Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Copyright (c) 2009 Atheros Communications Inc.
  3 * Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
  4 *
  5 * Permission to use, copy, modify, and/or distribute this software for any
  6 * purpose with or without fee is hereby granted, provided that the above
  7 * copyright notice and this permission notice appear in all copies.
  8 *
  9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 16 */
 17
 
 18#include <asm/unaligned.h>
 19#include <net/mac80211.h>
 20
 21#include "ath.h"
 22#include "reg.h"
 23
 24#define REG_READ			(common->ops->read)
 25#define REG_WRITE(_ah, _reg, _val)	(common->ops->write)(_ah, _val, _reg)
 26#define ENABLE_REGWRITE_BUFFER(_ah)			\
 27	if (common->ops->enable_write_buffer)		\
 28		common->ops->enable_write_buffer((_ah));
 29
 30#define REGWRITE_BUFFER_FLUSH(_ah)			\
 31	if (common->ops->write_flush)			\
 32		common->ops->write_flush((_ah));
 33
 34
 35#define IEEE80211_WEP_NKID      4       /* number of key ids */
 36
 37/************************/
 38/* Key Cache Management */
 39/************************/
 40
 41bool ath_hw_keyreset(struct ath_common *common, u16 entry)
 42{
 43	u32 keyType;
 44	void *ah = common->ah;
 45
 46	if (entry >= common->keymax) {
 47		ath_err(common, "keycache entry %u out of range\n", entry);
 48		return false;
 49	}
 50
 51	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
 52
 53	ENABLE_REGWRITE_BUFFER(ah);
 54
 55	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
 56	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
 57	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
 58	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
 59	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
 60	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
 61	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
 62	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
 63
 64	if (keyType == AR_KEYTABLE_TYPE_TKIP) {
 65		u16 micentry = entry + 64;
 66
 67		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
 68		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
 69		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
 70		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
 71		if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
 72			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
 73			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
 74				  AR_KEYTABLE_TYPE_CLR);
 75		}
 76
 77	}
 78
 79	REGWRITE_BUFFER_FLUSH(ah);
 80
 81	return true;
 82}
 83EXPORT_SYMBOL(ath_hw_keyreset);
 84
 85static bool ath_hw_keysetmac(struct ath_common *common,
 86			     u16 entry, const u8 *mac)
 87{
 88	u32 macHi, macLo;
 89	u32 unicast_flag = AR_KEYTABLE_VALID;
 90	void *ah = common->ah;
 91
 92	if (entry >= common->keymax) {
 93		ath_err(common, "keycache entry %u out of range\n", entry);
 94		return false;
 95	}
 96
 97	if (mac != NULL) {
 98		/*
 99		 * AR_KEYTABLE_VALID indicates that the address is a unicast
100		 * address, which must match the transmitter address for
101		 * decrypting frames.
102		 * Not setting this bit allows the hardware to use the key
103		 * for multicast frame decryption.
104		 */
105		if (mac[0] & 0x01)
106			unicast_flag = 0;
107
108		macLo = get_unaligned_le32(mac);
109		macHi = get_unaligned_le16(mac + 4);
110		macLo >>= 1;
111		macLo |= (macHi & 1) << 31;
112		macHi >>= 1;
113	} else {
114		macLo = macHi = 0;
115	}
116	ENABLE_REGWRITE_BUFFER(ah);
117
118	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
119	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
120
121	REGWRITE_BUFFER_FLUSH(ah);
122
123	return true;
124}
125
126static bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry,
127				      const struct ath_keyval *k,
128				      const u8 *mac)
129{
130	void *ah = common->ah;
131	u32 key0, key1, key2, key3, key4;
132	u32 keyType;
133
134	if (entry >= common->keymax) {
135		ath_err(common, "keycache entry %u out of range\n", entry);
136		return false;
137	}
138
139	switch (k->kv_type) {
140	case ATH_CIPHER_AES_OCB:
141		keyType = AR_KEYTABLE_TYPE_AES;
142		break;
143	case ATH_CIPHER_AES_CCM:
144		if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) {
145			ath_dbg(common, ATH_DBG_ANY,
146				"AES-CCM not supported by this mac rev\n");
147			return false;
148		}
149		keyType = AR_KEYTABLE_TYPE_CCM;
150		break;
151	case ATH_CIPHER_TKIP:
152		keyType = AR_KEYTABLE_TYPE_TKIP;
153		if (entry + 64 >= common->keymax) {
154			ath_dbg(common, ATH_DBG_ANY,
155				"entry %u inappropriate for TKIP\n", entry);
156			return false;
157		}
158		break;
159	case ATH_CIPHER_WEP:
160		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
161			ath_dbg(common, ATH_DBG_ANY,
162				"WEP key length %u too small\n", k->kv_len);
163			return false;
164		}
165		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
166			keyType = AR_KEYTABLE_TYPE_40;
167		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
168			keyType = AR_KEYTABLE_TYPE_104;
169		else
170			keyType = AR_KEYTABLE_TYPE_128;
171		break;
172	case ATH_CIPHER_CLR:
173		keyType = AR_KEYTABLE_TYPE_CLR;
174		break;
175	default:
176		ath_err(common, "cipher %u not supported\n", k->kv_type);
177		return false;
178	}
179
180	key0 = get_unaligned_le32(k->kv_val + 0);
181	key1 = get_unaligned_le16(k->kv_val + 4);
182	key2 = get_unaligned_le32(k->kv_val + 6);
183	key3 = get_unaligned_le16(k->kv_val + 10);
184	key4 = get_unaligned_le32(k->kv_val + 12);
185	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
186		key4 &= 0xff;
187
188	/*
189	 * Note: Key cache registers access special memory area that requires
190	 * two 32-bit writes to actually update the values in the internal
191	 * memory. Consequently, the exact order and pairs used here must be
192	 * maintained.
