Loading...
1/*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13#include <linux/version.h>
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
17#include <linux/delay.h>
18#include <linux/bitops.h>
19#include <linux/spinlock.h>
20#include <linux/kernel.h>
21#include <linux/pm.h>
22#include <linux/device.h>
23#include <linux/init.h>
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
28#include <linux/list.h>
29#include <linux/slab.h>
30
31#include <asm/uaccess.h>
32#include <asm/mmu_context.h>
33#include <asm/pgtable.h>
34#include <asm/tlbflush.h>
35#include <asm/io.h>
36
37#include "power.h"
38
39static int swsusp_page_is_free(struct page *);
40static void swsusp_set_page_forbidden(struct page *);
41static void swsusp_unset_page_forbidden(struct page *);
42
43/*
44 * Number of bytes to reserve for memory allocations made by device drivers
45 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46 * cause image creation to fail (tunable via /sys/power/reserved_size).
47 */
48unsigned long reserved_size;
49
50void __init hibernate_reserved_size_init(void)
51{
52 reserved_size = SPARE_PAGES * PAGE_SIZE;
53}
54
55/*
56 * Preferred image size in bytes (tunable via /sys/power/image_size).
57 * When it is set to N, swsusp will do its best to ensure the image
58 * size will not exceed N bytes, but if that is impossible, it will
59 * try to create the smallest image possible.
60 */
61unsigned long image_size;
62
63void __init hibernate_image_size_init(void)
64{
65 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
66}
67
68/* List of PBEs needed for restoring the pages that were allocated before
69 * the suspend and included in the suspend image, but have also been
70 * allocated by the "resume" kernel, so their contents cannot be written
71 * directly to their "original" page frames.
72 */
73struct pbe *restore_pblist;
74
75/* Pointer to an auxiliary buffer (1 page) */
76static void *buffer;
77
78/**
79 * @safe_needed - on resume, for storing the PBE list and the image,
80 * we can only use memory pages that do not conflict with the pages
81 * used before suspend. The unsafe pages have PageNosaveFree set
82 * and we count them using unsafe_pages.
83 *
84 * Each allocated image page is marked as PageNosave and PageNosaveFree
85 * so that swsusp_free() can release it.
86 */
87
88#define PG_ANY 0
89#define PG_SAFE 1
90#define PG_UNSAFE_CLEAR 1
91#define PG_UNSAFE_KEEP 0
92
93static unsigned int allocated_unsafe_pages;
94
95static void *get_image_page(gfp_t gfp_mask, int safe_needed)
96{
97 void *res;
98
99 res = (void *)get_zeroed_page(gfp_mask);
100 if (safe_needed)
101 while (res && swsusp_page_is_free(virt_to_page(res))) {
102 /* The page is unsafe, mark it for swsusp_free() */
103 swsusp_set_page_forbidden(virt_to_page(res));
104 allocated_unsafe_pages++;
105 res = (void *)get_zeroed_page(gfp_mask);
106 }
107 if (res) {
108 swsusp_set_page_forbidden(virt_to_page(res));
109 swsusp_set_page_free(virt_to_page(res));
110 }
111 return res;
112}
113
114unsigned long get_safe_page(gfp_t gfp_mask)
115{
116 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117}
118
119static struct page *alloc_image_page(gfp_t gfp_mask)
120{
121 struct page *page;
122
123 page = alloc_page(gfp_mask);
124 if (page) {
125 swsusp_set_page_forbidden(page);
126 swsusp_set_page_free(page);
127 }
128 return page;
129}
130
131/**
132 * free_image_page - free page represented by @addr, allocated with
133 * get_image_page (page flags set by it must be cleared)
134 */
135
136static inline void free_image_page(void *addr, int clear_nosave_free)
137{
138 struct page *page;
139
140 BUG_ON(!virt_addr_valid(addr));
141
142 page = virt_to_page(addr);
143
144 swsusp_unset_page_forbidden(page);
145 if (clear_nosave_free)
146 swsusp_unset_page_free(page);
147
148 __free_page(page);
149}
150
151/* struct linked_page is used to build chains of pages */
152
153#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
154
155struct linked_page {
156 struct linked_page *next;
157 char data[LINKED_PAGE_DATA_SIZE];
158} __attribute__((packed));
159
160static inline void
161free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162{
163 while (list) {
164 struct linked_page *lp = list->next;
165
166 free_image_page(list, clear_page_nosave);
167 list = lp;
168 }
169}
170
171/**
172 * struct chain_allocator is used for allocating small objects out of
173 * a linked list of pages called 'the chain'.
174 *
175 * The chain grows each time when there is no room for a new object in
176 * the current page. The allocated objects cannot be freed individually.
177 * It is only possible to free them all at once, by freeing the entire
178 * chain.
179 *
180 * NOTE: The chain allocator may be inefficient if the allocated objects
181 * are not much smaller than PAGE_SIZE.
182 */
183
184struct chain_allocator {
185 struct linked_page *chain; /* the chain */
186 unsigned int used_space; /* total size of objects allocated out
187 * of the current page
188 */
189 gfp_t gfp_mask; /* mask for allocating pages */
190 int safe_needed; /* if set, only "safe" pages are allocated */
191};
192
193static void
194chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195{
196 ca->chain = NULL;
197 ca->used_space = LINKED_PAGE_DATA_SIZE;
198 ca->gfp_mask = gfp_mask;
199 ca->safe_needed = safe_needed;
200}
201
202static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203{
204 void *ret;
205
206 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207 struct linked_page *lp;
208
209 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
210 if (!lp)
211 return NULL;
212
213 lp->next = ca->chain;
214 ca->chain = lp;
215 ca->used_space = 0;
216 }
217 ret = ca->chain->data + ca->used_space;
218 ca->used_space += size;
219 return ret;
220}
221
222/**
223 * Data types related to memory bitmaps.
224 *
225 * Memory bitmap is a structure consiting of many linked lists of
226 * objects. The main list's elements are of type struct zone_bitmap
227 * and each of them corresonds to one zone. For each zone bitmap
228 * object there is a list of objects of type struct bm_block that
229 * represent each blocks of bitmap in which information is stored.
230 *
231 * struct memory_bitmap contains a pointer to the main list of zone
232 * bitmap objects, a struct bm_position used for browsing the bitmap,
233 * and a pointer to the list of pages used for allocating all of the
234 * zone bitmap objects and bitmap block objects.
235 *
236 * NOTE: It has to be possible to lay out the bitmap in memory
237 * using only allocations of order 0. Additionally, the bitmap is
238 * designed to work with arbitrary number of zones (this is over the
239 * top for now, but let's avoid making unnecessary assumptions ;-).
240 *
241 * struct zone_bitmap contains a pointer to a list of bitmap block
242 * objects and a pointer to the bitmap block object that has been
243 * most recently used for setting bits. Additionally, it contains the
244 * pfns that correspond to the start and end of the represented zone.
245 *
246 * struct bm_block contains a pointer to the memory page in which
247 * information is stored (in the form of a block of bitmap)
248 * It also contains the pfns that correspond to the start and end of
249 * the represented memory area.
