Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * SBP2 driver (SCSI over IEEE1394)
   3 *
   4 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22 * The basic structure of this driver is based on the old storage driver,
  23 * drivers/ieee1394/sbp2.c, originally written by
  24 *     James Goodwin <jamesg@filanet.com>
  25 * with later contributions and ongoing maintenance from
  26 *     Ben Collins <bcollins@debian.org>,
  27 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
  28 * and many others.
  29 */
  30
  31#include <linux/blkdev.h>
  32#include <linux/bug.h>
  33#include <linux/completion.h>
  34#include <linux/delay.h>
  35#include <linux/device.h>
  36#include <linux/dma-mapping.h>
  37#include <linux/firewire.h>
  38#include <linux/firewire-constants.h>
  39#include <linux/init.h>
  40#include <linux/jiffies.h>
  41#include <linux/kernel.h>
  42#include <linux/kref.h>
  43#include <linux/list.h>
  44#include <linux/mod_devicetable.h>
  45#include <linux/module.h>
  46#include <linux/moduleparam.h>
  47#include <linux/scatterlist.h>
  48#include <linux/slab.h>
  49#include <linux/spinlock.h>
  50#include <linux/string.h>
  51#include <linux/stringify.h>
  52#include <linux/workqueue.h>
  53
  54#include <asm/byteorder.h>
  55#include <asm/system.h>
  56
  57#include <scsi/scsi.h>
  58#include <scsi/scsi_cmnd.h>
  59#include <scsi/scsi_device.h>
  60#include <scsi/scsi_host.h>
  61
  62/*
  63 * So far only bridges from Oxford Semiconductor are known to support
  64 * concurrent logins. Depending on firmware, four or two concurrent logins
  65 * are possible on OXFW911 and newer Oxsemi bridges.
  66 *
  67 * Concurrent logins are useful together with cluster filesystems.
  68 */
  69static int sbp2_param_exclusive_login = 1;
  70module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
  71MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
  72		 "(default = Y, use N for concurrent initiators)");
  73
  74/*
  75 * Flags for firmware oddities
  76 *
  77 * - 128kB max transfer
  78 *   Limit transfer size. Necessary for some old bridges.
  79 *
  80 * - 36 byte inquiry
  81 *   When scsi_mod probes the device, let the inquiry command look like that
  82 *   from MS Windows.
  83 *
  84 * - skip mode page 8
  85 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
  86 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
  87 *
  88 * - fix capacity
  89 *   Tell sd_mod to correct the last sector number reported by read_capacity.
  90 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
  91 *   Don't use this with devices which don't have this bug.
  92 *
  93 * - delay inquiry
  94 *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
  95 *
  96 * - power condition
  97 *   Set the power condition field in the START STOP UNIT commands sent by
  98 *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
  99 *   Some disks need this to spin down or to resume properly.
 100 *
 101 * - override internal blacklist
 102 *   Instead of adding to the built-in blacklist, use only the workarounds
 103 *   specified in the module load parameter.
 104 *   Useful if a blacklist entry interfered with a non-broken device.
 105 */
 106#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
 107#define SBP2_WORKAROUND_INQUIRY_36	0x2
 108#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
 109#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
 110#define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
 111#define SBP2_INQUIRY_DELAY		12
 112#define SBP2_WORKAROUND_POWER_CONDITION	0x20
 113#define SBP2_WORKAROUND_OVERRIDE	0x100
 114
 115static int sbp2_param_workarounds;
 116module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
 117MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
 118	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
 119	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
 120	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
 121	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
 122	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
 123	", set power condition in start stop unit = "
 124				  __stringify(SBP2_WORKAROUND_POWER_CONDITION)
 125	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
 126	", or a combination)");
 127
 128static const char sbp2_driver_name[] = "sbp2";
 129
 130/*
 131 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 132 * and one struct scsi_device per sbp2_logical_unit.
 133 */
 134struct sbp2_logical_unit {
 135	struct sbp2_target *tgt;
 136	struct list_head link;
 137	struct fw_address_handler address_handler;
 138	struct list_head orb_list;
 139
 140	u64 command_block_agent_address;
 141	u16 lun;
 142	int login_id;
 143
 144	/*
 145	 * The generation is updated once we've logged in or reconnected
 146	 * to the logical unit.  Thus, I/O to the device will automatically
 147	 * fail and get retried if it happens in a window where the device
 148	 * is not ready, e.g. after a bus reset but before we reconnect.
 149	 */
 150	int generation;
 151	int retries;
 152	struct delayed_work work;
 153	bool has_sdev;
 154	bool blocked;
 155};
 156
 
 
 
 
 
 157/*
 158 * We create one struct sbp2_target per IEEE 1212 Unit Directory
 159 * and one struct Scsi_Host per sbp2_target.
 160 */
 161struct sbp2_target {
 162	struct kref kref;
 163	struct fw_unit *unit;
 164	const char *bus_id;
 165	struct list_head lu_list;
 166
 167	u64 management_agent_address;
 168	u64 guid;
 169	int directory_id;
 170	int node_id;
 171	int address_high;
 172	unsigned int workarounds;
 173	unsigned int mgt_orb_timeout;
 174	unsigned int max_payload;
 175
 176	int dont_block;	/* counter for each logical unit */
 177	int blocked;	/* ditto */
 178};
 179
 180static struct fw_device *target_device(struct sbp2_target *tgt)
 181{
 182	return fw_parent_device(tgt->unit);
 183}
 184
 
 
 
 
 
 
 
 
 
 
 185/* Impossible login_id, to detect logout attempt before successful login */
 186#define INVALID_LOGIN_ID 0x10000
 187
 188#define SBP2_ORB_TIMEOUT		2000U		/* Timeout in ms */
 189#define SBP2_ORB_NULL			0x80000000
 190#define SBP2_RETRY_LIMIT		0xf		/* 15 retries */
 191#define SBP2_CYCLE_LIMIT		(0xc8 << 12)	/* 200 125us cycles */
 192
 193/*
 194 * There is no transport protocol limit to the CDB length,  but we implement
 195 * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
 196 */
 197#define SBP2_MAX_CDB_SIZE		16
 198
 199/*
 200 * The default maximum s/g segment size of a FireWire controller is
 201 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
 202 * be quadlet-aligned, we set the length limit to 0xffff & ~3.
 203 */
 204#define SBP2_MAX_SEG_SIZE		0xfffc
 205
 206/* Unit directory keys */
 207#define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
 208#define SBP2_CSR_FIRMWARE_REVISION	0x3c
 209#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
 
 210#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
 211
 212/* Management orb opcodes */
 213#define SBP2_LOGIN_REQUEST		0x0
 214#define SBP2_QUERY_LOGINS_REQUEST	0x1
 215#define SBP2_RECONNECT_REQUEST		0x3
 216#define SBP2_SET_PASSWORD_REQUEST	0x4
 217#define SBP2_LOGOUT_REQUEST		0x7
 218#define SBP2_ABORT_TASK_REQUEST		0xb
 219#define SBP2_ABORT_TASK_SET		0xc
 220#define SBP2_LOGICAL_UNIT_RESET		0xe
 221#define SBP2_TARGET_RESET_REQUEST	0xf
 222
 223/* Offsets for command block agent registers */
 224#define SBP2_AGENT_STATE		0x00
 225#define SBP2_AGENT_RESET		0x04
 226#define SBP2_ORB_POINTER		0x08
 227#define SBP2_DOORBELL			0x10
 228#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14
 229
 230/* Status write response codes */
 231#define SBP2_STATUS_REQUEST_COMPLETE	0x0
 232#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
 233#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
 234#define SBP2_STATUS_VENDOR_DEPENDENT	0x3
 235
 236#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
 237#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
 238#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
 239#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
 240#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
 241#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
 242#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
 243#define STATUS_GET_DATA(v)		((v).data)
 244
 245struct sbp2_status {
 246	u32 status;
 247	u32 orb_low;
 248	u8 data[24];
 249};
 250
 251struct sbp2_pointer {
 252	__be32 high;
 253	__be32 low;
 254};
 255
 256struct sbp2_orb {
 257	struct fw_transaction t;
 258	struct kref kref;
 259	dma_addr_t request_bus;
 260	int rcode;
 261	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
 262	struct list_head link;
 263};
 264
 265#define MANAGEMENT_ORB_LUN(v)			((v))
 266#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
 267#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
 268#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
 269#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
 270#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
 271
 272#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
 273#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
 274
 275struct sbp2_management_orb {
 276	struct sbp2_orb base;
 277	struct {
 278		struct sbp2_pointer password;
 279		struct sbp2_pointer response;
 280		__be32 misc;
 281		__be32 length;
 282		struct sbp2_pointer status_fifo;
 283	} request;
 284	__be32 response[4];
 285	dma_addr_t response_bus;
 286	struct completion done;
 287	struct sbp2_status status;
 288};
 289
 290struct sbp2_login_response {
 291	__be32 misc;
 292	struct sbp2_pointer command_block_agent;
 293	__be32 reconnect_hold;
 294};
 295#define COMMAND_ORB_DATA_SIZE(v)	((v))
 296#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
 297#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
 298#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
 299#define COMMAND_ORB_SPEED(v)		((v) << 24)
 300#define COMMAND_ORB_DIRECTION		((1) << 27)
 301#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
 302#define COMMAND_ORB_NOTIFY		((1) << 31)
 303
 304struct sbp2_command_orb {
 305	struct sbp2_orb base;
 306	struct {
 307		struct sbp2_pointer next;
 308		struct sbp2_pointer data_descriptor;
 309		__be32 misc;
 310		u8 command_block[SBP2_MAX_CDB_SIZE];
 311	} request;
 312	struct scsi_cmnd *cmd;
 313	struct sbp2_logical_unit *lu;
 314
 315	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
 316	dma_addr_t page_table_bus;
 317};
 318
 319#define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
 320#define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
 321
 322/*
 323 * List of devices with known bugs.
 324 *
 325 * The firmware_revision field, masked with 0xffff00, is the best
 326 * indicator for the type of bridge chip of a device.  It yields a few
 327 * false positives but this did not break correctly behaving devices
 328 * so far.
 329 */
 330static const struct {
 331	u32 firmware_revision;
 332	u32 model;
 333	unsigned int workarounds;
 334} sbp2_workarounds_table[] = {
 335	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
 336		.firmware_revision	= 0x002800,
 337		.model			= 0x001010,
 338		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
 339					  SBP2_WORKAROUND_MODE_SENSE_8 |
 340					  SBP2_WORKAROUND_POWER_CONDITION,
 341	},
 342	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
 343		.firmware_revision	= 0x002800,
 344		.model			= 0x000000,
 345		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
 346	},
 347	/* Initio bridges, actually only needed for some older ones */ {
 348		.firmware_revision	= 0x000200,
 349		.model			= SBP2_ROM_VALUE_WILDCARD,
 350		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
 351	},
 352	/* PL-3507 bridge with Prolific firmware */ {
 353		.firmware_revision	= 0x012800,
 354		.model			= SBP2_ROM_VALUE_WILDCARD,
 355		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
 356	},
 357	/* Symbios bridge */ {
 358		.firmware_revision	= 0xa0b800,
 359		.model			= SBP2_ROM_VALUE_WILDCARD,
 360		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
 361	},
 362	/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
 363		.firmware_revision	= 0x002600,
 364		.model			= SBP2_ROM_VALUE_WILDCARD,
 365		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
 366	},
 367	/*
 368	 * iPod 2nd generation: needs 128k max transfer size workaround
 369	 * iPod 3rd generation: needs fix capacity workaround
 370	 */
 371	{
 372		.firmware_revision	= 0x0a2700,
 373		.model			= 0x000000,
 374		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS |
 375					  SBP2_WORKAROUND_FIX_CAPACITY,
 376	},
 377	/* iPod 4th generation */ {
 378		.firmware_revision	= 0x0a2700,
 379		.model			= 0x000021,
 380		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 381	},
 382	/* iPod mini */ {
 383		.firmware_revision	= 0x0a2700,
 384		.model			= 0x000022,
 385		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 386	},
 387	/* iPod mini */ {
 388		.firmware_revision	= 0x0a2700,
 389		.model			= 0x000023,
 390		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 391	},
 392	/* iPod Photo */ {
 393		.firmware_revision	= 0x0a2700,
 394		.model			= 0x00007e,
 395		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 396	}
 397};
 398
 399static void free_orb(struct kref *kref)
 400{
 401	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
 402
 403	kfree(orb);
 404}
 405
 406static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
 407			      int tcode, int destination, int source,
 408			      int generation, unsigned long long offset,
 409			      void *payload, size_t length, void *callback_data)
 410{
 411	struct sbp2_logical_unit *lu = callback_data;
 412	struct sbp2_orb *orb;
 413	struct sbp2_status status;
 414	unsigned long flags;
 415
 416	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
 417	    length < 8 || length > sizeof(status)) {
 418		fw_send_response(card, request, RCODE_TYPE_ERROR);
 419		return;
 420	}
 421
 422	status.status  = be32_to_cpup(payload);
 423	status.orb_low = be32_to_cpup(payload + 4);
 424	memset(status.data, 0, sizeof(status.data));
 425	if (length > 8)
 426		memcpy(status.data, payload + 8, length - 8);
 427
 428	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
 429		fw_notify("non-orb related status write, not handled\n");
 
