Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Memory merging support.
   3 *
   4 * This code enables dynamic sharing of identical pages found in different
   5 * memory areas, even if they are not shared by fork()
   6 *
   7 * Copyright (C) 2008-2009 Red Hat, Inc.
   8 * Authors:
   9 *	Izik Eidus
  10 *	Andrea Arcangeli
  11 *	Chris Wright
  12 *	Hugh Dickins
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/mm.h>
  19#include <linux/fs.h>
  20#include <linux/mman.h>
  21#include <linux/sched.h>
  22#include <linux/rwsem.h>
  23#include <linux/pagemap.h>
  24#include <linux/rmap.h>
  25#include <linux/spinlock.h>
  26#include <linux/jhash.h>
  27#include <linux/delay.h>
  28#include <linux/kthread.h>
  29#include <linux/wait.h>
  30#include <linux/slab.h>
  31#include <linux/rbtree.h>
  32#include <linux/memory.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/swap.h>
  35#include <linux/ksm.h>
  36#include <linux/hash.h>
  37#include <linux/freezer.h>
  38#include <linux/oom.h>
 
  39
  40#include <asm/tlbflush.h>
  41#include "internal.h"
  42
 
 
 
 
 
 
 
 
  43/*
  44 * A few notes about the KSM scanning process,
  45 * to make it easier to understand the data structures below:
  46 *
  47 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  48 * contents into a data structure that holds pointers to the pages' locations.
  49 *
  50 * Since the contents of the pages may change at any moment, KSM cannot just
  51 * insert the pages into a normal sorted tree and expect it to find anything.
  52 * Therefore KSM uses two data structures - the stable and the unstable tree.
  53 *
  54 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  55 * by their contents.  Because each such page is write-protected, searching on
  56 * this tree is fully assured to be working (except when pages are unmapped),
  57 * and therefore this tree is called the stable tree.
  58 *
  59 * In addition to the stable tree, KSM uses a second data structure called the
  60 * unstable tree: this tree holds pointers to pages which have been found to
  61 * be "unchanged for a period of time".  The unstable tree sorts these pages
  62 * by their contents, but since they are not write-protected, KSM cannot rely
  63 * upon the unstable tree to work correctly - the unstable tree is liable to
  64 * be corrupted as its contents are modified, and so it is called unstable.
  65 *
  66 * KSM solves this problem by several techniques:
  67 *
  68 * 1) The unstable tree is flushed every time KSM completes scanning all
  69 *    memory areas, and then the tree is rebuilt again from the beginning.
  70 * 2) KSM will only insert into the unstable tree, pages whose hash value
  71 *    has not changed since the previous scan of all memory areas.
  72 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
  73 *    colors of the nodes and not on their contents, assuring that even when
  74 *    the tree gets "corrupted" it won't get out of balance, so scanning time
  75 *    remains the same (also, searching and inserting nodes in an rbtree uses
  76 *    the same algorithm, so we have no overhead when we flush and rebuild).
  77 * 4) KSM never flushes the stable tree, which means that even if it were to
  78 *    take 10 attempts to find a page in the unstable tree, once it is found,
  79 *    it is secured in the stable tree.  (When we scan a new page, we first
  80 *    compare it against the stable tree, and then against the unstable tree.)
 
 
 
  81 */
  82
  83/**
  84 * struct mm_slot - ksm information per mm that is being scanned
  85 * @link: link to the mm_slots hash list
  86 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
  87 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
  88 * @mm: the mm that this information is valid for
  89 */
  90struct mm_slot {
  91	struct hlist_node link;
  92	struct list_head mm_list;
  93	struct rmap_item *rmap_list;
  94	struct mm_struct *mm;
  95};
  96
  97/**
  98 * struct ksm_scan - cursor for scanning
  99 * @mm_slot: the current mm_slot we are scanning
 100 * @address: the next address inside that to be scanned
 101 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 102 * @seqnr: count of completed full scans (needed when removing unstable node)
 103 *
 104 * There is only the one ksm_scan instance of this cursor structure.
 105 */
 106struct ksm_scan {
 107	struct mm_slot *mm_slot;
 108	unsigned long address;
 109	struct rmap_item **rmap_list;
 110	unsigned long seqnr;
 111};
 112
 113/**
 114 * struct stable_node - node of the stable rbtree
 115 * @node: rb node of this ksm page in the stable tree
 
 
 116 * @hlist: hlist head of rmap_items using this ksm page
 117 * @kpfn: page frame number of this ksm page
 
 118 */
 119struct stable_node {
 120	struct rb_node node;
 
 
 
 
 
 
 121	struct hlist_head hlist;
 122	unsigned long kpfn;
 
 
 
 123};
 124
 125/**
 126 * struct rmap_item - reverse mapping item for virtual addresses
 127 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 128 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 
 129 * @mm: the memory structure this rmap_item is pointing into
 130 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 131 * @oldchecksum: previous checksum of the page at that virtual address
 132 * @node: rb node of this rmap_item in the unstable tree
 133 * @head: pointer to stable_node heading this list in the stable tree
 134 * @hlist: link into hlist of rmap_items hanging off that stable_node
 135 */
 136struct rmap_item {
 137	struct rmap_item *rmap_list;
 138	struct anon_vma *anon_vma;	/* when stable */
 
 
 
 
 
 139	struct mm_struct *mm;
 140	unsigned long address;		/* + low bits used for flags below */
 141	unsigned int oldchecksum;	/* when unstable */
 142	union {
 143		struct rb_node node;	/* when node of unstable tree */
 144		struct {		/* when listed from stable tree */
 145			struct stable_node *head;
 146			struct hlist_node hlist;
 147		};
 148	};
 149};
 150
 151#define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
 152#define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
 153#define STABLE_FLAG	0x200	/* is listed from the stable tree */
 154
 155/* The stable and unstable tree heads */
 156static struct rb_root root_stable_tree = RB_ROOT;
 157static struct rb_root root_unstable_tree = RB_ROOT;
 
 
 158
 159#define MM_SLOTS_HASH_SHIFT 10
 160#define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT)
 161static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS];
 
 
 162
 163static struct mm_slot ksm_mm_head = {
 164	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 165};
 166static struct ksm_scan ksm_scan = {
 167	.mm_slot = &ksm_mm_head,
 168};
 169
 170static struct kmem_cache *rmap_item_cache;
 171static struct kmem_cache *stable_node_cache;
 172static struct kmem_cache *mm_slot_cache;
 173
 174/* The number of nodes in the stable tree */
 175static unsigned long ksm_pages_shared;
 176
 177/* The number of page slots additionally sharing those nodes */
 178static unsigned long ksm_pages_sharing;
 179
 180/* The number of nodes in the unstable tree */
 181static unsigned long ksm_pages_unshared;
 182
 183/* The number of rmap_items in use: to calculate pages_volatile */
 184static unsigned long ksm_rmap_items;
 185
 186/* Number of pages ksmd should scan in one batch */
 187static unsigned int ksm_thread_pages_to_scan = 100;
 188
 189/* Milliseconds ksmd should sleep between batches */
 190static unsigned int ksm_thread_sleep_millisecs = 20;
 191
 
 
 
 
 
 
 
 
 
 192#define KSM_RUN_STOP	0
 193#define KSM_RUN_MERGE	1
 194#define KSM_RUN_UNMERGE	2
 195static unsigned int ksm_run = KSM_RUN_STOP;
 
 
 196
 197static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 198static DEFINE_MUTEX(ksm_thread_mutex);
 199static DEFINE_SPINLOCK(ksm_mmlist_lock);
 200
 201#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 202		sizeof(struct __struct), __alignof__(struct __struct),\
 203		(__flags), NULL)
 204
 205static int __init ksm_slab_init(void)
 206{
 207	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 208	if (!rmap_item_cache)
 209		goto out;
 210
 211	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
 212	if (!stable_node_cache)
 213		goto out_free1;
 214
 215	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 216	if (!mm_slot_cache)
 217		goto out_free2;
 218
 219	return 0;
 220
 221out_free2:
 222	kmem_cache_destroy(stable_node_cache);
 223out_free1:
 224	kmem_cache_destroy(rmap_item_cache);
 225out:
 226	return -ENOMEM;
 227}
 228
 229static void __init ksm_slab_free(void)
 230{
 231	kmem_cache_destroy(mm_slot_cache);
 232	kmem_cache_destroy(stable_node_cache);
 233	kmem_cache_destroy(rmap_item_cache);
 234	mm_slot_cache = NULL;
 235}
 236
 237static inline struct rmap_item *alloc_rmap_item(void)
 238{
 239	struct rmap_item *rmap_item;
 240
 241	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
 242	if (rmap_item)
 243		ksm_rmap_items++;
 244	return rmap_item;
 245}
 246
 247static inline void free_rmap_item(struct rmap_item *rmap_item)
 248{
 249	ksm_rmap_items--;
 250	rmap_item->mm = NULL;	/* debug safety */
 251	kmem_cache_free(rmap_item_cache, rmap_item);
 252}
 253
 254static inline struct stable_node *alloc_stable_node(void)
 255{
 256	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
 257}
 258
 259static inline void free_stable_node(struct stable_node *stable_node)
 260{
 261	kmem_cache_free(stable_node_cache, stable_node);
 262}
 263
 264static inline struct mm_slot *alloc_mm_slot(void)
 265{
 266	if (!mm_slot_cache)	/* initialization failed */
 267		return NULL;
 268	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 269}
 270
 271static inline void free_mm_slot(struct mm_slot *mm_slot)
 272{
 273	kmem_cache_free(mm_slot_cache, mm_slot);
 274}
 275
 276static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 277{
 278	struct mm_slot *mm_slot;
 279	struct hlist_head *bucket;
 280	struct hlist_node *node;
 
 
 281
 282	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
 283	hlist_for_each_entry(mm_slot, node, bucket, link) {
 284		if (mm == mm_slot->mm)
 285			return mm_slot;
 286	}
 287	return NULL;
 288}
 289
 290static void insert_to_mm_slots_hash(struct mm_struct *mm,
 291				    struct mm_slot *mm_slot)
 292{
 293	struct hlist_head *bucket;
 294
 295	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
 296	mm_slot->mm = mm;
 297	hlist_add_head(&mm_slot->link, bucket);
 298}
 299
 300static inline int in_stable_tree(struct rmap_item *rmap_item)
 301{
 302	return rmap_item->address & STABLE_FLAG;
 303}
 304
 305/*
 306 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 307 * page tables after it has passed through ksm_exit() - which, if necessary,
 308 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
 309 * a special flag: they can just back out as soon as mm_users goes to zero.
 310 * ksm_test_exit() is used throughout to make this test for exit: in some
 311 * places for correctness, in some places just to avoid unnecessary work.
 312 */
 313static inline bool ksm_test_exit(struct mm_struct *mm)
 314{
 315	return atomic_read(&mm->mm_users) == 0;
 316}
 317
 318/*
 319 * We use break_ksm to break COW on a ksm page: it's a stripped down
 320 *
 321 *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
 322 *		put_page(page);
 323 *
 324 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 325 * in case the application has unmapped and remapped mm,addr meanwhile.
 326 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 327 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
 328 */
 329static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 330{
 331	struct page *page;
 332	int ret = 0;
 333
 334	do {
 335		cond_resched();
 336		page = follow_page(vma, addr, FOLL_GET);
 337		if (IS_ERR_OR_NULL(page))
 338			break;
 339		if (PageKsm(page))
 340			ret = handle_mm_fault(vma->vm_mm, vma, addr,
 341							FAULT_FLAG_WRITE);
 342		else
 343			ret = VM_FAULT_WRITE;
 344		put_page(page);
 345	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
 346	/*
 347	 * We must loop because handle_mm_fault() may back out if there's
 348	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
 349	 *
 350	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 351	 * COW has been broken, even if the vma does not permit VM_WRITE;
 352	 * but note that a concurrent fault might break PageKsm for us.
 353	 *
 354	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
 355	 * backing file, which also invalidates anonymous pages: that's
 356	 * okay, that truncation will have unmapped the PageKsm for us.
 357	 *
 358	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 359	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 360	 * current task has TIF_MEMDIE set, and will be OOM killed on return
 361	 * to user; and ksmd, having no mm, would never be chosen for that.
 362	 *
 363	 * But if the mm is in a limited mem_cgroup, then the fault may fail
 364	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 365	 * even ksmd can fail in this way - though it's usually breaking ksm
 366	 * just to undo a merge it made a moment before, so unlikely to oom.
 367	 *
 368	 * That's a pity: we might therefore have more kernel pages allocated
 369	 * than we're counting as nodes in the stable tree; but ksm_do_scan
 370	 * will retry to break_cow on each pass, so should recover the page
 371	 * in due course.  The important thing is to not let VM_MERGEABLE
 372	 * be cleared while any such pages might remain in the area.
 373	 */
 374	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 375}
 376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377static void break_cow(struct rmap_item *rmap_item)
 378{
 379	struct mm_struct *mm = rmap_item->mm;
 380	unsigned long addr = rmap_item->address;
 381	struct vm_area_struct *vma;
 382
 383	/*
 384	 * It is not an accident that whenever we want to break COW
 385	 * to undo, we also need to drop a reference to the anon_vma.
 386	 */
 387	put_anon_vma(rmap_item->anon_vma);
 388
 389	down_read(&mm->mmap_sem);
 390	if (ksm_test_exit(mm))
 391		goto out;
 392	vma = find_vma(mm, addr);
 393	if (!vma || vma->vm_start > addr)
 394		goto out;
 395	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 396		goto out;
 397	break_ksm(vma, addr);
 398out:
 399	up_read(&mm->mmap_sem);
 400}
 401
 402static struct page *page_trans_compound_anon(struct page *page)
 403{
 404	if (PageTransCompound(page)) {
 405		struct page *head = compound_trans_head(page);
 406		/*
 407		 * head may actually be splitted and freed from under
 408		 * us but it's ok here.
 409		 */
 410		if (PageAnon(head))
 411			return head;
 412	}
 413	return NULL;
 414}
 415
 416static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 417{
 418	struct mm_struct *mm = rmap_item->mm;
 419	unsigned long addr = rmap_item->address;
 420	struct vm_area_struct *vma;
 421	struct page *page;
 422
 423	down_read(&mm->mmap_sem);
 424	if (ksm_test_exit(mm))
 425		goto out;
 426	vma = find_vma(mm, addr);
 427	if (!vma || vma->vm_start > addr)
 428		goto out;
 429	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 430		goto out;
 431
 432	page = follow_page(vma, addr, FOLL_GET);
 433	if (IS_ERR_OR_NULL(page))
 434		goto out;
 435	if (PageAnon(page) || page_trans_compound_anon(page)) {
 436		flush_anon_page(vma, page, addr);
 437		flush_dcache_page(page);
 438	} else {
 439		put_page(page);
 440out:		page = NULL;
 441	}
 442	up_read(&mm->mmap_sem);
 443	return page;
 444}
 445
 
 
 
 
 
 
 
 
 
 
 
 446static void remove_node_from_stable_tree(struct stable_node *stable_node)
 447{
 448	struct rmap_item *rmap_item;
 449	struct hlist_node *hlist;
 450
 451	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
 452		if (rmap_item->hlist.next)
 453			ksm_pages_sharing--;
 454		else
 455			ksm_pages_shared--;
 456		put_anon_vma(rmap_item->anon_vma);
 457		rmap_item->address &= PAGE_MASK;
 458		cond_resched();
 459	}
 460
 461	rb_erase(&stable_node->node, &root_stable_tree);
 
 
 
 
 462	free_stable_node(stable_node);
 463}
 464
 465/*
 466 * get_ksm_page: checks if the page indicated by the stable node
 467 * is still its ksm page, despite having held no reference to it.
 468 * In which case we can trust the content of the page, and it
 469 * returns the gotten page; but if the page has now been zapped,
 470 * remove the stale node from the stable tree and return NULL.
 
