Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Pid namespaces
  3 *
  4 * Authors:
  5 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  6 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  7 *     Many thanks to Oleg Nesterov for comments and help
  8 *
  9 */
 10
 11#include <linux/pid.h>
 12#include <linux/pid_namespace.h>
 13#include <linux/syscalls.h>
 14#include <linux/err.h>
 15#include <linux/acct.h>
 16#include <linux/slab.h>
 17#include <linux/proc_fs.h>
 
 18
 19#define BITS_PER_PAGE		(PAGE_SIZE*8)
 20
 21struct pid_cache {
 22	int nr_ids;
 23	char name[16];
 24	struct kmem_cache *cachep;
 25	struct list_head list;
 26};
 27
 28static LIST_HEAD(pid_caches_lh);
 29static DEFINE_MUTEX(pid_caches_mutex);
 30static struct kmem_cache *pid_ns_cachep;
 31
 32/*
 33 * creates the kmem cache to allocate pids from.
 34 * @nr_ids: the number of numerical ids this pid will have to carry
 35 */
 36
 37static struct kmem_cache *create_pid_cachep(int nr_ids)
 38{
 39	struct pid_cache *pcache;
 40	struct kmem_cache *cachep;
 41
 42	mutex_lock(&pid_caches_mutex);
 43	list_for_each_entry(pcache, &pid_caches_lh, list)
 44		if (pcache->nr_ids == nr_ids)
 45			goto out;
 46
 47	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
 48	if (pcache == NULL)
 49		goto err_alloc;
 50
 51	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
 52	cachep = kmem_cache_create(pcache->name,
 53			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
 54			0, SLAB_HWCACHE_ALIGN, NULL);
 55	if (cachep == NULL)
 56		goto err_cachep;
 57
 58	pcache->nr_ids = nr_ids;
 59	pcache->cachep = cachep;
 60	list_add(&pcache->list, &pid_caches_lh);
 61out:
 62	mutex_unlock(&pid_caches_mutex);
 63	return pcache->cachep;
 64
 65err_cachep:
 66	kfree(pcache);
 67err_alloc:
 68	mutex_unlock(&pid_caches_mutex);
 69	return NULL;
 70}
 71
 72static struct pid_namespace *create_pid_namespace(struct pid_namespace *parent_pid_ns)
 73{
 74	struct pid_namespace *ns;
 75	unsigned int level = parent_pid_ns->level + 1;
 76	int i, err = -ENOMEM;
 77
 78	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
 79	if (ns == NULL)
 80		goto out;
 81
 82	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
 83	if (!ns->pidmap[0].page)
 84		goto out_free;
 85
 86	ns->pid_cachep = create_pid_cachep(level + 1);
 87	if (ns->pid_cachep == NULL)
 88		goto out_free_map;
 89
 90	kref_init(&ns->kref);
 91	ns->level = level;
 92	ns->parent = get_pid_ns(parent_pid_ns);
 93
 94	set_bit(0, ns->pidmap[0].page);
 95	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
 96
 97	for (i = 1; i < PIDMAP_ENTRIES; i++)
 98		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
 99
100	err = pid_ns_prepare_proc(ns);
101	if (err)
102		goto out_put_parent_pid_ns;
103
104	return ns;
105
106out_put_parent_pid_ns:
107	put_pid_ns(parent_pid_ns);
108out_free_map:
109	kfree(ns->pidmap[0].page);
110out_free:
111	kmem_cache_free(pid_ns_cachep, ns);
112out:
113	return ERR_PTR(err);
114}
115
116static void destroy_pid_namespace(struct pid_namespace *ns)
117{
118	int i;
119
120	for (i = 0; i < PIDMAP_ENTRIES; i++)
121		kfree(ns->pidmap[i].page);
122	kmem_cache_free(pid_ns_cachep, ns);
123}
124
125struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
126{
127	if (!(flags & CLONE_NEWPID))
128		return get_pid_ns(old_ns);
129	if (flags & (CLONE_THREAD|CLONE_PARENT))
130		return ERR_PTR(-EINVAL);
131	return create_pid_namespace(old_ns);
132}
133
134void free_pid_ns(struct kref *kref)
135{
136	struct pid_namespace *ns, *parent;
137
138	ns = container_of(kref, struct pid_namespace, kref);
139
140	parent = ns->parent;
141	destroy_pid_namespace(ns);
142
143	if (parent != NULL)
144		put_pid_ns(parent);
145}
146
147void zap_pid_ns_processes(struct pid_namespace *pid_ns)
148{
149	int nr;
150	int rc;
151	struct task_struct *task;
 
 
 
 
 
