Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * Copyright 2011 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/init.h>
  17#include <linux/moduleparam.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>      /* printk() */
  20#include <linux/slab.h>        /* kmalloc() */
  21#include <linux/errno.h>       /* error codes */
  22#include <linux/types.h>       /* size_t */
  23#include <linux/interrupt.h>
  24#include <linux/in.h>
  25#include <linux/netdevice.h>   /* struct device, and other headers */
  26#include <linux/etherdevice.h> /* eth_type_trans */
  27#include <linux/skbuff.h>
  28#include <linux/ioctl.h>
  29#include <linux/cdev.h>
  30#include <linux/hugetlb.h>
  31#include <linux/in6.h>
  32#include <linux/timer.h>
  33#include <linux/io.h>
  34#include <asm/checksum.h>
  35#include <asm/homecache.h>
  36
  37#include <hv/drv_xgbe_intf.h>
  38#include <hv/drv_xgbe_impl.h>
  39#include <hv/hypervisor.h>
  40#include <hv/netio_intf.h>
  41
  42/* For TSO */
  43#include <linux/ip.h>
  44#include <linux/tcp.h>
  45
  46
  47/*
  48 * First, "tile_net_init_module()" initializes all four "devices" which
  49 * can be used by linux.
  50 *
  51 * Then, "ifconfig DEVICE up" calls "tile_net_open()", which analyzes
  52 * the network cpus, then uses "tile_net_open_aux()" to initialize
  53 * LIPP/LEPP, and then uses "tile_net_open_inner()" to register all
  54 * the tiles, provide buffers to LIPP, allow ingress to start, and
  55 * turn on hypervisor interrupt handling (and NAPI) on all tiles.
  56 *
  57 * If registration fails due to the link being down, then "retry_work"
  58 * is used to keep calling "tile_net_open_inner()" until it succeeds.
  59 *
  60 * If "ifconfig DEVICE down" is called, it uses "tile_net_stop()" to
  61 * stop egress, drain the LIPP buffers, unregister all the tiles, stop
  62 * LIPP/LEPP, and wipe the LEPP queue.
  63 *
  64 * We start out with the ingress interrupt enabled on each CPU.  When
  65 * this interrupt fires, we disable it, and call "napi_schedule()".
  66 * This will cause "tile_net_poll()" to be called, which will pull
  67 * packets from the netio queue, filtering them out, or passing them
  68 * to "netif_receive_skb()".  If our budget is exhausted, we will
  69 * return, knowing we will be called again later.  Otherwise, we
  70 * reenable the ingress interrupt, and call "napi_complete()".
  71 *
  72 * HACK: Since disabling the ingress interrupt is not reliable, we
  73 * ignore the interrupt if the global "active" flag is false.
  74 *
  75 *
  76 * NOTE: The use of "native_driver" ensures that EPP exists, and that
  77 * we are using "LIPP" and "LEPP".
  78 *
  79 * NOTE: Failing to free completions for an arbitrarily long time
  80 * (which is defined to be illegal) does in fact cause bizarre
  81 * problems.  The "egress_timer" helps prevent this from happening.
  82 */
  83
  84
  85/* HACK: Allow use of "jumbo" packets. */
  86/* This should be 1500 if "jumbo" is not set in LIPP. */
  87/* This should be at most 10226 (10240 - 14) if "jumbo" is set in LIPP. */
  88/* ISSUE: This has not been thoroughly tested (except at 1500). */
  89#define TILE_NET_MTU 1500
  90
  91/* HACK: Define to support GSO. */
  92/* ISSUE: This may actually hurt performance of the TCP blaster. */
  93/* #define TILE_NET_GSO */
  94
  95/* Define this to collapse "duplicate" acks. */
  96/* #define IGNORE_DUP_ACKS */
  97
  98/* HACK: Define this to verify incoming packets. */
  99/* #define TILE_NET_VERIFY_INGRESS */
 100
 101/* Use 3000 to enable the Linux Traffic Control (QoS) layer, else 0. */
 102#define TILE_NET_TX_QUEUE_LEN 0
 103
 104/* Define to dump packets (prints out the whole packet on tx and rx). */
 105/* #define TILE_NET_DUMP_PACKETS */
 106
 107/* Define to enable debug spew (all PDEBUG's are enabled). */
 108/* #define TILE_NET_DEBUG */
 109
 110
 111/* Define to activate paranoia checks. */
 112/* #define TILE_NET_PARANOIA */
 113
 114/* Default transmit lockup timeout period, in jiffies. */
 115#define TILE_NET_TIMEOUT (5 * HZ)
 116
 117/* Default retry interval for bringing up the NetIO interface, in jiffies. */
 118#define TILE_NET_RETRY_INTERVAL (5 * HZ)
 119
 120/* Number of ports (xgbe0, xgbe1, gbe0, gbe1). */
 121#define TILE_NET_DEVS 4
 122
 123
 124
 125/* Paranoia. */
 126#if NET_IP_ALIGN != LIPP_PACKET_PADDING
 127#error "NET_IP_ALIGN must match LIPP_PACKET_PADDING."
 128#endif
 129
 130
 131/* Debug print. */
 132#ifdef TILE_NET_DEBUG
 133#define PDEBUG(fmt, args...) net_printk(fmt, ## args)
 134#else
 135#define PDEBUG(fmt, args...)
 136#endif
 137
 138
 139MODULE_AUTHOR("Tilera");
 140MODULE_LICENSE("GPL");
 141
 142
 143/*
 144 * Queue of incoming packets for a specific cpu and device.
 145 *
 146 * Includes a pointer to the "system" data, and the actual "user" data.
 147 */
 148struct tile_netio_queue {
 149	netio_queue_impl_t *__system_part;
 150	netio_queue_user_impl_t __user_part;
 151
 152};
 153
 154
 155/*
 156 * Statistics counters for a specific cpu and device.
 157 */
 158struct tile_net_stats_t {
 159	u32 rx_packets;
 160	u32 rx_bytes;
 161	u32 tx_packets;
 162	u32 tx_bytes;
 163};
 164
 165
 166/*
 167 * Info for a specific cpu and device.
 168 *
 169 * ISSUE: There is a "dev" pointer in "napi" as well.
 170 */
 171struct tile_net_cpu {
 172	/* The NAPI struct. */
 173	struct napi_struct napi;
 174	/* Packet queue. */
 175	struct tile_netio_queue queue;
 176	/* Statistics. */
 177	struct tile_net_stats_t stats;
 178	/* True iff NAPI is enabled. */
 179	bool napi_enabled;
 180	/* True if this tile has succcessfully registered with the IPP. */
 181	bool registered;
 182	/* True if the link was down last time we tried to register. */
 183	bool link_down;
 184	/* True if "egress_timer" is scheduled. */
 185	bool egress_timer_scheduled;
 186	/* Number of small sk_buffs which must still be provided. */
 187	unsigned int num_needed_small_buffers;
 188	/* Number of large sk_buffs which must still be provided. */
 189	unsigned int num_needed_large_buffers;
 190	/* A timer for handling egress completions. */
 191	struct timer_list egress_timer;
 192};
 193
 194
 195/*
 196 * Info for a specific device.
 197 */
 198struct tile_net_priv {
 199	/* Our network device. */
 200	struct net_device *dev;
 201	/* Pages making up the egress queue. */
 202	struct page *eq_pages;
 203	/* Address of the actual egress queue. */
 204	lepp_queue_t *eq;
 205	/* Protects "eq". */
 206	spinlock_t eq_lock;
 207	/* The hypervisor handle for this interface. */
 208	int hv_devhdl;
 209	/* The intr bit mask that IDs this device. */
 210	u32 intr_id;
 211	/* True iff "tile_net_open_aux()" has succeeded. */
 212	bool partly_opened;
 213	/* True iff the device is "active". */
 214	bool active;
 215	/* Effective network cpus. */
 216	struct cpumask network_cpus_map;
 217	/* Number of network cpus. */
 218	int network_cpus_count;
 219	/* Credits per network cpu. */
 220	int network_cpus_credits;
 221	/* Network stats. */
 222	struct net_device_stats stats;
 223	/* For NetIO bringup retries. */
 224	struct delayed_work retry_work;
 225	/* Quick access to per cpu data. */
 226	struct tile_net_cpu *cpu[NR_CPUS];
 227};
 228
 229/* Log2 of the number of small pages needed for the egress queue. */
 230#define EQ_ORDER  get_order(sizeof(lepp_queue_t))
 231/* Size of the egress queue's pages. */
 232#define EQ_SIZE   (1 << (PAGE_SHIFT + EQ_ORDER))
 233
 234/*
 235 * The actual devices (xgbe0, xgbe1, gbe0, gbe1).
 236 */
 237static struct net_device *tile_net_devs[TILE_NET_DEVS];
 238
 239/*
 240 * The "tile_net_cpu" structures for each device.
 241 */
 242static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe0);
 243static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe1);
 244static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe0);
 245static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe1);
 246
 247
 248/*
 249 * True if "network_cpus" was specified.
 250 */
 251static bool network_cpus_used;
 252
 253/*
 254 * The actual cpus in "network_cpus".
 255 */
 256static struct cpumask network_cpus_map;
 257
 258
 259
 260#ifdef TILE_NET_DEBUG
 261/*
 262 * printk with extra stuff.
 263 *
 264 * We print the CPU we're running in brackets.
 265 */
 266static void net_printk(char *fmt, ...)
 267{
 268	int i;
 269	int len;
 270	va_list args;
 271	static char buf[256];
 272
 273	len = sprintf(buf, "tile_net[%2.2d]: ", smp_processor_id());
 274	va_start(args, fmt);
 275	i = vscnprintf(buf + len, sizeof(buf) - len - 1, fmt, args);
 276	va_end(args);
 277	buf[255] = '\0';
 278	pr_notice(buf);
 279}
 280#endif
 281
 282
 283#ifdef TILE_NET_DUMP_PACKETS
 284/*
 285 * Dump a packet.
 286 */
 287static void dump_packet(unsigned char *data, unsigned long length, char *s)
 288{
 289	int my_cpu = smp_processor_id();
 290
 291	unsigned long i;
 292	char buf[128];
 293
 294	static unsigned int count;
 295
 296	pr_info("dump_packet(data %p, length 0x%lx s %s count 0x%x)\n",
 297	       data, length, s, count++);
 298
 299	pr_info("\n");
 300
 301	for (i = 0; i < length; i++) {
 302		if ((i & 0xf) == 0)
 303			sprintf(buf, "[%02d] %8.8lx:", my_cpu, i);
 304		sprintf(buf + strlen(buf), " %2.2x", data[i]);
 305		if ((i & 0xf) == 0xf || i == length - 1) {
 306			strcat(buf, "\n");
 307			pr_info("%s", buf);
 308		}
 309	}
 310}
 311#endif
 312
 313
 314/*
 315 * Provide support for the __netio_fastio1() swint
 316 * (see <hv/drv_xgbe_intf.h> for how it is used).
 317 *
 318 * The fastio swint2 call may clobber all the caller-saved registers.
 319 * It rarely clobbers memory, but we allow for the possibility in
 320 * the signature just to be on the safe side.
 321 *
 322 * Also, gcc doesn't seem to allow an input operand to be
 323 * clobbered, so we fake it with dummy outputs.