 471 *
 472 * You would expect the stable_node to hold a reference to the ksm page.
 473 * But if it increments the page's count, swapping out has to wait for
 474 * ksmd to come around again before it can free the page, which may take
 475 * seconds or even minutes: much too unresponsive.  So instead we use a
 476 * "keyhole reference": access to the ksm page from the stable node peeps
 477 * out through its keyhole to see if that page still holds the right key,
 478 * pointing back to this stable node.  This relies on freeing a PageAnon
 479 * page to reset its page->mapping to NULL, and relies on no other use of
 480 * a page to put something that might look like our key in page->mapping.
 481 *
 482 * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
 483 * but this is different - made simpler by ksm_thread_mutex being held, but
 484 * interesting for assuming that no other use of the struct page could ever
 485 * put our expected_mapping into page->mapping (or a field of the union which
 486 * coincides with page->mapping).  The RCU calls are not for KSM at all, but
 487 * to keep the page_count protocol described with page_cache_get_speculative.
 488 *
 489 * Note: it is possible that get_ksm_page() will return NULL one moment,
 490 * then page the next, if the page is in between page_freeze_refs() and
 491 * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
 492 * is on its way to being freed; but it is an anomaly to bear in mind.
 493 */
 494static struct page *get_ksm_page(struct stable_node *stable_node)
 495{
 496	struct page *page;
 497	void *expected_mapping;
 
 498
 499	page = pfn_to_page(stable_node->kpfn);
 500	expected_mapping = (void *)stable_node +
 501				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
 502	rcu_read_lock();
 503	if (page->mapping != expected_mapping)
 504		goto stale;
 505	if (!get_page_unless_zero(page))
 
 
 
 
 
 
 
 506		goto stale;
 507	if (page->mapping != expected_mapping) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508		put_page(page);
 509		goto stale;
 510	}
 511	rcu_read_unlock();
 
 
 
 
 
 
 
 
 512	return page;
 
 513stale:
 514	rcu_read_unlock();
 
 
 
 
 
 
 
 
 515	remove_node_from_stable_tree(stable_node);
 516	return NULL;
 517}
 518
 519/*
 520 * Removing rmap_item from stable or unstable tree.
 521 * This function will clean the information from the stable/unstable tree.
 522 */
 523static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 524{
 525	if (rmap_item->address & STABLE_FLAG) {
 526		struct stable_node *stable_node;
 527		struct page *page;
 528
 529		stable_node = rmap_item->head;
 530		page = get_ksm_page(stable_node);
 531		if (!page)
 532			goto out;
 533
 534		lock_page(page);
 535		hlist_del(&rmap_item->hlist);
 536		unlock_page(page);
 537		put_page(page);
 538
 539		if (stable_node->hlist.first)
 540			ksm_pages_sharing--;
 541		else
 542			ksm_pages_shared--;
 543
 544		put_anon_vma(rmap_item->anon_vma);
 545		rmap_item->address &= PAGE_MASK;
 546
 547	} else if (rmap_item->address & UNSTABLE_FLAG) {
 548		unsigned char age;
 549		/*
 550		 * Usually ksmd can and must skip the rb_erase, because
 551		 * root_unstable_tree was already reset to RB_ROOT.
 552		 * But be careful when an mm is exiting: do the rb_erase
 553		 * if this rmap_item was inserted by this scan, rather
 554		 * than left over from before.
 555		 */
 556		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 557		BUG_ON(age > 1);
 558		if (!age)
 559			rb_erase(&rmap_item->node, &root_unstable_tree);
 560
 561		ksm_pages_unshared--;
 562		rmap_item->address &= PAGE_MASK;
 563	}
 564out:
 565	cond_resched();		/* we're called from many long loops */
 566}
 567
 568static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
 569				       struct rmap_item **rmap_list)
 570{
 571	while (*rmap_list) {
 572		struct rmap_item *rmap_item = *rmap_list;
 573		*rmap_list = rmap_item->rmap_list;
 574		remove_rmap_item_from_tree(rmap_item);
 575		free_rmap_item(rmap_item);
 576	}
 577}
 578
 579/*
 580 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
 581 * than check every pte of a given vma, the locking doesn't quite work for
 582 * that - an rmap_item is assigned to the stable tree after inserting ksm
 583 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
 584 * rmap_items from parent to child at fork time (so as not to waste time
 585 * if exit comes before the next scan reaches it).
 586 *
 587 * Similarly, although we'd like to remove rmap_items (so updating counts
 588 * and freeing memory) when unmerging an area, it's easier to leave that
 589 * to the next pass of ksmd - consider, for example, how ksmd might be
 590 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 591 */
 592static int unmerge_ksm_pages(struct vm_area_struct *vma,
 593			     unsigned long start, unsigned long end)
 594{
 595	unsigned long addr;
 596	int err = 0;
 597
 598	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 599		if (ksm_test_exit(vma->vm_mm))
 600			break;
 601		if (signal_pending(current))
 602			err = -ERESTARTSYS;
 603		else
 604			err = break_ksm(vma, addr);
 605	}
 606	return err;
 607}
 608
 609#ifdef CONFIG_SYSFS
 610/*
 611 * Only called through the sysfs control interface:
 612 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613static int unmerge_and_remove_all_rmap_items(void)
 614{
 615	struct mm_slot *mm_slot;
 616	struct mm_struct *mm;
 617	struct vm_area_struct *vma;
 618	int err = 0;
 619
 620	spin_lock(&ksm_mmlist_lock);
 621	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 622						struct mm_slot, mm_list);
 623	spin_unlock(&ksm_mmlist_lock);
 624
 625	for (mm_slot = ksm_scan.mm_slot;
 626			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 627		mm = mm_slot->mm;
 628		down_read(&mm->mmap_sem);
 629		for (vma = mm->mmap; vma; vma = vma->vm_next) {
 630			if (ksm_test_exit(mm))
 631				break;
 632			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 633				continue;
 634			err = unmerge_ksm_pages(vma,
 635						vma->vm_start, vma->vm_end);
 636			if (err)
 637				goto error;
 638		}
 639
 640		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
 641
 642		spin_lock(&ksm_mmlist_lock);
 643		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 644						struct mm_slot, mm_list);
 645		if (ksm_test_exit(mm)) {
 646			hlist_del(&mm_slot->link);
 647			list_del(&mm_slot->mm_list);
 648			spin_unlock(&ksm_mmlist_lock);
 649
 650			free_mm_slot(mm_slot);
 651			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
 652			up_read(&mm->mmap_sem);
 653			mmdrop(mm);
 654		} else {
 655			spin_unlock(&ksm_mmlist_lock);
 656			up_read(&mm->mmap_sem);
 657		}
 658	}
 659
 
 
 660	ksm_scan.seqnr = 0;
 661	return 0;
 662
 663error:
 664	up_read(&mm->mmap_sem);
 665	spin_lock(&ksm_mmlist_lock);
 666	ksm_scan.mm_slot = &ksm_mm_head;
 667	spin_unlock(&ksm_mmlist_lock);
 668	return err;
 669}
 670#endif /* CONFIG_SYSFS */
 671
 672static u32 calc_checksum(struct page *page)
 673{
 674	u32 checksum;
 675	void *addr = kmap_atomic(page, KM_USER0);
 676	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
 677	kunmap_atomic(addr, KM_USER0);
 678	return checksum;
 679}
 680
 681static int memcmp_pages(struct page *page1, struct page *page2)
 682{
 683	char *addr1, *addr2;
 684	int ret;
 685
 686	addr1 = kmap_atomic(page1, KM_USER0);
 687	addr2 = kmap_atomic(page2, KM_USER1);
 688	ret = memcmp(addr1, addr2, PAGE_SIZE);
 689	kunmap_atomic(addr2, KM_USER1);
 690	kunmap_atomic(addr1, KM_USER0);
 691	return ret;
 692}
 693
 694static inline int pages_identical(struct page *page1, struct page *page2)
 695{
 696	return !memcmp_pages(page1, page2);
 697}
 698
 699static int write_protect_page(struct vm_area_struct *vma, struct page *page,
 700			      pte_t *orig_pte)
 701{
 702	struct mm_struct *mm = vma->vm_mm;
 703	unsigned long addr;
 704	pte_t *ptep;
 705	spinlock_t *ptl;
 706	int swapped;
 707	int err = -EFAULT;
 
 
 708
 709	addr = page_address_in_vma(page, vma);
 710	if (addr == -EFAULT)
 711		goto out;
 712
 713	BUG_ON(PageTransCompound(page));
 
 
 
 
 
 714	ptep = page_check_address(page, mm, addr, &ptl, 0);
 715	if (!ptep)
 716		goto out;
 717
 718	if (pte_write(*ptep) || pte_dirty(*ptep)) {
 719		pte_t entry;
 720
 721		swapped = PageSwapCache(page);
 722		flush_cache_page(vma, addr, page_to_pfn(page));
 723		/*
 724		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
 725		 * take any lock, therefore the check that we are going to make
 726		 * with the pagecount against the mapcount is racey and
 727		 * O_DIRECT can happen right after the check.
 728		 * So we clear the pte and flush the tlb before the check
 729		 * this assure us that no O_DIRECT can happen after the check
 730		 * or in the middle of the check.
 731		 */
 732		entry = ptep_clear_flush(vma, addr, ptep);
 733		/*
 734		 * Check that no O_DIRECT or similar I/O is in progress on the
 735		 * page
 736		 */
 737		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
 738			set_pte_at(mm, addr, ptep, entry);
 739			goto out_unlock;
 740		}
 741		if (pte_dirty(entry))
 742			set_page_dirty(page);
 743		entry = pte_mkclean(pte_wrprotect(entry));
 744		set_pte_at_notify(mm, addr, ptep, entry);
 745	}
 746	*orig_pte = *ptep;
 747	err = 0;
 748
 749out_unlock:
 750	pte_unmap_unlock(ptep, ptl);
 
 
 751out:
 752	return err;
 753}
 754
 755/**
 756 * replace_page - replace page in vma by new ksm page
 757 * @vma:      vma that holds the pte pointing to page
 758 * @page:     the page we are replacing by kpage
 759 * @kpage:    the ksm page we replace page by
 760 * @orig_pte: the original value of the pte
 761 *
 762 * Returns 0 on success, -EFAULT on failure.
 763 */
 764static int replace_page(struct vm_area_struct *vma, struct page *page,
 765			struct page *kpage, pte_t orig_pte)
 766{
 767	struct mm_struct *mm = vma->vm_mm;
 768	pgd_t *pgd;
 769	pud_t *pud;
 770	pmd_t *pmd;
 771	pte_t *ptep;
 772	spinlock_t *ptl;
 773	unsigned long addr;
 774	int err = -EFAULT;
 
 
 775
 776	addr = page_address_in_vma(page, vma);
 777	if (addr == -EFAULT)
 778		goto out;
 779
 780	pgd = pgd_offset(mm, addr);
 781	if (!pgd_present(*pgd))
 782		goto out;
 783
 784	pud = pud_offset(pgd, addr);
 785	if (!pud_present(*pud))
 786		goto out;
 787
 788	pmd = pmd_offset(pud, addr);
 789	BUG_ON(pmd_trans_huge(*pmd));
 790	if (!pmd_present(*pmd))
 791		goto out;
 
 
 792
 793	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
 794	if (!pte_same(*ptep, orig_pte)) {
 795		pte_unmap_unlock(ptep, ptl);
 796		goto out;
 797	}
 798
 799	get_page(kpage);
 800	page_add_anon_rmap(kpage, vma, addr);
 801
 802	flush_cache_page(vma, addr, pte_pfn(*ptep));
 803	ptep_clear_flush(vma, addr, ptep);
 804	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
 805
 806	page_remove_rmap(page);
 807	if (!page_mapped(page))
 808		try_to_free_swap(page);
 809	put_page(page);
 810
 811	pte_unmap_unlock(ptep, ptl);
 812	err = 0;
 
 
 813out:
 814	return err;
 815}
 816
 817static int page_trans_compound_anon_split(struct page *page)
 818{
 819	int ret = 0;
 820	struct page *transhuge_head = page_trans_compound_anon(page);
 821	if (transhuge_head) {
 822		/* Get the reference on the head to split it. */
 823		if (get_page_unless_zero(transhuge_head)) {
 824			/*
 825			 * Recheck we got the reference while the head
 826			 * was still anonymous.
 827			 */
 828			if (PageAnon(transhuge_head))
 829				ret = split_huge_page(transhuge_head);
 830			else
 831				/*
 832				 * Retry later if split_huge_page run
 833				 * from under us.
 834				 */
 835				ret = 1;
 836			put_page(transhuge_head);
 837		} else
 838			/* Retry later if split_huge_page run from under us. */
 839			ret = 1;
 840	}
 841	return ret;
 842}
 843
 844/*
 845 * try_to_merge_one_page - take two pages and merge them into one
 846 * @vma: the vma that holds the pte pointing to page
 847 * @page: the PageAnon page that we want to replace with kpage
 848 * @kpage: the PageKsm page that we want to map instead of page,
 849 *         or NULL the first time when we want to use page as kpage.
 850 *
 851 * This function returns 0 if the pages were merged, -EFAULT otherwise.
 852 */
 853static int try_to_merge_one_page(struct vm_area_struct *vma,
 854				 struct page *page, struct page *kpage)
 855{
 856	pte_t orig_pte = __pte(0);
 857	int err = -EFAULT;
 858
 859	if (page == kpage)			/* ksm page forked */
 860		return 0;
 861
 862	if (!(vma->vm_flags & VM_MERGEABLE))
 863		goto out;
 864	if (PageTransCompound(page) && page_trans_compound_anon_split(page))
 865		goto out;
 866	BUG_ON(PageTransCompound(page));
 867	if (!PageAnon(page))
 868		goto out;
 869
 870	/*
 871	 * We need the page lock to read a stable PageSwapCache in
 872	 * write_protect_page().  We use trylock_page() instead of
 873	 * lock_page() because we don't want to wait here - we
 874	 * prefer to continue scanning and merging different pages,
 875	 * then come back to this page when it is unlocked.
 876	 */
 877	if (!trylock_page(page))
 878		goto out;
 879	/*
 880	 * If this anonymous page is mapped only here, its pte may need
 881	 * to be write-protected.  If it's mapped elsewhere, all of its
 882	 * ptes are necessarily already write-protected.  But in either
 883	 * case, we need to lock and check page_count is not raised.
 884	 */
 885	if (write_protect_page(vma, page, &orig_pte) == 0) {
 886		if (!kpage) {
 887			/*
 888			 * While we hold page lock, upgrade page from
 889			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
 890			 * stable_tree_insert() will update stable_node.
 891			 */
 892			set_page_stable_node(page, NULL);
 893			mark_page_accessed(page);
 894			err = 0;
 895		} else if (pages_identical(page, kpage))
 896			err = replace_page(vma, page, kpage, orig_pte);
 897	}
 898
 899	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
 900		munlock_vma_page(page);
 901		if (!PageMlocked(kpage)) {
 902			unlock_page(page);
 903			lock_page(kpage);
 904			mlock_vma_page(kpage);
 905			page = kpage;		/* for final unlock */
 906		}
 907	}
 908
 909	unlock_page(page);
 910out:
 911	return err;
 912}
 913
 914/*
 915 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
 916 * but no new kernel page is allocated: kpage must already be a ksm page.
 917 *
 918 * This function returns 0 if the pages were merged, -EFAULT otherwise.
 919 */
 920static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
 921				      struct page *page, struct page *kpage)
 922{
 923	struct mm_struct *mm = rmap_item->mm;
 924	struct vm_area_struct *vma;
 925	int err = -EFAULT;
 926
 927	down_read(&mm->mmap_sem);
 928	if (ksm_test_exit(mm))
 929		goto out;
 930	vma = find_vma(mm, rmap_item->address);
 931	if (!vma || vma->vm_start > rmap_item->address)
 932		goto out;
 933
 934	err = try_to_merge_one_page(vma, page, kpage);
 935	if (err)
 936		goto out;
 937
 
 
 
 938	/* Must get reference to anon_vma while still holding mmap_sem */
 939	rmap_item->anon_vma = vma->anon_vma;
 940	get_anon_vma(vma->anon_vma);
 941out:
 942	up_read(&mm->mmap_sem);
 943	return err;
 944}
 945
 946/*
 947 * try_to_merge_two_pages - take two identical pages and prepare them
 948 * to be merged into one page.
 949 *
 950 * This function returns the kpage if we successfully merged two identical
 951 * pages into one ksm page, NULL otherwise.
 952 *
 953 * Note that this function upgrades page to ksm page: if one of the pages
 954 * is already a ksm page, try_to_merge_with_ksm_page should be used.
 955 */
 956static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
 957					   struct page *page,
 958					   struct rmap_item *tree_rmap_item,
 959					   struct page *tree_page)
 960{
 961	int err;
 962
 963	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
 964	if (!err) {
 965		err = try_to_merge_with_ksm_page(tree_rmap_item,
 966							tree_page, page);
 967		/*
 968		 * If that fails, we have a ksm page with only one pte
 969		 * pointing to it: so break it.
 970		 */
 971		if (err)
 972			break_cow(rmap_item);
 973	}
 974	return err ? NULL : page;
 975}
 976
 977/*
 978 * stable_tree_search - search for page inside the stable tree
 979 *
 980 * This function checks if there is a page inside the stable tree
 981 * with identical content to the page that we are scanning right now.
 982 *
 983 * This function returns the stable tree node of identical content if found,
 984 * NULL otherwise.
 985 */
 986static struct page *stable_tree_search(struct page *page)
 987{
 988	struct rb_node *node = root_stable_tree.rb_node;
 
 
 
 989	struct stable_node *stable_node;
 
 990
 991	stable_node = page_stable_node(page);
 992	if (stable_node) {			/* ksm page forked */
 
 993		get_page(page);
 994		return page;
 995	}
 996
 997	while (node) {
 
 
 
 
 
 
 998		struct page *tree_page;
 999		int ret;
1000
1001		cond_resched();
1002		stable_node = rb_entry(node, struct stable_node, node);
1003		tree_page = get_ksm_page(stable_node);
1004		if (!tree_page)
1005			return NULL;
1006
1007		ret = memcmp_pages(page, tree_page);
 
1008
1009		if (ret < 0) {
1010			put_page(tree_page);
1011			node = node->rb_left;
1012		} else if (ret > 0) {
1013			put_page(tree_page);
1014			node = node->rb_right;
1015		} else
1016			return tree_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1017	}
1018
1019	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1020}
1021
1022/*
1023 * stable_tree_insert - insert rmap_item pointing to new ksm page
1024 * into the stable tree.
1025 *
1026 * This function returns the stable tree node just allocated on success,
1027 * NULL otherwise.
1028 */
1029static struct stable_node *stable_tree_insert(struct page *kpage)
1030{
1031	struct rb_node **new = &root_stable_tree.rb_node;
 
 
 
1032	struct rb_node *parent = NULL;
1033	struct stable_node *stable_node;
1034
 
 
 
 
 
1035	while (*new) {
1036		struct page *tree_page;
1037		int ret;
1038
1039		cond_resched();
1040		stable_node = rb_entry(*new, struct stable_node, node);
1041		tree_page = get_ksm_page(stable_node);
1042		if (!tree_page)
1043			return NULL;
1044
1045		ret = memcmp_pages(kpage, tree_page);
1046		put_page(tree_page);
1047
1048		parent = *new;
1049		if (ret < 0)
1050			new = &parent->rb_left;
1051		else if (ret > 0)
1052			new = &parent->rb_right;
1053		else {
1054			/*
1055			 * It is not a bug that stable_tree_search() didn't
1056			 * find this node: because at that time our page was
1057			 * not yet write-protected, so may have changed since.
1058			 */
1059			return NULL;
1060		}
1061	}
1062
1063	stable_node = alloc_stable_node();
1064	if (!stable_node)
1065		return NULL;
1066
1067	rb_link_node(&stable_node->node, parent, new);
1068	rb_insert_color(&stable_node->node, &root_stable_tree);
1069
1070	INIT_HLIST_HEAD(&stable_node->hlist);
1071
1072	stable_node->kpfn = page_to_pfn(kpage);
1073	set_page_stable_node(kpage, stable_node);
 