152
153	/*
154	 * The last thread in the cgroup-init thread group is terminating.
155	 * Find remaining pid_ts in the namespace, signal and wait for them
156	 * to exit.
157	 *
158	 * Note:  This signals each threads in the namespace - even those that
159	 * 	  belong to the same thread group, To avoid this, we would have
160	 * 	  to walk the entire tasklist looking a processes in this
161	 * 	  namespace, but that could be unnecessarily expensive if the
162	 * 	  pid namespace has just a few processes. Or we need to
163	 * 	  maintain a tasklist for each pid namespace.
164	 *
165	 */
166	read_lock(&tasklist_lock);
167	nr = next_pidmap(pid_ns, 1);
168	while (nr > 0) {
169		rcu_read_lock();
170
171		/*
172		 * Any nested-container's init processes won't ignore the
173		 * SEND_SIG_NOINFO signal, see send_signal()->si_fromuser().
174		 */
175		task = pid_task(find_vpid(nr), PIDTYPE_PID);
176		if (task)
177			send_sig_info(SIGKILL, SEND_SIG_NOINFO, task);
178
179		rcu_read_unlock();
180
181		nr = next_pidmap(pid_ns, nr);
182	}
183	read_unlock(&tasklist_lock);
184
 
185	do {
186		clear_thread_flag(TIF_SIGPENDING);
187		rc = sys_wait4(-1, NULL, __WALL, NULL);
188	} while (rc != -ECHILD);
189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190	acct_exit_ns(pid_ns);
191	return;
192}
193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194static __init int pid_namespaces_init(void)
195{
196	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
 
 
 
 
197	return 0;
198}
199
200__initcall(pid_namespaces_init);
v3.5.6
  1/*
  2 * Pid namespaces
  3 *
  4 * Authors:
  5 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  6 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  7 *     Many thanks to Oleg Nesterov for comments and help
  8 *
  9 */
 10
 11#include <linux/pid.h>
 12#include <linux/pid_namespace.h>
 13#include <linux/syscalls.h>
 14#include <linux/err.h>
 15#include <linux/acct.h>
 16#include <linux/slab.h>
 17#include <linux/proc_fs.h>
 18#include <linux/reboot.h>
 19
 20#define BITS_PER_PAGE		(PAGE_SIZE*8)
 21
 22struct pid_cache {
 23	int nr_ids;
 24	char name[16];
 25	struct kmem_cache *cachep;
 26	struct list_head list;
 27};
 28
 29static LIST_HEAD(pid_caches_lh);
 30static DEFINE_MUTEX(pid_caches_mutex);
 31static struct kmem_cache *pid_ns_cachep;
 32
 33/*
 34 * creates the kmem cache to allocate pids from.
 35 * @nr_ids: the number of numerical ids this pid will have to carry
 36 */
 37
 38static struct kmem_cache *create_pid_cachep(int nr_ids)
 39{
 40	struct pid_cache *pcache;
 41	struct kmem_cache *cachep;
 42
 43	mutex_lock(&pid_caches_mutex);
 44	list_for_each_entry(pcache, &pid_caches_lh, list)
 45		if (pcache->nr_ids == nr_ids)
 46			goto out;
 47
 48	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
 49	if (pcache == NULL)
 50		goto err_alloc;
 51
 52	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
 53	cachep = kmem_cache_create(pcache->name,
 54			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
 55			0, SLAB_HWCACHE_ALIGN, NULL);
 56	if (cachep == NULL)
 57		goto err_cachep;
 58
 59	pcache->nr_ids = nr_ids;
 60	pcache->cachep = cachep;
 61	list_add(&pcache->list, &pid_caches_lh);
 62out:
 63	mutex_unlock(&pid_caches_mutex);
 64	return pcache->cachep;
 65
 66err_cachep:
 67	kfree(pcache);
 68err_alloc:
 69	mutex_unlock(&pid_caches_mutex);
 70	return NULL;
 71}
 72
 73static struct pid_namespace *create_pid_namespace(struct pid_namespace *parent_pid_ns)
 74{
 75	struct pid_namespace *ns;
 76	unsigned int level = parent_pid_ns->level + 1;
 77	int i, err = -ENOMEM;
 78
 79	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
 80	if (ns == NULL)
 81		goto out;
 82
 83	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
 84	if (!ns->pidmap[0].page)
 85		goto out_free;
 86
 87	ns->pid_cachep = create_pid_cachep(level + 1);
 88	if (ns->pid_cachep == NULL)
 89		goto out_free_map;
 90
 91	kref_init(&ns->kref);
 92	ns->level = level;
 93	ns->parent = get_pid_ns(parent_pid_ns);
 94
 95	set_bit(0, ns->pidmap[0].page);
 96	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
 97
 98	for (i = 1; i < PIDMAP_ENTRIES; i++)
 99		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
100
101	err = pid_ns_prepare_proc(ns);
102	if (err)
103		goto out_put_parent_pid_ns;
104
105	return ns;
106
107out_put_parent_pid_ns:
108	put_pid_ns(parent_pid_ns);
109out_free_map:
110	kfree(ns->pidmap[0].page);
111out_free:
112	kmem_cache_free(pid_ns_cachep, ns);
113out:
114	return ERR_PTR(err);
115}
116
117static void destroy_pid_namespace(struct pid_namespace *ns)
118{
119	int i;
120
121	for (i = 0; i < PIDMAP_ENTRIES; i++)
122		kfree(ns->pidmap[i].page);
123	kmem_cache_free(pid_ns_cachep, ns);
124}
125
126struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
127{
128	if (!(flags & CLONE_NEWPID))
129		return get_pid_ns(old_ns);
130	if (flags & (CLONE_THREAD|CLONE_PARENT))
131		return ERR_PTR(-EINVAL);
132	return create_pid_namespace(old_ns);
133}
134
135void free_pid_ns(struct kref *kref)
136{
137	struct pid_namespace *ns, *parent;
138
139	ns = container_of(kref, struct pid_namespace, kref);
140
141	parent = ns->parent;
142	destroy_pid_namespace(ns);
143
144	if (parent != NULL)
145		put_pid_ns(parent);
146}
147
148void zap_pid_ns_processes(struct pid_namespace *pid_ns)
149{
150	int nr;
151	int rc;
152	struct task_struct *task, *me = current;
153
154	/* Ignore SIGCHLD causing any terminated children to autoreap */
155	spin_lock_irq(&me->sighand->siglock);
156	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
157	spin_unlock_irq(&me->sighand->siglock);
158
159	/*
160	 * The last thread in the cgroup-init thread group is terminating.
161	 * Find remaining pid_ts in the namespace, signal and wait for them
162	 * to exit.
163	 *
164	 * Note:  This signals each threads in the namespace - even those that
165	 * 	  belong to the same thread group, To avoid this, we would have
166	 * 	  to walk the entire tasklist looking a processes in this
167	 * 	  namespace, but that could be unnecessarily expensive if the
168	 * 	  pid namespace has just a few processes. Or we need to
169	 * 	  maintain a tasklist for each pid namespace.
170	 *
171	 */
172	read_lock(&tasklist_lock);
173	nr = next_pidmap(pid_ns, 1);
174	while (nr > 0) {
175		rcu_read_lock();
176
 