 324 *
 325 * This function can't be static because of the way it is declared
 326 * in the netio header.
 327 */
 328inline int __netio_fastio1(u32 fastio_index, u32 arg0)
 329{
 330	long result, clobber_r1, clobber_r10;
 331	asm volatile("swint2"
 332		     : "=R00" (result),
 333		       "=R01" (clobber_r1), "=R10" (clobber_r10)
 334		     : "R10" (fastio_index), "R01" (arg0)
 335		     : "memory", "r2", "r3", "r4",
 336		       "r5", "r6", "r7", "r8", "r9",
 337		       "r11", "r12", "r13", "r14",
 338		       "r15", "r16", "r17", "r18", "r19",
 339		       "r20", "r21", "r22", "r23", "r24",
 340		       "r25", "r26", "r27", "r28", "r29");
 341	return result;
 342}
 343
 344
 345/*
 346 * Provide a linux buffer to LIPP.
 347 */
 348static void tile_net_provide_linux_buffer(struct tile_net_cpu *info,
 349					  void *va, bool small)
 350{
 351	struct tile_netio_queue *queue = &info->queue;
 352
 353	/* Convert "va" and "small" to "linux_buffer_t". */
 354	unsigned int buffer = ((unsigned int)(__pa(va) >> 7) << 1) + small;
 355
 356	__netio_fastio_free_buffer(queue->__user_part.__fastio_index, buffer);
 357}
 358
 359
 360/*
 361 * Provide a linux buffer for LIPP.
 362 *
 363 * Note that the ACTUAL allocation for each buffer is a "struct sk_buff",
 364 * plus a chunk of memory that includes not only the requested bytes, but
 365 * also NET_SKB_PAD bytes of initial padding, and a "struct skb_shared_info".
 366 *
 367 * Note that "struct skb_shared_info" is 88 bytes with 64K pages and
 368 * 268 bytes with 4K pages (since the frags[] array needs 18 entries).
 369 *
 370 * Without jumbo packets, the maximum packet size will be 1536 bytes,
 371 * and we use 2 bytes (NET_IP_ALIGN) of padding.  ISSUE: If we told
 372 * the hardware to clip at 1518 bytes instead of 1536 bytes, then we
 373 * could save an entire cache line, but in practice, we don't need it.
 374 *
 375 * Since CPAs are 38 bits, and we can only encode the high 31 bits in
 376 * a "linux_buffer_t", the low 7 bits must be zero, and thus, we must
 377 * align the actual "va" mod 128.
 378 *
 379 * We assume that the underlying "head" will be aligned mod 64.  Note
 380 * that in practice, we have seen "head" NOT aligned mod 128 even when
 381 * using 2048 byte allocations, which is surprising.
 382 *
 383 * If "head" WAS always aligned mod 128, we could change LIPP to
 384 * assume that the low SIX bits are zero, and the 7th bit is one, that
 385 * is, align the actual "va" mod 128 plus 64, which would be "free".
 386 *
 387 * For now, the actual "head" pointer points at NET_SKB_PAD bytes of
 388 * padding, plus 28 or 92 bytes of extra padding, plus the sk_buff
 389 * pointer, plus the NET_IP_ALIGN padding, plus 126 or 1536 bytes for
 390 * the actual packet, plus 62 bytes of empty padding, plus some
 391 * padding and the "struct skb_shared_info".
 392 *
 393 * With 64K pages, a large buffer thus needs 32+92+4+2+1536+62+88
 394 * bytes, or 1816 bytes, which fits comfortably into 2048 bytes.
 395 *
 396 * With 64K pages, a small buffer thus needs 32+92+4+2+126+88
 397 * bytes, or 344 bytes, which means we are wasting 64+ bytes, and
 398 * could presumably increase the size of small buffers.
 399 *
 400 * With 4K pages, a large buffer thus needs 32+92+4+2+1536+62+268
 401 * bytes, or 1996 bytes, which fits comfortably into 2048 bytes.
 402 *
 403 * With 4K pages, a small buffer thus needs 32+92+4+2+126+268
 404 * bytes, or 524 bytes, which is annoyingly wasteful.
 405 *
 406 * Maybe we should increase LIPP_SMALL_PACKET_SIZE to 192?
 407 *
 408 * ISSUE: Maybe we should increase "NET_SKB_PAD" to 64?
 409 */
 410static bool tile_net_provide_needed_buffer(struct tile_net_cpu *info,
 411					   bool small)
 412{
 413#if TILE_NET_MTU <= 1536
 414	/* Without "jumbo", 2 + 1536 should be sufficient. */
 415	unsigned int large_size = NET_IP_ALIGN + 1536;
 416#else
 417	/* ISSUE: This has not been tested. */
 418	unsigned int large_size = NET_IP_ALIGN + TILE_NET_MTU + 100;
 419#endif
 420
 421	/* Avoid "false sharing" with last cache line. */
 422	/* ISSUE: This is already done by "dev_alloc_skb()". */
 423	unsigned int len =
 424		 (((small ? LIPP_SMALL_PACKET_SIZE : large_size) +
 425		   CHIP_L2_LINE_SIZE() - 1) & -CHIP_L2_LINE_SIZE());
 426
 427	unsigned int padding = 128 - NET_SKB_PAD;
 428	unsigned int align;
 429
 430	struct sk_buff *skb;
 431	void *va;
 432
 433	struct sk_buff **skb_ptr;
 434
 435	/* Request 96 extra bytes for alignment purposes. */
 436	skb = dev_alloc_skb(len + padding);
 437	if (skb == NULL)
 438		return false;
 439
 440	/* Skip 32 or 96 bytes to align "data" mod 128. */
 441	align = -(long)skb->data & (128 - 1);
 442	BUG_ON(align > padding);
 443	skb_reserve(skb, align);
 444
 445	/* This address is given to IPP. */
 446	va = skb->data;
 447
 448	/* Buffers must not span a huge page. */
 449	BUG_ON(((((long)va & ~HPAGE_MASK) + len) & HPAGE_MASK) != 0);
 450
 451#ifdef TILE_NET_PARANOIA
 452#if CHIP_HAS_CBOX_HOME_MAP()
 453	if (hash_default) {
 454		HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)va);
 455		if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
 456			panic("Non-HFH ingress buffer! VA=%p Mode=%d PTE=%llx",
 457			      va, hv_pte_get_mode(pte), hv_pte_val(pte));
 458	}
 459#endif
 460#endif
 461
 462	/* Invalidate the packet buffer. */
 463	if (!hash_default)
 464		__inv_buffer(va, len);
 465
 466	/* Skip two bytes to satisfy LIPP assumptions. */
 467	/* Note that this aligns IP on a 16 byte boundary. */
 468	/* ISSUE: Do this when the packet arrives? */
 469	skb_reserve(skb, NET_IP_ALIGN);
 470
 471	/* Save a back-pointer to 'skb'. */
 472	skb_ptr = va - sizeof(*skb_ptr);
 473	*skb_ptr = skb;
 474
 475	/* Make sure "skb_ptr" has been flushed. */
 476	__insn_mf();
 477
 478	/* Provide the new buffer. */
 479	tile_net_provide_linux_buffer(info, va, small);
 480
 481	return true;
 482}
 483
 484
 485/*
 486 * Provide linux buffers for LIPP.
 487 */
 488static void tile_net_provide_needed_buffers(struct tile_net_cpu *info)
 489{
 490	while (info->num_needed_small_buffers != 0) {
 491		if (!tile_net_provide_needed_buffer(info, true))
 492			goto oops;
 493		info->num_needed_small_buffers--;
 494	}
 495
 496	while (info->num_needed_large_buffers != 0) {
 497		if (!tile_net_provide_needed_buffer(info, false))
 498			goto oops;
 499		info->num_needed_large_buffers--;
 500	}
 501
 502	return;
 503
 504oops:
 505
 506	/* Add a description to the page allocation failure dump. */
 507	pr_notice("Could not provide a linux buffer to LIPP.\n");
 508}
 509
 510
 511/*
 512 * Grab some LEPP completions, and store them in "comps", of size
 513 * "comps_size", and return the number of completions which were
 514 * stored, so the caller can free them.
 515 */
 516static unsigned int tile_net_lepp_grab_comps(lepp_queue_t *eq,
 517					     struct sk_buff *comps[],
 518					     unsigned int comps_size,
 519					     unsigned int min_size)
 520{
 521	unsigned int n = 0;
 522
 523	unsigned int comp_head = eq->comp_head;
 524	unsigned int comp_busy = eq->comp_busy;
 525
 526	while (comp_head != comp_busy && n < comps_size) {
 527		comps[n++] = eq->comps[comp_head];
 528		LEPP_QINC(comp_head);
 529	}
 530
 531	if (n < min_size)
 532		return 0;
 533
 534	eq->comp_head = comp_head;
 535
 536	return n;
 537}
 538
 539
 540/*
 541 * Free some comps, and return true iff there are still some pending.
 542 */
 543static bool tile_net_lepp_free_comps(struct net_device *dev, bool all)
 544{
 545	struct tile_net_priv *priv = netdev_priv(dev);
 546
 547	lepp_queue_t *eq = priv->eq;
 548
 549	struct sk_buff *olds[64];
 550	unsigned int wanted = 64;
 551	unsigned int i, n;
 552	bool pending;
 553
 554	spin_lock(&priv->eq_lock);
 555
 556	if (all)
 557		eq->comp_busy = eq->comp_tail;
 558
 559	n = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
 560
 561	pending = (eq->comp_head != eq->comp_tail);
 562
 563	spin_unlock(&priv->eq_lock);
 564
 565	for (i = 0; i < n; i++)
 566		kfree_skb(olds[i]);
 567
 568	return pending;
 569}
 570
 571
 572/*
 573 * Make sure the egress timer is scheduled.
 574 *
 575 * Note that we use "schedule if not scheduled" logic instead of the more
 576 * obvious "reschedule" logic, because "reschedule" is fairly expensive.
 577 */
 578static void tile_net_schedule_egress_timer(struct tile_net_cpu *info)
 579{
 580	if (!info->egress_timer_scheduled) {
 581		mod_timer_pinned(&info->egress_timer, jiffies + 1);
 582		info->egress_timer_scheduled = true;
 583	}
 584}
 585
 586
 587/*
 588 * The "function" for "info->egress_timer".
 589 *
 590 * This timer will reschedule itself as long as there are any pending
 591 * completions expected (on behalf of any tile).
 592 *
 593 * ISSUE: Realistically, will the timer ever stop scheduling itself?
 594 *
 595 * ISSUE: This timer is almost never actually needed, so just use a global
 596 * timer that can run on any tile.
 597 *
 598 * ISSUE: Maybe instead track number of expected completions, and free
 599 * only that many, resetting to zero if "pending" is ever false.