 
 
1074
1075	return stable_node;
1076}
1077
1078/*
1079 * unstable_tree_search_insert - search for identical page,
1080 * else insert rmap_item into the unstable tree.
1081 *
1082 * This function searches for a page in the unstable tree identical to the
1083 * page currently being scanned; and if no identical page is found in the
1084 * tree, we insert rmap_item as a new object into the unstable tree.
1085 *
1086 * This function returns pointer to rmap_item found to be identical
1087 * to the currently scanned page, NULL otherwise.
1088 *
1089 * This function does both searching and inserting, because they share
1090 * the same walking algorithm in an rbtree.
1091 */
1092static
1093struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1094					      struct page *page,
1095					      struct page **tree_pagep)
1096
1097{
1098	struct rb_node **new = &root_unstable_tree.rb_node;
 
1099	struct rb_node *parent = NULL;
 
 
 
 
 
1100
1101	while (*new) {
1102		struct rmap_item *tree_rmap_item;
1103		struct page *tree_page;
1104		int ret;
1105
1106		cond_resched();
1107		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1108		tree_page = get_mergeable_page(tree_rmap_item);
1109		if (IS_ERR_OR_NULL(tree_page))
1110			return NULL;
1111
1112		/*
1113		 * Don't substitute a ksm page for a forked page.
1114		 */
1115		if (page == tree_page) {
1116			put_page(tree_page);
1117			return NULL;
1118		}
1119
1120		ret = memcmp_pages(page, tree_page);
1121
1122		parent = *new;
1123		if (ret < 0) {
1124			put_page(tree_page);
1125			new = &parent->rb_left;
1126		} else if (ret > 0) {
1127			put_page(tree_page);
1128			new = &parent->rb_right;
 
 
 
 
 
 
 
 
 
1129		} else {
1130			*tree_pagep = tree_page;
1131			return tree_rmap_item;
1132		}
1133	}
1134
1135	rmap_item->address |= UNSTABLE_FLAG;
1136	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
 
1137	rb_link_node(&rmap_item->node, parent, new);
1138	rb_insert_color(&rmap_item->node, &root_unstable_tree);
1139
1140	ksm_pages_unshared++;
1141	return NULL;
1142}
1143
1144/*
1145 * stable_tree_append - add another rmap_item to the linked list of
1146 * rmap_items hanging off a given node of the stable tree, all sharing
1147 * the same ksm page.
1148 */
1149static void stable_tree_append(struct rmap_item *rmap_item,
1150			       struct stable_node *stable_node)
1151{
1152	rmap_item->head = stable_node;
1153	rmap_item->address |= STABLE_FLAG;
1154	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1155
1156	if (rmap_item->hlist.next)
1157		ksm_pages_sharing++;
1158	else
1159		ksm_pages_shared++;
1160}
1161
1162/*
1163 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1164 * if not, compare checksum to previous and if it's the same, see if page can
1165 * be inserted into the unstable tree, or merged with a page already there and
1166 * both transferred to the stable tree.
1167 *
1168 * @page: the page that we are searching identical page to.
1169 * @rmap_item: the reverse mapping into the virtual address of this page
1170 */
1171static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1172{
1173	struct rmap_item *tree_rmap_item;
1174	struct page *tree_page = NULL;
1175	struct stable_node *stable_node;
1176	struct page *kpage;
1177	unsigned int checksum;
1178	int err;
1179
1180	remove_rmap_item_from_tree(rmap_item);
 
 
 
 
 
 
 
 
 
 
 
 
1181
1182	/* We first start with searching the page inside the stable tree */
1183	kpage = stable_tree_search(page);
 
 
 
 
 
 
 
1184	if (kpage) {
1185		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1186		if (!err) {
1187			/*
1188			 * The page was successfully merged:
1189			 * add its rmap_item to the stable tree.
1190			 */
1191			lock_page(kpage);
1192			stable_tree_append(rmap_item, page_stable_node(kpage));
1193			unlock_page(kpage);
1194		}
1195		put_page(kpage);
1196		return;
1197	}
1198
1199	/*
1200	 * If the hash value of the page has changed from the last time
1201	 * we calculated it, this page is changing frequently: therefore we
1202	 * don't want to insert it in the unstable tree, and we don't want
1203	 * to waste our time searching for something identical to it there.
1204	 */
1205	checksum = calc_checksum(page);
1206	if (rmap_item->oldchecksum != checksum) {
1207		rmap_item->oldchecksum = checksum;
1208		return;
1209	}
1210
1211	tree_rmap_item =
1212		unstable_tree_search_insert(rmap_item, page, &tree_page);
1213	if (tree_rmap_item) {
1214		kpage = try_to_merge_two_pages(rmap_item, page,
1215						tree_rmap_item, tree_page);
1216		put_page(tree_page);
1217		/*
1218		 * As soon as we merge this page, we want to remove the
1219		 * rmap_item of the page we have merged with from the unstable
1220		 * tree, and insert it instead as new node in the stable tree.
1221		 */
1222		if (kpage) {
1223			remove_rmap_item_from_tree(tree_rmap_item);
1224
 
 
1225			lock_page(kpage);
1226			stable_node = stable_tree_insert(kpage);
1227			if (stable_node) {
1228				stable_tree_append(tree_rmap_item, stable_node);
1229				stable_tree_append(rmap_item, stable_node);
1230			}
1231			unlock_page(kpage);
1232
1233			/*
1234			 * If we fail to insert the page into the stable tree,
1235			 * we will have 2 virtual addresses that are pointing
1236			 * to a ksm page left outside the stable tree,
1237			 * in which case we need to break_cow on both.
1238			 */
1239			if (!stable_node) {
1240				break_cow(tree_rmap_item);
1241				break_cow(rmap_item);
1242			}
1243		}
1244	}
1245}
1246
1247static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1248					    struct rmap_item **rmap_list,
1249					    unsigned long addr)
1250{
1251	struct rmap_item *rmap_item;
1252
1253	while (*rmap_list) {
1254		rmap_item = *rmap_list;
1255		if ((rmap_item->address & PAGE_MASK) == addr)
1256			return rmap_item;
1257		if (rmap_item->address > addr)
1258			break;
1259		*rmap_list = rmap_item->rmap_list;
1260		remove_rmap_item_from_tree(rmap_item);
1261		free_rmap_item(rmap_item);
1262	}
1263
1264	rmap_item = alloc_rmap_item();
1265	if (rmap_item) {
1266		/* It has already been zeroed */
1267		rmap_item->mm = mm_slot->mm;
1268		rmap_item->address = addr;
1269		rmap_item->rmap_list = *rmap_list;
1270		*rmap_list = rmap_item;
1271	}
1272	return rmap_item;
1273}
1274
1275static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1276{
1277	struct mm_struct *mm;
1278	struct mm_slot *slot;
1279	struct vm_area_struct *vma;
1280	struct rmap_item *rmap_item;
 
1281
1282	if (list_empty(&ksm_mm_head.mm_list))
1283		return NULL;
1284
1285	slot = ksm_scan.mm_slot;
1286	if (slot == &ksm_mm_head) {
1287		/*
1288		 * A number of pages can hang around indefinitely on per-cpu
1289		 * pagevecs, raised page count preventing write_protect_page
1290		 * from merging them.  Though it doesn't really matter much,
1291		 * it is puzzling to see some stuck in pages_volatile until
1292		 * other activity jostles them out, and they also prevented
1293		 * LTP's KSM test from succeeding deterministically; so drain
1294		 * them here (here rather than on entry to ksm_do_scan(),
1295		 * so we don't IPI too often when pages_to_scan is set low).
1296		 */
1297		lru_add_drain_all();
1298
1299		root_unstable_tree = RB_ROOT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1300
1301		spin_lock(&ksm_mmlist_lock);
1302		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1303		ksm_scan.mm_slot = slot;
1304		spin_unlock(&ksm_mmlist_lock);
1305		/*
1306		 * Although we tested list_empty() above, a racing __ksm_exit
1307		 * of the last mm on the list may have removed it since then.
1308		 */
1309		if (slot == &ksm_mm_head)
1310			return NULL;
1311next_mm:
1312		ksm_scan.address = 0;
1313		ksm_scan.rmap_list = &slot->rmap_list;
1314	}
1315
1316	mm = slot->mm;
1317	down_read(&mm->mmap_sem);
1318	if (ksm_test_exit(mm))
1319		vma = NULL;
1320	else
1321		vma = find_vma(mm, ksm_scan.address);
1322
1323	for (; vma; vma = vma->vm_next) {
1324		if (!(vma->vm_flags & VM_MERGEABLE))
1325			continue;
1326		if (ksm_scan.address < vma->vm_start)
1327			ksm_scan.address = vma->vm_start;
1328		if (!vma->anon_vma)
1329			ksm_scan.address = vma->vm_end;
1330
1331		while (ksm_scan.address < vma->vm_end) {
1332			if (ksm_test_exit(mm))
1333				break;
1334			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1335			if (IS_ERR_OR_NULL(*page)) {
1336				ksm_scan.address += PAGE_SIZE;
1337				cond_resched();
1338				continue;
1339			}
1340			if (PageAnon(*page) ||
1341			    page_trans_compound_anon(*page)) {
1342				flush_anon_page(vma, *page, ksm_scan.address);
1343				flush_dcache_page(*page);
1344				rmap_item = get_next_rmap_item(slot,
1345					ksm_scan.rmap_list, ksm_scan.address);
1346				if (rmap_item) {
1347					ksm_scan.rmap_list =
1348							&rmap_item->rmap_list;
1349					ksm_scan.address += PAGE_SIZE;
1350				} else
1351					put_page(*page);
1352				up_read(&mm->mmap_sem);
1353				return rmap_item;
1354			}
1355			put_page(*page);
1356			ksm_scan.address += PAGE_SIZE;
1357			cond_resched();
1358		}
1359	}
1360
1361	if (ksm_test_exit(mm)) {
1362		ksm_scan.address = 0;
1363		ksm_scan.rmap_list = &slot->rmap_list;
1364	}
1365	/*
1366	 * Nuke all the rmap_items that are above this current rmap:
1367	 * because there were no VM_MERGEABLE vmas with such addresses.
1368	 */
1369	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1370
1371	spin_lock(&ksm_mmlist_lock);
1372	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1373						struct mm_slot, mm_list);
1374	if (ksm_scan.address == 0) {
1375		/*
1376		 * We've completed a full scan of all vmas, holding mmap_sem
1377		 * throughout, and found no VM_MERGEABLE: so do the same as
1378		 * __ksm_exit does to remove this mm from all our lists now.
1379		 * This applies either when cleaning up after __ksm_exit
1380		 * (but beware: we can reach here even before __ksm_exit),
1381		 * or when all VM_MERGEABLE areas have been unmapped (and
1382		 * mmap_sem then protects against race with MADV_MERGEABLE).
1383		 */
1384		hlist_del(&slot->link);
1385		list_del(&slot->mm_list);
1386		spin_unlock(&ksm_mmlist_lock);
1387
1388		free_mm_slot(slot);
1389		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1390		up_read(&mm->mmap_sem);
1391		mmdrop(mm);
1392	} else {
1393		spin_unlock(&ksm_mmlist_lock);
1394		up_read(&mm->mmap_sem);
1395	}
1396
1397	/* Repeat until we've completed scanning the whole list */
1398	slot = ksm_scan.mm_slot;
1399	if (slot != &ksm_mm_head)
1400		goto next_mm;
1401
1402	ksm_scan.seqnr++;
1403	return NULL;
1404}
1405
1406/**
1407 * ksm_do_scan  - the ksm scanner main worker function.
1408 * @scan_npages - number of pages we want to scan before we return.
1409 */
1410static void ksm_do_scan(unsigned int scan_npages)
1411{
1412	struct rmap_item *rmap_item;
1413	struct page *uninitialized_var(page);
1414
1415	while (scan_npages-- && likely(!freezing(current))) {
1416		cond_resched();
1417		rmap_item = scan_get_next_rmap_item(&page);
1418		if (!rmap_item)
1419			return;
1420		if (!PageKsm(page) || !in_stable_tree(rmap_item))
1421			cmp_and_merge_page(page, rmap_item);
1422		put_page(page);
1423	}
1424}
1425
1426static int ksmd_should_run(void)
1427{
1428	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1429}
1430
1431static int ksm_scan_thread(void *nothing)
1432{
1433	set_freezable();
1434	set_user_nice(current, 5);
1435
1436	while (!kthread_should_stop()) {
1437		mutex_lock(&ksm_thread_mutex);
 
1438		if (ksmd_should_run())
1439			ksm_do_scan(ksm_thread_pages_to_scan);
1440		mutex_unlock(&ksm_thread_mutex);
1441
1442		try_to_freeze();
1443
1444		if (ksmd_should_run()) {
1445			schedule_timeout_interruptible(
1446				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1447		} else {
1448			wait_event_freezable(ksm_thread_wait,
1449				ksmd_should_run() || kthread_should_stop());
1450		}
1451	}
1452	return 0;
1453}
1454
1455int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1456		unsigned long end, int advice, unsigned long *vm_flags)
1457{
1458	struct mm_struct *mm = vma->vm_mm;
1459	int err;
1460
1461	switch (advice) {
1462	case MADV_MERGEABLE:
1463		/*
1464		 * Be somewhat over-protective for now!
1465		 */
1466		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1467				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1468				 VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1469				 VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
1470			return 0;		/* just ignore the advice */
1471
 
 
 
 
 
1472		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1473			err = __ksm_enter(mm);
1474			if (err)
1475				return err;
1476		}
1477
1478		*vm_flags |= VM_MERGEABLE;
1479		break;
1480
1481	case MADV_UNMERGEABLE:
1482		if (!(*vm_flags & VM_MERGEABLE))
1483			return 0;		/* just ignore the advice */
1484
1485		if (vma->anon_vma) {
1486			err = unmerge_ksm_pages(vma, start, end);
1487			if (err)
1488				return err;
1489		}
1490
1491		*vm_flags &= ~VM_MERGEABLE;
1492		break;
1493	}
1494
1495	return 0;
1496}
1497
1498int __ksm_enter(struct mm_struct *mm)
1499{
1500	struct mm_slot *mm_slot;
1501	int needs_wakeup;
1502
1503	mm_slot = alloc_mm_slot();
1504	if (!mm_slot)
1505		return -ENOMEM;
1506
1507	/* Check ksm_run too?  Would need tighter locking */
1508	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1509
1510	spin_lock(&ksm_mmlist_lock);
1511	insert_to_mm_slots_hash(mm, mm_slot);
1512	/*
1513	 * Insert just behind the scanning cursor, to let the area settle
 
1514	 * down a little; when fork is followed by immediate exec, we don't
1515	 * want ksmd to waste time setting up and tearing down an rmap_list.
 
 
 
 
1516	 */
1517	list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
 
 
 
1518	spin_unlock(&ksm_mmlist_lock);
1519
1520	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1521	atomic_inc(&mm->mm_count);
1522
1523	if (needs_wakeup)
1524		wake_up_interruptible(&ksm_thread_wait);
1525
1526	return 0;
1527}
1528
1529void __ksm_exit(struct mm_struct *mm)
1530{
1531	struct mm_slot *mm_slot;
1532	int easy_to_free = 0;
1533
1534	/*
1535	 * This process is exiting: if it's straightforward (as is the
1536	 * case when ksmd was never running), free mm_slot immediately.
1537	 * But if it's at the cursor or has rmap_items linked to it, use
1538	 * mmap_sem to synchronize with any break_cows before pagetables
1539	 * are freed, and leave the mm_slot on the list for ksmd to free.
1540	 * Beware: ksm may already have noticed it exiting and freed the slot.
1541	 */
1542
1543	spin_lock(&ksm_mmlist_lock);
1544	mm_slot = get_mm_slot(mm);
1545	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1546		if (!mm_slot->rmap_list) {
1547			hlist_del(&mm_slot->link);
1548			list_del(&mm_slot->mm_list);
1549			easy_to_free = 1;
1550		} else {
1551			list_move(&mm_slot->mm_list,
1552				  &ksm_scan.mm_slot->mm_list);
1553		}
1554	}
1555	spin_unlock(&ksm_mmlist_lock);
1556
1557	if (easy_to_free) {
1558		free_mm_slot(mm_slot);
1559		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1560		mmdrop(mm);
1561	} else if (mm_slot) {
1562		down_write(&mm->mmap_sem);
1563		up_write(&mm->mmap_sem);
1564	}
1565}
1566
1567struct page *ksm_does_need_to_copy(struct page *page,
1568			struct vm_area_struct *vma, unsigned long address)
1569{
 
1570	struct page *new_page;
1571
 
 
 
 
 
 
 
 
 
 
 
 
 
