		rcu_read_lock();
4934		__set_task_cpu(p, this_cpu);
4935		rcu_read_unlock();
4936	}
4937
4938	update_curr(cfs_rq);
4939
4940	if (curr)
4941		se->vruntime = curr->vruntime;
4942	place_entity(cfs_rq, se, 1);
4943
4944	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4945		/*
4946		 * Upon rescheduling, sched_class::put_prev_task() will place
4947		 * 'current' within the tree based on its new key value.
4948		 */
4949		swap(curr->vruntime, se->vruntime);
4950		resched_task(rq->curr);
4951	}
4952
4953	se->vruntime -= cfs_rq->min_vruntime;
4954
4955	raw_spin_unlock_irqrestore(&rq->lock, flags);
4956}
4957
4958/*
4959 * Priority of the task has changed. Check to see if we preempt
4960 * the current task.
4961 */
4962static void
4963prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
4964{
4965	if (!p->se.on_rq)
4966		return;
4967
4968	/*
4969	 * Reschedule if we are currently running on this runqueue and
4970	 * our priority decreased, or if we are not currently running on
4971	 * this runqueue and our priority is higher than the current's
4972	 */
4973	if (rq->curr == p) {
4974		if (p->prio > oldprio)
4975			resched_task(rq->curr);
4976	} else
4977		check_preempt_curr(rq, p, 0);
4978}
4979
4980static void switched_from_fair(struct rq *rq, struct task_struct *p)
4981{
4982	struct sched_entity *se = &p->se;
4983	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4984
4985	/*
4986	 * Ensure the task's vruntime is normalized, so that when its
4987	 * switched back to the fair class the enqueue_entity(.flags=0) will
4988	 * do the right thing.
4989	 *
4990	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4991	 * have normalized the vruntime, if it was !on_rq, then only when
4992	 * the task is sleeping will it still have non-normalized vruntime.
4993	 */
4994	if (!se->on_rq && p->state != TASK_RUNNING) {
4995		/*
4996		 * Fix up our vruntime so that the current sleep doesn't
4997		 * cause 'unlimited' sleep bonus.
4998		 */
4999		place_entity(cfs_rq, se, 0);
5000		se->vruntime -= cfs_rq->min_vruntime;
5001	}
5002}
5003
5004/*
5005 * We switched to the sched_fair class.
5006 */
5007static void switched_to_fair(struct rq *rq, struct task_struct *p)
5008{
5009	if (!p->se.on_rq)
5010		return;
5011
5012	/*
5013	 * We were most likely switched from sched_rt, so
5014	 * kick off the schedule if running, otherwise just see
5015	 * if we can still preempt the current task.
5016	 */
5017	if (rq->curr == p)
5018		resched_task(rq->curr);
5019	else
5020		check_preempt_curr(rq, p, 0);
5021}
5022
5023/* Account for a task changing its policy or group.
5024 *
5025 * This routine is mostly called to set cfs_rq->curr field when a task
5026 * migrates between groups/classes.
5027 */
5028static void set_curr_task_fair(struct rq *rq)
5029{
5030	struct sched_entity *se = &rq->curr->se;
5031
5032	for_each_sched_entity(se) {
5033		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5034
5035		set_next_entity(cfs_rq, se);
5036		/* ensure bandwidth has been allocated on our new cfs_rq */
5037		account_cfs_rq_runtime(cfs_rq, 0);
5038	}
5039}
5040
5041void init_cfs_rq(struct cfs_rq *cfs_rq)
5042{
5043	cfs_rq->tasks_timeline = RB_ROOT;
5044	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5045#ifndef CONFIG_64BIT
5046	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5047#endif
5048}
5049
5050#ifdef CONFIG_FAIR_GROUP_SCHED
5051static void task_move_group_fair(struct task_struct *p, int on_rq)
5052{
5053	/*
5054	 * If the task was not on the rq at the time of this cgroup movement
5055	 * it must have been asleep, sleeping tasks keep their ->vruntime
5056	 * absolute on their old rq until wakeup (needed for the fair sleeper
5057	 * bonus in place_entity()).
