Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v3.1
  1/*
  2 *  linux/mm/swap.c
  3 *
  4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  5 */
  6
  7/*
  8 * This file contains the default values for the operation of the
  9 * Linux VM subsystem. Fine-tuning documentation can be found in
 10 * Documentation/sysctl/vm.txt.
 11 * Started 18.12.91
 12 * Swap aging added 23.2.95, Stephen Tweedie.
 13 * Buffermem limits added 12.3.98, Rik van Riel.
 14 */
 15
 16#include <linux/mm.h>
 17#include <linux/sched.h>
 18#include <linux/kernel_stat.h>
 19#include <linux/swap.h>
 20#include <linux/mman.h>
 21#include <linux/pagemap.h>
 22#include <linux/pagevec.h>
 23#include <linux/init.h>
 24#include <linux/module.h>
 25#include <linux/mm_inline.h>
 26#include <linux/buffer_head.h>	/* for try_to_release_page() */
 27#include <linux/percpu_counter.h>
 28#include <linux/percpu.h>
 29#include <linux/cpu.h>
 30#include <linux/notifier.h>
 31#include <linux/backing-dev.h>
 32#include <linux/memcontrol.h>
 33#include <linux/gfp.h>
 
 34
 35#include "internal.h"
 36
 
 
 
 37/* How many pages do we try to swap or page in/out together? */
 38int page_cluster;
 39
 40static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
 41static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
 42static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
 43
 44/*
 45 * This path almost never happens for VM activity - pages are normally
 46 * freed via pagevecs.  But it gets used by networking.
 47 */
 48static void __page_cache_release(struct page *page)
 49{
 50	if (PageLRU(page)) {
 51		unsigned long flags;
 52		struct zone *zone = page_zone(page);
 
 
 53
 54		spin_lock_irqsave(&zone->lru_lock, flags);
 55		VM_BUG_ON(!PageLRU(page));
 
 56		__ClearPageLRU(page);
 57		del_page_from_lru(zone, page);
 58		spin_unlock_irqrestore(&zone->lru_lock, flags);
 59	}
 60}
 61
 62static void __put_single_page(struct page *page)
 63{
 64	__page_cache_release(page);
 65	free_hot_cold_page(page, 0);
 66}
 67
 68static void __put_compound_page(struct page *page)
 69{
 70	compound_page_dtor *dtor;
 71
 72	__page_cache_release(page);
 73	dtor = get_compound_page_dtor(page);
 74	(*dtor)(page);
 75}
 76
 77static void put_compound_page(struct page *page)
 78{
 79	if (unlikely(PageTail(page))) {
 80		/* __split_huge_page_refcount can run under us */
 81		struct page *page_head = page->first_page;
 82		smp_rmb();
 83		/*
 84		 * If PageTail is still set after smp_rmb() we can be sure
 85		 * that the page->first_page we read wasn't a dangling pointer.
 86		 * See __split_huge_page_refcount() smp_wmb().
 87		 */
 88		if (likely(PageTail(page) && get_page_unless_zero(page_head))) {
 89			unsigned long flags;
 90			/*
 91			 * Verify that our page_head wasn't converted
 92			 * to a a regular page before we got a
 93			 * reference on it.
 94			 */
 95			if (unlikely(!PageHead(page_head))) {
 96				/* PageHead is cleared after PageTail */
 97				smp_rmb();
 98				VM_BUG_ON(PageTail(page));
 99				goto out_put_head;
100			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101			/*
102			 * Only run compound_lock on a valid PageHead,
103			 * after having it pinned with
104			 * get_page_unless_zero() above.
105			 */
106			smp_mb();
107			/* page_head wasn't a dangling pointer */
108			flags = compound_lock_irqsave(page_head);
109			if (unlikely(!PageTail(page))) {
110				/* __split_huge_page_refcount run before us */
111				compound_unlock_irqrestore(page_head, flags);
112				VM_BUG_ON(PageHead(page_head));
113			out_put_head:
114				if (put_page_testzero(page_head))
115					__put_single_page(page_head);
116			out_put_single:
117				if (put_page_testzero(page))
118					__put_single_page(page);
119				return;
 
 
 
 
 
 
120			}
121			VM_BUG_ON(page_head != page->first_page);
 
122			/*
123			 * We can release the refcount taken by
124			 * get_page_unless_zero now that
125			 * split_huge_page_refcount is blocked on the
126			 * compound_lock.
 
127			 */
128			if (put_page_testzero(page_head))
129				VM_BUG_ON(1);
130			/* __split_huge_page_refcount will wait now */
131			VM_BUG_ON(atomic_read(&page->_count) <= 0);
132			atomic_dec(&page->_count);
133			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
 
 
 
 
 
 
 
 
 
134			compound_unlock_irqrestore(page_head, flags);
135			if (put_page_testzero(page_head)) {
 
 
 
 
 
 
 
 
 
 
 
 
136				if (PageHead(page_head))
137					__put_compound_page(page_head);
138				else
139					__put_single_page(page_head);
140			}
141		} else {
142			/* page_head is a dangling pointer */
143			VM_BUG_ON(PageTail(page));
144			goto out_put_single;
145		}
146	} else if (put_page_testzero(page)) {
147		if (PageHead(page))
148			__put_compound_page(page);
149		else
150			__put_single_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151	}
152}
153
154void put_page(struct page *page)
155{
156	if (unlikely(PageCompound(page)))
157		put_compound_page(page);
158	else if (put_page_testzero(page))
159		__put_single_page(page);
160}
161EXPORT_SYMBOL(put_page);
162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163/**
164 * put_pages_list() - release a list of pages
165 * @pages: list of pages threaded on page->lru
166 *
167 * Release a list of pages which are strung together on page.lru.  Currently
168 * used by read_cache_pages() and related error recovery code.
169 */
170void put_pages_list(struct list_head *pages)
171{
172	while (!list_empty(pages)) {
173		struct page *victim;
174
175		victim = list_entry(pages->prev, struct page, lru);
176		list_del(&victim->lru);
177		page_cache_release(victim);
178	}
179}
180EXPORT_SYMBOL(put_pages_list);
181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182static void pagevec_lru_move_fn(struct pagevec *pvec,
183				void (*move_fn)(struct page *page, void *arg),
184				void *arg)
185{
186	int i;
187	struct zone *zone = NULL;
 
188	unsigned long flags = 0;
189
190	for (i = 0; i < pagevec_count(pvec); i++) {
191		struct page *page = pvec->pages[i];
192		struct zone *pagezone = page_zone(page);
193
194		if (pagezone != zone) {
195			if (zone)
196				spin_unlock_irqrestore(&zone->lru_lock, flags);
197			zone = pagezone;
198			spin_lock_irqsave(&zone->lru_lock, flags);
199		}
200
201		(*move_fn)(page, arg);
 
202	}
203	if (zone)
204		spin_unlock_irqrestore(&zone->lru_lock, flags);
205	release_pages(pvec->pages, pvec->nr, pvec->cold);
206	pagevec_reinit(pvec);
207}
208
209static void pagevec_move_tail_fn(struct page *page, void *arg)
 