250 */
251
252#define BM_END_OF_MAP (~0UL)
253
254#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
255
256struct bm_block {
257 struct list_head hook; /* hook into a list of bitmap blocks */
258 unsigned long start_pfn; /* pfn represented by the first bit */
259 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
260 unsigned long *data; /* bitmap representing pages */
261};
262
263static inline unsigned long bm_block_bits(struct bm_block *bb)
264{
265 return bb->end_pfn - bb->start_pfn;
266}
267
268/* strcut bm_position is used for browsing memory bitmaps */
269
270struct bm_position {
271 struct bm_block *block;
272 int bit;
273};
274
275struct memory_bitmap {
276 struct list_head blocks; /* list of bitmap blocks */
277 struct linked_page *p_list; /* list of pages used to store zone
278 * bitmap objects and bitmap block
279 * objects
280 */
281 struct bm_position cur; /* most recently used bit position */
282};
283
284/* Functions that operate on memory bitmaps */
285
286static void memory_bm_position_reset(struct memory_bitmap *bm)
287{
288 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
289 bm->cur.bit = 0;
290}
291
292static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293
294/**
295 * create_bm_block_list - create a list of block bitmap objects
296 * @pages - number of pages to track
297 * @list - list to put the allocated blocks into
298 * @ca - chain allocator to be used for allocating memory
299 */
300static int create_bm_block_list(unsigned long pages,
301 struct list_head *list,
302 struct chain_allocator *ca)
303{
304 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
305
306 while (nr_blocks-- > 0) {
307 struct bm_block *bb;
308
309 bb = chain_alloc(ca, sizeof(struct bm_block));
310 if (!bb)
311 return -ENOMEM;
312 list_add(&bb->hook, list);
313 }
314
315 return 0;
316}
317
318struct mem_extent {
319 struct list_head hook;
320 unsigned long start;
321 unsigned long end;
322};
323
324/**
325 * free_mem_extents - free a list of memory extents
326 * @list - list of extents to empty
327 */
328static void free_mem_extents(struct list_head *list)
329{
330 struct mem_extent *ext, *aux;
331
332 list_for_each_entry_safe(ext, aux, list, hook) {
333 list_del(&ext->hook);
334 kfree(ext);
335 }
336}
337
338/**
339 * create_mem_extents - create a list of memory extents representing
340 * contiguous ranges of PFNs
341 * @list - list to put the extents into
342 * @gfp_mask - mask to use for memory allocations
343 */
344static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
345{
346 struct zone *zone;
347
348 INIT_LIST_HEAD(list);
349
350 for_each_populated_zone(zone) {
351 unsigned long zone_start, zone_end;
352 struct mem_extent *ext, *cur, *aux;
353
354 zone_start = zone->zone_start_pfn;
355 zone_end = zone->zone_start_pfn + zone->spanned_pages;
356
357 list_for_each_entry(ext, list, hook)
358 if (zone_start <= ext->end)
359 break;
360
361 if (&ext->hook == list || zone_end < ext->start) {
362 /* New extent is necessary */
363 struct mem_extent *new_ext;
364
365 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366 if (!new_ext) {
367 free_mem_extents(list);
368 return -ENOMEM;
369 }
370 new_ext->start = zone_start;
371 new_ext->end = zone_end;
372 list_add_tail(&new_ext->hook, &ext->hook);
373 continue;
374 }
375
376 /* Merge this zone's range of PFNs with the existing one */
377 if (zone_start < ext->start)
378 ext->start = zone_start;
379 if (zone_end > ext->end)
380 ext->end = zone_end;
381
382 /* More merging may be possible */
383 cur = ext;
384 list_for_each_entry_safe_continue(cur, aux, list, hook) {
385 if (zone_end < cur->start)
386 break;
387 if (zone_end < cur->end)
388 ext->end = cur->end;
389 list_del(&cur->hook);
390 kfree(cur);
391 }
392 }
393
394 return 0;
395}
396
397/**
398 * memory_bm_create - allocate memory for a memory bitmap
399 */
400static int
401memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402{
403 struct chain_allocator ca;
404 struct list_head mem_extents;
405 struct mem_extent *ext;
406 int error;
407
408 chain_init(&ca, gfp_mask, safe_needed);
409 INIT_LIST_HEAD(&bm->blocks);
410
411 error = create_mem_extents(&mem_extents, gfp_mask);
412 if (error)
413 return error;
414
415 list_for_each_entry(ext, &mem_extents, hook) {
416 struct bm_block *bb;
417 unsigned long pfn = ext->start;
418 unsigned long pages = ext->end - ext->start;
419
420 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
421
422 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423 if (error)
424 goto Error;
425
426 list_for_each_entry_continue(bb, &bm->blocks, hook) {
427 bb->data = get_image_page(gfp_mask, safe_needed);
428 if (!bb->data) {
429 error = -ENOMEM;
430 goto Error;
431 }
432
433 bb->start_pfn = pfn;
434 if (pages >= BM_BITS_PER_BLOCK) {
435 pfn += BM_BITS_PER_BLOCK;
436 pages -= BM_BITS_PER_BLOCK;
437 } else {
438 /* This is executed only once in the loop */
439 pfn += pages;
440 }
441 bb->end_pfn = pfn;
442 }
443 }
444
445 bm->p_list = ca.chain;
446 memory_bm_position_reset(bm);
447 Exit:
448 free_mem_extents(&mem_extents);
449 return error;
450
451 Error:
452 bm->p_list = ca.chain;
453 memory_bm_free(bm, PG_UNSAFE_CLEAR);
454 goto Exit;
455}
456
457/**
458 * memory_bm_free - free memory occupied by the memory bitmap @bm
459 */
460static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461{
462 struct bm_block *bb;
463
464 list_for_each_entry(bb, &bm->blocks, hook)
465 if (bb->data)
466 free_image_page(bb->data, clear_nosave_free);
467
468 free_list_of_pages(bm->p_list, clear_nosave_free);
469
470 INIT_LIST_HEAD(&bm->blocks);
471}
472
473/**
474 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
475 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
476 * of @bm->cur_zone_bm are updated.
477 */
478static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
479 void **addr, unsigned int *bit_nr)
480{
481 struct bm_block *bb;
482
483 /*
484 * Check if the pfn corresponds to the current bitmap block and find
485 * the block where it fits if this is not the case.
486 */
487 bb = bm->cur.block;
488 if (pfn < bb->start_pfn)
489 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490 if (pfn >= bb->start_pfn)
491 break;
492
493 if (pfn >= bb->end_pfn)
494 list_for_each_entry_continue(bb, &bm->blocks, hook)
495 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496 break;
497
498 if (&bb->hook == &bm->blocks)
499 return -EFAULT;
500
501 /* The block has been found */
502 bm->cur.block = bb;
503 pfn -= bb->start_pfn;
504 bm->cur.bit = pfn + 1;
505 *bit_nr = pfn;
506 *addr = bb->data;
507 return 0;
508}
509
510static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511{
512 void *addr;
513 unsigned int bit;
514 int error;
515
516 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517 BUG_ON(error);
518 set_bit(bit, addr);
519}
520
521static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522{
523 void *addr;
524 unsigned int bit;
525 int error;
526
527 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528 if (!error)
529 set_bit(bit, addr);
530 return error;
531}
532
533static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534{
535 void *addr;
536 unsigned int bit;
537 int error;
538
539 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540 BUG_ON(error);
541 clear_bit(bit, addr);
542}
543
544static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545{
546 void *addr;
547 unsigned int bit;
548 int error;
549
550 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551 BUG_ON(error);
552 return test_bit(bit, addr);
553}
554
555static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556{
557 void *addr;
558 unsigned int bit;
559
560 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561}
562
563/**
564 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
566 * returned.
567 *
568 * It is required to run memory_bm_position_reset() before the first call to
569 * this function.
570 */
571
572static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573{
574 struct bm_block *bb;
575 int bit;
576
577 bb = bm->cur.block;
578 do {
579 bit = bm->cur.bit;
580 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581 if (bit < bm_block_bits(bb))
582 goto Return_pfn;
583
584 bb = list_entry(bb->hook.next, struct bm_block, hook);
585 bm->cur.block = bb;
586 bm->cur.bit = 0;
587 } while (&bb->hook != &bm->blocks);
588
589 memory_bm_position_reset(bm);
590 return BM_END_OF_MAP;
591
592 Return_pfn:
593 bm->cur.bit = bit + 1;
594 return bb->start_pfn + bit;
595}
596
597/**
598 * This structure represents a range of page frames the contents of which
599 * should not be saved during the suspend.
600 */
601
602struct nosave_region {
603 struct list_head list;
604 unsigned long start_pfn;
605 unsigned long end_pfn;
606};
607
608static LIST_HEAD(nosave_regions);
609
610/**
611 * register_nosave_region - register a range of page frames the contents
612 * of which should not be saved during the suspend (to be used in the early
613 * initialization code)
614 */
615
616void __init
617__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618 int use_kmalloc)
619{
620 struct nosave_region *region;
621
622 if (start_pfn >= end_pfn)
623 return;
624
625 if (!list_empty(&nosave_regions)) {
626 /* Try to extend the previous region (they should be sorted) */
627 region = list_entry(nosave_regions.prev,
628 struct nosave_region, list);
629 if (region->end_pfn == start_pfn) {
630 region->end_pfn = end_pfn;
631 goto Report;
632 }
633 }
634 if (use_kmalloc) {
635 /* during init, this shouldn't fail */
636 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637 BUG_ON(!region);
638 } else
639 /* This allocation cannot fail */
640 region = alloc_bootmem(sizeof(struct nosave_region));
641 region->start_pfn = start_pfn;
642 region->end_pfn = end_pfn;
643 list_add_tail(®ion->list, &nosave_regions);
644 Report:
645 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
646 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
647}
648
649/*
650 * Set bits in this map correspond to the page frames the contents of which
651 * should not be saved during the suspend.
652 */
653static struct memory_bitmap *forbidden_pages_map;
654
655/* Set bits in this map correspond to free page frames. */
656static struct memory_bitmap *free_pages_map;
657
658/*
659 * Each page frame allocated for creating the image is marked by setting the
660 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
661 */
662
663void swsusp_set_page_free(struct page *page)
664{
665 if (free_pages_map)
666 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
667}
668
669static int swsusp_page_is_free(struct page *page)
670{
671 return free_pages_map ?
672 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
673}
674
675void swsusp_unset_page_free(struct page *page)
676{
677 if (free_pages_map)
678 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
679}
680
681static void swsusp_set_page_forbidden(struct page *page)
682{
683 if (forbidden_pages_map)
684 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
685}
686
687int swsusp_page_is_forbidden(struct page *page)
688{
689 return forbidden_pages_map ?
690 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
691}
692
693static void swsusp_unset_page_forbidden(struct page *page)
694{
695 if (forbidden_pages_map)
696 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
697}
698
699/**
700 * mark_nosave_pages - set bits corresponding to the page frames the
701 * contents of which should not be saved in a given bitmap.
702 */
703
704static void mark_nosave_pages(struct memory_bitmap *bm)
705{
706 struct nosave_region *region;
707
708 if (list_empty(&nosave_regions))
709 return;
710
711 list_for_each_entry(region, &nosave_regions, list) {
712 unsigned long pfn;
713
714 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
715 region->start_pfn << PAGE_SHIFT,
716 region->end_pfn << PAGE_SHIFT);
717
718 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
719 if (pfn_valid(pfn)) {
720 /*
721 * It is safe to ignore the result of
722 * mem_bm_set_bit_check() here, since we won't
723 * touch the PFNs for which the error is
724 * returned anyway.
725 */
726 mem_bm_set_bit_check(bm, pfn);
727 }
728 }
729}
730
731/**
732 * create_basic_memory_bitmaps - create bitmaps needed for marking page
733 * frames that should not be saved and free page frames. The pointers
734 * forbidden_pages_map and free_pages_map are only modified if everything
735 * goes well, because we don't want the bits to be used before both bitmaps
736 * are set up.
737 */
738
739int create_basic_memory_bitmaps(void)
740{
741 struct memory_bitmap *bm1, *bm2;
742 int error = 0;
743
744 BUG_ON(forbidden_pages_map || free_pages_map);
745
746 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
747 if (!bm1)
748 return -ENOMEM;
749
750 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
751 if (error)
752 goto Free_first_object;
753
754 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
755 if (!bm2)
756 goto Free_first_bitmap;
757
758 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
759 if (error)
760 goto Free_second_object;
761
762 forbidden_pages_map = bm1;
763 free_pages_map = bm2;
764 mark_nosave_pages(forbidden_pages_map);
765
766 pr_debug("PM: Basic memory bitmaps created\n");
767
768 return 0;
769
770 Free_second_object:
771 kfree(bm2);
772 Free_first_bitmap:
773 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
774 Free_first_object:
775 kfree(bm1);
776 return -ENOMEM;
777}
778
779/**
780 * free_basic_memory_bitmaps - free memory bitmaps allocated by
781 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
782 * so that the bitmaps themselves are not referred to while they are being
783 * freed.