1572	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1573	if (new_page) {
1574		copy_user_highpage(new_page, page, address, vma);
1575
1576		SetPageDirty(new_page);
1577		__SetPageUptodate(new_page);
1578		SetPageSwapBacked(new_page);
1579		__set_page_locked(new_page);
1580
1581		if (page_evictable(new_page, vma))
1582			lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1583		else
1584			add_page_to_unevictable_list(new_page);
1585	}
1586
1587	return new_page;
1588}
1589
1590int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1591			unsigned long *vm_flags)
1592{
1593	struct stable_node *stable_node;
1594	struct rmap_item *rmap_item;
1595	struct hlist_node *hlist;
1596	unsigned int mapcount = page_mapcount(page);
1597	int referenced = 0;
1598	int search_new_forks = 0;
1599
1600	VM_BUG_ON(!PageKsm(page));
1601	VM_BUG_ON(!PageLocked(page));
1602
1603	stable_node = page_stable_node(page);
1604	if (!stable_node)
1605		return 0;
1606again:
1607	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1608		struct anon_vma *anon_vma = rmap_item->anon_vma;
1609		struct anon_vma_chain *vmac;
1610		struct vm_area_struct *vma;
1611
1612		anon_vma_lock(anon_vma);
1613		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1614			vma = vmac->vma;
1615			if (rmap_item->address < vma->vm_start ||
1616			    rmap_item->address >= vma->vm_end)
1617				continue;
1618			/*
1619			 * Initially we examine only the vma which covers this
1620			 * rmap_item; but later, if there is still work to do,
1621			 * we examine covering vmas in other mms: in case they
1622			 * were forked from the original since ksmd passed.
1623			 */
1624			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1625				continue;
1626
1627			if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1628				continue;
1629
1630			referenced += page_referenced_one(page, vma,
1631				rmap_item->address, &mapcount, vm_flags);
1632			if (!search_new_forks || !mapcount)
1633				break;
1634		}
1635		anon_vma_unlock(anon_vma);
1636		if (!mapcount)
1637			goto out;
1638	}
1639	if (!search_new_forks++)
1640		goto again;
1641out:
1642	return referenced;
1643}
1644
1645int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1646{
1647	struct stable_node *stable_node;
1648	struct hlist_node *hlist;
1649	struct rmap_item *rmap_item;
1650	int ret = SWAP_AGAIN;
1651	int search_new_forks = 0;
1652
1653	VM_BUG_ON(!PageKsm(page));
1654	VM_BUG_ON(!PageLocked(page));
1655
1656	stable_node = page_stable_node(page);
1657	if (!stable_node)
1658		return SWAP_FAIL;
1659again:
1660	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1661		struct anon_vma *anon_vma = rmap_item->anon_vma;
1662		struct anon_vma_chain *vmac;
1663		struct vm_area_struct *vma;
1664
1665		anon_vma_lock(anon_vma);
1666		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1667			vma = vmac->vma;
1668			if (rmap_item->address < vma->vm_start ||
1669			    rmap_item->address >= vma->vm_end)
1670				continue;
1671			/*
1672			 * Initially we examine only the vma which covers this
1673			 * rmap_item; but later, if there is still work to do,
1674			 * we examine covering vmas in other mms: in case they
1675			 * were forked from the original since ksmd passed.
1676			 */
1677			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1678				continue;
1679
1680			ret = try_to_unmap_one(page, vma,
1681					rmap_item->address, flags);
1682			if (ret != SWAP_AGAIN || !page_mapped(page)) {
1683				anon_vma_unlock(anon_vma);
1684				goto out;
1685			}
1686		}
1687		anon_vma_unlock(anon_vma);
1688	}
1689	if (!search_new_forks++)
1690		goto again;
1691out:
1692	return ret;
1693}
1694
1695#ifdef CONFIG_MIGRATION
1696int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1697		  struct vm_area_struct *, unsigned long, void *), void *arg)
1698{
1699	struct stable_node *stable_node;
1700	struct hlist_node *hlist;
1701	struct rmap_item *rmap_item;
1702	int ret = SWAP_AGAIN;
1703	int search_new_forks = 0;
1704
1705	VM_BUG_ON(!PageKsm(page));
1706	VM_BUG_ON(!PageLocked(page));
1707
1708	stable_node = page_stable_node(page);
1709	if (!stable_node)
1710		return ret;
1711again:
1712	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1713		struct anon_vma *anon_vma = rmap_item->anon_vma;
1714		struct anon_vma_chain *vmac;
1715		struct vm_area_struct *vma;
1716
1717		anon_vma_lock(anon_vma);
1718		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
 
1719			vma = vmac->vma;
1720			if (rmap_item->address < vma->vm_start ||
1721			    rmap_item->address >= vma->vm_end)
1722				continue;
1723			/*
1724			 * Initially we examine only the vma which covers this
1725			 * rmap_item; but later, if there is still work to do,
1726			 * we examine covering vmas in other mms: in case they
1727			 * were forked from the original since ksmd passed.
1728			 */
1729			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1730				continue;
1731
1732			ret = rmap_one(page, vma, rmap_item->address, arg);
 
 
 
 
1733			if (ret != SWAP_AGAIN) {
1734				anon_vma_unlock(anon_vma);
 
 
 
 
1735				goto out;
1736			}
1737		}
1738		anon_vma_unlock(anon_vma);
1739	}
1740	if (!search_new_forks++)
1741		goto again;
1742out:
1743	return ret;
1744}
1745
 
1746void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1747{
1748	struct stable_node *stable_node;
1749
1750	VM_BUG_ON(!PageLocked(oldpage));
1751	VM_BUG_ON(!PageLocked(newpage));
1752	VM_BUG_ON(newpage->mapping != oldpage->mapping);
1753
1754	stable_node = page_stable_node(newpage);
1755	if (stable_node) {
1756		VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1757		stable_node->kpfn = page_to_pfn(newpage);
 
 
 
 
 
 
 
 
1758	}
1759}
1760#endif /* CONFIG_MIGRATION */
1761
1762#ifdef CONFIG_MEMORY_HOTREMOVE
1763static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1764						 unsigned long end_pfn)
1765{
1766	struct rb_node *node;
 
 
1767
1768	for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1769		struct stable_node *stable_node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1770
1771		stable_node = rb_entry(node, struct stable_node, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1772		if (stable_node->kpfn >= start_pfn &&
1773		    stable_node->kpfn < end_pfn)
1774			return stable_node;
 
1775	}
1776	return NULL;
1777}
1778
1779static int ksm_memory_callback(struct notifier_block *self,
1780			       unsigned long action, void *arg)
1781{
1782	struct memory_notify *mn = arg;
1783	struct stable_node *stable_node;
1784
1785	switch (action) {
1786	case MEM_GOING_OFFLINE:
1787		/*
1788		 * Keep it very simple for now: just lock out ksmd and
1789		 * MADV_UNMERGEABLE while any memory is going offline.
1790		 * mutex_lock_nested() is necessary because lockdep was alarmed
1791		 * that here we take ksm_thread_mutex inside notifier chain
1792		 * mutex, and later take notifier chain mutex inside
1793		 * ksm_thread_mutex to unlock it.   But that's safe because both
1794		 * are inside mem_hotplug_mutex.
1795		 */
1796		mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
 
 
1797		break;
1798
1799	case MEM_OFFLINE:
1800		/*
1801		 * Most of the work is done by page migration; but there might
1802		 * be a few stable_nodes left over, still pointing to struct
1803		 * pages which have been offlined: prune those from the tree.
 
 
1804		 */
1805		while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1806					mn->start_pfn + mn->nr_pages)) != NULL)
1807			remove_node_from_stable_tree(stable_node);
1808		/* fallthrough */
1809
1810	case MEM_CANCEL_OFFLINE:
 
 
1811		mutex_unlock(&ksm_thread_mutex);
 
 
 
1812		break;
1813	}
1814	return NOTIFY_OK;
1815}
 
 
 
 
1816#endif /* CONFIG_MEMORY_HOTREMOVE */
1817
1818#ifdef CONFIG_SYSFS
1819/*
1820 * This all compiles without CONFIG_SYSFS, but is a waste of space.
1821 */
1822
1823#define KSM_ATTR_RO(_name) \
1824	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1825#define KSM_ATTR(_name) \
1826	static struct kobj_attribute _name##_attr = \
1827		__ATTR(_name, 0644, _name##_show, _name##_store)
1828
1829static ssize_t sleep_millisecs_show(struct kobject *kobj,
1830				    struct kobj_attribute *attr, char *buf)
1831{
1832	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1833}
1834
1835static ssize_t sleep_millisecs_store(struct kobject *kobj,
1836				     struct kobj_attribute *attr,
1837				     const char *buf, size_t count)
1838{
1839	unsigned long msecs;
1840	int err;
1841
1842	err = strict_strtoul(buf, 10, &msecs);
1843	if (err || msecs > UINT_MAX)
1844		return -EINVAL;
1845
1846	ksm_thread_sleep_millisecs = msecs;
1847
1848	return count;
1849}
1850KSM_ATTR(sleep_millisecs);
1851
1852static ssize_t pages_to_scan_show(struct kobject *kobj,
1853				  struct kobj_attribute *attr, char *buf)
1854{
1855	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1856}
1857
1858static ssize_t pages_to_scan_store(struct kobject *kobj,
1859				   struct kobj_attribute *attr,
1860				   const char *buf, size_t count)
1861{
1862	int err;
1863	unsigned long nr_pages;
1864
1865	err = strict_strtoul(buf, 10, &nr_pages);
1866	if (err || nr_pages > UINT_MAX)
1867		return -EINVAL;
1868
1869	ksm_thread_pages_to_scan = nr_pages;
1870
1871	return count;
1872}
1873KSM_ATTR(pages_to_scan);
1874
1875static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1876			char *buf)
1877{
1878	return sprintf(buf, "%u\n", ksm_run);
1879}
1880
1881static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1882			 const char *buf, size_t count)
1883{
1884	int err;
1885	unsigned long flags;
1886
1887	err = strict_strtoul(buf, 10, &flags);
1888	if (err || flags > UINT_MAX)
1889		return -EINVAL;
1890	if (flags > KSM_RUN_UNMERGE)
1891		return -EINVAL;
1892
1893	/*
1894	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1895	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1896	 * breaking COW to free the pages_shared (but leaves mm_slots
1897	 * on the list for when ksmd may be set running again).
1898	 */
1899
1900	mutex_lock(&ksm_thread_mutex);
 
1901	if (ksm_run != flags) {
1902		ksm_run = flags;
1903		if (flags & KSM_RUN_UNMERGE) {
1904			int oom_score_adj;
1905
1906			oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1907			err = unmerge_and_remove_all_rmap_items();
1908			test_set_oom_score_adj(oom_score_adj);
1909			if (err) {
1910				ksm_run = KSM_RUN_STOP;
1911				count = err;
1912			}
1913		}
1914	}
1915	mutex_unlock(&ksm_thread_mutex);
1916
1917	if (flags & KSM_RUN_MERGE)
1918		wake_up_interruptible(&ksm_thread_wait);
1919
1920	return count;
1921}
1922KSM_ATTR(run);
1923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1924static ssize_t pages_shared_show(struct kobject *kobj,
1925				 struct kobj_attribute *attr, char *buf)
1926{
1927	return sprintf(buf, "%lu\n", ksm_pages_shared);
1928}
1929KSM_ATTR_RO(pages_shared);
1930
1931static ssize_t pages_sharing_show(struct kobject *kobj,
1932				  struct kobj_attribute *attr, char *buf)
1933{
1934	return sprintf(buf, "%lu\n", ksm_pages_sharing);
1935}
1936KSM_ATTR_RO(pages_sharing);
1937
1938static ssize_t pages_unshared_show(struct kobject *kobj,
1939				   struct kobj_attribute *attr, char *buf)
1940{
1941	return sprintf(buf, "%lu\n", ksm_pages_unshared);
1942}
1943KSM_ATTR_RO(pages_unshared);
1944
1945static ssize_t pages_volatile_show(struct kobject *kobj,
1946				   struct kobj_attribute *attr, char *buf)
1947{
1948	long ksm_pages_volatile;
1949
1950	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1951				- ksm_pages_sharing - ksm_pages_unshared;
1952	/*
1953	 * It was not worth any locking to calculate that statistic,
1954	 * but it might therefore sometimes be negative: conceal that.
1955	 */
1956	if (ksm_pages_volatile < 0)
1957		ksm_pages_volatile = 0;
1958	return sprintf(buf, "%ld\n", ksm_pages_volatile);
1959}
1960KSM_ATTR_RO(pages_volatile);
1961
1962static ssize_t full_scans_show(struct kobject *kobj,
1963			       struct kobj_attribute *attr, char *buf)
1964{
1965	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1966}
1967KSM_ATTR_RO(full_scans);
1968
1969static struct attribute *ksm_attrs[] = {
1970	&sleep_millisecs_attr.attr,
1971	&pages_to_scan_attr.attr,
1972	&run_attr.attr,
1973	&pages_shared_attr.attr,
1974	&pages_sharing_attr.attr,
1975	&pages_unshared_attr.attr,
1976	&pages_volatile_attr.attr,
1977	&full_scans_attr.attr,
 
 
 
1978	NULL,
1979};
1980
1981static struct attribute_group ksm_attr_group = {
1982	.attrs = ksm_attrs,
1983	.name = "ksm",
1984};
1985#endif /* CONFIG_SYSFS */
1986
1987static int __init ksm_init(void)
1988{
1989	struct task_struct *ksm_thread;
1990	int err;
1991
1992	err = ksm_slab_init();
1993	if (err)
1994		goto out;
1995
1996	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1997	if (IS_ERR(ksm_thread)) {
1998		printk(KERN_ERR "ksm: creating kthread failed\n");
1999		err = PTR_ERR(ksm_thread);
2000		goto out_free;
2001	}
2002
2003#ifdef CONFIG_SYSFS
2004	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2005	if (err) {
2006		printk(KERN_ERR "ksm: register sysfs failed\n");
2007		kthread_stop(ksm_thread);
2008		goto out_free;
2009	}
2010#else
2011	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2012
2013#endif /* CONFIG_SYSFS */
2014
2015#ifdef CONFIG_MEMORY_HOTREMOVE
2016	/*
2017	 * Choose a high priority since the callback takes ksm_thread_mutex:
2018	 * later callbacks could only be taking locks which nest within that.
2019	 */
2020	hotplug_memory_notifier(ksm_memory_callback, 100);
2021#endif
2022	return 0;
2023
2024out_free:
2025	ksm_slab_free();
2026out:
2027	return err;
2028}
2029module_init(ksm_init)
v3.15
   1/*
   2 * Memory merging support.
   3 *
   4 * This code enables dynamic sharing of identical pages found in different
   5 * memory areas, even if they are not shared by fork()
   6 *
   7 * Copyright (C) 2008-2009 Red Hat, Inc.
   8 * Authors:
   9 *	Izik Eidus
  10 *	Andrea Arcangeli
  11 *	Chris Wright
  12 *	Hugh Dickins
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/mm.h>
  19#include <linux/fs.h>
  20#include <linux/mman.h>
  21#include <linux/sched.h>
  22#include <linux/rwsem.h>
  23#include <linux/pagemap.h>
  24#include <linux/rmap.h>
  25#include <linux/spinlock.h>
  26#include <linux/jhash.h>
  27#include <linux/delay.h>
  28#include <linux/kthread.h>
  29#include <linux/wait.h>
  30#include <linux/slab.h>
  31#include <linux/rbtree.h>
  32#include <linux/memory.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/swap.h>
  35#include <linux/ksm.h>
  36#include <linux/hashtable.h>
  37#include <linux/freezer.h>
  38#include <linux/oom.h>
  39#include <linux/numa.h>
  40
  41#include <asm/tlbflush.h>
  42#include "internal.h"
  43
  44#ifdef CONFIG_NUMA
  45#define NUMA(x)		(x)
  46#define DO_NUMA(x)	do { (x); } while (0)
  47#else
  48#define NUMA(x)		(0)
  49#define DO_NUMA(x)	do { } while (0)
  50#endif
  51
  52/*
  53 * A few notes about the KSM scanning process,
  54 * to make it easier to understand the data structures below:
  55 *
  56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  57 * contents into a data structure that holds pointers to the pages' locations.
  58 *
  59 * Since the contents of the pages may change at any moment, KSM cannot just
  60 * insert the pages into a normal sorted tree and expect it to find anything.
  61 * Therefore KSM uses two data structures - the stable and the unstable tree.
  62 *
  63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  64 * by their contents.  Because each such page is write-protected, searching on
  65 * this tree is fully assured to be working (except when pages are unmapped),
  66 * and therefore this tree is called the stable tree.
  67 *
  68 * In addition to the stable tree, KSM uses a second data structure called the
  69 * unstable tree: this tree holds pointers to pages which have been found to
  70 * be "unchanged for a period of time".  The unstable tree sorts these pages
  71 * by their contents, but since they are not write-protected, KSM cannot rely
  72 * upon the unstable tree to work correctly - the unstable tree is liable to
  73 * be corrupted as its contents are modified, and so it is called unstable.
  74 *
  75 * KSM solves this problem by several techniques:
  76 *
  77 * 1) The unstable tree is flushed every time KSM completes scanning all
  78 *    memory areas, and then the tree is rebuilt again from the beginning.
  79 * 2) KSM will only insert into the unstable tree, pages whose hash value
  80 *    has not changed since the previous scan of all memory areas.
  81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
  82 *    colors of the nodes and not on their contents, assuring that even when
  83 *    the tree gets "corrupted" it won't get out of balance, so scanning time
  84 *    remains the same (also, searching and inserting nodes in an rbtree uses
  85 *    the same algorithm, so we have no overhead when we flush and rebuild).
  86 * 4) KSM never flushes the stable tree, which means that even if it were to
  87 *    take 10 attempts to find a page in the unstable tree, once it is found,
  88 *    it is secured in the stable tree.  (When we scan a new page, we first
  89 *    compare it against the stable tree, and then against the unstable tree.)
  90 *
  91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
  92 * stable trees and multiple unstable trees: one of each for each NUMA node.
  93 */
  94
  95/**
  96 * struct mm_slot - ksm information per mm that is being scanned
  97 * @link: link to the mm_slots hash list
  98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
  99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
 100 * @mm: the mm that this information is valid for
 101 */
 102struct mm_slot {
 103	struct hlist_node link;
 104	struct list_head mm_list;
 105	struct rmap_item *rmap_list;
 106	struct mm_struct *mm;
 107};
 108
 109/**
 110 * struct ksm_scan - cursor for scanning
 111 * @mm_slot: the current mm_slot we are scanning
 112 * @address: the next address inside that to be scanned
 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 114 * @seqnr: count of completed full scans (needed when removing unstable node)
 115 *
 116 * There is only the one ksm_scan instance of this cursor structure.
 117 */
 118struct ksm_scan {
 119	struct mm_slot *mm_slot;
 120	unsigned long address;
 121	struct rmap_item **rmap_list;
 122	unsigned long seqnr;
 123};
 124
 125/**
 126 * struct stable_node - node of the stable rbtree
 127 * @node: rb node of this ksm page in the stable tree
 128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
 129 * @list: linked into migrate_nodes, pending placement in the proper node tree
 130 * @hlist: hlist head of rmap_items using this ksm page
 131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
 132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
 133 */
 134struct stable_node {
 135	union {
 136		struct rb_node node;	/* when node of stable tree */
 137		struct {		/* when listed for migration */
 138			struct list_head *head;
 139			struct list_head list;
 140		};
 141	};
 142	struct hlist_head hlist;
 143	unsigned long kpfn;
 144#ifdef CONFIG_NUMA
 145	int nid;
 146#endif
 147};
 148
 149/**
 150 * struct rmap_item - reverse mapping item for virtual addresses
 151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
 154 * @mm: the memory structure this rmap_item is pointing into
 155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 156 * @oldchecksum: previous checksum of the page at that virtual address
 157 * @node: rb node of this rmap_item in the unstable tree
 158 * @head: pointer to stable_node heading this list in the stable tree
 159 * @hlist: link into hlist of rmap_items hanging off that stable_node
 160 */
 161struct rmap_item {
 162	struct rmap_item *rmap_list;
 163	union {
 164		struct anon_vma *anon_vma;	/* when stable */
 165#ifdef CONFIG_NUMA
 166		int nid;		/* when node of unstable tree */
 167#endif
 168	};
 169	struct mm_struct *mm;
 170	unsigned long address;		/* + low bits used for flags below */
 171	unsigned int oldchecksum;	/* when unstable */
 172	union {
 173		struct rb_node node;	/* when node of unstable tree */
 174		struct {		/* when listed from stable tree */
 175			struct stable_node *head;
 176			struct hlist_node hlist;
 177		};
 178	};
 179};
 180
 181#define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
 182#define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
 183#define STABLE_FLAG	0x200	/* is listed from the stable tree */
 184
 185/* The stable and unstable tree heads */
 186static struct rb_root one_stable_tree[1] = { RB_ROOT };
 187static struct rb_root one_unstable_tree[1] = { RB_ROOT };
 188static struct rb_root *root_stable_tree = one_stable_tree;
 189static struct rb_root *root_unstable_tree = one_unstable_tree;
 190
 191/* Recently migrated nodes of stable tree, pending proper placement */
 192static LIST_HEAD(migrate_nodes);
 193
 194#define MM_SLOTS_HASH_BITS 10
 195static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 196
 197static struct mm_slot ksm_mm_head = {
 198	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 199};
 200static struct ksm_scan ksm_scan = {
 201	.mm_slot = &ksm_mm_head,
 202};
 203
 204static struct kmem_cache *rmap_item_cache;
 205static struct kmem_cache *stable_node_cache;
 206static struct kmem_cache *mm_slot_cache;
 207
 208/* The number of nodes in the stable tree */
 209static unsigned long ksm_pages_shared;
 210
 211/* The number of page slots additionally sharing those nodes */
 212static unsigned long ksm_pages_sharing;
 213
 214/* The number of nodes in the unstable tree */
 215static unsigned long ksm_pages_unshared;
 216
 217/* The number of rmap_items in use: to calculate pages_volatile */
 218static unsigned long ksm_rmap_items;
 219
 220/* Number of pages ksmd should scan in one batch */
 221static unsigned int ksm_thread_pages_to_scan = 100;
 222
 223/* Milliseconds ksmd should sleep between batches */
 224static unsigned int ksm_thread_sleep_millisecs = 20;
 225
 226#ifdef CONFIG_NUMA
 227/* Zeroed when merging across nodes is not allowed */
 228static unsigned int ksm_merge_across_nodes = 1;
 229static int ksm_nr_node_ids = 1;
 230#else
 231#define ksm_merge_across_nodes	1U
 232#define ksm_nr_node_ids		1
 233#endif
 234
 235#define KSM_RUN_STOP	0
 236#define KSM_RUN_MERGE	1
 237#define KSM_RUN_UNMERGE	2
 238#define KSM_RUN_OFFLINE	4
 239static unsigned long ksm_run = KSM_RUN_STOP;
 240static void wait_while_offlining(void);
 241
 242static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 243static DEFINE_MUTEX(ksm_thread_mutex);
 244static DEFINE_SPINLOCK(ksm_mmlist_lock);
 245
 246#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 247		sizeof(struct __struct), __alignof__(struct __struct),\
 248		(__flags), NULL)
 249
 250static int __init ksm_slab_init(void)
 251{
 252	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 253	if (!rmap_item_cache)
 254		goto out;
 255
 256	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
 257	if (!stable_node_cache)
 258		goto out_free1;
 259
 260	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 261	if (!mm_slot_cache)
 262		goto out_free2;
 263
 264	return 0;
 265
 266out_free2:
 267	kmem_cache_destroy(stable_node_cache);
 268out_free1:
 269	kmem_cache_destroy(rmap_item_cache);
 270out:
 271	return -ENOMEM;
 272}
 273
 274static void __init ksm_slab_free(void)
 275{
 276	kmem_cache_destroy(mm_slot_cache);
 277	kmem_cache_destroy(stable_node_cache);
 278	kmem_cache_destroy(rmap_item_cache);
 279	mm_slot_cache = NULL;
 280}
 281
 282static inline struct rmap_item *alloc_rmap_item(void)
 283{
 284	struct rmap_item *rmap_item;
 285
 286	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
 287	if (rmap_item)
 288		ksm_rmap_items++;
 289	return rmap_item;
 290}
 291
 292static inline void free_rmap_item(struct rmap_item *rmap_item)
 293{
 294	ksm_rmap_items--;
 295	rmap_item->mm = NULL;	/* debug safety */
 296	kmem_cache_free(rmap_item_cache, rmap_item);
 297}
 298
 299static inline struct stable_node *alloc_stable_node(void)
 300{
 301	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
 302}
 303
 304static inline void free_stable_node(struct stable_node *stable_node)
 305{
 306	kmem_cache_free(stable_node_cache, stable_node);
 307}
 308
 309static inline struct mm_slot *alloc_mm_slot(void)
 310{
 311	if (!mm_slot_cache)	/* initialization failed */
 312		return NULL;
 313	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 314}
 315
 316static inline void free_mm_slot(struct mm_slot *mm_slot)
 317{
 318	kmem_cache_free(mm_slot_cache, mm_slot);
 319}
 320
 321static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 322{
 323	struct mm_slot *slot;
 324
 325	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
 326		if (slot->mm == mm)
 327			return slot;
 328
 