210{
211	int *pgmoved = arg;
212	struct zone *zone = page_zone(page);
213
214	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
215		enum lru_list lru = page_lru_base_type(page);
216		list_move_tail(&page->lru, &zone->lru[lru].list);
217		mem_cgroup_rotate_reclaimable_page(page);
218		(*pgmoved)++;
219	}
220}
221
222/*
223 * pagevec_move_tail() must be called with IRQ disabled.
224 * Otherwise this may cause nasty races.
225 */
226static void pagevec_move_tail(struct pagevec *pvec)
227{
228	int pgmoved = 0;
229
230	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
231	__count_vm_events(PGROTATED, pgmoved);
232}
233
234/*
235 * Writeback is about to end against a page which has been marked for immediate
236 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
237 * inactive list.
238 */
239void rotate_reclaimable_page(struct page *page)
240{
241	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
242	    !PageUnevictable(page) && PageLRU(page)) {
243		struct pagevec *pvec;
244		unsigned long flags;
245
246		page_cache_get(page);
247		local_irq_save(flags);
248		pvec = &__get_cpu_var(lru_rotate_pvecs);
249		if (!pagevec_add(pvec, page))
250			pagevec_move_tail(pvec);
251		local_irq_restore(flags);
252	}
253}
254
255static void update_page_reclaim_stat(struct zone *zone, struct page *page,
256				     int file, int rotated)
257{
258	struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
259	struct zone_reclaim_stat *memcg_reclaim_stat;
260
261	memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
262
263	reclaim_stat->recent_scanned[file]++;
264	if (rotated)
265		reclaim_stat->recent_rotated[file]++;
266
267	if (!memcg_reclaim_stat)
268		return;
269
270	memcg_reclaim_stat->recent_scanned[file]++;
271	if (rotated)
272		memcg_reclaim_stat->recent_rotated[file]++;
273}
274
275static void __activate_page(struct page *page, void *arg)
 
276{
277	struct zone *zone = page_zone(page);
278
279	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
280		int file = page_is_file_cache(page);
281		int lru = page_lru_base_type(page);
282		del_page_from_lru_list(zone, page, lru);
283
 
284		SetPageActive(page);
285		lru += LRU_ACTIVE;
286		add_page_to_lru_list(zone, page, lru);
287		__count_vm_event(PGACTIVATE);
288
289		update_page_reclaim_stat(zone, page, file, 1);
 
290	}
291}
292
293#ifdef CONFIG_SMP
294static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
295
296static void activate_page_drain(int cpu)
297{
298	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
299
300	if (pagevec_count(pvec))
301		pagevec_lru_move_fn(pvec, __activate_page, NULL);
302}
303
 
 
 
 
 
304void activate_page(struct page *page)
305{
306	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
307		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
308
309		page_cache_get(page);
310		if (!pagevec_add(pvec, page))
311			pagevec_lru_move_fn(pvec, __activate_page, NULL);
312		put_cpu_var(activate_page_pvecs);
313	}
314}
315
316#else
317static inline void activate_page_drain(int cpu)
318{
319}
320
 
 
 
 
 
321void activate_page(struct page *page)
322{
323	struct zone *zone = page_zone(page);
324
325	spin_lock_irq(&zone->lru_lock);
326	__activate_page(page, NULL);
327	spin_unlock_irq(&zone->lru_lock);
328}
329#endif
330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331/*
332 * Mark a page as having seen activity.
333 *
334 * inactive,unreferenced	->	inactive,referenced
335 * inactive,referenced		->	active,unreferenced
336 * active,unreferenced		->	active,referenced
337 */
338void mark_page_accessed(struct page *page)
339{
340	if (!PageActive(page) && !PageUnevictable(page) &&
341			PageReferenced(page) && PageLRU(page)) {
342		activate_page(page);
 
 
 
 
 
 
 
 
 
 
343		ClearPageReferenced(page);
 
 
344	} else if (!PageReferenced(page)) {
345		SetPageReferenced(page);
346	}
347}
348
349EXPORT_SYMBOL(mark_page_accessed);
350
351void __lru_cache_add(struct page *page, enum lru_list lru)
 
 
 
 
 
 
352{
353	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
354
355	page_cache_get(page);
356	if (!pagevec_add(pvec, page))
357		____pagevec_lru_add(pvec, lru);
358	put_cpu_var(lru_add_pvecs);
 
359}
360EXPORT_SYMBOL(__lru_cache_add);
361
362/**
363 * lru_cache_add_lru - add a page to a page list
364 * @page: the page to be added to the LRU.
365 * @lru: the LRU list to which the page is added.
366 */
367void lru_cache_add_lru(struct page *page, enum lru_list lru)
368{
369	if (PageActive(page)) {
370		VM_BUG_ON(PageUnevictable(page));
371		ClearPageActive(page);
372	} else if (PageUnevictable(page)) {
373		VM_BUG_ON(PageActive(page));
374		ClearPageUnevictable(page);
375	}
376
377	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
378	__lru_cache_add(page, lru);
379}
380
381/**
382 * add_page_to_unevictable_list - add a page to the unevictable list
383 * @page:  the page to be added to the unevictable list
384 *
385 * Add page directly to its zone's unevictable list.  To avoid races with
386 * tasks that might be making the page evictable, through eg. munlock,
387 * munmap or exit, while it's not on the lru, we want to add the page
388 * while it's locked or otherwise "invisible" to other tasks.  This is
389 * difficult to do when using the pagevec cache, so bypass that.
390 */
391void add_page_to_unevictable_list(struct page *page)
392{
393	struct zone *zone = page_zone(page);
 
394
395	spin_lock_irq(&zone->lru_lock);
 
 
396	SetPageUnevictable(page);
397	SetPageLRU(page);
398	add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
399	spin_unlock_irq(&zone->lru_lock);
400}
401
402/*
403 * If the page can not be invalidated, it is moved to the
404 * inactive list to speed up its reclaim.  It is moved to the
405 * head of the list, rather than the tail, to give the flusher
406 * threads some time to write it out, as this is much more
407 * effective than the single-page writeout from reclaim.
408 *
409 * If the page isn't page_mapped and dirty/writeback, the page
410 * could reclaim asap using PG_reclaim.
411 *
412 * 1. active, mapped page -> none
413 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
414 * 3. inactive, mapped page -> none
415 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
416 * 5. inactive, clean -> inactive, tail
417 * 6. Others -> none
418 *
419 * In 4, why it moves inactive's head, the VM expects the page would
420 * be write it out by flusher threads as this is much more effective
421 * than the single-page writeout from reclaim.
422 */
423static void lru_deactivate_fn(struct page *page, void *arg)
 
424{
425	int lru, file;
426	bool active;
427	struct zone *zone = page_zone(page);
428
429	if (!PageLRU(page))
430		return;
431
432	if (PageUnevictable(page))
433		return;
434
435	/* Some processes are using the page */
436	if (page_mapped(page))
437		return;
438
439	active = PageActive(page);
440
441	file = page_is_file_cache(page);
442	lru = page_lru_base_type(page);
443	del_page_from_lru_list(zone, page, lru + active);
 