784 */
785
786void free_basic_memory_bitmaps(void)
787{
788 struct memory_bitmap *bm1, *bm2;
789
790 BUG_ON(!(forbidden_pages_map && free_pages_map));
791
792 bm1 = forbidden_pages_map;
793 bm2 = free_pages_map;
794 forbidden_pages_map = NULL;
795 free_pages_map = NULL;
796 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
797 kfree(bm1);
798 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
799 kfree(bm2);
800
801 pr_debug("PM: Basic memory bitmaps freed\n");
802}
803
804/**
805 * snapshot_additional_pages - estimate the number of additional pages
806 * be needed for setting up the suspend image data structures for given
807 * zone (usually the returned value is greater than the exact number)
808 */
809
810unsigned int snapshot_additional_pages(struct zone *zone)
811{
812 unsigned int res;
813
814 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
815 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
816 return 2 * res;
817}
818
819#ifdef CONFIG_HIGHMEM
820/**
821 * count_free_highmem_pages - compute the total number of free highmem
822 * pages, system-wide.
823 */
824
825static unsigned int count_free_highmem_pages(void)
826{
827 struct zone *zone;
828 unsigned int cnt = 0;
829
830 for_each_populated_zone(zone)
831 if (is_highmem(zone))
832 cnt += zone_page_state(zone, NR_FREE_PAGES);
833
834 return cnt;
835}
836
837/**
838 * saveable_highmem_page - Determine whether a highmem page should be
839 * included in the suspend image.
840 *
841 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
842 * and it isn't a part of a free chunk of pages.
843 */
844static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
845{
846 struct page *page;
847
848 if (!pfn_valid(pfn))
849 return NULL;
850
851 page = pfn_to_page(pfn);
852 if (page_zone(page) != zone)
853 return NULL;
854
855 BUG_ON(!PageHighMem(page));
856
857 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
858 PageReserved(page))
859 return NULL;
860
861 return page;
862}
863
864/**
865 * count_highmem_pages - compute the total number of saveable highmem
866 * pages.
867 */
868
869static unsigned int count_highmem_pages(void)
870{
871 struct zone *zone;
872 unsigned int n = 0;
873
874 for_each_populated_zone(zone) {
875 unsigned long pfn, max_zone_pfn;
876
877 if (!is_highmem(zone))
878 continue;
879
880 mark_free_pages(zone);
881 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
882 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
883 if (saveable_highmem_page(zone, pfn))
884 n++;
885 }
886 return n;
887}
888#else
889static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
890{
891 return NULL;
892}
893#endif /* CONFIG_HIGHMEM */
894
895/**
896 * saveable_page - Determine whether a non-highmem page should be included
897 * in the suspend image.
898 *
899 * We should save the page if it isn't Nosave, and is not in the range
900 * of pages statically defined as 'unsaveable', and it isn't a part of
901 * a free chunk of pages.
902 */
903static struct page *saveable_page(struct zone *zone, unsigned long pfn)
904{
905 struct page *page;
906
907 if (!pfn_valid(pfn))
908 return NULL;
909
910 page = pfn_to_page(pfn);
911 if (page_zone(page) != zone)
912 return NULL;
913
914 BUG_ON(PageHighMem(page));
915
916 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
917 return NULL;
918
919 if (PageReserved(page)
920 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
921 return NULL;
922
923 return page;
924}
925
926/**
927 * count_data_pages - compute the total number of saveable non-highmem
928 * pages.
929 */
930
931static unsigned int count_data_pages(void)
932{
933 struct zone *zone;
934 unsigned long pfn, max_zone_pfn;
935 unsigned int n = 0;
936
937 for_each_populated_zone(zone) {
938 if (is_highmem(zone))
939 continue;
940
941 mark_free_pages(zone);
942 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
943 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
944 if (saveable_page(zone, pfn))
945 n++;
946 }
947 return n;
948}
949
950/* This is needed, because copy_page and memcpy are not usable for copying
951 * task structs.
952 */
953static inline void do_copy_page(long *dst, long *src)
954{
955 int n;
956
957 for (n = PAGE_SIZE / sizeof(long); n; n--)
958 *dst++ = *src++;
959}
960
961
962/**
963 * safe_copy_page - check if the page we are going to copy is marked as
964 * present in the kernel page tables (this always is the case if
965 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
966 * kernel_page_present() always returns 'true').
967 */
968static void safe_copy_page(void *dst, struct page *s_page)
969{
970 if (kernel_page_present(s_page)) {
971 do_copy_page(dst, page_address(s_page));
972 } else {
973 kernel_map_pages(s_page, 1, 1);
974 do_copy_page(dst, page_address(s_page));
975 kernel_map_pages(s_page, 1, 0);
976 }
977}
978
979
980#ifdef CONFIG_HIGHMEM
981static inline struct page *
982page_is_saveable(struct zone *zone, unsigned long pfn)
983{
984 return is_highmem(zone) ?
985 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
986}
987
988static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
989{
990 struct page *s_page, *d_page;
991 void *src, *dst;
992
993 s_page = pfn_to_page(src_pfn);
994 d_page = pfn_to_page(dst_pfn);
995 if (PageHighMem(s_page)) {
996 src = kmap_atomic(s_page, KM_USER0);
997 dst = kmap_atomic(d_page, KM_USER1);
998 do_copy_page(dst, src);
999 kunmap_atomic(dst, KM_USER1);
1000 kunmap_atomic(src, KM_USER0);
1001 } else {
1002 if (PageHighMem(d_page)) {
1003 /* Page pointed to by src may contain some kernel
1004 * data modified by kmap_atomic()
1005 */
1006 safe_copy_page(buffer, s_page);
1007 dst = kmap_atomic(d_page, KM_USER0);
1008 copy_page(dst, buffer);
1009 kunmap_atomic(dst, KM_USER0);
1010 } else {
1011 safe_copy_page(page_address(d_page), s_page);
1012 }
1013 }
1014}
1015#else
1016#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1017
1018static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1019{
1020 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1021 pfn_to_page(src_pfn));
1022}
1023#endif /* CONFIG_HIGHMEM */
1024
1025static void
1026copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1027{
1028 struct zone *zone;
1029 unsigned long pfn;
1030
1031 for_each_populated_zone(zone) {
1032 unsigned long max_zone_pfn;
1033
1034 mark_free_pages(zone);
1035 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1036 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1037 if (page_is_saveable(zone, pfn))
1038 memory_bm_set_bit(orig_bm, pfn);
1039 }
1040 memory_bm_position_reset(orig_bm);
1041 memory_bm_position_reset(copy_bm);
1042 for(;;) {
1043 pfn = memory_bm_next_pfn(orig_bm);
1044 if (unlikely(pfn == BM_END_OF_MAP))
1045 break;
1046 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1047 }
1048}
1049
1050/* Total number of image pages */
1051static unsigned int nr_copy_pages;
1052/* Number of pages needed for saving the original pfns of the image pages */
1053static unsigned int nr_meta_pages;
1054/*
1055 * Numbers of normal and highmem page frames allocated for hibernation image
1056 * before suspending devices.
1057 */
1058unsigned int alloc_normal, alloc_highmem;
1059/*
1060 * Memory bitmap used for marking saveable pages (during hibernation) or
1061 * hibernation image pages (during restore)
1062 */
1063static struct memory_bitmap orig_bm;
1064/*
1065 * Memory bitmap used during hibernation for marking allocated page frames that
1066 * will contain copies of saveable pages. During restore it is initially used
1067 * for marking hibernation image pages, but then the set bits from it are
1068 * duplicated in @orig_bm and it is released. On highmem systems it is next
1069 * used for marking "safe" highmem pages, but it has to be reinitialized for
1070 * this purpose.
1071 */
1072static struct memory_bitmap copy_bm;
1073
1074/**
1075 * swsusp_free - free pages allocated for the suspend.
1076 *
1077 * Suspend pages are alocated before the atomic copy is made, so we
1078 * need to release them after the resume.
1079 */
1080
1081void swsusp_free(void)
1082{
1083 struct zone *zone;
1084 unsigned long pfn, max_zone_pfn;
1085
1086 for_each_populated_zone(zone) {
1087 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1088 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1089 if (pfn_valid(pfn)) {
1090 struct page *page = pfn_to_page(pfn);
1091
1092 if (swsusp_page_is_forbidden(page) &&
1093 swsusp_page_is_free(page)) {
1094 swsusp_unset_page_forbidden(page);
1095 swsusp_unset_page_free(page);
1096 __free_page(page);
1097 }
1098 }
1099 }
1100 nr_copy_pages = 0;
1101 nr_meta_pages = 0;
1102 restore_pblist = NULL;
1103 buffer = NULL;
1104 alloc_normal = 0;
1105 alloc_highmem = 0;
1106}
1107
1108/* Helper functions used for the shrinking of memory. */
1109
1110#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1111
1112/**
1113 * preallocate_image_pages - Allocate a number of pages for hibernation image
1114 * @nr_pages: Number of page frames to allocate.
1115 * @mask: GFP flags to use for the allocation.
