Loading...
1/*
2 * PowerMac G5 SMU driver
3 *
4 * Copyright 2004 J. Mayer <l_indien@magic.fr>
5 * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
6 *
7 * Released under the term of the GNU GPL v2.
8 */
9
10/*
11 * TODO:
12 * - maybe add timeout to commands ?
13 * - blocking version of time functions
14 * - polling version of i2c commands (including timer that works with
15 * interrupts off)
16 * - maybe avoid some data copies with i2c by directly using the smu cmd
17 * buffer and a lower level internal interface
18 * - understand SMU -> CPU events and implement reception of them via
19 * the userland interface
20 */
21
22#include <linux/types.h>
23#include <linux/kernel.h>
24#include <linux/device.h>
25#include <linux/dmapool.h>
26#include <linux/bootmem.h>
27#include <linux/vmalloc.h>
28#include <linux/highmem.h>
29#include <linux/jiffies.h>
30#include <linux/interrupt.h>
31#include <linux/rtc.h>
32#include <linux/completion.h>
33#include <linux/miscdevice.h>
34#include <linux/delay.h>
35#include <linux/sysdev.h>
36#include <linux/poll.h>
37#include <linux/mutex.h>
38#include <linux/of_device.h>
39#include <linux/of_platform.h>
40#include <linux/slab.h>
41
42#include <asm/byteorder.h>
43#include <asm/io.h>
44#include <asm/prom.h>
45#include <asm/machdep.h>
46#include <asm/pmac_feature.h>
47#include <asm/smu.h>
48#include <asm/sections.h>
49#include <asm/abs_addr.h>
50#include <asm/uaccess.h>
51
52#define VERSION "0.7"
53#define AUTHOR "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
54
55#undef DEBUG_SMU
56
57#ifdef DEBUG_SMU
58#define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
59#else
60#define DPRINTK(fmt, args...) do { } while (0)
61#endif
62
63/*
64 * This is the command buffer passed to the SMU hardware
65 */
66#define SMU_MAX_DATA 254
67
68struct smu_cmd_buf {
69 u8 cmd;
70 u8 length;
71 u8 data[SMU_MAX_DATA];
72};
73
74struct smu_device {
75 spinlock_t lock;
76 struct device_node *of_node;
77 struct platform_device *of_dev;
78 int doorbell; /* doorbell gpio */
79 u32 __iomem *db_buf; /* doorbell buffer */
80 struct device_node *db_node;
81 unsigned int db_irq;
82 int msg;
83 struct device_node *msg_node;
84 unsigned int msg_irq;
85 struct smu_cmd_buf *cmd_buf; /* command buffer virtual */
86 u32 cmd_buf_abs; /* command buffer absolute */
87 struct list_head cmd_list;
88 struct smu_cmd *cmd_cur; /* pending command */
89 int broken_nap;
90 struct list_head cmd_i2c_list;
91 struct smu_i2c_cmd *cmd_i2c_cur; /* pending i2c command */
92 struct timer_list i2c_timer;
93};
94
95/*
96 * I don't think there will ever be more than one SMU, so
97 * for now, just hard code that
98 */
99static DEFINE_MUTEX(smu_mutex);
100static struct smu_device *smu;
101static DEFINE_MUTEX(smu_part_access);
102static int smu_irq_inited;
103
104static void smu_i2c_retry(unsigned long data);
105
106/*
107 * SMU driver low level stuff
108 */
109
110static void smu_start_cmd(void)
111{
112 unsigned long faddr, fend;
113 struct smu_cmd *cmd;
114
115 if (list_empty(&smu->cmd_list))
116 return;
117
118 /* Fetch first command in queue */
119 cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
120 smu->cmd_cur = cmd;
121 list_del(&cmd->link);
122
123 DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
124 cmd->data_len);
125 DPRINTK("SMU: data buffer: %02x %02x %02x %02x %02x %02x %02x %02x\n",
126 ((u8 *)cmd->data_buf)[0], ((u8 *)cmd->data_buf)[1],
127 ((u8 *)cmd->data_buf)[2], ((u8 *)cmd->data_buf)[3],
128 ((u8 *)cmd->data_buf)[4], ((u8 *)cmd->data_buf)[5],
129 ((u8 *)cmd->data_buf)[6], ((u8 *)cmd->data_buf)[7]);
130
131 /* Fill the SMU command buffer */
132 smu->cmd_buf->cmd = cmd->cmd;
133 smu->cmd_buf->length = cmd->data_len;
134 memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
135
136 /* Flush command and data to RAM */
137 faddr = (unsigned long)smu->cmd_buf;
138 fend = faddr + smu->cmd_buf->length + 2;
139 flush_inval_dcache_range(faddr, fend);
140
141
142 /* We also disable NAP mode for the duration of the command
143 * on U3 based machines.
144 * This is slightly racy as it can be written back to 1 by a sysctl
145 * but that never happens in practice. There seem to be an issue with
146 * U3 based machines such as the iMac G5 where napping for the
147 * whole duration of the command prevents the SMU from fetching it
148 * from memory. This might be related to the strange i2c based
149 * mechanism the SMU uses to access memory.
150 */
151 if (smu->broken_nap)
152 powersave_nap = 0;
153
154 /* This isn't exactly a DMA mapping here, I suspect
155 * the SMU is actually communicating with us via i2c to the
156 * northbridge or the CPU to access RAM.
157 */
158 writel(smu->cmd_buf_abs, smu->db_buf);
159
160 /* Ring the SMU doorbell */
161 pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
162}
163
164
165static irqreturn_t smu_db_intr(int irq, void *arg)
166{
167 unsigned long flags;
168 struct smu_cmd *cmd;
169 void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
170 void *misc = NULL;
171 u8 gpio;
172 int rc = 0;
173
174 /* SMU completed the command, well, we hope, let's make sure
175 * of it
176 */
177 spin_lock_irqsave(&smu->lock, flags);
178
179 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
180 if ((gpio & 7) != 7) {
181 spin_unlock_irqrestore(&smu->lock, flags);
182 return IRQ_HANDLED;
183 }
184
185 cmd = smu->cmd_cur;
186 smu->cmd_cur = NULL;
187 if (cmd == NULL)
188 goto bail;
189
190 if (rc == 0) {
191 unsigned long faddr;
192 int reply_len;
193 u8 ack;
194
195 /* CPU might have brought back the cache line, so we need
196 * to flush again before peeking at the SMU response. We
197 * flush the entire buffer for now as we haven't read the
198 * reply length (it's only 2 cache lines anyway)
199 */
200 faddr = (unsigned long)smu->cmd_buf;
201 flush_inval_dcache_range(faddr, faddr + 256);
202
203 /* Now check ack */
204 ack = (~cmd->cmd) & 0xff;
205 if (ack != smu->cmd_buf->cmd) {
206 DPRINTK("SMU: incorrect ack, want %x got %x\n",
207 ack, smu->cmd_buf->cmd);
208 rc = -EIO;
209 }
210 reply_len = rc == 0 ? smu->cmd_buf->length : 0;
211 DPRINTK("SMU: reply len: %d\n", reply_len);
212 if (reply_len > cmd->reply_len) {
213 printk(KERN_WARNING "SMU: reply buffer too small,"
214 "got %d bytes for a %d bytes buffer\n",
215 reply_len, cmd->reply_len);
216 reply_len = cmd->reply_len;
217 }
218 cmd->reply_len = reply_len;
219 if (cmd->reply_buf && reply_len)
220 memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
221 }
222
223 /* Now complete the command. Write status last in order as we lost
224 * ownership of the command structure as soon as it's no longer -1
225 */
226 done = cmd->done;
227 misc = cmd->misc;
228 mb();
229 cmd->status = rc;
230
231 /* Re-enable NAP mode */
232 if (smu->broken_nap)
233 powersave_nap = 1;
234 bail:
235 /* Start next command if any */
236 smu_start_cmd();
237 spin_unlock_irqrestore(&smu->lock, flags);
238
239 /* Call command completion handler if any */
240 if (done)
241 done(cmd, misc);
242
243 /* It's an edge interrupt, nothing to do */
244 return IRQ_HANDLED;
245}
246
247
248static irqreturn_t smu_msg_intr(int irq, void *arg)
249{
250 /* I don't quite know what to do with this one, we seem to never
251 * receive it, so I suspect we have to arm it someway in the SMU
252 * to start getting events that way.
253 */
254
255 printk(KERN_INFO "SMU: message interrupt !\n");
256
257 /* It's an edge interrupt, nothing to do */
258 return IRQ_HANDLED;
259}
260
261
262/*
263 * Queued command management.
264 *
265 */
266
267int smu_queue_cmd(struct smu_cmd *cmd)
268{
269 unsigned long flags;
270
271 if (smu == NULL)
272 return -ENODEV;
273 if (cmd->data_len > SMU_MAX_DATA ||
274 cmd->reply_len > SMU_MAX_DATA)
275 return -EINVAL;
276
277 cmd->status = 1;
278 spin_lock_irqsave(&smu->lock, flags);
279 list_add_tail(&cmd->link, &smu->cmd_list);
280 if (smu->cmd_cur == NULL)
281 smu_start_cmd();
282 spin_unlock_irqrestore(&smu->lock, flags);
283
284 /* Workaround for early calls when irq isn't available */
285 if (!smu_irq_inited || smu->db_irq == NO_IRQ)
286 smu_spinwait_cmd(cmd);
287
288 return 0;
289}
290EXPORT_SYMBOL(smu_queue_cmd);
291
292
293int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
294 unsigned int data_len,
295 void (*done)(struct smu_cmd *cmd, void *misc),
296 void *misc, ...)
