Loading...
1/*
2 * fault.c: Page fault handlers for the Sparc.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 */
8
9#include <asm/head.h>
10
11#include <linux/string.h>
12#include <linux/types.h>
13#include <linux/sched.h>
14#include <linux/ptrace.h>
15#include <linux/mman.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/signal.h>
19#include <linux/mm.h>
20#include <linux/smp.h>
21#include <linux/perf_event.h>
22#include <linux/interrupt.h>
23#include <linux/module.h>
24#include <linux/kdebug.h>
25
26#include <asm/system.h>
27#include <asm/page.h>
28#include <asm/pgtable.h>
29#include <asm/memreg.h>
30#include <asm/openprom.h>
31#include <asm/oplib.h>
32#include <asm/smp.h>
33#include <asm/traps.h>
34#include <asm/uaccess.h>
35
36extern int prom_node_root;
37
38int show_unhandled_signals = 1;
39
40/* At boot time we determine these two values necessary for setting
41 * up the segment maps and page table entries (pte's).
42 */
43
44int num_segmaps, num_contexts;
45int invalid_segment;
46
47/* various Virtual Address Cache parameters we find at boot time... */
48
49int vac_size, vac_linesize, vac_do_hw_vac_flushes;
50int vac_entries_per_context, vac_entries_per_segment;
51int vac_entries_per_page;
52
53/* Return how much physical memory we have. */
54unsigned long probe_memory(void)
55{
56 unsigned long total = 0;
57 int i;
58
59 for (i = 0; sp_banks[i].num_bytes; i++)
60 total += sp_banks[i].num_bytes;
61
62 return total;
63}
64
65extern void sun4c_complete_all_stores(void);
66
67/* Whee, a level 15 NMI interrupt memory error. Let's have fun... */
68asmlinkage void sparc_lvl15_nmi(struct pt_regs *regs, unsigned long serr,
69 unsigned long svaddr, unsigned long aerr,
70 unsigned long avaddr)
71{
72 sun4c_complete_all_stores();
73 printk("FAULT: NMI received\n");
74 printk("SREGS: Synchronous Error %08lx\n", serr);
75 printk(" Synchronous Vaddr %08lx\n", svaddr);
76 printk(" Asynchronous Error %08lx\n", aerr);
77 printk(" Asynchronous Vaddr %08lx\n", avaddr);
78 if (sun4c_memerr_reg)
79 printk(" Memory Parity Error %08lx\n", *sun4c_memerr_reg);
80 printk("REGISTER DUMP:\n");
81 show_regs(regs);
82 prom_halt();
83}
84
85static void unhandled_fault(unsigned long, struct task_struct *,
86 struct pt_regs *) __attribute__ ((noreturn));
87
88static void unhandled_fault(unsigned long address, struct task_struct *tsk,
89 struct pt_regs *regs)
90{
91 if((unsigned long) address < PAGE_SIZE) {
92 printk(KERN_ALERT
93 "Unable to handle kernel NULL pointer dereference\n");
94 } else {
95 printk(KERN_ALERT "Unable to handle kernel paging request "
96 "at virtual address %08lx\n", address);
97 }
98 printk(KERN_ALERT "tsk->{mm,active_mm}->context = %08lx\n",
99 (tsk->mm ? tsk->mm->context : tsk->active_mm->context));
100 printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %08lx\n",
101 (tsk->mm ? (unsigned long) tsk->mm->pgd :
102 (unsigned long) tsk->active_mm->pgd));
103 die_if_kernel("Oops", regs);
104}
105
106asmlinkage int lookup_fault(unsigned long pc, unsigned long ret_pc,
107 unsigned long address)
108{
109 struct pt_regs regs;
110 unsigned long g2;
111 unsigned int insn;
112 int i;
113
114 i = search_extables_range(ret_pc, &g2);
115 switch (i) {
116 case 3:
117 /* load & store will be handled by fixup */
118 return 3;
119
120 case 1:
121 /* store will be handled by fixup, load will bump out */
122 /* for _to_ macros */
123 insn = *((unsigned int *) pc);
124 if ((insn >> 21) & 1)
125 return 1;
126 break;
127
128 case 2:
129 /* load will be handled by fixup, store will bump out */
130 /* for _from_ macros */
131 insn = *((unsigned int *) pc);
132 if (!((insn >> 21) & 1) || ((insn>>19)&0x3f) == 15)