193	 */
194
195	if (keyType == AR_KEYTABLE_TYPE_TKIP) {
196		u16 micentry = entry + 64;
197
198		/*
199		 * Write inverted key[47:0] first to avoid Michael MIC errors
200		 * on frames that could be sent or received at the same time.
201		 * The correct key will be written in the end once everything
202		 * else is ready.
203		 */
204		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
205		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
206
207		/* Write key[95:48] */
208		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
209		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
210
211		/* Write key[127:96] and key type */
212		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
213		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
214
215		/* Write MAC address for the entry */
216		(void) ath_hw_keysetmac(common, entry, mac);
217
218		if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
219			/*
220			 * TKIP uses two key cache entries:
221			 * Michael MIC TX/RX keys in the same key cache entry
222			 * (idx = main index + 64):
223			 * key0 [31:0] = RX key [31:0]
224			 * key1 [15:0] = TX key [31:16]
225			 * key1 [31:16] = reserved
226			 * key2 [31:0] = RX key [63:32]
227			 * key3 [15:0] = TX key [15:0]
228			 * key3 [31:16] = reserved
229			 * key4 [31:0] = TX key [63:32]
230			 */
231			u32 mic0, mic1, mic2, mic3, mic4;
232
233			mic0 = get_unaligned_le32(k->kv_mic + 0);
234			mic2 = get_unaligned_le32(k->kv_mic + 4);
235			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
236			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
237			mic4 = get_unaligned_le32(k->kv_txmic + 4);
238
239			ENABLE_REGWRITE_BUFFER(ah);
240
241			/* Write RX[31:0] and TX[31:16] */
242			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
243			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
244
245			/* Write RX[63:32] and TX[15:0] */
246			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
247			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
248
249			/* Write TX[63:32] and keyType(reserved) */
250			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
251			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
252				  AR_KEYTABLE_TYPE_CLR);
253
254			REGWRITE_BUFFER_FLUSH(ah);
255
256		} else {
257			/*
258			 * TKIP uses four key cache entries (two for group
259			 * keys):
260			 * Michael MIC TX/RX keys are in different key cache
261			 * entries (idx = main index + 64 for TX and
262			 * main index + 32 + 96 for RX):
263			 * key0 [31:0] = TX/RX MIC key [31:0]
264			 * key1 [31:0] = reserved
265			 * key2 [31:0] = TX/RX MIC key [63:32]
266			 * key3 [31:0] = reserved
267			 * key4 [31:0] = reserved
268			 *
269			 * Upper layer code will call this function separately
270			 * for TX and RX keys when these registers offsets are
271			 * used.
272			 */
273			u32 mic0, mic2;
274
275			mic0 = get_unaligned_le32(k->kv_mic + 0);
276			mic2 = get_unaligned_le32(k->kv_mic + 4);
277
278			ENABLE_REGWRITE_BUFFER(ah);
279
280			/* Write MIC key[31:0] */
281			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
282			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
283
284			/* Write MIC key[63:32] */
285			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
286			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
287
288			/* Write TX[63:32] and keyType(reserved) */
289			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
290			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
291				  AR_KEYTABLE_TYPE_CLR);
292
293			REGWRITE_BUFFER_FLUSH(ah);
294		}
295
296		ENABLE_REGWRITE_BUFFER(ah);
297
298		/* MAC address registers are reserved for the MIC entry */
299		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
300		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
301
302		/*
303		 * Write the correct (un-inverted) key[47:0] last to enable
304		 * TKIP now that all other registers are set with correct
305		 * values.