1116 *
1117 * Return value: Number of page frames actually allocated
1118 */
1119static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1120{
1121 unsigned long nr_alloc = 0;
1122
1123 while (nr_pages > 0) {
1124 struct page *page;
1125
1126 page = alloc_image_page(mask);
1127 if (!page)
1128 break;
1129 memory_bm_set_bit(©_bm, page_to_pfn(page));
1130 if (PageHighMem(page))
1131 alloc_highmem++;
1132 else
1133 alloc_normal++;
1134 nr_pages--;
1135 nr_alloc++;
1136 }
1137
1138 return nr_alloc;
1139}
1140
1141static unsigned long preallocate_image_memory(unsigned long nr_pages,
1142 unsigned long avail_normal)
1143{
1144 unsigned long alloc;
1145
1146 if (avail_normal <= alloc_normal)
1147 return 0;
1148
1149 alloc = avail_normal - alloc_normal;
1150 if (nr_pages < alloc)
1151 alloc = nr_pages;
1152
1153 return preallocate_image_pages(alloc, GFP_IMAGE);
1154}
1155
1156#ifdef CONFIG_HIGHMEM
1157static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1158{
1159 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1160}
1161
1162/**
1163 * __fraction - Compute (an approximation of) x * (multiplier / base)
1164 */
1165static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1166{
1167 x *= multiplier;
1168 do_div(x, base);
1169 return (unsigned long)x;
1170}
1171
1172static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1173 unsigned long highmem,
1174 unsigned long total)
1175{
1176 unsigned long alloc = __fraction(nr_pages, highmem, total);
1177
1178 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1179}
1180#else /* CONFIG_HIGHMEM */
1181static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1182{
1183 return 0;
1184}
1185
1186static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1187 unsigned long highmem,
1188 unsigned long total)
1189{
1190 return 0;
1191}
1192#endif /* CONFIG_HIGHMEM */
1193
1194/**
1195 * free_unnecessary_pages - Release preallocated pages not needed for the image
1196 */
1197static void free_unnecessary_pages(void)
1198{
1199 unsigned long save, to_free_normal, to_free_highmem;
1200
1201 save = count_data_pages();
1202 if (alloc_normal >= save) {
1203 to_free_normal = alloc_normal - save;
1204 save = 0;
1205 } else {
1206 to_free_normal = 0;
1207 save -= alloc_normal;
1208 }
1209 save += count_highmem_pages();
1210 if (alloc_highmem >= save) {
1211 to_free_highmem = alloc_highmem - save;
1212 } else {
1213 to_free_highmem = 0;
1214 save -= alloc_highmem;
1215 if (to_free_normal > save)
1216 to_free_normal -= save;
1217 else
1218 to_free_normal = 0;
1219 }
1220
1221 memory_bm_position_reset(©_bm);
1222
1223 while (to_free_normal > 0 || to_free_highmem > 0) {
1224 unsigned long pfn = memory_bm_next_pfn(©_bm);
1225 struct page *page = pfn_to_page(pfn);
1226
1227 if (PageHighMem(page)) {
1228 if (!to_free_highmem)
1229 continue;
1230 to_free_highmem--;
1231 alloc_highmem--;
1232 } else {
1233 if (!to_free_normal)
1234 continue;
1235 to_free_normal--;
1236 alloc_normal--;
1237 }
1238 memory_bm_clear_bit(©_bm, pfn);
1239 swsusp_unset_page_forbidden(page);
1240 swsusp_unset_page_free(page);
1241 __free_page(page);
1242 }
1243}
1244
1245/**
1246 * minimum_image_size - Estimate the minimum acceptable size of an image
1247 * @saveable: Number of saveable pages in the system.
1248 *
1249 * We want to avoid attempting to free too much memory too hard, so estimate the
1250 * minimum acceptable size of a hibernation image to use as the lower limit for
1251 * preallocating memory.
1252 *
1253 * We assume that the minimum image size should be proportional to
1254 *
1255 * [number of saveable pages] - [number of pages that can be freed in theory]
1256 *
1257 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1258 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1259 * minus mapped file pages.
1260 */
1261static unsigned long minimum_image_size(unsigned long saveable)
1262{
1263 unsigned long size;
1264
1265 size = global_page_state(NR_SLAB_RECLAIMABLE)
1266 + global_page_state(NR_ACTIVE_ANON)
1267 + global_page_state(NR_INACTIVE_ANON)
1268 + global_page_state(NR_ACTIVE_FILE)
1269 + global_page_state(NR_INACTIVE_FILE)
1270 - global_page_state(NR_FILE_MAPPED);
1271
1272 return saveable <= size ? 0 : saveable - size;
1273}
1274
1275/**
1276 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1277 *
1278 * To create a hibernation image it is necessary to make a copy of every page
1279 * frame in use. We also need a number of page frames to be free during
1280 * hibernation for allocations made while saving the image and for device
1281 * drivers, in case they need to allocate memory from their hibernation
1282 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1283 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1284 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1285 * total number of available page frames and allocate at least
1286 *
1287 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1288 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1289 *
1290 * of them, which corresponds to the maximum size of a hibernation image.
1291 *
1292 * If image_size is set below the number following from the above formula,
1293 * the preallocation of memory is continued until the total number of saveable
1294 * pages in the system is below the requested image size or the minimum
1295 * acceptable image size returned by minimum_image_size(), whichever is greater.
1296 */
1297int hibernate_preallocate_memory(void)
1298{
1299 struct zone *zone;
1300 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1301 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1302 struct timeval start, stop;
1303 int error;
1304
1305 printk(KERN_INFO "PM: Preallocating image memory... ");
1306 do_gettimeofday(&start);
1307
1308 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1309 if (error)
1310 goto err_out;
1311
1312 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY);
1313 if (error)
1314 goto err_out;
1315
1316 alloc_normal = 0;
1317 alloc_highmem = 0;
1318
1319 /* Count the number of saveable data pages. */
1320 save_highmem = count_highmem_pages();
1321 saveable = count_data_pages();
1322
1323 /*
1324 * Compute the total number of page frames we can use (count) and the
1325 * number of pages needed for image metadata (size).
1326 */
1327 count = saveable;
1328 saveable += save_highmem;
1329 highmem = save_highmem;
1330 size = 0;
1331 for_each_populated_zone(zone) {
1332 size += snapshot_additional_pages(zone);
1333 if (is_highmem(zone))
1334 highmem += zone_page_state(zone, NR_FREE_PAGES);
1335 else
1336 count += zone_page_state(zone, NR_FREE_PAGES);
1337 }
1338 avail_normal = count;
1339 count += highmem;
1340 count -= totalreserve_pages;
1341
1342 /* Compute the maximum number of saveable pages to leave in memory. */
1343 max_size = (count - (size + PAGES_FOR_IO)) / 2
1344 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1345 /* Compute the desired number of image pages specified by image_size. */
1346 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1347 if (size > max_size)
1348 size = max_size;
1349 /*
1350 * If the desired number of image pages is at least as large as the
1351 * current number of saveable pages in memory, allocate page frames for
1352 * the image and we're done.
1353 */
1354 if (size >= saveable) {
1355 pages = preallocate_image_highmem(save_highmem);
1356 pages += preallocate_image_memory(saveable - pages, avail_normal);
1357 goto out;
1358 }
1359
1360 /* Estimate the minimum size of the image. */
1361 pages = minimum_image_size(saveable);
1362 /*
1363 * To avoid excessive pressure on the normal zone, leave room in it to
1364 * accommodate an image of the minimum size (unless it's already too
1365 * small, in which case don't preallocate pages from it at all).
1366 */
1367 if (avail_normal > pages)
1368 avail_normal -= pages;
1369 else
1370 avail_normal = 0;
1371 if (size < pages)
1372 size = min_t(unsigned long, pages, max_size);
1373
1374 /*
1375 * Let the memory management subsystem know that we're going to need a
1376 * large number of page frames to allocate and make it free some memory.
1377 * NOTE: If this is not done, performance will be hurt badly in some
1378 * test cases.
1379 */
1380 shrink_all_memory(saveable - size);
1381
1382 /*
1383 * The number of saveable pages in memory was too high, so apply some
1384 * pressure to decrease it. First, make room for the largest possible
1385 * image and fail if that doesn't work. Next, try to decrease the size
1386 * of the image as much as indicated by 'size' using allocations from
1387 * highmem and non-highmem zones separately.
1388 */
1389 pages_highmem = preallocate_image_highmem(highmem / 2);
1390 alloc = (count - max_size) - pages_highmem;
1391 pages = preallocate_image_memory(alloc, avail_normal);
1392 if (pages < alloc) {
1393 /* We have exhausted non-highmem pages, try highmem. */
1394 alloc -= pages;
1395 pages += pages_highmem;
1396 pages_highmem = preallocate_image_highmem(alloc);
1397 if (pages_highmem < alloc)
1398 goto err_out;
1399 pages += pages_highmem;
1400 /*
1401 * size is the desired number of saveable pages to leave in
1402 * memory, so try to preallocate (all memory - size) pages.
1403 */
1404 alloc = (count - pages) - size;
1405 pages += preallocate_image_highmem(alloc);
1406 } else {
1407 /*
1408 * There are approximately max_size saveable pages at this point
1409 * and we want to reduce this number down to size.
1410 */
1411 alloc = max_size - size;
1412 size = preallocate_highmem_fraction(alloc, highmem, count);
1413 pages_highmem += size;
1414 alloc -= size;
1415 size = preallocate_image_memory(alloc, avail_normal);
1416 pages_highmem += preallocate_image_highmem(alloc - size);
1417 pages += pages_highmem + size;
1418 }
1419
1420 /*
1421 * We only need as many page frames for the image as there are saveable
1422 * pages in memory, but we have allocated more. Release the excessive
1423 * ones now.
1424 */
1425 free_unnecessary_pages();
1426
1427 out:
1428 do_gettimeofday(&stop);
1429 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1430 swsusp_show_speed(&start, &stop, pages, "Allocated");
1431
1432 return 0;
1433
1434 err_out:
1435 printk(KERN_CONT "\n");
1436 swsusp_free();
1437 return -ENOMEM;
1438}
1439
1440#ifdef CONFIG_HIGHMEM
1441/**
1442 * count_pages_for_highmem - compute the number of non-highmem pages
1443 * that will be necessary for creating copies of highmem pages.