133 return 2;
134 break;
135
136 default:
137 break;
138 }
139
140 memset(®s, 0, sizeof (regs));
141 regs.pc = pc;
142 regs.npc = pc + 4;
143 __asm__ __volatile__(
144 "rd %%psr, %0\n\t"
145 "nop\n\t"
146 "nop\n\t"
147 "nop\n" : "=r" (regs.psr));
148 unhandled_fault(address, current, ®s);
149
150 /* Not reached */
151 return 0;
152}
153
154static inline void
155show_signal_msg(struct pt_regs *regs, int sig, int code,
156 unsigned long address, struct task_struct *tsk)
157{
158 if (!unhandled_signal(tsk, sig))
159 return;
160
161 if (!printk_ratelimit())
162 return;
163
164 printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x",
165 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
166 tsk->comm, task_pid_nr(tsk), address,
167 (void *)regs->pc, (void *)regs->u_regs[UREG_I7],
168 (void *)regs->u_regs[UREG_FP], code);
169
170 print_vma_addr(KERN_CONT " in ", regs->pc);
171
172 printk(KERN_CONT "\n");
173}
174
175static void __do_fault_siginfo(int code, int sig, struct pt_regs *regs,
176 unsigned long addr)
177{
178 siginfo_t info;
179
180 info.si_signo = sig;
181 info.si_code = code;
182 info.si_errno = 0;
183 info.si_addr = (void __user *) addr;
184 info.si_trapno = 0;
185
186 if (unlikely(show_unhandled_signals))
187 show_signal_msg(regs, sig, info.si_code,
188 addr, current);
189
190 force_sig_info (sig, &info, current);
191}
192
193extern unsigned long safe_compute_effective_address(struct pt_regs *,
194 unsigned int);
195
196static unsigned long compute_si_addr(struct pt_regs *regs, int text_fault)
197{
198 unsigned int insn;
199
200 if (text_fault)
201 return regs->pc;
202
203 if (regs->psr & PSR_PS) {
204 insn = *(unsigned int *) regs->pc;
205 } else {
206 __get_user(insn, (unsigned int *) regs->pc);
207 }
208
209 return safe_compute_effective_address(regs, insn);
210}
211
212static noinline void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
213 int text_fault)
214{
215 unsigned long addr = compute_si_addr(regs, text_fault);
216
217 __do_fault_siginfo(code, sig, regs, addr);
218}
219
220asmlinkage void do_sparc_fault(struct pt_regs *regs, int text_fault, int write,
221 unsigned long address)
222{
223 struct vm_area_struct *vma;
224 struct task_struct *tsk = current;
225 struct mm_struct *mm = tsk->mm;
226 unsigned int fixup;
227 unsigned long g2;
228 int from_user = !(regs->psr & PSR_PS);
229 int fault, code;
230
231 if(text_fault)
232 address = regs->pc;
233
234 /*
235 * We fault-in kernel-space virtual memory on-demand. The
236 * 'reference' page table is init_mm.pgd.
237 *
238 * NOTE! We MUST NOT take any locks for this case. We may
239 * be in an interrupt or a critical region, and should
240 * only copy the information from the master page table,
241 * nothing more.
242 */
243 code = SEGV_MAPERR;
244 if (!ARCH_SUN4C && address >= TASK_SIZE)
245 goto vmalloc_fault;
246
247 /*
248 * If we're in an interrupt or have no user
249 * context, we must not take the fault..
250 */
251 if (in_atomic() || !mm)
252 goto no_context;
253
254 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
255
256 down_read(&mm->mmap_sem);
257
258 /*
259 * The kernel referencing a bad kernel pointer can lock up
260 * a sun4c machine completely, so we must attempt recovery.
261 */
262 if(!from_user && address >= PAGE_OFFSET)
263 goto bad_area;
264
265 vma = find_vma(mm, address);
266 if(!vma)
267 goto bad_area;
268 if(vma->vm_start <= address)
269 goto good_area;
270 if(!(vma->vm_flags & VM_GROWSDOWN))
271 goto bad_area;
272 if(expand_stack(vma, address))
273 goto bad_area;
274 /*
275 * Ok, we have a good vm_area for this memory access, so
276 * we can handle it..
