Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * drivers/base/memory.c - basic Memory class support
  3 *
  4 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
  5 *            Dave Hansen <haveblue@us.ibm.com>
  6 *
  7 * This file provides the necessary infrastructure to represent
  8 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
  9 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 11 */
 12
 13#include <linux/sysdev.h>
 14#include <linux/module.h>
 15#include <linux/init.h>
 16#include <linux/topology.h>
 17#include <linux/capability.h>
 18#include <linux/device.h>
 19#include <linux/memory.h>
 20#include <linux/kobject.h>
 21#include <linux/memory_hotplug.h>
 22#include <linux/mm.h>
 23#include <linux/mutex.h>
 24#include <linux/stat.h>
 25#include <linux/slab.h>
 26
 27#include <linux/atomic.h>
 28#include <asm/uaccess.h>
 29
 30static DEFINE_MUTEX(mem_sysfs_mutex);
 31
 32#define MEMORY_CLASS_NAME	"memory"
 33
 34static int sections_per_block;
 35
 36static inline int base_memory_block_id(int section_nr)
 37{
 38	return section_nr / sections_per_block;
 39}
 40
 41static struct sysdev_class memory_sysdev_class = {
 42	.name = MEMORY_CLASS_NAME,
 43};
 44
 45static const char *memory_uevent_name(struct kset *kset, struct kobject *kobj)
 46{
 47	return MEMORY_CLASS_NAME;
 48}
 49
 50static int memory_uevent(struct kset *kset, struct kobject *obj,
 51			struct kobj_uevent_env *env)
 52{
 53	int retval = 0;
 54
 55	return retval;
 56}
 57
 58static const struct kset_uevent_ops memory_uevent_ops = {
 59	.name		= memory_uevent_name,
 60	.uevent		= memory_uevent,
 61};
 62
 63static BLOCKING_NOTIFIER_HEAD(memory_chain);
 64
 65int register_memory_notifier(struct notifier_block *nb)
 66{
 67        return blocking_notifier_chain_register(&memory_chain, nb);
 68}
 69EXPORT_SYMBOL(register_memory_notifier);
 70
 71void unregister_memory_notifier(struct notifier_block *nb)
 72{
 73        blocking_notifier_chain_unregister(&memory_chain, nb);
 74}
 75EXPORT_SYMBOL(unregister_memory_notifier);
 76
 77static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
 78
 79int register_memory_isolate_notifier(struct notifier_block *nb)
 80{
 81	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
 82}
 83EXPORT_SYMBOL(register_memory_isolate_notifier);
 84
 85void unregister_memory_isolate_notifier(struct notifier_block *nb)
 86{
 87	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
 88}
 89EXPORT_SYMBOL(unregister_memory_isolate_notifier);
 90
 91/*
 92 * register_memory - Setup a sysfs device for a memory block
 93 */
 94static
 95int register_memory(struct memory_block *memory)
 96{
 97	int error;
 98
 99	memory->sysdev.cls = &memory_sysdev_class;
100	memory->sysdev.id = memory->start_section_nr / sections_per_block;
101
102	error = sysdev_register(&memory->sysdev);
103	return error;
104}
105
106static void
107unregister_memory(struct memory_block *memory)
108{
109	BUG_ON(memory->sysdev.cls != &memory_sysdev_class);
110
111	/* drop the ref. we got in remove_memory_block() */
112	kobject_put(&memory->sysdev.kobj);
113	sysdev_unregister(&memory->sysdev);
114}
115
116unsigned long __weak memory_block_size_bytes(void)
117{
118	return MIN_MEMORY_BLOCK_SIZE;
119}
120
121static unsigned long get_memory_block_size(void)
122{
123	unsigned long block_sz;
124
125	block_sz = memory_block_size_bytes();
126
127	/* Validate blk_sz is a power of 2 and not less than section size */
128	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
129		WARN_ON(1);
130		block_sz = MIN_MEMORY_BLOCK_SIZE;
131	}
132
133	return block_sz;
134}
135
136/*
137 * use this as the physical section index that this memsection
138 * uses.
139 */
140
141static ssize_t show_mem_start_phys_index(struct sys_device *dev,
142			struct sysdev_attribute *attr, char *buf)
143{
144	struct memory_block *mem =
145		container_of(dev, struct memory_block, sysdev);
146	unsigned long phys_index;
147
148	phys_index = mem->start_section_nr / sections_per_block;
149	return sprintf(buf, "%08lx\n", phys_index);
150}
151
152static ssize_t show_mem_end_phys_index(struct sys_device *dev,
153			struct sysdev_attribute *attr, char *buf)
154{
155	struct memory_block *mem =
156		container_of(dev, struct memory_block, sysdev);
157	unsigned long phys_index;
158
159	phys_index = mem->end_section_nr / sections_per_block;
160	return sprintf(buf, "%08lx\n", phys_index);
161}
162
163/*
164 * Show whether the section of memory is likely to be hot-removable
165 */
166static ssize_t show_mem_removable(struct sys_device *dev,
167			struct sysdev_attribute *attr, char *buf)
168{
169	unsigned long i, pfn;
170	int ret = 1;
171	struct memory_block *mem =
172		container_of(dev, struct memory_block, sysdev);
173
174	for (i = 0; i < sections_per_block; i++) {
175		pfn = section_nr_to_pfn(mem->start_section_nr + i);
176		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
177	}
178
179	return sprintf(buf, "%d\n", ret);
180}
181
182/*
183 * online, offline, going offline, etc.
184 */
185static ssize_t show_mem_state(struct sys_device *dev,
186			struct sysdev_attribute *attr, char *buf)
187{
188	struct memory_block *mem =
189		container_of(dev, struct memory_block, sysdev);
190	ssize_t len = 0;
191
192	/*
193	 * We can probably put these states in a nice little array
194	 * so that they're not open-coded
195	 */
196	switch (mem->state) {
197		case MEM_ONLINE:
198			len = sprintf(buf, "online\n");
199			break;
200		case MEM_OFFLINE:
201			len = sprintf(buf, "offline\n");
202			break;
203		case MEM_GOING_OFFLINE:
204			len = sprintf(buf, "going-offline\n");
205			break;
206		default:
207			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
208					mem->state);
209			WARN_ON(1);
210			break;
211	}
212
213	return len;
214}
215
216int memory_notify(unsigned long val, void *v)
217{
218	return blocking_notifier_call_chain(&memory_chain, val, v);
219}
220
221int memory_isolate_notify(unsigned long val, void *v)
222{
223	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
224}
225
226/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
228 * OK to have direct references to sparsemem variables in here.
229 */
230static int
231memory_block_action(unsigned long phys_index, unsigned long action)
232{
233	int i;
234	unsigned long start_pfn, start_paddr;
235	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
236	struct page *first_page;
237	int ret;
238
239	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
240
241	/*
242	 * The probe routines leave the pages reserved, just
243	 * as the bootmem code does.  Make sure they're still
244	 * that way.
245	 */
246	if (action == MEM_ONLINE) {
247		for (i = 0; i < nr_pages; i++) {
248			if (PageReserved(first_page+i))
249				continue;
250
251			printk(KERN_WARNING "section number %ld page number %d "
252				"not reserved, was it already online?\n",
253				phys_index, i);
254			return -EBUSY;
255		}
256	}
257
258	switch (action) {
259		case MEM_ONLINE:
260			start_pfn = page_to_pfn(first_page);
 