 
 
 
177		task = pid_task(find_vpid(nr), PIDTYPE_PID);
178		if (task && !__fatal_signal_pending(task))
179			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
180
181		rcu_read_unlock();
182
183		nr = next_pidmap(pid_ns, nr);
184	}
185	read_unlock(&tasklist_lock);
186
187	/* Firstly reap the EXIT_ZOMBIE children we may have. */
188	do {
189		clear_thread_flag(TIF_SIGPENDING);
190		rc = sys_wait4(-1, NULL, __WALL, NULL);
191	} while (rc != -ECHILD);
192
193	/*
194	 * sys_wait4() above can't reap the TASK_DEAD children.
195	 * Make sure they all go away, see __unhash_process().
196	 */
197	for (;;) {
198		bool need_wait = false;
199
200		read_lock(&tasklist_lock);
201		if (!list_empty(&current->children)) {
202			__set_current_state(TASK_UNINTERRUPTIBLE);
203			need_wait = true;
204		}
205		read_unlock(&tasklist_lock);
206
207		if (!need_wait)
208			break;
209		schedule();
210	}
211
212	if (pid_ns->reboot)
213		current->signal->group_exit_code = pid_ns->reboot;
214
215	acct_exit_ns(pid_ns);
216	return;
217}
218
219#ifdef CONFIG_CHECKPOINT_RESTORE
220static int pid_ns_ctl_handler(struct ctl_table *table, int write,
221		void __user *buffer, size_t *lenp, loff_t *ppos)
222{
223	struct ctl_table tmp = *table;
224
225	if (write && !capable(CAP_SYS_ADMIN))
226		return -EPERM;
227
228	/*
229	 * Writing directly to ns' last_pid field is OK, since this field
230	 * is volatile in a living namespace anyway and a code writing to
231	 * it should synchronize its usage with external means.
232	 */
233
234	tmp.data = &current->nsproxy->pid_ns->last_pid;
235	return proc_dointvec(&tmp, write, buffer, lenp, ppos);
236}
237
238static struct ctl_table pid_ns_ctl_table[] = {
239	{
240		.procname = "ns_last_pid",
241		.maxlen = sizeof(int),
242		.mode = 0666, /* permissions are checked in the handler */
243		.proc_handler = pid_ns_ctl_handler,
244	},
245	{ }
246};
247static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
248#endif	/* CONFIG_CHECKPOINT_RESTORE */
249
250int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
251{
252	if (pid_ns == &init_pid_ns)
253		return 0;
254
255	switch (cmd) {
256	case LINUX_REBOOT_CMD_RESTART2:
257	case LINUX_REBOOT_CMD_RESTART:
258		pid_ns->reboot = SIGHUP;
259		break;
260
261	case LINUX_REBOOT_CMD_POWER_OFF:
262	case LINUX_REBOOT_CMD_HALT:
263		pid_ns->reboot = SIGINT;
264		break;
265	default:
266		return -EINVAL;
267	}
268
269	read_lock(&tasklist_lock);
270	force_sig(SIGKILL, pid_ns->child_reaper);
271	read_unlock(&tasklist_lock);
272
273	do_exit(0);
274
275	/* Not reached */
276	return 0;
277}
278
279static __init int pid_namespaces_init(void)
280{
281	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
282
283#ifdef CONFIG_CHECKPOINT_RESTORE
284	register_sysctl_paths(kern_path, pid_ns_ctl_table);
285#endif
286	return 0;
287}
288
289__initcall(pid_namespaces_init);