277 */
278good_area:
279 code = SEGV_ACCERR;
280 if(write) {
281 if(!(vma->vm_flags & VM_WRITE))
282 goto bad_area;
283 } else {
284 /* Allow reads even for write-only mappings */
285 if(!(vma->vm_flags & (VM_READ | VM_EXEC)))
286 goto bad_area;
287 }
288
289 /*
290 * If for any reason at all we couldn't handle the fault,
291 * make sure we exit gracefully rather than endlessly redo
292 * the fault.
293 */
294 fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0);
295 if (unlikely(fault & VM_FAULT_ERROR)) {
296 if (fault & VM_FAULT_OOM)
297 goto out_of_memory;
298 else if (fault & VM_FAULT_SIGBUS)
299 goto do_sigbus;
300 BUG();
301 }
302 if (fault & VM_FAULT_MAJOR) {
303 current->maj_flt++;
304 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
305 } else {
306 current->min_flt++;
307 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
308 }
309 up_read(&mm->mmap_sem);
310 return;
311
312 /*
313 * Something tried to access memory that isn't in our memory map..
314 * Fix it, but check if it's kernel or user first..
315 */
316bad_area:
317 up_read(&mm->mmap_sem);
318
319bad_area_nosemaphore:
320 /* User mode accesses just cause a SIGSEGV */
321 if (from_user) {
322 do_fault_siginfo(code, SIGSEGV, regs, text_fault);
323 return;
324 }
325
326 /* Is this in ex_table? */
327no_context:
328 g2 = regs->u_regs[UREG_G2];
329 if (!from_user) {
330 fixup = search_extables_range(regs->pc, &g2);
331 if (fixup > 10) { /* Values below are reserved for other things */
332 extern const unsigned __memset_start[];
333 extern const unsigned __memset_end[];
334 extern const unsigned __csum_partial_copy_start[];
335 extern const unsigned __csum_partial_copy_end[];
336
337#ifdef DEBUG_EXCEPTIONS
338 printk("Exception: PC<%08lx> faddr<%08lx>\n", regs->pc, address);
339 printk("EX_TABLE: insn<%08lx> fixup<%08x> g2<%08lx>\n",
340 regs->pc, fixup, g2);
341#endif
342 if ((regs->pc >= (unsigned long)__memset_start &&
343 regs->pc < (unsigned long)__memset_end) ||
344 (regs->pc >= (unsigned long)__csum_partial_copy_start &&
345 regs->pc < (unsigned long)__csum_partial_copy_end)) {
346 regs->u_regs[UREG_I4] = address;
347 regs->u_regs[UREG_I5] = regs->pc;
348 }
349 regs->u_regs[UREG_G2] = g2;
350 regs->pc = fixup;
351 regs->npc = regs->pc + 4;
352 return;
353 }
354 }
355
356 unhandled_fault (address, tsk, regs);
357 do_exit(SIGKILL);
358
359/*
360 * We ran out of memory, or some other thing happened to us that made
361 * us unable to handle the page fault gracefully.
362 */
363out_of_memory:
364 up_read(&mm->mmap_sem);
365 if (from_user) {
366 pagefault_out_of_memory();
367 return;
368 }
369 goto no_context;
370
371do_sigbus:
372 up_read(&mm->mmap_sem);
373 do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, text_fault);
374 if (!from_user)
375 goto no_context;
376
377vmalloc_fault:
378 {
379 /*
380 * Synchronize this task's top level page-table
381 * with the 'reference' page table.