306		 */
307		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
308		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
309
310		REGWRITE_BUFFER_FLUSH(ah);
311	} else {
312		ENABLE_REGWRITE_BUFFER(ah);
313
314		/* Write key[47:0] */
315		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
316		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
317
318		/* Write key[95:48] */
319		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
320		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
321
322		/* Write key[127:96] and key type */
323		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
324		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
325
326		REGWRITE_BUFFER_FLUSH(ah);
327
328		/* Write MAC address for the entry */
329		(void) ath_hw_keysetmac(common, entry, mac);
330	}
331
332	return true;
333}
334
335static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
336			   struct ath_keyval *hk, const u8 *addr,
337			   bool authenticator)
338{
339	const u8 *key_rxmic;
340	const u8 *key_txmic;
341
342	key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
343	key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
344
345	if (addr == NULL) {
346		/*
347		 * Group key installation - only two key cache entries are used
348		 * regardless of splitmic capability since group key is only
349		 * used either for TX or RX.
350		 */
351		if (authenticator) {
352			memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
353			memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
354		} else {
355			memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
356			memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
357		}
358		return ath_hw_set_keycache_entry(common, keyix, hk, addr);
359	}
360	if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
361		/* TX and RX keys share the same key cache entry. */
362		memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
363		memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
364		return ath_hw_set_keycache_entry(common, keyix, hk, addr);
365	}
366
367	/* Separate key cache entries for TX and RX */
368
369	/* TX key goes at first index, RX key at +32. */
370	memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
371	if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) {
372		/* TX MIC entry failed. No need to proceed further */
373		ath_err(common, "Setting TX MIC Key Failed\n");
374		return 0;
375	}
376
377	memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
378	/* XXX delete tx key on failure? */
379	return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr);
380}
381
382static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
383{
384	int i;
385
386	for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
387		if (test_bit(i, common->keymap) ||
388		    test_bit(i + 64, common->keymap))
389			continue; /* At least one part of TKIP key allocated */
390		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) &&
391		    (test_bit(i + 32, common->keymap) ||
392		     test_bit(i + 64 + 32, common->keymap)))
393			continue; /* At least one part of TKIP key allocated */
394
395		/* Found a free slot for a TKIP key */
396		return i;
397	}
398	return -1;
399}
400
401static int ath_reserve_key_cache_slot(struct ath_common *common,
402				      u32 cipher)
403{
404	int i;
405
406	if (cipher == WLAN_CIPHER_SUITE_TKIP)
407		return ath_reserve_key_cache_slot_tkip(common);
408
409	/* First, try to find slots that would not be available for TKIP. */
410	if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
411		for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
412			if (!test_bit(i, common->keymap) &&
413			    (test_bit(i + 32, common->keymap) ||
414			     test_bit(i + 64, common->keymap) ||
415			     test_bit(i + 64 + 32, common->keymap)))
416				return i;
417			if (!test_bit(i + 32, common->keymap) &&
418			    (test_bit(i, common->keymap) ||
419			     test_bit(i + 64, common->keymap) ||
420			     test_bit(i + 64 + 32, common->keymap)))
421				return i + 32;
422			if (!test_bit(i + 64, common->keymap) &&
423			    (test_bit(i , common->keymap) ||
424			     test_bit(i + 32, common->keymap) ||
425			     test_bit(i + 64 + 32, common->keymap)))
426				return i + 64;
427			if (!test_bit(i + 64 + 32, common->keymap) &&
428			    (test_bit(i, common->keymap) ||
429			     test_bit(i + 32, common->keymap) ||
430			     test_bit(i + 64, common->keymap)))
431				return i + 64 + 32;
432		}
433	} else {
434		for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
435			if (!test_bit(i, common->keymap) &&
436			    test_bit(i + 64, common->keymap))
437				return i;
438			if (test_bit(i, common->keymap) &&
439			    !test_bit(i + 64, common->keymap))
440				return i + 64;
441		}
442	}
443
444	/* No partially used TKIP slots, pick any available slot */
445	for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
446		/* Do not allow slots that could be needed for TKIP group keys
447		 * to be used. This limitation could be removed if we know that
448		 * TKIP will not be used. */
449		if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
450			continue;
451		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
452			if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
453				continue;
454			if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
455				continue;
456		}
457
458		if (!test_bit(i, common->keymap))
459			return i; /* Found a free slot for a key */
460	}
461
462	/* No free slot found */
463	return -1;
464}
465
466/*
467 * Configure encryption in the HW.