 600 */
 601static void tile_net_handle_egress_timer(unsigned long arg)
 602{
 603	struct tile_net_cpu *info = (struct tile_net_cpu *)arg;
 604	struct net_device *dev = info->napi.dev;
 605
 606	/* The timer is no longer scheduled. */
 607	info->egress_timer_scheduled = false;
 608
 609	/* Free comps, and reschedule timer if more are pending. */
 610	if (tile_net_lepp_free_comps(dev, false))
 611		tile_net_schedule_egress_timer(info);
 612}
 613
 614
 615#ifdef IGNORE_DUP_ACKS
 616
 617/*
 618 * Help detect "duplicate" ACKs.  These are sequential packets (for a
 619 * given flow) which are exactly 66 bytes long, sharing everything but
 620 * ID=2@0x12, Hsum=2@0x18, Ack=4@0x2a, WinSize=2@0x30, Csum=2@0x32,
 621 * Tstamps=10@0x38.  The ID's are +1, the Hsum's are -1, the Ack's are
 622 * +N, and the Tstamps are usually identical.
 623 *
 624 * NOTE: Apparently truly duplicate acks (with identical "ack" values),
 625 * should not be collapsed, as they are used for some kind of flow control.
 626 */
 627static bool is_dup_ack(char *s1, char *s2, unsigned int len)
 628{
 629	int i;
 630
 631	unsigned long long ignorable = 0;
 632
 633	/* Identification. */
 634	ignorable |= (1ULL << 0x12);
 635	ignorable |= (1ULL << 0x13);
 636
 637	/* Header checksum. */
 638	ignorable |= (1ULL << 0x18);
 639	ignorable |= (1ULL << 0x19);
 640
 641	/* ACK. */
 642	ignorable |= (1ULL << 0x2a);
 643	ignorable |= (1ULL << 0x2b);
 644	ignorable |= (1ULL << 0x2c);
 645	ignorable |= (1ULL << 0x2d);
 646
 647	/* WinSize. */
 648	ignorable |= (1ULL << 0x30);
 649	ignorable |= (1ULL << 0x31);
 650
 651	/* Checksum. */
 652	ignorable |= (1ULL << 0x32);
 653	ignorable |= (1ULL << 0x33);
 654
 655	for (i = 0; i < len; i++, ignorable >>= 1) {
 656
 657		if ((ignorable & 1) || (s1[i] == s2[i]))
 658			continue;
 659
 660#ifdef TILE_NET_DEBUG
 661		/* HACK: Mention non-timestamp diffs. */
 662		if (i < 0x38 && i != 0x2f &&
 663		    net_ratelimit())
 664			pr_info("Diff at 0x%x\n", i);
 665#endif
 666
 667		return false;
 668	}
 669
 670#ifdef TILE_NET_NO_SUPPRESS_DUP_ACKS
 671	/* HACK: Do not suppress truly duplicate ACKs. */
 672	/* ISSUE: Is this actually necessary or helpful? */
 673	if (s1[0x2a] == s2[0x2a] &&
 674	    s1[0x2b] == s2[0x2b] &&
 675	    s1[0x2c] == s2[0x2c] &&
 676	    s1[0x2d] == s2[0x2d]) {
 677		return false;
 678	}
 679#endif
 680
 681	return true;
 682}
 683
 684#endif
 685
 686
 687
 688static void tile_net_discard_aux(struct tile_net_cpu *info, int index)
 689{
 690	struct tile_netio_queue *queue = &info->queue;
 691	netio_queue_impl_t *qsp = queue->__system_part;
 692	netio_queue_user_impl_t *qup = &queue->__user_part;
 693
 694	int index2_aux = index + sizeof(netio_pkt_t);
 695	int index2 =
 696		((index2_aux ==
 697		  qsp->__packet_receive_queue.__last_packet_plus_one) ?
 698		 0 : index2_aux);
 699
 700	netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index);
 701
 702	/* Extract the "linux_buffer_t". */
 703	unsigned int buffer = pkt->__packet.word;
 704
 705	/* Convert "linux_buffer_t" to "va". */
 706	void *va = __va((phys_addr_t)(buffer >> 1) << 7);
 707
 708	/* Acquire the associated "skb". */
 709	struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
 710	struct sk_buff *skb = *skb_ptr;
 711
 712	kfree_skb(skb);
 713
 714	/* Consume this packet. */
 715	qup->__packet_receive_read = index2;
 716}
 717
 718
 719/*
 720 * Like "tile_net_poll()", but just discard packets.
 721 */
 722static void tile_net_discard_packets(struct net_device *dev)
 723{
 724	struct tile_net_priv *priv = netdev_priv(dev);
 725	int my_cpu = smp_processor_id();
 726	struct tile_net_cpu *info = priv->cpu[my_cpu];
 727	struct tile_netio_queue *queue = &info->queue;
 728	netio_queue_impl_t *qsp = queue->__system_part;
 729	netio_queue_user_impl_t *qup = &queue->__user_part;
 730
 731	while (qup->__packet_receive_read !=
 732	       qsp->__packet_receive_queue.__packet_write) {
 733		int index = qup->__packet_receive_read;
 734		tile_net_discard_aux(info, index);
 735	}
 736}
 737
 738
 739/*
 740 * Handle the next packet.  Return true if "processed", false if "filtered".
 741 */
 742static bool tile_net_poll_aux(struct tile_net_cpu *info, int index)
 743{
 744	struct net_device *dev = info->napi.dev;
 745
 746	struct tile_netio_queue *queue = &info->queue;
 747	netio_queue_impl_t *qsp = queue->__system_part;
 748	netio_queue_user_impl_t *qup = &queue->__user_part;
 749	struct tile_net_stats_t *stats = &info->stats;
 750
 751	int filter;
 752
 753	int index2_aux = index + sizeof(netio_pkt_t);
 754	int index2 =
 755		((index2_aux ==
 756		  qsp->__packet_receive_queue.__last_packet_plus_one) ?
 757		 0 : index2_aux);
 758
 759	netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index);
 760
 761	netio_pkt_metadata_t *metadata = NETIO_PKT_METADATA(pkt);
 762
 763	/* Extract the packet size.  FIXME: Shouldn't the second line */
 764	/* get subtracted?  Mostly moot, since it should be "zero". */
 765	unsigned long len =
 766		(NETIO_PKT_CUSTOM_LENGTH(pkt) +
 767		 NET_IP_ALIGN - NETIO_PACKET_PADDING);
 768
 769	/* Extract the "linux_buffer_t". */
 770	unsigned int buffer = pkt->__packet.word;
 771
 772	/* Extract "small" (vs "large"). */
 773	bool small = ((buffer & 1) != 0);
 774
 775	/* Convert "linux_buffer_t" to "va". */
 776	void *va = __va((phys_addr_t)(buffer >> 1) << 7);
 777
 778	/* Extract the packet data pointer. */
 779	/* Compare to "NETIO_PKT_CUSTOM_DATA(pkt)". */
 780	unsigned char *buf = va + NET_IP_ALIGN;
 781
 782	/* Invalidate the packet buffer. */
 783	if (!hash_default)
 784		__inv_buffer(buf, len);
 785
 786	/* ISSUE: Is this needed? */
 787	dev->last_rx = jiffies;
 788
 789#ifdef TILE_NET_DUMP_PACKETS
 790	dump_packet(buf, len, "rx");
 791#endif /* TILE_NET_DUMP_PACKETS */
 792
 793#ifdef TILE_NET_VERIFY_INGRESS
 794	if (!NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt) &&
 795	    NETIO_PKT_L4_CSUM_CALCULATED_M(metadata, pkt)) {
 796		/* Bug 6624: Includes UDP packets with a "zero" checksum. */
 797		pr_warning("Bad L4 checksum on %d byte packet.\n", len);
 798	}
 799	if (!NETIO_PKT_L3_CSUM_CORRECT_M(metadata, pkt) &&
 800	    NETIO_PKT_L3_CSUM_CALCULATED_M(metadata, pkt)) {
 801		dump_packet(buf, len, "rx");
 802		panic("Bad L3 checksum.");
 803	}
 804	switch (NETIO_PKT_STATUS_M(metadata, pkt)) {
 805	case NETIO_PKT_STATUS_OVERSIZE:
 806		if (len >= 64) {
 807			dump_packet(buf, len, "rx");
 808			panic("Unexpected OVERSIZE.");
 809		}
 810		break;
 811	case NETIO_PKT_STATUS_BAD:
 812		pr_warning("Unexpected BAD %ld byte packet.\n", len);
 813	}
 814#endif
 815
 816	filter = 0;
 817
 818	/* ISSUE: Filter TCP packets with "bad" checksums? */
 819
 820	if (!(dev->flags & IFF_UP)) {
 821		/* Filter packets received before we're up. */
 822		filter = 1;
 823	} else if (NETIO_PKT_STATUS_M(metadata, pkt) == NETIO_PKT_STATUS_BAD) {
 824		/* Filter "truncated" packets. */
 825		filter = 1;
 826	} else if (!(dev->flags & IFF_PROMISC)) {
 827		/* FIXME: Implement HW multicast filter. */
 828		if (!is_multicast_ether_addr(buf)) {
 829			/* Filter packets not for our address. */
 830			const u8 *mine = dev->dev_addr;
 831			filter = compare_ether_addr(mine, buf);
 832		}
 833	}
 834
 835	if (filter) {
 836
 837		/* ISSUE: Update "drop" statistics? */
 838
 839		tile_net_provide_linux_buffer(info, va, small);
 840
 841	} else {
 842
 843		/* Acquire the associated "skb". */
 844		struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
 845		struct sk_buff *skb = *skb_ptr;
 846
 847		/* Paranoia. */
 848		if (skb->data != buf)
 849			panic("Corrupt linux buffer from LIPP! "
 850			      "VA=%p, skb=%p, skb->data=%p\n",
 851			      va, skb, skb->data);
 852
 853		/* Encode the actual packet length. */
 854		skb_put(skb, len);
 855
 856		/* NOTE: This call also sets "skb->dev = dev". */
 857		skb->protocol = eth_type_trans(skb, dev);
 858
 859		/* Avoid recomputing "good" TCP/UDP checksums. */
 860		if (NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt))
 861			skb->ip_summed = CHECKSUM_UNNECESSARY;
 862
 863		netif_receive_skb(skb);
 864
 865		stats->rx_packets++;
 866		stats->rx_bytes += len;
 867
 868		if (small)
 869			info->num_needed_small_buffers++;
 870		else
 871			info->num_needed_large_buffers++;
 872	}
 873
 874	/* Return four credits after every fourth packet. */
 875	if (--qup->__receive_credit_remaining == 0) {
 876		u32 interval = qup->__receive_credit_interval;
 877		qup->__receive_credit_remaining = interval;
 878		__netio_fastio_return_credits(qup->__fastio_index, interval);
 879	}
 880
 881	/* Consume this packet. */
 882	qup->__packet_receive_read = index2;
 883
 884	return !filter;
 885}
 886
 887
 888/*
 889 * Handle some packets for the given device on the current CPU.
 890 *
 891 * If "tile_net_stop()" is called on some other tile while this
 892 * function is running, we will return, hopefully before that
 893 * other tile asks us to call "napi_disable()".
 894 *
 895 * The "rotting packet" race condition occurs if a packet arrives
 896 * during the extremely narrow window between the queue appearing to
 897 * be empty, and the ingress interrupt being re-enabled.  This happens
 898 * a LOT under heavy network load.
