Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2003, 04, 07 Ralf Baechle <ralf@linux-mips.org>
  7 * Copyright (C) MIPS Technologies, Inc.
  8 *   written by Ralf Baechle <ralf@linux-mips.org>
  9 */
 10#ifndef _ASM_HAZARDS_H
 11#define _ASM_HAZARDS_H
 12
 13#ifdef __ASSEMBLY__
 14#define ASMMACRO(name, code...) .macro name; code; .endm
 15#else
 16
 17#include <asm/cpu-features.h>
 18
 19#define ASMMACRO(name, code...)						\
 20__asm__(".macro " #name "; " #code "; .endm");				\
 21									\
 22static inline void name(void)						\
 23{									\
 24	__asm__ __volatile__ (#name);					\
 25}
 26
 27/*
 28 * MIPS R2 instruction hazard barrier.   Needs to be called as a subroutine.
 29 */
 30extern void mips_ihb(void);
 31
 32#endif
 33
 34ASMMACRO(_ssnop,
 35	 sll	$0, $0, 1
 36	)
 37
 38ASMMACRO(_ehb,
 39	 sll	$0, $0, 3
 40	)
 41
 42/*
 43 * TLB hazards
 44 */
 45#if defined(CONFIG_CPU_MIPSR2) && !defined(CONFIG_CPU_CAVIUM_OCTEON)
 46
 47/*
 48 * MIPSR2 defines ehb for hazard avoidance
 49 */
 50
 51ASMMACRO(mtc0_tlbw_hazard,
 52	 _ehb
 53	)
 54ASMMACRO(tlbw_use_hazard,
 55	 _ehb
 56	)
 57ASMMACRO(tlb_probe_hazard,
 58	 _ehb
 59	)
 60ASMMACRO(irq_enable_hazard,
 61	 _ehb
 62	)
 63ASMMACRO(irq_disable_hazard,
 64	_ehb
 65	)
 66ASMMACRO(back_to_back_c0_hazard,
 67	 _ehb
 68	)
 69/*
 70 * gcc has a tradition of misscompiling the previous construct using the
 71 * address of a label as argument to inline assembler.  Gas otoh has the
 72 * annoying difference between la and dla which are only usable for 32-bit
 73 * rsp. 64-bit code, so can't be used without conditional compilation.
 74 * The alterantive is switching the assembler to 64-bit code which happens
 75 * to work right even for 32-bit code ...
 76 */
 77#define instruction_hazard()						\
 78do {									\
 79	unsigned long tmp;						\
 80									\
 81	__asm__ __volatile__(						\
 82	"	.set	mips64r2				\n"	\
 83	"	dla	%0, 1f					\n"	\
 84	"	jr.hb	%0					\n"	\
 85	"	.set	mips0					\n"	\
 86	"1:							\n"	\
 87	: "=r" (tmp));							\
 88} while (0)
 89
 90#elif defined(CONFIG_CPU_MIPSR1) && !defined(CONFIG_MIPS_ALCHEMY)
 
 91
 92/*
 93 * These are slightly complicated by the fact that we guarantee R1 kernels to
 94 * run fine on R2 processors.
 95 */
 96ASMMACRO(mtc0_tlbw_hazard,
 97	_ssnop; _ssnop; _ehb
 98	)
 99ASMMACRO(tlbw_use_hazard,
100	_ssnop; _ssnop; _ssnop; _ehb
101	)
102ASMMACRO(tlb_probe_hazard,
103	 _ssnop; _ssnop; _ssnop; _ehb
104	)
105ASMMACRO(irq_enable_hazard,
106	 _ssnop; _ssnop; _ssnop; _ehb
107	)
108ASMMACRO(irq_disable_hazard,
109	_ssnop; _ssnop; _ssnop; _ehb
110	)
111ASMMACRO(back_to_back_c0_hazard,
112	 _ssnop; _ssnop; _ssnop; _ehb
113	)
114/*
115 * gcc has a tradition of misscompiling the previous construct using the
116 * address of a label as argument to inline assembler.  Gas otoh has the
117 * annoying difference between la and dla which are only usable for 32-bit
118 * rsp. 64-bit code, so can't be used without conditional compilation.
119 * The alterantive is switching the assembler to 64-bit code which happens
120 * to work right even for 32-bit code ...