 
 
 
 
 329	return NULL;
 330}
 331
 332static void insert_to_mm_slots_hash(struct mm_struct *mm,
 333				    struct mm_slot *mm_slot)
 334{
 
 
 
 335	mm_slot->mm = mm;
 336	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
 
 
 
 
 
 337}
 338
 339/*
 340 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 341 * page tables after it has passed through ksm_exit() - which, if necessary,
 342 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
 343 * a special flag: they can just back out as soon as mm_users goes to zero.
 344 * ksm_test_exit() is used throughout to make this test for exit: in some
 345 * places for correctness, in some places just to avoid unnecessary work.
 346 */
 347static inline bool ksm_test_exit(struct mm_struct *mm)
 348{
 349	return atomic_read(&mm->mm_users) == 0;
 350}
 351
 352/*
 353 * We use break_ksm to break COW on a ksm page: it's a stripped down
 354 *
 355 *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
 356 *		put_page(page);
 357 *
 358 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 359 * in case the application has unmapped and remapped mm,addr meanwhile.
 360 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 361 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
 362 */
 363static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 364{
 365	struct page *page;
 366	int ret = 0;
 367
 368	do {
 369		cond_resched();
 370		page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
 371		if (IS_ERR_OR_NULL(page))
 372			break;
 373		if (PageKsm(page))
 374			ret = handle_mm_fault(vma->vm_mm, vma, addr,
 375							FAULT_FLAG_WRITE);
 376		else
 377			ret = VM_FAULT_WRITE;
 378		put_page(page);
 379	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
 380	/*
 381	 * We must loop because handle_mm_fault() may back out if there's
 382	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
 383	 *
 384	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 385	 * COW has been broken, even if the vma does not permit VM_WRITE;
 386	 * but note that a concurrent fault might break PageKsm for us.
 387	 *
 388	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
 389	 * backing file, which also invalidates anonymous pages: that's
 390	 * okay, that truncation will have unmapped the PageKsm for us.
 391	 *
 392	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 393	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 394	 * current task has TIF_MEMDIE set, and will be OOM killed on return
 395	 * to user; and ksmd, having no mm, would never be chosen for that.
 396	 *
 397	 * But if the mm is in a limited mem_cgroup, then the fault may fail
 398	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 399	 * even ksmd can fail in this way - though it's usually breaking ksm
 400	 * just to undo a merge it made a moment before, so unlikely to oom.
 401	 *
 402	 * That's a pity: we might therefore have more kernel pages allocated
 403	 * than we're counting as nodes in the stable tree; but ksm_do_scan
 404	 * will retry to break_cow on each pass, so should recover the page
 405	 * in due course.  The important thing is to not let VM_MERGEABLE
 406	 * be cleared while any such pages might remain in the area.
 407	 */
 408	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 409}
 410
 411static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
 412		unsigned long addr)
 413{
 414	struct vm_area_struct *vma;
 415	if (ksm_test_exit(mm))
 416		return NULL;
 417	vma = find_vma(mm, addr);
 418	if (!vma || vma->vm_start > addr)
 419		return NULL;
 420	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 421		return NULL;
 422	return vma;
 423}
 424
 425static void break_cow(struct rmap_item *rmap_item)
 426{
 427	struct mm_struct *mm = rmap_item->mm;
 428	unsigned long addr = rmap_item->address;
 429	struct vm_area_struct *vma;
 430
 431	/*
 432	 * It is not an accident that whenever we want to break COW
 433	 * to undo, we also need to drop a reference to the anon_vma.
 434	 */
 435	put_anon_vma(rmap_item->anon_vma);
 436
 437	down_read(&mm->mmap_sem);
 438	vma = find_mergeable_vma(mm, addr);
 439	if (vma)
 440		break_ksm(vma, addr);
 
 
 
 
 
 
 441	up_read(&mm->mmap_sem);
 442}
 443
 444static struct page *page_trans_compound_anon(struct page *page)
 445{
 446	if (PageTransCompound(page)) {
 447		struct page *head = compound_head(page);
 448		/*
 449		 * head may actually be splitted and freed from under
 450		 * us but it's ok here.
 451		 */
 452		if (PageAnon(head))
 453			return head;
 454	}
 455	return NULL;
 456}
 457
 458static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 459{
 460	struct mm_struct *mm = rmap_item->mm;
 461	unsigned long addr = rmap_item->address;
 462	struct vm_area_struct *vma;
 463	struct page *page;
 464
 465	down_read(&mm->mmap_sem);
 466	vma = find_mergeable_vma(mm, addr);
 467	if (!vma)
 
 
 
 
 468		goto out;
 469
 470	page = follow_page(vma, addr, FOLL_GET);
 471	if (IS_ERR_OR_NULL(page))
 472		goto out;
 473	if (PageAnon(page) || page_trans_compound_anon(page)) {
 474		flush_anon_page(vma, page, addr);
 475		flush_dcache_page(page);
 476	} else {
 477		put_page(page);
 478out:		page = NULL;
 479	}
 480	up_read(&mm->mmap_sem);
 481	return page;
 482}
 483
 484/*
 485 * This helper is used for getting right index into array of tree roots.
 486 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
 487 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
 488 * every node has its own stable and unstable tree.
 489 */
 490static inline int get_kpfn_nid(unsigned long kpfn)
 491{
 492	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
 493}
 494
 495static void remove_node_from_stable_tree(struct stable_node *stable_node)
 496{
 497	struct rmap_item *rmap_item;
 
 498
 499	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
 500		if (rmap_item->hlist.next)
 501			ksm_pages_sharing--;
 502		else
 503			ksm_pages_shared--;
 504		put_anon_vma(rmap_item->anon_vma);
 505		rmap_item->address &= PAGE_MASK;
 506		cond_resched();
 507	}
 508
 509	if (stable_node->head == &migrate_nodes)
 510		list_del(&stable_node->list);
 511	else
 512		rb_erase(&stable_node->node,
 513			 root_stable_tree + NUMA(stable_node->nid));
 514	free_stable_node(stable_node);
 515}
 516
 517/*
 518 * get_ksm_page: checks if the page indicated by the stable node
 519 * is still its ksm page, despite having held no reference to it.
 520 * In which case we can trust the content of the page, and it
 521 * returns the gotten page; but if the page has now been zapped,
 522 * remove the stale node from the stable tree and return NULL.
 523 * But beware, the stable node's page might be being migrated.
 524 *
 525 * You would expect the stable_node to hold a reference to the ksm page.
 526 * But if it increments the page's count, swapping out has to wait for
 527 * ksmd to come around again before it can free the page, which may take
 528 * seconds or even minutes: much too unresponsive.  So instead we use a
 529 * "keyhole reference": access to the ksm page from the stable node peeps
 530 * out through its keyhole to see if that page still holds the right key,
 531 * pointing back to this stable node.  This relies on freeing a PageAnon
 532 * page to reset its page->mapping to NULL, and relies on no other use of
 533 * a page to put something that might look like our key in page->mapping.
 
 
 
 
 
 
 
 
 
 
 
 534 * is on its way to being freed; but it is an anomaly to bear in mind.
 535 */
 536static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
 537{
 538	struct page *page;
 539	void *expected_mapping;
 540	unsigned long kpfn;
 541
 
 542	expected_mapping = (void *)stable_node +
 543				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
 544again:
 545	kpfn = ACCESS_ONCE(stable_node->kpfn);
 546	page = pfn_to_page(kpfn);
 547
 548	/*
 549	 * page is computed from kpfn, so on most architectures reading
 550	 * page->mapping is naturally ordered after reading node->kpfn,
 551	 * but on Alpha we need to be more careful.
 552	 */
 553	smp_read_barrier_depends();
 554	if (ACCESS_ONCE(page->mapping) != expected_mapping)
 555		goto stale;
 556
 557	/*
 558	 * We cannot do anything with the page while its refcount is 0.
 559	 * Usually 0 means free, or tail of a higher-order page: in which
 560	 * case this node is no longer referenced, and should be freed;
 561	 * however, it might mean that the page is under page_freeze_refs().
 562	 * The __remove_mapping() case is easy, again the node is now stale;
 563	 * but if page is swapcache in migrate_page_move_mapping(), it might
 564	 * still be our page, in which case it's essential to keep the node.
 565	 */
 566	while (!get_page_unless_zero(page)) {
 567		/*
 568		 * Another check for page->mapping != expected_mapping would
 569		 * work here too.  We have chosen the !PageSwapCache test to
 570		 * optimize the common case, when the page is or is about to
 571		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
 572		 * in the freeze_refs section of __remove_mapping(); but Anon
 573		 * page->mapping reset to NULL later, in free_pages_prepare().
 574		 */
 575		if (!PageSwapCache(page))
 576			goto stale;
 577		cpu_relax();
 578	}
 579
 580	if (ACCESS_ONCE(page->mapping) != expected_mapping) {
 581		put_page(page);
 582		goto stale;
 583	}
 584
 585	if (lock_it) {
 586		lock_page(page);
 587		if (ACCESS_ONCE(page->mapping) != expected_mapping) {
 588			unlock_page(page);
 589			put_page(page);
 590			goto stale;
 591		}
 592	}
 593	return page;
 594
 595stale:
 596	/*
 597	 * We come here from above when page->mapping or !PageSwapCache
 598	 * suggests that the node is stale; but it might be under migration.
 599	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
 600	 * before checking whether node->kpfn has been changed.
 601	 */
 602	smp_rmb();
 603	if (ACCESS_ONCE(stable_node->kpfn) != kpfn)
 604		goto again;
 605	remove_node_from_stable_tree(stable_node);
 606	return NULL;
 607}
 608
 609/*
 610 * Removing rmap_item from stable or unstable tree.
 611 * This function will clean the information from the stable/unstable tree.
 612 */
 613static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 614{
 615	if (rmap_item->address & STABLE_FLAG) {
 616		struct stable_node *stable_node;
 617		struct page *page;
 618
 619		stable_node = rmap_item->head;
 620		page = get_ksm_page(stable_node, true);
 621		if (!page)
 622			goto out;
 623
 