 899 */
 900static int tile_net_poll(struct napi_struct *napi, int budget)
 901{
 902	struct net_device *dev = napi->dev;
 903	struct tile_net_priv *priv = netdev_priv(dev);
 904	int my_cpu = smp_processor_id();
 905	struct tile_net_cpu *info = priv->cpu[my_cpu];
 906	struct tile_netio_queue *queue = &info->queue;
 907	netio_queue_impl_t *qsp = queue->__system_part;
 908	netio_queue_user_impl_t *qup = &queue->__user_part;
 909
 910	unsigned int work = 0;
 911
 912	while (priv->active) {
 913		int index = qup->__packet_receive_read;
 914		if (index == qsp->__packet_receive_queue.__packet_write)
 915			break;
 916
 917		if (tile_net_poll_aux(info, index)) {
 918			if (++work >= budget)
 919				goto done;
 920		}
 921	}
 922
 923	napi_complete(&info->napi);
 924
 925	if (!priv->active)
 926		goto done;
 927
 928	/* Re-enable the ingress interrupt. */
 929	enable_percpu_irq(priv->intr_id);
 930
 931	/* HACK: Avoid the "rotting packet" problem (see above). */
 932	if (qup->__packet_receive_read !=
 933	    qsp->__packet_receive_queue.__packet_write) {
 934		/* ISSUE: Sometimes this returns zero, presumably */
 935		/* because an interrupt was handled for this tile. */
 936		(void)napi_reschedule(&info->napi);
 937	}
 938
 939done:
 940
 941	if (priv->active)
 942		tile_net_provide_needed_buffers(info);
 943
 944	return work;
 945}
 946
 947
 948/*
 949 * Handle an ingress interrupt for the given device on the current cpu.
 950 *
 951 * ISSUE: Sometimes this gets called after "disable_percpu_irq()" has
 952 * been called!  This is probably due to "pending hypervisor downcalls".
 953 *
 954 * ISSUE: Is there any race condition between the "napi_schedule()" here
 955 * and the "napi_complete()" call above?
 956 */
 957static irqreturn_t tile_net_handle_ingress_interrupt(int irq, void *dev_ptr)
 958{
 959	struct net_device *dev = (struct net_device *)dev_ptr;
 960	struct tile_net_priv *priv = netdev_priv(dev);
 961	int my_cpu = smp_processor_id();
 962	struct tile_net_cpu *info = priv->cpu[my_cpu];
 963
 964	/* Disable the ingress interrupt. */
 965	disable_percpu_irq(priv->intr_id);
 966
 967	/* Ignore unwanted interrupts. */
 968	if (!priv->active)
 969		return IRQ_HANDLED;
 970
 971	/* ISSUE: Sometimes "info->napi_enabled" is false here. */
 972
 973	napi_schedule(&info->napi);
 974
 975	return IRQ_HANDLED;
 976}
 977
 978
 979/*
 980 * One time initialization per interface.
 981 */
 982static int tile_net_open_aux(struct net_device *dev)
 983{
 984	struct tile_net_priv *priv = netdev_priv(dev);
 985
 986	int ret;
 987	int dummy;
 988	unsigned int epp_lotar;
 989
 990	/*
 991	 * Find out where EPP memory should be homed.
 992	 */
 993	ret = hv_dev_pread(priv->hv_devhdl, 0,
 994			   (HV_VirtAddr)&epp_lotar, sizeof(epp_lotar),
 995			   NETIO_EPP_SHM_OFF);
 996	if (ret < 0) {
 997		pr_err("could not read epp_shm_queue lotar.\n");
 998		return -EIO;
 999	}
1000
1001	/*
1002	 * Home the page on the EPP.
1003	 */
1004	{
1005		int epp_home = hv_lotar_to_cpu(epp_lotar);
1006		homecache_change_page_home(priv->eq_pages, EQ_ORDER, epp_home);
1007	}
1008
1009	/*
1010	 * Register the EPP shared memory queue.
1011	 */
1012	{
1013		netio_ipp_address_t ea = {
1014			.va = 0,
1015			.pa = __pa(priv->eq),
1016			.pte = hv_pte(0),
1017			.size = EQ_SIZE,
1018		};
1019		ea.pte = hv_pte_set_lotar(ea.pte, epp_lotar);
1020		ea.pte = hv_pte_set_mode(ea.pte, HV_PTE_MODE_CACHE_TILE_L3);
1021		ret = hv_dev_pwrite(priv->hv_devhdl, 0,
1022				    (HV_VirtAddr)&ea,
1023				    sizeof(ea),
1024				    NETIO_EPP_SHM_OFF);
1025		if (ret < 0)
1026			return -EIO;
1027	}
1028
1029	/*
1030	 * Start LIPP/LEPP.
1031	 */
1032	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1033			  sizeof(dummy), NETIO_IPP_START_SHIM_OFF) < 0) {
1034		pr_warning("Failed to start LIPP/LEPP.\n");
1035		return -EIO;
1036	}
1037
1038	return 0;
1039}
1040
1041
1042/*
1043 * Register with hypervisor on the current CPU.
1044 *
1045 * Strangely, this function does important things even if it "fails",
1046 * which is especially common if the link is not up yet.  Hopefully
1047 * these things are all "harmless" if done twice!
1048 */
1049static void tile_net_register(void *dev_ptr)
1050{
1051	struct net_device *dev = (struct net_device *)dev_ptr;
1052	struct tile_net_priv *priv = netdev_priv(dev);
1053	int my_cpu = smp_processor_id();
1054	struct tile_net_cpu *info;
1055
1056	struct tile_netio_queue *queue;
1057
1058	/* Only network cpus can receive packets. */
1059	int queue_id =
1060		cpumask_test_cpu(my_cpu, &priv->network_cpus_map) ? 0 : 255;
1061
1062	netio_input_config_t config = {
1063		.flags = 0,
1064		.num_receive_packets = priv->network_cpus_credits,
1065		.queue_id = queue_id
1066	};
1067
1068	int ret = 0;
1069	netio_queue_impl_t *queuep;
1070
1071	PDEBUG("tile_net_register(queue_id %d)\n", queue_id);
1072
1073	if (!strcmp(dev->name, "xgbe0"))
1074		info = &__get_cpu_var(hv_xgbe0);
1075	else if (!strcmp(dev->name, "xgbe1"))
1076		info = &__get_cpu_var(hv_xgbe1);
1077	else if (!strcmp(dev->name, "gbe0"))
1078		info = &__get_cpu_var(hv_gbe0);
1079	else if (!strcmp(dev->name, "gbe1"))
1080		info = &__get_cpu_var(hv_gbe1);
1081	else
1082		BUG();
1083
1084	/* Initialize the egress timer. */
1085	init_timer(&info->egress_timer);
1086	info->egress_timer.data = (long)info;
1087	info->egress_timer.function = tile_net_handle_egress_timer;
1088
1089	priv->cpu[my_cpu] = info;
1090
1091	/*
1092	 * Register ourselves with LIPP.  This does a lot of stuff,
1093	 * including invoking the LIPP registration code.
1094	 */
1095	ret = hv_dev_pwrite(priv->hv_devhdl, 0,
1096			    (HV_VirtAddr)&config,
1097			    sizeof(netio_input_config_t),
1098			    NETIO_IPP_INPUT_REGISTER_OFF);
1099	PDEBUG("hv_dev_pwrite(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1100	       ret);
1101	if (ret < 0) {
1102		if (ret != NETIO_LINK_DOWN) {
1103			printk(KERN_DEBUG "hv_dev_pwrite "
1104			       "NETIO_IPP_INPUT_REGISTER_OFF failure %d\n",
1105			       ret);
1106		}
1107		info->link_down = (ret == NETIO_LINK_DOWN);
1108		return;
1109	}
1110
1111	/*
1112	 * Get the pointer to our queue's system part.
1113	 */
1114
1115	ret = hv_dev_pread(priv->hv_devhdl, 0,
1116			   (HV_VirtAddr)&queuep,
1117			   sizeof(netio_queue_impl_t *),
1118			   NETIO_IPP_INPUT_REGISTER_OFF);
1119	PDEBUG("hv_dev_pread(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1120	       ret);
1121	PDEBUG("queuep %p\n", queuep);
1122	if (ret <= 0) {
1123		/* ISSUE: Shouldn't this be a fatal error? */
1124		pr_err("hv_dev_pread NETIO_IPP_INPUT_REGISTER_OFF failure\n");
1125		return;
1126	}
1127
1128	queue = &info->queue;
1129
1130	queue->__system_part = queuep;
1131
1132	memset(&queue->__user_part, 0, sizeof(netio_queue_user_impl_t));
1133
1134	/* This is traditionally "config.num_receive_packets / 2". */
1135	queue->__user_part.__receive_credit_interval = 4;
1136	queue->__user_part.__receive_credit_remaining =
1137		queue->__user_part.__receive_credit_interval;
1138
1139	/*
1140	 * Get a fastio index from the hypervisor.
1141	 * ISSUE: Shouldn't this check the result?
1142	 */
1143	ret = hv_dev_pread(priv->hv_devhdl, 0,
1144			   (HV_VirtAddr)&queue->__user_part.__fastio_index,
1145			   sizeof(queue->__user_part.__fastio_index),
1146			   NETIO_IPP_GET_FASTIO_OFF);
1147	PDEBUG("hv_dev_pread(NETIO_IPP_GET_FASTIO_OFF) returned %d\n", ret);
1148
1149	/* Now we are registered. */
1150	info->registered = true;
1151}
1152
1153
1154/*
1155 * Deregister with hypervisor on the current CPU.
1156 *
1157 * This simply discards all our credits, so no more packets will be
1158 * delivered to this tile.  There may still be packets in our queue.
1159 *
1160 * Also, disable the ingress interrupt.
1161 */
1162static void tile_net_deregister(void *dev_ptr)
1163{
1164	struct net_device *dev = (struct net_device *)dev_ptr;
1165	struct tile_net_priv *priv = netdev_priv(dev);
1166	int my_cpu = smp_processor_id();
1167	struct tile_net_cpu *info = priv->cpu[my_cpu];
1168
1169	/* Disable the ingress interrupt. */
1170	disable_percpu_irq(priv->intr_id);
1171
1172	/* Do nothing else if not registered. */
1173	if (info == NULL || !info->registered)
1174		return;
1175
1176	{
1177		struct tile_netio_queue *queue = &info->queue;
1178		netio_queue_user_impl_t *qup = &queue->__user_part;
1179
1180		/* Discard all our credits. */
1181		__netio_fastio_return_credits(qup->__fastio_index, -1);
1182	}
1183}
1184
1185
1186/*
1187 * Unregister with hypervisor on the current CPU.
1188 *
1189 * Also, disable the ingress interrupt.
1190 */
1191static void tile_net_unregister(void *dev_ptr)
1192{
1193	struct net_device *dev = (struct net_device *)dev_ptr;
1194	struct tile_net_priv *priv = netdev_priv(dev);
1195	int my_cpu = smp_processor_id();
1196	struct tile_net_cpu *info = priv->cpu[my_cpu];
1197
1198	int ret;
1199	int dummy = 0;
1200
1201	/* Disable the ingress interrupt. */
1202	disable_percpu_irq(priv->intr_id);
1203
1204	/* Do nothing else if not registered. */
1205	if (info == NULL || !info->registered)
1206		return;
1207
1208	/* Unregister ourselves with LIPP/LEPP. */
1209	ret = hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1210			    sizeof(dummy), NETIO_IPP_INPUT_UNREGISTER_OFF);
1211	if (ret < 0)
1212		panic("Failed to unregister with LIPP/LEPP!\n");
1213
1214	/* Discard all packets still in our NetIO queue. */
1215	tile_net_discard_packets(dev);
1216
1217	/* Reset state. */
1218	info->num_needed_small_buffers = 0;
1219	info->num_needed_large_buffers = 0;
1220
1221	/* Cancel egress timer. */
1222	del_timer(&info->egress_timer);
1223	info->egress_timer_scheduled = false;
1224}
1225
1226
1227/*
1228 * Helper function for "tile_net_stop()".