 
 
 
261			ret = online_pages(start_pfn, nr_pages);
262			break;
263		case MEM_OFFLINE:
264			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
265			ret = remove_memory(start_paddr,
266					    nr_pages << PAGE_SHIFT);
267			break;
268		default:
269			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
270			     "%ld\n", __func__, phys_index, action, action);
271			ret = -EINVAL;
272	}
273
274	return ret;
275}
276
277static int memory_block_change_state(struct memory_block *mem,
278		unsigned long to_state, unsigned long from_state_req)
279{
280	int ret = 0;
281
282	mutex_lock(&mem->state_mutex);
283
284	if (mem->state != from_state_req) {
285		ret = -EINVAL;
286		goto out;
287	}
288
289	if (to_state == MEM_OFFLINE)
290		mem->state = MEM_GOING_OFFLINE;
291
292	ret = memory_block_action(mem->start_section_nr, to_state);
293
294	if (ret)
295		mem->state = from_state_req;
296	else
297		mem->state = to_state;
298
 
 
 
 
 
 
 
 
 
 
 
299out:
300	mutex_unlock(&mem->state_mutex);
301	return ret;
302}
303
304static ssize_t
305store_mem_state(struct sys_device *dev,
306		struct sysdev_attribute *attr, const char *buf, size_t count)
307{
308	struct memory_block *mem;
309	int ret = -EINVAL;
310
311	mem = container_of(dev, struct memory_block, sysdev);
312
313	if (!strncmp(buf, "online", min((int)count, 6)))
314		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
315	else if(!strncmp(buf, "offline", min((int)count, 7)))
316		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
317
318	if (ret)
319		return ret;
320	return count;
321}
322
323/*
324 * phys_device is a bad name for this.  What I really want
325 * is a way to differentiate between memory ranges that
326 * are part of physical devices that constitute
327 * a complete removable unit or fru.
328 * i.e. do these ranges belong to the same physical device,
329 * s.t. if I offline all of these sections I can then
330 * remove the physical device?
331 */
332static ssize_t show_phys_device(struct sys_device *dev,
333				struct sysdev_attribute *attr, char *buf)
334{
335	struct memory_block *mem =
336		container_of(dev, struct memory_block, sysdev);
337	return sprintf(buf, "%d\n", mem->phys_device);
338}
339
340static SYSDEV_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
341static SYSDEV_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
342static SYSDEV_ATTR(state, 0644, show_mem_state, store_mem_state);
343static SYSDEV_ATTR(phys_device, 0444, show_phys_device, NULL);
344static SYSDEV_ATTR(removable, 0444, show_mem_removable, NULL);
345
346#define mem_create_simple_file(mem, attr_name)	\
347	sysdev_create_file(&mem->sysdev, &attr_##attr_name)
348#define mem_remove_simple_file(mem, attr_name)	\
349	sysdev_remove_file(&mem->sysdev, &attr_##attr_name)
350
351/*
352 * Block size attribute stuff
353 */
354static ssize_t
355print_block_size(struct sysdev_class *class, struct sysdev_class_attribute *attr,
356		 char *buf)
357{
358	return sprintf(buf, "%lx\n", get_memory_block_size());
359}
360
361static SYSDEV_CLASS_ATTR(block_size_bytes, 0444, print_block_size, NULL);
362
363static int block_size_init(void)
364{
365	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
366				&attr_block_size_bytes.attr);
367}
368
369/*
370 * Some architectures will have custom drivers to do this, and
371 * will not need to do it from userspace.  The fake hot-add code
372 * as well as ppc64 will do all of their discovery in userspace
373 * and will require this interface.
374 */
375#ifdef CONFIG_ARCH_MEMORY_PROBE
376static ssize_t
377memory_probe_store(struct class *class, struct class_attribute *attr,
378		   const char *buf, size_t count)
379{
380	u64 phys_addr;
381	int nid;
382	int i, ret;
 