5058	 *
5059	 * If it was on the rq, we've just 'preempted' it, which does convert
5060	 * ->vruntime to a relative base.
5061	 *
5062	 * Make sure both cases convert their relative position when migrating
5063	 * to another cgroup's rq. This does somewhat interfere with the
5064	 * fair sleeper stuff for the first placement, but who cares.
5065	 */
5066	/*
5067	 * When !on_rq, vruntime of the task has usually NOT been normalized.
5068	 * But there are some cases where it has already been normalized:
5069	 *
5070	 * - Moving a forked child which is waiting for being woken up by
5071	 *   wake_up_new_task().
5072	 * - Moving a task which has been woken up by try_to_wake_up() and
5073	 *   waiting for actually being woken up by sched_ttwu_pending().
5074	 *
5075	 * To prevent boost or penalty in the new cfs_rq caused by delta
5076	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5077	 */
5078	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5079		on_rq = 1;
5080
5081	if (!on_rq)
5082		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5083	set_task_rq(p, task_cpu(p));
5084	if (!on_rq)
5085		p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
5086}
5087
5088void free_fair_sched_group(struct task_group *tg)
5089{
5090	int i;
5091
5092	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5093
5094	for_each_possible_cpu(i) {
5095		if (tg->cfs_rq)
5096			kfree(tg->cfs_rq[i]);
5097		if (tg->se)
5098			kfree(tg->se[i]);
5099	}
5100
5101	kfree(tg->cfs_rq);
5102	kfree(tg->se);
5103}
5104
5105int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5106{
5107	struct cfs_rq *cfs_rq;
5108	struct sched_entity *se;
5109	int i;
5110
5111	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5112	if (!tg->cfs_rq)
5113		goto err;
5114	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5115	if (!tg->se)
5116		goto err;
5117
5118	tg->shares = NICE_0_LOAD;
5119
5120	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5121
5122	for_each_possible_cpu(i) {
5123		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5124				      GFP_KERNEL, cpu_to_node(i));
5125		if (!cfs_rq)
5126			goto err;
5127
5128		se = kzalloc_node(sizeof(struct sched_entity),
5129				  GFP_KERNEL, cpu_to_node(i));
5130		if (!se)
5131			goto err_free_rq;
5132
5133		init_cfs_rq(cfs_rq);
5134		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5135	}
5136
5137	return 1;
5138
5139err_free_rq:
5140	kfree(cfs_rq);
5141err:
5142	return 0;
5143}
5144
5145void unregister_fair_sched_group(struct task_group *tg, int cpu)
5146{
5147	struct rq *rq = cpu_rq(cpu);
5148	unsigned long flags;
5149
5150	/*
5151	* Only empty task groups can be destroyed; so we can speculatively
5152	* check on_list without danger of it being re-added.
5153	*/
5154	if (!tg->cfs_rq[cpu]->on_list)
5155		return;
5156
5157	raw_spin_lock_irqsave(&rq->lock, flags);
5158	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5159	raw_spin_unlock_irqrestore(&rq->lock, flags);
5160}
5161
5162void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5163			struct sched_entity *se, int cpu,
5164			struct sched_entity *parent)
5165{
5166	struct rq *rq = cpu_rq(cpu);
5167
5168	cfs_rq->tg = tg;
5169	cfs_rq->rq = rq;
5170#ifdef CONFIG_SMP
5171	/* allow initial update_cfs_load() to truncate */
5172	cfs_rq->load_stamp = 1;
5173#endif
5174	init_cfs_rq_runtime(cfs_rq);
5175
5176	tg->cfs_rq[cpu] = cfs_rq;
5177	tg->se[cpu] = se;
5178
5179	/* se could be NULL for root_task_group */
5180	if (!se)
5181		return;
5182
5183	if (!parent)
5184		se->cfs_rq = &rq->cfs;
5185	else
5186		se->cfs_rq = parent->my_q;
5187
5188	se->my_q = cfs_rq;
5189	update_load_set(&se->load, 0);
5190	se->parent = parent;
5191}
5192
5193static DEFINE_MUTEX(shares_mutex);
5194
5195int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5196{
5197	int i;
5198	unsigned long flags;
5199
5200	/*
5201	 * We can't change the weight of the root cgroup.