 624		hlist_del(&rmap_item->hlist);
 625		unlock_page(page);
 626		put_page(page);
 627
 628		if (stable_node->hlist.first)
 629			ksm_pages_sharing--;
 630		else
 631			ksm_pages_shared--;
 632
 633		put_anon_vma(rmap_item->anon_vma);
 634		rmap_item->address &= PAGE_MASK;
 635
 636	} else if (rmap_item->address & UNSTABLE_FLAG) {
 637		unsigned char age;
 638		/*
 639		 * Usually ksmd can and must skip the rb_erase, because
 640		 * root_unstable_tree was already reset to RB_ROOT.
 641		 * But be careful when an mm is exiting: do the rb_erase
 642		 * if this rmap_item was inserted by this scan, rather
 643		 * than left over from before.
 644		 */
 645		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 646		BUG_ON(age > 1);
 647		if (!age)
 648			rb_erase(&rmap_item->node,
 649				 root_unstable_tree + NUMA(rmap_item->nid));
 650		ksm_pages_unshared--;
 651		rmap_item->address &= PAGE_MASK;
 652	}
 653out:
 654	cond_resched();		/* we're called from many long loops */
 655}
 656
 657static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
 658				       struct rmap_item **rmap_list)
 659{
 660	while (*rmap_list) {
 661		struct rmap_item *rmap_item = *rmap_list;
 662		*rmap_list = rmap_item->rmap_list;
 663		remove_rmap_item_from_tree(rmap_item);
 664		free_rmap_item(rmap_item);
 665	}
 666}
 667
 668/*
 669 * Though it's very tempting to unmerge rmap_items from stable tree rather
 670 * than check every pte of a given vma, the locking doesn't quite work for
 671 * that - an rmap_item is assigned to the stable tree after inserting ksm
 672 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
 673 * rmap_items from parent to child at fork time (so as not to waste time
 674 * if exit comes before the next scan reaches it).
 675 *
 676 * Similarly, although we'd like to remove rmap_items (so updating counts
 677 * and freeing memory) when unmerging an area, it's easier to leave that
 678 * to the next pass of ksmd - consider, for example, how ksmd might be
 679 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 680 */
 681static int unmerge_ksm_pages(struct vm_area_struct *vma,
 682			     unsigned long start, unsigned long end)
 683{
 684	unsigned long addr;
 685	int err = 0;
 686
 687	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 688		if (ksm_test_exit(vma->vm_mm))
 689			break;
 690		if (signal_pending(current))
 691			err = -ERESTARTSYS;
 692		else
 693			err = break_ksm(vma, addr);
 694	}
 695	return err;
 696}
 697
 698#ifdef CONFIG_SYSFS
 699/*
 700 * Only called through the sysfs control interface:
 701 */
 702static int remove_stable_node(struct stable_node *stable_node)
 703{
 704	struct page *page;
 705	int err;
 706
 707	page = get_ksm_page(stable_node, true);
 708	if (!page) {
 709		/*
 710		 * get_ksm_page did remove_node_from_stable_tree itself.
 711		 */
 712		return 0;
 713	}
 714
 715	if (WARN_ON_ONCE(page_mapped(page))) {
 716		/*
 717		 * This should not happen: but if it does, just refuse to let
 718		 * merge_across_nodes be switched - there is no need to panic.
 719		 */
 720		err = -EBUSY;
 721	} else {
 722		/*
 723		 * The stable node did not yet appear stale to get_ksm_page(),
 724		 * since that allows for an unmapped ksm page to be recognized
 725		 * right up until it is freed; but the node is safe to remove.
 726		 * This page might be in a pagevec waiting to be freed,
 727		 * or it might be PageSwapCache (perhaps under writeback),
 728		 * or it might have been removed from swapcache a moment ago.
 729		 */
 730		set_page_stable_node(page, NULL);
 731		remove_node_from_stable_tree(stable_node);
 732		err = 0;
 733	}
 734
 735	unlock_page(page);
 736	put_page(page);
 737	return err;
 738}
 739
 740static int remove_all_stable_nodes(void)
 741{
 742	struct stable_node *stable_node;
 743	struct list_head *this, *next;
 744	int nid;
 745	int err = 0;
 746
 747	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
 748		while (root_stable_tree[nid].rb_node) {
 749			stable_node = rb_entry(root_stable_tree[nid].rb_node,
 750						struct stable_node, node);
 751			if (remove_stable_node(stable_node)) {
 752				err = -EBUSY;
 753				break;	/* proceed to next nid */
 754			}
 755			cond_resched();
 756		}
 757	}
 758	list_for_each_safe(this, next, &migrate_nodes) {
 759		stable_node = list_entry(this, struct stable_node, list);
 760		if (remove_stable_node(stable_node))
 761			err = -EBUSY;
 762		cond_resched();
 763	}
 764	return err;
 765}
 766
 767static int unmerge_and_remove_all_rmap_items(void)
 768{
 769	struct mm_slot *mm_slot;
 770	struct mm_struct *mm;
 771	struct vm_area_struct *vma;
 772	int err = 0;
 773
 774	spin_lock(&ksm_mmlist_lock);
 775	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 776						struct mm_slot, mm_list);
 777	spin_unlock(&ksm_mmlist_lock);
 778
 779	for (mm_slot = ksm_scan.mm_slot;
 780			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 781		mm = mm_slot->mm;
 782		down_read(&mm->mmap_sem);
 783		for (vma = mm->mmap; vma; vma = vma->vm_next) {
 784			if (ksm_test_exit(mm))
 785				break;
 786			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 787				continue;
 788			err = unmerge_ksm_pages(vma,
 789						vma->vm_start, vma->vm_end);
 790			if (err)
 791				goto error;
 792		}
 793
 794		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
 795
 796		spin_lock(&ksm_mmlist_lock);
 797		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 798						struct mm_slot, mm_list);
 799		if (ksm_test_exit(mm)) {
 800			hash_del(&mm_slot->link);
 801			list_del(&mm_slot->mm_list);
 802			spin_unlock(&ksm_mmlist_lock);
 803
 804			free_mm_slot(mm_slot);
 805			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
 806			up_read(&mm->mmap_sem);
 807			mmdrop(mm);
 808		} else {
 809			spin_unlock(&ksm_mmlist_lock);
 810			up_read(&mm->mmap_sem);
 811		}
 812	}
 813
 814	/* Clean up stable nodes, but don't worry if some are still busy */
 815	remove_all_stable_nodes();
 816	ksm_scan.seqnr = 0;
 817	return 0;
 818
 819error:
 820	up_read(&mm->mmap_sem);
 821	spin_lock(&ksm_mmlist_lock);
 822	ksm_scan.mm_slot = &ksm_mm_head;
 823	spin_unlock(&ksm_mmlist_lock);
 824	return err;
 825}
 826#endif /* CONFIG_SYSFS */
 827
 828static u32 calc_checksum(struct page *page)
 829{
 830	u32 checksum;
 831	void *addr = kmap_atomic(page);
 832	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
 833	kunmap_atomic(addr);
 834	return checksum;
 835}
 836
 837static int memcmp_pages(struct page *page1, struct page *page2)
 838{
 839	char *addr1, *addr2;
 840	int ret;
 841
 842	addr1 = kmap_atomic(page1);
 843	addr2 = kmap_atomic(page2);
 844	ret = memcmp(addr1, addr2, PAGE_SIZE);
 845	kunmap_atomic(addr2);
 846	kunmap_atomic(addr1);
 847	return ret;
 848}
 849
 850static inline int pages_identical(struct page *page1, struct page *page2)
 851{
 852	return !memcmp_pages(page1, page2);
 853}
 854
 855static int write_protect_page(struct vm_area_struct *vma, struct page *page,
 856			      pte_t *orig_pte)
 857{
 858	struct mm_struct *mm = vma->vm_mm;
 859	unsigned long addr;
 860	pte_t *ptep;
 861	spinlock_t *ptl;
 862	int swapped;
 863	int err = -EFAULT;
 864	unsigned long mmun_start;	/* For mmu_notifiers */
 865	unsigned long mmun_end;		/* For mmu_notifiers */
 866
 867	addr = page_address_in_vma(page, vma);
 868	if (addr == -EFAULT)
 869		goto out;
 870
 871	BUG_ON(PageTransCompound(page));
 872
 873	mmun_start = addr;
 874	mmun_end   = addr + PAGE_SIZE;
 875	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 876
 877	ptep = page_check_address(page, mm, addr, &ptl, 0);
 878	if (!ptep)
 879		goto out_mn;
 880
 881	if (pte_write(*ptep) || pte_dirty(*ptep)) {
 882		pte_t entry;
 883
 884		swapped = PageSwapCache(page);
 885		flush_cache_page(vma, addr, page_to_pfn(page));
 886		/*
 887		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
 888		 * take any lock, therefore the check that we are going to make
 889		 * with the pagecount against the mapcount is racey and
 890		 * O_DIRECT can happen right after the check.
 891		 * So we clear the pte and flush the tlb before the check
 892		 * this assure us that no O_DIRECT can happen after the check
 893		 * or in the middle of the check.
 894		 */
 895		entry = ptep_clear_flush(vma, addr, ptep);
 896		/*
 897		 * Check that no O_DIRECT or similar I/O is in progress on the
 898		 * page
 899		 */
 900		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
 901			set_pte_at(mm, addr, ptep, entry);
 902			goto out_unlock;
 903		}
 904		if (pte_dirty(entry))
 905			set_page_dirty(page);
 906		entry = pte_mkclean(pte_wrprotect(entry));
 907		set_pte_at_notify(mm, addr, ptep, entry);
 908	}
 909	*orig_pte = *ptep;
 910	err = 0;
 911
 912out_unlock:
 913	pte_unmap_unlock(ptep, ptl);
 914out_mn:
 915	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 916out:
 917	return err;
 918}
 919
 920/**
 921 * replace_page - replace page in vma by new ksm page
 922 * @vma:      vma that holds the pte pointing to page
 923 * @page:     the page we are replacing by kpage
 924 * @kpage:    the ksm page we replace page by
 925 * @orig_pte: the original value of the pte
 926 *
 927 * Returns 0 on success, -EFAULT on failure.
 928 */
 929static int replace_page(struct vm_area_struct *vma, struct page *page,
 930			struct page *kpage, pte_t orig_pte)
 931{
 932	struct mm_struct *mm = vma->vm_mm;
 
 
 933	pmd_t *pmd;
 934	pte_t *ptep;
 935	spinlock_t *ptl;
 936	unsigned long addr;
 937	int err = -EFAULT;
 938	unsigned long mmun_start;	/* For mmu_notifiers */
 939	unsigned long mmun_end;		/* For mmu_notifiers */
 940
 941	addr = page_address_in_vma(page, vma);
 942	if (addr == -EFAULT)
 943		goto out;
 944
 945	pmd = mm_find_pmd(mm, addr);
 946	if (!pmd)
 947		goto out;
 
 
 
 
 
 
 948	BUG_ON(pmd_trans_huge(*pmd));
 949
 950	mmun_start = addr;
 951	mmun_end   = addr + PAGE_SIZE;
 952	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 953
 954	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
 955	if (!pte_same(*ptep, orig_pte)) {
 956		pte_unmap_unlock(ptep, ptl);
 957		goto out_mn;
 958	}
 959
 960	get_page(kpage);
 961	page_add_anon_rmap(kpage, vma, addr);
 962
 963	flush_cache_page(vma, addr, pte_pfn(*ptep));
 964	ptep_clear_flush(vma, addr, ptep);
 965	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
 966
 967	page_remove_rmap(page);
 968	if (!page_mapped(page))
 969		try_to_free_swap(page);
 970	put_page(page);
 971
 972	pte_unmap_unlock(ptep, ptl);
 973	err = 0;
 974out_mn:
 975	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 976out:
 977	return err;
 978}
 979
 980static int page_trans_compound_anon_split(struct page *page)
 981{
 982	int ret = 0;
 983	struct page *transhuge_head = page_trans_compound_anon(page);
 984	if (transhuge_head) {
 985		/* Get the reference on the head to split it. */
 986		if (get_page_unless_zero(transhuge_head)) {
 987			/*
 988			 * Recheck we got the reference while the head
 989			 * was still anonymous.
 990			 */
 991			if (PageAnon(transhuge_head))
 992				ret = split_huge_page(transhuge_head);
 993			else
 994				/*
 995				 * Retry later if split_huge_page run
 996				 * from under us.
 997				 */
 998				ret = 1;
 999			put_page(transhuge_head);
1000		} else
1001			/* Retry later if split_huge_page run from under us. */
1002			ret = 1;
1003	}
1004	return ret;
1005}
1006
1007/*
1008 * try_to_merge_one_page - take two pages and merge them into one
1009 * @vma: the vma that holds the pte pointing to page
1010 * @page: the PageAnon page that we want to replace with kpage
1011 * @kpage: the PageKsm page that we want to map instead of page,
1012 *         or NULL the first time when we want to use page as kpage.
1013 *
1014 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1015 */
1016static int try_to_merge_one_page(struct vm_area_struct *vma,
1017				 struct page *page, struct page *kpage)
1018{
1019	pte_t orig_pte = __pte(0);
1020	int err = -EFAULT;
1021
1022	if (page == kpage)			/* ksm page forked */
1023		return 0;
1024
1025	if (!(vma->vm_flags & VM_MERGEABLE))
1026		goto out;
1027	if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1028		goto out;
1029	BUG_ON(PageTransCompound(page));
1030	if (!PageAnon(page))
1031		goto out;
1032
1033	/*
1034	 * We need the page lock to read a stable PageSwapCache in
1035	 * write_protect_page().  We use trylock_page() instead of
1036	 * lock_page() because we don't want to wait here - we
1037	 * prefer to continue scanning and merging different pages,
1038	 * then come back to this page when it is unlocked.
1039	 */
1040	if (!trylock_page(page))
1041		goto out;
1042	/*
1043	 * If this anonymous page is mapped only here, its pte may need
1044	 * to be write-protected.  If it's mapped elsewhere, all of its
1045	 * ptes are necessarily already write-protected.  But in either
1046	 * case, we need to lock and check page_count is not raised.
1047	 */
1048	if (write_protect_page(vma, page, &orig_pte) == 0) {
1049		if (!kpage) {
1050			/*
1051			 * While we hold page lock, upgrade page from
1052			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1053			 * stable_tree_insert() will update stable_node.
1054			 */
1055			set_page_stable_node(page, NULL);
1056			mark_page_accessed(page);
1057			err = 0;
1058		} else if (pages_identical(page, kpage))
1059			err = replace_page(vma, page, kpage, orig_pte);
1060	}
1061
1062	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1063		munlock_vma_page(page);
1064		if (!PageMlocked(kpage)) {
1065			unlock_page(page);
1066			lock_page(kpage);
1067			mlock_vma_page(kpage);
1068			page = kpage;		/* for final unlock */
1069		}
1070	}
1071
1072	unlock_page(page);
1073out:
1074	return err;
1075}
1076
1077/*
1078 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1079 * but no new kernel page is allocated: kpage must already be a ksm page.
1080 *
1081 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1082 */
1083static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1084				      struct page *page, struct page *kpage)
1085{
1086	struct mm_struct *mm = rmap_item->mm;
1087	struct vm_area_struct *vma;
1088	int err = -EFAULT;
1089
1090	down_read(&mm->mmap_sem);
1091	if (ksm_test_exit(mm))
1092		goto out;
1093	vma = find_vma(mm, rmap_item->address);
1094	if (!vma || vma->vm_start > rmap_item->address)
1095		goto out;
1096
1097	err = try_to_merge_one_page(vma, page, kpage);
1098	if (err)
1099		goto out;
1100
1101	/* Unstable nid is in union with stable anon_vma: remove first */
1102	remove_rmap_item_from_tree(rmap_item);
1103
1104	/* Must get reference to anon_vma while still holding mmap_sem */
1105	rmap_item->anon_vma = vma->anon_vma;
1106	get_anon_vma(vma->anon_vma);
1107out:
1108	up_read(&mm->mmap_sem);
1109	return err;
1110}
1111
1112/*
1113 * try_to_merge_two_pages - take two identical pages and prepare them
1114 * to be merged into one page.
1115 *
1116 * This function returns the kpage if we successfully merged two identical
1117 * pages into one ksm page, NULL otherwise.
1118 *
1119 * Note that this function upgrades page to ksm page: if one of the pages
1120 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1121 */
1122static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1123					   struct page *page,
1124					   struct rmap_item *tree_rmap_item,
1125					   struct page *tree_page)
1126{
1127	int err;
1128
1129	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1130	if (!err) {
1131		err = try_to_merge_with_ksm_page(tree_rmap_item,
1132							tree_page, page);
1133		/*
1134		 * If that fails, we have a ksm page with only one pte
1135		 * pointing to it: so break it.
1136		 */
1137		if (err)
1138			break_cow(rmap_item);
1139	}
1140	return err ? NULL : page;
1141}
1142
1143/*
1144 * stable_tree_search - search for page inside the stable tree
1145 *
1146 * This function checks if there is a page inside the stable tree
1147 * with identical content to the page that we are scanning right now.
1148 *
1149 * This function returns the stable tree node of identical content if found,
1150 * NULL otherwise.
1151 */
1152static struct page *stable_tree_search(struct page *page)
1153{
1154	int nid;
1155	struct rb_root *root;
1156	struct rb_node **new;
1157	struct rb_node *parent;
1158	struct stable_node *stable_node;
1159	struct stable_node *page_node;
1160
1161	page_node = page_stable_node(page);
1162	if (page_node && page_node->head != &migrate_nodes) {
1163		/* ksm page forked */
1164		get_page(page);
1165		return page;
1166	}
1167
1168	nid = get_kpfn_nid(page_to_pfn(page));
1169	root = root_stable_tree + nid;
1170again:
1171	new = &root->rb_node;
1172	parent = NULL;
1173
1174	while (*new) {
1175		struct page *tree_page;
1176		int ret;
1177
1178		cond_resched();
1179		stable_node = rb_entry(*new, struct stable_node, node);
1180		tree_page = get_ksm_page(stable_node, false);
1181		if (!tree_page)
1182			return NULL;
1183
1184		ret = memcmp_pages(page, tree_page);
1185		put_page(tree_page);
1186
1187		parent = *new;
1188		if (ret < 0)
1189			new = &parent->rb_left;
1190		else if (ret > 0)
1191			new = &parent->rb_right;
1192		else {
1193			/*
1194			 * Lock and unlock the stable_node's page (which
1195			 * might already have been migrated) so that page
1196			 * migration is sure to notice its raised count.
1197			 * It would be more elegant to return stable_node
1198			 * than kpage, but that involves more changes.
1199			 */
1200			tree_page = get_ksm_page(stable_node, true);
1201			if (tree_page) {
1202				unlock_page(tree_page);
1203				if (get_kpfn_nid(stable_node->kpfn) !=
1204						NUMA(stable_node->nid)) {
1205					put_page(tree_page);
1206					goto replace;
1207				}
1208				return tree_page;
1209			}
1210			/*
1211			 * There is now a place for page_node, but the tree may
1212			 * have been rebalanced, so re-evaluate parent and new.
1213			 */
1214			if (page_node)
1215				goto again;
1216			return NULL;
1217		}
1218	}
1219
1220	if (!page_node)
1221		return NULL;
1222
1223	list_del(&page_node->list);
1224	DO_NUMA(page_node->nid = nid);
1225	rb_link_node(&page_node->node, parent, new);
1226	rb_insert_color(&page_node->node, root);
1227	get_page(page);
1228	return page;
1229
1230replace:
1231	if (page_node) {
1232		list_del(&page_node->list);
1233		DO_NUMA(page_node->nid = nid);
1234		rb_replace_node(&stable_node->node, &page_node->node, root);
1235		get_page(page);
1236	} else {
1237		rb_erase(&stable_node->node, root);
1238		page = NULL;
1239	}
1240	stable_node->head = &migrate_nodes;
1241	list_add(&stable_node->list, stable_node->head);
1242	return page;
1243}
1244
1245/*
1246 * stable_tree_insert - insert stable tree node pointing to new ksm page
1247 * into the stable tree.
1248 *
1249 * This function returns the stable tree node just allocated on success,
1250 * NULL otherwise.
1251 */
1252static struct stable_node *stable_tree_insert(struct page *kpage)
1253{
1254	int nid;
1255	unsigned long kpfn;
1256	struct rb_root *root;
1257	struct rb_node **new;
1258	struct rb_node *parent = NULL;
1259	struct stable_node *stable_node;
1260
1261	kpfn = page_to_pfn(kpage);
1262	nid = get_kpfn_nid(kpfn);
1263	root = root_stable_tree + nid;
1264	new = &root->rb_node;
1265
1266	while (*new) {
1267		struct page *tree_page;
1268		int ret;
1269
1270		cond_resched();
1271		stable_node = rb_entry(*new, struct stable_node, node);
1272		tree_page = get_ksm_page(stable_node, false);
1273		if (!tree_page)
1274			return NULL;
1275
1276		ret = memcmp_pages(kpage, tree_page);
1277		put_page(tree_page);
1278
1279		parent = *new;
1280		if (ret < 0)
1281			new = &parent->rb_left;
1282		else if (ret > 0)
1283			new = &parent->rb_right;
1284		else {
1285			/*
1286			 * It is not a bug that stable_tree_search() didn't
1287			 * find this node: because at that time our page was
1288			 * not yet write-protected, so may have changed since.
1289			 */
1290			return NULL;
1291		}
1292	}
1293
1294	stable_node = alloc_stable_node();
1295	if (!stable_node)
1296		return NULL;
1297
 