 430		fw_send_response(card, request, RCODE_COMPLETE);
 431		return;
 432	}
 433
 434	/* Lookup the orb corresponding to this status write. */
 435	spin_lock_irqsave(&card->lock, flags);
 436	list_for_each_entry(orb, &lu->orb_list, link) {
 437		if (STATUS_GET_ORB_HIGH(status) == 0 &&
 438		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
 439			orb->rcode = RCODE_COMPLETE;
 440			list_del(&orb->link);
 441			break;
 442		}
 443	}
 444	spin_unlock_irqrestore(&card->lock, flags);
 445
 446	if (&orb->link != &lu->orb_list) {
 447		orb->callback(orb, &status);
 448		kref_put(&orb->kref, free_orb); /* orb callback reference */
 449	} else {
 450		fw_error("status write for unknown orb\n");
 451	}
 452
 453	fw_send_response(card, request, RCODE_COMPLETE);
 454}
 455
 456static void complete_transaction(struct fw_card *card, int rcode,
 457				 void *payload, size_t length, void *data)
 458{
 459	struct sbp2_orb *orb = data;
 460	unsigned long flags;
 461
 462	/*
 463	 * This is a little tricky.  We can get the status write for
 464	 * the orb before we get this callback.  The status write
 465	 * handler above will assume the orb pointer transaction was
 466	 * successful and set the rcode to RCODE_COMPLETE for the orb.
 467	 * So this callback only sets the rcode if it hasn't already
 468	 * been set and only does the cleanup if the transaction
 469	 * failed and we didn't already get a status write.
 470	 */
 471	spin_lock_irqsave(&card->lock, flags);
 472
 473	if (orb->rcode == -1)
 474		orb->rcode = rcode;
 475	if (orb->rcode != RCODE_COMPLETE) {
 476		list_del(&orb->link);
 477		spin_unlock_irqrestore(&card->lock, flags);
 478
 479		orb->callback(orb, NULL);
 480		kref_put(&orb->kref, free_orb); /* orb callback reference */
 481	} else {
 482		spin_unlock_irqrestore(&card->lock, flags);
 483	}
 484
 485	kref_put(&orb->kref, free_orb); /* transaction callback reference */
 486}
 487
 488static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
 489			  int node_id, int generation, u64 offset)
 490{
 491	struct fw_device *device = target_device(lu->tgt);
 492	struct sbp2_pointer orb_pointer;
 493	unsigned long flags;
 494
 495	orb_pointer.high = 0;
 496	orb_pointer.low = cpu_to_be32(orb->request_bus);
 497
 498	spin_lock_irqsave(&device->card->lock, flags);
 499	list_add_tail(&orb->link, &lu->orb_list);
 500	spin_unlock_irqrestore(&device->card->lock, flags);
 501
 502	kref_get(&orb->kref); /* transaction callback reference */
 503	kref_get(&orb->kref); /* orb callback reference */
 504
 505	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
 506			node_id, generation, device->max_speed, offset,
 507			&orb_pointer, 8, complete_transaction, orb);
 508}
 509
 510static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
 511{
 512	struct fw_device *device = target_device(lu->tgt);
 513	struct sbp2_orb *orb, *next;
 514	struct list_head list;
 515	unsigned long flags;
 516	int retval = -ENOENT;
 517
 518	INIT_LIST_HEAD(&list);
 519	spin_lock_irqsave(&device->card->lock, flags);
 520	list_splice_init(&lu->orb_list, &list);
 521	spin_unlock_irqrestore(&device->card->lock, flags);
 522
 523	list_for_each_entry_safe(orb, next, &list, link) {
 524		retval = 0;
 525		if (fw_cancel_transaction(device->card, &orb->t) == 0)
 526			continue;
 527
 528		orb->rcode = RCODE_CANCELLED;
 529		orb->callback(orb, NULL);
 530		kref_put(&orb->kref, free_orb); /* orb callback reference */
 531	}
 532
 533	return retval;
 534}
 535
 536static void complete_management_orb(struct sbp2_orb *base_orb,
 537				    struct sbp2_status *status)
 538{
 539	struct sbp2_management_orb *orb =
 540		container_of(base_orb, struct sbp2_management_orb, base);
 541
 542	if (status)
 543		memcpy(&orb->status, status, sizeof(*status));
 544	complete(&orb->done);
 545}
 546
 547static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
 548				    int generation, int function,
 549				    int lun_or_login_id, void *response)
 550{
 551	struct fw_device *device = target_device(lu->tgt);
 552	struct sbp2_management_orb *orb;
 553	unsigned int timeout;
 554	int retval = -ENOMEM;
 555
 556	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
 557		return 0;
 558
 559	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
 560	if (orb == NULL)
 561		return -ENOMEM;
 562
 563	kref_init(&orb->base.kref);
 564	orb->response_bus =
 565		dma_map_single(device->card->device, &orb->response,
 566			       sizeof(orb->response), DMA_FROM_DEVICE);
 567	if (dma_mapping_error(device->card->device, orb->response_bus))
 568		goto fail_mapping_response;
 569
 570	orb->request.response.high = 0;
 571	orb->request.response.low  = cpu_to_be32(orb->response_bus);
 572
 573	orb->request.misc = cpu_to_be32(
 574		MANAGEMENT_ORB_NOTIFY |
 575		MANAGEMENT_ORB_FUNCTION(function) |
 576		MANAGEMENT_ORB_LUN(lun_or_login_id));
 577	orb->request.length = cpu_to_be32(
 578		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
 579
 580	orb->request.status_fifo.high =
 581		cpu_to_be32(lu->address_handler.offset >> 32);
 582	orb->request.status_fifo.low  =
 583		cpu_to_be32(lu->address_handler.offset);
 584
 585	if (function == SBP2_LOGIN_REQUEST) {
 586		/* Ask for 2^2 == 4 seconds reconnect grace period */
 587		orb->request.misc |= cpu_to_be32(
 588			MANAGEMENT_ORB_RECONNECT(2) |
 589			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
 590		timeout = lu->tgt->mgt_orb_timeout;
 591	} else {
 592		timeout = SBP2_ORB_TIMEOUT;
 593	}
 594
 595	init_completion(&orb->done);
 596	orb->base.callback = complete_management_orb;
 597
 598	orb->base.request_bus =
 599		dma_map_single(device->card->device, &orb->request,
 600			       sizeof(orb->request), DMA_TO_DEVICE);
 601	if (dma_mapping_error(device->card->device, orb->base.request_bus))
 602		goto fail_mapping_request;
 603
 604	sbp2_send_orb(&orb->base, lu, node_id, generation,
 605		      lu->tgt->management_agent_address);
 606
 607	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
 608
 609	retval = -EIO;
 610	if (sbp2_cancel_orbs(lu) == 0) {
 611		fw_error("%s: orb reply timed out, rcode=0x%02x\n",
 612			 lu->tgt->bus_id, orb->base.rcode);
 613		goto out;
 614	}
 615
 616	if (orb->base.rcode != RCODE_COMPLETE) {
 617		fw_error("%s: management write failed, rcode 0x%02x\n",
 618			 lu->tgt->bus_id, orb->base.rcode);
 619		goto out;
 620	}
 621
 622	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
 623	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
 624		fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
 625			 STATUS_GET_RESPONSE(orb->status),
 626			 STATUS_GET_SBP_STATUS(orb->status));
 627		goto out;
 628	}
 629
 630	retval = 0;
 631 out:
 632	dma_unmap_single(device->card->device, orb->base.request_bus,
 633			 sizeof(orb->request), DMA_TO_DEVICE);
 634 fail_mapping_request:
 635	dma_unmap_single(device->card->device, orb->response_bus,
 636			 sizeof(orb->response), DMA_FROM_DEVICE);
 637 fail_mapping_response:
 638	if (response)
 639		memcpy(response, orb->response, sizeof(orb->response));
 640	kref_put(&orb->base.kref, free_orb);
 641
 642	return retval;
 643}
 644
 645static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
 646{
 647	struct fw_device *device = target_device(lu->tgt);
 648	__be32 d = 0;
 649
 650	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
 651			   lu->tgt->node_id, lu->generation, device->max_speed,
 652			   lu->command_block_agent_address + SBP2_AGENT_RESET,
 653			   &d, 4);
 654}
 655
 656static void complete_agent_reset_write_no_wait(struct fw_card *card,
 657		int rcode, void *payload, size_t length, void *data)
 658{
 659	kfree(data);
 660}
 661
 662static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
 663{
 664	struct fw_device *device = target_device(lu->tgt);
 665	struct fw_transaction *t;
 666	static __be32 d;
 667
 668	t = kmalloc(sizeof(*t), GFP_ATOMIC);
 669	if (t == NULL)
 670		return;
 671
 672	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
 673			lu->tgt->node_id, lu->generation, device->max_speed,
 674			lu->command_block_agent_address + SBP2_AGENT_RESET,
 675			&d, 4, complete_agent_reset_write_no_wait, t);
 676}
 677
 678static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
 679{
 680	/*
 681	 * We may access dont_block without taking card->lock here:
 682	 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
 683	 * are currently serialized against each other.
 684	 * And a wrong result in sbp2_conditionally_block()'s access of
 685	 * dont_block is rather harmless, it simply misses its first chance.
 686	 */
 687	--lu->tgt->dont_block;
 688}
 689
 690/*
 691 * Blocks lu->tgt if all of the following conditions are met:
 692 *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
 693 *     logical units have been finished (indicated by dont_block == 0).
 694 *   - lu->generation is stale.
 695 *
 696 * Note, scsi_block_requests() must be called while holding card->lock,
 697 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
 698 * unblock the target.
 699 */
 700static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
 701{
 702	struct sbp2_target *tgt = lu->tgt;
 703	struct fw_card *card = target_device(tgt)->card;
 704	struct Scsi_Host *shost =
 705		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 706	unsigned long flags;
 707
 708	spin_lock_irqsave(&card->lock, flags);
 709	if (!tgt->dont_block && !lu->blocked &&
 710	    lu->generation != card->generation) {
 711		lu->blocked = true;
 712		if (++tgt->blocked == 1)
 713			scsi_block_requests(shost);
 714	}
 715	spin_unlock_irqrestore(&card->lock, flags);
 716}
 717
 718/*
 719 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
 720 * Note, it is harmless to run scsi_unblock_requests() outside the
 721 * card->lock protected section.  On the other hand, running it inside
 722 * the section might clash with shost->host_lock.
 723 */
 724static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
 725{
 726	struct sbp2_target *tgt = lu->tgt;
 727	struct fw_card *card = target_device(tgt)->card;
 728	struct Scsi_Host *shost =
 729		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 730	unsigned long flags;
 731	bool unblock = false;
 732
 733	spin_lock_irqsave(&card->lock, flags);
 734	if (lu->blocked && lu->generation == card->generation) {
 735		lu->blocked = false;
 736		unblock = --tgt->blocked == 0;
 737	}
 738	spin_unlock_irqrestore(&card->lock, flags);
 739
 740	if (unblock)
 741		scsi_unblock_requests(shost);
 742}
 743
 744/*
 745 * Prevents future blocking of tgt and unblocks it.
 746 * Note, it is harmless to run scsi_unblock_requests() outside the
 747 * card->lock protected section.  On the other hand, running it inside
 748 * the section might clash with shost->host_lock.
 749 */
 750static void sbp2_unblock(struct sbp2_target *tgt)
 751{
 752	struct fw_card *card = target_device(tgt)->card;
 753	struct Scsi_Host *shost =
 754		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 755	unsigned long flags;
 756
 757	spin_lock_irqsave(&card->lock, flags);
 758	++tgt->dont_block;
 759	spin_unlock_irqrestore(&card->lock, flags);
 760
 761	scsi_unblock_requests(shost);
 762}
 763
 764static int sbp2_lun2int(u16 lun)
 765{
 766	struct scsi_lun eight_bytes_lun;
 767
 768	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
 769	eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
 770	eight_bytes_lun.scsi_lun[1] = lun & 0xff;
 771
 772	return scsilun_to_int(&eight_bytes_lun);
 773}
 774
 775static void sbp2_release_target(struct kref *kref)
 776{
 777	struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
 778	struct sbp2_logical_unit *lu, *next;
 779	struct Scsi_Host *shost =
 780		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 781	struct scsi_device *sdev;
 782	struct fw_device *device = target_device(tgt);
 783
 784	/* prevent deadlocks */
 785	sbp2_unblock(tgt);
 786
 787	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
 788		sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
 789		if (sdev) {
 790			scsi_remove_device(sdev);
 791			scsi_device_put(sdev);
 792		}
 793		if (lu->login_id != INVALID_LOGIN_ID) {
 794			int generation, node_id;
 795			/*
 796			 * tgt->node_id may be obsolete here if we failed
 797			 * during initial login or after a bus reset where
 798			 * the topology changed.
 799			 */
 800			generation = device->generation;
 801			smp_rmb(); /* node_id vs. generation */
 802			node_id    = device->node_id;
 803			sbp2_send_management_orb(lu, node_id, generation,
 804						 SBP2_LOGOUT_REQUEST,
 805						 lu->login_id, NULL);
 806		}
 807		fw_core_remove_address_handler(&lu->address_handler);
 808		list_del(&lu->link);
 809		kfree(lu);
 810	}
 811	scsi_remove_host(shost);
 812	fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
 813
 814	fw_unit_put(tgt->unit);
 815	scsi_host_put(shost);
 816	fw_device_put(device);
 817}
 818
 819static void sbp2_target_get(struct sbp2_target *tgt)
 820{
 821	kref_get(&tgt->kref);
 822}
 823
 824static void sbp2_target_put(struct sbp2_target *tgt)
 825{
 826	kref_put(&tgt->kref, sbp2_release_target);
 827}
 828
 829/*
 830 * Always get the target's kref when scheduling work on one its units.
 831 * Each workqueue job is responsible to call sbp2_target_put() upon return.
 832 */
 833static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
 834{
 835	sbp2_target_get(lu->tgt);
 836	if (!queue_delayed_work(fw_workqueue, &lu->work, delay))
 837		sbp2_target_put(lu->tgt);
 838}
 839
 840/*
 841 * Write retransmit retry values into the BUSY_TIMEOUT register.
 842 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
 843 *   default retry_limit value is 0 (i.e. never retry transmission). We write a
 844 *   saner value after logging into the device.
 845 * - The dual-phase retry protocol is optional to implement, and if not
 846 *   supported, writes to the dual-phase portion of the register will be
 847 *   ignored. We try to write the original 1394-1995 default here.
 848 * - In the case of devices that are also SBP-3-compliant, all writes are
 849 *   ignored, as the register is read-only, but contains single-phase retry of
 850 *   15, which is what we're trying to set for all SBP-2 device anyway, so this
 851 *   write attempt is safe and yields more consistent behavior for all devices.
 852 *
 853 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
 854 * and section 6.4 of the SBP-3 spec for further details.
 855 */
 856static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
 857{
 858	struct fw_device *device = target_device(lu->tgt);
 859	__be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
 860
 861	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
 862			   lu->tgt->node_id, lu->generation, device->max_speed,
 863			   CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
 864}
 865
 866static void sbp2_reconnect(struct work_struct *work);
 867
 868static void sbp2_login(struct work_struct *work)
 869{
 870	struct sbp2_logical_unit *lu =
 871		container_of(work, struct sbp2_logical_unit, work.work);
 872	struct sbp2_target *tgt = lu->tgt;
 873	struct fw_device *device = target_device(tgt);
 874	struct Scsi_Host *shost;
 875	struct scsi_device *sdev;
 876	struct sbp2_login_response response;
 877	int generation, node_id, local_node_id;
 878
 879	if (fw_device_is_shutdown(device))
 880		goto out;
 881
 882	generation    = device->generation;
 883	smp_rmb();    /* node IDs must not be older than generation */
 884	node_id       = device->node_id;
 885	local_node_id = device->card->node_id;
 886
 887	/* If this is a re-login attempt, log out, or we might be rejected. */
 888	if (lu->has_sdev)
 889		sbp2_send_management_orb(lu, device->node_id, generation,
 890				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
 891
 892	if (sbp2_send_management_orb(lu, node_id, generation,
 893				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
 894		if (lu->retries++ < 5) {
 895			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
 896		} else {
 897			fw_error("%s: failed to login to LUN %04x\n",
 898				 tgt->bus_id, lu->lun);
 899			/* Let any waiting I/O fail from now on. */
 900			sbp2_unblock(lu->tgt);
 901		}
 902		goto out;
 903	}
 904
 905	tgt->node_id	  = node_id;
 906	tgt->address_high = local_node_id << 16;
 907	smp_wmb();	  /* node IDs must not be older than generation */
 908	lu->generation	  = generation;
 909
 910	lu->command_block_agent_address =
 911		((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
 912		      << 32) | be32_to_cpu(response.command_block_agent.low);
 913	lu->login_id = be32_to_cpu(response.misc) & 0xffff;
 914
 915	fw_notify("%s: logged in to LUN %04x (%d retries)\n",
 916		  tgt->bus_id, lu->lun, lu->retries);
 917
 918	/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
 919	sbp2_set_busy_timeout(lu);
 920
 921	PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
 922	sbp2_agent_reset(lu);
 923
 924	/* This was a re-login. */
 925	if (lu->has_sdev) {
 926		sbp2_cancel_orbs(lu);
 927		sbp2_conditionally_unblock(lu);
 928		goto out;
 