468 */
469int ath_key_config(struct ath_common *common,
470			  struct ieee80211_vif *vif,
471			  struct ieee80211_sta *sta,
472			  struct ieee80211_key_conf *key)
473{
474	struct ath_keyval hk;
475	const u8 *mac = NULL;
476	u8 gmac[ETH_ALEN];
477	int ret = 0;
478	int idx;
479
480	memset(&hk, 0, sizeof(hk));
481
482	switch (key->cipher) {
483	case 0:
484		hk.kv_type = ATH_CIPHER_CLR;
485		break;
486	case WLAN_CIPHER_SUITE_WEP40:
487	case WLAN_CIPHER_SUITE_WEP104:
488		hk.kv_type = ATH_CIPHER_WEP;
489		break;
490	case WLAN_CIPHER_SUITE_TKIP:
491		hk.kv_type = ATH_CIPHER_TKIP;
492		break;
493	case WLAN_CIPHER_SUITE_CCMP:
494		hk.kv_type = ATH_CIPHER_AES_CCM;
495		break;
496	default:
497		return -EOPNOTSUPP;
498	}
499
500	hk.kv_len = key->keylen;
501	if (key->keylen)
502		memcpy(hk.kv_val, key->key, key->keylen);
503
504	if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
505		switch (vif->type) {
506		case NL80211_IFTYPE_AP:
507			memcpy(gmac, vif->addr, ETH_ALEN);
508			gmac[0] |= 0x01;
509			mac = gmac;
510			idx = ath_reserve_key_cache_slot(common, key->cipher);
511			break;
512		case NL80211_IFTYPE_ADHOC:
513			if (!sta) {
514				idx = key->keyidx;
515				break;
516			}
517			memcpy(gmac, sta->addr, ETH_ALEN);
518			gmac[0] |= 0x01;
519			mac = gmac;
520			idx = ath_reserve_key_cache_slot(common, key->cipher);
521			break;
522		default:
523			idx = key->keyidx;
524			break;
525		}
526	} else if (key->keyidx) {
527		if (WARN_ON(!sta))
528			return -EOPNOTSUPP;
529		mac = sta->addr;
530
531		if (vif->type != NL80211_IFTYPE_AP) {
532			/* Only keyidx 0 should be used with unicast key, but
533			 * allow this for client mode for now. */
534			idx = key->keyidx;
535		} else
536			return -EIO;
537	} else {
538		if (WARN_ON(!sta))
539			return -EOPNOTSUPP;
540		mac = sta->addr;
541
542		idx = ath_reserve_key_cache_slot(common, key->cipher);
543	}
544
545	if (idx < 0)
546		return -ENOSPC; /* no free key cache entries */
547
548	if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
549		ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
550				      vif->type == NL80211_IFTYPE_AP);
551	else
552		ret = ath_hw_set_keycache_entry(common, idx, &hk, mac);
553
554	if (!ret)
555		return -EIO;
556
557	set_bit(idx, common->keymap);
 
 
 
558	if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
559		set_bit(idx + 64, common->keymap);
560		set_bit(idx, common->tkip_keymap);
561		set_bit(idx + 64, common->tkip_keymap);
562		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
563			set_bit(idx + 32, common->keymap);
564			set_bit(idx + 64 + 32, common->keymap);
565			set_bit(idx + 32, common->tkip_keymap);
566			set_bit(idx + 64 + 32, common->tkip_keymap);
567		}
568	}
569
570	return idx;
571}
572EXPORT_SYMBOL(ath_key_config);
573
574/*
575 * Delete Key.
576 */
577void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
578{
579	ath_hw_keyreset(common, key->hw_key_idx);
580	if (key->hw_key_idx < IEEE80211_WEP_NKID)
581		return;
582
583	clear_bit(key->hw_key_idx, common->keymap);
 
584	if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
585		return;
586
587	clear_bit(key->hw_key_idx + 64, common->keymap);
588
589	clear_bit(key->hw_key_idx, common->tkip_keymap);
590	clear_bit(key->hw_key_idx + 64, common->tkip_keymap);
591
592	if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
593		ath_hw_keyreset(common, key->hw_key_idx + 32);
594		clear_bit(key->hw_key_idx + 32, common->keymap);
595		clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
596
597		clear_bit(key->hw_key_idx + 32, common->tkip_keymap);
598		clear_bit(key->hw_key_idx + 64 + 32, common->tkip_keymap);
599	}
600}
601EXPORT_SYMBOL(ath_key_delete);
v3.5.6
  1/*
  2 * Copyright (c) 2009 Atheros Communications Inc.