 
 
1298	INIT_HLIST_HEAD(&stable_node->hlist);
1299	stable_node->kpfn = kpfn;
 
1300	set_page_stable_node(kpage, stable_node);
1301	DO_NUMA(stable_node->nid = nid);
1302	rb_link_node(&stable_node->node, parent, new);
1303	rb_insert_color(&stable_node->node, root);
1304
1305	return stable_node;
1306}
1307
1308/*
1309 * unstable_tree_search_insert - search for identical page,
1310 * else insert rmap_item into the unstable tree.
1311 *
1312 * This function searches for a page in the unstable tree identical to the
1313 * page currently being scanned; and if no identical page is found in the
1314 * tree, we insert rmap_item as a new object into the unstable tree.
1315 *
1316 * This function returns pointer to rmap_item found to be identical
1317 * to the currently scanned page, NULL otherwise.
1318 *
1319 * This function does both searching and inserting, because they share
1320 * the same walking algorithm in an rbtree.
1321 */
1322static
1323struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1324					      struct page *page,
1325					      struct page **tree_pagep)
 
1326{
1327	struct rb_node **new;
1328	struct rb_root *root;
1329	struct rb_node *parent = NULL;
1330	int nid;
1331
1332	nid = get_kpfn_nid(page_to_pfn(page));
1333	root = root_unstable_tree + nid;
1334	new = &root->rb_node;
1335
1336	while (*new) {
1337		struct rmap_item *tree_rmap_item;
1338		struct page *tree_page;
1339		int ret;
1340
1341		cond_resched();
1342		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1343		tree_page = get_mergeable_page(tree_rmap_item);
1344		if (IS_ERR_OR_NULL(tree_page))
1345			return NULL;
1346
1347		/*
1348		 * Don't substitute a ksm page for a forked page.
1349		 */
1350		if (page == tree_page) {
1351			put_page(tree_page);
1352			return NULL;
1353		}
1354
1355		ret = memcmp_pages(page, tree_page);
1356
1357		parent = *new;
1358		if (ret < 0) {
1359			put_page(tree_page);
1360			new = &parent->rb_left;
1361		} else if (ret > 0) {
1362			put_page(tree_page);
1363			new = &parent->rb_right;
1364		} else if (!ksm_merge_across_nodes &&
1365			   page_to_nid(tree_page) != nid) {
1366			/*
1367			 * If tree_page has been migrated to another NUMA node,
1368			 * it will be flushed out and put in the right unstable
1369			 * tree next time: only merge with it when across_nodes.
1370			 */
1371			put_page(tree_page);
1372			return NULL;
1373		} else {
1374			*tree_pagep = tree_page;
1375			return tree_rmap_item;
1376		}
1377	}
1378
1379	rmap_item->address |= UNSTABLE_FLAG;
1380	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1381	DO_NUMA(rmap_item->nid = nid);
1382	rb_link_node(&rmap_item->node, parent, new);
1383	rb_insert_color(&rmap_item->node, root);
1384
1385	ksm_pages_unshared++;
1386	return NULL;
1387}
1388
1389/*
1390 * stable_tree_append - add another rmap_item to the linked list of
1391 * rmap_items hanging off a given node of the stable tree, all sharing
1392 * the same ksm page.
1393 */
1394static void stable_tree_append(struct rmap_item *rmap_item,
1395			       struct stable_node *stable_node)
1396{
1397	rmap_item->head = stable_node;
1398	rmap_item->address |= STABLE_FLAG;
1399	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1400
1401	if (rmap_item->hlist.next)
1402		ksm_pages_sharing++;
1403	else
1404		ksm_pages_shared++;
1405}
1406
1407/*
1408 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1409 * if not, compare checksum to previous and if it's the same, see if page can
1410 * be inserted into the unstable tree, or merged with a page already there and
1411 * both transferred to the stable tree.
1412 *
1413 * @page: the page that we are searching identical page to.
1414 * @rmap_item: the reverse mapping into the virtual address of this page
1415 */
1416static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1417{
1418	struct rmap_item *tree_rmap_item;
1419	struct page *tree_page = NULL;
1420	struct stable_node *stable_node;
1421	struct page *kpage;
1422	unsigned int checksum;
1423	int err;
1424
1425	stable_node = page_stable_node(page);
1426	if (stable_node) {
1427		if (stable_node->head != &migrate_nodes &&
1428		    get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1429			rb_erase(&stable_node->node,
1430				 root_stable_tree + NUMA(stable_node->nid));
1431			stable_node->head = &migrate_nodes;
1432			list_add(&stable_node->list, stable_node->head);
1433		}
1434		if (stable_node->head != &migrate_nodes &&
1435		    rmap_item->head == stable_node)
1436			return;
1437	}
1438
1439	/* We first start with searching the page inside the stable tree */
1440	kpage = stable_tree_search(page);
1441	if (kpage == page && rmap_item->head == stable_node) {
1442		put_page(kpage);
1443		return;
1444	}
1445
1446	remove_rmap_item_from_tree(rmap_item);
1447
1448	if (kpage) {
1449		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1450		if (!err) {
1451			/*
1452			 * The page was successfully merged:
1453			 * add its rmap_item to the stable tree.
1454			 */
1455			lock_page(kpage);
1456			stable_tree_append(rmap_item, page_stable_node(kpage));
1457			unlock_page(kpage);
1458		}
1459		put_page(kpage);
1460		return;
1461	}
1462
1463	/*
1464	 * If the hash value of the page has changed from the last time
1465	 * we calculated it, this page is changing frequently: therefore we
1466	 * don't want to insert it in the unstable tree, and we don't want
1467	 * to waste our time searching for something identical to it there.
1468	 */
1469	checksum = calc_checksum(page);
1470	if (rmap_item->oldchecksum != checksum) {
1471		rmap_item->oldchecksum = checksum;
1472		return;
1473	}
1474
1475	tree_rmap_item =
1476		unstable_tree_search_insert(rmap_item, page, &tree_page);
1477	if (tree_rmap_item) {
1478		kpage = try_to_merge_two_pages(rmap_item, page,
1479						tree_rmap_item, tree_page);
1480		put_page(tree_page);
 
 
 
 
 
1481		if (kpage) {
1482			/*
1483			 * The pages were successfully merged: insert new
1484			 * node in the stable tree and add both rmap_items.
1485			 */
1486			lock_page(kpage);
1487			stable_node = stable_tree_insert(kpage);
1488			if (stable_node) {
1489				stable_tree_append(tree_rmap_item, stable_node);
1490				stable_tree_append(rmap_item, stable_node);
1491			}
1492			unlock_page(kpage);
1493
1494			/*
1495			 * If we fail to insert the page into the stable tree,
1496			 * we will have 2 virtual addresses that are pointing
1497			 * to a ksm page left outside the stable tree,
1498			 * in which case we need to break_cow on both.
1499			 */
1500			if (!stable_node) {
1501				break_cow(tree_rmap_item);
1502				break_cow(rmap_item);
1503			}
1504		}
1505	}
1506}
1507
1508static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1509					    struct rmap_item **rmap_list,
1510					    unsigned long addr)
1511{
1512	struct rmap_item *rmap_item;
1513
1514	while (*rmap_list) {
1515		rmap_item = *rmap_list;
1516		if ((rmap_item->address & PAGE_MASK) == addr)
1517			return rmap_item;
1518		if (rmap_item->address > addr)
1519			break;
1520		*rmap_list = rmap_item->rmap_list;
1521		remove_rmap_item_from_tree(rmap_item);
1522		free_rmap_item(rmap_item);
1523	}
1524
1525	rmap_item = alloc_rmap_item();
1526	if (rmap_item) {
1527		/* It has already been zeroed */
1528		rmap_item->mm = mm_slot->mm;
1529		rmap_item->address = addr;
1530		rmap_item->rmap_list = *rmap_list;
1531		*rmap_list = rmap_item;
1532	}
1533	return rmap_item;
1534}
1535
1536static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1537{
1538	struct mm_struct *mm;
1539	struct mm_slot *slot;
1540	struct vm_area_struct *vma;
1541	struct rmap_item *rmap_item;
1542	int nid;
1543
1544	if (list_empty(&ksm_mm_head.mm_list))
1545		return NULL;
1546
1547	slot = ksm_scan.mm_slot;
1548	if (slot == &ksm_mm_head) {
1549		/*
1550		 * A number of pages can hang around indefinitely on per-cpu
1551		 * pagevecs, raised page count preventing write_protect_page
1552		 * from merging them.  Though it doesn't really matter much,
1553		 * it is puzzling to see some stuck in pages_volatile until
1554		 * other activity jostles them out, and they also prevented
1555		 * LTP's KSM test from succeeding deterministically; so drain
1556		 * them here (here rather than on entry to ksm_do_scan(),
1557		 * so we don't IPI too often when pages_to_scan is set low).
1558		 */
1559		lru_add_drain_all();
1560
1561		/*
1562		 * Whereas stale stable_nodes on the stable_tree itself
1563		 * get pruned in the regular course of stable_tree_search(),
1564		 * those moved out to the migrate_nodes list can accumulate:
1565		 * so prune them once before each full scan.
1566		 */
1567		if (!ksm_merge_across_nodes) {
1568			struct stable_node *stable_node;
1569			struct list_head *this, *next;
1570			struct page *page;
1571
1572			list_for_each_safe(this, next, &migrate_nodes) {
1573				stable_node = list_entry(this,
1574						struct stable_node, list);
1575				page = get_ksm_page(stable_node, false);
1576				if (page)
1577					put_page(page);
1578				cond_resched();
1579			}
1580		}
1581
1582		for (nid = 0; nid < ksm_nr_node_ids; nid++)
1583			root_unstable_tree[nid] = RB_ROOT;
1584
1585		spin_lock(&ksm_mmlist_lock);
1586		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1587		ksm_scan.mm_slot = slot;
1588		spin_unlock(&ksm_mmlist_lock);
1589		/*
1590		 * Although we tested list_empty() above, a racing __ksm_exit
1591		 * of the last mm on the list may have removed it since then.
1592		 */
1593		if (slot == &ksm_mm_head)
1594			return NULL;
1595next_mm:
1596		ksm_scan.address = 0;
1597		ksm_scan.rmap_list = &slot->rmap_list;
1598	}
1599
1600	mm = slot->mm;
1601	down_read(&mm->mmap_sem);
1602	if (ksm_test_exit(mm))
1603		vma = NULL;
1604	else
1605		vma = find_vma(mm, ksm_scan.address);
1606
1607	for (; vma; vma = vma->vm_next) {
1608		if (!(vma->vm_flags & VM_MERGEABLE))
1609			continue;
1610		if (ksm_scan.address < vma->vm_start)
1611			ksm_scan.address = vma->vm_start;
1612		if (!vma->anon_vma)
1613			ksm_scan.address = vma->vm_end;
1614
1615		while (ksm_scan.address < vma->vm_end) {
1616			if (ksm_test_exit(mm))
1617				break;
1618			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1619			if (IS_ERR_OR_NULL(*page)) {
1620				ksm_scan.address += PAGE_SIZE;
1621				cond_resched();
1622				continue;
1623			}
1624			if (PageAnon(*page) ||
1625			    page_trans_compound_anon(*page)) {
1626				flush_anon_page(vma, *page, ksm_scan.address);
1627				flush_dcache_page(*page);
1628				rmap_item = get_next_rmap_item(slot,
1629					ksm_scan.rmap_list, ksm_scan.address);
1630				if (rmap_item) {
1631					ksm_scan.rmap_list =
1632							&rmap_item->rmap_list;
1633					ksm_scan.address += PAGE_SIZE;
1634				} else
1635					put_page(*page);
1636				up_read(&mm->mmap_sem);
1637				return rmap_item;
1638			}
1639			put_page(*page);
1640			ksm_scan.address += PAGE_SIZE;
1641			cond_resched();
1642		}
1643	}
1644
1645	if (ksm_test_exit(mm)) {
1646		ksm_scan.address = 0;
1647		ksm_scan.rmap_list = &slot->rmap_list;
1648	}
1649	/*
1650	 * Nuke all the rmap_items that are above this current rmap:
1651	 * because there were no VM_MERGEABLE vmas with such addresses.
1652	 */
1653	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1654
1655	spin_lock(&ksm_mmlist_lock);
1656	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1657						struct mm_slot, mm_list);
1658	if (ksm_scan.address == 0) {
1659		/*
1660		 * We've completed a full scan of all vmas, holding mmap_sem
1661		 * throughout, and found no VM_MERGEABLE: so do the same as
1662		 * __ksm_exit does to remove this mm from all our lists now.
1663		 * This applies either when cleaning up after __ksm_exit
1664		 * (but beware: we can reach here even before __ksm_exit),
1665		 * or when all VM_MERGEABLE areas have been unmapped (and
1666		 * mmap_sem then protects against race with MADV_MERGEABLE).
1667		 */
1668		hash_del(&slot->link);
1669		list_del(&slot->mm_list);
1670		spin_unlock(&ksm_mmlist_lock);
1671
1672		free_mm_slot(slot);
1673		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1674		up_read(&mm->mmap_sem);
1675		mmdrop(mm);
1676	} else {
1677		spin_unlock(&ksm_mmlist_lock);
1678		up_read(&mm->mmap_sem);
1679	}
1680
1681	/* Repeat until we've completed scanning the whole list */
1682	slot = ksm_scan.mm_slot;
1683	if (slot != &ksm_mm_head)
1684		goto next_mm;
1685
1686	ksm_scan.seqnr++;
1687	return NULL;
1688}
1689
1690/**
1691 * ksm_do_scan  - the ksm scanner main worker function.
1692 * @scan_npages - number of pages we want to scan before we return.
1693 */
1694static void ksm_do_scan(unsigned int scan_npages)
1695{
1696	struct rmap_item *rmap_item;
1697	struct page *uninitialized_var(page);
1698
1699	while (scan_npages-- && likely(!freezing(current))) {
1700		cond_resched();
1701		rmap_item = scan_get_next_rmap_item(&page);
1702		if (!rmap_item)
1703			return;
1704		cmp_and_merge_page(page, rmap_item);
 
1705		put_page(page);
1706	}
1707}
1708
1709static int ksmd_should_run(void)
1710{
1711	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1712}
1713
1714static int ksm_scan_thread(void *nothing)
1715{
1716	set_freezable();
1717	set_user_nice(current, 5);
1718
1719	while (!kthread_should_stop()) {
1720		mutex_lock(&ksm_thread_mutex);
1721		wait_while_offlining();
1722		if (ksmd_should_run())
1723			ksm_do_scan(ksm_thread_pages_to_scan);
1724		mutex_unlock(&ksm_thread_mutex);
1725
1726		try_to_freeze();
1727
1728		if (ksmd_should_run()) {
1729			schedule_timeout_interruptible(
1730				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1731		} else {
1732			wait_event_freezable(ksm_thread_wait,
1733				ksmd_should_run() || kthread_should_stop());
1734		}
1735	}
1736	return 0;
1737}
1738
1739int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1740		unsigned long end, int advice, unsigned long *vm_flags)
1741{
1742	struct mm_struct *mm = vma->vm_mm;
1743	int err;
1744
1745	switch (advice) {
1746	case MADV_MERGEABLE:
1747		/*
1748		 * Be somewhat over-protective for now!
1749		 */
1750		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1751				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1752				 VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
 