1229 *
1230 * Also used to handle registration failure in "tile_net_open_inner()",
1231 * when the various extra steps in "tile_net_stop()" are not necessary.
1232 */
1233static void tile_net_stop_aux(struct net_device *dev)
1234{
1235	struct tile_net_priv *priv = netdev_priv(dev);
1236	int i;
1237
1238	int dummy = 0;
1239
1240	/*
1241	 * Unregister all tiles, so LIPP will stop delivering packets.
1242	 * Also, delete all the "napi" objects (sequentially, to protect
1243	 * "dev->napi_list").
1244	 */
1245	on_each_cpu(tile_net_unregister, (void *)dev, 1);
1246	for_each_online_cpu(i) {
1247		struct tile_net_cpu *info = priv->cpu[i];
1248		if (info != NULL && info->registered) {
1249			netif_napi_del(&info->napi);
1250			info->registered = false;
1251		}
1252	}
1253
1254	/* Stop LIPP/LEPP. */
1255	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1256			  sizeof(dummy), NETIO_IPP_STOP_SHIM_OFF) < 0)
1257		panic("Failed to stop LIPP/LEPP!\n");
1258
1259	priv->partly_opened = 0;
1260}
1261
1262
1263/*
1264 * Disable NAPI for the given device on the current cpu.
1265 */
1266static void tile_net_stop_disable(void *dev_ptr)
1267{
1268	struct net_device *dev = (struct net_device *)dev_ptr;
1269	struct tile_net_priv *priv = netdev_priv(dev);
1270	int my_cpu = smp_processor_id();
1271	struct tile_net_cpu *info = priv->cpu[my_cpu];
1272
1273	/* Disable NAPI if needed. */
1274	if (info != NULL && info->napi_enabled) {
1275		napi_disable(&info->napi);
1276		info->napi_enabled = false;
1277	}
1278}
1279
1280
1281/*
1282 * Enable NAPI and the ingress interrupt for the given device
1283 * on the current cpu.
1284 *
1285 * ISSUE: Only do this for "network cpus"?
1286 */
1287static void tile_net_open_enable(void *dev_ptr)
1288{
1289	struct net_device *dev = (struct net_device *)dev_ptr;
1290	struct tile_net_priv *priv = netdev_priv(dev);
1291	int my_cpu = smp_processor_id();
1292	struct tile_net_cpu *info = priv->cpu[my_cpu];
1293
1294	/* Enable NAPI. */
1295	napi_enable(&info->napi);
1296	info->napi_enabled = true;
1297
1298	/* Enable the ingress interrupt. */
1299	enable_percpu_irq(priv->intr_id);
1300}
1301
1302
1303/*
1304 * tile_net_open_inner does most of the work of bringing up the interface.
1305 * It's called from tile_net_open(), and also from tile_net_retry_open().
1306 * The return value is 0 if the interface was brought up, < 0 if
1307 * tile_net_open() should return the return value as an error, and > 0 if
1308 * tile_net_open() should return success and schedule a work item to
1309 * periodically retry the bringup.
1310 */
1311static int tile_net_open_inner(struct net_device *dev)
1312{
1313	struct tile_net_priv *priv = netdev_priv(dev);
1314	int my_cpu = smp_processor_id();
1315	struct tile_net_cpu *info;
1316	struct tile_netio_queue *queue;
1317	int result = 0;
1318	int i;
1319	int dummy = 0;
1320
1321	/*
1322	 * First try to register just on the local CPU, and handle any
1323	 * semi-expected "link down" failure specially.  Note that we
1324	 * do NOT call "tile_net_stop_aux()", unlike below.
1325	 */
1326	tile_net_register(dev);
1327	info = priv->cpu[my_cpu];
1328	if (!info->registered) {
1329		if (info->link_down)
1330			return 1;
1331		return -EAGAIN;
1332	}
1333
1334	/*
1335	 * Now register everywhere else.  If any registration fails,
1336	 * even for "link down" (which might not be possible), we
1337	 * clean up using "tile_net_stop_aux()".  Also, add all the
1338	 * "napi" objects (sequentially, to protect "dev->napi_list").
1339	 * ISSUE: Only use "netif_napi_add()" for "network cpus"?
1340	 */
1341	smp_call_function(tile_net_register, (void *)dev, 1);
1342	for_each_online_cpu(i) {
1343		struct tile_net_cpu *info = priv->cpu[i];
1344		if (info->registered)
1345			netif_napi_add(dev, &info->napi, tile_net_poll, 64);
1346		else
1347			result = -EAGAIN;
1348	}
1349	if (result != 0) {
1350		tile_net_stop_aux(dev);
1351		return result;
1352	}
1353
1354	queue = &info->queue;
1355
1356	if (priv->intr_id == 0) {
1357		unsigned int irq;
1358
1359		/*
1360		 * Acquire the irq allocated by the hypervisor.  Every
1361		 * queue gets the same irq.  The "__intr_id" field is
1362		 * "1 << irq", so we use "__ffs()" to extract "irq".
1363		 */
1364		priv->intr_id = queue->__system_part->__intr_id;
1365		BUG_ON(priv->intr_id == 0);
1366		irq = __ffs(priv->intr_id);
1367
1368		/*
1369		 * Register the ingress interrupt handler for this
1370		 * device, permanently.
1371		 *
1372		 * We used to call "free_irq()" in "tile_net_stop()",
1373		 * and then re-register the handler here every time,
1374		 * but that caused DNP errors in "handle_IRQ_event()"
1375		 * because "desc->action" was NULL.  See bug 9143.
1376		 */
1377		tile_irq_activate(irq, TILE_IRQ_PERCPU);
1378		BUG_ON(request_irq(irq, tile_net_handle_ingress_interrupt,
1379				   0, dev->name, (void *)dev) != 0);
1380	}
1381
1382	{
1383		/* Allocate initial buffers. */
1384
1385		int max_buffers =
1386			priv->network_cpus_count * priv->network_cpus_credits;
1387
1388		info->num_needed_small_buffers =
1389			min(LIPP_SMALL_BUFFERS, max_buffers);
1390
1391		info->num_needed_large_buffers =
1392			min(LIPP_LARGE_BUFFERS, max_buffers);
1393
1394		tile_net_provide_needed_buffers(info);
1395
1396		if (info->num_needed_small_buffers != 0 ||
1397		    info->num_needed_large_buffers != 0)
1398			panic("Insufficient memory for buffer stack!");
1399	}
1400
1401	/* We are about to be active. */
1402	priv->active = true;
1403
1404	/* Make sure "active" is visible to all tiles. */
1405	mb();
1406
1407	/* On each tile, enable NAPI and the ingress interrupt. */
1408	on_each_cpu(tile_net_open_enable, (void *)dev, 1);
1409
1410	/* Start LIPP/LEPP and activate "ingress" at the shim. */
1411	if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1412			  sizeof(dummy), NETIO_IPP_INPUT_INIT_OFF) < 0)
1413		panic("Failed to activate the LIPP Shim!\n");
1414
1415	/* Start our transmit queue. */
1416	netif_start_queue(dev);
1417
1418	return 0;
1419}
1420
1421
1422/*
1423 * Called periodically to retry bringing up the NetIO interface,
1424 * if it doesn't come up cleanly during tile_net_open().
1425 */
1426static void tile_net_open_retry(struct work_struct *w)
1427{
1428	struct delayed_work *dw =
1429		container_of(w, struct delayed_work, work);
1430
1431	struct tile_net_priv *priv =
1432		container_of(dw, struct tile_net_priv, retry_work);
1433
1434	/*
1435	 * Try to bring the NetIO interface up.  If it fails, reschedule
1436	 * ourselves to try again later; otherwise, tell Linux we now have
1437	 * a working link.  ISSUE: What if the return value is negative?
1438	 */
1439	if (tile_net_open_inner(priv->dev) != 0)
1440		schedule_delayed_work(&priv->retry_work,
1441				      TILE_NET_RETRY_INTERVAL);
1442	else
1443		netif_carrier_on(priv->dev);
1444}
1445
1446
1447/*
1448 * Called when a network interface is made active.
1449 *
1450 * Returns 0 on success, negative value on failure.
1451 *
1452 * The open entry point is called when a network interface is made
1453 * active by the system (IFF_UP).  At this point all resources needed
1454 * for transmit and receive operations are allocated, the interrupt
1455 * handler is registered with the OS (if needed), the watchdog timer
1456 * is started, and the stack is notified that the interface is ready.
1457 *
1458 * If the actual link is not available yet, then we tell Linux that
1459 * we have no carrier, and we keep checking until the link comes up.
1460 */
1461static int tile_net_open(struct net_device *dev)
1462{
1463	int ret = 0;
1464	struct tile_net_priv *priv = netdev_priv(dev);
1465
1466	/*
1467	 * We rely on priv->partly_opened to tell us if this is the
1468	 * first time this interface is being brought up. If it is
1469	 * set, the IPP was already initialized and should not be
1470	 * initialized again.
1471	 */
1472	if (!priv->partly_opened) {
1473
1474		int count;
1475		int credits;
1476
1477		/* Initialize LIPP/LEPP, and start the Shim. */
1478		ret = tile_net_open_aux(dev);
1479		if (ret < 0) {
1480			pr_err("tile_net_open_aux failed: %d\n", ret);
1481			return ret;
1482		}
1483
1484		/* Analyze the network cpus. */
1485
1486		if (network_cpus_used)
1487			cpumask_copy(&priv->network_cpus_map,
1488				     &network_cpus_map);
1489		else
1490			cpumask_copy(&priv->network_cpus_map, cpu_online_mask);
1491
1492
1493		count = cpumask_weight(&priv->network_cpus_map);
1494
1495		/* Limit credits to available buffers, and apply min. */
1496		credits = max(16, (LIPP_LARGE_BUFFERS / count) & ~1);
1497
1498		/* Apply "GBE" max limit. */
1499		/* ISSUE: Use higher limit for XGBE? */
1500		credits = min(NETIO_MAX_RECEIVE_PKTS, credits);
1501
1502		priv->network_cpus_count = count;
1503		priv->network_cpus_credits = credits;
1504
1505#ifdef TILE_NET_DEBUG
1506		pr_info("Using %d network cpus, with %d credits each\n",
1507		       priv->network_cpus_count, priv->network_cpus_credits);
1508#endif
1509
1510		priv->partly_opened = 1;
1511
1512	} else {
1513		/* FIXME: Is this possible? */
1514		/* printk("Already partly opened.\n"); */
1515	}
1516
1517	/*
1518	 * Attempt to bring up the link.