 929	}
 930
 931	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
 932		ssleep(SBP2_INQUIRY_DELAY);
 933
 934	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 935	sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
 936	/*
 937	 * FIXME:  We are unable to perform reconnects while in sbp2_login().
 938	 * Therefore __scsi_add_device() will get into trouble if a bus reset
 939	 * happens in parallel.  It will either fail or leave us with an
 940	 * unusable sdev.  As a workaround we check for this and retry the
 941	 * whole login and SCSI probing.
 942	 */
 943
 944	/* Reported error during __scsi_add_device() */
 945	if (IS_ERR(sdev))
 946		goto out_logout_login;
 947
 948	/* Unreported error during __scsi_add_device() */
 949	smp_rmb(); /* get current card generation */
 950	if (generation != device->card->generation) {
 951		scsi_remove_device(sdev);
 952		scsi_device_put(sdev);
 953		goto out_logout_login;
 954	}
 955
 956	/* No error during __scsi_add_device() */
 957	lu->has_sdev = true;
 958	scsi_device_put(sdev);
 959	sbp2_allow_block(lu);
 960	goto out;
 
 961
 962 out_logout_login:
 963	smp_rmb(); /* generation may have changed */
 964	generation = device->generation;
 965	smp_rmb(); /* node_id must not be older than generation */
 966
 967	sbp2_send_management_orb(lu, device->node_id, generation,
 968				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
 969	/*
 970	 * If a bus reset happened, sbp2_update will have requeued
 971	 * lu->work already.  Reset the work from reconnect to login.
 972	 */
 973	PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
 974 out:
 975	sbp2_target_put(tgt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976}
 977
 978static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
 979{
 980	struct sbp2_logical_unit *lu;
 981
 982	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
 983	if (!lu)
 984		return -ENOMEM;
 985
 986	lu->address_handler.length           = 0x100;
 987	lu->address_handler.address_callback = sbp2_status_write;
 988	lu->address_handler.callback_data    = lu;
 989
 990	if (fw_core_add_address_handler(&lu->address_handler,
 991					&fw_high_memory_region) < 0) {
 992		kfree(lu);
 993		return -ENOMEM;
 994	}
 995
 996	lu->tgt      = tgt;
 997	lu->lun      = lun_entry & 0xffff;
 998	lu->login_id = INVALID_LOGIN_ID;
 999	lu->retries  = 0;
1000	lu->has_sdev = false;
1001	lu->blocked  = false;
1002	++tgt->dont_block;
1003	INIT_LIST_HEAD(&lu->orb_list);
1004	INIT_DELAYED_WORK(&lu->work, sbp2_login);
1005
1006	list_add_tail(&lu->link, &tgt->lu_list);
1007	return 0;
1008}
1009
 
 
 
 
 
 
 
1010static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1011				      const u32 *directory)
1012{
1013	struct fw_csr_iterator ci;
1014	int key, value;
1015
1016	fw_csr_iterator_init(&ci, directory);
1017	while (fw_csr_iterator_next(&ci, &key, &value))
1018		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1019		    sbp2_add_logical_unit(tgt, value) < 0)
1020			return -ENOMEM;
1021	return 0;
1022}
1023
1024static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1025			      u32 *model, u32 *firmware_revision)
1026{
1027	struct fw_csr_iterator ci;
1028	int key, value;
1029
1030	fw_csr_iterator_init(&ci, directory);
1031	while (fw_csr_iterator_next(&ci, &key, &value)) {
1032		switch (key) {
1033
1034		case CSR_DEPENDENT_INFO | CSR_OFFSET:
1035			tgt->management_agent_address =
1036					CSR_REGISTER_BASE + 4 * value;
1037			break;
1038
1039		case CSR_DIRECTORY_ID:
1040			tgt->directory_id = value;
1041			break;
1042
1043		case CSR_MODEL:
1044			*model = value;
1045			break;
1046
1047		case SBP2_CSR_FIRMWARE_REVISION:
1048			*firmware_revision = value;
1049			break;
1050
1051		case SBP2_CSR_UNIT_CHARACTERISTICS:
1052			/* the timeout value is stored in 500ms units */
1053			tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1054			break;
1055
1056		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1057			if (sbp2_add_logical_unit(tgt, value) < 0)
1058				return -ENOMEM;
1059			break;
1060
 
 
 
 
1061		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1062			/* Adjust for the increment in the iterator */
1063			if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1064				return -ENOMEM;
1065			break;
1066		}
1067	}
1068	return 0;
1069}
1070
1071/*
1072 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1073 * provided in the config rom. Most devices do provide a value, which
1074 * we'll use for login management orbs, but with some sane limits.
1075 */
1076static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1077{
1078	unsigned int timeout = tgt->mgt_orb_timeout;
1079
1080	if (timeout > 40000)
1081		fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n",
1082			  tgt->bus_id, timeout / 1000);
1083
1084	tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1085}
1086
1087static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1088				  u32 firmware_revision)
1089{
1090	int i;
1091	unsigned int w = sbp2_param_workarounds;
1092
1093	if (w)
1094		fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1095			  "if you need the workarounds parameter for %s\n",
1096			  tgt->bus_id);
1097
1098	if (w & SBP2_WORKAROUND_OVERRIDE)
1099		goto out;
1100
1101	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1102
1103		if (sbp2_workarounds_table[i].firmware_revision !=
1104		    (firmware_revision & 0xffffff00))
1105			continue;
1106
1107		if (sbp2_workarounds_table[i].model != model &&
1108		    sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1109			continue;
1110
1111		w |= sbp2_workarounds_table[i].workarounds;
1112		break;
1113	}
1114 out:
1115	if (w)
1116		fw_notify("Workarounds for %s: 0x%x "
1117			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1118			  tgt->bus_id, w, firmware_revision, model);
1119	tgt->workarounds = w;
1120}
1121
1122static struct scsi_host_template scsi_driver_template;
 
1123
1124static int sbp2_probe(struct device *dev)
1125{
1126	struct fw_unit *unit = fw_unit(dev);
1127	struct fw_device *device = fw_parent_device(unit);
1128	struct sbp2_target *tgt;
1129	struct sbp2_logical_unit *lu;
1130	struct Scsi_Host *shost;
1131	u32 model, firmware_revision;
1132
 
 
 
 
1133	if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1134		BUG_ON(dma_set_max_seg_size(device->card->device,
1135					    SBP2_MAX_SEG_SIZE));
1136
1137	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1138	if (shost == NULL)
1139		return -ENOMEM;
1140
1141	tgt = (struct sbp2_target *)shost->hostdata;
1142	dev_set_drvdata(&unit->device, tgt);
1143	tgt->unit = unit;
1144	kref_init(&tgt->kref);
1145	INIT_LIST_HEAD(&tgt->lu_list);
1146	tgt->bus_id = dev_name(&unit->device);
1147	tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1148
1149	if (fw_device_enable_phys_dma(device) < 0)
1150		goto fail_shost_put;
1151
1152	shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1153
1154	if (scsi_add_host(shost, &unit->device) < 0)
 
1155		goto fail_shost_put;
1156
1157	fw_device_get(device);
1158	fw_unit_get(unit);
1159
1160	/* implicit directory ID */
1161	tgt->directory_id = ((unit->directory - device->config_rom) * 4
1162			     + CSR_CONFIG_ROM) & 0xffffff;
1163
1164	firmware_revision = SBP2_ROM_VALUE_MISSING;
1165	model		  = SBP2_ROM_VALUE_MISSING;
1166
1167	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1168			       &firmware_revision) < 0)
1169		goto fail_tgt_put;
1170
1171	sbp2_clamp_management_orb_timeout(tgt);
1172	sbp2_init_workarounds(tgt, model, firmware_revision);
1173
1174	/*
1175	 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1176	 * and so on up to 4096 bytes.  The SBP-2 max_payload field
1177	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1178	 * if we set this to max_speed + 7, we get the right value.
1179	 */
1180	tgt->max_payload = min(device->max_speed + 7, 10U);
1181	tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1);
1182
1183	/* Do the login in a workqueue so we can easily reschedule retries. */
1184	list_for_each_entry(lu, &tgt->lu_list, link)
1185		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
 