383
384	phys_addr = simple_strtoull(buf, NULL, 0);
385
 
 
 
386	for (i = 0; i < sections_per_block; i++) {
387		nid = memory_add_physaddr_to_nid(phys_addr);
388		ret = add_memory(nid, phys_addr,
389				 PAGES_PER_SECTION << PAGE_SHIFT);
390		if (ret)
391			goto out;
392
393		phys_addr += MIN_MEMORY_BLOCK_SIZE;
394	}
395
396	ret = count;
397out:
398	return ret;
399}
400static CLASS_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
401
402static int memory_probe_init(void)
403{
404	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
405				&class_attr_probe.attr);
406}
407#else
408static inline int memory_probe_init(void)
409{
410	return 0;
411}
412#endif
413
414#ifdef CONFIG_MEMORY_FAILURE
415/*
416 * Support for offlining pages of memory
417 */
418
419/* Soft offline a page */
420static ssize_t
421store_soft_offline_page(struct class *class,
422			struct class_attribute *attr,
423			const char *buf, size_t count)
424{
425	int ret;
426	u64 pfn;
427	if (!capable(CAP_SYS_ADMIN))
428		return -EPERM;
429	if (strict_strtoull(buf, 0, &pfn) < 0)
430		return -EINVAL;
431	pfn >>= PAGE_SHIFT;
432	if (!pfn_valid(pfn))
433		return -ENXIO;
434	ret = soft_offline_page(pfn_to_page(pfn), 0);
435	return ret == 0 ? count : ret;
436}
437
438/* Forcibly offline a page, including killing processes. */
439static ssize_t
440store_hard_offline_page(struct class *class,
441			struct class_attribute *attr,
442			const char *buf, size_t count)
443{
444	int ret;
445	u64 pfn;
446	if (!capable(CAP_SYS_ADMIN))
447		return -EPERM;
448	if (strict_strtoull(buf, 0, &pfn) < 0)
449		return -EINVAL;
450	pfn >>= PAGE_SHIFT;
451	ret = __memory_failure(pfn, 0, 0);
452	return ret ? ret : count;
453}
454
455static CLASS_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
456static CLASS_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
457
458static __init int memory_fail_init(void)
459{
460	int err;
461
462	err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
463				&class_attr_soft_offline_page.attr);
464	if (!err)
465		err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
466				&class_attr_hard_offline_page.attr);
467	return err;
468}
469#else
470static inline int memory_fail_init(void)
471{
472	return 0;
473}
474#endif
475
476/*
477 * Note that phys_device is optional.  It is here to allow for
478 * differentiation between which *physical* devices each
479 * section belongs to...
480 */
481int __weak arch_get_memory_phys_device(unsigned long start_pfn)
482{
483	return 0;
484}
485
 
 
 
 
486struct memory_block *find_memory_block_hinted(struct mem_section *section,
487					      struct memory_block *hint)
488{
489	struct kobject *kobj;
490	struct sys_device *sysdev;
491	struct memory_block *mem;
492	char name[sizeof(MEMORY_CLASS_NAME) + 9 + 1];
493	int block_id = base_memory_block_id(__section_nr(section));
 