1444 */
1445
1446static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1447{
1448 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1449
1450 if (free_highmem >= nr_highmem)
1451 nr_highmem = 0;
1452 else
1453 nr_highmem -= free_highmem;
1454
1455 return nr_highmem;
1456}
1457#else
1458static unsigned int
1459count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1460#endif /* CONFIG_HIGHMEM */
1461
1462/**
1463 * enough_free_mem - Make sure we have enough free memory for the
1464 * snapshot image.
1465 */
1466
1467static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1468{
1469 struct zone *zone;
1470 unsigned int free = alloc_normal;
1471
1472 for_each_populated_zone(zone)
1473 if (!is_highmem(zone))
1474 free += zone_page_state(zone, NR_FREE_PAGES);
1475
1476 nr_pages += count_pages_for_highmem(nr_highmem);
1477 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1478 nr_pages, PAGES_FOR_IO, free);
1479
1480 return free > nr_pages + PAGES_FOR_IO;
1481}
1482
1483#ifdef CONFIG_HIGHMEM
1484/**
1485 * get_highmem_buffer - if there are some highmem pages in the suspend
1486 * image, we may need the buffer to copy them and/or load their data.
1487 */
1488
1489static inline int get_highmem_buffer(int safe_needed)
1490{
1491 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1492 return buffer ? 0 : -ENOMEM;
1493}
1494
1495/**
1496 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1497 * Try to allocate as many pages as needed, but if the number of free
1498 * highmem pages is lesser than that, allocate them all.
1499 */
1500
1501static inline unsigned int
1502alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1503{
1504 unsigned int to_alloc = count_free_highmem_pages();
1505
1506 if (to_alloc > nr_highmem)
1507 to_alloc = nr_highmem;
1508
1509 nr_highmem -= to_alloc;
1510 while (to_alloc-- > 0) {
1511 struct page *page;
1512
1513 page = alloc_image_page(__GFP_HIGHMEM);
1514 memory_bm_set_bit(bm, page_to_pfn(page));
1515 }
1516 return nr_highmem;
1517}
1518#else
1519static inline int get_highmem_buffer(int safe_needed) { return 0; }
1520
1521static inline unsigned int
1522alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1523#endif /* CONFIG_HIGHMEM */
1524
1525/**
1526 * swsusp_alloc - allocate memory for the suspend image
1527 *
1528 * We first try to allocate as many highmem pages as there are
1529 * saveable highmem pages in the system. If that fails, we allocate
1530 * non-highmem pages for the copies of the remaining highmem ones.
1531 *
1532 * In this approach it is likely that the copies of highmem pages will
1533 * also be located in the high memory, because of the way in which
1534 * copy_data_pages() works.
1535 */
1536
1537static int
1538swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1539 unsigned int nr_pages, unsigned int nr_highmem)
1540{
1541 if (nr_highmem > 0) {
1542 if (get_highmem_buffer(PG_ANY))
1543 goto err_out;
1544 if (nr_highmem > alloc_highmem) {
1545 nr_highmem -= alloc_highmem;
1546 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1547 }
1548 }
1549 if (nr_pages > alloc_normal) {
1550 nr_pages -= alloc_normal;
1551 while (nr_pages-- > 0) {
1552 struct page *page;
1553
1554 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1555 if (!page)
1556 goto err_out;
1557 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1558 }
1559 }
1560
1561 return 0;
1562
1563 err_out:
1564 swsusp_free();
1565 return -ENOMEM;
1566}
1567
1568asmlinkage int swsusp_save(void)
1569{
1570 unsigned int nr_pages, nr_highmem;
1571
1572 printk(KERN_INFO "PM: Creating hibernation image:\n");
1573
1574 drain_local_pages(NULL);
1575 nr_pages = count_data_pages();
1576 nr_highmem = count_highmem_pages();
1577 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1578
1579 if (!enough_free_mem(nr_pages, nr_highmem)) {
1580 printk(KERN_ERR "PM: Not enough free memory\n");
1581 return -ENOMEM;
1582 }
1583
1584 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) {
1585 printk(KERN_ERR "PM: Memory allocation failed\n");
1586 return -ENOMEM;
1587 }
1588
1589 /* During allocating of suspend pagedir, new cold pages may appear.
1590 * Kill them.
1591 */
1592 drain_local_pages(NULL);
1593 copy_data_pages(©_bm, &orig_bm);
1594
1595 /*
1596 * End of critical section. From now on, we can write to memory,
1597 * but we should not touch disk. This specially means we must _not_
1598 * touch swap space! Except we must write out our image of course.
1599 */
1600
1601 nr_pages += nr_highmem;
1602 nr_copy_pages = nr_pages;
1603 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1604
1605 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1606 nr_pages);
1607
1608 return 0;
1609}
1610
1611#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1612static int init_header_complete(struct swsusp_info *info)
1613{
1614 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1615 info->version_code = LINUX_VERSION_CODE;
1616 return 0;
1617}
1618
1619static char *check_image_kernel(struct swsusp_info *info)
1620{
1621 if (info->version_code != LINUX_VERSION_CODE)
1622 return "kernel version";
1623 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1624 return "system type";
1625 if (strcmp(info->uts.release,init_utsname()->release))
1626 return "kernel release";
1627 if (strcmp(info->uts.version,init_utsname()->version))
1628 return "version";
1629 if (strcmp(info->uts.machine,init_utsname()->machine))
1630 return "machine";
1631 return NULL;
1632}
1633#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1634
1635unsigned long snapshot_get_image_size(void)
1636{
1637 return nr_copy_pages + nr_meta_pages + 1;
1638}
1639
1640static int init_header(struct swsusp_info *info)
1641{
1642 memset(info, 0, sizeof(struct swsusp_info));
1643 info->num_physpages = num_physpages;
1644 info->image_pages = nr_copy_pages;
1645 info->pages = snapshot_get_image_size();
1646 info->size = info->pages;
1647 info->size <<= PAGE_SHIFT;
1648 return init_header_complete(info);
1649}
1650
1651/**
1652 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1653 * are stored in the array @buf[] (1 page at a time)
1654 */
1655
1656static inline void
1657pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1658{
1659 int j;
1660
1661 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1662 buf[j] = memory_bm_next_pfn(bm);
1663 if (unlikely(buf[j] == BM_END_OF_MAP))
1664 break;
1665 }
1666}
1667
1668/**
1669 * snapshot_read_next - used for reading the system memory snapshot.
1670 *
1671 * On the first call to it @handle should point to a zeroed
1672 * snapshot_handle structure. The structure gets updated and a pointer
1673 * to it should be passed to this function every next time.
1674 *
1675 * On success the function returns a positive number. Then, the caller
1676 * is allowed to read up to the returned number of bytes from the memory
1677 * location computed by the data_of() macro.
1678 *
1679 * The function returns 0 to indicate the end of data stream condition,
1680 * and a negative number is returned on error. In such cases the
1681 * structure pointed to by @handle is not updated and should not be used
1682 * any more.
1683 */
1684
1685int snapshot_read_next(struct snapshot_handle *handle)
1686{
1687 if (handle->cur > nr_meta_pages + nr_copy_pages)
1688 return 0;
1689
1690 if (!buffer) {
1691 /* This makes the buffer be freed by swsusp_free() */
1692 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1693 if (!buffer)
1694 return -ENOMEM;
1695 }
1696 if (!handle->cur) {
1697 int error;
1698
1699 error = init_header((struct swsusp_info *)buffer);
1700 if (error)
1701 return error;
1702 handle->buffer = buffer;
1703 memory_bm_position_reset(&orig_bm);
1704 memory_bm_position_reset(©_bm);
1705 } else if (handle->cur <= nr_meta_pages) {
1706 clear_page(buffer);
1707 pack_pfns(buffer, &orig_bm);
1708 } else {
1709 struct page *page;
1710
1711 page = pfn_to_page(memory_bm_next_pfn(©_bm));
1712 if (PageHighMem(page)) {
1713 /* Highmem pages are copied to the buffer,
1714 * because we can't return with a kmapped
1715 * highmem page (we may not be called again).
1716 */
1717 void *kaddr;
1718
1719 kaddr = kmap_atomic(page, KM_USER0);
1720 copy_page(buffer, kaddr);
1721 kunmap_atomic(kaddr, KM_USER0);
1722 handle->buffer = buffer;
1723 } else {
1724 handle->buffer = page_address(page);
1725 }
1726 }
1727 handle->cur++;
1728 return PAGE_SIZE;
1729}
1730
1731/**
1732 * mark_unsafe_pages - mark the pages that cannot be used for storing
1733 * the image during resume, because they conflict with the pages that
1734 * had been used before suspend
1735 */
1736
1737static int mark_unsafe_pages(struct memory_bitmap *bm)
1738{
1739 struct zone *zone;
1740 unsigned long pfn, max_zone_pfn;
1741
1742 /* Clear page flags */
1743 for_each_populated_zone(zone) {
1744 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1745 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1746 if (pfn_valid(pfn))
1747 swsusp_unset_page_free(pfn_to_page(pfn));
1748 }
1749
1750 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1751 memory_bm_position_reset(bm);
1752 do {
1753 pfn = memory_bm_next_pfn(bm);
1754 if (likely(pfn != BM_END_OF_MAP)) {
1755 if (likely(pfn_valid(pfn)))
1756 swsusp_set_page_free(pfn_to_page(pfn));
1757 else
1758 return -EFAULT;
1759 }
1760 } while (pfn != BM_END_OF_MAP);
1761
1762 allocated_unsafe_pages = 0;
1763
1764 return 0;
1765}
1766
1767static void
1768duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1769{
1770 unsigned long pfn;
1771
1772 memory_bm_position_reset(src);
1773 pfn = memory_bm_next_pfn(src);
1774 while (pfn != BM_END_OF_MAP) {
1775 memory_bm_set_bit(dst, pfn);
1776 pfn = memory_bm_next_pfn(src);
1777 }
1778}
1779
1780static int check_header(struct swsusp_info *info)
1781{
1782 char *reason;
1783
1784 reason = check_image_kernel(info);
1785 if (!reason && info->num_physpages != num_physpages)
1786 reason = "memory size";
1787 if (reason) {
1788 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1789 return -EPERM;
1790 }
1791 return 0;
1792}
1793
1794/**
1795 * load header - check the image header and copy data from it
1796 */
1797
1798static int
1799load_header(struct swsusp_info *info)
1800{
1801 int error;
1802
1803 restore_pblist = NULL;
1804 error = check_header(info);
1805 if (!error) {
1806 nr_copy_pages = info->image_pages;
1807 nr_meta_pages = info->pages - info->image_pages - 1;
1808 }
1809 return error;
1810}
1811
1812/**
1813 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1814 * the corresponding bit in the memory bitmap @bm
1815 */
1816static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1817{
1818 int j;
1819
1820 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1821 if (unlikely(buf[j] == BM_END_OF_MAP))
1822 break;
1823
1824 if (memory_bm_pfn_present(bm, buf[j]))
1825 memory_bm_set_bit(bm, buf[j]);
1826 else
1827 return -EFAULT;
1828 }
1829
1830 return 0;
1831}
1832
1833/* List of "safe" pages that may be used to store data loaded from the suspend
1834 * image
1835 */
1836static struct linked_page *safe_pages_list;
1837
1838#ifdef CONFIG_HIGHMEM
1839/* struct highmem_pbe is used for creating the list of highmem pages that
1840 * should be restored atomically during the resume from disk, because the page
1841 * frames they have occupied before the suspend are in use.