1186	return 0;
1187
1188 fail_tgt_put:
1189	sbp2_target_put(tgt);
1190	return -ENOMEM;
1191
1192 fail_shost_put:
1193	scsi_host_put(shost);
1194	return -ENOMEM;
1195}
1196
1197static int sbp2_remove(struct device *dev)
1198{
1199	struct fw_unit *unit = fw_unit(dev);
1200	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1201	struct sbp2_logical_unit *lu;
1202
1203	list_for_each_entry(lu, &tgt->lu_list, link)
1204		cancel_delayed_work_sync(&lu->work);
1205
1206	sbp2_target_put(tgt);
1207	return 0;
1208}
1209
1210static void sbp2_reconnect(struct work_struct *work)
1211{
1212	struct sbp2_logical_unit *lu =
1213		container_of(work, struct sbp2_logical_unit, work.work);
1214	struct sbp2_target *tgt = lu->tgt;
1215	struct fw_device *device = target_device(tgt);
1216	int generation, node_id, local_node_id;
1217
1218	if (fw_device_is_shutdown(device))
1219		goto out;
1220
1221	generation    = device->generation;
1222	smp_rmb();    /* node IDs must not be older than generation */
1223	node_id       = device->node_id;
1224	local_node_id = device->card->node_id;
1225
1226	if (sbp2_send_management_orb(lu, node_id, generation,
1227				     SBP2_RECONNECT_REQUEST,
1228				     lu->login_id, NULL) < 0) {
1229		/*
1230		 * If reconnect was impossible even though we are in the
1231		 * current generation, fall back and try to log in again.
1232		 *
1233		 * We could check for "Function rejected" status, but
1234		 * looking at the bus generation as simpler and more general.
1235		 */
1236		smp_rmb(); /* get current card generation */
1237		if (generation == device->card->generation ||
1238		    lu->retries++ >= 5) {
1239			fw_error("%s: failed to reconnect\n", tgt->bus_id);
1240			lu->retries = 0;
1241			PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1242		}
1243		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1244		goto out;
1245	}
1246
1247	tgt->node_id      = node_id;
1248	tgt->address_high = local_node_id << 16;
1249	smp_wmb();	  /* node IDs must not be older than generation */
1250	lu->generation	  = generation;
1251
1252	fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1253		  tgt->bus_id, lu->lun, lu->retries);
1254
1255	sbp2_agent_reset(lu);
1256	sbp2_cancel_orbs(lu);
1257	sbp2_conditionally_unblock(lu);
1258 out:
1259	sbp2_target_put(tgt);
1260}
1261
1262static void sbp2_update(struct fw_unit *unit)
1263{
1264	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1265	struct sbp2_logical_unit *lu;
1266
1267	fw_device_enable_phys_dma(fw_parent_device(unit));
1268
1269	/*
1270	 * Fw-core serializes sbp2_update() against sbp2_remove().
1271	 * Iteration over tgt->lu_list is therefore safe here.
1272	 */
1273	list_for_each_entry(lu, &tgt->lu_list, link) {
1274		sbp2_conditionally_block(lu);
1275		lu->retries = 0;
1276		sbp2_queue_work(lu, 0);
1277	}
1278}
1279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
1281#define SBP2_SW_VERSION_ENTRY	0x00010483
1282
1283static const struct ieee1394_device_id sbp2_id_table[] = {
1284	{
1285		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1286				IEEE1394_MATCH_VERSION,
1287		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1288		.version      = SBP2_SW_VERSION_ENTRY,
1289	},
1290	{ }
1291};
1292
1293static struct fw_driver sbp2_driver = {
1294	.driver   = {
1295		.owner  = THIS_MODULE,
1296		.name   = sbp2_driver_name,
1297		.bus    = &fw_bus_type,
1298		.probe  = sbp2_probe,
1299		.remove = sbp2_remove,
1300	},
1301	.update   = sbp2_update,
1302	.id_table = sbp2_id_table,
1303};
1304
1305static void sbp2_unmap_scatterlist(struct device *card_device,
1306				   struct sbp2_command_orb *orb)
1307{
1308	if (scsi_sg_count(orb->cmd))
1309		dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1310			     scsi_sg_count(orb->cmd),
1311			     orb->cmd->sc_data_direction);
1312
1313	if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1314		dma_unmap_single(card_device, orb->page_table_bus,
1315				 sizeof(orb->page_table), DMA_TO_DEVICE);
1316}
1317
1318static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1319{
1320	int sam_status;
 
 
 
 
 
 
 
 
 
1321
1322	sense_data[0] = 0x70;
1323	sense_data[1] = 0x0;
1324	sense_data[2] = sbp2_status[1];
1325	sense_data[3] = sbp2_status[4];
1326	sense_data[4] = sbp2_status[5];
1327	sense_data[5] = sbp2_status[6];
1328	sense_data[6] = sbp2_status[7];
1329	sense_data[7] = 10;
1330	sense_data[8] = sbp2_status[8];
1331	sense_data[9] = sbp2_status[9];
1332	sense_data[10] = sbp2_status[10];
1333	sense_data[11] = sbp2_status[11];
1334	sense_data[12] = sbp2_status[2];
1335	sense_data[13] = sbp2_status[3];
1336	sense_data[14] = sbp2_status[12];
1337	sense_data[15] = sbp2_status[13];
1338
1339	sam_status = sbp2_status[0] & 0x3f;
1340
1341	switch (sam_status) {
1342	case SAM_STAT_GOOD:
1343	case SAM_STAT_CHECK_CONDITION:
1344	case SAM_STAT_CONDITION_MET:
1345	case SAM_STAT_BUSY:
1346	case SAM_STAT_RESERVATION_CONFLICT:
1347	case SAM_STAT_COMMAND_TERMINATED:
1348		return DID_OK << 16 | sam_status;
1349
1350	default:
1351		return DID_ERROR << 16;
1352	}
1353}
1354
1355static void complete_command_orb(struct sbp2_orb *base_orb,
1356				 struct sbp2_status *status)
1357{
1358	struct sbp2_command_orb *orb =
1359		container_of(base_orb, struct sbp2_command_orb, base);
1360	struct fw_device *device = target_device(orb->lu->tgt);
1361	int result;
1362
1363	if (status != NULL) {
1364		if (STATUS_GET_DEAD(*status))
1365			sbp2_agent_reset_no_wait(orb->lu);
1366
1367		switch (STATUS_GET_RESPONSE(*status)) {
1368		case SBP2_STATUS_REQUEST_COMPLETE:
1369			result = DID_OK << 16;
1370			break;
1371		case SBP2_STATUS_TRANSPORT_FAILURE:
1372			result = DID_BUS_BUSY << 16;
1373			break;
1374		case SBP2_STATUS_ILLEGAL_REQUEST:
1375		case SBP2_STATUS_VENDOR_DEPENDENT:
1376		default:
1377			result = DID_ERROR << 16;
1378			break;
1379		}
1380
1381		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1382			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1383							   orb->cmd->sense_buffer);
1384	} else {
1385		/*
1386		 * If the orb completes with status == NULL, something
1387		 * went wrong, typically a bus reset happened mid-orb
1388		 * or when sending the write (less likely).
1389		 */
1390		result = DID_BUS_BUSY << 16;
1391		sbp2_conditionally_block(orb->lu);
1392	}
1393
1394	dma_unmap_single(device->card->device, orb->base.request_bus,
1395			 sizeof(orb->request), DMA_TO_DEVICE);
1396	sbp2_unmap_scatterlist(device->card->device, orb);
1397
1398	orb->cmd->result = result;
1399	orb->cmd->scsi_done(orb->cmd);
1400}
1401
1402static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1403		struct fw_device *device, struct sbp2_logical_unit *lu)
1404{
1405	struct scatterlist *sg = scsi_sglist(orb->cmd);
1406	int i, n;
1407
1408	n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1409		       orb->cmd->sc_data_direction);
1410	if (n == 0)
1411		goto fail;
1412
1413	/*
1414	 * Handle the special case where there is only one element in
1415	 * the scatter list by converting it to an immediate block
1416	 * request. This is also a workaround for broken devices such
1417	 * as the second generation iPod which doesn't support page
1418	 * tables.
1419	 */
1420	if (n == 1) {
1421		orb->request.data_descriptor.high =
1422			cpu_to_be32(lu->tgt->address_high);
1423		orb->request.data_descriptor.low  =
1424			cpu_to_be32(sg_dma_address(sg));
1425		orb->request.misc |=
1426			cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1427		return 0;
1428	}
1429
1430	for_each_sg(sg, sg, n, i) {
1431		orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1432		orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1433	}
1434
1435	orb->page_table_bus =
1436		dma_map_single(device->card->device, orb->page_table,
1437			       sizeof(orb->page_table), DMA_TO_DEVICE);
1438	if (dma_mapping_error(device->card->device, orb->page_table_bus))
1439		goto fail_page_table;
1440
1441	/*
1442	 * The data_descriptor pointer is the one case where we need
1443	 * to fill in the node ID part of the address.  All other
1444	 * pointers assume that the data referenced reside on the
1445	 * initiator (i.e. us), but data_descriptor can refer to data
1446	 * on other nodes so we need to put our ID in descriptor.high.
1447	 */
1448	orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1449	orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1450	orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1451					 COMMAND_ORB_DATA_SIZE(n));
1452
1453	return 0;
1454
1455 fail_page_table:
1456	dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1457		     scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1458 fail:
1459	return -ENOMEM;
1460}
1461
1462/* SCSI stack integration */
1463
1464static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1465				  struct scsi_cmnd *cmd)
1466{
1467	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1468	struct fw_device *device = target_device(lu->tgt);
1469	struct sbp2_command_orb *orb;
1470	int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1471
1472	/*
1473	 * Bidirectional commands are not yet implemented, and unknown
1474	 * transfer direction not handled.
1475	 */
1476	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1477		fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1478		cmd->result = DID_ERROR << 16;
1479		cmd->scsi_done(cmd);
1480		return 0;
1481	}
1482
1483	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1484	if (orb == NULL) {
1485		fw_notify("failed to alloc orb\n");
1486		return SCSI_MLQUEUE_HOST_BUSY;
1487	}
1488
1489	/* Initialize rcode to something not RCODE_COMPLETE. */
1490	orb->base.rcode = -1;
1491	kref_init(&orb->base.kref);
1492	orb->lu = lu;
1493	orb->cmd = cmd;
1494	orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1495	orb->request.misc = cpu_to_be32(
1496		COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1497		COMMAND_ORB_SPEED(device->max_speed) |
1498		COMMAND_ORB_NOTIFY);
1499
1500	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1501		orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1502
1503	generation = device->generation;
1504	smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1505
1506	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1507		goto out;
1508
1509	memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1510
1511	orb->base.callback = complete_command_orb;
1512	orb->base.request_bus =
1513		dma_map_single(device->card->device, &orb->request,
1514			       sizeof(orb->request), DMA_TO_DEVICE);
1515	if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1516		sbp2_unmap_scatterlist(device->card->device, orb);
1517		goto out;
1518	}
1519
1520	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1521		      lu->command_block_agent_address + SBP2_ORB_POINTER);
1522	retval = 0;
1523 out:
1524	kref_put(&orb->base.kref, free_orb);
1525	return retval;
1526}
1527
1528static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1529{
1530	struct sbp2_logical_unit *lu = sdev->hostdata;
1531
1532	/* (Re-)Adding logical units via the SCSI stack is not supported. */
1533	if (!lu)
1534		return -ENOSYS;
1535
1536	sdev->allow_restart = 1;
1537
1538	/* SBP-2 requires quadlet alignment of the data buffers. */
 
 
 
1539	blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1540
1541	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1542		sdev->inquiry_len = 36;
1543
1544	return 0;
1545}
1546
1547static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1548{
1549	struct sbp2_logical_unit *lu = sdev->hostdata;
1550
1551	sdev->use_10_for_rw = 1;
1552
1553	if (sbp2_param_exclusive_login)
1554		sdev->manage_start_stop = 1;
1555
1556	if (sdev->type == TYPE_ROM)
1557		sdev->use_10_for_ms = 1;
1558
1559	if (sdev->type == TYPE_DISK &&
1560	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1561		sdev->skip_ms_page_8 = 1;
1562
1563	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1564		sdev->fix_capacity = 1;
1565
1566	if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1567		sdev->start_stop_pwr_cond = 1;
1568
1569	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1570		blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1571
1572	blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1573
1574	return 0;
1575}
1576
1577/*
1578 * Called by scsi stack when something has really gone wrong.  Usually
1579 * called when a command has timed-out for some reason.
1580 */
1581static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1582{
1583	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1584
1585	fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1586	sbp2_agent_reset(lu);
1587	sbp2_cancel_orbs(lu);
1588
1589	return SUCCESS;
1590}
1591
1592/*
1593 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1594 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1595 *
1596 * This is the concatenation of target port identifier and logical unit
1597 * identifier as per SAM-2...SAM-4 annex A.
1598 */
1599static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1600			struct device_attribute *attr, char *buf)
1601{
1602	struct scsi_device *sdev = to_scsi_device(dev);
1603	struct sbp2_logical_unit *lu;
1604
1605	if (!sdev)
1606		return 0;
1607
1608	lu = sdev->hostdata;
1609
1610	return sprintf(buf, "%016llx:%06x:%04x\n",
1611			(unsigned long long)lu->tgt->guid,
1612			lu->tgt->directory_id, lu->lun);
1613}
1614
1615static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1616
1617static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1618	&dev_attr_ieee1394_id,
1619	NULL
1620};
1621
1622static struct scsi_host_template scsi_driver_template = {
1623	.module			= THIS_MODULE,
1624	.name			= "SBP-2 IEEE-1394",
1625	.proc_name		= sbp2_driver_name,
1626	.queuecommand		= sbp2_scsi_queuecommand,
1627	.slave_alloc		= sbp2_scsi_slave_alloc,
1628	.slave_configure	= sbp2_scsi_slave_configure,
1629	.eh_abort_handler	= sbp2_scsi_abort,
1630	.this_id		= -1,
1631	.sg_tablesize		= SG_ALL,
1632	.use_clustering		= ENABLE_CLUSTERING,
1633	.cmd_per_lun		= 1,
1634	.can_queue		= 1,
1635	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1636};
1637
1638MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1639MODULE_DESCRIPTION("SCSI over IEEE1394");
1640MODULE_LICENSE("GPL");
1641MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1642
1643/* Provide a module alias so root-on-sbp2 initrds don't break. */
1644#ifndef CONFIG_IEEE1394_SBP2_MODULE
1645MODULE_ALIAS("sbp2");
1646#endif
1647
1648static int __init sbp2_init(void)
1649{
1650	return driver_register(&sbp2_driver.driver);
1651}
1652
1653static void __exit sbp2_cleanup(void)
1654{
1655	driver_unregister(&sbp2_driver.driver);
1656}
1657
1658module_init(sbp2_init);
1659module_exit(sbp2_cleanup);
v3.5.6
   1/*
   2 * SBP2 driver (SCSI over IEEE1394)
   3 *
   4 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22 * The basic structure of this driver is based on the old storage driver,
  23 * drivers/ieee1394/sbp2.c, originally written by
  24 *     James Goodwin <jamesg@filanet.com>
  25 * with later contributions and ongoing maintenance from
  26 *     Ben Collins <bcollins@debian.org>,
  27 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
  28 * and many others.
  29 */
  30
  31#include <linux/blkdev.h>
  32#include <linux/bug.h>
  33#include <linux/completion.h>
  34#include <linux/delay.h>
  35#include <linux/device.h>
  36#include <linux/dma-mapping.h>
  37#include <linux/firewire.h>
  38#include <linux/firewire-constants.h>
  39#include <linux/init.h>
  40#include <linux/jiffies.h>
  41#include <linux/kernel.h>
  42#include <linux/kref.h>
  43#include <linux/list.h>
  44#include <linux/mod_devicetable.h>
  45#include <linux/module.h>
  46#include <linux/moduleparam.h>
  47#include <linux/scatterlist.h>
  48#include <linux/slab.h>
  49#include <linux/spinlock.h>
  50#include <linux/string.h>
  51#include <linux/stringify.h>
  52#include <linux/workqueue.h>
  53
  54#include <asm/byteorder.h>
 