444	ClearPageActive(page);
445	ClearPageReferenced(page);
446	add_page_to_lru_list(zone, page, lru);
447
448	if (PageWriteback(page) || PageDirty(page)) {
449		/*
450		 * PG_reclaim could be raced with end_page_writeback
451		 * It can make readahead confusing.  But race window
452		 * is _really_ small and  it's non-critical problem.
453		 */
454		SetPageReclaim(page);
455	} else {
456		/*
457		 * The page's writeback ends up during pagevec
458		 * We moves tha page into tail of inactive.
459		 */
460		list_move_tail(&page->lru, &zone->lru[lru].list);
461		mem_cgroup_rotate_reclaimable_page(page);
462		__count_vm_event(PGROTATED);
463	}
464
465	if (active)
466		__count_vm_event(PGDEACTIVATE);
467	update_page_reclaim_stat(zone, page, file, 0);
468}
469
470/*
471 * Drain pages out of the cpu's pagevecs.
472 * Either "cpu" is the current CPU, and preemption has already been
473 * disabled; or "cpu" is being hot-unplugged, and is already dead.
474 */
475static void drain_cpu_pagevecs(int cpu)
476{
477	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
478	struct pagevec *pvec;
479	int lru;
480
481	for_each_lru(lru) {
482		pvec = &pvecs[lru - LRU_BASE];
483		if (pagevec_count(pvec))
484			____pagevec_lru_add(pvec, lru);
485	}
486
487	pvec = &per_cpu(lru_rotate_pvecs, cpu);
488	if (pagevec_count(pvec)) {
489		unsigned long flags;
490
491		/* No harm done if a racing interrupt already did this */
492		local_irq_save(flags);
493		pagevec_move_tail(pvec);
494		local_irq_restore(flags);
495	}
496
497	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
498	if (pagevec_count(pvec))
499		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
500
501	activate_page_drain(cpu);
502}
503
504/**
505 * deactivate_page - forcefully deactivate a page
506 * @page: page to deactivate
507 *
508 * This function hints the VM that @page is a good reclaim candidate,
509 * for example if its invalidation fails due to the page being dirty
510 * or under writeback.
511 */
512void deactivate_page(struct page *page)
513{
514	/*
515	 * In a workload with many unevictable page such as mprotect, unevictable
516	 * page deactivation for accelerating reclaim is pointless.
517	 */
518	if (PageUnevictable(page))
519		return;
520
521	if (likely(get_page_unless_zero(page))) {
522		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
523
524		if (!pagevec_add(pvec, page))
525			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
526		put_cpu_var(lru_deactivate_pvecs);
527	}
528}
529
530void lru_add_drain(void)
531{
532	drain_cpu_pagevecs(get_cpu());
533	put_cpu();
534}
535
536static void lru_add_drain_per_cpu(struct work_struct *dummy)
537{
538	lru_add_drain();
539}
540
541/*
542 * Returns 0 for success
543 */
544int lru_add_drain_all(void)
545{
546	return schedule_on_each_cpu(lru_add_drain_per_cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
547}
548
549/*
550 * Batched page_cache_release().  Decrement the reference count on all the
551 * passed pages.  If it fell to zero then remove the page from the LRU and
552 * free it.
553 *
554 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
555 * for the remainder of the operation.
556 *
557 * The locking in this function is against shrink_inactive_list(): we recheck
558 * the page count inside the lock to see whether shrink_inactive_list()
559 * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
560 * will free it.
561 */
562void release_pages(struct page **pages, int nr, int cold)
563{
564	int i;
565	struct pagevec pages_to_free;
566	struct zone *zone = NULL;
 
567	unsigned long uninitialized_var(flags);
568
569	pagevec_init(&pages_to_free, cold);
570	for (i = 0; i < nr; i++) {
571		struct page *page = pages[i];
572
573		if (unlikely(PageCompound(page))) {
574			if (zone) {
575				spin_unlock_irqrestore(&zone->lru_lock, flags);
576				zone = NULL;
577			}
578			put_compound_page(page);
579			continue;
580		}
581
582		if (!put_page_testzero(page))
583			continue;
584
585		if (PageLRU(page)) {
586			struct zone *pagezone = page_zone(page);
587
588			if (pagezone != zone) {
589				if (zone)
590					spin_unlock_irqrestore(&zone->lru_lock,
591									flags);
592				zone = pagezone;
593				spin_lock_irqsave(&zone->lru_lock, flags);
594			}
595			VM_BUG_ON(!PageLRU(page));
 
 
596			__ClearPageLRU(page);
597			del_page_from_lru(zone, page);
598		}
599
600		if (!pagevec_add(&pages_to_free, page)) {
601			if (zone) {
602				spin_unlock_irqrestore(&zone->lru_lock, flags);
603				zone = NULL;
604			}
605			__pagevec_free(&pages_to_free);
606			pagevec_reinit(&pages_to_free);
607  		}
608	}
609	if (zone)
610		spin_unlock_irqrestore(&zone->lru_lock, flags);
611
612	pagevec_free(&pages_to_free);
613}
614EXPORT_SYMBOL(release_pages);
615
616/*
617 * The pages which we're about to release may be in the deferred lru-addition
618 * queues.  That would prevent them from really being freed right now.  That's
619 * OK from a correctness point of view but is inefficient - those pages may be
620 * cache-warm and we want to give them back to the page allocator ASAP.
621 *
622 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
623 * and __pagevec_lru_add_active() call release_pages() directly to avoid
624 * mutual recursion.
625 */
626void __pagevec_release(struct pagevec *pvec)
627{
628	lru_add_drain();
629	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
630	pagevec_reinit(pvec);
631}
632
633EXPORT_SYMBOL(__pagevec_release);
634
 
635/* used by __split_huge_page_refcount() */
636void lru_add_page_tail(struct zone* zone,
637		       struct page *page, struct page *page_tail)
638{
639	int active;
640	enum lru_list lru;
641	const int file = 0;
642	struct list_head *head;
643
644	VM_BUG_ON(!PageHead(page));
645	VM_BUG_ON(PageCompound(page_tail));
646	VM_BUG_ON(PageLRU(page_tail));
647	VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
648
649	SetPageLRU(page_tail);
650
651	if (page_evictable(page_tail, NULL)) {
652		if (PageActive(page)) {
653			SetPageActive(page_tail);
654			active = 1;
655			lru = LRU_ACTIVE_ANON;
656		} else {
657			active = 0;
658			lru = LRU_INACTIVE_ANON;
659		}
660		update_page_reclaim_stat(zone, page_tail, file, active);
661		if (likely(PageLRU(page)))
662			head = page->lru.prev;
663		else
664			head = &zone->lru[lru].list;
665		__add_page_to_lru_list(zone, page_tail, lru, head);
666	} else {
667		SetPageUnevictable(page_tail);
668		add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
 
 
 
 
 
 
 
 
 
669	}
 
 
 
670}
 
671
672static void ____pagevec_lru_add_fn(struct page *page, void *arg)
 
673{
674	enum lru_list lru = (enum lru_list)arg;
675	struct zone *zone = page_zone(page);
676	int file = is_file_lru(lru);
677	int active = is_active_lru(lru);
678
679	VM_BUG_ON(PageActive(page));
680	VM_BUG_ON(PageUnevictable(page));
681	VM_BUG_ON(PageLRU(page));
682
683	SetPageLRU(page);
684	if (active)
685		SetPageActive(page);
686	update_page_reclaim_stat(zone, page, file, active);
687	add_page_to_lru_list(zone, page, lru);
688}
689
690/*
691 * Add the passed pages to the LRU, then drop the caller's refcount
692 * on them.  Reinitialises the caller's pagevec.
693 */
694void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
695{
696	VM_BUG_ON(is_unevictable_lru(lru));
697
698	pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
699}
 
700
701EXPORT_SYMBOL(____pagevec_lru_add);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
702
703/*
704 * Try to drop buffers from the pages in a pagevec
 
 
 
 
 