1842 */
1843struct highmem_pbe {
1844 struct page *copy_page; /* data is here now */
1845 struct page *orig_page; /* data was here before the suspend */
1846 struct highmem_pbe *next;
1847};
1848
1849/* List of highmem PBEs needed for restoring the highmem pages that were
1850 * allocated before the suspend and included in the suspend image, but have
1851 * also been allocated by the "resume" kernel, so their contents cannot be
1852 * written directly to their "original" page frames.
1853 */
1854static struct highmem_pbe *highmem_pblist;
1855
1856/**
1857 * count_highmem_image_pages - compute the number of highmem pages in the
1858 * suspend image. The bits in the memory bitmap @bm that correspond to the
1859 * image pages are assumed to be set.
1860 */
1861
1862static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1863{
1864 unsigned long pfn;
1865 unsigned int cnt = 0;
1866
1867 memory_bm_position_reset(bm);
1868 pfn = memory_bm_next_pfn(bm);
1869 while (pfn != BM_END_OF_MAP) {
1870 if (PageHighMem(pfn_to_page(pfn)))
1871 cnt++;
1872
1873 pfn = memory_bm_next_pfn(bm);
1874 }
1875 return cnt;
1876}
1877
1878/**
1879 * prepare_highmem_image - try to allocate as many highmem pages as
1880 * there are highmem image pages (@nr_highmem_p points to the variable
1881 * containing the number of highmem image pages). The pages that are
1882 * "safe" (ie. will not be overwritten when the suspend image is
1883 * restored) have the corresponding bits set in @bm (it must be
1884 * unitialized).
1885 *
1886 * NOTE: This function should not be called if there are no highmem
1887 * image pages.
1888 */
1889
1890static unsigned int safe_highmem_pages;
1891
1892static struct memory_bitmap *safe_highmem_bm;
1893
1894static int
1895prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1896{
1897 unsigned int to_alloc;
1898
1899 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1900 return -ENOMEM;
1901
1902 if (get_highmem_buffer(PG_SAFE))
1903 return -ENOMEM;
1904
1905 to_alloc = count_free_highmem_pages();
1906 if (to_alloc > *nr_highmem_p)
1907 to_alloc = *nr_highmem_p;
1908 else
1909 *nr_highmem_p = to_alloc;
1910
1911 safe_highmem_pages = 0;
1912 while (to_alloc-- > 0) {
1913 struct page *page;
1914
1915 page = alloc_page(__GFP_HIGHMEM);
1916 if (!swsusp_page_is_free(page)) {
1917 /* The page is "safe", set its bit the bitmap */
1918 memory_bm_set_bit(bm, page_to_pfn(page));
1919 safe_highmem_pages++;
1920 }
1921 /* Mark the page as allocated */
1922 swsusp_set_page_forbidden(page);
1923 swsusp_set_page_free(page);
1924 }
1925 memory_bm_position_reset(bm);
1926 safe_highmem_bm = bm;
1927 return 0;
1928}
1929
1930/**
1931 * get_highmem_page_buffer - for given highmem image page find the buffer
1932 * that suspend_write_next() should set for its caller to write to.
1933 *
1934 * If the page is to be saved to its "original" page frame or a copy of
1935 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1936 * the copy of the page is to be made in normal memory, so the address of
1937 * the copy is returned.
1938 *
1939 * If @buffer is returned, the caller of suspend_write_next() will write
1940 * the page's contents to @buffer, so they will have to be copied to the
1941 * right location on the next call to suspend_write_next() and it is done
1942 * with the help of copy_last_highmem_page(). For this purpose, if
1943 * @buffer is returned, @last_highmem page is set to the page to which
1944 * the data will have to be copied from @buffer.
1945 */
1946
1947static struct page *last_highmem_page;
1948
1949static void *
1950get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1951{
1952 struct highmem_pbe *pbe;
1953 void *kaddr;
1954
1955 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1956 /* We have allocated the "original" page frame and we can
1957 * use it directly to store the loaded page.
1958 */
1959 last_highmem_page = page;
1960 return buffer;
1961 }
1962 /* The "original" page frame has not been allocated and we have to
1963 * use a "safe" page frame to store the loaded page.
1964 */
1965 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1966 if (!pbe) {
1967 swsusp_free();
1968 return ERR_PTR(-ENOMEM);
1969 }
1970 pbe->orig_page = page;
1971 if (safe_highmem_pages > 0) {
1972 struct page *tmp;
1973
1974 /* Copy of the page will be stored in high memory */
1975 kaddr = buffer;
1976 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1977 safe_highmem_pages--;
1978 last_highmem_page = tmp;
1979 pbe->copy_page = tmp;
1980 } else {
1981 /* Copy of the page will be stored in normal memory */
1982 kaddr = safe_pages_list;
1983 safe_pages_list = safe_pages_list->next;
1984 pbe->copy_page = virt_to_page(kaddr);
1985 }
1986 pbe->next = highmem_pblist;
1987 highmem_pblist = pbe;
1988 return kaddr;
1989}
1990
1991/**
1992 * copy_last_highmem_page - copy the contents of a highmem image from
1993 * @buffer, where the caller of snapshot_write_next() has place them,
1994 * to the right location represented by @last_highmem_page .
1995 */
1996
1997static void copy_last_highmem_page(void)
1998{
1999 if (last_highmem_page) {
2000 void *dst;
2001
2002 dst = kmap_atomic(last_highmem_page, KM_USER0);
2003 copy_page(dst, buffer);
2004 kunmap_atomic(dst, KM_USER0);
2005 last_highmem_page = NULL;
2006 }
2007}
2008
2009static inline int last_highmem_page_copied(void)
2010{
2011 return !last_highmem_page;
2012}
2013
2014static inline void free_highmem_data(void)
2015{
2016 if (safe_highmem_bm)
2017 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2018
2019 if (buffer)
2020 free_image_page(buffer, PG_UNSAFE_CLEAR);
2021}
2022#else
2023static inline int get_safe_write_buffer(void) { return 0; }
2024
2025static unsigned int
2026count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2027
2028static inline int
2029prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2030{
2031 return 0;
2032}
2033
2034static inline void *
2035get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2036{
2037 return ERR_PTR(-EINVAL);
2038}
2039
2040static inline void copy_last_highmem_page(void) {}
2041static inline int last_highmem_page_copied(void) { return 1; }
2042static inline void free_highmem_data(void) {}
2043#endif /* CONFIG_HIGHMEM */
2044
2045/**
2046 * prepare_image - use the memory bitmap @bm to mark the pages that will
2047 * be overwritten in the process of restoring the system memory state
2048 * from the suspend image ("unsafe" pages) and allocate memory for the
2049 * image.
2050 *
2051 * The idea is to allocate a new memory bitmap first and then allocate
2052 * as many pages as needed for the image data, but not to assign these
2053 * pages to specific tasks initially. Instead, we just mark them as
2054 * allocated and create a lists of "safe" pages that will be used
2055 * later. On systems with high memory a list of "safe" highmem pages is
2056 * also created.
2057 */
2058
2059#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2060
2061static int
2062prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2063{
2064 unsigned int nr_pages, nr_highmem;
2065 struct linked_page *sp_list, *lp;
2066 int error;
2067
2068 /* If there is no highmem, the buffer will not be necessary */
2069 free_image_page(buffer, PG_UNSAFE_CLEAR);
2070 buffer = NULL;
2071
2072 nr_highmem = count_highmem_image_pages(bm);
2073 error = mark_unsafe_pages(bm);
2074 if (error)
2075 goto Free;
2076
2077 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2078 if (error)
2079 goto Free;
2080
2081 duplicate_memory_bitmap(new_bm, bm);
2082 memory_bm_free(bm, PG_UNSAFE_KEEP);
2083 if (nr_highmem > 0) {
2084 error = prepare_highmem_image(bm, &nr_highmem);
2085 if (error)
2086 goto Free;
2087 }
2088 /* Reserve some safe pages for potential later use.