  55
  56#include <scsi/scsi.h>
  57#include <scsi/scsi_cmnd.h>
  58#include <scsi/scsi_device.h>
  59#include <scsi/scsi_host.h>
  60
  61/*
  62 * So far only bridges from Oxford Semiconductor are known to support
  63 * concurrent logins. Depending on firmware, four or two concurrent logins
  64 * are possible on OXFW911 and newer Oxsemi bridges.
  65 *
  66 * Concurrent logins are useful together with cluster filesystems.
  67 */
  68static bool sbp2_param_exclusive_login = 1;
  69module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
  70MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
  71		 "(default = Y, use N for concurrent initiators)");
  72
  73/*
  74 * Flags for firmware oddities
  75 *
  76 * - 128kB max transfer
  77 *   Limit transfer size. Necessary for some old bridges.
  78 *
  79 * - 36 byte inquiry
  80 *   When scsi_mod probes the device, let the inquiry command look like that
  81 *   from MS Windows.
  82 *
  83 * - skip mode page 8
  84 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
  85 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
  86 *
  87 * - fix capacity
  88 *   Tell sd_mod to correct the last sector number reported by read_capacity.
  89 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
  90 *   Don't use this with devices which don't have this bug.
  91 *
  92 * - delay inquiry
  93 *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
  94 *
  95 * - power condition
  96 *   Set the power condition field in the START STOP UNIT commands sent by
  97 *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
  98 *   Some disks need this to spin down or to resume properly.
  99 *
 100 * - override internal blacklist
 101 *   Instead of adding to the built-in blacklist, use only the workarounds
 102 *   specified in the module load parameter.
 103 *   Useful if a blacklist entry interfered with a non-broken device.
 104 */
 105#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
 106#define SBP2_WORKAROUND_INQUIRY_36	0x2
 107#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
 108#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
 109#define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
 110#define SBP2_INQUIRY_DELAY		12
 111#define SBP2_WORKAROUND_POWER_CONDITION	0x20
 112#define SBP2_WORKAROUND_OVERRIDE	0x100
 113
 114static int sbp2_param_workarounds;
 115module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
 116MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
 117	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
 118	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
 119	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
 120	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
 121	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
 122	", set power condition in start stop unit = "
 123				  __stringify(SBP2_WORKAROUND_POWER_CONDITION)
 124	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
 125	", or a combination)");
 126
 
 
 127/*
 128 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 129 * and one struct scsi_device per sbp2_logical_unit.
 130 */
 131struct sbp2_logical_unit {
 132	struct sbp2_target *tgt;
 133	struct list_head link;
 134	struct fw_address_handler address_handler;
 135	struct list_head orb_list;
 136
 137	u64 command_block_agent_address;
 138	u16 lun;
 139	int login_id;
 140
 141	/*
 142	 * The generation is updated once we've logged in or reconnected
 143	 * to the logical unit.  Thus, I/O to the device will automatically
 144	 * fail and get retried if it happens in a window where the device
 145	 * is not ready, e.g. after a bus reset but before we reconnect.
 146	 */
 147	int generation;
 148	int retries;
 149	struct delayed_work work;
 150	bool has_sdev;
 151	bool blocked;
 152};
 153
 154static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
 155{
 156	queue_delayed_work(fw_workqueue, &lu->work, delay);
 157}
 158
 159/*
 160 * We create one struct sbp2_target per IEEE 1212 Unit Directory
 161 * and one struct Scsi_Host per sbp2_target.
 162 */
 163struct sbp2_target {
 
 164	struct fw_unit *unit;
 
 165	struct list_head lu_list;
 166
 167	u64 management_agent_address;
 168	u64 guid;
 169	int directory_id;
 170	int node_id;
 171	int address_high;
 172	unsigned int workarounds;
 173	unsigned int mgt_orb_timeout;
 174	unsigned int max_payload;
 175
 176	int dont_block;	/* counter for each logical unit */
 177	int blocked;	/* ditto */
 178};
 179
 180static struct fw_device *target_parent_device(struct sbp2_target *tgt)
 181{
 182	return fw_parent_device(tgt->unit);
 183}
 184
 185static const struct device *tgt_dev(const struct sbp2_target *tgt)
 186{
 187	return &tgt->unit->device;
 188}
 189
 190static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
 191{
 192	return &lu->tgt->unit->device;
 193}
 194
 195/* Impossible login_id, to detect logout attempt before successful login */
 196#define INVALID_LOGIN_ID 0x10000
 197
 198#define SBP2_ORB_TIMEOUT		2000U		/* Timeout in ms */
 199#define SBP2_ORB_NULL			0x80000000
 200#define SBP2_RETRY_LIMIT		0xf		/* 15 retries */
 201#define SBP2_CYCLE_LIMIT		(0xc8 << 12)	/* 200 125us cycles */
 202
 203/*
 204 * There is no transport protocol limit to the CDB length,  but we implement
 205 * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
 206 */
 207#define SBP2_MAX_CDB_SIZE		16
 208
 209/*
 210 * The maximum SBP-2 data buffer size is 0xffff.  We quadlet-align this
 211 * for compatibility with earlier versions of this driver.
 