121 */
122#define __instruction_hazard()						\
123do {									\
124	unsigned long tmp;						\
125									\
126	__asm__ __volatile__(						\
127	"	.set	mips64r2				\n"	\
128	"	dla	%0, 1f					\n"	\
129	"	jr.hb	%0					\n"	\
130	"	.set	mips0					\n"	\
131	"1:							\n"	\
132	: "=r" (tmp));							\
133} while (0)
134
135#define instruction_hazard()						\
136do {									\
137	if (cpu_has_mips_r2)						\
138		__instruction_hazard();					\
139} while (0)
140
141#elif defined(CONFIG_MIPS_ALCHEMY) || defined(CONFIG_CPU_CAVIUM_OCTEON) || \
142      defined(CONFIG_CPU_LOONGSON2) || defined(CONFIG_CPU_R10000) || \
143      defined(CONFIG_CPU_R5500)
144
145/*
146 * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
147 */
148
149ASMMACRO(mtc0_tlbw_hazard,
150	)
151ASMMACRO(tlbw_use_hazard,
152	)
153ASMMACRO(tlb_probe_hazard,
154	)
155ASMMACRO(irq_enable_hazard,
156	)
157ASMMACRO(irq_disable_hazard,
158	)
159ASMMACRO(back_to_back_c0_hazard,
160	)
161#define instruction_hazard() do { } while (0)
162
163#elif defined(CONFIG_CPU_RM9000)
164
165/*
166 * RM9000 hazards.  When the JTLB is updated by tlbwi or tlbwr, a subsequent
167 * use of the JTLB for instructions should not occur for 4 cpu cycles and use
168 * for data translations should not occur for 3 cpu cycles.
169 */
170
171ASMMACRO(mtc0_tlbw_hazard,
172	 _ssnop; _ssnop; _ssnop; _ssnop
173	)
174ASMMACRO(tlbw_use_hazard,
175	 _ssnop; _ssnop; _ssnop; _ssnop
176	)
177ASMMACRO(tlb_probe_hazard,
178	 _ssnop; _ssnop; _ssnop; _ssnop
179	)
180ASMMACRO(irq_enable_hazard,
181	)
182ASMMACRO(irq_disable_hazard,
183	)
184ASMMACRO(back_to_back_c0_hazard,
185	)
186#define instruction_hazard() do { } while (0)
187
188#elif defined(CONFIG_CPU_SB1)
189
190/*
191 * Mostly like R4000 for historic reasons
192 */
193ASMMACRO(mtc0_tlbw_hazard,
194	)
195ASMMACRO(tlbw_use_hazard,
196	)
197ASMMACRO(tlb_probe_hazard,
198	)
199ASMMACRO(irq_enable_hazard,
200	)
201ASMMACRO(irq_disable_hazard,
202	 _ssnop; _ssnop; _ssnop
203	)
204ASMMACRO(back_to_back_c0_hazard,
205	)
206#define instruction_hazard() do { } while (0)
207
208#else
209
210/*
211 * Finally the catchall case for all other processors including R4000, R4400,
212 * R4600, R4700, R5000, RM7000, NEC VR41xx etc.
213 *
214 * The taken branch will result in a two cycle penalty for the two killed
215 * instructions on R4000 / R4400.  Other processors only have a single cycle
216 * hazard so this is nice trick to have an optimal code for a range of
217 * processors.
218 */
219ASMMACRO(mtc0_tlbw_hazard,
220	nop; nop
221	)
222ASMMACRO(tlbw_use_hazard,
223	nop; nop; nop
224	)
225ASMMACRO(tlb_probe_hazard,
226	 nop; nop; nop
227	)
228ASMMACRO(irq_enable_hazard,
229	 _ssnop; _ssnop; _ssnop;
230	)
231ASMMACRO(irq_disable_hazard,
232	nop; nop; nop
233	)
234ASMMACRO(back_to_back_c0_hazard,
235	 _ssnop; _ssnop; _ssnop;
236	)
237#define instruction_hazard() do { } while (0)
238
239#endif
240
241
242/* FPU hazards */
243
244#if defined(CONFIG_CPU_SB1)
245ASMMACRO(enable_fpu_hazard,
246	 .set	push;
247	 .set	mips64;
248	 .set	noreorder;
249	 _ssnop;
250	 bnezl	$0, .+4;
251	 _ssnop;
252	 .set	pop
253)
254ASMMACRO(disable_fpu_hazard,
255)
256
257#elif defined(CONFIG_CPU_MIPSR2)
258ASMMACRO(enable_fpu_hazard,
259	 _ehb
260)
261ASMMACRO(disable_fpu_hazard,
262	 _ehb
263)
264#else
265ASMMACRO(enable_fpu_hazard,
266	 nop; nop; nop; nop
267)
268ASMMACRO(disable_fpu_hazard,
269	 _ehb
270)
271#endif
272
273#endif /* _ASM_HAZARDS_H */
v3.5.6
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2003, 04, 07 Ralf Baechle <ralf@linux-mips.org>
  7 * Copyright (C) MIPS Technologies, Inc.