 
705 */
706void pagevec_strip(struct pagevec *pvec)
707{
708	int i;
709
710	for (i = 0; i < pagevec_count(pvec); i++) {
711		struct page *page = pvec->pages[i];
712
713		if (page_has_private(page) && trylock_page(page)) {
714			if (page_has_private(page))
715				try_to_release_page(page, 0);
716			unlock_page(page);
717		}
718	}
 
719}
720
721/**
722 * pagevec_lookup - gang pagecache lookup
723 * @pvec:	Where the resulting pages are placed
724 * @mapping:	The address_space to search
725 * @start:	The starting page index
726 * @nr_pages:	The maximum number of pages
727 *
728 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
729 * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
730 * reference against the pages in @pvec.
731 *
732 * The search returns a group of mapping-contiguous pages with ascending
733 * indexes.  There may be holes in the indices due to not-present pages.
734 *
735 * pagevec_lookup() returns the number of pages which were found.
736 */
737unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
738		pgoff_t start, unsigned nr_pages)
739{
740	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
741	return pagevec_count(pvec);
742}
743
744EXPORT_SYMBOL(pagevec_lookup);
745
746unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
747		pgoff_t *index, int tag, unsigned nr_pages)
748{
749	pvec->nr = find_get_pages_tag(mapping, index, tag,
750					nr_pages, pvec->pages);
751	return pagevec_count(pvec);
752}
753
754EXPORT_SYMBOL(pagevec_lookup_tag);
755
756/*
757 * Perform any setup for the swap system
758 */
759void __init swap_setup(void)
760{
761	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
762
763#ifdef CONFIG_SWAP
764	bdi_init(swapper_space.backing_dev_info);
 
 
 
 
 
 
 
765#endif
766
767	/* Use a smaller cluster for small-memory machines */
768	if (megs < 16)
769		page_cluster = 2;
770	else
771		page_cluster = 3;
772	/*
773	 * Right now other parts of the system means that we
774	 * _really_ don't want to cluster much more
775	 */
776}
v3.15
   1/*
   2 *  linux/mm/swap.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * This file contains the default values for the operation of the
   9 * Linux VM subsystem. Fine-tuning documentation can be found in
  10 * Documentation/sysctl/vm.txt.
  11 * Started 18.12.91
  12 * Swap aging added 23.2.95, Stephen Tweedie.
  13 * Buffermem limits added 12.3.98, Rik van Riel.
  14 */
  15
  16#include <linux/mm.h>
  17#include <linux/sched.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/swap.h>
  20#include <linux/mman.h>
  21#include <linux/pagemap.h>
  22#include <linux/pagevec.h>
  23#include <linux/init.h>
  24#include <linux/export.h>
  25#include <linux/mm_inline.h>
 
  26#include <linux/percpu_counter.h>
  27#include <linux/percpu.h>
  28#include <linux/cpu.h>
  29#include <linux/notifier.h>
  30#include <linux/backing-dev.h>
  31#include <linux/memcontrol.h>
  32#include <linux/gfp.h>
  33#include <linux/uio.h>
  34
  35#include "internal.h"
  36
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/pagemap.h>
  39
  40/* How many pages do we try to swap or page in/out together? */
  41int page_cluster;
  42
  43static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
  44static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
  45static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
  46
  47/*
  48 * This path almost never happens for VM activity - pages are normally
  49 * freed via pagevecs.  But it gets used by networking.
  50 */
  51static void __page_cache_release(struct page *page)
  52{
  53	if (PageLRU(page)) {
 
  54		struct zone *zone = page_zone(page);
  55		struct lruvec *lruvec;
  56		unsigned long flags;
  57
  58		spin_lock_irqsave(&zone->lru_lock, flags);
  59		lruvec = mem_cgroup_page_lruvec(page, zone);
  60		VM_BUG_ON_PAGE(!PageLRU(page), page);
  61		__ClearPageLRU(page);
  62		del_page_from_lru_list(page, lruvec, page_off_lru(page));
  63		spin_unlock_irqrestore(&zone->lru_lock, flags);
  64	}
  65}
  66
  67static void __put_single_page(struct page *page)
  68{
  69	__page_cache_release(page);
  70	free_hot_cold_page(page, 0);
  71}
  72
  73static void __put_compound_page(struct page *page)
  74{
  75	compound_page_dtor *dtor;
  76
  77	__page_cache_release(page);
  78	dtor = get_compound_page_dtor(page);
  79	(*dtor)(page);
  80}
  81
  82static void put_compound_page(struct page *page)
  83{
  84	struct page *page_head;
  85
  86	if (likely(!PageTail(page))) {
  87		if (put_page_testzero(page)) {
 
 
 
 
 
 
 
  88			/*
  89			 * By the time all refcounts have been released
  90			 * split_huge_page cannot run anymore from under us.
 
  91			 */
  92			if (PageHead(page))
  93				__put_compound_page(page);
  94			else
  95				__put_single_page(page);
  96		}
  97		return;
  98	}
  99
 100	/* __split_huge_page_refcount can run under us */
 101	page_head = compound_head(page);
 102
 103	/*
 104	 * THP can not break up slab pages so avoid taking
 105	 * compound_lock() and skip the tail page refcounting (in
 106	 * _mapcount) too. Slab performs non-atomic bit ops on
 107	 * page->flags for better performance. In particular
 108	 * slab_unlock() in slub used to be a hot path. It is still
 109	 * hot on arches that do not support
 110	 * this_cpu_cmpxchg_double().
 111	 *
 112	 * If "page" is part of a slab or hugetlbfs page it cannot be
 113	 * splitted and the head page cannot change from under us. And
 114	 * if "page" is part of a THP page under splitting, if the
 115	 * head page pointed by the THP tail isn't a THP head anymore,
 116	 * we'll find PageTail clear after smp_rmb() and we'll treat
 117	 * it as a single page.
 118	 */
 119	if (!__compound_tail_refcounted(page_head)) {
 120		/*
 121		 * If "page" is a THP tail, we must read the tail page
 122		 * flags after the head page flags. The
 123		 * split_huge_page side enforces write memory barriers
 124		 * between clearing PageTail and before the head page
 125		 * can be freed and reallocated.
 126		 */
 127		smp_rmb();
 128		if (likely(PageTail(page))) {
 129			/*
 130			 * __split_huge_page_refcount cannot race
 131			 * here.
 