382 */
383 int offset = pgd_index(address);
384 pgd_t *pgd, *pgd_k;
385 pmd_t *pmd, *pmd_k;
386
387 pgd = tsk->active_mm->pgd + offset;
388 pgd_k = init_mm.pgd + offset;
389
390 if (!pgd_present(*pgd)) {
391 if (!pgd_present(*pgd_k))
392 goto bad_area_nosemaphore;
393 pgd_val(*pgd) = pgd_val(*pgd_k);
394 return;
395 }
396
397 pmd = pmd_offset(pgd, address);
398 pmd_k = pmd_offset(pgd_k, address);
399
400 if (pmd_present(*pmd) || !pmd_present(*pmd_k))
401 goto bad_area_nosemaphore;
402 *pmd = *pmd_k;
403 return;
404 }
405}
406
407asmlinkage void do_sun4c_fault(struct pt_regs *regs, int text_fault, int write,
408 unsigned long address)
409{
410 extern void sun4c_update_mmu_cache(struct vm_area_struct *,
411 unsigned long,pte_t *);
412 extern pte_t *sun4c_pte_offset_kernel(pmd_t *,unsigned long);
413 struct task_struct *tsk = current;
414 struct mm_struct *mm = tsk->mm;
415 pgd_t *pgdp;
416 pte_t *ptep;
417
418 if (text_fault) {
419 address = regs->pc;
420 } else if (!write &&
421 !(regs->psr & PSR_PS)) {
422 unsigned int insn, __user *ip;
423
424 ip = (unsigned int __user *)regs->pc;
425 if (!get_user(insn, ip)) {
426 if ((insn & 0xc1680000) == 0xc0680000)
427 write = 1;
428 }
429 }
430
431 if (!mm) {
432 /* We are oopsing. */
433 do_sparc_fault(regs, text_fault, write, address);
434 BUG(); /* P3 Oops already, you bitch */
435 }
436
437 pgdp = pgd_offset(mm, address);
438 ptep = sun4c_pte_offset_kernel((pmd_t *) pgdp, address);
439
440 if (pgd_val(*pgdp)) {
441 if (write) {
442 if ((pte_val(*ptep) & (_SUN4C_PAGE_WRITE|_SUN4C_PAGE_PRESENT))
443 == (_SUN4C_PAGE_WRITE|_SUN4C_PAGE_PRESENT)) {
444 unsigned long flags;
445
446 *ptep = __pte(pte_val(*ptep) | _SUN4C_PAGE_ACCESSED |
447 _SUN4C_PAGE_MODIFIED |
448 _SUN4C_PAGE_VALID |
449 _SUN4C_PAGE_DIRTY);
450
451 local_irq_save(flags);
452 if (sun4c_get_segmap(address) != invalid_segment) {
453 sun4c_put_pte(address, pte_val(*ptep));
454 local_irq_restore(flags);
455 return;
456 }
457 local_irq_restore(flags);
458 }
459 } else {
460 if ((pte_val(*ptep) & (_SUN4C_PAGE_READ|_SUN4C_PAGE_PRESENT))
461 == (_SUN4C_PAGE_READ|_SUN4C_PAGE_PRESENT)) {
462 unsigned long flags;
463
464 *ptep = __pte(pte_val(*ptep) | _SUN4C_PAGE_ACCESSED |
465 _SUN4C_PAGE_VALID);
466
467 local_irq_save(flags);
468 if (sun4c_get_segmap(address) != invalid_segment) {
469 sun4c_put_pte(address, pte_val(*ptep));
470 local_irq_restore(flags);
471 return;
472 }
473 local_irq_restore(flags);
474 }
475 }
476 }
477
478 /* This conditional is 'interesting'. */
479 if (pgd_val(*pgdp) && !(write && !(pte_val(*ptep) & _SUN4C_PAGE_WRITE))
480 && (pte_val(*ptep) & _SUN4C_PAGE_VALID))
481 /* Note: It is safe to not grab the MMAP semaphore here because
482 * we know that update_mmu_cache() will not sleep for
483 * any reason (at least not in the current implementation)
484 * and therefore there is no danger of another thread getting
485 * on the CPU and doing a shrink_mmap() on this vma.