 212 */
 213#define SBP2_MAX_SEG_SIZE		0xfffc
 214
 215/* Unit directory keys */
 216#define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
 217#define SBP2_CSR_FIRMWARE_REVISION	0x3c
 218#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
 219#define SBP2_CSR_UNIT_UNIQUE_ID		0x8d
 220#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
 221
 222/* Management orb opcodes */
 223#define SBP2_LOGIN_REQUEST		0x0
 224#define SBP2_QUERY_LOGINS_REQUEST	0x1
 225#define SBP2_RECONNECT_REQUEST		0x3
 226#define SBP2_SET_PASSWORD_REQUEST	0x4
 227#define SBP2_LOGOUT_REQUEST		0x7
 228#define SBP2_ABORT_TASK_REQUEST		0xb
 229#define SBP2_ABORT_TASK_SET		0xc
 230#define SBP2_LOGICAL_UNIT_RESET		0xe
 231#define SBP2_TARGET_RESET_REQUEST	0xf
 232
 233/* Offsets for command block agent registers */
 234#define SBP2_AGENT_STATE		0x00
 235#define SBP2_AGENT_RESET		0x04
 236#define SBP2_ORB_POINTER		0x08
 237#define SBP2_DOORBELL			0x10
 238#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14
 239
 240/* Status write response codes */
 241#define SBP2_STATUS_REQUEST_COMPLETE	0x0
 242#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
 243#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
 244#define SBP2_STATUS_VENDOR_DEPENDENT	0x3
 245
 246#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
 247#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
 248#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
 249#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
 250#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
 251#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
 252#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
 253#define STATUS_GET_DATA(v)		((v).data)
 254
 255struct sbp2_status {
 256	u32 status;
 257	u32 orb_low;
 258	u8 data[24];
 259};
 260
 261struct sbp2_pointer {
 262	__be32 high;
 263	__be32 low;
 264};
 265
 266struct sbp2_orb {
 267	struct fw_transaction t;
 268	struct kref kref;
 269	dma_addr_t request_bus;
 270	int rcode;
 271	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
 272	struct list_head link;
 273};
 274
 275#define MANAGEMENT_ORB_LUN(v)			((v))
 276#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
 277#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
 278#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
 279#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
 280#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
 281
 282#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
 283#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
 284
 285struct sbp2_management_orb {
 286	struct sbp2_orb base;
 287	struct {
 288		struct sbp2_pointer password;
 289		struct sbp2_pointer response;
 290		__be32 misc;
 291		__be32 length;
 292		struct sbp2_pointer status_fifo;
 293	} request;
 294	__be32 response[4];
 295	dma_addr_t response_bus;
 296	struct completion done;
 297	struct sbp2_status status;
 298};
 299
 300struct sbp2_login_response {
 301	__be32 misc;
 302	struct sbp2_pointer command_block_agent;
 303	__be32 reconnect_hold;
 304};
 305#define COMMAND_ORB_DATA_SIZE(v)	((v))
 306#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
 307#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
 308#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
 309#define COMMAND_ORB_SPEED(v)		((v) << 24)
 310#define COMMAND_ORB_DIRECTION		((1) << 27)
 311#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
 312#define COMMAND_ORB_NOTIFY		((1) << 31)
 313
 314struct sbp2_command_orb {
 315	struct sbp2_orb base;
 316	struct {
 317		struct sbp2_pointer next;
 318		struct sbp2_pointer data_descriptor;
 319		__be32 misc;
 320		u8 command_block[SBP2_MAX_CDB_SIZE];
 321	} request;
 322	struct scsi_cmnd *cmd;
 323	struct sbp2_logical_unit *lu;
 324
 325	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
 326	dma_addr_t page_table_bus;
 327};
 328
 329#define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
 330#define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
 331
 332/*
 333 * List of devices with known bugs.
 334 *
 335 * The firmware_revision field, masked with 0xffff00, is the best
 336 * indicator for the type of bridge chip of a device.  It yields a few
 337 * false positives but this did not break correctly behaving devices
 338 * so far.
 339 */
 340static const struct {
 341	u32 firmware_revision;
 342	u32 model;
 343	unsigned int workarounds;
 344} sbp2_workarounds_table[] = {
 345	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
 346		.firmware_revision	= 0x002800,
 347		.model			= 0x001010,
 348		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
 349					  SBP2_WORKAROUND_MODE_SENSE_8 |
 350					  SBP2_WORKAROUND_POWER_CONDITION,
 351	},
 352	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
 353		.firmware_revision	= 0x002800,
 354		.model			= 0x000000,
 355		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
 356	},
 357	/* Initio bridges, actually only needed for some older ones */ {
 358		.firmware_revision	= 0x000200,
 359		.model			= SBP2_ROM_VALUE_WILDCARD,
 360		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
 361	},
 362	/* PL-3507 bridge with Prolific firmware */ {
 363		.firmware_revision	= 0x012800,
 364		.model			= SBP2_ROM_VALUE_WILDCARD,
 365		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
 366	},
 367	/* Symbios bridge */ {
 368		.firmware_revision	= 0xa0b800,
 369		.model			= SBP2_ROM_VALUE_WILDCARD,
 370		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
 371	},
 372	/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
 373		.firmware_revision	= 0x002600,
 374		.model			= SBP2_ROM_VALUE_WILDCARD,
 375		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
 376	},
 377	/*
 378	 * iPod 2nd generation: needs 128k max transfer size workaround
 379	 * iPod 3rd generation: needs fix capacity workaround
 380	 */
 381	{
 382		.firmware_revision	= 0x0a2700,
 383		.model			= 0x000000,
 384		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS |
 385					  SBP2_WORKAROUND_FIX_CAPACITY,
 386	},
 387	/* iPod 4th generation */ {
 388		.firmware_revision	= 0x0a2700,
 389		.model			= 0x000021,
 390		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 391	},
 392	/* iPod mini */ {
 393		.firmware_revision	= 0x0a2700,
 394		.model			= 0x000022,
 395		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 396	},
 397	/* iPod mini */ {
 398		.firmware_revision	= 0x0a2700,
 399		.model			= 0x000023,
 400		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 401	},
 402	/* iPod Photo */ {
 403		.firmware_revision	= 0x0a2700,
 404		.model			= 0x00007e,
 405		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 406	}
 407};
 408
 409static void free_orb(struct kref *kref)
 410{
 411	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
 412
 413	kfree(orb);
 414}
 415
 416static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
 417			      int tcode, int destination, int source,
 418			      int generation, unsigned long long offset,
 419			      void *payload, size_t length, void *callback_data)
 420{
 421	struct sbp2_logical_unit *lu = callback_data;
 422	struct sbp2_orb *orb;
 423	struct sbp2_status status;
 424	unsigned long flags;
 425
 426	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
 427	    length < 8 || length > sizeof(status)) {
 428		fw_send_response(card, request, RCODE_TYPE_ERROR);
 429		return;
 430	}
 431
 432	status.status  = be32_to_cpup(payload);
 433	status.orb_low = be32_to_cpup(payload + 4);
 434	memset(status.data, 0, sizeof(status.data));
 435	if (length > 8)
 436		memcpy(status.data, payload + 8, length - 8);
 437
 438	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
 439		dev_notice(lu_dev(lu),
 440			   "non-ORB related status write, not handled\n");
 441		fw_send_response(card, request, RCODE_COMPLETE);
 442		return;
 443	}
 444
 445	/* Lookup the orb corresponding to this status write. */
 446	spin_lock_irqsave(&card->lock, flags);
 447	list_for_each_entry(orb, &lu->orb_list, link) {
 448		if (STATUS_GET_ORB_HIGH(status) == 0 &&
 449		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
 450			orb->rcode = RCODE_COMPLETE;
 451			list_del(&orb->link);
 452			break;
 453		}
 454	}
 455	spin_unlock_irqrestore(&card->lock, flags);
 456
 457	if (&orb->link != &lu->orb_list) {
 458		orb->callback(orb, &status);
 459		kref_put(&orb->kref, free_orb); /* orb callback reference */
 460	} else {
 461		dev_err(lu_dev(lu), "status write for unknown ORB\n");
 462	}
 463
 464	fw_send_response(card, request, RCODE_COMPLETE);
 465}
 466
 467static void complete_transaction(struct fw_card *card, int rcode,
 468				 void *payload, size_t length, void *data)
 469{
 470	struct sbp2_orb *orb = data;
 471	unsigned long flags;
 472
 473	/*
 474	 * This is a little tricky.  We can get the status write for
 475	 * the orb before we get this callback.  The status write
 476	 * handler above will assume the orb pointer transaction was
 477	 * successful and set the rcode to RCODE_COMPLETE for the orb.
 478	 * So this callback only sets the rcode if it hasn't already
 479	 * been set and only does the cleanup if the transaction
 480	 * failed and we didn't already get a status write.
 481	 */
 482	spin_lock_irqsave(&card->lock, flags);
 483
 484	if (orb->rcode == -1)
 485		orb->rcode = rcode;
 486	if (orb->rcode != RCODE_COMPLETE) {
 487		list_del(&orb->link);
 488		spin_unlock_irqrestore(&card->lock, flags);
 489
 490		orb->callback(orb, NULL);
 491		kref_put(&orb->kref, free_orb); /* orb callback reference */
 492	} else {
 493		spin_unlock_irqrestore(&card->lock, flags);
 494	}
 495
 496	kref_put(&orb->kref, free_orb); /* transaction callback reference */
 497}
 498
 499static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
 500			  int node_id, int generation, u64 offset)
 501{
 502	struct fw_device *device = target_parent_device(lu->tgt);
 503	struct sbp2_pointer orb_pointer;
 504	unsigned long flags;
 505
 506	orb_pointer.high = 0;
 507	orb_pointer.low = cpu_to_be32(orb->request_bus);
 508
 509	spin_lock_irqsave(&device->card->lock, flags);
 510	list_add_tail(&orb->link, &lu->orb_list);
 511	spin_unlock_irqrestore(&device->card->lock, flags);
 512
 513	kref_get(&orb->kref); /* transaction callback reference */
 514	kref_get(&orb->kref); /* orb callback reference */
 515
 516	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
 517			node_id, generation, device->max_speed, offset,
 518			&orb_pointer, 8, complete_transaction, orb);
 519}
 520
 521static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
 522{
 523	struct fw_device *device = target_parent_device(lu->tgt);
 524	struct sbp2_orb *orb, *next;
 525	struct list_head list;
 526	unsigned long flags;
 527	int retval = -ENOENT;
 528
 529	INIT_LIST_HEAD(&list);
 530	spin_lock_irqsave(&device->card->lock, flags);
 531	list_splice_init(&lu->orb_list, &list);
 532	spin_unlock_irqrestore(&device->card->lock, flags);
 533
 534	list_for_each_entry_safe(orb, next, &list, link) {
 535		retval = 0;
 536		if (fw_cancel_transaction(device->card, &orb->t) == 0)
 537			continue;
 538
 539		orb->rcode = RCODE_CANCELLED;
 540		orb->callback(orb, NULL);
 541		kref_put(&orb->kref, free_orb); /* orb callback reference */
 542	}
 543
 544	return retval;
 545}
 546
 547static void complete_management_orb(struct sbp2_orb *base_orb,
 548				    struct sbp2_status *status)
 549{
 550	struct sbp2_management_orb *orb =
 551		container_of(base_orb, struct sbp2_management_orb, base);
 552
 553	if (status)
 554		memcpy(&orb->status, status, sizeof(*status));
 555	complete(&orb->done);
 556}
 557
 558static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
 559				    int generation, int function,
 560				    int lun_or_login_id, void *response)
 561{
 562	struct fw_device *device = target_parent_device(lu->tgt);
 563	struct sbp2_management_orb *orb;
 564	unsigned int timeout;
 565	int retval = -ENOMEM;
 566
 567	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
 568		return 0;
 569
 570	orb = kzalloc(sizeof(*orb), GFP_NOIO);
 571	if (orb == NULL)
 572		return -ENOMEM;
 573
 574	kref_init(&orb->base.kref);
 575	orb->response_bus =
 576		dma_map_single(device->card->device, &orb->response,
 577			       sizeof(orb->response), DMA_FROM_DEVICE);
 578	if (dma_mapping_error(device->card->device, orb->response_bus))
 579		goto fail_mapping_response;
 580
 581	orb->request.response.high = 0;
 582	orb->request.response.low  = cpu_to_be32(orb->response_bus);
 583
 584	orb->request.misc = cpu_to_be32(
 585		MANAGEMENT_ORB_NOTIFY |
 586		MANAGEMENT_ORB_FUNCTION(function) |
 587		MANAGEMENT_ORB_LUN(lun_or_login_id));
 588	orb->request.length = cpu_to_be32(
 589		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
 590
 591	orb->request.status_fifo.high =
 592		cpu_to_be32(lu->address_handler.offset >> 32);
 593	orb->request.status_fifo.low  =
 594		cpu_to_be32(lu->address_handler.offset);
 595
 596	if (function == SBP2_LOGIN_REQUEST) {
 597		/* Ask for 2^2 == 4 seconds reconnect grace period */
 598		orb->request.misc |= cpu_to_be32(
 599			MANAGEMENT_ORB_RECONNECT(2) |
 600			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
 601		timeout = lu->tgt->mgt_orb_timeout;
 602	} else {
 603		timeout = SBP2_ORB_TIMEOUT;
 604	}
 605
 606	init_completion(&orb->done);
 607	orb->base.callback = complete_management_orb;
 608
 609	orb->base.request_bus =
 610		dma_map_single(device->card->device, &orb->request,
 611			       sizeof(orb->request), DMA_TO_DEVICE);
 612	if (dma_mapping_error(device->card->device, orb->base.request_bus))
 613		goto fail_mapping_request;
 614
 615	sbp2_send_orb(&orb->base, lu, node_id, generation,
 616		      lu->tgt->management_agent_address);
 617
 618	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
 619
 620	retval = -EIO;
 621	if (sbp2_cancel_orbs(lu) == 0) {
 622		dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
 623			orb->base.rcode);
 624		goto out;
 625	}
 626
 627	if (orb->base.rcode != RCODE_COMPLETE) {
 628		dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
 629			orb->base.rcode);
 630		goto out;
 631	}
 632
 633	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
 634	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
 635		dev_err(lu_dev(lu), "error status: %d:%d\n",
 636			 STATUS_GET_RESPONSE(orb->status),
 637			 STATUS_GET_SBP_STATUS(orb->status));
 638		goto out;
 639	}
 640
 641	retval = 0;
 642 out:
 643	dma_unmap_single(device->card->device, orb->base.request_bus,
 644			 sizeof(orb->request), DMA_TO_DEVICE);
 645 fail_mapping_request:
 646	dma_unmap_single(device->card->device, orb->response_bus,
 647			 sizeof(orb->response), DMA_FROM_DEVICE);
 648 fail_mapping_response:
 649	if (response)
 650		memcpy(response, orb->response, sizeof(orb->response));
 651	kref_put(&orb->base.kref, free_orb);
 652
 653	return retval;
 654}
 655
 656static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
 657{
 658	struct fw_device *device = target_parent_device(lu->tgt);
 659	__be32 d = 0;
 660
 661	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
 662			   lu->tgt->node_id, lu->generation, device->max_speed,
 663			   lu->command_block_agent_address + SBP2_AGENT_RESET,
 664			   &d, 4);
 665}
 666
 667static void complete_agent_reset_write_no_wait(struct fw_card *card,
 668		int rcode, void *payload, size_t length, void *data)
 669{
 670	kfree(data);
 671}
 672
 673static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
 674{
 675	struct fw_device *device = target_parent_device(lu->tgt);
 676	struct fw_transaction *t;
 677	static __be32 d;
 678
 679	t = kmalloc(sizeof(*t), GFP_ATOMIC);
 680	if (t == NULL)
 681		return;
 682
 683	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
 684			lu->tgt->node_id, lu->generation, device->max_speed,