1519	 */
1520	ret = tile_net_open_inner(dev);
1521	if (ret <= 0) {
1522		if (ret == 0)
1523			netif_carrier_on(dev);
1524		return ret;
1525	}
1526
1527	/*
1528	 * We were unable to bring up the NetIO interface, but we want to
1529	 * try again in a little bit.  Tell Linux that we have no carrier
1530	 * so it doesn't try to use the interface before the link comes up
1531	 * and then remember to try again later.
1532	 */
1533	netif_carrier_off(dev);
1534	schedule_delayed_work(&priv->retry_work, TILE_NET_RETRY_INTERVAL);
1535
1536	return 0;
1537}
1538
1539
1540static int tile_net_drain_lipp_buffers(struct tile_net_priv *priv)
1541{
1542	int n = 0;
1543
1544	/* Drain all the LIPP buffers. */
1545	while (true) {
1546		int buffer;
1547
1548		/* NOTE: This should never fail. */
1549		if (hv_dev_pread(priv->hv_devhdl, 0, (HV_VirtAddr)&buffer,
1550				 sizeof(buffer), NETIO_IPP_DRAIN_OFF) < 0)
1551			break;
1552
1553		/* Stop when done. */
1554		if (buffer == 0)
1555			break;
1556
1557		{
1558			/* Convert "linux_buffer_t" to "va". */
1559			void *va = __va((phys_addr_t)(buffer >> 1) << 7);
1560
1561			/* Acquire the associated "skb". */
1562			struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
1563			struct sk_buff *skb = *skb_ptr;
1564
1565			kfree_skb(skb);
1566		}
1567
1568		n++;
1569	}
1570
1571	return n;
1572}
1573
1574
1575/*
1576 * Disables a network interface.
1577 *
1578 * Returns 0, this is not allowed to fail.
1579 *
1580 * The close entry point is called when an interface is de-activated
1581 * by the OS.  The hardware is still under the drivers control, but
1582 * needs to be disabled.  A global MAC reset is issued to stop the
1583 * hardware, and all transmit and receive resources are freed.
1584 *
1585 * ISSUE: How closely does "netif_running(dev)" mirror "priv->active"?
1586 *
1587 * Before we are called by "__dev_close()", "netif_running()" will
1588 * have been cleared, so no NEW calls to "tile_net_poll()" will be
1589 * made by "netpoll_poll_dev()".
1590 *
1591 * Often, this can cause some tiles to still have packets in their
1592 * queues, so we must call "tile_net_discard_packets()" later.
1593 *
1594 * Note that some other tile may still be INSIDE "tile_net_poll()",
1595 * and in fact, many will be, if there is heavy network load.
1596 *
1597 * Calling "on_each_cpu(tile_net_stop_disable, (void *)dev, 1)" when
1598 * any tile is still "napi_schedule()"'d will induce a horrible crash
1599 * when "msleep()" is called.  This includes tiles which are inside
1600 * "tile_net_poll()" which have not yet called "napi_complete()".
1601 *
1602 * So, we must first try to wait long enough for other tiles to finish
1603 * with any current "tile_net_poll()" call, and, hopefully, to clear
1604 * the "scheduled" flag.  ISSUE: It is unclear what happens to tiles
1605 * which have called "napi_schedule()" but which had not yet tried to
1606 * call "tile_net_poll()", or which exhausted their budget inside
1607 * "tile_net_poll()" just before this function was called.
1608 */
1609static int tile_net_stop(struct net_device *dev)
1610{
1611	struct tile_net_priv *priv = netdev_priv(dev);
1612
1613	PDEBUG("tile_net_stop()\n");
1614
1615	/* Start discarding packets. */
1616	priv->active = false;
1617
1618	/* Make sure "active" is visible to all tiles. */
1619	mb();
1620
1621	/*
1622	 * On each tile, make sure no NEW packets get delivered, and
1623	 * disable the ingress interrupt.
1624	 *
1625	 * Note that the ingress interrupt can fire AFTER this,
1626	 * presumably due to packets which were recently delivered,
1627	 * but it will have no effect.
1628	 */
1629	on_each_cpu(tile_net_deregister, (void *)dev, 1);
1630
1631	/* Optimistically drain LIPP buffers. */
1632	(void)tile_net_drain_lipp_buffers(priv);
1633
1634	/* ISSUE: Only needed if not yet fully open. */
1635	cancel_delayed_work_sync(&priv->retry_work);
1636
1637	/* Can't transmit any more. */
1638	netif_stop_queue(dev);
1639
1640	/* Disable NAPI on each tile. */
1641	on_each_cpu(tile_net_stop_disable, (void *)dev, 1);
1642
1643	/*
1644	 * Drain any remaining LIPP buffers.  NOTE: This "printk()"
1645	 * has never been observed, but in theory it could happen.
1646	 */
1647	if (tile_net_drain_lipp_buffers(priv) != 0)
1648		printk("Had to drain some extra LIPP buffers!\n");
1649
1650	/* Stop LIPP/LEPP. */
1651	tile_net_stop_aux(dev);
1652
1653	/*
1654	 * ISSUE: It appears that, in practice anyway, by the time we
1655	 * get here, there are no pending completions, but just in case,
1656	 * we free (all of) them anyway.
1657	 */
1658	while (tile_net_lepp_free_comps(dev, true))
1659		/* loop */;
1660
1661	/* Wipe the EPP queue, and wait till the stores hit the EPP. */
1662	memset(priv->eq, 0, sizeof(lepp_queue_t));
1663	mb();
1664
1665	return 0;
1666}
1667
1668
1669/*
1670 * Prepare the "frags" info for the resulting LEPP command.
1671 *
1672 * If needed, flush the memory used by the frags.
1673 */
1674static unsigned int tile_net_tx_frags(lepp_frag_t *frags,
1675				      struct sk_buff *skb,
1676				      void *b_data, unsigned int b_len)
1677{
1678	unsigned int i, n = 0;
1679
1680	struct skb_shared_info *sh = skb_shinfo(skb);
1681
1682	phys_addr_t cpa;
1683
1684	if (b_len != 0) {
1685
1686		if (!hash_default)
1687			finv_buffer_remote(b_data, b_len, 0);
1688
1689		cpa = __pa(b_data);
1690		frags[n].cpa_lo = cpa;
1691		frags[n].cpa_hi = cpa >> 32;
1692		frags[n].length = b_len;
1693		frags[n].hash_for_home = hash_default;
1694		n++;
1695	}
1696
1697	for (i = 0; i < sh->nr_frags; i++) {
1698
1699		skb_frag_t *f = &sh->frags[i];
1700		unsigned long pfn = page_to_pfn(f->page);
1701
1702		/* FIXME: Compute "hash_for_home" properly. */
1703		/* ISSUE: The hypervisor checks CHIP_HAS_REV1_DMA_PACKETS(). */
1704		int hash_for_home = hash_default;
1705
1706		/* FIXME: Hmmm. */
1707		if (!hash_default) {
1708			void *va = pfn_to_kaddr(pfn) + f->page_offset;
1709			BUG_ON(PageHighMem(f->page));
1710			finv_buffer_remote(va, f->size, 0);
1711		}
1712
1713		cpa = ((phys_addr_t)pfn << PAGE_SHIFT) + f->page_offset;
1714		frags[n].cpa_lo = cpa;
1715		frags[n].cpa_hi = cpa >> 32;
1716		frags[n].length = f->size;
1717		frags[n].hash_for_home = hash_for_home;
1718		n++;
1719	}
1720
1721	return n;
1722}
1723
1724
1725/*
1726 * This function takes "skb", consisting of a header template and a
1727 * payload, and hands it to LEPP, to emit as one or more segments,
1728 * each consisting of a possibly modified header, plus a piece of the
1729 * payload, via a process known as "tcp segmentation offload".
1730 *
1731 * Usually, "data" will contain the header template, of size "sh_len",
1732 * and "sh->frags" will contain "skb->data_len" bytes of payload, and
1733 * there will be "sh->gso_segs" segments.
1734 *
1735 * Sometimes, if "sendfile()" requires copying, we will be called with
1736 * "data" containing the header and payload, with "frags" being empty.
1737 *
1738 * In theory, "sh->nr_frags" could be 3, but in practice, it seems
1739 * that this will never actually happen.
1740 *
1741 * See "emulate_large_send_offload()" for some reference code, which
1742 * does not handle checksumming.
1743 *
1744 * ISSUE: How do we make sure that high memory DMA does not migrate?
1745 */
1746static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
1747{
1748	struct tile_net_priv *priv = netdev_priv(dev);
1749	int my_cpu = smp_processor_id();
1750	struct tile_net_cpu *info = priv->cpu[my_cpu];
1751	struct tile_net_stats_t *stats = &info->stats;
1752
1753	struct skb_shared_info *sh = skb_shinfo(skb);
1754
1755	unsigned char *data = skb->data;
1756
1757	/* The ip header follows the ethernet header. */
1758	struct iphdr *ih = ip_hdr(skb);
1759	unsigned int ih_len = ih->ihl * 4;
1760
1761	/* Note that "nh == ih", by definition. */
1762	unsigned char *nh = skb_network_header(skb);
1763	unsigned int eh_len = nh - data;
1764
1765	/* The tcp header follows the ip header. */
1766	struct tcphdr *th = (struct tcphdr *)(nh + ih_len);
1767	unsigned int th_len = th->doff * 4;
1768
1769	/* The total number of header bytes. */
1770	/* NOTE: This may be less than skb_headlen(skb). */
1771	unsigned int sh_len = eh_len + ih_len + th_len;
1772
1773	/* The number of payload bytes at "skb->data + sh_len". */
1774	/* This is non-zero for sendfile() without HIGHDMA. */
1775	unsigned int b_len = skb_headlen(skb) - sh_len;
1776
1777	/* The total number of payload bytes. */
1778	unsigned int d_len = b_len + skb->data_len;
1779
1780	/* The maximum payload size. */
1781	unsigned int p_len = sh->gso_size;
1782
1783	/* The total number of segments. */
1784	unsigned int num_segs = sh->gso_segs;
1785
1786	/* The temporary copy of the command. */
1787	u32 cmd_body[(LEPP_MAX_CMD_SIZE + 3) / 4];
1788	lepp_tso_cmd_t *cmd = (lepp_tso_cmd_t *)cmd_body;
1789
1790	/* Analyze the "frags". */
1791	unsigned int num_frags =
1792		tile_net_tx_frags(cmd->frags, skb, data + sh_len, b_len);
1793
1794	/* The size of the command, including frags and header. */
1795	size_t cmd_size = LEPP_TSO_CMD_SIZE(num_frags, sh_len);
1796
1797	/* The command header. */
1798	lepp_tso_cmd_t cmd_init = {
1799		.tso = true,
1800		.header_size = sh_len,
1801		.ip_offset = eh_len,
1802		.tcp_offset = eh_len + ih_len,
1803		.payload_size = p_len,
1804		.num_frags = num_frags,
1805	};
1806
1807	unsigned long irqflags;
1808
1809	lepp_queue_t *eq = priv->eq;
1810
1811	struct sk_buff *olds[8];
1812	unsigned int wanted = 8;
1813	unsigned int i, nolds = 0;
1814
1815	unsigned int cmd_head, cmd_tail, cmd_next;
1816	unsigned int comp_tail;
1817
1818
1819	/* Paranoia. */
1820	BUG_ON(skb->protocol != htons(ETH_P_IP));
1821	BUG_ON(ih->protocol != IPPROTO_TCP);
1822	BUG_ON(skb->ip_summed != CHECKSUM_PARTIAL);
1823	BUG_ON(num_frags > LEPP_MAX_FRAGS);
1824	/*--BUG_ON(num_segs != (d_len + (p_len - 1)) / p_len); */
1825	BUG_ON(num_segs <= 1);
1826
1827
1828	/* Finish preparing the command. */
1829
1830	/* Copy the command header. */
1831	*cmd = cmd_init;
1832
1833	/* Copy the "header". */
1834	memcpy(&cmd->frags[num_frags], data, sh_len);
1835
1836
1837	/* Prefetch and wait, to minimize time spent holding the spinlock. */
1838	prefetch_L1(&eq->comp_tail);
1839	prefetch_L1(&eq->cmd_tail);
1840	mb();
1841
1842
1843	/* Enqueue the command. */
1844
1845	spin_lock_irqsave(&priv->eq_lock, irqflags);
1846
1847	/*
1848	 * Handle completions if needed to make room.