486 */
487 sun4c_update_mmu_cache (find_vma(current->mm, address), address,
488 ptep);
489 else
490 do_sparc_fault(regs, text_fault, write, address);
491}
492
493/* This always deals with user addresses. */
494static void force_user_fault(unsigned long address, int write)
495{
496 struct vm_area_struct *vma;
497 struct task_struct *tsk = current;
498 struct mm_struct *mm = tsk->mm;
499 int code;
500
501 code = SEGV_MAPERR;
502
503 down_read(&mm->mmap_sem);
504 vma = find_vma(mm, address);
505 if(!vma)
506 goto bad_area;
507 if(vma->vm_start <= address)
508 goto good_area;
509 if(!(vma->vm_flags & VM_GROWSDOWN))
510 goto bad_area;
511 if(expand_stack(vma, address))
512 goto bad_area;
513good_area:
514 code = SEGV_ACCERR;
515 if(write) {
516 if(!(vma->vm_flags & VM_WRITE))
517 goto bad_area;
518 } else {
519 if(!(vma->vm_flags & (VM_READ | VM_EXEC)))
520 goto bad_area;
521 }
522 switch (handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0)) {
523 case VM_FAULT_SIGBUS:
524 case VM_FAULT_OOM:
525 goto do_sigbus;
526 }
527 up_read(&mm->mmap_sem);
528 return;
529bad_area:
530 up_read(&mm->mmap_sem);
531 __do_fault_siginfo(code, SIGSEGV, tsk->thread.kregs, address);
532 return;
533
534do_sigbus:
535 up_read(&mm->mmap_sem);
536 __do_fault_siginfo(BUS_ADRERR, SIGBUS, tsk->thread.kregs, address);
537}
538
539static void check_stack_aligned(unsigned long sp)
540{
541 if (sp & 0x7UL)
542 force_sig(SIGILL, current);
543}
544
545void window_overflow_fault(void)
546{
547 unsigned long sp;
548
549 sp = current_thread_info()->rwbuf_stkptrs[0];
550 if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
551 force_user_fault(sp + 0x38, 1);
552 force_user_fault(sp, 1);
553
554 check_stack_aligned(sp);
555}
556
557void window_underflow_fault(unsigned long sp)
558{
559 if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
560 force_user_fault(sp + 0x38, 0);
561 force_user_fault(sp, 0);
562
563 check_stack_aligned(sp);
564}
565
566void window_ret_fault(struct pt_regs *regs)
567{
568 unsigned long sp;
569
570 sp = regs->u_regs[UREG_FP];
571 if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
572 force_user_fault(sp + 0x38, 0);
573 force_user_fault(sp, 0);
574
575 check_stack_aligned(sp);
576}
1/*
2 * fault.c: Page fault handlers for the Sparc.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 */
8
9#include <asm/head.h>
10
11#include <linux/string.h>
12#include <linux/types.h>
13#include <linux/sched.h>
14#include <linux/ptrace.h>
15#include <linux/mman.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/signal.h>
19#include <linux/mm.h>
20#include <linux/smp.h>
21#include <linux/perf_event.h>
22#include <linux/interrupt.h>
23#include <linux/kdebug.h>
24
25#include <asm/page.h>
26#include <asm/pgtable.h>
27#include <asm/openprom.h>
28#include <asm/oplib.h>
29#include <asm/smp.h>
30#include <asm/traps.h>
31#include <asm/uaccess.h>
32
33int show_unhandled_signals = 1;
34
35/* At boot time we determine these two values necessary for setting
36 * up the segment maps and page table entries (pte's).