 132			 */
 133			VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
 134			VM_BUG_ON_PAGE(page_mapcount(page) != 0, page);
 135			if (put_page_testzero(page_head)) {
 136				/*
 137				 * If this is the tail of a slab
 138				 * compound page, the tail pin must
 139				 * not be the last reference held on
 140				 * the page, because the PG_slab
 141				 * cannot be cleared before all tail
 142				 * pins (which skips the _mapcount
 143				 * tail refcounting) have been
 144				 * released. For hugetlbfs the tail
 145				 * pin may be the last reference on
 146				 * the page instead, because
 147				 * PageHeadHuge will not go away until
 148				 * the compound page enters the buddy
 149				 * allocator.
 150				 */
 151				VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
 152				__put_compound_page(page_head);
 153			}
 154			return;
 155		} else
 156			/*
 157			 * __split_huge_page_refcount run before us,
 158			 * "page" was a THP tail. The split page_head
 159			 * has been freed and reallocated as slab or
 160			 * hugetlbfs page of smaller order (only
 161			 * possible if reallocated as slab on x86).
 162			 */
 163			goto out_put_single;
 164	}
 165
 166	if (likely(page != page_head && get_page_unless_zero(page_head))) {
 167		unsigned long flags;
 168
 169		/*
 170		 * page_head wasn't a dangling pointer but it may not
 171		 * be a head page anymore by the time we obtain the
 172		 * lock. That is ok as long as it can't be freed from
 173		 * under us.
 174		 */
 175		flags = compound_lock_irqsave(page_head);
 176		if (unlikely(!PageTail(page))) {
 177			/* __split_huge_page_refcount run before us */
 178			compound_unlock_irqrestore(page_head, flags);
 179			if (put_page_testzero(page_head)) {
 180				/*
 181				 * The head page may have been freed
 182				 * and reallocated as a compound page
 183				 * of smaller order and then freed
 184				 * again.  All we know is that it
 185				 * cannot have become: a THP page, a
 186				 * compound page of higher order, a
 187				 * tail page.  That is because we
 188				 * still hold the refcount of the
 189				 * split THP tail and page_head was
 190				 * the THP head before the split.
 191				 */
 192				if (PageHead(page_head))
 193					__put_compound_page(page_head);
 194				else
 195					__put_single_page(page_head);
 196			}
 197out_put_single:
 198			if (put_page_testzero(page))
 199				__put_single_page(page);
 200			return;
 201		}
 202		VM_BUG_ON_PAGE(page_head != page->first_page, page);
 203		/*
 204		 * We can release the refcount taken by
 205		 * get_page_unless_zero() now that
 206		 * __split_huge_page_refcount() is blocked on the
 207		 * compound_lock.
 208		 */
 209		if (put_page_testzero(page_head))
 210			VM_BUG_ON_PAGE(1, page_head);
 211		/* __split_huge_page_refcount will wait now */
 212		VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
 213		atomic_dec(&page->_mapcount);
 214		VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
 215		VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
 216		compound_unlock_irqrestore(page_head, flags);
 217
 218		if (put_page_testzero(page_head)) {
 219			if (PageHead(page_head))
 220				__put_compound_page(page_head);
 221			else
 222				__put_single_page(page_head);
 223		}
 224	} else {
 225		/* page_head is a dangling pointer */
 226		VM_BUG_ON_PAGE(PageTail(page), page);
 227		goto out_put_single;
 228	}
 229}
 230
 231void put_page(struct page *page)
 232{
 233	if (unlikely(PageCompound(page)))
 234		put_compound_page(page);
 235	else if (put_page_testzero(page))
 236		__put_single_page(page);
 237}
 238EXPORT_SYMBOL(put_page);
 239
 240/*
 241 * This function is exported but must not be called by anything other
 242 * than get_page(). It implements the slow path of get_page().
 243 */
 244bool __get_page_tail(struct page *page)
 245{
 246	/*
 247	 * This takes care of get_page() if run on a tail page
 248	 * returned by one of the get_user_pages/follow_page variants.
 249	 * get_user_pages/follow_page itself doesn't need the compound
 250	 * lock because it runs __get_page_tail_foll() under the
 251	 * proper PT lock that already serializes against
 252	 * split_huge_page().
 253	 */
 254	unsigned long flags;
 255	bool got;
 256	struct page *page_head = compound_head(page);
 257
 258	/* Ref to put_compound_page() comment. */
 259	if (!__compound_tail_refcounted(page_head)) {
 260		smp_rmb();
 261		if (likely(PageTail(page))) {
 262			/*
 263			 * This is a hugetlbfs page or a slab
 264			 * page. __split_huge_page_refcount
 265			 * cannot race here.
 266			 */
 267			VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
 268			__get_page_tail_foll(page, true);
 269			return true;
 270		} else {
 271			/*
 272			 * __split_huge_page_refcount run
 273			 * before us, "page" was a THP
 274			 * tail. The split page_head has been
 275			 * freed and reallocated as slab or
 276			 * hugetlbfs page of smaller order
 277			 * (only possible if reallocated as
 278			 * slab on x86).
 279			 */
 280			return false;
 281		}
 282	}
 283
 284	got = false;
 285	if (likely(page != page_head && get_page_unless_zero(page_head))) {
 286		/*
 287		 * page_head wasn't a dangling pointer but it
 288		 * may not be a head page anymore by the time
 289		 * we obtain the lock. That is ok as long as it
 290		 * can't be freed from under us.
 291		 */
 292		flags = compound_lock_irqsave(page_head);
 293		/* here __split_huge_page_refcount won't run anymore */
 294		if (likely(PageTail(page))) {
 295			__get_page_tail_foll(page, false);
 296			got = true;
 297		}
 298		compound_unlock_irqrestore(page_head, flags);
 299		if (unlikely(!got))
 300			put_page(page_head);
 301	}
 302	return got;
 303}
 304EXPORT_SYMBOL(__get_page_tail);
 305
 306/**
 307 * put_pages_list() - release a list of pages
 308 * @pages: list of pages threaded on page->lru
 309 *
 310 * Release a list of pages which are strung together on page.lru.  Currently
 311 * used by read_cache_pages() and related error recovery code.
 312 */
 313void put_pages_list(struct list_head *pages)
 314{
 315	while (!list_empty(pages)) {
 316		struct page *victim;
 317
 318		victim = list_entry(pages->prev, struct page, lru);
 319		list_del(&victim->lru);
 320		page_cache_release(victim);
 321	}
 322}
 323EXPORT_SYMBOL(put_pages_list);
 324
 325/*
 326 * get_kernel_pages() - pin kernel pages in memory
 327 * @kiov:	An array of struct kvec structures
 328 * @nr_segs:	number of segments to pin
 329 * @write:	pinning for read/write, currently ignored
 330 * @pages:	array that receives pointers to the pages pinned.
 331 *		Should be at least nr_segs long.
 332 *
 333 * Returns number of pages pinned. This may be fewer than the number
 334 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 335 * were pinned, returns -errno. Each page returned must be released
 336 * with a put_page() call when it is finished with.
 337 */
 338int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
 339		struct page **pages)
 340{
 341	int seg;
 342
 343	for (seg = 0; seg < nr_segs; seg++) {
 344		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
 345			return seg;
 346
 347		pages[seg] = kmap_to_page(kiov[seg].iov_base);
 348		page_cache_get(pages[seg]);
 349	}
 350
 351	return seg;
 352}
 353EXPORT_SYMBOL_GPL(get_kernel_pages);
 354
 355/*
 356 * get_kernel_page() - pin a kernel page in memory
 357 * @start:	starting kernel address
 358 * @write:	pinning for read/write, currently ignored
 359 * @pages:	array that receives pointer to the page pinned.
 360 *		Must be at least nr_segs long.
 361 *
 362 * Returns 1 if page is pinned. If the page was not pinned, returns
 363 * -errno. The page returned must be released with a put_page() call
 364 * when it is finished with.
 365 */
 366int get_kernel_page(unsigned long start, int write, struct page **pages)
 367{
 368	const struct kvec kiov = {
 369		.iov_base = (void *)start,
 370		.iov_len = PAGE_SIZE
 371	};
 372
 373	return get_kernel_pages(&kiov, 1, write, pages);
 374}
 375EXPORT_SYMBOL_GPL(get_kernel_page);
 376
 377static void pagevec_lru_move_fn(struct pagevec *pvec,
 378	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
 379	void *arg)
 380{
 381	int i;
 382	struct zone *zone = NULL;
 383	struct lruvec *lruvec;
 384	unsigned long flags = 0;
 385
 386	for (i = 0; i < pagevec_count(pvec); i++) {
 387		struct page *page = pvec->pages[i];
 388		struct zone *pagezone = page_zone(page);
 389
 390		if (pagezone != zone) {
 391			if (zone)
 392				spin_unlock_irqrestore(&zone->lru_lock, flags);
 393			zone = pagezone;
 394			spin_lock_irqsave(&zone->lru_lock, flags);
 395		}
 396
 397		lruvec = mem_cgroup_page_lruvec(page, zone);
 398		(*move_fn)(page, lruvec, arg);
 399	}
 400	if (zone)
 401		spin_unlock_irqrestore(&zone->lru_lock, flags);
 402	release_pages(pvec->pages, pvec->nr, pvec->cold);
 403	pagevec_reinit(pvec);
 404}
 405
 406static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
 407				 void *arg)
 408{
 409	int *pgmoved = arg;
 