1849	 * HACK: Spin until there is sufficient room.
1850	 */
1851	if (lepp_num_free_comp_slots(eq) == 0) {
1852		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
1853		if (nolds == 0) {
1854busy:
1855			spin_unlock_irqrestore(&priv->eq_lock, irqflags);
1856			return NETDEV_TX_BUSY;
1857		}
1858	}
1859
1860	cmd_head = eq->cmd_head;
1861	cmd_tail = eq->cmd_tail;
1862
1863	/* Prepare to advance, detecting full queue. */
1864	cmd_next = cmd_tail + cmd_size;
1865	if (cmd_tail < cmd_head && cmd_next >= cmd_head)
1866		goto busy;
1867	if (cmd_next > LEPP_CMD_LIMIT) {
1868		cmd_next = 0;
1869		if (cmd_next == cmd_head)
1870			goto busy;
1871	}
1872
1873	/* Copy the command. */
1874	memcpy(&eq->cmds[cmd_tail], cmd, cmd_size);
1875
1876	/* Advance. */
1877	cmd_tail = cmd_next;
1878
1879	/* Record "skb" for eventual freeing. */
1880	comp_tail = eq->comp_tail;
1881	eq->comps[comp_tail] = skb;
1882	LEPP_QINC(comp_tail);
1883	eq->comp_tail = comp_tail;
1884
1885	/* Flush before allowing LEPP to handle the command. */
1886	/* ISSUE: Is this the optimal location for the flush? */
1887	__insn_mf();
1888
1889	eq->cmd_tail = cmd_tail;
1890
1891	/* NOTE: Using "4" here is more efficient than "0" or "2", */
1892	/* and, strangely, more efficient than pre-checking the number */
1893	/* of available completions, and comparing it to 4. */
1894	if (nolds == 0)
1895		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4);
1896
1897	spin_unlock_irqrestore(&priv->eq_lock, irqflags);
1898
1899	/* Handle completions. */
1900	for (i = 0; i < nolds; i++)
1901		kfree_skb(olds[i]);
1902
1903	/* Update stats. */
1904	stats->tx_packets += num_segs;
1905	stats->tx_bytes += (num_segs * sh_len) + d_len;
1906
1907	/* Make sure the egress timer is scheduled. */
1908	tile_net_schedule_egress_timer(info);
1909
1910	return NETDEV_TX_OK;
1911}
1912
1913
1914/*
1915 * Transmit a packet (called by the kernel via "hard_start_xmit" hook).
1916 */
1917static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
1918{
1919	struct tile_net_priv *priv = netdev_priv(dev);
1920	int my_cpu = smp_processor_id();
1921	struct tile_net_cpu *info = priv->cpu[my_cpu];
1922	struct tile_net_stats_t *stats = &info->stats;
1923
1924	unsigned long irqflags;
1925
1926	struct skb_shared_info *sh = skb_shinfo(skb);
1927
1928	unsigned int len = skb->len;
1929	unsigned char *data = skb->data;
1930
1931	unsigned int csum_start = skb_checksum_start_offset(skb);
1932
1933	lepp_frag_t frags[LEPP_MAX_FRAGS];
1934
1935	unsigned int num_frags;
1936
1937	lepp_queue_t *eq = priv->eq;
1938
1939	struct sk_buff *olds[8];
1940	unsigned int wanted = 8;
1941	unsigned int i, nolds = 0;
1942
1943	unsigned int cmd_size = sizeof(lepp_cmd_t);
1944
1945	unsigned int cmd_head, cmd_tail, cmd_next;
1946	unsigned int comp_tail;
1947
1948	lepp_cmd_t cmds[LEPP_MAX_FRAGS];
1949
1950
1951	/*
1952	 * This is paranoia, since we think that if the link doesn't come
1953	 * up, telling Linux we have no carrier will keep it from trying
1954	 * to transmit.  If it does, though, we can't execute this routine,
1955	 * since data structures we depend on aren't set up yet.
1956	 */
1957	if (!info->registered)
1958		return NETDEV_TX_BUSY;
1959
1960
1961	/* Save the timestamp. */
1962	dev->trans_start = jiffies;
1963
1964
1965#ifdef TILE_NET_PARANOIA
1966#if CHIP_HAS_CBOX_HOME_MAP()
1967	if (hash_default) {
1968		HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)data);
1969		if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
1970			panic("Non-HFH egress buffer! VA=%p Mode=%d PTE=%llx",
1971			      data, hv_pte_get_mode(pte), hv_pte_val(pte));
1972	}
1973#endif
1974#endif
1975
1976
1977#ifdef TILE_NET_DUMP_PACKETS
1978	/* ISSUE: Does not dump the "frags". */
1979	dump_packet(data, skb_headlen(skb), "tx");
1980#endif /* TILE_NET_DUMP_PACKETS */
1981
1982
1983	if (sh->gso_size != 0)
1984		return tile_net_tx_tso(skb, dev);
1985
1986
1987	/* Prepare the commands. */
1988
1989	num_frags = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
1990
1991	for (i = 0; i < num_frags; i++) {
1992
1993		bool final = (i == num_frags - 1);
1994
1995		lepp_cmd_t cmd = {
1996			.cpa_lo = frags[i].cpa_lo,
1997			.cpa_hi = frags[i].cpa_hi,
1998			.length = frags[i].length,
1999			.hash_for_home = frags[i].hash_for_home,
2000			.send_completion = final,
2001			.end_of_packet = final
2002		};
2003
2004		if (i == 0 && skb->ip_summed == CHECKSUM_PARTIAL) {
2005			cmd.compute_checksum = 1;
2006			cmd.checksum_data.bits.start_byte = csum_start;
2007			cmd.checksum_data.bits.count = len - csum_start;
2008			cmd.checksum_data.bits.destination_byte =
2009				csum_start + skb->csum_offset;
2010		}
2011
2012		cmds[i] = cmd;
2013	}
2014
2015
2016	/* Prefetch and wait, to minimize time spent holding the spinlock. */
2017	prefetch_L1(&eq->comp_tail);
2018	prefetch_L1(&eq->cmd_tail);
2019	mb();
2020
2021
2022	/* Enqueue the commands. */
2023
2024	spin_lock_irqsave(&priv->eq_lock, irqflags);
2025
2026	/*
2027	 * Handle completions if needed to make room.
2028	 * HACK: Spin until there is sufficient room.
2029	 */
2030	if (lepp_num_free_comp_slots(eq) == 0) {
2031		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
2032		if (nolds == 0) {
2033busy:
2034			spin_unlock_irqrestore(&priv->eq_lock, irqflags);
2035			return NETDEV_TX_BUSY;
2036		}
2037	}
2038
2039	cmd_head = eq->cmd_head;
2040	cmd_tail = eq->cmd_tail;
2041
2042	/* Copy the commands, or fail. */
2043	for (i = 0; i < num_frags; i++) {
2044
2045		/* Prepare to advance, detecting full queue. */
2046		cmd_next = cmd_tail + cmd_size;
2047		if (cmd_tail < cmd_head && cmd_next >= cmd_head)
2048			goto busy;
2049		if (cmd_next > LEPP_CMD_LIMIT) {
2050			cmd_next = 0;
2051			if (cmd_next == cmd_head)
2052				goto busy;
2053		}
2054
2055		/* Copy the command. */
2056		*(lepp_cmd_t *)&eq->cmds[cmd_tail] = cmds[i];
2057
2058		/* Advance. */
2059		cmd_tail = cmd_next;
2060	}
2061
2062	/* Record "skb" for eventual freeing. */
2063	comp_tail = eq->comp_tail;
2064	eq->comps[comp_tail] = skb;
2065	LEPP_QINC(comp_tail);
2066	eq->comp_tail = comp_tail;
2067
2068	/* Flush before allowing LEPP to handle the command. */
2069	/* ISSUE: Is this the optimal location for the flush? */
2070	__insn_mf();
2071
2072	eq->cmd_tail = cmd_tail;
2073
2074	/* NOTE: Using "4" here is more efficient than "0" or "2", */
2075	/* and, strangely, more efficient than pre-checking the number */
2076	/* of available completions, and comparing it to 4. */
2077	if (nolds == 0)
2078		nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4);
2079
2080	spin_unlock_irqrestore(&priv->eq_lock, irqflags);
2081
2082	/* Handle completions. */
2083	for (i = 0; i < nolds; i++)
2084		kfree_skb(olds[i]);
2085
2086	/* HACK: Track "expanded" size for short packets (e.g. 42 < 60). */
2087	stats->tx_packets++;
2088	stats->tx_bytes += ((len >= ETH_ZLEN) ? len : ETH_ZLEN);
2089
2090	/* Make sure the egress timer is scheduled. */
2091	tile_net_schedule_egress_timer(info);
2092
2093	return NETDEV_TX_OK;
2094}
2095
2096
2097/*
2098 * Deal with a transmit timeout.
2099 */
2100static void tile_net_tx_timeout(struct net_device *dev)
2101{
2102	PDEBUG("tile_net_tx_timeout()\n");
2103	PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies,
2104	       jiffies - dev->trans_start);
2105
2106	/* XXX: ISSUE: This doesn't seem useful for us. */
2107	netif_wake_queue(dev);
2108}
2109
2110
2111/*
2112 * Ioctl commands.
2113 */
2114static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2115{
2116	return -EOPNOTSUPP;
2117}
2118
2119
2120/*
2121 * Get System Network Statistics.
2122 *
2123 * Returns the address of the device statistics structure.
2124 */
2125static struct net_device_stats *tile_net_get_stats(struct net_device *dev)
2126{
2127	struct tile_net_priv *priv = netdev_priv(dev);
2128	u32 rx_packets = 0;
2129	u32 tx_packets = 0;
2130	u32 rx_bytes = 0;
2131	u32 tx_bytes = 0;
2132	int i;
2133
2134	for_each_online_cpu(i) {
2135		if (priv->cpu[i]) {
2136			rx_packets += priv->cpu[i]->stats.rx_packets;
2137			rx_bytes += priv->cpu[i]->stats.rx_bytes;
2138			tx_packets += priv->cpu[i]->stats.tx_packets;
2139			tx_bytes += priv->cpu[i]->stats.tx_bytes;
2140		}
2141	}
2142
2143	priv->stats.rx_packets = rx_packets;
2144	priv->stats.rx_bytes = rx_bytes;
2145	priv->stats.tx_packets = tx_packets;
2146	priv->stats.tx_bytes = tx_bytes;
2147
2148	return &priv->stats;
2149}
2150
2151
2152/*
2153 * Change the "mtu".