1753			return 0;		/* just ignore the advice */
1754
1755#ifdef VM_SAO
1756		if (*vm_flags & VM_SAO)
1757			return 0;
1758#endif
1759
1760		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1761			err = __ksm_enter(mm);
1762			if (err)
1763				return err;
1764		}
1765
1766		*vm_flags |= VM_MERGEABLE;
1767		break;
1768
1769	case MADV_UNMERGEABLE:
1770		if (!(*vm_flags & VM_MERGEABLE))
1771			return 0;		/* just ignore the advice */
1772
1773		if (vma->anon_vma) {
1774			err = unmerge_ksm_pages(vma, start, end);
1775			if (err)
1776				return err;
1777		}
1778
1779		*vm_flags &= ~VM_MERGEABLE;
1780		break;
1781	}
1782
1783	return 0;
1784}
1785
1786int __ksm_enter(struct mm_struct *mm)
1787{
1788	struct mm_slot *mm_slot;
1789	int needs_wakeup;
1790
1791	mm_slot = alloc_mm_slot();
1792	if (!mm_slot)
1793		return -ENOMEM;
1794
1795	/* Check ksm_run too?  Would need tighter locking */
1796	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1797
1798	spin_lock(&ksm_mmlist_lock);
1799	insert_to_mm_slots_hash(mm, mm_slot);
1800	/*
1801	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1802	 * insert just behind the scanning cursor, to let the area settle
1803	 * down a little; when fork is followed by immediate exec, we don't
1804	 * want ksmd to waste time setting up and tearing down an rmap_list.
1805	 *
1806	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1807	 * scanning cursor, otherwise KSM pages in newly forked mms will be
1808	 * missed: then we might as well insert at the end of the list.
1809	 */
1810	if (ksm_run & KSM_RUN_UNMERGE)
1811		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1812	else
1813		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1814	spin_unlock(&ksm_mmlist_lock);
1815
1816	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1817	atomic_inc(&mm->mm_count);
1818
1819	if (needs_wakeup)
1820		wake_up_interruptible(&ksm_thread_wait);
1821
1822	return 0;
1823}
1824
1825void __ksm_exit(struct mm_struct *mm)
1826{
1827	struct mm_slot *mm_slot;
1828	int easy_to_free = 0;
1829
1830	/*
1831	 * This process is exiting: if it's straightforward (as is the
1832	 * case when ksmd was never running), free mm_slot immediately.
1833	 * But if it's at the cursor or has rmap_items linked to it, use
1834	 * mmap_sem to synchronize with any break_cows before pagetables
1835	 * are freed, and leave the mm_slot on the list for ksmd to free.
1836	 * Beware: ksm may already have noticed it exiting and freed the slot.
1837	 */
1838
1839	spin_lock(&ksm_mmlist_lock);
1840	mm_slot = get_mm_slot(mm);
1841	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1842		if (!mm_slot->rmap_list) {
1843			hash_del(&mm_slot->link);
1844			list_del(&mm_slot->mm_list);
1845			easy_to_free = 1;
1846		} else {
1847			list_move(&mm_slot->mm_list,
1848				  &ksm_scan.mm_slot->mm_list);
1849		}
1850	}
1851	spin_unlock(&ksm_mmlist_lock);
1852
1853	if (easy_to_free) {
1854		free_mm_slot(mm_slot);
1855		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1856		mmdrop(mm);
1857	} else if (mm_slot) {
1858		down_write(&mm->mmap_sem);
1859		up_write(&mm->mmap_sem);
1860	}
1861}
1862
1863struct page *ksm_might_need_to_copy(struct page *page,
1864			struct vm_area_struct *vma, unsigned long address)
1865{
1866	struct anon_vma *anon_vma = page_anon_vma(page);
1867	struct page *new_page;
1868
1869	if (PageKsm(page)) {
1870		if (page_stable_node(page) &&
1871		    !(ksm_run & KSM_RUN_UNMERGE))
1872			return page;	/* no need to copy it */
1873	} else if (!anon_vma) {
1874		return page;		/* no need to copy it */
1875	} else if (anon_vma->root == vma->anon_vma->root &&
1876		 page->index == linear_page_index(vma, address)) {
1877		return page;		/* still no need to copy it */
1878	}
1879	if (!PageUptodate(page))
1880		return page;		/* let do_swap_page report the error */
1881
1882	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1883	if (new_page) {
1884		copy_user_highpage(new_page, page, address, vma);
1885
1886		SetPageDirty(new_page);
1887		__SetPageUptodate(new_page);
 
1888		__set_page_locked(new_page);
 
 
 
 
 
1889	}
1890
1891	return new_page;
1892}
1893
1894int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1895{
1896	struct stable_node *stable_node;
 
1897	struct rmap_item *rmap_item;
1898	int ret = SWAP_AGAIN;
1899	int search_new_forks = 0;
1900
1901	VM_BUG_ON_PAGE(!PageKsm(page), page);
 
1902
1903	/*
1904	 * Rely on the page lock to protect against concurrent modifications
1905	 * to that page's node of the stable tree.
1906	 */
1907	VM_BUG_ON_PAGE(!PageLocked(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1908
1909	stable_node = page_stable_node(page);
1910	if (!stable_node)
1911		return ret;
1912again:
1913	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1914		struct anon_vma *anon_vma = rmap_item->anon_vma;
1915		struct anon_vma_chain *vmac;
1916		struct vm_area_struct *vma;
1917
1918		anon_vma_lock_read(anon_vma);
1919		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1920					       0, ULONG_MAX) {
1921			vma = vmac->vma;
1922			if (rmap_item->address < vma->vm_start ||
1923			    rmap_item->address >= vma->vm_end)
1924				continue;
1925			/*
1926			 * Initially we examine only the vma which covers this
1927			 * rmap_item; but later, if there is still work to do,
1928			 * we examine covering vmas in other mms: in case they
1929			 * were forked from the original since ksmd passed.
1930			 */
1931			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1932				continue;
1933
1934			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1935				continue;
1936
1937			ret = rwc->rmap_one(page, vma,
1938					rmap_item->address, rwc->arg);
1939			if (ret != SWAP_AGAIN) {
1940				anon_vma_unlock_read(anon_vma);
1941				goto out;
1942			}
1943			if (rwc->done && rwc->done(page)) {
1944				anon_vma_unlock_read(anon_vma);
1945				goto out;
1946			}
1947		}
1948		anon_vma_unlock_read(anon_vma);
1949	}
1950	if (!search_new_forks++)
1951		goto again;
1952out:
1953	return ret;
1954}
1955
1956#ifdef CONFIG_MIGRATION
1957void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1958{
1959	struct stable_node *stable_node;
1960
1961	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1962	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1963	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1964
1965	stable_node = page_stable_node(newpage);
1966	if (stable_node) {
1967		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1968		stable_node->kpfn = page_to_pfn(newpage);
1969		/*
1970		 * newpage->mapping was set in advance; now we need smp_wmb()
1971		 * to make sure that the new stable_node->kpfn is visible
1972		 * to get_ksm_page() before it can see that oldpage->mapping
1973		 * has gone stale (or that PageSwapCache has been cleared).
1974		 */
1975		smp_wmb();
1976		set_page_stable_node(oldpage, NULL);
1977	}
1978}
1979#endif /* CONFIG_MIGRATION */
1980
1981#ifdef CONFIG_MEMORY_HOTREMOVE
1982static int just_wait(void *word)
 
1983{
1984	schedule();
1985	return 0;
1986}
1987
1988static void wait_while_offlining(void)
1989{
1990	while (ksm_run & KSM_RUN_OFFLINE) {
1991		mutex_unlock(&ksm_thread_mutex);
1992		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
1993				just_wait, TASK_UNINTERRUPTIBLE);
1994		mutex_lock(&ksm_thread_mutex);
1995	}
1996}
1997
1998static void ksm_check_stable_tree(unsigned long start_pfn,
1999				  unsigned long end_pfn)
2000{
2001	struct stable_node *stable_node;
2002	struct list_head *this, *next;
2003	struct rb_node *node;
2004	int nid;
2005
2006	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2007		node = rb_first(root_stable_tree + nid);
2008		while (node) {
2009			stable_node = rb_entry(node, struct stable_node, node);
2010			if (stable_node->kpfn >= start_pfn &&
2011			    stable_node->kpfn < end_pfn) {
2012				/*
2013				 * Don't get_ksm_page, page has already gone:
2014				 * which is why we keep kpfn instead of page*
2015				 */
2016				remove_node_from_stable_tree(stable_node);
2017				node = rb_first(root_stable_tree + nid);
2018			} else
2019				node = rb_next(node);
2020			cond_resched();
2021		}
2022	}
2023	list_for_each_safe(this, next, &migrate_nodes) {
2024		stable_node = list_entry(this, struct stable_node, list);
2025		if (stable_node->kpfn >= start_pfn &&
2026		    stable_node->kpfn < end_pfn)
2027			remove_node_from_stable_tree(stable_node);
2028		cond_resched();
2029	}
 
2030}
2031
2032static int ksm_memory_callback(struct notifier_block *self,
2033			       unsigned long action, void *arg)
2034{
2035	struct memory_notify *mn = arg;
 
2036
2037	switch (action) {
2038	case MEM_GOING_OFFLINE:
2039		/*
2040		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2041		 * and remove_all_stable_nodes() while memory is going offline:
2042		 * it is unsafe for them to touch the stable tree at this time.
2043		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2044		 * which do not need the ksm_thread_mutex are all safe.
 
 
2045		 */
2046		mutex_lock(&ksm_thread_mutex);
2047		ksm_run |= KSM_RUN_OFFLINE;
2048		mutex_unlock(&ksm_thread_mutex);
2049		break;
2050
2051	case MEM_OFFLINE:
2052		/*
2053		 * Most of the work is done by page migration; but there might
2054		 * be a few stable_nodes left over, still pointing to struct
2055		 * pages which have been offlined: prune those from the tree,
2056		 * otherwise get_ksm_page() might later try to access a
2057		 * non-existent struct page.
2058		 */
2059		ksm_check_stable_tree(mn->start_pfn,
2060				      mn->start_pfn + mn->nr_pages);
 
2061		/* fallthrough */
2062
2063	case MEM_CANCEL_OFFLINE:
2064		mutex_lock(&ksm_thread_mutex);
2065		ksm_run &= ~KSM_RUN_OFFLINE;
2066		mutex_unlock(&ksm_thread_mutex);
2067
2068		smp_mb();	/* wake_up_bit advises this */
2069		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2070		break;
2071	}
2072	return NOTIFY_OK;
2073}
2074#else
2075static void wait_while_offlining(void)
2076{
2077}
2078#endif /* CONFIG_MEMORY_HOTREMOVE */
2079
2080#ifdef CONFIG_SYSFS
2081/*
2082 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2083 */
2084
2085#define KSM_ATTR_RO(_name) \
2086	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2087#define KSM_ATTR(_name) \
2088	static struct kobj_attribute _name##_attr = \
2089		__ATTR(_name, 0644, _name##_show, _name##_store)
2090
2091static ssize_t sleep_millisecs_show(struct kobject *kobj,
2092				    struct kobj_attribute *attr, char *buf)
2093{
2094	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2095}
2096
2097static ssize_t sleep_millisecs_store(struct kobject *kobj,
2098				     struct kobj_attribute *attr,
2099				     const char *buf, size_t count)
2100{
2101	unsigned long msecs;
2102	int err;
2103
2104	err = kstrtoul(buf, 10, &msecs);
2105	if (err || msecs > UINT_MAX)
2106		return -EINVAL;
2107
2108	ksm_thread_sleep_millisecs = msecs;
2109
2110	return count;
2111}
2112KSM_ATTR(sleep_millisecs);
2113
2114static ssize_t pages_to_scan_show(struct kobject *kobj,
2115				  struct kobj_attribute *attr, char *buf)
2116{
2117	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2118}
2119
2120static ssize_t pages_to_scan_store(struct kobject *kobj,
2121				   struct kobj_attribute *attr,
2122				   const char *buf, size_t count)
2123{
2124	int err;
2125	unsigned long nr_pages;
2126
2127	err = kstrtoul(buf, 10, &nr_pages);
2128	if (err || nr_pages > UINT_MAX)
2129		return -EINVAL;
2130
2131	ksm_thread_pages_to_scan = nr_pages;
2132
2133	return count;
2134}
2135KSM_ATTR(pages_to_scan);
2136
2137static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2138			char *buf)
2139{
2140	return sprintf(buf, "%lu\n", ksm_run);
2141}
2142
2143static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2144			 const char *buf, size_t count)
2145{
2146	int err;
2147	unsigned long flags;
2148
2149	err = kstrtoul(buf, 10, &flags);
2150	if (err || flags > UINT_MAX)
2151		return -EINVAL;
2152	if (flags > KSM_RUN_UNMERGE)
2153		return -EINVAL;
2154
2155	/*
2156	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2157	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2158	 * breaking COW to free the pages_shared (but leaves mm_slots
2159	 * on the list for when ksmd may be set running again).
2160	 */
2161
2162	mutex_lock(&ksm_thread_mutex);
2163	wait_while_offlining();
2164	if (ksm_run != flags) {
2165		ksm_run = flags;
2166		if (flags & KSM_RUN_UNMERGE) {
2167			set_current_oom_origin();
 
 
2168			err = unmerge_and_remove_all_rmap_items();
2169			clear_current_oom_origin();
2170			if (err) {
2171				ksm_run = KSM_RUN_STOP;
2172				count = err;
2173			}
2174		}
2175	}
2176	mutex_unlock(&ksm_thread_mutex);
2177
2178	if (flags & KSM_RUN_MERGE)
2179		wake_up_interruptible(&ksm_thread_wait);
2180
2181	return count;
2182}
2183KSM_ATTR(run);
2184
2185#ifdef CONFIG_NUMA
2186static ssize_t merge_across_nodes_show(struct kobject *kobj,
2187				struct kobj_attribute *attr, char *buf)
2188{
2189	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2190}
2191
2192static ssize_t merge_across_nodes_store(struct kobject *kobj,
2193				   struct kobj_attribute *attr,
2194				   const char *buf, size_t count)
2195{
2196	int err;
2197	unsigned long knob;
2198
2199	err = kstrtoul(buf, 10, &knob);
2200	if (err)
2201		return err;
2202	if (knob > 1)
2203		return -EINVAL;
2204
2205	mutex_lock(&ksm_thread_mutex);
2206	wait_while_offlining();
2207	if (ksm_merge_across_nodes != knob) {
2208		if (ksm_pages_shared || remove_all_stable_nodes())
2209			err = -EBUSY;
2210		else if (root_stable_tree == one_stable_tree) {
2211			struct rb_root *buf;
2212			/*
2213			 * This is the first time that we switch away from the
2214			 * default of merging across nodes: must now allocate
2215			 * a buffer to hold as many roots as may be needed.
2216			 * Allocate stable and unstable together:
2217			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2218			 */
2219			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2220				      GFP_KERNEL);
2221			/* Let us assume that RB_ROOT is NULL is zero */
2222			if (!buf)
2223				err = -ENOMEM;
2224			else {
2225				root_stable_tree = buf;
2226				root_unstable_tree = buf + nr_node_ids;
2227				/* Stable tree is empty but not the unstable */
2228				root_unstable_tree[0] = one_unstable_tree[0];
2229			}
2230		}
2231		if (!err) {
2232			ksm_merge_across_nodes = knob;
2233			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2234		}
2235	}
2236	mutex_unlock(&ksm_thread_mutex);
2237
2238	return err ? err : count;
2239}
2240KSM_ATTR(merge_across_nodes);
2241#endif
2242
2243static ssize_t pages_shared_show(struct kobject *kobj,
2244				 struct kobj_attribute *attr, char *buf)
2245{
2246	return sprintf(buf, "%lu\n", ksm_pages_shared);
2247}
2248KSM_ATTR_RO(pages_shared);
2249
2250static ssize_t pages_sharing_show(struct kobject *kobj,
2251				  struct kobj_attribute *attr, char *buf)
2252{
2253	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2254}
2255KSM_ATTR_RO(pages_sharing);
2256
2257static ssize_t pages_unshared_show(struct kobject *kobj,
2258				   struct kobj_attribute *attr, char *buf)
2259{
2260	return sprintf(buf, "%lu\n", ksm_pages_unshared);
2261}
2262KSM_ATTR_RO(pages_unshared);
2263
2264static ssize_t pages_volatile_show(struct kobject *kobj,
2265				   struct kobj_attribute *attr, char *buf)
2266{
2267	long ksm_pages_volatile;
2268
2269	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2270				- ksm_pages_sharing - ksm_pages_unshared;
2271	/*
2272	 * It was not worth any locking to calculate that statistic,
2273	 * but it might therefore sometimes be negative: conceal that.
2274	 */
2275	if (ksm_pages_volatile < 0)
2276		ksm_pages_volatile = 0;
2277	return sprintf(buf, "%ld\n", ksm_pages_volatile);
2278}
2279KSM_ATTR_RO(pages_volatile);
2280
2281static ssize_t full_scans_show(struct kobject *kobj,
2282			       struct kobj_attribute *attr, char *buf)
2283{
2284	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2285}
2286KSM_ATTR_RO(full_scans);
2287
2288static struct attribute *ksm_attrs[] = {
2289	&sleep_millisecs_attr.attr,
2290	&pages_to_scan_attr.attr,
2291	&run_attr.attr,
2292	&pages_shared_attr.attr,
2293	&pages_sharing_attr.attr,
2294	&pages_unshared_attr.attr,
2295	&pages_volatile_attr.attr,
2296	&full_scans_attr.attr,
2297#ifdef CONFIG_NUMA
2298	&merge_across_nodes_attr.attr,
2299#endif
2300	NULL,
2301};
2302
2303static struct attribute_group ksm_attr_group = {
2304	.attrs = ksm_attrs,
2305	.name = "ksm",
2306};
2307#endif /* CONFIG_SYSFS */
2308
2309static int __init ksm_init(void)
2310{
2311	struct task_struct *ksm_thread;
2312	int err;
2313
2314	err = ksm_slab_init();
2315	if (err)
2316		goto out;
2317
2318	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2319	if (IS_ERR(ksm_thread)) {
2320		printk(KERN_ERR "ksm: creating kthread failed\n");
2321		err = PTR_ERR(ksm_thread);
2322		goto out_free;
2323	}
2324
2325#ifdef CONFIG_SYSFS
2326	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2327	if (err) {
2328		printk(KERN_ERR "ksm: register sysfs failed\n");
2329		kthread_stop(ksm_thread);
2330		goto out_free;
2331	}
2332#else
2333	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2334
2335#endif /* CONFIG_SYSFS */
2336
2337#ifdef CONFIG_MEMORY_HOTREMOVE
2338	/* There is no significance to this priority 100 */
 
 
 
2339	hotplug_memory_notifier(ksm_memory_callback, 100);
2340#endif
2341	return 0;
2342
2343out_free:
2344	ksm_slab_free();
2345out:
2346	return err;
2347}
2348subsys_initcall(ksm_init);