 410
 411	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 412		enum lru_list lru = page_lru_base_type(page);
 413		list_move_tail(&page->lru, &lruvec->lists[lru]);
 
 414		(*pgmoved)++;
 415	}
 416}
 417
 418/*
 419 * pagevec_move_tail() must be called with IRQ disabled.
 420 * Otherwise this may cause nasty races.
 421 */
 422static void pagevec_move_tail(struct pagevec *pvec)
 423{
 424	int pgmoved = 0;
 425
 426	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
 427	__count_vm_events(PGROTATED, pgmoved);
 428}
 429
 430/*
 431 * Writeback is about to end against a page which has been marked for immediate
 432 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 433 * inactive list.
 434 */
 435void rotate_reclaimable_page(struct page *page)
 436{
 437	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
 438	    !PageUnevictable(page) && PageLRU(page)) {
 439		struct pagevec *pvec;
 440		unsigned long flags;
 441
 442		page_cache_get(page);
 443		local_irq_save(flags);
 444		pvec = &__get_cpu_var(lru_rotate_pvecs);
 445		if (!pagevec_add(pvec, page))
 446			pagevec_move_tail(pvec);
 447		local_irq_restore(flags);
 448	}
 449}
 450
 451static void update_page_reclaim_stat(struct lruvec *lruvec,
 452				     int file, int rotated)
 453{
 454	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
 
 
 
 455
 456	reclaim_stat->recent_scanned[file]++;
 457	if (rotated)
 458		reclaim_stat->recent_rotated[file]++;
 
 
 
 
 
 
 
 459}
 460
 461static void __activate_page(struct page *page, struct lruvec *lruvec,
 462			    void *arg)
 463{
 
 
 464	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 465		int file = page_is_file_cache(page);
 466		int lru = page_lru_base_type(page);
 
 467
 468		del_page_from_lru_list(page, lruvec, lru);
 469		SetPageActive(page);
 470		lru += LRU_ACTIVE;
 471		add_page_to_lru_list(page, lruvec, lru);
 472		trace_mm_lru_activate(page, page_to_pfn(page));
 473
 474		__count_vm_event(PGACTIVATE);
 475		update_page_reclaim_stat(lruvec, file, 1);
 476	}
 477}
 478
 479#ifdef CONFIG_SMP
 480static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
 481
 482static void activate_page_drain(int cpu)
 483{
 484	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
 485
 486	if (pagevec_count(pvec))
 487		pagevec_lru_move_fn(pvec, __activate_page, NULL);
 488}
 489
 490static bool need_activate_page_drain(int cpu)
 491{
 492	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
 493}
 494
 495void activate_page(struct page *page)
 496{
 497	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 498		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
 499
 500		page_cache_get(page);
 501		if (!pagevec_add(pvec, page))
 502			pagevec_lru_move_fn(pvec, __activate_page, NULL);
 503		put_cpu_var(activate_page_pvecs);
 504	}
 505}
 506
 507#else
 508static inline void activate_page_drain(int cpu)
 509{
 510}
 511
 512static bool need_activate_page_drain(int cpu)
 513{
 514	return false;
 515}
 516
 517void activate_page(struct page *page)
 518{
 519	struct zone *zone = page_zone(page);
 520
 521	spin_lock_irq(&zone->lru_lock);
 522	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
 523	spin_unlock_irq(&zone->lru_lock);
 524}
 525#endif
 526
 527static void __lru_cache_activate_page(struct page *page)
 528{
 529	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
 530	int i;
 531
 532	/*
 533	 * Search backwards on the optimistic assumption that the page being
 534	 * activated has just been added to this pagevec. Note that only
 535	 * the local pagevec is examined as a !PageLRU page could be in the
 536	 * process of being released, reclaimed, migrated or on a remote
 537	 * pagevec that is currently being drained. Furthermore, marking
 538	 * a remote pagevec's page PageActive potentially hits a race where
 539	 * a page is marked PageActive just after it is added to the inactive
 540	 * list causing accounting errors and BUG_ON checks to trigger.
 541	 */
 542	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
 543		struct page *pagevec_page = pvec->pages[i];
 544
 545		if (pagevec_page == page) {
 546			SetPageActive(page);
 547			break;
 548		}
 549	}
 550
 551	put_cpu_var(lru_add_pvec);
 552}
 553
 554/*
 555 * Mark a page as having seen activity.
 556 *
 557 * inactive,unreferenced	->	inactive,referenced
 558 * inactive,referenced		->	active,unreferenced
 559 * active,unreferenced		->	active,referenced
 560 */
 561void mark_page_accessed(struct page *page)
 562{
 563	if (!PageActive(page) && !PageUnevictable(page) &&
 564			PageReferenced(page)) {
 565
 566		/*
 567		 * If the page is on the LRU, queue it for activation via
 568		 * activate_page_pvecs. Otherwise, assume the page is on a
 569		 * pagevec, mark it active and it'll be moved to the active
 570		 * LRU on the next drain.
 571		 */
 572		if (PageLRU(page))
 573			activate_page(page);
 574		else
 575			__lru_cache_activate_page(page);
 576		ClearPageReferenced(page);
 577		if (page_is_file_cache(page))
 578			workingset_activation(page);
 579	} else if (!PageReferenced(page)) {
 580		SetPageReferenced(page);
 581	}
 582}
 
 583EXPORT_SYMBOL(mark_page_accessed);
 584
 585/*
 586 * Queue the page for addition to the LRU via pagevec. The decision on whether
 587 * to add the page to the [in]active [file|anon] list is deferred until the
 588 * pagevec is drained. This gives a chance for the caller of __lru_cache_add()
 589 * have the page added to the active list using mark_page_accessed().
 590 */
 591void __lru_cache_add(struct page *page)
 592{
 593	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
 594
 595	page_cache_get(page);
 596	if (!pagevec_space(pvec))
 597		__pagevec_lru_add(pvec);
 598	pagevec_add(pvec, page);
 599	put_cpu_var(lru_add_pvec);
 600}
 601EXPORT_SYMBOL(__lru_cache_add);
 602
 603/**
 604 * lru_cache_add - add a page to a page list
 605 * @page: the page to be added to the LRU.
 