297{
298 struct smu_cmd *cmd = &scmd->cmd;
299 va_list list;
300 int i;
301
302 if (data_len > sizeof(scmd->buffer))
303 return -EINVAL;
304
305 memset(scmd, 0, sizeof(*scmd));
306 cmd->cmd = command;
307 cmd->data_len = data_len;
308 cmd->data_buf = scmd->buffer;
309 cmd->reply_len = sizeof(scmd->buffer);
310 cmd->reply_buf = scmd->buffer;
311 cmd->done = done;
312 cmd->misc = misc;
313
314 va_start(list, misc);
315 for (i = 0; i < data_len; ++i)
316 scmd->buffer[i] = (u8)va_arg(list, int);
317 va_end(list);
318
319 return smu_queue_cmd(cmd);
320}
321EXPORT_SYMBOL(smu_queue_simple);
322
323
324void smu_poll(void)
325{
326 u8 gpio;
327
328 if (smu == NULL)
329 return;
330
331 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
332 if ((gpio & 7) == 7)
333 smu_db_intr(smu->db_irq, smu);
334}
335EXPORT_SYMBOL(smu_poll);
336
337
338void smu_done_complete(struct smu_cmd *cmd, void *misc)
339{
340 struct completion *comp = misc;
341
342 complete(comp);
343}
344EXPORT_SYMBOL(smu_done_complete);
345
346
347void smu_spinwait_cmd(struct smu_cmd *cmd)
348{
349 while(cmd->status == 1)
350 smu_poll();
351}
352EXPORT_SYMBOL(smu_spinwait_cmd);
353
354
355/* RTC low level commands */
356static inline int bcd2hex (int n)
357{
358 return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
359}
360
361
362static inline int hex2bcd (int n)
363{
364 return ((n / 10) << 4) + (n % 10);
365}
366
367
368static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
369 struct rtc_time *time)
370{
371 cmd_buf->cmd = 0x8e;
372 cmd_buf->length = 8;
373 cmd_buf->data[0] = 0x80;
374 cmd_buf->data[1] = hex2bcd(time->tm_sec);
375 cmd_buf->data[2] = hex2bcd(time->tm_min);
376 cmd_buf->data[3] = hex2bcd(time->tm_hour);
377 cmd_buf->data[4] = time->tm_wday;
378 cmd_buf->data[5] = hex2bcd(time->tm_mday);
379 cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
380 cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
381}
382
383
384int smu_get_rtc_time(struct rtc_time *time, int spinwait)
385{
386 struct smu_simple_cmd cmd;
387 int rc;
388
389 if (smu == NULL)
390 return -ENODEV;
391
392 memset(time, 0, sizeof(struct rtc_time));
393 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
394 SMU_CMD_RTC_GET_DATETIME);
395 if (rc)
396 return rc;
397 smu_spinwait_simple(&cmd);
398
399 time->tm_sec = bcd2hex(cmd.buffer[0]);
400 time->tm_min = bcd2hex(cmd.buffer[1]);
401 time->tm_hour = bcd2hex(cmd.buffer[2]);
402 time->tm_wday = bcd2hex(cmd.buffer[3]);
403 time->tm_mday = bcd2hex(cmd.buffer[4]);
404 time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
405 time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
406
407 return 0;
408}
409
410
411int smu_set_rtc_time(struct rtc_time *time, int spinwait)
412{
413 struct smu_simple_cmd cmd;
414 int rc;
415
416 if (smu == NULL)
417 return -ENODEV;
418
419 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
420 SMU_CMD_RTC_SET_DATETIME,
421 hex2bcd(time->tm_sec),
422 hex2bcd(time->tm_min),
423 hex2bcd(time->tm_hour),
424 time->tm_wday,
425 hex2bcd(time->tm_mday),
426 hex2bcd(time->tm_mon) + 1,
427 hex2bcd(time->tm_year - 100));
428 if (rc)
429 return rc;
430 smu_spinwait_simple(&cmd);
431
432 return 0;
433}
434
435
436void smu_shutdown(void)
437{
438 struct smu_simple_cmd cmd;
439
440 if (smu == NULL)
441 return;
442
443 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
444 'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
445 return;
446 smu_spinwait_simple(&cmd);
447 for (;;)
448 ;
449}
450
451
452void smu_restart(void)
453{
454 struct smu_simple_cmd cmd;
455
456 if (smu == NULL)
457 return;
458
459 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
460 'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
461 return;
462 smu_spinwait_simple(&cmd);
463 for (;;)
464 ;
465}
466
467
468int smu_present(void)
469{
470 return smu != NULL;
471}
472EXPORT_SYMBOL(smu_present);
473
474
475int __init smu_init (void)
476{
477 struct device_node *np;
478 const u32 *data;
479 int ret = 0;
480
481 np = of_find_node_by_type(NULL, "smu");
482 if (np == NULL)
483 return -ENODEV;
484
485 printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
486
487 if (smu_cmdbuf_abs == 0) {
488 printk(KERN_ERR "SMU: Command buffer not allocated !\n");
489 ret = -EINVAL;
490 goto fail_np;
491 }
492
493 smu = alloc_bootmem(sizeof(struct smu_device));
494
495 spin_lock_init(&smu->lock);
496 INIT_LIST_HEAD(&smu->cmd_list);
497 INIT_LIST_HEAD(&smu->cmd_i2c_list);
498 smu->of_node = np;
499 smu->db_irq = NO_IRQ;
500 smu->msg_irq = NO_IRQ;
501
502 /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
503 * 32 bits value safely
504 */
505 smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
506 smu->cmd_buf = (struct smu_cmd_buf *)abs_to_virt(smu_cmdbuf_abs);
507
508 smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
509 if (smu->db_node == NULL) {
510 printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
511 ret = -ENXIO;
512 goto fail_bootmem;
513 }
514 data = of_get_property(smu->db_node, "reg", NULL);
515 if (data == NULL) {
516 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
517 ret = -ENXIO;
518 goto fail_db_node;
519 }
520
521 /* Current setup has one doorbell GPIO that does both doorbell
522 * and ack. GPIOs are at 0x50, best would be to find that out
523 * in the device-tree though.
524 */
525 smu->doorbell = *data;
526 if (smu->doorbell < 0x50)
527 smu->doorbell += 0x50;
528
529 /* Now look for the smu-interrupt GPIO */
530 do {
531 smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
532 if (smu->msg_node == NULL)
533 break;
534 data = of_get_property(smu->msg_node, "reg", NULL);
535 if (data == NULL) {
536 of_node_put(smu->msg_node);
537 smu->msg_node = NULL;
538 break;
539 }
540 smu->msg = *data;
541 if (smu->msg < 0x50)
542 smu->msg += 0x50;
543 } while(0);
544
545 /* Doorbell buffer is currently hard-coded, I didn't find a proper
546 * device-tree entry giving the address. Best would probably to use
547 * an offset for K2 base though, but let's do it that way for now.
548 */
549 smu->db_buf = ioremap(0x8000860c, 0x1000);
550 if (smu->db_buf == NULL) {
551 printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
552 ret = -ENXIO;
553 goto fail_msg_node;
554 }
555
556 /* U3 has an issue with NAP mode when issuing SMU commands */
557 smu->broken_nap = pmac_get_uninorth_variant() < 4;
558 if (smu->broken_nap)
559 printk(KERN_INFO "SMU: using NAP mode workaround\n");
560
561 sys_ctrler = SYS_CTRLER_SMU;
562 return 0;
563
564fail_msg_node:
565 if (smu->msg_node)
566 of_node_put(smu->msg_node);
567fail_db_node:
568 of_node_put(smu->db_node);
569fail_bootmem:
570 free_bootmem((unsigned long)smu, sizeof(struct smu_device));
571 smu = NULL;
572fail_np:
573 of_node_put(np);
574 return ret;
575}
576
577
578static int smu_late_init(void)
579{
580 if (!smu)
581 return 0;
582
583 init_timer(&smu->i2c_timer);
584 smu->i2c_timer.function = smu_i2c_retry;
585 smu->i2c_timer.data = (unsigned long)smu;
586
587 if (smu->db_node) {
588 smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
589 if (smu->db_irq == NO_IRQ)
590 printk(KERN_ERR "smu: failed to map irq for node %s\n",
591 smu->db_node->full_name);
592 }
593 if (smu->msg_node) {
594 smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
595 if (smu->msg_irq == NO_IRQ)
596 printk(KERN_ERR "smu: failed to map irq for node %s\n",
597 smu->msg_node->full_name);
598 }
599
600 /*
601 * Try to request the interrupts
602 */
603
604 if (smu->db_irq != NO_IRQ) {
605 if (request_irq(smu->db_irq, smu_db_intr,
606 IRQF_SHARED, "SMU doorbell", smu) < 0) {
607 printk(KERN_WARNING "SMU: can't "
608 "request interrupt %d\n",
609 smu->db_irq);
610 smu->db_irq = NO_IRQ;
611 }
612 }
613
614 if (smu->msg_irq != NO_IRQ) {
615 if (request_irq(smu->msg_irq, smu_msg_intr,
616 IRQF_SHARED, "SMU message", smu) < 0) {
617 printk(KERN_WARNING "SMU: can't "
618 "request interrupt %d\n",
619 smu->msg_irq);
620 smu->msg_irq = NO_IRQ;
621 }
622 }
623
624 smu_irq_inited = 1;
625 return 0;
626}
627/* This has to be before arch_initcall as the low i2c stuff relies on the
628 * above having been done before we reach arch_initcalls
629 */
630core_initcall(smu_late_init);
631
632/*
633 * sysfs visibility
634 */
635
636static void smu_expose_childs(struct work_struct *unused)
637{
638 struct device_node *np;
639
640 for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
641 if (of_device_is_compatible(np, "smu-sensors"))
642 of_platform_device_create(np, "smu-sensors",
643 &smu->of_dev->dev);
644}
645
646static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
647
648static int smu_platform_probe(struct platform_device* dev)
649{
650 if (!smu)
651 return -ENODEV;
652 smu->of_dev = dev;
653
654 /*
655 * Ok, we are matched, now expose all i2c busses. We have to defer
656 * that unfortunately or it would deadlock inside the device model
657 */
658 schedule_work(&smu_expose_childs_work);
659
660 return 0;
661}
662
663static const struct of_device_id smu_platform_match[] =
664{
665 {
666 .type = "smu",
667 },
668 {},
669};
670
671static struct platform_driver smu_of_platform_driver =
672{
673 .driver = {
674 .name = "smu",
675 .owner = THIS_MODULE,
676 .of_match_table = smu_platform_match,
677 },
678 .probe = smu_platform_probe,
679};
680
681static int __init smu_init_sysfs(void)
682{
683 /*
684 * Due to sysfs bogosity, a sysdev is not a real device, so
685 * we should in fact create both if we want sysdev semantics
686 * for power management.