 
494
495	kobj = hint ? &hint->sysdev.kobj : NULL;
496
497	/*
498	 * This only works because we know that section == sysdev->id
499	 * slightly redundant with sysdev_register()
500	 */
501	sprintf(&name[0], "%s%d", MEMORY_CLASS_NAME, block_id);
502
503	kobj = kset_find_obj_hinted(&memory_sysdev_class.kset, name, kobj);
504	if (!kobj)
505		return NULL;
506
507	sysdev = container_of(kobj, struct sys_device, kobj);
508	mem = container_of(sysdev, struct memory_block, sysdev);
509
510	return mem;
511}
512
513/*
514 * For now, we have a linear search to go find the appropriate
515 * memory_block corresponding to a particular phys_index. If
516 * this gets to be a real problem, we can always use a radix
517 * tree or something here.
518 *
519 * This could be made generic for all sysdev classes.
520 */
521struct memory_block *find_memory_block(struct mem_section *section)
522{
523	return find_memory_block_hinted(section, NULL);
524}
525
526static int init_memory_block(struct memory_block **memory,
527			     struct mem_section *section, unsigned long state)
528{
529	struct memory_block *mem;
530	unsigned long start_pfn;
531	int scn_nr;
532	int ret = 0;
533
534	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
535	if (!mem)
536		return -ENOMEM;
537
538	scn_nr = __section_nr(section);
539	mem->start_section_nr =
540			base_memory_block_id(scn_nr) * sections_per_block;
541	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
542	mem->state = state;
543	mem->section_count++;
544	mutex_init(&mem->state_mutex);
545	start_pfn = section_nr_to_pfn(mem->start_section_nr);
546	mem->phys_device = arch_get_memory_phys_device(start_pfn);
547
548	ret = register_memory(mem);
549	if (!ret)
550		ret = mem_create_simple_file(mem, phys_index);
551	if (!ret)
552		ret = mem_create_simple_file(mem, end_phys_index);
553	if (!ret)
554		ret = mem_create_simple_file(mem, state);
555	if (!ret)
556		ret = mem_create_simple_file(mem, phys_device);
557	if (!ret)
558		ret = mem_create_simple_file(mem, removable);
559
560	*memory = mem;
561	return ret;
562}
563
564static int add_memory_section(int nid, struct mem_section *section,
 
565			unsigned long state, enum mem_add_context context)
566{
567	struct memory_block *mem;
 
568	int ret = 0;
569
570	mutex_lock(&mem_sysfs_mutex);
571
572	mem = find_memory_block(section);
 
 
 
 
 
 
 
 
 
 
573	if (mem) {
574		mem->section_count++;
575		kobject_put(&mem->sysdev.kobj);
576	} else
577		ret = init_memory_block(&mem, section, state);
 
 
 
 
 
578
579	if (!ret) {
580		if (context == HOTPLUG &&
581		    mem->section_count == sections_per_block)
582			ret = register_mem_sect_under_node(mem, nid);
583	}
584
585	mutex_unlock(&mem_sysfs_mutex);
586	return ret;
587}
588
589int remove_memory_block(unsigned long node_id, struct mem_section *section,
590		int phys_device)
591{
592	struct memory_block *mem;
593
594	mutex_lock(&mem_sysfs_mutex);
595	mem = find_memory_block(section);
596	unregister_mem_sect_under_nodes(mem, __section_nr(section));
597
598	mem->section_count--;
599	if (mem->section_count == 0) {
600		mem_remove_simple_file(mem, phys_index);
601		mem_remove_simple_file(mem, end_phys_index);
602		mem_remove_simple_file(mem, state);
603		mem_remove_simple_file(mem, phys_device);
604		mem_remove_simple_file(mem, removable);
605		unregister_memory(mem);
606		kfree(mem);
607	} else
608		kobject_put(&mem->sysdev.kobj);
609
610	mutex_unlock(&mem_sysfs_mutex);
611	return 0;
612}
613
614/*
615 * need an interface for the VM to add new memory regions,
616 * but without onlining it.
617 */
618int register_new_memory(int nid, struct mem_section *section)
619{
620	return add_memory_section(nid, section, MEM_OFFLINE, HOTPLUG);
621}
622
623int unregister_memory_section(struct mem_section *section)
624{
625	if (!present_section(section))
626		return -EINVAL;
627
628	return remove_memory_block(0, section, 0);
629}
630
631/*
632 * Initialize the sysfs support for memory devices...
633 */
634int __init memory_dev_init(void)
635{
636	unsigned int i;
637	int ret;
638	int err;
639	unsigned long block_sz;
 
640
641	memory_sysdev_class.kset.uevent_ops = &memory_uevent_ops;
642	ret = sysdev_class_register(&memory_sysdev_class);
643	if (ret)
644		goto out;
645
646	block_sz = get_memory_block_size();
647	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
648
649	/*
650	 * Create entries for memory sections that were found
651	 * during boot and have been initialized
652	 */
653	for (i = 0; i < NR_MEM_SECTIONS; i++) {
654		if (!present_section_nr(i))
655			continue;
656		err = add_memory_section(0, __nr_to_section(i), MEM_ONLINE,
 
 
 