5202	 */
5203	if (!tg->se[0])
5204		return -EINVAL;
5205
5206	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5207
5208	mutex_lock(&shares_mutex);
5209	if (tg->shares == shares)
5210		goto done;
5211
5212	tg->shares = shares;
5213	for_each_possible_cpu(i) {
5214		struct rq *rq = cpu_rq(i);
5215		struct sched_entity *se;
5216
5217		se = tg->se[i];
5218		/* Propagate contribution to hierarchy */
5219		raw_spin_lock_irqsave(&rq->lock, flags);
5220		for_each_sched_entity(se)
5221			update_cfs_shares(group_cfs_rq(se));
5222		raw_spin_unlock_irqrestore(&rq->lock, flags);
5223	}
5224
5225done:
5226	mutex_unlock(&shares_mutex);
5227	return 0;
5228}
5229#else /* CONFIG_FAIR_GROUP_SCHED */
5230
5231void free_fair_sched_group(struct task_group *tg) { }
5232
5233int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5234{
5235	return 1;
5236}
5237
5238void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5239
5240#endif /* CONFIG_FAIR_GROUP_SCHED */
5241
5242
5243static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5244{
5245	struct sched_entity *se = &task->se;
5246	unsigned int rr_interval = 0;
5247
5248	/*
5249	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5250	 * idle runqueue:
5251	 */
5252	if (rq->cfs.load.weight)
5253		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5254
5255	return rr_interval;
5256}
5257
5258/*
5259 * All the scheduling class methods:
5260 */
5261const struct sched_class fair_sched_class = {
5262	.next			= &idle_sched_class,
5263	.enqueue_task		= enqueue_task_fair,
5264	.dequeue_task		= dequeue_task_fair,
5265	.yield_task		= yield_task_fair,
5266	.yield_to_task		= yield_to_task_fair,
5267
5268	.check_preempt_curr	= check_preempt_wakeup,
5269
5270	.pick_next_task		= pick_next_task_fair,
5271	.put_prev_task		= put_prev_task_fair,
5272
5273#ifdef CONFIG_SMP
5274	.select_task_rq		= select_task_rq_fair,
5275
5276	.rq_online		= rq_online_fair,
5277	.rq_offline		= rq_offline_fair,
5278
5279	.task_waking		= task_waking_fair,
5280#endif
5281
5282	.set_curr_task          = set_curr_task_fair,
5283	.task_tick		= task_tick_fair,
5284	.task_fork		= task_fork_fair,
5285
5286	.prio_changed		= prio_changed_fair,
5287	.switched_from		= switched_from_fair,
5288	.switched_to		= switched_to_fair,
5289
5290	.get_rr_interval	= get_rr_interval_fair,
5291
5292#ifdef CONFIG_FAIR_GROUP_SCHED
5293	.task_move_group	= task_move_group_fair,
5294#endif
5295};
5296
5297#ifdef CONFIG_SCHED_DEBUG
5298void print_cfs_stats(struct seq_file *m, int cpu)
5299{
5300	struct cfs_rq *cfs_rq;
5301
5302	rcu_read_lock();
5303	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5304		print_cfs_rq(m, cpu, cfs_rq);
5305	rcu_read_unlock();
5306}
5307#endif
5308
5309__init void init_sched_fair_class(void)
5310{
5311#ifdef CONFIG_SMP
5312	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5313
5314#ifdef CONFIG_NO_HZ
5315	nohz.next_balance = jiffies;
5316	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5317	cpu_notifier(sched_ilb_notifier, 0);
5318#endif
5319#endif /* SMP */
5320
5321}