687 * For now, we don't power manage machines with an SMU chip,
688 * I'm a bit too far from figuring out how that works with those
689 * new chipsets, but that will come back and bite us
690 */
691 platform_driver_register(&smu_of_platform_driver);
692 return 0;
693}
694
695device_initcall(smu_init_sysfs);
696
697struct platform_device *smu_get_ofdev(void)
698{
699 if (!smu)
700 return NULL;
701 return smu->of_dev;
702}
703
704EXPORT_SYMBOL_GPL(smu_get_ofdev);
705
706/*
707 * i2c interface
708 */
709
710static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
711{
712 void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
713 void *misc = cmd->misc;
714 unsigned long flags;
715
716 /* Check for read case */
717 if (!fail && cmd->read) {
718 if (cmd->pdata[0] < 1)
719 fail = 1;
720 else
721 memcpy(cmd->info.data, &cmd->pdata[1],
722 cmd->info.datalen);
723 }
724
725 DPRINTK("SMU: completing, success: %d\n", !fail);
726
727 /* Update status and mark no pending i2c command with lock
728 * held so nobody comes in while we dequeue an eventual
729 * pending next i2c command
730 */
731 spin_lock_irqsave(&smu->lock, flags);
732 smu->cmd_i2c_cur = NULL;
733 wmb();
734 cmd->status = fail ? -EIO : 0;
735
736 /* Is there another i2c command waiting ? */
737 if (!list_empty(&smu->cmd_i2c_list)) {
738 struct smu_i2c_cmd *newcmd;
739
740 /* Fetch it, new current, remove from list */
741 newcmd = list_entry(smu->cmd_i2c_list.next,
742 struct smu_i2c_cmd, link);
743 smu->cmd_i2c_cur = newcmd;
744 list_del(&cmd->link);
745
746 /* Queue with low level smu */
747 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
748 if (smu->cmd_cur == NULL)
749 smu_start_cmd();
750 }
751 spin_unlock_irqrestore(&smu->lock, flags);
752
753 /* Call command completion handler if any */
754 if (done)
755 done(cmd, misc);
756
757}
758
759
760static void smu_i2c_retry(unsigned long data)
761{
762 struct smu_i2c_cmd *cmd = smu->cmd_i2c_cur;
763
764 DPRINTK("SMU: i2c failure, requeuing...\n");
765
766 /* requeue command simply by resetting reply_len */
767 cmd->pdata[0] = 0xff;
768 cmd->scmd.reply_len = sizeof(cmd->pdata);
769 smu_queue_cmd(&cmd->scmd);
770}
771
772
773static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
774{
775 struct smu_i2c_cmd *cmd = misc;
776 int fail = 0;
777
778 DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
779 cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
780
781 /* Check for possible status */
782 if (scmd->status < 0)
783 fail = 1;
784 else if (cmd->read) {
785 if (cmd->stage == 0)
786 fail = cmd->pdata[0] != 0;
787 else
788 fail = cmd->pdata[0] >= 0x80;
789 } else {
790 fail = cmd->pdata[0] != 0;
791 }
792
793 /* Handle failures by requeuing command, after 5ms interval
794 */
795 if (fail && --cmd->retries > 0) {
796 DPRINTK("SMU: i2c failure, starting timer...\n");
797 BUG_ON(cmd != smu->cmd_i2c_cur);
798 if (!smu_irq_inited) {
799 mdelay(5);
800 smu_i2c_retry(0);
801 return;
802 }
803 mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
804 return;
805 }
806
807 /* If failure or stage 1, command is complete */
808 if (fail || cmd->stage != 0) {
809 smu_i2c_complete_command(cmd, fail);
810 return;
811 }
812
813 DPRINTK("SMU: going to stage 1\n");
814
815 /* Ok, initial command complete, now poll status */
816 scmd->reply_buf = cmd->pdata;
817 scmd->reply_len = sizeof(cmd->pdata);
818 scmd->data_buf = cmd->pdata;
819 scmd->data_len = 1;
820 cmd->pdata[0] = 0;
821 cmd->stage = 1;
822 cmd->retries = 20;
823 smu_queue_cmd(scmd);
824}
825
826
827int smu_queue_i2c(struct smu_i2c_cmd *cmd)
828{
829 unsigned long flags;
830
831 if (smu == NULL)
832 return -ENODEV;
833
834 /* Fill most fields of scmd */
835 cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
836 cmd->scmd.done = smu_i2c_low_completion;
837 cmd->scmd.misc = cmd;
838 cmd->scmd.reply_buf = cmd->pdata;
839 cmd->scmd.reply_len = sizeof(cmd->pdata);
840 cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
841 cmd->scmd.status = 1;
842 cmd->stage = 0;
843 cmd->pdata[0] = 0xff;
844 cmd->retries = 20;
845 cmd->status = 1;
846
847 /* Check transfer type, sanitize some "info" fields
848 * based on transfer type and do more checking
849 */
850 cmd->info.caddr = cmd->info.devaddr;
851 cmd->read = cmd->info.devaddr & 0x01;
852 switch(cmd->info.type) {
853 case SMU_I2C_TRANSFER_SIMPLE:
854 memset(&cmd->info.sublen, 0, 4);
855 break;
856 case SMU_I2C_TRANSFER_COMBINED:
857 cmd->info.devaddr &= 0xfe;
858 case SMU_I2C_TRANSFER_STDSUB:
859 if (cmd->info.sublen > 3)
860 return -EINVAL;
861 break;
862 default:
863 return -EINVAL;
864 }
865
866 /* Finish setting up command based on transfer direction
867 */
868 if (cmd->read) {
869 if (cmd->info.datalen > SMU_I2C_READ_MAX)
870 return -EINVAL;
871 memset(cmd->info.data, 0xff, cmd->info.datalen);
872 cmd->scmd.data_len = 9;
873 } else {
874 if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
875 return -EINVAL;
876 cmd->scmd.data_len = 9 + cmd->info.datalen;
877 }
878
879 DPRINTK("SMU: i2c enqueuing command\n");
880 DPRINTK("SMU: %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
881 cmd->read ? "read" : "write", cmd->info.datalen,
882 cmd->info.bus, cmd->info.caddr,
883 cmd->info.subaddr[0], cmd->info.type);
884
885
886 /* Enqueue command in i2c list, and if empty, enqueue also in
887 * main command list
888 */
889 spin_lock_irqsave(&smu->lock, flags);
890 if (smu->cmd_i2c_cur == NULL) {
891 smu->cmd_i2c_cur = cmd;
892 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
893 if (smu->cmd_cur == NULL)
894 smu_start_cmd();
895 } else
896 list_add_tail(&cmd->link, &smu->cmd_i2c_list);
897 spin_unlock_irqrestore(&smu->lock, flags);
898
899 return 0;
900}
901
902/*
903 * Handling of "partitions"
904 */
905
906static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
907{
908 DECLARE_COMPLETION_ONSTACK(comp);
909 unsigned int chunk;
910 struct smu_cmd cmd;
911 int rc;
912 u8 params[8];
913
914 /* We currently use a chunk size of 0xe. We could check the
915 * SMU firmware version and use bigger sizes though
916 */
917 chunk = 0xe;
918
919 while (len) {
920 unsigned int clen = min(len, chunk);
921
922 cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
923 cmd.data_len = 7;
924 cmd.data_buf = params;
925 cmd.reply_len = chunk;
926 cmd.reply_buf = dest;
927 cmd.done = smu_done_complete;
928 cmd.misc = ∁
929 params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
930 params[1] = 0x4;
931 *((u32 *)¶ms[2]) = addr;
932 params[6] = clen;
933
934 rc = smu_queue_cmd(&cmd);
935 if (rc)
936 return rc;
937 wait_for_completion(&comp);
938 if (cmd.status != 0)
939 return rc;
940 if (cmd.reply_len != clen) {
941 printk(KERN_DEBUG "SMU: short read in "
942 "smu_read_datablock, got: %d, want: %d\n",
943 cmd.reply_len, clen);
944 return -EIO;
945 }
946 len -= clen;
947 addr += clen;
948 dest += clen;
949 }
950 return 0;
951}
952
953static struct smu_sdbp_header *smu_create_sdb_partition(int id)
954{
955 DECLARE_COMPLETION_ONSTACK(comp);
956 struct smu_simple_cmd cmd;
957 unsigned int addr, len, tlen;
958 struct smu_sdbp_header *hdr;
959 struct property *prop;
960
961 /* First query the partition info */
962 DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
963 smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
964 smu_done_complete, &comp,
965 SMU_CMD_PARTITION_LATEST, id);
966 wait_for_completion(&comp);
967 DPRINTK("SMU: done, status: %d, reply_len: %d\n",
968 cmd.cmd.status, cmd.cmd.reply_len);
969
970 /* Partition doesn't exist (or other error) */
971 if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
972 return NULL;
973
974 /* Fetch address and length from reply */
975 addr = *((u16 *)cmd.buffer);
976 len = cmd.buffer[3] << 2;
977 /* Calucluate total length to allocate, including the 17 bytes
978 * for "sdb-partition-XX" that we append at the end of the buffer
979 */
980 tlen = sizeof(struct property) + len + 18;
981
982 prop = kzalloc(tlen, GFP_KERNEL);
983 if (prop == NULL)
984 return NULL;
985 hdr = (struct smu_sdbp_header *)(prop + 1);
986 prop->name = ((char *)prop) + tlen - 18;
987 sprintf(prop->name, "sdb-partition-%02x", id);
988 prop->length = len;
989 prop->value = hdr;
990 prop->next = NULL;
991
992 /* Read the datablock */
993 if (smu_read_datablock((u8 *)hdr, addr, len)) {
994 printk(KERN_DEBUG "SMU: datablock read failed while reading "
995 "partition %02x !\n", id);
996 goto failure;
997 }
998
999 /* Got it, check a few things and create the property */
1000 if (hdr->id != id) {
1001 printk(KERN_DEBUG "SMU: Reading partition %02x and got "
1002 "%02x !\n", id, hdr->id);
1003 goto failure;
1004 }
1005 if (prom_add_property(smu->of_node, prop)) {