  3 * Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
  4 *
  5 * Permission to use, copy, modify, and/or distribute this software for any
  6 * purpose with or without fee is hereby granted, provided that the above
  7 * copyright notice and this permission notice appear in all copies.
  8 *
  9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 16 */
 17
 18#include <linux/export.h>
 19#include <asm/unaligned.h>
 20#include <net/mac80211.h>
 21
 22#include "ath.h"
 23#include "reg.h"
 24
 25#define REG_READ			(common->ops->read)
 26#define REG_WRITE(_ah, _reg, _val)	(common->ops->write)(_ah, _val, _reg)
 27#define ENABLE_REGWRITE_BUFFER(_ah)			\
 28	if (common->ops->enable_write_buffer)		\
 29		common->ops->enable_write_buffer((_ah));
 30
 31#define REGWRITE_BUFFER_FLUSH(_ah)			\
 32	if (common->ops->write_flush)			\
 33		common->ops->write_flush((_ah));
 34
 35
 36#define IEEE80211_WEP_NKID      4       /* number of key ids */
 37
 38/************************/
 39/* Key Cache Management */
 40/************************/
 41
 42bool ath_hw_keyreset(struct ath_common *common, u16 entry)
 43{
 44	u32 keyType;
 45	void *ah = common->ah;
 46
 47	if (entry >= common->keymax) {
 48		ath_err(common, "keycache entry %u out of range\n", entry);
 49		return false;
 50	}
 51
 52	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
 53
 54	ENABLE_REGWRITE_BUFFER(ah);
 55
 56	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
 57	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
 58	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
 59	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
 60	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
 61	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
 62	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
 63	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
 64
 65	if (keyType == AR_KEYTABLE_TYPE_TKIP) {
 66		u16 micentry = entry + 64;
 67
 68		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
 69		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
 70		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
 71		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
 72		if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
 73			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
 74			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
 75				  AR_KEYTABLE_TYPE_CLR);
 76		}
 77
 78	}
 79
 80	REGWRITE_BUFFER_FLUSH(ah);
 81
 82	return true;
 83}
 84EXPORT_SYMBOL(ath_hw_keyreset);
 85
 86static bool ath_hw_keysetmac(struct ath_common *common,
 87			     u16 entry, const u8 *mac)
 88{
 89	u32 macHi, macLo;
 90	u32 unicast_flag = AR_KEYTABLE_VALID;
 91	void *ah = common->ah;
 92
 93	if (entry >= common->keymax) {
 94		ath_err(common, "keycache entry %u out of range\n", entry);
 95		return false;
 96	}
 97
 98	if (mac != NULL) {
 99		/*
100		 * AR_KEYTABLE_VALID indicates that the address is a unicast
101		 * address, which must match the transmitter address for
102		 * decrypting frames.
103		 * Not setting this bit allows the hardware to use the key
104		 * for multicast frame decryption.
105		 */
106		if (mac[0] & 0x01)
107			unicast_flag = 0;
108
109		macLo = get_unaligned_le32(mac);
110		macHi = get_unaligned_le16(mac + 4);
111		macLo >>= 1;
112		macLo |= (macHi & 1) << 31;
113		macHi >>= 1;
114	} else {
115		macLo = macHi = 0;
116	}
117	ENABLE_REGWRITE_BUFFER(ah);
118
119	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
120	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
121
122	REGWRITE_BUFFER_FLUSH(ah);
123
124	return true;
125}
126
127static bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry,
128				      const struct ath_keyval *k,
129				      const u8 *mac)
130{
131	void *ah = common->ah;
132	u32 key0, key1, key2, key3, key4;
133	u32 keyType;
134
135	if (entry >= common->keymax) {
136		ath_err(common, "keycache entry %u out of range\n", entry);
137		return false;
138	}
139
140	switch (k->kv_type) {
141	case ATH_CIPHER_AES_OCB:
142		keyType = AR_KEYTABLE_TYPE_AES;
143		break;
144	case ATH_CIPHER_AES_CCM:
145		if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) {
146			ath_dbg(common, ANY,
147				"AES-CCM not supported by this mac rev\n");
148			return false;
149		}
150		keyType = AR_KEYTABLE_TYPE_CCM;
151		break;
152	case ATH_CIPHER_TKIP:
153		keyType = AR_KEYTABLE_TYPE_TKIP;
154		if (entry + 64 >= common->keymax) {
155			ath_dbg(common, ANY,
156				"entry %u inappropriate for TKIP\n", entry);
157			return false;
158		}
159		break;
160	case ATH_CIPHER_WEP:
161		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
162			ath_dbg(common, ANY, "WEP key length %u too small\n",
163				k->kv_len);
164			return false;
165		}
166		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
167			keyType = AR_KEYTABLE_TYPE_40;
168		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
169			keyType = AR_KEYTABLE_TYPE_104;
170		else
171			keyType = AR_KEYTABLE_TYPE_128;
172		break;
173	case ATH_CIPHER_CLR:
174		keyType = AR_KEYTABLE_TYPE_CLR;
175		break;
176	default:
177		ath_err(common, "cipher %u not supported\n", k->kv_type);
178		return false;
179	}
180
181	key0 = get_unaligned_le32(k->kv_val + 0);
182	key1 = get_unaligned_le16(k->kv_val + 4);
183	key2 = get_unaligned_le32(k->kv_val + 6);
184	key3 = get_unaligned_le16(k->kv_val + 10);
185	key4 = get_unaligned_le32(k->kv_val + 12);
186	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
187		key4 &= 0xff;
188
189	/*
190	 * Note: Key cache registers access special memory area that requires
191	 * two 32-bit writes to actually update the values in the internal
192	 * memory. Consequently, the exact order and pairs used here must be
193	 * maintained.