 606 */
 607void lru_cache_add(struct page *page)
 608{
 609	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
 610	VM_BUG_ON_PAGE(PageLRU(page), page);
 611	__lru_cache_add(page);
 
 
 
 
 
 
 
 612}
 613
 614/**
 615 * add_page_to_unevictable_list - add a page to the unevictable list
 616 * @page:  the page to be added to the unevictable list
 617 *
 618 * Add page directly to its zone's unevictable list.  To avoid races with
 619 * tasks that might be making the page evictable, through eg. munlock,
 620 * munmap or exit, while it's not on the lru, we want to add the page
 621 * while it's locked or otherwise "invisible" to other tasks.  This is
 622 * difficult to do when using the pagevec cache, so bypass that.
 623 */
 624void add_page_to_unevictable_list(struct page *page)
 625{
 626	struct zone *zone = page_zone(page);
 627	struct lruvec *lruvec;
 628
 629	spin_lock_irq(&zone->lru_lock);
 630	lruvec = mem_cgroup_page_lruvec(page, zone);
 631	ClearPageActive(page);
 632	SetPageUnevictable(page);
 633	SetPageLRU(page);
 634	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
 635	spin_unlock_irq(&zone->lru_lock);
 636}
 637
 638/*
 639 * If the page can not be invalidated, it is moved to the
 640 * inactive list to speed up its reclaim.  It is moved to the
 641 * head of the list, rather than the tail, to give the flusher
 642 * threads some time to write it out, as this is much more
 643 * effective than the single-page writeout from reclaim.
 644 *
 645 * If the page isn't page_mapped and dirty/writeback, the page
 646 * could reclaim asap using PG_reclaim.
 647 *
 648 * 1. active, mapped page -> none
 649 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
 650 * 3. inactive, mapped page -> none
 651 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
 652 * 5. inactive, clean -> inactive, tail
 653 * 6. Others -> none
 654 *
 655 * In 4, why it moves inactive's head, the VM expects the page would
 656 * be write it out by flusher threads as this is much more effective
 657 * than the single-page writeout from reclaim.
 658 */
 659static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
 660			      void *arg)
 661{
 662	int lru, file;
 663	bool active;
 
 664
 665	if (!PageLRU(page))
 666		return;
 667
 668	if (PageUnevictable(page))
 669		return;
 670
 671	/* Some processes are using the page */
 672	if (page_mapped(page))
 673		return;
 674
 675	active = PageActive(page);
 
 676	file = page_is_file_cache(page);
 677	lru = page_lru_base_type(page);
 678
 679	del_page_from_lru_list(page, lruvec, lru + active);
 680	ClearPageActive(page);
 681	ClearPageReferenced(page);
 682	add_page_to_lru_list(page, lruvec, lru);
 683
 684	if (PageWriteback(page) || PageDirty(page)) {
 685		/*
 686		 * PG_reclaim could be raced with end_page_writeback
 687		 * It can make readahead confusing.  But race window
 688		 * is _really_ small and  it's non-critical problem.
 689		 */
 690		SetPageReclaim(page);
 691	} else {
 692		/*
 693		 * The page's writeback ends up during pagevec
 694		 * We moves tha page into tail of inactive.
 695		 */
 696		list_move_tail(&page->lru, &lruvec->lists[lru]);
 
 697		__count_vm_event(PGROTATED);
 698	}
 699
 700	if (active)
 701		__count_vm_event(PGDEACTIVATE);
 702	update_page_reclaim_stat(lruvec, file, 0);
 703}
 704
 705/*
 706 * Drain pages out of the cpu's pagevecs.
 707 * Either "cpu" is the current CPU, and preemption has already been
 708 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 709 */
 710void lru_add_drain_cpu(int cpu)
 711{
 712	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
 713
 714	if (pagevec_count(pvec))
 715		__pagevec_lru_add(pvec);
 
 
 
 
 
 716
 717	pvec = &per_cpu(lru_rotate_pvecs, cpu);
 718	if (pagevec_count(pvec)) {
 719		unsigned long flags;
 720
 721		/* No harm done if a racing interrupt already did this */
 722		local_irq_save(flags);
 723		pagevec_move_tail(pvec);
 724		local_irq_restore(flags);
 725	}
 726
 727	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
 728	if (pagevec_count(pvec))
 729		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
 730
 731	activate_page_drain(cpu);
 732}
 733
 734/**
 735 * deactivate_page - forcefully deactivate a page
 736 * @page: page to deactivate
 737 *
 738 * This function hints the VM that @page is a good reclaim candidate,
 739 * for example if its invalidation fails due to the page being dirty
 740 * or under writeback.
 741 */
 742void deactivate_page(struct page *page)
 743{
 744	/*
 745	 * In a workload with many unevictable page such as mprotect, unevictable
 746	 * page deactivation for accelerating reclaim is pointless.
 747	 */
 748	if (PageUnevictable(page))
 749		return;
 750
 751	if (likely(get_page_unless_zero(page))) {
 752		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
 753
 754		if (!pagevec_add(pvec, page))
 755			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
 756		put_cpu_var(lru_deactivate_pvecs);
 757	}
 758}
 759
 760void lru_add_drain(void)
 761{
 762	lru_add_drain_cpu(get_cpu());
 763	put_cpu();
 764}
 765
 766static void lru_add_drain_per_cpu(struct work_struct *dummy)
 767{
 768	lru_add_drain();
 769}
 770
 771static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 772
 773void lru_add_drain_all(void)
 
 774{
 775	static DEFINE_MUTEX(lock);
 776	static struct cpumask has_work;
 777	int cpu;
 778
 779	mutex_lock(&lock);
 780	get_online_cpus();
 781	cpumask_clear(&has_work);
 782
 783	for_each_online_cpu(cpu) {
 784		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 785
 786		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
 787		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
 788		    pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
 789		    need_activate_page_drain(cpu)) {
 790			INIT_WORK(work, lru_add_drain_per_cpu);
 791			schedule_work_on(cpu, work);
 792			cpumask_set_cpu(cpu, &has_work);
 793		}
 794	}
 795
 796	for_each_cpu(cpu, &has_work)
 797		flush_work(&per_cpu(lru_add_drain_work, cpu));
 798
 799	put_online_cpus();
 800	mutex_unlock(&lock);
 801}
 802
 803/*
 804 * Batched page_cache_release().  Decrement the reference count on all the
 805 * passed pages.  If it fell to zero then remove the page from the LRU and
 806 * free it.
 807 *
 808 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
 809 * for the remainder of the operation.
 810 *
 811 * The locking in this function is against shrink_inactive_list(): we recheck
 812 * the page count inside the lock to see whether shrink_inactive_list()
 813 * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
 814 * will free it.
 815 */
 816void release_pages(struct page **pages, int nr, int cold)
 817{
 818	int i;
 819	LIST_HEAD(pages_to_free);
 820	struct zone *zone = NULL;
 821	struct lruvec *lruvec;
 822	unsigned long uninitialized_var(flags);
 823
 
 824	for (i = 0; i < nr; i++) {
 825		struct page *page = pages[i];
 826
 827		if (unlikely(PageCompound(page))) {
 828			if (zone) {
 829				spin_unlock_irqrestore(&zone->lru_lock, flags);
 830				zone = NULL;
 831			}
 832			put_compound_page(page);
 833			continue;
 834		}
 835
 836		if (!put_page_testzero(page))
 837			continue;
 838
 839		if (PageLRU(page)) {
 840			struct zone *pagezone = page_zone(page);
 841
 842			if (pagezone != zone) {
 843				if (zone)
 844					spin_unlock_irqrestore(&zone->lru_lock,
 845									flags);
 846				zone = pagezone;
 847				spin_lock_irqsave(&zone->lru_lock, flags);
 848			}
 849
 850			lruvec = mem_cgroup_page_lruvec(page, zone);
 851			VM_BUG_ON_PAGE(!PageLRU(page), page);
 852			__ClearPageLRU(page);
 853			del_page_from_lru_list(page, lruvec, page_off_lru(page));
 854		}
 855
 856		/* Clear Active bit in case of parallel mark_page_accessed */
 857		ClearPageActive(page);
 858
 859		list_add(&page->lru, &pages_to_free);
 