1006 printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1007 "property !\n", id);
1008 goto failure;
1009 }
1010
1011 return hdr;
1012 failure:
1013 kfree(prop);
1014 return NULL;
1015}
1016
1017/* Note: Only allowed to return error code in pointers (using ERR_PTR)
1018 * when interruptible is 1
1019 */
1020const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1021 unsigned int *size, int interruptible)
1022{
1023 char pname[32];
1024 const struct smu_sdbp_header *part;
1025
1026 if (!smu)
1027 return NULL;
1028
1029 sprintf(pname, "sdb-partition-%02x", id);
1030
1031 DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1032
1033 if (interruptible) {
1034 int rc;
1035 rc = mutex_lock_interruptible(&smu_part_access);
1036 if (rc)
1037 return ERR_PTR(rc);
1038 } else
1039 mutex_lock(&smu_part_access);
1040
1041 part = of_get_property(smu->of_node, pname, size);
1042 if (part == NULL) {
1043 DPRINTK("trying to extract from SMU ...\n");
1044 part = smu_create_sdb_partition(id);
1045 if (part != NULL && size)
1046 *size = part->len << 2;
1047 }
1048 mutex_unlock(&smu_part_access);
1049 return part;
1050}
1051
1052const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1053{
1054 return __smu_get_sdb_partition(id, size, 0);
1055}
1056EXPORT_SYMBOL(smu_get_sdb_partition);
1057
1058
1059/*
1060 * Userland driver interface
1061 */
1062
1063
1064static LIST_HEAD(smu_clist);
1065static DEFINE_SPINLOCK(smu_clist_lock);
1066
1067enum smu_file_mode {
1068 smu_file_commands,
1069 smu_file_events,
1070 smu_file_closing
1071};
1072
1073struct smu_private
1074{
1075 struct list_head list;
1076 enum smu_file_mode mode;
1077 int busy;
1078 struct smu_cmd cmd;
1079 spinlock_t lock;
1080 wait_queue_head_t wait;
1081 u8 buffer[SMU_MAX_DATA];
1082};
1083
1084
1085static int smu_open(struct inode *inode, struct file *file)
1086{
1087 struct smu_private *pp;
1088 unsigned long flags;
1089
1090 pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1091 if (pp == 0)
1092 return -ENOMEM;
1093 spin_lock_init(&pp->lock);
1094 pp->mode = smu_file_commands;
1095 init_waitqueue_head(&pp->wait);
1096
1097 mutex_lock(&smu_mutex);
1098 spin_lock_irqsave(&smu_clist_lock, flags);
1099 list_add(&pp->list, &smu_clist);
1100 spin_unlock_irqrestore(&smu_clist_lock, flags);
1101 file->private_data = pp;
1102 mutex_unlock(&smu_mutex);
1103
1104 return 0;
1105}
1106
1107
1108static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1109{
1110 struct smu_private *pp = misc;
1111
1112 wake_up_all(&pp->wait);
1113}
1114
1115
1116static ssize_t smu_write(struct file *file, const char __user *buf,
1117 size_t count, loff_t *ppos)
1118{
1119 struct smu_private *pp = file->private_data;
1120 unsigned long flags;
1121 struct smu_user_cmd_hdr hdr;
1122 int rc = 0;
1123
1124 if (pp->busy)
1125 return -EBUSY;
1126 else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1127 return -EFAULT;
1128 else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1129 pp->mode = smu_file_events;
1130 return 0;
1131 } else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1132 const struct smu_sdbp_header *part;
1133 part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1134 if (part == NULL)
1135 return -EINVAL;
1136 else if (IS_ERR(part))
1137 return PTR_ERR(part);
1138 return 0;
1139 } else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1140 return -EINVAL;
1141 else if (pp->mode != smu_file_commands)
1142 return -EBADFD;
1143 else if (hdr.data_len > SMU_MAX_DATA)
1144 return -EINVAL;
1145
1146 spin_lock_irqsave(&pp->lock, flags);
1147 if (pp->busy) {
1148 spin_unlock_irqrestore(&pp->lock, flags);
1149 return -EBUSY;
1150 }
1151 pp->busy = 1;
1152 pp->cmd.status = 1;
1153 spin_unlock_irqrestore(&pp->lock, flags);
1154
1155 if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1156 pp->busy = 0;
1157 return -EFAULT;
1158 }
1159
1160 pp->cmd.cmd = hdr.cmd;
1161 pp->cmd.data_len = hdr.data_len;
1162 pp->cmd.reply_len = SMU_MAX_DATA;
1163 pp->cmd.data_buf = pp->buffer;
1164 pp->cmd.reply_buf = pp->buffer;
1165 pp->cmd.done = smu_user_cmd_done;
1166 pp->cmd.misc = pp;
1167 rc = smu_queue_cmd(&pp->cmd);
1168 if (rc < 0)
1169 return rc;
1170 return count;
1171}
1172
1173
1174static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1175 char __user *buf, size_t count)
1176{
1177 DECLARE_WAITQUEUE(wait, current);
1178 struct smu_user_reply_hdr hdr;
1179 unsigned long flags;
1180 int size, rc = 0;
1181
1182 if (!pp->busy)
1183 return 0;
1184 if (count < sizeof(struct smu_user_reply_hdr))
1185 return -EOVERFLOW;
1186 spin_lock_irqsave(&pp->lock, flags);
1187 if (pp->cmd.status == 1) {
1188 if (file->f_flags & O_NONBLOCK) {
1189 spin_unlock_irqrestore(&pp->lock, flags);
1190 return -EAGAIN;
1191 }
1192 add_wait_queue(&pp->wait, &wait);
1193 for (;;) {
1194 set_current_state(TASK_INTERRUPTIBLE);
1195 rc = 0;
1196 if (pp->cmd.status != 1)
1197 break;
1198 rc = -ERESTARTSYS;
1199 if (signal_pending(current))
1200 break;
1201 spin_unlock_irqrestore(&pp->lock, flags);
1202 schedule();
1203 spin_lock_irqsave(&pp->lock, flags);
1204 }
1205 set_current_state(TASK_RUNNING);
1206 remove_wait_queue(&pp->wait, &wait);
1207 }
1208 spin_unlock_irqrestore(&pp->lock, flags);
1209 if (rc)
1210 return rc;
1211 if (pp->cmd.status != 0)
1212 pp->cmd.reply_len = 0;
1213 size = sizeof(hdr) + pp->cmd.reply_len;
1214 if (count < size)
1215 size = count;
1216 rc = size;
1217 hdr.status = pp->cmd.status;
1218 hdr.reply_len = pp->cmd.reply_len;
1219 if (copy_to_user(buf, &hdr, sizeof(hdr)))
1220 return -EFAULT;
1221 size -= sizeof(hdr);
1222 if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1223 return -EFAULT;
1224 pp->busy = 0;
1225
1226 return rc;
1227}
1228
1229
1230static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1231 char __user *buf, size_t count)
1232{
1233 /* Not implemented */
1234 msleep_interruptible(1000);
1235 return 0;
1236}
1237
1238
1239static ssize_t smu_read(struct file *file, char __user *buf,
1240 size_t count, loff_t *ppos)
1241{
1242 struct smu_private *pp = file->private_data;
1243
1244 if (pp->mode == smu_file_commands)
1245 return smu_read_command(file, pp, buf, count);
1246 if (pp->mode == smu_file_events)
1247 return smu_read_events(file, pp, buf, count);
1248
1249 return -EBADFD;
1250}
1251
1252static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1253{
1254 struct smu_private *pp = file->private_data;
1255 unsigned int mask = 0;
1256 unsigned long flags;
1257
1258 if (pp == 0)
1259 return 0;
1260
1261 if (pp->mode == smu_file_commands) {
1262 poll_wait(file, &pp->wait, wait);
1263
1264 spin_lock_irqsave(&pp->lock, flags);
1265 if (pp->busy && pp->cmd.status != 1)
1266 mask |= POLLIN;
1267 spin_unlock_irqrestore(&pp->lock, flags);
1268 } if (pp->mode == smu_file_events) {
1269 /* Not yet implemented */
1270 }
1271 return mask;
1272}
1273
1274static int smu_release(struct inode *inode, struct file *file)
1275{
1276 struct smu_private *pp = file->private_data;
1277 unsigned long flags;
1278 unsigned int busy;
1279
1280 if (pp == 0)
1281 return 0;
1282
1283 file->private_data = NULL;
1284
1285 /* Mark file as closing to avoid races with new request */
1286 spin_lock_irqsave(&pp->lock, flags);
1287 pp->mode = smu_file_closing;
1288 busy = pp->busy;
1289
1290 /* Wait for any pending request to complete */
1291 if (busy && pp->cmd.status == 1) {
1292 DECLARE_WAITQUEUE(wait, current);
1293
1294 add_wait_queue(&pp->wait, &wait);
1295 for (;;) {
1296 set_current_state(TASK_UNINTERRUPTIBLE);
1297 if (pp->cmd.status != 1)
1298 break;
1299 spin_unlock_irqrestore(&pp->lock, flags);
1300 schedule();
1301 spin_lock_irqsave(&pp->lock, flags);
1302 }
1303 set_current_state(TASK_RUNNING);
1304 remove_wait_queue(&pp->wait, &wait);
1305 }
1306 spin_unlock_irqrestore(&pp->lock, flags);
1307
1308 spin_lock_irqsave(&smu_clist_lock, flags);
1309 list_del(&pp->list);
1310 spin_unlock_irqrestore(&smu_clist_lock, flags);
1311 kfree(pp);
1312
1313 return 0;
1314}
1315
1316
1317static const struct file_operations smu_device_fops = {
1318 .llseek = no_llseek,
1319 .read = smu_read,
1320 .write = smu_write,
1321 .poll = smu_fpoll,
1322 .open = smu_open,
1323 .release = smu_release,
1324};
1325
1326static struct miscdevice pmu_device = {
1327 MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1328};
1329
1330static int smu_device_init(void)
1331{
1332 if (!smu)
1333 return -ENODEV;
1334 if (misc_register(&pmu_device) < 0)
1335 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1336 return 0;
1337}
1338device_initcall(smu_device_init);
1/*
2 * PowerMac G5 SMU driver
3 *
4 * Copyright 2004 J. Mayer <l_indien@magic.fr>
5 * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
6 *
7 * Released under the term of the GNU GPL v2.