2089 *
2090 * NOTE: This way we make sure there will be enough safe pages for the
2091 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2092 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2093 */
2094 sp_list = NULL;
2095 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2096 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2097 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2098 while (nr_pages > 0) {
2099 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2100 if (!lp) {
2101 error = -ENOMEM;
2102 goto Free;
2103 }
2104 lp->next = sp_list;
2105 sp_list = lp;
2106 nr_pages--;
2107 }
2108 /* Preallocate memory for the image */
2109 safe_pages_list = NULL;
2110 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2111 while (nr_pages > 0) {
2112 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2113 if (!lp) {
2114 error = -ENOMEM;
2115 goto Free;
2116 }
2117 if (!swsusp_page_is_free(virt_to_page(lp))) {
2118 /* The page is "safe", add it to the list */
2119 lp->next = safe_pages_list;
2120 safe_pages_list = lp;
2121 }
2122 /* Mark the page as allocated */
2123 swsusp_set_page_forbidden(virt_to_page(lp));
2124 swsusp_set_page_free(virt_to_page(lp));
2125 nr_pages--;
2126 }
2127 /* Free the reserved safe pages so that chain_alloc() can use them */
2128 while (sp_list) {
2129 lp = sp_list->next;
2130 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2131 sp_list = lp;
2132 }
2133 return 0;
2134
2135 Free:
2136 swsusp_free();
2137 return error;
2138}
2139
2140/**
2141 * get_buffer - compute the address that snapshot_write_next() should
2142 * set for its caller to write to.
2143 */
2144
2145static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2146{
2147 struct pbe *pbe;
2148 struct page *page;
2149 unsigned long pfn = memory_bm_next_pfn(bm);
2150
2151 if (pfn == BM_END_OF_MAP)
2152 return ERR_PTR(-EFAULT);
2153
2154 page = pfn_to_page(pfn);
2155 if (PageHighMem(page))
2156 return get_highmem_page_buffer(page, ca);
2157
2158 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2159 /* We have allocated the "original" page frame and we can
2160 * use it directly to store the loaded page.
2161 */
2162 return page_address(page);
2163
2164 /* The "original" page frame has not been allocated and we have to
2165 * use a "safe" page frame to store the loaded page.
2166 */
2167 pbe = chain_alloc(ca, sizeof(struct pbe));
2168 if (!pbe) {
2169 swsusp_free();
2170 return ERR_PTR(-ENOMEM);
2171 }
2172 pbe->orig_address = page_address(page);
2173 pbe->address = safe_pages_list;
2174 safe_pages_list = safe_pages_list->next;
2175 pbe->next = restore_pblist;
2176 restore_pblist = pbe;
2177 return pbe->address;
2178}
2179
2180/**
2181 * snapshot_write_next - used for writing the system memory snapshot.
2182 *
2183 * On the first call to it @handle should point to a zeroed
2184 * snapshot_handle structure. The structure gets updated and a pointer
2185 * to it should be passed to this function every next time.
2186 *
2187 * On success the function returns a positive number. Then, the caller
2188 * is allowed to write up to the returned number of bytes to the memory
2189 * location computed by the data_of() macro.
2190 *
2191 * The function returns 0 to indicate the "end of file" condition,
2192 * and a negative number is returned on error. In such cases the
2193 * structure pointed to by @handle is not updated and should not be used
2194 * any more.
2195 */
2196
2197int snapshot_write_next(struct snapshot_handle *handle)
2198{
2199 static struct chain_allocator ca;
2200 int error = 0;
2201
2202 /* Check if we have already loaded the entire image */
2203 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2204 return 0;
2205
2206 handle->sync_read = 1;
2207
2208 if (!handle->cur) {
2209 if (!buffer)
2210 /* This makes the buffer be freed by swsusp_free() */
2211 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2212
2213 if (!buffer)
2214 return -ENOMEM;
2215
2216 handle->buffer = buffer;
2217 } else if (handle->cur == 1) {
2218 error = load_header(buffer);
2219 if (error)
2220 return error;
2221
2222 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY);
2223 if (error)
2224 return error;
2225
2226 } else if (handle->cur <= nr_meta_pages + 1) {
2227 error = unpack_orig_pfns(buffer, ©_bm);
2228 if (error)
2229 return error;
2230
2231 if (handle->cur == nr_meta_pages + 1) {
2232 error = prepare_image(&orig_bm, ©_bm);
2233 if (error)
2234 return error;
2235
2236 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2237 memory_bm_position_reset(&orig_bm);
2238 restore_pblist = NULL;
2239 handle->buffer = get_buffer(&orig_bm, &ca);
2240 handle->sync_read = 0;
2241 if (IS_ERR(handle->buffer))
2242 return PTR_ERR(handle->buffer);
2243 }
2244 } else {
2245 copy_last_highmem_page();
2246 handle->buffer = get_buffer(&orig_bm, &ca);
2247 if (IS_ERR(handle->buffer))
2248 return PTR_ERR(handle->buffer);
2249 if (handle->buffer != buffer)
2250 handle->sync_read = 0;
2251 }
2252 handle->cur++;
2253 return PAGE_SIZE;
2254}
2255
2256/**
2257 * snapshot_write_finalize - must be called after the last call to
2258 * snapshot_write_next() in case the last page in the image happens
2259 * to be a highmem page and its contents should be stored in the
2260 * highmem. Additionally, it releases the memory that will not be
2261 * used any more.
2262 */
2263
2264void snapshot_write_finalize(struct snapshot_handle *handle)
2265{
2266 copy_last_highmem_page();
2267 /* Free only if we have loaded the image entirely */
2268 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2269 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2270 free_highmem_data();
2271 }
2272}
2273
2274int snapshot_image_loaded(struct snapshot_handle *handle)
2275{
2276 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2277 handle->cur <= nr_meta_pages + nr_copy_pages);
2278}
2279
2280#ifdef CONFIG_HIGHMEM
2281/* Assumes that @buf is ready and points to a "safe" page */
2282static inline void
2283swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2284{
2285 void *kaddr1, *kaddr2;
2286
2287 kaddr1 = kmap_atomic(p1, KM_USER0);
2288 kaddr2 = kmap_atomic(p2, KM_USER1);
2289 copy_page(buf, kaddr1);
2290 copy_page(kaddr1, kaddr2);
2291 copy_page(kaddr2, buf);
2292 kunmap_atomic(kaddr2, KM_USER1);
2293 kunmap_atomic(kaddr1, KM_USER0);
2294}
2295
2296/**
2297 * restore_highmem - for each highmem page that was allocated before
2298 * the suspend and included in the suspend image, and also has been
2299 * allocated by the "resume" kernel swap its current (ie. "before
2300 * resume") contents with the previous (ie. "before suspend") one.
2301 *
2302 * If the resume eventually fails, we can call this function once
2303 * again and restore the "before resume" highmem state.
2304 */
2305
2306int restore_highmem(void)
2307{
2308 struct highmem_pbe *pbe = highmem_pblist;
2309 void *buf;
2310
2311 if (!pbe)
2312 return 0;
2313
2314 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2315 if (!buf)
2316 return -ENOMEM;
2317
2318 while (pbe) {
2319 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2320 pbe = pbe->next;
2321 }
2322 free_image_page(buf, PG_UNSAFE_CLEAR);
2323 return 0;
2324}
2325#endif /* CONFIG_HIGHMEM */
1/*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13#include <linux/version.h>
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
17#include <linux/delay.h>
18#include <linux/bitops.h>
19#include <linux/spinlock.h>
20#include <linux/kernel.h>
21#include <linux/pm.h>
22#include <linux/device.h>
23#include <linux/init.h>
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
28#include <linux/list.h>
29#include <linux/slab.h>
30#include <linux/compiler.h>
31
32#include <asm/uaccess.h>
33#include <asm/mmu_context.h>
34#include <asm/pgtable.h>
35#include <asm/tlbflush.h>
36#include <asm/io.h>
37
38#include "power.h"
39
40static int swsusp_page_is_free(struct page *);
41static void swsusp_set_page_forbidden(struct page *);
42static void swsusp_unset_page_forbidden(struct page *);
43
44/*
45 * Number of bytes to reserve for memory allocations made by device drivers
46 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
47 * cause image creation to fail (tunable via /sys/power/reserved_size).
48 */
49unsigned long reserved_size;
50
51void __init hibernate_reserved_size_init(void)
52{
53 reserved_size = SPARE_PAGES * PAGE_SIZE;
54}
55
56/*
57 * Preferred image size in bytes (tunable via /sys/power/image_size).
58 * When it is set to N, swsusp will do its best to ensure the image
59 * size will not exceed N bytes, but if that is impossible, it will
60 * try to create the smallest image possible.
61 */
62unsigned long image_size;
63
64void __init hibernate_image_size_init(void)
65{
66 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
67}
68
69/* List of PBEs needed for restoring the pages that were allocated before
70 * the suspend and included in the suspend image, but have also been
71 * allocated by the "resume" kernel, so their contents cannot be written
72 * directly to their "original" page frames.
73 */
74struct pbe *restore_pblist;
75
76/* Pointer to an auxiliary buffer (1 page) */
77static void *buffer;
78
79/**
80 * @safe_needed - on resume, for storing the PBE list and the image,
81 * we can only use memory pages that do not conflict with the pages
82 * used before suspend. The unsafe pages have PageNosaveFree set
83 * and we count them using unsafe_pages.
84 *
85 * Each allocated image page is marked as PageNosave and PageNosaveFree
86 * so that swsusp_free() can release it.