194	 */
195
196	if (keyType == AR_KEYTABLE_TYPE_TKIP) {
197		u16 micentry = entry + 64;
198
199		/*
200		 * Write inverted key[47:0] first to avoid Michael MIC errors
201		 * on frames that could be sent or received at the same time.
202		 * The correct key will be written in the end once everything
203		 * else is ready.
204		 */
205		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
206		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
207
208		/* Write key[95:48] */
209		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
210		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
211
212		/* Write key[127:96] and key type */
213		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
214		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
215
216		/* Write MAC address for the entry */
217		(void) ath_hw_keysetmac(common, entry, mac);
218
219		if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
220			/*
221			 * TKIP uses two key cache entries:
222			 * Michael MIC TX/RX keys in the same key cache entry
223			 * (idx = main index + 64):
224			 * key0 [31:0] = RX key [31:0]
225			 * key1 [15:0] = TX key [31:16]
226			 * key1 [31:16] = reserved
227			 * key2 [31:0] = RX key [63:32]
228			 * key3 [15:0] = TX key [15:0]
229			 * key3 [31:16] = reserved
230			 * key4 [31:0] = TX key [63:32]
231			 */
232			u32 mic0, mic1, mic2, mic3, mic4;
233
234			mic0 = get_unaligned_le32(k->kv_mic + 0);
235			mic2 = get_unaligned_le32(k->kv_mic + 4);
236			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
237			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
238			mic4 = get_unaligned_le32(k->kv_txmic + 4);
239
240			ENABLE_REGWRITE_BUFFER(ah);
241
242			/* Write RX[31:0] and TX[31:16] */
243			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
244			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
245
246			/* Write RX[63:32] and TX[15:0] */
247			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
248			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
249
250			/* Write TX[63:32] and keyType(reserved) */
251			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
252			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
253				  AR_KEYTABLE_TYPE_CLR);
254
255			REGWRITE_BUFFER_FLUSH(ah);
256
257		} else {
258			/*
259			 * TKIP uses four key cache entries (two for group
260			 * keys):
261			 * Michael MIC TX/RX keys are in different key cache
262			 * entries (idx = main index + 64 for TX and
263			 * main index + 32 + 96 for RX):
264			 * key0 [31:0] = TX/RX MIC key [31:0]
265			 * key1 [31:0] = reserved
266			 * key2 [31:0] = TX/RX MIC key [63:32]
267			 * key3 [31:0] = reserved
268			 * key4 [31:0] = reserved
269			 *
270			 * Upper layer code will call this function separately
271			 * for TX and RX keys when these registers offsets are
272			 * used.
273			 */
274			u32 mic0, mic2;
275
276			mic0 = get_unaligned_le32(k->kv_mic + 0);
277			mic2 = get_unaligned_le32(k->kv_mic + 4);
278
279			ENABLE_REGWRITE_BUFFER(ah);
280
281			/* Write MIC key[31:0] */
282			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
283			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
284
285			/* Write MIC key[63:32] */
286			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
287			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
288
289			/* Write TX[63:32] and keyType(reserved) */
290			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
291			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
292				  AR_KEYTABLE_TYPE_CLR);
293
294			REGWRITE_BUFFER_FLUSH(ah);
295		}
296
297		ENABLE_REGWRITE_BUFFER(ah);
298
299		/* MAC address registers are reserved for the MIC entry */
300		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
301		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
302
303		/*
304		 * Write the correct (un-inverted) key[47:0] last to enable
305		 * TKIP now that all other registers are set with correct
306		 * values.