8 */
9
10/*
11 * TODO:
12 * - maybe add timeout to commands ?
13 * - blocking version of time functions
14 * - polling version of i2c commands (including timer that works with
15 * interrupts off)
16 * - maybe avoid some data copies with i2c by directly using the smu cmd
17 * buffer and a lower level internal interface
18 * - understand SMU -> CPU events and implement reception of them via
19 * the userland interface
20 */
21
22#include <linux/types.h>
23#include <linux/kernel.h>
24#include <linux/device.h>
25#include <linux/dmapool.h>
26#include <linux/bootmem.h>
27#include <linux/vmalloc.h>
28#include <linux/highmem.h>
29#include <linux/jiffies.h>
30#include <linux/interrupt.h>
31#include <linux/rtc.h>
32#include <linux/completion.h>
33#include <linux/miscdevice.h>
34#include <linux/delay.h>
35#include <linux/poll.h>
36#include <linux/mutex.h>
37#include <linux/of_device.h>
38#include <linux/of_platform.h>
39#include <linux/slab.h>
40
41#include <asm/byteorder.h>
42#include <asm/io.h>
43#include <asm/prom.h>
44#include <asm/machdep.h>
45#include <asm/pmac_feature.h>
46#include <asm/smu.h>
47#include <asm/sections.h>
48#include <asm/abs_addr.h>
49#include <asm/uaccess.h>
50
51#define VERSION "0.7"
52#define AUTHOR "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
53
54#undef DEBUG_SMU
55
56#ifdef DEBUG_SMU
57#define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
58#else
59#define DPRINTK(fmt, args...) do { } while (0)
60#endif
61
62/*
63 * This is the command buffer passed to the SMU hardware
64 */
65#define SMU_MAX_DATA 254
66
67struct smu_cmd_buf {
68 u8 cmd;
69 u8 length;
70 u8 data[SMU_MAX_DATA];
71};
72
73struct smu_device {
74 spinlock_t lock;
75 struct device_node *of_node;
76 struct platform_device *of_dev;
77 int doorbell; /* doorbell gpio */
78 u32 __iomem *db_buf; /* doorbell buffer */
79 struct device_node *db_node;
80 unsigned int db_irq;
81 int msg;
82 struct device_node *msg_node;
83 unsigned int msg_irq;
84 struct smu_cmd_buf *cmd_buf; /* command buffer virtual */
85 u32 cmd_buf_abs; /* command buffer absolute */
86 struct list_head cmd_list;
87 struct smu_cmd *cmd_cur; /* pending command */
88 int broken_nap;
89 struct list_head cmd_i2c_list;
90 struct smu_i2c_cmd *cmd_i2c_cur; /* pending i2c command */
91 struct timer_list i2c_timer;
92};
93
94/*
95 * I don't think there will ever be more than one SMU, so
96 * for now, just hard code that
97 */
98static DEFINE_MUTEX(smu_mutex);
99static struct smu_device *smu;
100static DEFINE_MUTEX(smu_part_access);
101static int smu_irq_inited;
102
103static void smu_i2c_retry(unsigned long data);
104
105/*
106 * SMU driver low level stuff
107 */
108
109static void smu_start_cmd(void)
110{
111 unsigned long faddr, fend;
112 struct smu_cmd *cmd;
113
114 if (list_empty(&smu->cmd_list))
115 return;
116
117 /* Fetch first command in queue */
118 cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
119 smu->cmd_cur = cmd;
120 list_del(&cmd->link);
121
122 DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
123 cmd->data_len);
124 DPRINTK("SMU: data buffer: %02x %02x %02x %02x %02x %02x %02x %02x\n",
125 ((u8 *)cmd->data_buf)[0], ((u8 *)cmd->data_buf)[1],
126 ((u8 *)cmd->data_buf)[2], ((u8 *)cmd->data_buf)[3],
127 ((u8 *)cmd->data_buf)[4], ((u8 *)cmd->data_buf)[5],
128 ((u8 *)cmd->data_buf)[6], ((u8 *)cmd->data_buf)[7]);
129
130 /* Fill the SMU command buffer */
131 smu->cmd_buf->cmd = cmd->cmd;
132 smu->cmd_buf->length = cmd->data_len;
133 memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
134
135 /* Flush command and data to RAM */
136 faddr = (unsigned long)smu->cmd_buf;
137 fend = faddr + smu->cmd_buf->length + 2;
138 flush_inval_dcache_range(faddr, fend);
139
140
141 /* We also disable NAP mode for the duration of the command
142 * on U3 based machines.
143 * This is slightly racy as it can be written back to 1 by a sysctl
144 * but that never happens in practice. There seem to be an issue with
145 * U3 based machines such as the iMac G5 where napping for the
146 * whole duration of the command prevents the SMU from fetching it
147 * from memory. This might be related to the strange i2c based
148 * mechanism the SMU uses to access memory.
149 */
150 if (smu->broken_nap)
151 powersave_nap = 0;
152
153 /* This isn't exactly a DMA mapping here, I suspect
154 * the SMU is actually communicating with us via i2c to the
155 * northbridge or the CPU to access RAM.
156 */
157 writel(smu->cmd_buf_abs, smu->db_buf);
158
159 /* Ring the SMU doorbell */
160 pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
161}
162
163
164static irqreturn_t smu_db_intr(int irq, void *arg)
165{
166 unsigned long flags;
167 struct smu_cmd *cmd;
168 void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
169 void *misc = NULL;
170 u8 gpio;
171 int rc = 0;
172
173 /* SMU completed the command, well, we hope, let's make sure
174 * of it
175 */
176 spin_lock_irqsave(&smu->lock, flags);
177
178 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
179 if ((gpio & 7) != 7) {
180 spin_unlock_irqrestore(&smu->lock, flags);
181 return IRQ_HANDLED;
182 }
183
184 cmd = smu->cmd_cur;
185 smu->cmd_cur = NULL;
186 if (cmd == NULL)
187 goto bail;
188
189 if (rc == 0) {
190 unsigned long faddr;
191 int reply_len;
192 u8 ack;
193
194 /* CPU might have brought back the cache line, so we need
195 * to flush again before peeking at the SMU response. We
196 * flush the entire buffer for now as we haven't read the
197 * reply length (it's only 2 cache lines anyway)
198 */
199 faddr = (unsigned long)smu->cmd_buf;
200 flush_inval_dcache_range(faddr, faddr + 256);
201
202 /* Now check ack */
203 ack = (~cmd->cmd) & 0xff;
204 if (ack != smu->cmd_buf->cmd) {
205 DPRINTK("SMU: incorrect ack, want %x got %x\n",
206 ack, smu->cmd_buf->cmd);
207 rc = -EIO;
208 }
209 reply_len = rc == 0 ? smu->cmd_buf->length : 0;
210 DPRINTK("SMU: reply len: %d\n", reply_len);
211 if (reply_len > cmd->reply_len) {
212 printk(KERN_WARNING "SMU: reply buffer too small,"
213 "got %d bytes for a %d bytes buffer\n",
214 reply_len, cmd->reply_len);
215 reply_len = cmd->reply_len;
216 }
217 cmd->reply_len = reply_len;
218 if (cmd->reply_buf && reply_len)
219 memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
220 }
221
222 /* Now complete the command. Write status last in order as we lost
223 * ownership of the command structure as soon as it's no longer -1
224 */
225 done = cmd->done;
226 misc = cmd->misc;
227 mb();
228 cmd->status = rc;
229
230 /* Re-enable NAP mode */
231 if (smu->broken_nap)
232 powersave_nap = 1;
233 bail:
234 /* Start next command if any */
235 smu_start_cmd();
236 spin_unlock_irqrestore(&smu->lock, flags);
237
238 /* Call command completion handler if any */
239 if (done)
240 done(cmd, misc);
241
242 /* It's an edge interrupt, nothing to do */
243 return IRQ_HANDLED;
244}
245
246
247static irqreturn_t smu_msg_intr(int irq, void *arg)
248{
249 /* I don't quite know what to do with this one, we seem to never
250 * receive it, so I suspect we have to arm it someway in the SMU
251 * to start getting events that way.
252 */
253
254 printk(KERN_INFO "SMU: message interrupt !\n");
255
256 /* It's an edge interrupt, nothing to do */
257 return IRQ_HANDLED;
258}
259
260
261/*
262 * Queued command management.
263 *
264 */
265
266int smu_queue_cmd(struct smu_cmd *cmd)
267{
268 unsigned long flags;
269
270 if (smu == NULL)
271 return -ENODEV;
272 if (cmd->data_len > SMU_MAX_DATA ||
273 cmd->reply_len > SMU_MAX_DATA)
274 return -EINVAL;
275
276 cmd->status = 1;
277 spin_lock_irqsave(&smu->lock, flags);
278 list_add_tail(&cmd->link, &smu->cmd_list);
279 if (smu->cmd_cur == NULL)
280 smu_start_cmd();
281 spin_unlock_irqrestore(&smu->lock, flags);
282
283 /* Workaround for early calls when irq isn't available */
284 if (!smu_irq_inited || smu->db_irq == NO_IRQ)
285 smu_spinwait_cmd(cmd);
286
287 return 0;
288}
289EXPORT_SYMBOL(smu_queue_cmd);
290
291
292int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
293 unsigned int data_len,
294 void (*done)(struct smu_cmd *cmd, void *misc),
295 void *misc, ...)