37 */
38
39int num_contexts;
40
41/* Return how much physical memory we have. */
42unsigned long probe_memory(void)
43{
44 unsigned long total = 0;
45 int i;
46
47 for (i = 0; sp_banks[i].num_bytes; i++)
48 total += sp_banks[i].num_bytes;
49
50 return total;
51}
52
53static void unhandled_fault(unsigned long, struct task_struct *,
54 struct pt_regs *) __attribute__ ((noreturn));
55
56static void __noreturn unhandled_fault(unsigned long address,
57 struct task_struct *tsk,
58 struct pt_regs *regs)
59{
60 if ((unsigned long) address < PAGE_SIZE) {
61 printk(KERN_ALERT
62 "Unable to handle kernel NULL pointer dereference\n");
63 } else {
64 printk(KERN_ALERT "Unable to handle kernel paging request at virtual address %08lx\n",
65 address);
66 }
67 printk(KERN_ALERT "tsk->{mm,active_mm}->context = %08lx\n",
68 (tsk->mm ? tsk->mm->context : tsk->active_mm->context));
69 printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %08lx\n",
70 (tsk->mm ? (unsigned long) tsk->mm->pgd :
71 (unsigned long) tsk->active_mm->pgd));
72 die_if_kernel("Oops", regs);
73}
74
75asmlinkage int lookup_fault(unsigned long pc, unsigned long ret_pc,
76 unsigned long address)
77{
78 struct pt_regs regs;
79 unsigned long g2;
80 unsigned int insn;
81 int i;
82
83 i = search_extables_range(ret_pc, &g2);
84 switch (i) {
85 case 3:
86 /* load & store will be handled by fixup */
87 return 3;
88
89 case 1:
90 /* store will be handled by fixup, load will bump out */
91 /* for _to_ macros */
92 insn = *((unsigned int *) pc);
93 if ((insn >> 21) & 1)
94 return 1;
95 break;
96
97 case 2:
98 /* load will be handled by fixup, store will bump out */
99 /* for _from_ macros */
100 insn = *((unsigned int *) pc);
101 if (!((insn >> 21) & 1) || ((insn>>19)&0x3f) == 15)
102 return 2;
103 break;
104
105 default:
106 break;
107 }
108
109 memset(®s, 0, sizeof(regs));
110 regs.pc = pc;
111 regs.npc = pc + 4;
112 __asm__ __volatile__(
113 "rd %%psr, %0\n\t"
114 "nop\n\t"
115 "nop\n\t"
116 "nop\n" : "=r" (regs.psr));
117 unhandled_fault(address, current, ®s);
118
119 /* Not reached */
120 return 0;
121}
122
123static inline void
124show_signal_msg(struct pt_regs *regs, int sig, int code,
125 unsigned long address, struct task_struct *tsk)
126{
127 if (!unhandled_signal(tsk, sig))
128 return;
129
130 if (!printk_ratelimit())
131 return;
132
133 printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x",
134 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
135 tsk->comm, task_pid_nr(tsk), address,
136 (void *)regs->pc, (void *)regs->u_regs[UREG_I7],
137 (void *)regs->u_regs[UREG_FP], code);
138
139 print_vma_addr(KERN_CONT " in ", regs->pc);
140
141 printk(KERN_CONT "\n");
142}
143
144static void __do_fault_siginfo(int code, int sig, struct pt_regs *regs,
145 unsigned long addr)
146{
147 siginfo_t info;
148
149 info.si_signo = sig;
150 info.si_code = code;
151 info.si_errno = 0;
152 info.si_addr = (void __user *) addr;
153 info.si_trapno = 0;
154
155 if (unlikely(show_unhandled_signals))
156 show_signal_msg(regs, sig, info.si_code,
157 addr, current);
158
159 force_sig_info (sig, &info, current);
160}
161
162extern unsigned long safe_compute_effective_address(struct pt_regs *,
163 unsigned int);
164
165static unsigned long compute_si_addr(struct pt_regs *regs, int text_fault)
166{
167 unsigned int insn;
168
169 if (text_fault)
170 return regs->pc;
171
172 if (regs->psr & PSR_PS)
173 insn = *(unsigned int *) regs->pc;
174 else
175 __get_user(insn, (unsigned int *) regs->pc);
176
177 return safe_compute_effective_address(regs, insn);
178}
179
180static noinline void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
181 int text_fault)
182{
183 unsigned long addr = compute_si_addr(regs, text_fault);
184
185 __do_fault_siginfo(code, sig, regs, addr);
186}
187
188asmlinkage void do_sparc_fault(struct pt_regs *regs, int text_fault, int write,
189 unsigned long address)
190{
191 struct vm_area_struct *vma;
192 struct task_struct *tsk = current;
193 struct mm_struct *mm = tsk->mm;
194 unsigned int fixup;
195 unsigned long g2;
196 int from_user = !(regs->psr & PSR_PS);
197 int fault, code;
198 unsigned int flags = (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
199 (write ? FAULT_FLAG_WRITE : 0));
200
201 if (text_fault)
202 address = regs->pc;
203
204 /*
205 * We fault-in kernel-space virtual memory on-demand. The
206 * 'reference' page table is init_mm.pgd.