657					 BOOT);
658		if (!ret)
659			ret = err;
660	}
661
662	err = memory_probe_init();
663	if (!ret)
664		ret = err;
665	err = memory_fail_init();
666	if (!ret)
667		ret = err;
668	err = block_size_init();
669	if (!ret)
670		ret = err;
671out:
672	if (ret)
673		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
674	return ret;
675}
v3.5.6
  1/*
  2 * Memory subsystem support
  3 *
  4 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
  5 *            Dave Hansen <haveblue@us.ibm.com>
  6 *
  7 * This file provides the necessary infrastructure to represent
  8 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
  9 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 11 */
 12
 
 13#include <linux/module.h>
 14#include <linux/init.h>
 15#include <linux/topology.h>
 16#include <linux/capability.h>
 17#include <linux/device.h>
 18#include <linux/memory.h>
 19#include <linux/kobject.h>
 20#include <linux/memory_hotplug.h>
 21#include <linux/mm.h>
 22#include <linux/mutex.h>
 23#include <linux/stat.h>
 24#include <linux/slab.h>
 25
 26#include <linux/atomic.h>
 27#include <asm/uaccess.h>
 28
 29static DEFINE_MUTEX(mem_sysfs_mutex);
 30
 31#define MEMORY_CLASS_NAME	"memory"
 32
 33static int sections_per_block;
 34
 35static inline int base_memory_block_id(int section_nr)
 36{
 37	return section_nr / sections_per_block;
 38}
 39
 40static struct bus_type memory_subsys = {
 41	.name = MEMORY_CLASS_NAME,
 42	.dev_name = MEMORY_CLASS_NAME,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 43};
 44
 45static BLOCKING_NOTIFIER_HEAD(memory_chain);
 46
 47int register_memory_notifier(struct notifier_block *nb)
 48{
 49        return blocking_notifier_chain_register(&memory_chain, nb);
 50}
 51EXPORT_SYMBOL(register_memory_notifier);
 52
 53void unregister_memory_notifier(struct notifier_block *nb)
 54{
 55        blocking_notifier_chain_unregister(&memory_chain, nb);
 56}
 57EXPORT_SYMBOL(unregister_memory_notifier);
 58
 59static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
 60
 61int register_memory_isolate_notifier(struct notifier_block *nb)
 62{
 63	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
 64}
 65EXPORT_SYMBOL(register_memory_isolate_notifier);
 66
 67void unregister_memory_isolate_notifier(struct notifier_block *nb)
 68{
 69	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
 70}
 71EXPORT_SYMBOL(unregister_memory_isolate_notifier);
 72
 73/*
 74 * register_memory - Setup a sysfs device for a memory block
 75 */
 76static
 77int register_memory(struct memory_block *memory)
 78{
 79	int error;
 80
 81	memory->dev.bus = &memory_subsys;
 82	memory->dev.id = memory->start_section_nr / sections_per_block;
 83
 84	error = device_register(&memory->dev);
 85	return error;
 86}
 87
 88static void
 89unregister_memory(struct memory_block *memory)
 90{
 91	BUG_ON(memory->dev.bus != &memory_subsys);
 92
 93	/* drop the ref. we got in remove_memory_block() */
 94	kobject_put(&memory->dev.kobj);
 95	device_unregister(&memory->dev);
 96}
 97
 98unsigned long __weak memory_block_size_bytes(void)
 99{
100	return MIN_MEMORY_BLOCK_SIZE;
101}
102
103static unsigned long get_memory_block_size(void)
104{
105	unsigned long block_sz;
106
107	block_sz = memory_block_size_bytes();
108
109	/* Validate blk_sz is a power of 2 and not less than section size */
110	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
111		WARN_ON(1);
112		block_sz = MIN_MEMORY_BLOCK_SIZE;
113	}
114
115	return block_sz;
116}
117
118/*
119 * use this as the physical section index that this memsection
120 * uses.
121 */
122
123static ssize_t show_mem_start_phys_index(struct device *dev,
124			struct device_attribute *attr, char *buf)
125{
126	struct memory_block *mem =
127		container_of(dev, struct memory_block, dev);
128	unsigned long phys_index;
129
130	phys_index = mem->start_section_nr / sections_per_block;
131	return sprintf(buf, "%08lx\n", phys_index);
132}
133
134static ssize_t show_mem_end_phys_index(struct device *dev,
135			struct device_attribute *attr, char *buf)
136{
137	struct memory_block *mem =
138		container_of(dev, struct memory_block, dev);
139	unsigned long phys_index;
140
141	phys_index = mem->end_section_nr / sections_per_block;
142	return sprintf(buf, "%08lx\n", phys_index);
143}
144
145/*
146 * Show whether the section of memory is likely to be hot-removable
147 */
148static ssize_t show_mem_removable(struct device *dev,
149			struct device_attribute *attr, char *buf)
150{
151	unsigned long i, pfn;
152	int ret = 1;
153	struct memory_block *mem =
154		container_of(dev, struct memory_block, dev);
155
156	for (i = 0; i < sections_per_block; i++) {
157		pfn = section_nr_to_pfn(mem->start_section_nr + i);
158		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
159	}
160
161	return sprintf(buf, "%d\n", ret);
162}
163
164/*
165 * online, offline, going offline, etc.
166 */
167static ssize_t show_mem_state(struct device *dev,
168			struct device_attribute *attr, char *buf)
169{
170	struct memory_block *mem =
171		container_of(dev, struct memory_block, dev);
172	ssize_t len = 0;
173
174	/*
175	 * We can probably put these states in a nice little array
176	 * so that they're not open-coded
177	 */
178	switch (mem->state) {
179		case MEM_ONLINE:
180			len = sprintf(buf, "online\n");
181			break;
182		case MEM_OFFLINE:
183			len = sprintf(buf, "offline\n");
184			break;
185		case MEM_GOING_OFFLINE:
186			len = sprintf(buf, "going-offline\n");
187			break;
188		default:
189			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
190					mem->state);
191			WARN_ON(1);
192			break;
193	}
194
195	return len;
196}
197
198int memory_notify(unsigned long val, void *v)
199{
200	return blocking_notifier_call_chain(&memory_chain, val, v);
201}
202
203int memory_isolate_notify(unsigned long val, void *v)
204{
205	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
206}
207
208/*
209 * The probe routines leave the pages reserved, just as the bootmem code does.
210 * Make sure they're still that way.
211 */
212static bool pages_correctly_reserved(unsigned long start_pfn,
213					unsigned long nr_pages)
214{
215	int i, j;
216	struct page *page;
217	unsigned long pfn = start_pfn;
218
219	/*
220	 * memmap between sections is not contiguous except with
221	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
222	 * and assume memmap is contiguous within each section
223	 */
224	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
225		if (WARN_ON_ONCE(!pfn_valid(pfn)))
226			return false;
227		page = pfn_to_page(pfn);
228
229		for (j = 0; j < PAGES_PER_SECTION; j++) {
230			if (PageReserved(page + j))
231				continue;
232
233			printk(KERN_WARNING "section number %ld page number %d "
234				"not reserved, was it already online?\n",
235				pfn_to_section_nr(pfn), j);
236
237			return false;
238		}
239	}
240
241	return true;
242}
243
244/*
245 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
246 * OK to have direct references to sparsemem variables in here.
247 */
248static int
249memory_block_action(unsigned long phys_index, unsigned long action)
250{
 