307		 */
308		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
309		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
310
311		REGWRITE_BUFFER_FLUSH(ah);
312	} else {
313		ENABLE_REGWRITE_BUFFER(ah);
314
315		/* Write key[47:0] */
316		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
317		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
318
319		/* Write key[95:48] */
320		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
321		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
322
323		/* Write key[127:96] and key type */
324		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
325		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
326
327		REGWRITE_BUFFER_FLUSH(ah);
328
329		/* Write MAC address for the entry */
330		(void) ath_hw_keysetmac(common, entry, mac);
331	}
332
333	return true;
334}
335
336static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
337			   struct ath_keyval *hk, const u8 *addr,
338			   bool authenticator)
339{
340	const u8 *key_rxmic;
341	const u8 *key_txmic;
342
343	key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
344	key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
345
346	if (addr == NULL) {
347		/*
348		 * Group key installation - only two key cache entries are used
349		 * regardless of splitmic capability since group key is only
350		 * used either for TX or RX.
351		 */
352		if (authenticator) {
353			memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
354			memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
355		} else {
356			memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
357			memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
358		}
359		return ath_hw_set_keycache_entry(common, keyix, hk, addr);
360	}
361	if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
362		/* TX and RX keys share the same key cache entry. */
363		memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
364		memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
365		return ath_hw_set_keycache_entry(common, keyix, hk, addr);
366	}
367
368	/* Separate key cache entries for TX and RX */
369
370	/* TX key goes at first index, RX key at +32. */
371	memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
372	if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) {
373		/* TX MIC entry failed. No need to proceed further */
374		ath_err(common, "Setting TX MIC Key Failed\n");
375		return 0;
376	}
377
378	memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
379	/* XXX delete tx key on failure? */
380	return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr);
381}
382
383static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
384{
385	int i;
386
387	for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
388		if (test_bit(i, common->keymap) ||
389		    test_bit(i + 64, common->keymap))
390			continue; /* At least one part of TKIP key allocated */
391		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) &&
392		    (test_bit(i + 32, common->keymap) ||
393		     test_bit(i + 64 + 32, common->keymap)))
394			continue; /* At least one part of TKIP key allocated */
395
396		/* Found a free slot for a TKIP key */
397		return i;
398	}
399	return -1;
400}
401
402static int ath_reserve_key_cache_slot(struct ath_common *common,
403				      u32 cipher)
404{
405	int i;
406
407	if (cipher == WLAN_CIPHER_SUITE_TKIP)
408		return ath_reserve_key_cache_slot_tkip(common);
409
410	/* First, try to find slots that would not be available for TKIP. */
411	if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
412		for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
413			if (!test_bit(i, common->keymap) &&
414			    (test_bit(i + 32, common->keymap) ||
415			     test_bit(i + 64, common->keymap) ||
416			     test_bit(i + 64 + 32, common->keymap)))
417				return i;
418			if (!test_bit(i + 32, common->keymap) &&
419			    (test_bit(i, common->keymap) ||
420			     test_bit(i + 64, common->keymap) ||
421			     test_bit(i + 64 + 32, common->keymap)))
422				return i + 32;
423			if (!test_bit(i + 64, common->keymap) &&
424			    (test_bit(i , common->keymap) ||
425			     test_bit(i + 32, common->keymap) ||
426			     test_bit(i + 64 + 32, common->keymap)))
427				return i + 64;
428			if (!test_bit(i + 64 + 32, common->keymap) &&
429			    (test_bit(i, common->keymap) ||
430			     test_bit(i + 32, common->keymap) ||
431			     test_bit(i + 64, common->keymap)))
432				return i + 64 + 32;
433		}
434	} else {
435		for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
436			if (!test_bit(i, common->keymap) &&
437			    test_bit(i + 64, common->keymap))
438				return i;
439			if (test_bit(i, common->keymap) &&
440			    !test_bit(i + 64, common->keymap))
441				return i + 64;
442		}
443	}
444
445	/* No partially used TKIP slots, pick any available slot */
446	for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
447		/* Do not allow slots that could be needed for TKIP group keys
448		 * to be used. This limitation could be removed if we know that
449		 * TKIP will not be used. */
450		if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
451			continue;
452		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
453			if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
454				continue;
455			if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
456				continue;
457		}
458
459		if (!test_bit(i, common->keymap))
460			return i; /* Found a free slot for a key */
461	}
462
463	/* No free slot found */
464	return -1;
465}
466
467/*
468 * Configure encryption in the HW.