 
 
 
 860	}
 861	if (zone)
 862		spin_unlock_irqrestore(&zone->lru_lock, flags);
 863
 864	free_hot_cold_page_list(&pages_to_free, cold);
 865}
 866EXPORT_SYMBOL(release_pages);
 867
 868/*
 869 * The pages which we're about to release may be in the deferred lru-addition
 870 * queues.  That would prevent them from really being freed right now.  That's
 871 * OK from a correctness point of view but is inefficient - those pages may be
 872 * cache-warm and we want to give them back to the page allocator ASAP.
 873 *
 874 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
 875 * and __pagevec_lru_add_active() call release_pages() directly to avoid
 876 * mutual recursion.
 877 */
 878void __pagevec_release(struct pagevec *pvec)
 879{
 880	lru_add_drain();
 881	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
 882	pagevec_reinit(pvec);
 883}
 
 884EXPORT_SYMBOL(__pagevec_release);
 885
 886#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 887/* used by __split_huge_page_refcount() */
 888void lru_add_page_tail(struct page *page, struct page *page_tail,
 889		       struct lruvec *lruvec, struct list_head *list)
 890{
 
 
 891	const int file = 0;
 
 892
 893	VM_BUG_ON_PAGE(!PageHead(page), page);
 894	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
 895	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
 896	VM_BUG_ON(NR_CPUS != 1 &&
 897		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
 898
 899	if (!list)
 900		SetPageLRU(page_tail);
 901
 902	if (likely(PageLRU(page)))
 903		list_add_tail(&page_tail->lru, &page->lru);
 904	else if (list) {
 905		/* page reclaim is reclaiming a huge page */
 906		get_page(page_tail);
 907		list_add_tail(&page_tail->lru, list);
 
 
 
 
 
 
 
 908	} else {
 909		struct list_head *list_head;
 910		/*
 911		 * Head page has not yet been counted, as an hpage,
 912		 * so we must account for each subpage individually.
 913		 *
 914		 * Use the standard add function to put page_tail on the list,
 915		 * but then correct its position so they all end up in order.
 916		 */
 917		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
 918		list_head = page_tail->lru.prev;
 919		list_move_tail(&page_tail->lru, list_head);
 920	}
 921
 922	if (!PageUnevictable(page))
 923		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
 924}
 925#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 926
 927static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
 928				 void *arg)
 929{
 930	int file = page_is_file_cache(page);
 931	int active = PageActive(page);
 932	enum lru_list lru = page_lru(page);
 
 933
 934	VM_BUG_ON_PAGE(PageLRU(page), page);
 
 
 935
 936	SetPageLRU(page);
 937	add_page_to_lru_list(page, lruvec, lru);
 938	update_page_reclaim_stat(lruvec, file, active);
 939	trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
 
 940}
 941
 942/*
 943 * Add the passed pages to the LRU, then drop the caller's refcount
 944 * on them.  Reinitialises the caller's pagevec.
 945 */
 946void __pagevec_lru_add(struct pagevec *pvec)
 947{
 948	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
 
 
 949}
 950EXPORT_SYMBOL(__pagevec_lru_add);
 951
 952/**
 953 * pagevec_lookup_entries - gang pagecache lookup
 954 * @pvec:	Where the resulting entries are placed
 955 * @mapping:	The address_space to search
 956 * @start:	The starting entry index
 957 * @nr_entries:	The maximum number of entries
 958 * @indices:	The cache indices corresponding to the entries in @pvec
 959 *
 960 * pagevec_lookup_entries() will search for and return a group of up
 961 * to @nr_entries pages and shadow entries in the mapping.  All
 962 * entries are placed in @pvec.  pagevec_lookup_entries() takes a
 963 * reference against actual pages in @pvec.
 964 *
 965 * The search returns a group of mapping-contiguous entries with
 966 * ascending indexes.  There may be holes in the indices due to
 967 * not-present entries.
 968 *
 969 * pagevec_lookup_entries() returns the number of entries which were
 970 * found.
 971 */
 972unsigned pagevec_lookup_entries(struct pagevec *pvec,
 973				struct address_space *mapping,
 974				pgoff_t start, unsigned nr_pages,
 975				pgoff_t *indices)
 976{
 977	pvec->nr = find_get_entries(mapping, start, nr_pages,
 978				    pvec->pages, indices);
 979	return pagevec_count(pvec);
 980}
 981
 982/**
 983 * pagevec_remove_exceptionals - pagevec exceptionals pruning
 984 * @pvec:	The pagevec to prune
 985 *
 986 * pagevec_lookup_entries() fills both pages and exceptional radix
 987 * tree entries into the pagevec.  This function prunes all
 988 * exceptionals from @pvec without leaving holes, so that it can be
 989 * passed on to page-only pagevec operations.
 990 */
 991void pagevec_remove_exceptionals(struct pagevec *pvec)
 992{
 993	int i, j;
 994
 995	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
 996		struct page *page = pvec->pages[i];
 997		if (!radix_tree_exceptional_entry(page))
 998			pvec->pages[j++] = page;
 
 
 
 
 999	}
1000	pvec->nr = j;
1001}
1002
1003/**
1004 * pagevec_lookup - gang pagecache lookup
1005 * @pvec:	Where the resulting pages are placed
1006 * @mapping:	The address_space to search
1007 * @start:	The starting page index
1008 * @nr_pages:	The maximum number of pages
1009 *
1010 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1011 * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
1012 * reference against the pages in @pvec.
1013 *
1014 * The search returns a group of mapping-contiguous pages with ascending
1015 * indexes.  There may be holes in the indices due to not-present pages.
1016 *
1017 * pagevec_lookup() returns the number of pages which were found.
1018 */
1019unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
1020		pgoff_t start, unsigned nr_pages)
1021{
1022	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
1023	return pagevec_count(pvec);
1024}
 
1025EXPORT_SYMBOL(pagevec_lookup);
1026
1027unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
1028		pgoff_t *index, int tag, unsigned nr_pages)
1029{
1030	pvec->nr = find_get_pages_tag(mapping, index, tag,
1031					nr_pages, pvec->pages);
1032	return pagevec_count(pvec);
1033}
 
1034EXPORT_SYMBOL(pagevec_lookup_tag);
1035
1036/*
1037 * Perform any setup for the swap system
1038 */
1039void __init swap_setup(void)
1040{
1041	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
 
1042#ifdef CONFIG_SWAP
1043	int i;
1044
1045	if (bdi_init(swapper_spaces[0].backing_dev_info))
1046		panic("Failed to init swap bdi");
1047	for (i = 0; i < MAX_SWAPFILES; i++) {
1048		spin_lock_init(&swapper_spaces[i].tree_lock);
1049		INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
1050	}
1051#endif
1052
1053	/* Use a smaller cluster for small-memory machines */
1054	if (megs < 16)
1055		page_cluster = 2;
1056	else
1057		page_cluster = 3;
1058	/*
1059	 * Right now other parts of the system means that we
1060	 * _really_ don't want to cluster much more
1061	 */
1062}