251	unsigned long start_pfn, start_paddr;
252	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
253	struct page *first_page;
254	int ret;
255
256	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258	switch (action) {
259		case MEM_ONLINE:
260			start_pfn = page_to_pfn(first_page);
261
262			if (!pages_correctly_reserved(start_pfn, nr_pages))
263				return -EBUSY;
264
265			ret = online_pages(start_pfn, nr_pages);
266			break;
267		case MEM_OFFLINE:
268			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
269			ret = remove_memory(start_paddr,
270					    nr_pages << PAGE_SHIFT);
271			break;
272		default:
273			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
274			     "%ld\n", __func__, phys_index, action, action);
275			ret = -EINVAL;
276	}
277
278	return ret;
279}
280
281static int memory_block_change_state(struct memory_block *mem,
282		unsigned long to_state, unsigned long from_state_req)
283{
284	int ret = 0;
285
286	mutex_lock(&mem->state_mutex);
287
288	if (mem->state != from_state_req) {
289		ret = -EINVAL;
290		goto out;
291	}
292
293	if (to_state == MEM_OFFLINE)
294		mem->state = MEM_GOING_OFFLINE;
295
296	ret = memory_block_action(mem->start_section_nr, to_state);
297
298	if (ret) {
299		mem->state = from_state_req;
300		goto out;
301	}
302
303	mem->state = to_state;
304	switch (mem->state) {
305	case MEM_OFFLINE:
306		kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
307		break;
308	case MEM_ONLINE:
309		kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
310		break;
311	default:
312		break;
313	}
314out:
315	mutex_unlock(&mem->state_mutex);
316	return ret;
317}
318
319static ssize_t
320store_mem_state(struct device *dev,
321		struct device_attribute *attr, const char *buf, size_t count)
322{
323	struct memory_block *mem;
324	int ret = -EINVAL;
325
326	mem = container_of(dev, struct memory_block, dev);
327
328	if (!strncmp(buf, "online", min((int)count, 6)))
329		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
330	else if(!strncmp(buf, "offline", min((int)count, 7)))
331		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
332
333	if (ret)
334		return ret;
335	return count;
336}
337
338/*
339 * phys_device is a bad name for this.  What I really want
340 * is a way to differentiate between memory ranges that
341 * are part of physical devices that constitute
342 * a complete removable unit or fru.
343 * i.e. do these ranges belong to the same physical device,
344 * s.t. if I offline all of these sections I can then
345 * remove the physical device?
346 */
347static ssize_t show_phys_device(struct device *dev,
348				struct device_attribute *attr, char *buf)
349{
350	struct memory_block *mem =
351		container_of(dev, struct memory_block, dev);
352	return sprintf(buf, "%d\n", mem->phys_device);
353}
354
355static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
356static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
357static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
358static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
359static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
360
361#define mem_create_simple_file(mem, attr_name)	\
362	device_create_file(&mem->dev, &dev_attr_##attr_name)
363#define mem_remove_simple_file(mem, attr_name)	\
364	device_remove_file(&mem->dev, &dev_attr_##attr_name)
365
366/*
367 * Block size attribute stuff
368 */
369static ssize_t
370print_block_size(struct device *dev, struct device_attribute *attr,
371		 char *buf)
372{
373	return sprintf(buf, "%lx\n", get_memory_block_size());
374}
375
376static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
377
378static int block_size_init(void)
379{
380	return device_create_file(memory_subsys.dev_root,
381				  &dev_attr_block_size_bytes);
382}
383
384/*
385 * Some architectures will have custom drivers to do this, and
386 * will not need to do it from userspace.  The fake hot-add code
387 * as well as ppc64 will do all of their discovery in userspace
388 * and will require this interface.
389 */
390#ifdef CONFIG_ARCH_MEMORY_PROBE
391static ssize_t
392memory_probe_store(struct device *dev, struct device_attribute *attr,
393		   const char *buf, size_t count)
394{
395	u64 phys_addr;
396	int nid;
397	int i, ret;
398	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
399
400	phys_addr = simple_strtoull(buf, NULL, 0);
401
402	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
403		return -EINVAL;
404
405	for (i = 0; i < sections_per_block; i++) {
406		nid = memory_add_physaddr_to_nid(phys_addr);
407		ret = add_memory(nid, phys_addr,
408				 PAGES_PER_SECTION << PAGE_SHIFT);
409		if (ret)
410			goto out;
411
412		phys_addr += MIN_MEMORY_BLOCK_SIZE;
413	}
414
415	ret = count;
416out:
417	return ret;
418}
419static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
420
421static int memory_probe_init(void)
422{
423	return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
 