207 *
208 * NOTE! We MUST NOT take any locks for this case. We may
209 * be in an interrupt or a critical region, and should
210 * only copy the information from the master page table,
211 * nothing more.
212 */
213 code = SEGV_MAPERR;
214 if (address >= TASK_SIZE)
215 goto vmalloc_fault;
216
217 /*
218 * If we're in an interrupt or have no user
219 * context, we must not take the fault..
220 */
221 if (in_atomic() || !mm)
222 goto no_context;
223
224 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
225
226retry:
227 down_read(&mm->mmap_sem);
228
229 if (!from_user && address >= PAGE_OFFSET)
230 goto bad_area;
231
232 vma = find_vma(mm, address);
233 if (!vma)
234 goto bad_area;
235 if (vma->vm_start <= address)
236 goto good_area;
237 if (!(vma->vm_flags & VM_GROWSDOWN))
238 goto bad_area;
239 if (expand_stack(vma, address))
240 goto bad_area;
241 /*
242 * Ok, we have a good vm_area for this memory access, so
243 * we can handle it..
244 */
245good_area:
246 code = SEGV_ACCERR;
247 if (write) {
248 if (!(vma->vm_flags & VM_WRITE))
249 goto bad_area;
250 } else {
251 /* Allow reads even for write-only mappings */
252 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
253 goto bad_area;
254 }
255
256 /*
257 * If for any reason at all we couldn't handle the fault,
258 * make sure we exit gracefully rather than endlessly redo
259 * the fault.
260 */
261 fault = handle_mm_fault(mm, vma, address, flags);
262
263 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
264 return;
265
266 if (unlikely(fault & VM_FAULT_ERROR)) {
267 if (fault & VM_FAULT_OOM)
268 goto out_of_memory;
269 else if (fault & VM_FAULT_SIGBUS)
270 goto do_sigbus;
271 BUG();
272 }
273
274 if (flags & FAULT_FLAG_ALLOW_RETRY) {
275 if (fault & VM_FAULT_MAJOR) {
276 current->maj_flt++;
277 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ,
278 1, regs, address);
279 } else {
280 current->min_flt++;
281 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN,
282 1, regs, address);
283 }
284 if (fault & VM_FAULT_RETRY) {
285 flags &= ~FAULT_FLAG_ALLOW_RETRY;
286
287 /* No need to up_read(&mm->mmap_sem) as we would
288 * have already released it in __lock_page_or_retry
289 * in mm/filemap.c.
290 */
291
292 goto retry;
293 }
294 }
295
296 up_read(&mm->mmap_sem);
297 return;
298
299 /*
300 * Something tried to access memory that isn't in our memory map..
301 * Fix it, but check if it's kernel or user first..
302 */
303bad_area:
304 up_read(&mm->mmap_sem);
305
306bad_area_nosemaphore:
307 /* User mode accesses just cause a SIGSEGV */
308 if (from_user) {
309 do_fault_siginfo(code, SIGSEGV, regs, text_fault);
310 return;
311 }
312
313 /* Is this in ex_table? */
314no_context:
315 g2 = regs->u_regs[UREG_G2];
316 if (!from_user) {
317 fixup = search_extables_range(regs->pc, &g2);
318 /* Values below 10 are reserved for other things */
319 if (fixup > 10) {
320 extern const unsigned __memset_start[];
321 extern const unsigned __memset_end[];
322 extern const unsigned __csum_partial_copy_start[];
323 extern const unsigned __csum_partial_copy_end[];
324
325#ifdef DEBUG_EXCEPTIONS
326 printk("Exception: PC<%08lx> faddr<%08lx>\n",
327 regs->pc, address);
328 printk("EX_TABLE: insn<%08lx> fixup<%08x> g2<%08lx>\n",
329 regs->pc, fixup, g2);
330#endif
331 if ((regs->pc >= (unsigned long)__memset_start &&
332 regs->pc < (unsigned long)__memset_end) ||
333 (regs->pc >= (unsigned long)__csum_partial_copy_start &&
334 regs->pc < (unsigned long)__csum_partial_copy_end)) {
335 regs->u_regs[UREG_I4] = address;
336 regs->u_regs[UREG_I5] = regs->pc;
337 }
338 regs->u_regs[UREG_G2] = g2;
339 regs->pc = fixup;
340 regs->npc = regs->pc + 4;
341 return;
342 }
343 }
344
345 unhandled_fault(address, tsk, regs);
346 do_exit(SIGKILL);
347
348/*
349 * We ran out of memory, or some other thing happened to us that made
350 * us unable to handle the page fault gracefully.