2154 *
2155 * The "change_mtu" method is usually not needed.
2156 * If you need it, it must be like this.
2157 */
2158static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
2159{
2160	PDEBUG("tile_net_change_mtu()\n");
2161
2162	/* Check ranges. */
2163	if ((new_mtu < 68) || (new_mtu > 1500))
2164		return -EINVAL;
2165
2166	/* Accept the value. */
2167	dev->mtu = new_mtu;
2168
2169	return 0;
2170}
2171
2172
2173/*
2174 * Change the Ethernet Address of the NIC.
2175 *
2176 * The hypervisor driver does not support changing MAC address.  However,
2177 * the IPP does not do anything with the MAC address, so the address which
2178 * gets used on outgoing packets, and which is accepted on incoming packets,
2179 * is completely up to the NetIO program or kernel driver which is actually
2180 * handling them.
2181 *
2182 * Returns 0 on success, negative on failure.
2183 */
2184static int tile_net_set_mac_address(struct net_device *dev, void *p)
2185{
2186	struct sockaddr *addr = p;
2187
2188	if (!is_valid_ether_addr(addr->sa_data))
2189		return -EINVAL;
2190
2191	/* ISSUE: Note that "dev_addr" is now a pointer. */
2192	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2193
2194	return 0;
2195}
2196
2197
2198/*
2199 * Obtain the MAC address from the hypervisor.
2200 * This must be done before opening the device.
2201 */
2202static int tile_net_get_mac(struct net_device *dev)
2203{
2204	struct tile_net_priv *priv = netdev_priv(dev);
2205
2206	char hv_dev_name[32];
2207	int len;
2208
2209	__netio_getset_offset_t offset = { .word = NETIO_IPP_PARAM_OFF };
2210
2211	int ret;
2212
2213	/* For example, "xgbe0". */
2214	strcpy(hv_dev_name, dev->name);
2215	len = strlen(hv_dev_name);
2216
2217	/* For example, "xgbe/0". */
2218	hv_dev_name[len] = hv_dev_name[len - 1];
2219	hv_dev_name[len - 1] = '/';
2220	len++;
2221
2222	/* For example, "xgbe/0/native_hash". */
2223	strcpy(hv_dev_name + len, hash_default ? "/native_hash" : "/native");
2224
2225	/* Get the hypervisor handle for this device. */
2226	priv->hv_devhdl = hv_dev_open((HV_VirtAddr)hv_dev_name, 0);
2227	PDEBUG("hv_dev_open(%s) returned %d %p\n",
2228	       hv_dev_name, priv->hv_devhdl, &priv->hv_devhdl);
2229	if (priv->hv_devhdl < 0) {
2230		if (priv->hv_devhdl == HV_ENODEV)
2231			printk(KERN_DEBUG "Ignoring unconfigured device %s\n",
2232				 hv_dev_name);
2233		else
2234			printk(KERN_DEBUG "hv_dev_open(%s) returned %d\n",
2235				 hv_dev_name, priv->hv_devhdl);
2236		return -1;
2237	}
2238
2239	/*
2240	 * Read the hardware address from the hypervisor.
2241	 * ISSUE: Note that "dev_addr" is now a pointer.
2242	 */
2243	offset.bits.class = NETIO_PARAM;
2244	offset.bits.addr = NETIO_PARAM_MAC;
2245	ret = hv_dev_pread(priv->hv_devhdl, 0,
2246			   (HV_VirtAddr)dev->dev_addr, dev->addr_len,
2247			   offset.word);
2248	PDEBUG("hv_dev_pread(NETIO_PARAM_MAC) returned %d\n", ret);
2249	if (ret <= 0) {
2250		printk(KERN_DEBUG "hv_dev_pread(NETIO_PARAM_MAC) %s failed\n",
2251		       dev->name);
2252		/*
2253		 * Since the device is configured by the hypervisor but we
2254		 * can't get its MAC address, we are most likely running
2255		 * the simulator, so let's generate a random MAC address.
2256		 */
2257		random_ether_addr(dev->dev_addr);
2258	}
2259
2260	return 0;
2261}
2262
2263
2264static struct net_device_ops tile_net_ops = {
2265	.ndo_open = tile_net_open,
2266	.ndo_stop = tile_net_stop,
2267	.ndo_start_xmit = tile_net_tx,
2268	.ndo_do_ioctl = tile_net_ioctl,
2269	.ndo_get_stats = tile_net_get_stats,
2270	.ndo_change_mtu = tile_net_change_mtu,
2271	.ndo_tx_timeout = tile_net_tx_timeout,
2272	.ndo_set_mac_address = tile_net_set_mac_address
2273};
2274
2275
2276/*
2277 * The setup function.
2278 *
2279 * This uses ether_setup() to assign various fields in dev, including
2280 * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
2281 */
2282static void tile_net_setup(struct net_device *dev)
2283{
2284	PDEBUG("tile_net_setup()\n");
2285
2286	ether_setup(dev);
2287
2288	dev->netdev_ops = &tile_net_ops;
2289
2290	dev->watchdog_timeo = TILE_NET_TIMEOUT;
2291
2292	/* We want lockless xmit. */
2293	dev->features |= NETIF_F_LLTX;
2294
2295	/* We support hardware tx checksums. */
2296	dev->features |= NETIF_F_HW_CSUM;
2297
2298	/* We support scatter/gather. */
2299	dev->features |= NETIF_F_SG;
2300
2301	/* We support TSO. */
2302	dev->features |= NETIF_F_TSO;
2303
2304#ifdef TILE_NET_GSO
2305	/* We support GSO. */
2306	dev->features |= NETIF_F_GSO;
2307#endif
2308
2309	if (hash_default)
2310		dev->features |= NETIF_F_HIGHDMA;
2311
2312	/* ISSUE: We should support NETIF_F_UFO. */
2313
2314	dev->tx_queue_len = TILE_NET_TX_QUEUE_LEN;
2315
2316	dev->mtu = TILE_NET_MTU;
2317}
2318
2319
2320/*
2321 * Allocate the device structure, register the device, and obtain the
2322 * MAC address from the hypervisor.
2323 */
2324static struct net_device *tile_net_dev_init(const char *name)
2325{
2326	int ret;
2327	struct net_device *dev;
2328	struct tile_net_priv *priv;
2329
2330	/*
2331	 * Allocate the device structure.  This allocates "priv", calls
2332	 * tile_net_setup(), and saves "name".  Normally, "name" is a
2333	 * template, instantiated by register_netdev(), but not for us.
2334	 */
2335	dev = alloc_netdev(sizeof(*priv), name, tile_net_setup);
2336	if (!dev) {
2337		pr_err("alloc_netdev(%s) failed\n", name);
2338		return NULL;
2339	}
2340
2341	priv = netdev_priv(dev);
2342
2343	/* Initialize "priv". */
2344
2345	memset(priv, 0, sizeof(*priv));
2346
2347	/* Save "dev" for "tile_net_open_retry()". */
2348	priv->dev = dev;
2349
2350	INIT_DELAYED_WORK(&priv->retry_work, tile_net_open_retry);
2351
2352	spin_lock_init(&priv->eq_lock);
2353
2354	/* Allocate "eq". */
2355	priv->eq_pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, EQ_ORDER);
2356	if (!priv->eq_pages) {
2357		free_netdev(dev);
2358		return NULL;
2359	}
2360	priv->eq = page_address(priv->eq_pages);
2361
2362	/* Register the network device. */
2363	ret = register_netdev(dev);
2364	if (ret) {
2365		pr_err("register_netdev %s failed %d\n", dev->name, ret);
2366		__free_pages(priv->eq_pages, EQ_ORDER);
2367		free_netdev(dev);
2368		return NULL;
2369	}
2370
2371	/* Get the MAC address. */
2372	ret = tile_net_get_mac(dev);
2373	if (ret < 0) {
2374		unregister_netdev(dev);
2375		__free_pages(priv->eq_pages, EQ_ORDER);
2376		free_netdev(dev);
2377		return NULL;
2378	}
2379
2380	return dev;
2381}
2382
2383
2384/*
2385 * Module cleanup.
2386 *
2387 * FIXME: If compiled as a module, this module cannot be "unloaded",
2388 * because the "ingress interrupt handler" is registered permanently.
2389 */
2390static void tile_net_cleanup(void)
2391{
2392	int i;
2393
2394	for (i = 0; i < TILE_NET_DEVS; i++) {
2395		if (tile_net_devs[i]) {
2396			struct net_device *dev = tile_net_devs[i];
2397			struct tile_net_priv *priv = netdev_priv(dev);
2398			unregister_netdev(dev);
2399			finv_buffer_remote(priv->eq, EQ_SIZE, 0);
2400			__free_pages(priv->eq_pages, EQ_ORDER);
2401			free_netdev(dev);
2402		}
2403	}
2404}
2405
2406
2407/*
2408 * Module initialization.
2409 */
2410static int tile_net_init_module(void)
2411{
2412	pr_info("Tilera IPP Net Driver\n");
2413
2414	tile_net_devs[0] = tile_net_dev_init("xgbe0");
2415	tile_net_devs[1] = tile_net_dev_init("xgbe1");
2416	tile_net_devs[2] = tile_net_dev_init("gbe0");
2417	tile_net_devs[3] = tile_net_dev_init("gbe1");
2418
2419	return 0;
2420}
2421
2422
2423module_init(tile_net_init_module);
2424module_exit(tile_net_cleanup);
2425
2426
2427#ifndef MODULE
2428
2429/*
2430 * The "network_cpus" boot argument specifies the cpus that are dedicated
2431 * to handle ingress packets.
2432 *
2433 * The parameter should be in the form "network_cpus=m-n[,x-y]", where
2434 * m, n, x, y are integer numbers that represent the cpus that can be
2435 * neither a dedicated cpu nor a dataplane cpu.
2436 */
2437static int __init network_cpus_setup(char *str)
2438{
2439	int rc = cpulist_parse_crop(str, &network_cpus_map);
2440	if (rc != 0) {
2441		pr_warning("network_cpus=%s: malformed cpu list\n",
2442		       str);
2443	} else {
2444
2445		/* Remove dedicated cpus. */
2446		cpumask_and(&network_cpus_map, &network_cpus_map,
2447			    cpu_possible_mask);
2448
2449
2450		if (cpumask_empty(&network_cpus_map)) {
2451			pr_warning("Ignoring network_cpus='%s'.\n",
2452			       str);
2453		} else {
2454			char buf[1024];
2455			cpulist_scnprintf(buf, sizeof(buf), &network_cpus_map);
2456			pr_info("Linux network CPUs: %s\n", buf);
2457			network_cpus_used = true;
2458		}
2459	}
2460
2461	return 0;
2462}
2463__setup("network_cpus=", network_cpus_setup);
2464
2465#endif