424}
425#else
426static inline int memory_probe_init(void)
427{
428	return 0;
429}
430#endif
431
432#ifdef CONFIG_MEMORY_FAILURE
433/*
434 * Support for offlining pages of memory
435 */
436
437/* Soft offline a page */
438static ssize_t
439store_soft_offline_page(struct device *dev,
440			struct device_attribute *attr,
441			const char *buf, size_t count)
442{
443	int ret;
444	u64 pfn;
445	if (!capable(CAP_SYS_ADMIN))
446		return -EPERM;
447	if (strict_strtoull(buf, 0, &pfn) < 0)
448		return -EINVAL;
449	pfn >>= PAGE_SHIFT;
450	if (!pfn_valid(pfn))
451		return -ENXIO;
452	ret = soft_offline_page(pfn_to_page(pfn), 0);
453	return ret == 0 ? count : ret;
454}
455
456/* Forcibly offline a page, including killing processes. */
457static ssize_t
458store_hard_offline_page(struct device *dev,
459			struct device_attribute *attr,
460			const char *buf, size_t count)
461{
462	int ret;
463	u64 pfn;
464	if (!capable(CAP_SYS_ADMIN))
465		return -EPERM;
466	if (strict_strtoull(buf, 0, &pfn) < 0)
467		return -EINVAL;
468	pfn >>= PAGE_SHIFT;
469	ret = memory_failure(pfn, 0, 0);
470	return ret ? ret : count;
471}
472
473static DEVICE_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
474static DEVICE_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
475
476static __init int memory_fail_init(void)
477{
478	int err;
479
480	err = device_create_file(memory_subsys.dev_root,
481				&dev_attr_soft_offline_page);
482	if (!err)
483		err = device_create_file(memory_subsys.dev_root,
484				&dev_attr_hard_offline_page);
485	return err;
486}
487#else
488static inline int memory_fail_init(void)
489{
490	return 0;
491}
492#endif
493
494/*
495 * Note that phys_device is optional.  It is here to allow for
496 * differentiation between which *physical* devices each
497 * section belongs to...
498 */
499int __weak arch_get_memory_phys_device(unsigned long start_pfn)
500{
501	return 0;
502}
503
504/*
505 * A reference for the returned object is held and the reference for the
506 * hinted object is released.
507 */
508struct memory_block *find_memory_block_hinted(struct mem_section *section,
509					      struct memory_block *hint)
510{
 
 
 
 
511	int block_id = base_memory_block_id(__section_nr(section));
512	struct device *hintdev = hint ? &hint->dev : NULL;
513	struct device *dev;
514
515	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
516	if (hint)
517		put_device(&hint->dev);
518	if (!dev)
 
 
 
 
 
 
519		return NULL;
520	return container_of(dev, struct memory_block, dev);
 
 
 