  8 *   written by Ralf Baechle <ralf@linux-mips.org>
  9 */
 10#ifndef _ASM_HAZARDS_H
 11#define _ASM_HAZARDS_H
 12
 13#ifdef __ASSEMBLY__
 14#define ASMMACRO(name, code...) .macro name; code; .endm
 15#else
 16
 17#include <asm/cpu-features.h>
 18
 19#define ASMMACRO(name, code...)						\
 20__asm__(".macro " #name "; " #code "; .endm");				\
 21									\
 22static inline void name(void)						\
 23{									\
 24	__asm__ __volatile__ (#name);					\
 25}
 26
 27/*
 28 * MIPS R2 instruction hazard barrier.   Needs to be called as a subroutine.
 29 */
 30extern void mips_ihb(void);
 31
 32#endif
 33
 34ASMMACRO(_ssnop,
 35	 sll	$0, $0, 1
 36	)
 37
 38ASMMACRO(_ehb,
 39	 sll	$0, $0, 3
 40	)
 41
 42/*
 43 * TLB hazards
 44 */
 45#if defined(CONFIG_CPU_MIPSR2) && !defined(CONFIG_CPU_CAVIUM_OCTEON)
 46
 47/*
 48 * MIPSR2 defines ehb for hazard avoidance
 49 */
 50
 51ASMMACRO(mtc0_tlbw_hazard,
 52	 _ehb
 53	)
 54ASMMACRO(tlbw_use_hazard,
 55	 _ehb
 56	)
 57ASMMACRO(tlb_probe_hazard,
 58	 _ehb
 59	)
 60ASMMACRO(irq_enable_hazard,
 61	 _ehb
 62	)
 63ASMMACRO(irq_disable_hazard,
 64	_ehb
 65	)
 66ASMMACRO(back_to_back_c0_hazard,
 67	 _ehb
 68	)
 69/*
 70 * gcc has a tradition of misscompiling the previous construct using the
 71 * address of a label as argument to inline assembler.  Gas otoh has the
 72 * annoying difference between la and dla which are only usable for 32-bit
 73 * rsp. 64-bit code, so can't be used without conditional compilation.
 74 * The alterantive is switching the assembler to 64-bit code which happens
 75 * to work right even for 32-bit code ...
 76 */
 77#define instruction_hazard()						\
 78do {									\
 79	unsigned long tmp;						\
 80									\
 81	__asm__ __volatile__(						\
 82	"	.set	mips64r2				\n"	\
 83	"	dla	%0, 1f					\n"	\
 84	"	jr.hb	%0					\n"	\
 85	"	.set	mips0					\n"	\
 86	"1:							\n"	\
 87	: "=r" (tmp));							\
 88} while (0)
 89
 90#elif (defined(CONFIG_CPU_MIPSR1) && !defined(CONFIG_MIPS_ALCHEMY)) || \
 91	defined(CONFIG_CPU_BMIPS)
 92
 93/*
 94 * These are slightly complicated by the fact that we guarantee R1 kernels to
 95 * run fine on R2 processors.
 96 */
 97ASMMACRO(mtc0_tlbw_hazard,
 98	_ssnop; _ssnop; _ehb
 99	)
100ASMMACRO(tlbw_use_hazard,
101	_ssnop; _ssnop; _ssnop; _ehb
102	)
103ASMMACRO(tlb_probe_hazard,
104	 _ssnop; _ssnop; _ssnop; _ehb
105	)
106ASMMACRO(irq_enable_hazard,
107	 _ssnop; _ssnop; _ssnop; _ehb
108	)
109ASMMACRO(irq_disable_hazard,
110	_ssnop; _ssnop; _ssnop; _ehb
111	)
112ASMMACRO(back_to_back_c0_hazard,
113	 _ssnop; _ssnop; _ssnop; _ehb
114	)
115/*
116 * gcc has a tradition of misscompiling the previous construct using the
117 * address of a label as argument to inline assembler.  Gas otoh has the
118 * annoying difference between la and dla which are only usable for 32-bit
119 * rsp. 64-bit code, so can't be used without conditional compilation.
120 * The alterantive is switching the assembler to 64-bit code which happens
121 * to work right even for 32-bit code ...