469 */
470int ath_key_config(struct ath_common *common,
471			  struct ieee80211_vif *vif,
472			  struct ieee80211_sta *sta,
473			  struct ieee80211_key_conf *key)
474{
475	struct ath_keyval hk;
476	const u8 *mac = NULL;
477	u8 gmac[ETH_ALEN];
478	int ret = 0;
479	int idx;
480
481	memset(&hk, 0, sizeof(hk));
482
483	switch (key->cipher) {
484	case 0:
485		hk.kv_type = ATH_CIPHER_CLR;
486		break;
487	case WLAN_CIPHER_SUITE_WEP40:
488	case WLAN_CIPHER_SUITE_WEP104:
489		hk.kv_type = ATH_CIPHER_WEP;
490		break;
491	case WLAN_CIPHER_SUITE_TKIP:
492		hk.kv_type = ATH_CIPHER_TKIP;
493		break;
494	case WLAN_CIPHER_SUITE_CCMP:
495		hk.kv_type = ATH_CIPHER_AES_CCM;
496		break;
497	default:
498		return -EOPNOTSUPP;
499	}
500
501	hk.kv_len = key->keylen;
502	if (key->keylen)
503		memcpy(hk.kv_val, key->key, key->keylen);
504
505	if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
506		switch (vif->type) {
507		case NL80211_IFTYPE_AP:
508			memcpy(gmac, vif->addr, ETH_ALEN);
509			gmac[0] |= 0x01;
510			mac = gmac;
511			idx = ath_reserve_key_cache_slot(common, key->cipher);
512			break;
513		case NL80211_IFTYPE_ADHOC:
514			if (!sta) {
515				idx = key->keyidx;
516				break;
517			}
518			memcpy(gmac, sta->addr, ETH_ALEN);
519			gmac[0] |= 0x01;
520			mac = gmac;
521			idx = ath_reserve_key_cache_slot(common, key->cipher);
522			break;
523		default:
524			idx = key->keyidx;
525			break;
526		}
527	} else if (key->keyidx) {
528		if (WARN_ON(!sta))
529			return -EOPNOTSUPP;
530		mac = sta->addr;
531
532		if (vif->type != NL80211_IFTYPE_AP) {
533			/* Only keyidx 0 should be used with unicast key, but
534			 * allow this for client mode for now. */
535			idx = key->keyidx;
536		} else
537			return -EIO;
538	} else {
539		if (WARN_ON(!sta))
540			return -EOPNOTSUPP;
541		mac = sta->addr;
542
543		idx = ath_reserve_key_cache_slot(common, key->cipher);
544	}
545
546	if (idx < 0)
547		return -ENOSPC; /* no free key cache entries */
548
549	if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
550		ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
551				      vif->type == NL80211_IFTYPE_AP);
552	else
553		ret = ath_hw_set_keycache_entry(common, idx, &hk, mac);
554
555	if (!ret)
556		return -EIO;
557
558	set_bit(idx, common->keymap);
559	if (key->cipher == WLAN_CIPHER_SUITE_CCMP)
560		set_bit(idx, common->ccmp_keymap);
561
562	if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
563		set_bit(idx + 64, common->keymap);
564		set_bit(idx, common->tkip_keymap);
565		set_bit(idx + 64, common->tkip_keymap);
566		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
567			set_bit(idx + 32, common->keymap);
568			set_bit(idx + 64 + 32, common->keymap);
569			set_bit(idx + 32, common->tkip_keymap);
570			set_bit(idx + 64 + 32, common->tkip_keymap);
571		}
572	}
573
574	return idx;
575}
576EXPORT_SYMBOL(ath_key_config);
577
578/*
579 * Delete Key.
580 */
581void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
582{
583	ath_hw_keyreset(common, key->hw_key_idx);
584	if (key->hw_key_idx < IEEE80211_WEP_NKID)
585		return;
586
587	clear_bit(key->hw_key_idx, common->keymap);
588	clear_bit(key->hw_key_idx, common->ccmp_keymap);
589	if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
590		return;
591
592	clear_bit(key->hw_key_idx + 64, common->keymap);
593
594	clear_bit(key->hw_key_idx, common->tkip_keymap);
595	clear_bit(key->hw_key_idx + 64, common->tkip_keymap);
596
597	if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
598		ath_hw_keyreset(common, key->hw_key_idx + 32);
599		clear_bit(key->hw_key_idx + 32, common->keymap);
600		clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
601
602		clear_bit(key->hw_key_idx + 32, common->tkip_keymap);
603		clear_bit(key->hw_key_idx + 64 + 32, common->tkip_keymap);
604	}
605}
606EXPORT_SYMBOL(ath_key_delete);