351 */
352out_of_memory:
353 up_read(&mm->mmap_sem);
354 if (from_user) {
355 pagefault_out_of_memory();
356 return;
357 }
358 goto no_context;
359
360do_sigbus:
361 up_read(&mm->mmap_sem);
362 do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, text_fault);
363 if (!from_user)
364 goto no_context;
365
366vmalloc_fault:
367 {
368 /*
369 * Synchronize this task's top level page-table
370 * with the 'reference' page table.
371 */
372 int offset = pgd_index(address);
373 pgd_t *pgd, *pgd_k;
374 pmd_t *pmd, *pmd_k;
375
376 pgd = tsk->active_mm->pgd + offset;
377 pgd_k = init_mm.pgd + offset;
378
379 if (!pgd_present(*pgd)) {
380 if (!pgd_present(*pgd_k))
381 goto bad_area_nosemaphore;
382 pgd_val(*pgd) = pgd_val(*pgd_k);
383 return;
384 }
385
386 pmd = pmd_offset(pgd, address);
387 pmd_k = pmd_offset(pgd_k, address);
388
389 if (pmd_present(*pmd) || !pmd_present(*pmd_k))
390 goto bad_area_nosemaphore;
391
392 *pmd = *pmd_k;
393 return;
394 }
395}
396
397/* This always deals with user addresses. */
398static void force_user_fault(unsigned long address, int write)
399{
400 struct vm_area_struct *vma;
401 struct task_struct *tsk = current;
402 struct mm_struct *mm = tsk->mm;
403 int code;
404
405 code = SEGV_MAPERR;
406
407 down_read(&mm->mmap_sem);
408 vma = find_vma(mm, address);
409 if (!vma)
410 goto bad_area;
411 if (vma->vm_start <= address)
412 goto good_area;
413 if (!(vma->vm_flags & VM_GROWSDOWN))
414 goto bad_area;
415 if (expand_stack(vma, address))
416 goto bad_area;
417good_area:
418 code = SEGV_ACCERR;
419 if (write) {
420 if (!(vma->vm_flags & VM_WRITE))
421 goto bad_area;
422 } else {
423 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
424 goto bad_area;
425 }
426 switch (handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0)) {
427 case VM_FAULT_SIGBUS:
428 case VM_FAULT_OOM:
429 goto do_sigbus;
430 }
431 up_read(&mm->mmap_sem);
432 return;
433bad_area:
434 up_read(&mm->mmap_sem);
435 __do_fault_siginfo(code, SIGSEGV, tsk->thread.kregs, address);
436 return;
437
438do_sigbus:
439 up_read(&mm->mmap_sem);
440 __do_fault_siginfo(BUS_ADRERR, SIGBUS, tsk->thread.kregs, address);
441}
442
443static void check_stack_aligned(unsigned long sp)
444{
445 if (sp & 0x7UL)
446 force_sig(SIGILL, current);
447}
448
449void window_overflow_fault(void)
450{
451 unsigned long sp;
452
453 sp = current_thread_info()->rwbuf_stkptrs[0];
454 if (((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
455 force_user_fault(sp + 0x38, 1);
456 force_user_fault(sp, 1);
457
458 check_stack_aligned(sp);
459}
460
461void window_underflow_fault(unsigned long sp)
462{
463 if (((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
464 force_user_fault(sp + 0x38, 0);
465 force_user_fault(sp, 0);
466
467 check_stack_aligned(sp);
468}
469
470void window_ret_fault(struct pt_regs *regs)
471{
472 unsigned long sp;
473
474 sp = regs->u_regs[UREG_FP];
475 if (((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
476 force_user_fault(sp + 0x38, 0);
477 force_user_fault(sp, 0);
478
479 check_stack_aligned(sp);
480}