 
521}
522
523/*
524 * For now, we have a linear search to go find the appropriate
525 * memory_block corresponding to a particular phys_index. If
526 * this gets to be a real problem, we can always use a radix
527 * tree or something here.
528 *
529 * This could be made generic for all device subsystems.
530 */
531struct memory_block *find_memory_block(struct mem_section *section)
532{
533	return find_memory_block_hinted(section, NULL);
534}
535
536static int init_memory_block(struct memory_block **memory,
537			     struct mem_section *section, unsigned long state)
538{
539	struct memory_block *mem;
540	unsigned long start_pfn;
541	int scn_nr;
542	int ret = 0;
543
544	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
545	if (!mem)
546		return -ENOMEM;
547
548	scn_nr = __section_nr(section);
549	mem->start_section_nr =
550			base_memory_block_id(scn_nr) * sections_per_block;
551	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
552	mem->state = state;
553	mem->section_count++;
554	mutex_init(&mem->state_mutex);
555	start_pfn = section_nr_to_pfn(mem->start_section_nr);
556	mem->phys_device = arch_get_memory_phys_device(start_pfn);
557
558	ret = register_memory(mem);
559	if (!ret)
560		ret = mem_create_simple_file(mem, phys_index);
561	if (!ret)
562		ret = mem_create_simple_file(mem, end_phys_index);
563	if (!ret)
564		ret = mem_create_simple_file(mem, state);
565	if (!ret)
566		ret = mem_create_simple_file(mem, phys_device);
567	if (!ret)
568		ret = mem_create_simple_file(mem, removable);
569
570	*memory = mem;
571	return ret;
572}
573
574static int add_memory_section(int nid, struct mem_section *section,
575			struct memory_block **mem_p,
576			unsigned long state, enum mem_add_context context)
577{
578	struct memory_block *mem = NULL;
579	int scn_nr = __section_nr(section);
580	int ret = 0;
581
582	mutex_lock(&mem_sysfs_mutex);
583
584	if (context == BOOT) {
585		/* same memory block ? */
586		if (mem_p && *mem_p)
587			if (scn_nr >= (*mem_p)->start_section_nr &&
588			    scn_nr <= (*mem_p)->end_section_nr) {
589				mem = *mem_p;
590				kobject_get(&mem->dev.kobj);
591			}
592	} else
593		mem = find_memory_block(section);
594
595	if (mem) {
596		mem->section_count++;
597		kobject_put(&mem->dev.kobj);
598	} else {
599		ret = init_memory_block(&mem, section, state);
600		/* store memory_block pointer for next loop */
601		if (!ret && context == BOOT)
602			if (mem_p)
603				*mem_p = mem;
604	}
605
606	if (!ret) {
607		if (context == HOTPLUG &&
608		    mem->section_count == sections_per_block)
609			ret = register_mem_sect_under_node(mem, nid);
610	}
611
612	mutex_unlock(&mem_sysfs_mutex);
613	return ret;
614}
615
616int remove_memory_block(unsigned long node_id, struct mem_section *section,
617		int phys_device)
618{
619	struct memory_block *mem;
620
621	mutex_lock(&mem_sysfs_mutex);
622	mem = find_memory_block(section);
623	unregister_mem_sect_under_nodes(mem, __section_nr(section));
624
625	mem->section_count--;
626	if (mem->section_count == 0) {
627		mem_remove_simple_file(mem, phys_index);
628		mem_remove_simple_file(mem, end_phys_index);
629		mem_remove_simple_file(mem, state);
630		mem_remove_simple_file(mem, phys_device);
631		mem_remove_simple_file(mem, removable);
632		unregister_memory(mem);
633		kfree(mem);
634	} else
635		kobject_put(&mem->dev.kobj);
636
637	mutex_unlock(&mem_sysfs_mutex);
638	return 0;
639}
640
641/*
642 * need an interface for the VM to add new memory regions,
643 * but without onlining it.
644 */
645int register_new_memory(int nid, struct mem_section *section)
646{
647	return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
648}
649
650int unregister_memory_section(struct mem_section *section)
651{
652	if (!present_section(section))
653		return -EINVAL;
654
655	return remove_memory_block(0, section, 0);
656}
657
658/*
659 * Initialize the sysfs support for memory devices...
660 */
661int __init memory_dev_init(void)
662{
663	unsigned int i;
664	int ret;
665	int err;
666	unsigned long block_sz;
667	struct memory_block *mem = NULL;
668
669	ret = subsys_system_register(&memory_subsys, NULL);
 
670	if (ret)
671		goto out;
672
673	block_sz = get_memory_block_size();
674	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
675
676	/*
677	 * Create entries for memory sections that were found
678	 * during boot and have been initialized
679	 */
680	for (i = 0; i < NR_MEM_SECTIONS; i++) {
681		if (!present_section_nr(i))
682			continue;
683		/* don't need to reuse memory_block if only one per block */
684		err = add_memory_section(0, __nr_to_section(i),
685				 (sections_per_block == 1) ? NULL : &mem,
686					 MEM_ONLINE,
687					 BOOT);
688		if (!ret)
689			ret = err;
690	}
691
692	err = memory_probe_init();
693	if (!ret)
694		ret = err;
695	err = memory_fail_init();
696	if (!ret)
697		ret = err;
698	err = block_size_init();
699	if (!ret)
700		ret = err;
701out:
702	if (ret)
703		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
704	return ret;
705}