 685			lu->command_block_agent_address + SBP2_AGENT_RESET,
 686			&d, 4, complete_agent_reset_write_no_wait, t);
 687}
 688
 689static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
 690{
 691	/*
 692	 * We may access dont_block without taking card->lock here:
 693	 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
 694	 * are currently serialized against each other.
 695	 * And a wrong result in sbp2_conditionally_block()'s access of
 696	 * dont_block is rather harmless, it simply misses its first chance.
 697	 */
 698	--lu->tgt->dont_block;
 699}
 700
 701/*
 702 * Blocks lu->tgt if all of the following conditions are met:
 703 *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
 704 *     logical units have been finished (indicated by dont_block == 0).
 705 *   - lu->generation is stale.
 706 *
 707 * Note, scsi_block_requests() must be called while holding card->lock,
 708 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
 709 * unblock the target.
 710 */
 711static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
 712{
 713	struct sbp2_target *tgt = lu->tgt;
 714	struct fw_card *card = target_parent_device(tgt)->card;
 715	struct Scsi_Host *shost =
 716		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 717	unsigned long flags;
 718
 719	spin_lock_irqsave(&card->lock, flags);
 720	if (!tgt->dont_block && !lu->blocked &&
 721	    lu->generation != card->generation) {
 722		lu->blocked = true;
 723		if (++tgt->blocked == 1)
 724			scsi_block_requests(shost);
 725	}
 726	spin_unlock_irqrestore(&card->lock, flags);
 727}
 728
 729/*
 730 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
 731 * Note, it is harmless to run scsi_unblock_requests() outside the
 732 * card->lock protected section.  On the other hand, running it inside
 733 * the section might clash with shost->host_lock.
 734 */
 735static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
 736{
 737	struct sbp2_target *tgt = lu->tgt;
 738	struct fw_card *card = target_parent_device(tgt)->card;
 739	struct Scsi_Host *shost =
 740		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 741	unsigned long flags;
 742	bool unblock = false;
 743
 744	spin_lock_irqsave(&card->lock, flags);
 745	if (lu->blocked && lu->generation == card->generation) {
 746		lu->blocked = false;
 747		unblock = --tgt->blocked == 0;
 748	}
 749	spin_unlock_irqrestore(&card->lock, flags);
 750
 751	if (unblock)
 752		scsi_unblock_requests(shost);
 753}
 754
 755/*
 756 * Prevents future blocking of tgt and unblocks it.
 757 * Note, it is harmless to run scsi_unblock_requests() outside the
 758 * card->lock protected section.  On the other hand, running it inside
 759 * the section might clash with shost->host_lock.
 760 */
 761static void sbp2_unblock(struct sbp2_target *tgt)
 762{
 763	struct fw_card *card = target_parent_device(tgt)->card;
 764	struct Scsi_Host *shost =
 765		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 766	unsigned long flags;
 767
 768	spin_lock_irqsave(&card->lock, flags);
 769	++tgt->dont_block;
 770	spin_unlock_irqrestore(&card->lock, flags);
 771
 772	scsi_unblock_requests(shost);
 773}
 774
 775static int sbp2_lun2int(u16 lun)
 776{
 777	struct scsi_lun eight_bytes_lun;
 778
 779	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
 780	eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
 781	eight_bytes_lun.scsi_lun[1] = lun & 0xff;
 782
 783	return scsilun_to_int(&eight_bytes_lun);
 784}
 785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786/*
 787 * Write retransmit retry values into the BUSY_TIMEOUT register.
 788 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
 789 *   default retry_limit value is 0 (i.e. never retry transmission). We write a
 790 *   saner value after logging into the device.
 791 * - The dual-phase retry protocol is optional to implement, and if not
 792 *   supported, writes to the dual-phase portion of the register will be
 793 *   ignored. We try to write the original 1394-1995 default here.
 794 * - In the case of devices that are also SBP-3-compliant, all writes are
 795 *   ignored, as the register is read-only, but contains single-phase retry of
 796 *   15, which is what we're trying to set for all SBP-2 device anyway, so this
 797 *   write attempt is safe and yields more consistent behavior for all devices.
 798 *
 799 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
 800 * and section 6.4 of the SBP-3 spec for further details.
 801 */
 802static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
 803{
 804	struct fw_device *device = target_parent_device(lu->tgt);
 805	__be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
 806
 807	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
 808			   lu->tgt->node_id, lu->generation, device->max_speed,
 809			   CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
 810}
 811
 812static void sbp2_reconnect(struct work_struct *work);
 813
 814static void sbp2_login(struct work_struct *work)
 815{
 816	struct sbp2_logical_unit *lu =
 817		container_of(work, struct sbp2_logical_unit, work.work);
 818	struct sbp2_target *tgt = lu->tgt;
 819	struct fw_device *device = target_parent_device(tgt);
 820	struct Scsi_Host *shost;
 821	struct scsi_device *sdev;
 822	struct sbp2_login_response response;
 823	int generation, node_id, local_node_id;
 824
 825	if (fw_device_is_shutdown(device))
 826		return;
 827
 828	generation    = device->generation;
 829	smp_rmb();    /* node IDs must not be older than generation */
 830	node_id       = device->node_id;
 831	local_node_id = device->card->node_id;
 832
 833	/* If this is a re-login attempt, log out, or we might be rejected. */
 834	if (lu->has_sdev)
 835		sbp2_send_management_orb(lu, device->node_id, generation,
 836				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
 837
 838	if (sbp2_send_management_orb(lu, node_id, generation,
 839				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
 840		if (lu->retries++ < 5) {
 841			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
 842		} else {
 843			dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
 844				lu->lun);
 845			/* Let any waiting I/O fail from now on. */
 846			sbp2_unblock(lu->tgt);
 847		}
 848		return;
 849	}
 850
 851	tgt->node_id	  = node_id;
 852	tgt->address_high = local_node_id << 16;
 853	smp_wmb();	  /* node IDs must not be older than generation */
 854	lu->generation	  = generation;
 855
 856	lu->command_block_agent_address =
 857		((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
 858		      << 32) | be32_to_cpu(response.command_block_agent.low);
 859	lu->login_id = be32_to_cpu(response.misc) & 0xffff;
 860
 861	dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
 862		   lu->lun, lu->retries);
 863
 864	/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
 865	sbp2_set_busy_timeout(lu);
 866
 867	PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
 868	sbp2_agent_reset(lu);
 869
 870	/* This was a re-login. */
 871	if (lu->has_sdev) {
 872		sbp2_cancel_orbs(lu);
 873		sbp2_conditionally_unblock(lu);
 874
 875		return;
 876	}
 877
 878	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
 879		ssleep(SBP2_INQUIRY_DELAY);
 880
 881	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 882	sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
 883	/*
 884	 * FIXME:  We are unable to perform reconnects while in sbp2_login().
 885	 * Therefore __scsi_add_device() will get into trouble if a bus reset
 886	 * happens in parallel.  It will either fail or leave us with an
 887	 * unusable sdev.  As a workaround we check for this and retry the
 888	 * whole login and SCSI probing.
 889	 */
 890
 891	/* Reported error during __scsi_add_device() */
 892	if (IS_ERR(sdev))
 893		goto out_logout_login;
 894
 895	/* Unreported error during __scsi_add_device() */
 896	smp_rmb(); /* get current card generation */
 897	if (generation != device->card->generation) {
 898		scsi_remove_device(sdev);
 899		scsi_device_put(sdev);
 900		goto out_logout_login;
 901	}
 902
 903	/* No error during __scsi_add_device() */
 904	lu->has_sdev = true;
 905	scsi_device_put(sdev);
 906	sbp2_allow_block(lu);
 907
 908	return;
 909
 910 out_logout_login:
 911	smp_rmb(); /* generation may have changed */
 912	generation = device->generation;
 913	smp_rmb(); /* node_id must not be older than generation */
 914
 915	sbp2_send_management_orb(lu, device->node_id, generation,
 916				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
 917	/*
 918	 * If a bus reset happened, sbp2_update will have requeued
 919	 * lu->work already.  Reset the work from reconnect to login.
 920	 */
 921	PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
 922}
 923
 924static void sbp2_reconnect(struct work_struct *work)
 925{
 926	struct sbp2_logical_unit *lu =
 927		container_of(work, struct sbp2_logical_unit, work.work);
 928	struct sbp2_target *tgt = lu->tgt;
 929	struct fw_device *device = target_parent_device(tgt);
 930	int generation, node_id, local_node_id;
 931
 932	if (fw_device_is_shutdown(device))
 933		return;
 934
 935	generation    = device->generation;
 936	smp_rmb();    /* node IDs must not be older than generation */
 937	node_id       = device->node_id;
 938	local_node_id = device->card->node_id;
 939
 940	if (sbp2_send_management_orb(lu, node_id, generation,
 941				     SBP2_RECONNECT_REQUEST,
 942				     lu->login_id, NULL) < 0) {
 943		/*
 944		 * If reconnect was impossible even though we are in the
 945		 * current generation, fall back and try to log in again.
 946		 *
 947		 * We could check for "Function rejected" status, but
 948		 * looking at the bus generation as simpler and more general.
 949		 */
 950		smp_rmb(); /* get current card generation */
 951		if (generation == device->card->generation ||
 952		    lu->retries++ >= 5) {
 953			dev_err(tgt_dev(tgt), "failed to reconnect\n");
 954			lu->retries = 0;
 955			PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
 956		}
 957		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
 958
 959		return;
 960	}
 961
 962	tgt->node_id      = node_id;
 963	tgt->address_high = local_node_id << 16;
 964	smp_wmb();	  /* node IDs must not be older than generation */
 965	lu->generation	  = generation;
 966
 967	dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
 968		   lu->lun, lu->retries);
 969
 970	sbp2_agent_reset(lu);
 971	sbp2_cancel_orbs(lu);
 972	sbp2_conditionally_unblock(lu);
 973}
 974
 975static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
 976{
 977	struct sbp2_logical_unit *lu;
 978
 979	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
 980	if (!lu)
 981		return -ENOMEM;
 982
 983	lu->address_handler.length           = 0x100;
 984	lu->address_handler.address_callback = sbp2_status_write;
 985	lu->address_handler.callback_data    = lu;
 986
 987	if (fw_core_add_address_handler(&lu->address_handler,
 988					&fw_high_memory_region) < 0) {
 989		kfree(lu);
 990		return -ENOMEM;
 991	}
 992
 993	lu->tgt      = tgt;
 994	lu->lun      = lun_entry & 0xffff;
 995	lu->login_id = INVALID_LOGIN_ID;
 996	lu->retries  = 0;
 997	lu->has_sdev = false;
 998	lu->blocked  = false;
 999	++tgt->dont_block;
1000	INIT_LIST_HEAD(&lu->orb_list);
1001	INIT_DELAYED_WORK(&lu->work, sbp2_login);
1002
1003	list_add_tail(&lu->link, &tgt->lu_list);
1004	return 0;
1005}
1006
1007static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
1008				    const u32 *leaf)
1009{
1010	if ((leaf[0] & 0xffff0000) == 0x00020000)
1011		tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1012}
1013
1014static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1015				      const u32 *directory)
1016{
1017	struct fw_csr_iterator ci;
1018	int key, value;
1019
1020	fw_csr_iterator_init(&ci, directory);
1021	while (fw_csr_iterator_next(&ci, &key, &value))
1022		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1023		    sbp2_add_logical_unit(tgt, value) < 0)
1024			return -ENOMEM;
1025	return 0;
1026}
1027
1028static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1029			      u32 *model, u32 *firmware_revision)
1030{
1031	struct fw_csr_iterator ci;
1032	int key, value;
1033
1034	fw_csr_iterator_init(&ci, directory);
1035	while (fw_csr_iterator_next(&ci, &key, &value)) {
1036		switch (key) {
1037
1038		case CSR_DEPENDENT_INFO | CSR_OFFSET:
1039			tgt->management_agent_address =
1040					CSR_REGISTER_BASE + 4 * value;
1041			break;
1042
1043		case CSR_DIRECTORY_ID:
1044			tgt->directory_id = value;
1045			break;
1046
1047		case CSR_MODEL:
1048			*model = value;
1049			break;
1050
1051		case SBP2_CSR_FIRMWARE_REVISION:
1052			*firmware_revision = value;
1053			break;
1054
1055		case SBP2_CSR_UNIT_CHARACTERISTICS:
1056			/* the timeout value is stored in 500ms units */
1057			tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1058			break;
1059
1060		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1061			if (sbp2_add_logical_unit(tgt, value) < 0)
1062				return -ENOMEM;
1063			break;
1064
1065		case SBP2_CSR_UNIT_UNIQUE_ID:
1066			sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1067			break;
1068
1069		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1070			/* Adjust for the increment in the iterator */
1071			if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1072				return -ENOMEM;
1073			break;
1074		}
1075	}
1076	return 0;
1077}
1078
1079/*
1080 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1081 * provided in the config rom. Most devices do provide a value, which
1082 * we'll use for login management orbs, but with some sane limits.
1083 */
1084static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1085{
1086	unsigned int timeout = tgt->mgt_orb_timeout;
1087
1088	if (timeout > 40000)
1089		dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1090			   timeout / 1000);
1091
1092	tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1093}
1094
1095static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1096				  u32 firmware_revision)
1097{
1098	int i;
1099	unsigned int w = sbp2_param_workarounds;
1100
1101	if (w)
1102		dev_notice(tgt_dev(tgt),
1103			   "Please notify linux1394-devel@lists.sf.net "
1104			   "if you need the workarounds parameter\n");
1105
1106	if (w & SBP2_WORKAROUND_OVERRIDE)
1107		goto out;
1108
1109	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1110
1111		if (sbp2_workarounds_table[i].firmware_revision !=
1112		    (firmware_revision & 0xffffff00))
1113			continue;
1114
1115		if (sbp2_workarounds_table[i].model != model &&
1116		    sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1117			continue;
1118
1119		w |= sbp2_workarounds_table[i].workarounds;
1120		break;
1121	}
1122 out:
1123	if (w)
1124		dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1125			   "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1126			   w, firmware_revision, model);
1127	tgt->workarounds = w;
1128}
1129
1130static struct scsi_host_template scsi_driver_template;
1131static int sbp2_remove(struct device *dev);
1132
1133static int sbp2_probe(struct device *dev)
1134{
1135	struct fw_unit *unit = fw_unit(dev);
1136	struct fw_device *device = fw_parent_device(unit);
1137	struct sbp2_target *tgt;
1138	struct sbp2_logical_unit *lu;
1139	struct Scsi_Host *shost;
1140	u32 model, firmware_revision;
1141
1142	/* cannot (or should not) handle targets on the local node */
1143	if (device->is_local)
1144		return -ENODEV;
1145
1146	if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1147		BUG_ON(dma_set_max_seg_size(device->card->device,
1148					    SBP2_MAX_SEG_SIZE));
1149
1150	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1151	if (shost == NULL)
1152		return -ENOMEM;
1153
1154	tgt = (struct sbp2_target *)shost->hostdata;
1155	dev_set_drvdata(&unit->device, tgt);
1156	tgt->unit = unit;
 