296{
297 struct smu_cmd *cmd = &scmd->cmd;
298 va_list list;
299 int i;
300
301 if (data_len > sizeof(scmd->buffer))
302 return -EINVAL;
303
304 memset(scmd, 0, sizeof(*scmd));
305 cmd->cmd = command;
306 cmd->data_len = data_len;
307 cmd->data_buf = scmd->buffer;
308 cmd->reply_len = sizeof(scmd->buffer);
309 cmd->reply_buf = scmd->buffer;
310 cmd->done = done;
311 cmd->misc = misc;
312
313 va_start(list, misc);
314 for (i = 0; i < data_len; ++i)
315 scmd->buffer[i] = (u8)va_arg(list, int);
316 va_end(list);
317
318 return smu_queue_cmd(cmd);
319}
320EXPORT_SYMBOL(smu_queue_simple);
321
322
323void smu_poll(void)
324{
325 u8 gpio;
326
327 if (smu == NULL)
328 return;
329
330 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
331 if ((gpio & 7) == 7)
332 smu_db_intr(smu->db_irq, smu);
333}
334EXPORT_SYMBOL(smu_poll);
335
336
337void smu_done_complete(struct smu_cmd *cmd, void *misc)
338{
339 struct completion *comp = misc;
340
341 complete(comp);
342}
343EXPORT_SYMBOL(smu_done_complete);
344
345
346void smu_spinwait_cmd(struct smu_cmd *cmd)
347{
348 while(cmd->status == 1)
349 smu_poll();
350}
351EXPORT_SYMBOL(smu_spinwait_cmd);
352
353
354/* RTC low level commands */
355static inline int bcd2hex (int n)
356{
357 return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
358}
359
360
361static inline int hex2bcd (int n)
362{
363 return ((n / 10) << 4) + (n % 10);
364}
365
366
367static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
368 struct rtc_time *time)
369{
370 cmd_buf->cmd = 0x8e;
371 cmd_buf->length = 8;
372 cmd_buf->data[0] = 0x80;
373 cmd_buf->data[1] = hex2bcd(time->tm_sec);
374 cmd_buf->data[2] = hex2bcd(time->tm_min);
375 cmd_buf->data[3] = hex2bcd(time->tm_hour);
376 cmd_buf->data[4] = time->tm_wday;
377 cmd_buf->data[5] = hex2bcd(time->tm_mday);
378 cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
379 cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
380}
381
382
383int smu_get_rtc_time(struct rtc_time *time, int spinwait)
384{
385 struct smu_simple_cmd cmd;
386 int rc;
387
388 if (smu == NULL)
389 return -ENODEV;
390
391 memset(time, 0, sizeof(struct rtc_time));
392 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
393 SMU_CMD_RTC_GET_DATETIME);
394 if (rc)
395 return rc;
396 smu_spinwait_simple(&cmd);
397
398 time->tm_sec = bcd2hex(cmd.buffer[0]);
399 time->tm_min = bcd2hex(cmd.buffer[1]);
400 time->tm_hour = bcd2hex(cmd.buffer[2]);
401 time->tm_wday = bcd2hex(cmd.buffer[3]);
402 time->tm_mday = bcd2hex(cmd.buffer[4]);
403 time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
404 time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
405
406 return 0;
407}
408
409
410int smu_set_rtc_time(struct rtc_time *time, int spinwait)
411{
412 struct smu_simple_cmd cmd;
413 int rc;
414
415 if (smu == NULL)
416 return -ENODEV;
417
418 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
419 SMU_CMD_RTC_SET_DATETIME,
420 hex2bcd(time->tm_sec),
421 hex2bcd(time->tm_min),
422 hex2bcd(time->tm_hour),
423 time->tm_wday,
424 hex2bcd(time->tm_mday),
425 hex2bcd(time->tm_mon) + 1,
426 hex2bcd(time->tm_year - 100));
427 if (rc)
428 return rc;
429 smu_spinwait_simple(&cmd);
430
431 return 0;
432}
433
434
435void smu_shutdown(void)
436{
437 struct smu_simple_cmd cmd;
438
439 if (smu == NULL)
440 return;
441
442 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
443 'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
444 return;
445 smu_spinwait_simple(&cmd);
446 for (;;)
447 ;
448}
449
450
451void smu_restart(void)
452{
453 struct smu_simple_cmd cmd;
454
455 if (smu == NULL)
456 return;
457
458 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
459 'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
460 return;
461 smu_spinwait_simple(&cmd);
462 for (;;)
463 ;
464}
465
466
467int smu_present(void)
468{
469 return smu != NULL;
470}
471EXPORT_SYMBOL(smu_present);
472
473
474int __init smu_init (void)
475{
476 struct device_node *np;
477 const u32 *data;
478 int ret = 0;
479
480 np = of_find_node_by_type(NULL, "smu");
481 if (np == NULL)
482 return -ENODEV;
483
484 printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
485
486 if (smu_cmdbuf_abs == 0) {
487 printk(KERN_ERR "SMU: Command buffer not allocated !\n");
488 ret = -EINVAL;
489 goto fail_np;
490 }
491
492 smu = alloc_bootmem(sizeof(struct smu_device));
493
494 spin_lock_init(&smu->lock);
495 INIT_LIST_HEAD(&smu->cmd_list);
496 INIT_LIST_HEAD(&smu->cmd_i2c_list);
497 smu->of_node = np;
498 smu->db_irq = NO_IRQ;
499 smu->msg_irq = NO_IRQ;
500
501 /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
502 * 32 bits value safely
503 */
504 smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
505 smu->cmd_buf = (struct smu_cmd_buf *)abs_to_virt(smu_cmdbuf_abs);
506
507 smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
508 if (smu->db_node == NULL) {
509 printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
510 ret = -ENXIO;
511 goto fail_bootmem;
512 }
513 data = of_get_property(smu->db_node, "reg", NULL);
514 if (data == NULL) {
515 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
516 ret = -ENXIO;
517 goto fail_db_node;
518 }
519
520 /* Current setup has one doorbell GPIO that does both doorbell
521 * and ack. GPIOs are at 0x50, best would be to find that out
522 * in the device-tree though.
523 */
524 smu->doorbell = *data;
525 if (smu->doorbell < 0x50)
526 smu->doorbell += 0x50;
527
528 /* Now look for the smu-interrupt GPIO */
529 do {
530 smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
531 if (smu->msg_node == NULL)
532 break;
533 data = of_get_property(smu->msg_node, "reg", NULL);
534 if (data == NULL) {
535 of_node_put(smu->msg_node);
536 smu->msg_node = NULL;
537 break;
538 }
539 smu->msg = *data;
540 if (smu->msg < 0x50)
541 smu->msg += 0x50;
542 } while(0);
543
544 /* Doorbell buffer is currently hard-coded, I didn't find a proper
545 * device-tree entry giving the address. Best would probably to use
546 * an offset for K2 base though, but let's do it that way for now.
547 */
548 smu->db_buf = ioremap(0x8000860c, 0x1000);
549 if (smu->db_buf == NULL) {
550 printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
551 ret = -ENXIO;
552 goto fail_msg_node;
553 }
554
555 /* U3 has an issue with NAP mode when issuing SMU commands */
556 smu->broken_nap = pmac_get_uninorth_variant() < 4;
557 if (smu->broken_nap)
558 printk(KERN_INFO "SMU: using NAP mode workaround\n");
559
560 sys_ctrler = SYS_CTRLER_SMU;
561 return 0;
562
563fail_msg_node:
564 if (smu->msg_node)
565 of_node_put(smu->msg_node);
566fail_db_node:
567 of_node_put(smu->db_node);
568fail_bootmem:
569 free_bootmem((unsigned long)smu, sizeof(struct smu_device));
570 smu = NULL;
571fail_np:
572 of_node_put(np);
573 return ret;
574}
575
576
577static int smu_late_init(void)
578{
579 if (!smu)
580 return 0;
581
582 init_timer(&smu->i2c_timer);
583 smu->i2c_timer.function = smu_i2c_retry;
584 smu->i2c_timer.data = (unsigned long)smu;
585
586 if (smu->db_node) {
587 smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
588 if (smu->db_irq == NO_IRQ)
589 printk(KERN_ERR "smu: failed to map irq for node %s\n",
590 smu->db_node->full_name);
591 }
592 if (smu->msg_node) {
593 smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
594 if (smu->msg_irq == NO_IRQ)
595 printk(KERN_ERR "smu: failed to map irq for node %s\n",
596 smu->msg_node->full_name);
597 }
598
599 /*
600 * Try to request the interrupts
601 */
602
603 if (smu->db_irq != NO_IRQ) {
604 if (request_irq(smu->db_irq, smu_db_intr,
605 IRQF_SHARED, "SMU doorbell", smu) < 0) {
606 printk(KERN_WARNING "SMU: can't "
607 "request interrupt %d\n",
608 smu->db_irq);
609 smu->db_irq = NO_IRQ;
610 }
611 }
612
613 if (smu->msg_irq != NO_IRQ) {
614 if (request_irq(smu->msg_irq, smu_msg_intr,
615 IRQF_SHARED, "SMU message", smu) < 0) {
616 printk(KERN_WARNING "SMU: can't "
617 "request interrupt %d\n",
618 smu->msg_irq);
619 smu->msg_irq = NO_IRQ;
620 }
621 }
622
623 smu_irq_inited = 1;
624 return 0;
625}
626/* This has to be before arch_initcall as the low i2c stuff relies on the
627 * above having been done before we reach arch_initcalls
628 */
629core_initcall(smu_late_init);
630
631/*
632 * sysfs visibility
633 */
634
635static void smu_expose_childs(struct work_struct *unused)
636{
637 struct device_node *np;
638
639 for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
640 if (of_device_is_compatible(np, "smu-sensors"))
641 of_platform_device_create(np, "smu-sensors",
642 &smu->of_dev->dev);
643}
644
645static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
646
647static int smu_platform_probe(struct platform_device* dev)
648{
649 if (!smu)
650 return -ENODEV;
651 smu->of_dev = dev;
652
653 /*
654 * Ok, we are matched, now expose all i2c busses. We have to defer
655 * that unfortunately or it would deadlock inside the device model