122 */
123#define __instruction_hazard()						\
124do {									\
125	unsigned long tmp;						\
126									\
127	__asm__ __volatile__(						\
128	"	.set	mips64r2				\n"	\
129	"	dla	%0, 1f					\n"	\
130	"	jr.hb	%0					\n"	\
131	"	.set	mips0					\n"	\
132	"1:							\n"	\
133	: "=r" (tmp));							\
134} while (0)
135
136#define instruction_hazard()						\
137do {									\
138	if (cpu_has_mips_r2)						\
139		__instruction_hazard();					\
140} while (0)
141
142#elif defined(CONFIG_MIPS_ALCHEMY) || defined(CONFIG_CPU_CAVIUM_OCTEON) || \
143	defined(CONFIG_CPU_LOONGSON2) || defined(CONFIG_CPU_R10000) || \
144	defined(CONFIG_CPU_R5500)
145
146/*
147 * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
148 */
149
150ASMMACRO(mtc0_tlbw_hazard,
151	)
152ASMMACRO(tlbw_use_hazard,
153	)
154ASMMACRO(tlb_probe_hazard,
155	)
156ASMMACRO(irq_enable_hazard,
157	)
158ASMMACRO(irq_disable_hazard,
159	)
160ASMMACRO(back_to_back_c0_hazard,
161	)
162#define instruction_hazard() do { } while (0)
163
164#elif defined(CONFIG_CPU_RM9000)
165
166/*
167 * RM9000 hazards.  When the JTLB is updated by tlbwi or tlbwr, a subsequent
168 * use of the JTLB for instructions should not occur for 4 cpu cycles and use
169 * for data translations should not occur for 3 cpu cycles.
170 */
171
172ASMMACRO(mtc0_tlbw_hazard,
173	 _ssnop; _ssnop; _ssnop; _ssnop
174	)
175ASMMACRO(tlbw_use_hazard,
176	 _ssnop; _ssnop; _ssnop; _ssnop
177	)
178ASMMACRO(tlb_probe_hazard,
179	 _ssnop; _ssnop; _ssnop; _ssnop
180	)
181ASMMACRO(irq_enable_hazard,
182	)
183ASMMACRO(irq_disable_hazard,
184	)
185ASMMACRO(back_to_back_c0_hazard,
186	)
187#define instruction_hazard() do { } while (0)
188
189#elif defined(CONFIG_CPU_SB1)
190
191/*
192 * Mostly like R4000 for historic reasons
193 */
194ASMMACRO(mtc0_tlbw_hazard,
195	)
196ASMMACRO(tlbw_use_hazard,
197	)
198ASMMACRO(tlb_probe_hazard,
199	)
200ASMMACRO(irq_enable_hazard,
201	)
202ASMMACRO(irq_disable_hazard,
203	 _ssnop; _ssnop; _ssnop
204	)
205ASMMACRO(back_to_back_c0_hazard,
206	)
207#define instruction_hazard() do { } while (0)
208
209#else
210
211/*
212 * Finally the catchall case for all other processors including R4000, R4400,
213 * R4600, R4700, R5000, RM7000, NEC VR41xx etc.
214 *
215 * The taken branch will result in a two cycle penalty for the two killed
216 * instructions on R4000 / R4400.  Other processors only have a single cycle
217 * hazard so this is nice trick to have an optimal code for a range of
218 * processors.
219 */
220ASMMACRO(mtc0_tlbw_hazard,
221	nop; nop
222	)
223ASMMACRO(tlbw_use_hazard,
224	nop; nop; nop
225	)
226ASMMACRO(tlb_probe_hazard,
227	 nop; nop; nop
228	)
229ASMMACRO(irq_enable_hazard,
230	 _ssnop; _ssnop; _ssnop;
231	)
232ASMMACRO(irq_disable_hazard,
233	nop; nop; nop
234	)
235ASMMACRO(back_to_back_c0_hazard,
236	 _ssnop; _ssnop; _ssnop;
237	)
238#define instruction_hazard() do { } while (0)
239
240#endif
241
242
243/* FPU hazards */
244
245#if defined(CONFIG_CPU_SB1)
246ASMMACRO(enable_fpu_hazard,
247	 .set	push;
248	 .set	mips64;
249	 .set	noreorder;
250	 _ssnop;
251	 bnezl	$0, .+4;
252	 _ssnop;
253	 .set	pop
254)
255ASMMACRO(disable_fpu_hazard,
256)
257
258#elif defined(CONFIG_CPU_MIPSR2)
259ASMMACRO(enable_fpu_hazard,
260	 _ehb
261)
262ASMMACRO(disable_fpu_hazard,
263	 _ehb
264)
265#else
266ASMMACRO(enable_fpu_hazard,
267	 nop; nop; nop; nop
268)
269ASMMACRO(disable_fpu_hazard,
270	 _ehb
271)
272#endif
273
274#endif /* _ASM_HAZARDS_H */