1157	INIT_LIST_HEAD(&tgt->lu_list);
 
1158	tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1159
1160	if (fw_device_enable_phys_dma(device) < 0)
1161		goto fail_shost_put;
1162
1163	shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1164
1165	if (scsi_add_host_with_dma(shost, &unit->device,
1166				   device->card->device) < 0)
1167		goto fail_shost_put;
1168
 
 
 
1169	/* implicit directory ID */
1170	tgt->directory_id = ((unit->directory - device->config_rom) * 4
1171			     + CSR_CONFIG_ROM) & 0xffffff;
1172
1173	firmware_revision = SBP2_ROM_VALUE_MISSING;
1174	model		  = SBP2_ROM_VALUE_MISSING;
1175
1176	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1177			       &firmware_revision) < 0)
1178		goto fail_remove;
1179
1180	sbp2_clamp_management_orb_timeout(tgt);
1181	sbp2_init_workarounds(tgt, model, firmware_revision);
1182
1183	/*
1184	 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1185	 * and so on up to 4096 bytes.  The SBP-2 max_payload field
1186	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1187	 * if we set this to max_speed + 7, we get the right value.
1188	 */
1189	tgt->max_payload = min3(device->max_speed + 7, 10U,
1190				device->card->max_receive - 1);
1191
1192	/* Do the login in a workqueue so we can easily reschedule retries. */
1193	list_for_each_entry(lu, &tgt->lu_list, link)
1194		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1195
1196	return 0;
1197
1198 fail_remove:
1199	sbp2_remove(dev);
1200	return -ENOMEM;
1201
1202 fail_shost_put:
1203	scsi_host_put(shost);
1204	return -ENOMEM;
1205}
1206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1207static void sbp2_update(struct fw_unit *unit)
1208{
1209	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1210	struct sbp2_logical_unit *lu;
1211
1212	fw_device_enable_phys_dma(fw_parent_device(unit));
1213
1214	/*
1215	 * Fw-core serializes sbp2_update() against sbp2_remove().
1216	 * Iteration over tgt->lu_list is therefore safe here.
1217	 */
1218	list_for_each_entry(lu, &tgt->lu_list, link) {
1219		sbp2_conditionally_block(lu);
1220		lu->retries = 0;
1221		sbp2_queue_work(lu, 0);
1222	}
1223}
1224
1225static int sbp2_remove(struct device *dev)
1226{
1227	struct fw_unit *unit = fw_unit(dev);
1228	struct fw_device *device = fw_parent_device(unit);
1229	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1230	struct sbp2_logical_unit *lu, *next;
1231	struct Scsi_Host *shost =
1232		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1233	struct scsi_device *sdev;
1234
1235	/* prevent deadlocks */
1236	sbp2_unblock(tgt);
1237
1238	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1239		cancel_delayed_work_sync(&lu->work);
1240		sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1241		if (sdev) {
1242			scsi_remove_device(sdev);
1243			scsi_device_put(sdev);
1244		}
1245		if (lu->login_id != INVALID_LOGIN_ID) {
1246			int generation, node_id;
1247			/*
1248			 * tgt->node_id may be obsolete here if we failed
1249			 * during initial login or after a bus reset where
1250			 * the topology changed.
1251			 */
1252			generation = device->generation;
1253			smp_rmb(); /* node_id vs. generation */
1254			node_id    = device->node_id;
1255			sbp2_send_management_orb(lu, node_id, generation,
1256						 SBP2_LOGOUT_REQUEST,
1257						 lu->login_id, NULL);
1258		}
1259		fw_core_remove_address_handler(&lu->address_handler);
1260		list_del(&lu->link);
1261		kfree(lu);
1262	}
1263	scsi_remove_host(shost);
1264	dev_notice(dev, "released target %d:0:0\n", shost->host_no);
1265
1266	scsi_host_put(shost);
1267	return 0;
1268}
1269
1270#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
1271#define SBP2_SW_VERSION_ENTRY	0x00010483
1272
1273static const struct ieee1394_device_id sbp2_id_table[] = {
1274	{
1275		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1276				IEEE1394_MATCH_VERSION,
1277		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1278		.version      = SBP2_SW_VERSION_ENTRY,
1279	},
1280	{ }
1281};
1282
1283static struct fw_driver sbp2_driver = {
1284	.driver   = {
1285		.owner  = THIS_MODULE,
1286		.name   = KBUILD_MODNAME,
1287		.bus    = &fw_bus_type,
1288		.probe  = sbp2_probe,
1289		.remove = sbp2_remove,
1290	},
1291	.update   = sbp2_update,
1292	.id_table = sbp2_id_table,
1293};
1294
1295static void sbp2_unmap_scatterlist(struct device *card_device,
1296				   struct sbp2_command_orb *orb)
1297{
1298	scsi_dma_unmap(orb->cmd);
 
 
 
1299
1300	if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1301		dma_unmap_single(card_device, orb->page_table_bus,
1302				 sizeof(orb->page_table), DMA_TO_DEVICE);
1303}
1304
1305static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1306{
1307	int sam_status;
1308	int sfmt = (sbp2_status[0] >> 6) & 0x03;
1309
1310	if (sfmt == 2 || sfmt == 3) {
1311		/*
1312		 * Reserved for future standardization (2) or
1313		 * Status block format vendor-dependent (3)
1314		 */
1315		return DID_ERROR << 16;
1316	}
1317
1318	sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1319	sense_data[1] = 0x0;
1320	sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1321	sense_data[3] = sbp2_status[4];
1322	sense_data[4] = sbp2_status[5];
1323	sense_data[5] = sbp2_status[6];
1324	sense_data[6] = sbp2_status[7];
1325	sense_data[7] = 10;
1326	sense_data[8] = sbp2_status[8];
1327	sense_data[9] = sbp2_status[9];
1328	sense_data[10] = sbp2_status[10];
1329	sense_data[11] = sbp2_status[11];
1330	sense_data[12] = sbp2_status[2];
1331	sense_data[13] = sbp2_status[3];
1332	sense_data[14] = sbp2_status[12];
1333	sense_data[15] = sbp2_status[13];
1334
1335	sam_status = sbp2_status[0] & 0x3f;
1336
1337	switch (sam_status) {
1338	case SAM_STAT_GOOD:
1339	case SAM_STAT_CHECK_CONDITION:
1340	case SAM_STAT_CONDITION_MET:
1341	case SAM_STAT_BUSY:
1342	case SAM_STAT_RESERVATION_CONFLICT:
1343	case SAM_STAT_COMMAND_TERMINATED:
1344		return DID_OK << 16 | sam_status;
1345
1346	default:
1347		return DID_ERROR << 16;
1348	}
1349}
1350
1351static void complete_command_orb(struct sbp2_orb *base_orb,
1352				 struct sbp2_status *status)
1353{
1354	struct sbp2_command_orb *orb =
1355		container_of(base_orb, struct sbp2_command_orb, base);
1356	struct fw_device *device = target_parent_device(orb->lu->tgt);
1357	int result;
1358
1359	if (status != NULL) {
1360		if (STATUS_GET_DEAD(*status))
1361			sbp2_agent_reset_no_wait(orb->lu);
1362
1363		switch (STATUS_GET_RESPONSE(*status)) {
1364		case SBP2_STATUS_REQUEST_COMPLETE:
1365			result = DID_OK << 16;
1366			break;
1367		case SBP2_STATUS_TRANSPORT_FAILURE:
1368			result = DID_BUS_BUSY << 16;
1369			break;
1370		case SBP2_STATUS_ILLEGAL_REQUEST:
1371		case SBP2_STATUS_VENDOR_DEPENDENT:
1372		default:
1373			result = DID_ERROR << 16;
1374			break;
1375		}
1376
1377		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1378			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1379							   orb->cmd->sense_buffer);
1380	} else {
1381		/*
1382		 * If the orb completes with status == NULL, something
1383		 * went wrong, typically a bus reset happened mid-orb
1384		 * or when sending the write (less likely).
1385		 */
1386		result = DID_BUS_BUSY << 16;
1387		sbp2_conditionally_block(orb->lu);
1388	}
1389
1390	dma_unmap_single(device->card->device, orb->base.request_bus,
1391			 sizeof(orb->request), DMA_TO_DEVICE);
1392	sbp2_unmap_scatterlist(device->card->device, orb);
1393
1394	orb->cmd->result = result;
1395	orb->cmd->scsi_done(orb->cmd);
1396}
1397
1398static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1399		struct fw_device *device, struct sbp2_logical_unit *lu)
1400{
1401	struct scatterlist *sg = scsi_sglist(orb->cmd);
1402	int i, n;
1403
1404	n = scsi_dma_map(orb->cmd);
1405	if (n <= 0)
 
1406		goto fail;
1407
1408	/*
1409	 * Handle the special case where there is only one element in
1410	 * the scatter list by converting it to an immediate block
1411	 * request. This is also a workaround for broken devices such
1412	 * as the second generation iPod which doesn't support page
1413	 * tables.
1414	 */
1415	if (n == 1) {
1416		orb->request.data_descriptor.high =
1417			cpu_to_be32(lu->tgt->address_high);
1418		orb->request.data_descriptor.low  =
1419			cpu_to_be32(sg_dma_address(sg));
1420		orb->request.misc |=
1421			cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1422		return 0;
1423	}
1424
1425	for_each_sg(sg, sg, n, i) {
1426		orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1427		orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1428	}
1429
1430	orb->page_table_bus =
1431		dma_map_single(device->card->device, orb->page_table,
1432			       sizeof(orb->page_table), DMA_TO_DEVICE);
1433	if (dma_mapping_error(device->card->device, orb->page_table_bus))
1434		goto fail_page_table;
1435
1436	/*
1437	 * The data_descriptor pointer is the one case where we need
1438	 * to fill in the node ID part of the address.  All other
1439	 * pointers assume that the data referenced reside on the
1440	 * initiator (i.e. us), but data_descriptor can refer to data
1441	 * on other nodes so we need to put our ID in descriptor.high.
1442	 */
1443	orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1444	orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1445	orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1446					 COMMAND_ORB_DATA_SIZE(n));
1447
1448	return 0;
1449
1450 fail_page_table:
1451	scsi_dma_unmap(orb->cmd);
 
1452 fail:
1453	return -ENOMEM;
1454}
1455
1456/* SCSI stack integration */
1457
1458static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1459				  struct scsi_cmnd *cmd)
1460{
1461	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1462	struct fw_device *device = target_parent_device(lu->tgt);
1463	struct sbp2_command_orb *orb;
1464	int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1465
1466	/*
1467	 * Bidirectional commands are not yet implemented, and unknown
1468	 * transfer direction not handled.
1469	 */
1470	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1471		dev_err(lu_dev(lu), "cannot handle bidirectional command\n");
1472		cmd->result = DID_ERROR << 16;
1473		cmd->scsi_done(cmd);
1474		return 0;
1475	}
1476
1477	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1478	if (orb == NULL) {
1479		dev_notice(lu_dev(lu), "failed to alloc ORB\n");
1480		return SCSI_MLQUEUE_HOST_BUSY;
1481	}
1482
1483	/* Initialize rcode to something not RCODE_COMPLETE. */
1484	orb->base.rcode = -1;
1485	kref_init(&orb->base.kref);
1486	orb->lu = lu;
1487	orb->cmd = cmd;
1488	orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1489	orb->request.misc = cpu_to_be32(
1490		COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1491		COMMAND_ORB_SPEED(device->max_speed) |
1492		COMMAND_ORB_NOTIFY);
1493
1494	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1495		orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1496
1497	generation = device->generation;
1498	smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1499
1500	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1501		goto out;
1502
1503	memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1504
1505	orb->base.callback = complete_command_orb;
1506	orb->base.request_bus =
1507		dma_map_single(device->card->device, &orb->request,
1508			       sizeof(orb->request), DMA_TO_DEVICE);
1509	if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1510		sbp2_unmap_scatterlist(device->card->device, orb);
1511		goto out;
1512	}
1513
1514	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1515		      lu->command_block_agent_address + SBP2_ORB_POINTER);
1516	retval = 0;
1517 out:
1518	kref_put(&orb->base.kref, free_orb);
1519	return retval;
1520}
1521
1522static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1523{
1524	struct sbp2_logical_unit *lu = sdev->hostdata;
1525
1526	/* (Re-)Adding logical units via the SCSI stack is not supported. */
1527	if (!lu)
1528		return -ENOSYS;
1529
1530	sdev->allow_restart = 1;
1531
1532	/*
1533	 * SBP-2 does not require any alignment, but we set it anyway
1534	 * for compatibility with earlier versions of this driver.
1535	 */
1536	blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1537
1538	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1539		sdev->inquiry_len = 36;
1540
1541	return 0;
1542}
1543
1544static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1545{
1546	struct sbp2_logical_unit *lu = sdev->hostdata;
1547
1548	sdev->use_10_for_rw = 1;
1549
1550	if (sbp2_param_exclusive_login)
1551		sdev->manage_start_stop = 1;
1552
1553	if (sdev->type == TYPE_ROM)
1554		sdev->use_10_for_ms = 1;
1555
1556	if (sdev->type == TYPE_DISK &&
1557	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1558		sdev->skip_ms_page_8 = 1;
1559
1560	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1561		sdev->fix_capacity = 1;
1562
1563	if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1564		sdev->start_stop_pwr_cond = 1;
1565
1566	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1567		blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1568
 
 
1569	return 0;
1570}
1571
1572/*
1573 * Called by scsi stack when something has really gone wrong.  Usually
1574 * called when a command has timed-out for some reason.
1575 */
1576static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1577{
1578	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1579
1580	dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1581	sbp2_agent_reset(lu);
1582	sbp2_cancel_orbs(lu);
1583
1584	return SUCCESS;
1585}
1586
1587/*
1588 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1589 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1590 *
1591 * This is the concatenation of target port identifier and logical unit
1592 * identifier as per SAM-2...SAM-4 annex A.
1593 */
1594static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1595			struct device_attribute *attr, char *buf)
1596{
1597	struct scsi_device *sdev = to_scsi_device(dev);
1598	struct sbp2_logical_unit *lu;
1599
1600	if (!sdev)
1601		return 0;
1602
1603	lu = sdev->hostdata;
1604
1605	return sprintf(buf, "%016llx:%06x:%04x\n",
1606			(unsigned long long)lu->tgt->guid,
1607			lu->tgt->directory_id, lu->lun);
1608}
1609
1610static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1611
1612static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1613	&dev_attr_ieee1394_id,
1614	NULL
1615};
1616
1617static struct scsi_host_template scsi_driver_template = {
1618	.module			= THIS_MODULE,
1619	.name			= "SBP-2 IEEE-1394",
1620	.proc_name		= "sbp2",
1621	.queuecommand		= sbp2_scsi_queuecommand,
1622	.slave_alloc		= sbp2_scsi_slave_alloc,
1623	.slave_configure	= sbp2_scsi_slave_configure,
1624	.eh_abort_handler	= sbp2_scsi_abort,
1625	.this_id		= -1,
1626	.sg_tablesize		= SG_ALL,
1627	.use_clustering		= ENABLE_CLUSTERING,
1628	.cmd_per_lun		= 1,
1629	.can_queue		= 1,
1630	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1631};
1632
1633MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1634MODULE_DESCRIPTION("SCSI over IEEE1394");
1635MODULE_LICENSE("GPL");
1636MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1637
1638/* Provide a module alias so root-on-sbp2 initrds don't break. */
1639#ifndef CONFIG_IEEE1394_SBP2_MODULE
1640MODULE_ALIAS("sbp2");
1641#endif
1642
1643static int __init sbp2_init(void)
1644{
1645	return driver_register(&sbp2_driver.driver);
1646}
1647
1648static void __exit sbp2_cleanup(void)
1649{
1650	driver_unregister(&sbp2_driver.driver);
1651}
1652
1653module_init(sbp2_init);
1654module_exit(sbp2_cleanup);