656 */
657 schedule_work(&smu_expose_childs_work);
658
659 return 0;
660}
661
662static const struct of_device_id smu_platform_match[] =
663{
664 {
665 .type = "smu",
666 },
667 {},
668};
669
670static struct platform_driver smu_of_platform_driver =
671{
672 .driver = {
673 .name = "smu",
674 .owner = THIS_MODULE,
675 .of_match_table = smu_platform_match,
676 },
677 .probe = smu_platform_probe,
678};
679
680static int __init smu_init_sysfs(void)
681{
682 /*
683 * For now, we don't power manage machines with an SMU chip,
684 * I'm a bit too far from figuring out how that works with those
685 * new chipsets, but that will come back and bite us
686 */
687 platform_driver_register(&smu_of_platform_driver);
688 return 0;
689}
690
691device_initcall(smu_init_sysfs);
692
693struct platform_device *smu_get_ofdev(void)
694{
695 if (!smu)
696 return NULL;
697 return smu->of_dev;
698}
699
700EXPORT_SYMBOL_GPL(smu_get_ofdev);
701
702/*
703 * i2c interface
704 */
705
706static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
707{
708 void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
709 void *misc = cmd->misc;
710 unsigned long flags;
711
712 /* Check for read case */
713 if (!fail && cmd->read) {
714 if (cmd->pdata[0] < 1)
715 fail = 1;
716 else
717 memcpy(cmd->info.data, &cmd->pdata[1],
718 cmd->info.datalen);
719 }
720
721 DPRINTK("SMU: completing, success: %d\n", !fail);
722
723 /* Update status and mark no pending i2c command with lock
724 * held so nobody comes in while we dequeue an eventual
725 * pending next i2c command
726 */
727 spin_lock_irqsave(&smu->lock, flags);
728 smu->cmd_i2c_cur = NULL;
729 wmb();
730 cmd->status = fail ? -EIO : 0;
731
732 /* Is there another i2c command waiting ? */
733 if (!list_empty(&smu->cmd_i2c_list)) {
734 struct smu_i2c_cmd *newcmd;
735
736 /* Fetch it, new current, remove from list */
737 newcmd = list_entry(smu->cmd_i2c_list.next,
738 struct smu_i2c_cmd, link);
739 smu->cmd_i2c_cur = newcmd;
740 list_del(&cmd->link);
741
742 /* Queue with low level smu */
743 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
744 if (smu->cmd_cur == NULL)
745 smu_start_cmd();
746 }
747 spin_unlock_irqrestore(&smu->lock, flags);
748
749 /* Call command completion handler if any */
750 if (done)
751 done(cmd, misc);
752
753}
754
755
756static void smu_i2c_retry(unsigned long data)
757{
758 struct smu_i2c_cmd *cmd = smu->cmd_i2c_cur;
759
760 DPRINTK("SMU: i2c failure, requeuing...\n");
761
762 /* requeue command simply by resetting reply_len */
763 cmd->pdata[0] = 0xff;
764 cmd->scmd.reply_len = sizeof(cmd->pdata);
765 smu_queue_cmd(&cmd->scmd);
766}
767
768
769static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
770{
771 struct smu_i2c_cmd *cmd = misc;
772 int fail = 0;
773
774 DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
775 cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
776
777 /* Check for possible status */
778 if (scmd->status < 0)
779 fail = 1;
780 else if (cmd->read) {
781 if (cmd->stage == 0)
782 fail = cmd->pdata[0] != 0;
783 else
784 fail = cmd->pdata[0] >= 0x80;
785 } else {
786 fail = cmd->pdata[0] != 0;
787 }
788
789 /* Handle failures by requeuing command, after 5ms interval
790 */
791 if (fail && --cmd->retries > 0) {
792 DPRINTK("SMU: i2c failure, starting timer...\n");
793 BUG_ON(cmd != smu->cmd_i2c_cur);
794 if (!smu_irq_inited) {
795 mdelay(5);
796 smu_i2c_retry(0);
797 return;
798 }
799 mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
800 return;
801 }
802
803 /* If failure or stage 1, command is complete */
804 if (fail || cmd->stage != 0) {
805 smu_i2c_complete_command(cmd, fail);
806 return;
807 }
808
809 DPRINTK("SMU: going to stage 1\n");
810
811 /* Ok, initial command complete, now poll status */
812 scmd->reply_buf = cmd->pdata;
813 scmd->reply_len = sizeof(cmd->pdata);
814 scmd->data_buf = cmd->pdata;
815 scmd->data_len = 1;
816 cmd->pdata[0] = 0;
817 cmd->stage = 1;
818 cmd->retries = 20;
819 smu_queue_cmd(scmd);
820}
821
822
823int smu_queue_i2c(struct smu_i2c_cmd *cmd)
824{
825 unsigned long flags;
826
827 if (smu == NULL)
828 return -ENODEV;
829
830 /* Fill most fields of scmd */
831 cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
832 cmd->scmd.done = smu_i2c_low_completion;
833 cmd->scmd.misc = cmd;
834 cmd->scmd.reply_buf = cmd->pdata;
835 cmd->scmd.reply_len = sizeof(cmd->pdata);
836 cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
837 cmd->scmd.status = 1;
838 cmd->stage = 0;
839 cmd->pdata[0] = 0xff;
840 cmd->retries = 20;
841 cmd->status = 1;
842
843 /* Check transfer type, sanitize some "info" fields
844 * based on transfer type and do more checking
845 */
846 cmd->info.caddr = cmd->info.devaddr;
847 cmd->read = cmd->info.devaddr & 0x01;
848 switch(cmd->info.type) {
849 case SMU_I2C_TRANSFER_SIMPLE:
850 memset(&cmd->info.sublen, 0, 4);
851 break;
852 case SMU_I2C_TRANSFER_COMBINED:
853 cmd->info.devaddr &= 0xfe;
854 case SMU_I2C_TRANSFER_STDSUB:
855 if (cmd->info.sublen > 3)
856 return -EINVAL;
857 break;
858 default:
859 return -EINVAL;
860 }
861
862 /* Finish setting up command based on transfer direction
863 */
864 if (cmd->read) {
865 if (cmd->info.datalen > SMU_I2C_READ_MAX)
866 return -EINVAL;
867 memset(cmd->info.data, 0xff, cmd->info.datalen);
868 cmd->scmd.data_len = 9;
869 } else {
870 if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
871 return -EINVAL;
872 cmd->scmd.data_len = 9 + cmd->info.datalen;
873 }
874
875 DPRINTK("SMU: i2c enqueuing command\n");
876 DPRINTK("SMU: %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
877 cmd->read ? "read" : "write", cmd->info.datalen,
878 cmd->info.bus, cmd->info.caddr,
879 cmd->info.subaddr[0], cmd->info.type);
880
881
882 /* Enqueue command in i2c list, and if empty, enqueue also in
883 * main command list
884 */
885 spin_lock_irqsave(&smu->lock, flags);
886 if (smu->cmd_i2c_cur == NULL) {
887 smu->cmd_i2c_cur = cmd;
888 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
889 if (smu->cmd_cur == NULL)
890 smu_start_cmd();
891 } else
892 list_add_tail(&cmd->link, &smu->cmd_i2c_list);
893 spin_unlock_irqrestore(&smu->lock, flags);
894
895 return 0;
896}
897
898/*
899 * Handling of "partitions"
900 */
901
902static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
903{
904 DECLARE_COMPLETION_ONSTACK(comp);
905 unsigned int chunk;
906 struct smu_cmd cmd;
907 int rc;
908 u8 params[8];
909
910 /* We currently use a chunk size of 0xe. We could check the
911 * SMU firmware version and use bigger sizes though
912 */
913 chunk = 0xe;
914
915 while (len) {
916 unsigned int clen = min(len, chunk);
917
918 cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
919 cmd.data_len = 7;
920 cmd.data_buf = params;
921 cmd.reply_len = chunk;
922 cmd.reply_buf = dest;
923 cmd.done = smu_done_complete;
924 cmd.misc = ∁
925 params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
926 params[1] = 0x4;
927 *((u32 *)¶ms[2]) = addr;
928 params[6] = clen;
929
930 rc = smu_queue_cmd(&cmd);
931 if (rc)
932 return rc;
933 wait_for_completion(&comp);
934 if (cmd.status != 0)
935 return rc;
936 if (cmd.reply_len != clen) {
937 printk(KERN_DEBUG "SMU: short read in "
938 "smu_read_datablock, got: %d, want: %d\n",
939 cmd.reply_len, clen);
940 return -EIO;
941 }
942 len -= clen;
943 addr += clen;
944 dest += clen;
945 }
946 return 0;
947}
948
949static struct smu_sdbp_header *smu_create_sdb_partition(int id)
950{
951 DECLARE_COMPLETION_ONSTACK(comp);
952 struct smu_simple_cmd cmd;
953 unsigned int addr, len, tlen;
954 struct smu_sdbp_header *hdr;
955 struct property *prop;
956
957 /* First query the partition info */
958 DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
959 smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
960 smu_done_complete, &comp,
961 SMU_CMD_PARTITION_LATEST, id);
962 wait_for_completion(&comp);
963 DPRINTK("SMU: done, status: %d, reply_len: %d\n",
964 cmd.cmd.status, cmd.cmd.reply_len);
965
966 /* Partition doesn't exist (or other error) */
967 if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
968 return NULL;
969
970 /* Fetch address and length from reply */
971 addr = *((u16 *)cmd.buffer);
972 len = cmd.buffer[3] << 2;
973 /* Calucluate total length to allocate, including the 17 bytes
974 * for "sdb-partition-XX" that we append at the end of the buffer
975 */
976 tlen = sizeof(struct property) + len + 18;
977
978 prop = kzalloc(tlen, GFP_KERNEL);
979 if (prop == NULL)
980 return NULL;
981 hdr = (struct smu_sdbp_header *)(prop + 1);
982 prop->name = ((char *)prop) + tlen - 18;
983 sprintf(prop->name, "sdb-partition-%02x", id);
984 prop->length = len;
985 prop->value = hdr;
986 prop->next = NULL;
987
988 /* Read the datablock */
989 if (smu_read_datablock((u8 *)hdr, addr, len)) {
990 printk(KERN_DEBUG "SMU: datablock read failed while reading "
991 "partition %02x !\n", id);
992 goto failure;
993 }
994
995 /* Got it, check a few things and create the property */
996 if (hdr->id != id) {
997 printk(KERN_DEBUG "SMU: Reading partition %02x and got "
998 "%02x !\n", id, hdr->id);
999 goto failure;
1000 }
1001 if (prom_add_property(smu->of_node, prop)) {
1002 printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1003 "property !\n", id);
1004 goto failure;
1005 }
1006
1007 return hdr;
1008 failure:
1009 kfree(prop);
1010 return NULL;
1011}
1012
1013/* Note: Only allowed to return error code in pointers (using ERR_PTR)
1014 * when interruptible is 1
1015 */
1016const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1017 unsigned int *size, int interruptible)
1018{
1019 char pname[32];
1020 const struct smu_sdbp_header *part;
1021
1022 if (!smu)
1023 return NULL;
1024
1025 sprintf(pname, "sdb-partition-%02x", id);
1026
1027 DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1028
1029 if (interruptible) {
1030 int rc;
1031 rc = mutex_lock_interruptible(&smu_part_access);
1032 if (rc)
1033 return ERR_PTR(rc);
1034 } else
1035 mutex_lock(&smu_part_access);
1036
1037 part = of_get_property(smu->of_node, pname, size);
1038 if (part == NULL) {
1039 DPRINTK("trying to extract from SMU ...\n");
1040 part = smu_create_sdb_partition(id);
1041 if (part != NULL && size)
1042 *size = part->len << 2;
1043 }
1044 mutex_unlock(&smu_part_access);
1045 return part;
1046}
1047
1048const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1049{
1050 return __smu_get_sdb_partition(id, size, 0);
1051}
1052EXPORT_SYMBOL(smu_get_sdb_partition);
1053
1054
1055/*
1056 * Userland driver interface
1057 */
1058
1059
1060static LIST_HEAD(smu_clist);
1061static DEFINE_SPINLOCK(smu_clist_lock);
1062
1063enum smu_file_mode {
1064 smu_file_commands,
1065 smu_file_events,
1066 smu_file_closing
1067};
1068
1069struct smu_private
1070{
1071 struct list_head list;
1072 enum smu_file_mode mode;
1073 int busy;
1074 struct smu_cmd cmd;
1075 spinlock_t lock;
1076 wait_queue_head_t wait;
1077 u8 buffer[SMU_MAX_DATA];
1078};
1079
1080
1081static int smu_open(struct inode *inode, struct file *file)
1082{
1083 struct smu_private *pp;
1084 unsigned long flags;
1085
1086 pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1087 if (pp == 0)
1088 return -ENOMEM;
1089 spin_lock_init(&pp->lock);
1090 pp->mode = smu_file_commands;
1091 init_waitqueue_head(&pp->wait);
1092
1093 mutex_lock(&smu_mutex);
1094 spin_lock_irqsave(&smu_clist_lock, flags);
1095 list_add(&pp->list, &smu_clist);
1096 spin_unlock_irqrestore(&smu_clist_lock, flags);
1097 file->private_data = pp;
1098 mutex_unlock(&smu_mutex);
1099
1100 return 0;
1101}
1102
1103
1104static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1105{
1106 struct smu_private *pp = misc;
1107
1108 wake_up_all(&pp->wait);
1109}
1110
1111
1112static ssize_t smu_write(struct file *file, const char __user *buf,
1113 size_t count, loff_t *ppos)
1114{
1115 struct smu_private *pp = file->private_data;
1116 unsigned long flags;
1117 struct smu_user_cmd_hdr hdr;
1118 int rc = 0;
1119
1120 if (pp->busy)
1121 return -EBUSY;
1122 else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1123 return -EFAULT;
1124 else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1125 pp->mode = smu_file_events;
1126 return 0;
1127 } else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1128 const struct smu_sdbp_header *part;
1129 part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1130 if (part == NULL)
1131 return -EINVAL;
1132 else if (IS_ERR(part))
1133 return PTR_ERR(part);
1134 return 0;
1135 } else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1136 return -EINVAL;
1137 else if (pp->mode != smu_file_commands)
1138 return -EBADFD;
1139 else if (hdr.data_len > SMU_MAX_DATA)
1140 return -EINVAL;
1141
1142 spin_lock_irqsave(&pp->lock, flags);
1143 if (pp->busy) {
1144 spin_unlock_irqrestore(&pp->lock, flags);
1145 return -EBUSY;
1146 }
1147 pp->busy = 1;
1148 pp->cmd.status = 1;
1149 spin_unlock_irqrestore(&pp->lock, flags);
1150
1151 if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1152 pp->busy = 0;
1153 return -EFAULT;
1154 }
1155
1156 pp->cmd.cmd = hdr.cmd;
1157 pp->cmd.data_len = hdr.data_len;
1158 pp->cmd.reply_len = SMU_MAX_DATA;
1159 pp->cmd.data_buf = pp->buffer;
1160 pp->cmd.reply_buf = pp->buffer;
1161 pp->cmd.done = smu_user_cmd_done;
1162 pp->cmd.misc = pp;
1163 rc = smu_queue_cmd(&pp->cmd);
1164 if (rc < 0)
1165 return rc;
1166 return count;
1167}
1168
1169
1170static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1171 char __user *buf, size_t count)
1172{
1173 DECLARE_WAITQUEUE(wait, current);
1174 struct smu_user_reply_hdr hdr;
1175 unsigned long flags;
1176 int size, rc = 0;
1177
1178 if (!pp->busy)
1179 return 0;
1180 if (count < sizeof(struct smu_user_reply_hdr))
1181 return -EOVERFLOW;
1182 spin_lock_irqsave(&pp->lock, flags);
1183 if (pp->cmd.status == 1) {
1184 if (file->f_flags & O_NONBLOCK) {
1185 spin_unlock_irqrestore(&pp->lock, flags);
1186 return -EAGAIN;
1187 }
1188 add_wait_queue(&pp->wait, &wait);
1189 for (;;) {
1190 set_current_state(TASK_INTERRUPTIBLE);
1191 rc = 0;
1192 if (pp->cmd.status != 1)
1193 break;
1194 rc = -ERESTARTSYS;
1195 if (signal_pending(current))
1196 break;
1197 spin_unlock_irqrestore(&pp->lock, flags);
1198 schedule();
1199 spin_lock_irqsave(&pp->lock, flags);
1200 }
1201 set_current_state(TASK_RUNNING);
1202 remove_wait_queue(&pp->wait, &wait);
1203 }
1204 spin_unlock_irqrestore(&pp->lock, flags);
1205 if (rc)
1206 return rc;
1207 if (pp->cmd.status != 0)
1208 pp->cmd.reply_len = 0;
1209 size = sizeof(hdr) + pp->cmd.reply_len;
1210 if (count < size)
1211 size = count;
1212 rc = size;
1213 hdr.status = pp->cmd.status;
1214 hdr.reply_len = pp->cmd.reply_len;
1215 if (copy_to_user(buf, &hdr, sizeof(hdr)))
1216 return -EFAULT;
1217 size -= sizeof(hdr);
1218 if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1219 return -EFAULT;
1220 pp->busy = 0;
1221
1222 return rc;
1223}
1224
1225
1226static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1227 char __user *buf, size_t count)
1228{
1229 /* Not implemented */
1230 msleep_interruptible(1000);
1231 return 0;
1232}
1233
1234
1235static ssize_t smu_read(struct file *file, char __user *buf,
1236 size_t count, loff_t *ppos)
1237{
1238 struct smu_private *pp = file->private_data;
1239
1240 if (pp->mode == smu_file_commands)
1241 return smu_read_command(file, pp, buf, count);
1242 if (pp->mode == smu_file_events)
1243 return smu_read_events(file, pp, buf, count);
1244
1245 return -EBADFD;
1246}
1247
1248static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1249{
1250 struct smu_private *pp = file->private_data;
1251 unsigned int mask = 0;
1252 unsigned long flags;
1253
1254 if (pp == 0)
1255 return 0;
1256
1257 if (pp->mode == smu_file_commands) {
1258 poll_wait(file, &pp->wait, wait);
1259
1260 spin_lock_irqsave(&pp->lock, flags);
1261 if (pp->busy && pp->cmd.status != 1)
1262 mask |= POLLIN;
1263 spin_unlock_irqrestore(&pp->lock, flags);
1264 } if (pp->mode == smu_file_events) {
1265 /* Not yet implemented */
1266 }
1267 return mask;
1268}
1269
1270static int smu_release(struct inode *inode, struct file *file)
1271{
1272 struct smu_private *pp = file->private_data;
1273 unsigned long flags;
1274 unsigned int busy;
1275
1276 if (pp == 0)
1277 return 0;
1278
1279 file->private_data = NULL;
1280
1281 /* Mark file as closing to avoid races with new request */
1282 spin_lock_irqsave(&pp->lock, flags);
1283 pp->mode = smu_file_closing;
1284 busy = pp->busy;
1285
1286 /* Wait for any pending request to complete */
1287 if (busy && pp->cmd.status == 1) {
1288 DECLARE_WAITQUEUE(wait, current);
1289
1290 add_wait_queue(&pp->wait, &wait);
1291 for (;;) {
1292 set_current_state(TASK_UNINTERRUPTIBLE);
1293 if (pp->cmd.status != 1)
1294 break;
1295 spin_unlock_irqrestore(&pp->lock, flags);
1296 schedule();
1297 spin_lock_irqsave(&pp->lock, flags);
1298 }
1299 set_current_state(TASK_RUNNING);
1300 remove_wait_queue(&pp->wait, &wait);
1301 }
1302 spin_unlock_irqrestore(&pp->lock, flags);
1303
1304 spin_lock_irqsave(&smu_clist_lock, flags);
1305 list_del(&pp->list);
1306 spin_unlock_irqrestore(&smu_clist_lock, flags);
1307 kfree(pp);
1308
1309 return 0;
1310}
1311
1312
1313static const struct file_operations smu_device_fops = {
1314 .llseek = no_llseek,
1315 .read = smu_read,
1316 .write = smu_write,
1317 .poll = smu_fpoll,
1318 .open = smu_open,
1319 .release = smu_release,
1320};
1321
1322static struct miscdevice pmu_device = {
1323 MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1324};
1325
1326static int smu_device_init(void)
1327{
1328 if (!smu)
1329 return -ENODEV;
1330 if (misc_register(&pmu_device) < 0)
1331 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1332 return 0;
1333}
1334device_initcall(smu_device_init);