87 */
88
89#define PG_ANY 0
90#define PG_SAFE 1
91#define PG_UNSAFE_CLEAR 1
92#define PG_UNSAFE_KEEP 0
93
94static unsigned int allocated_unsafe_pages;
95
96static void *get_image_page(gfp_t gfp_mask, int safe_needed)
97{
98 void *res;
99
100 res = (void *)get_zeroed_page(gfp_mask);
101 if (safe_needed)
102 while (res && swsusp_page_is_free(virt_to_page(res))) {
103 /* The page is unsafe, mark it for swsusp_free() */
104 swsusp_set_page_forbidden(virt_to_page(res));
105 allocated_unsafe_pages++;
106 res = (void *)get_zeroed_page(gfp_mask);
107 }
108 if (res) {
109 swsusp_set_page_forbidden(virt_to_page(res));
110 swsusp_set_page_free(virt_to_page(res));
111 }
112 return res;
113}
114
115unsigned long get_safe_page(gfp_t gfp_mask)
116{
117 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
118}
119
120static struct page *alloc_image_page(gfp_t gfp_mask)
121{
122 struct page *page;
123
124 page = alloc_page(gfp_mask);
125 if (page) {
126 swsusp_set_page_forbidden(page);
127 swsusp_set_page_free(page);
128 }
129 return page;
130}
131
132/**
133 * free_image_page - free page represented by @addr, allocated with
134 * get_image_page (page flags set by it must be cleared)
135 */
136
137static inline void free_image_page(void *addr, int clear_nosave_free)
138{
139 struct page *page;
140
141 BUG_ON(!virt_addr_valid(addr));
142
143 page = virt_to_page(addr);
144
145 swsusp_unset_page_forbidden(page);
146 if (clear_nosave_free)
147 swsusp_unset_page_free(page);
148
149 __free_page(page);
150}
151
152/* struct linked_page is used to build chains of pages */
153
154#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
155
156struct linked_page {
157 struct linked_page *next;
158 char data[LINKED_PAGE_DATA_SIZE];
159} __packed;
160
161static inline void
162free_list_of_pages(struct linked_page *list, int clear_page_nosave)
163{
164 while (list) {
165 struct linked_page *lp = list->next;
166
167 free_image_page(list, clear_page_nosave);
168 list = lp;
169 }
170}
171
172/**
173 * struct chain_allocator is used for allocating small objects out of
174 * a linked list of pages called 'the chain'.
175 *
176 * The chain grows each time when there is no room for a new object in
177 * the current page. The allocated objects cannot be freed individually.
178 * It is only possible to free them all at once, by freeing the entire
179 * chain.
180 *
181 * NOTE: The chain allocator may be inefficient if the allocated objects
182 * are not much smaller than PAGE_SIZE.
183 */
184
185struct chain_allocator {
186 struct linked_page *chain; /* the chain */
187 unsigned int used_space; /* total size of objects allocated out
188 * of the current page
189 */
190 gfp_t gfp_mask; /* mask for allocating pages */
191 int safe_needed; /* if set, only "safe" pages are allocated */
192};
193
194static void
195chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
196{
197 ca->chain = NULL;
198 ca->used_space = LINKED_PAGE_DATA_SIZE;
199 ca->gfp_mask = gfp_mask;
200 ca->safe_needed = safe_needed;
201}
202
203static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
204{
205 void *ret;
206
207 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
208 struct linked_page *lp;
209
210 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
211 if (!lp)
212 return NULL;
213
214 lp->next = ca->chain;
215 ca->chain = lp;
216 ca->used_space = 0;
217 }
218 ret = ca->chain->data + ca->used_space;
219 ca->used_space += size;
220 return ret;
221}
222
223/**
224 * Data types related to memory bitmaps.
225 *
226 * Memory bitmap is a structure consiting of many linked lists of
227 * objects. The main list's elements are of type struct zone_bitmap
228 * and each of them corresonds to one zone. For each zone bitmap
229 * object there is a list of objects of type struct bm_block that
230 * represent each blocks of bitmap in which information is stored.
231 *
232 * struct memory_bitmap contains a pointer to the main list of zone
233 * bitmap objects, a struct bm_position used for browsing the bitmap,
234 * and a pointer to the list of pages used for allocating all of the
235 * zone bitmap objects and bitmap block objects.
236 *
237 * NOTE: It has to be possible to lay out the bitmap in memory
238 * using only allocations of order 0. Additionally, the bitmap is
239 * designed to work with arbitrary number of zones (this is over the
240 * top for now, but let's avoid making unnecessary assumptions ;-).
241 *
242 * struct zone_bitmap contains a pointer to a list of bitmap block
243 * objects and a pointer to the bitmap block object that has been
244 * most recently used for setting bits. Additionally, it contains the
245 * pfns that correspond to the start and end of the represented zone.
246 *
247 * struct bm_block contains a pointer to the memory page in which
248 * information is stored (in the form of a block of bitmap)
249 * It also contains the pfns that correspond to the start and end of
250 * the represented memory area.
251 */
252
253#define BM_END_OF_MAP (~0UL)
254
255#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
256
257struct bm_block {
258 struct list_head hook; /* hook into a list of bitmap blocks */
259 unsigned long start_pfn; /* pfn represented by the first bit */
260 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
261 unsigned long *data; /* bitmap representing pages */
262};
263
264static inline unsigned long bm_block_bits(struct bm_block *bb)
265{
266 return bb->end_pfn - bb->start_pfn;
267}
268
269/* strcut bm_position is used for browsing memory bitmaps */
270
271struct bm_position {
272 struct bm_block *block;
273 int bit;
274};
275
276struct memory_bitmap {
277 struct list_head blocks; /* list of bitmap blocks */
278 struct linked_page *p_list; /* list of pages used to store zone
279 * bitmap objects and bitmap block
280 * objects
281 */
282 struct bm_position cur; /* most recently used bit position */
283};
284
285/* Functions that operate on memory bitmaps */
286
287static void memory_bm_position_reset(struct memory_bitmap *bm)
288{
289 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
290 bm->cur.bit = 0;
291}
292
293static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
294
295/**
296 * create_bm_block_list - create a list of block bitmap objects
297 * @pages - number of pages to track
298 * @list - list to put the allocated blocks into
299 * @ca - chain allocator to be used for allocating memory
300 */
301static int create_bm_block_list(unsigned long pages,
302 struct list_head *list,
303 struct chain_allocator *ca)
304{
305 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
306
307 while (nr_blocks-- > 0) {
308 struct bm_block *bb;
309
310 bb = chain_alloc(ca, sizeof(struct bm_block));
311 if (!bb)
312 return -ENOMEM;
313 list_add(&bb->hook, list);
314 }
315
316 return 0;
317}
318
319struct mem_extent {
320 struct list_head hook;
321 unsigned long start;
322 unsigned long end;
323};
324
325/**
326 * free_mem_extents - free a list of memory extents
327 * @list - list of extents to empty
328 */
329static void free_mem_extents(struct list_head *list)
330{
331 struct mem_extent *ext, *aux;
332
333 list_for_each_entry_safe(ext, aux, list, hook) {
334 list_del(&ext->hook);
335 kfree(ext);
336 }
337}
338
339/**
340 * create_mem_extents - create a list of memory extents representing
341 * contiguous ranges of PFNs
342 * @list - list to put the extents into
343 * @gfp_mask - mask to use for memory allocations
344 */
345static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
346{
347 struct zone *zone;
348
349 INIT_LIST_HEAD(list);
350
351 for_each_populated_zone(zone) {
352 unsigned long zone_start, zone_end;
353 struct mem_extent *ext, *cur, *aux;
354
355 zone_start = zone->zone_start_pfn;
356 zone_end = zone_end_pfn(zone);
357
358 list_for_each_entry(ext, list, hook)
359 if (zone_start <= ext->end)
360 break;
361
362 if (&ext->hook == list || zone_end < ext->start) {
363 /* New extent is necessary */
364 struct mem_extent *new_ext;
365
366 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
367 if (!new_ext) {
368 free_mem_extents(list);
369 return -ENOMEM;
370 }
371 new_ext->start = zone_start;
372 new_ext->end = zone_end;
373 list_add_tail(&new_ext->hook, &ext->hook);
374 continue;
375 }
376
377 /* Merge this zone's range of PFNs with the existing one */
378 if (zone_start < ext->start)
379 ext->start = zone_start;
380 if (zone_end > ext->end)
381 ext->end = zone_end;
382
383 /* More merging may be possible */
384 cur = ext;
385 list_for_each_entry_safe_continue(cur, aux, list, hook) {
386 if (zone_end < cur->start)
387 break;
388 if (zone_end < cur->end)
389 ext->end = cur->end;
390 list_del(&cur->hook);
391 kfree(cur);
392 }
393 }
394
395 return 0;
396}
397
398/**
399 * memory_bm_create - allocate memory for a memory bitmap
400 */
401static int
402memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
403{
404 struct chain_allocator ca;
405 struct list_head mem_extents;
406 struct mem_extent *ext;
407 int error;
408
409 chain_init(&ca, gfp_mask, safe_needed);
410 INIT_LIST_HEAD(&bm->blocks);
411
412 error = create_mem_extents(&mem_extents, gfp_mask);
413 if (error)
414 return error;
415
416 list_for_each_entry(ext, &mem_extents, hook) {
417 struct bm_block *bb;
418 unsigned long pfn = ext->start;
419 unsigned long pages = ext->end - ext->start;
420
421 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
422
423 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
424 if (error)
425 goto Error;
426
427 list_for_each_entry_continue(bb, &bm->blocks, hook) {
428 bb->data = get_image_page(gfp_mask, safe_needed);
429 if (!bb->data) {
430 error = -ENOMEM;
431 goto Error;
432 }
433
434 bb->start_pfn = pfn;
435 if (pages >= BM_BITS_PER_BLOCK) {
436 pfn += BM_BITS_PER_BLOCK;
437 pages -= BM_BITS_PER_BLOCK;
438 } else {
439 /* This is executed only once in the loop */
440 pfn += pages;
441 }
442 bb->end_pfn = pfn;
443 }
444 }
445
446 bm->p_list = ca.chain;
447 memory_bm_position_reset(bm);
448 Exit:
449 free_mem_extents(&mem_extents);
450 return error;
451
452 Error:
453 bm->p_list = ca.chain;
454 memory_bm_free(bm, PG_UNSAFE_CLEAR);
455 goto Exit;
456}
457
458/**
459 * memory_bm_free - free memory occupied by the memory bitmap @bm
460 */
461static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
462{
463 struct bm_block *bb;
464
465 list_for_each_entry(bb, &bm->blocks, hook)
466 if (bb->data)
467 free_image_page(bb->data, clear_nosave_free);
468
469 free_list_of_pages(bm->p_list, clear_nosave_free);
470
471 INIT_LIST_HEAD(&bm->blocks);
472}
473
474/**
475 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
476 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
477 * of @bm->cur_zone_bm are updated.
478 */
479static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
480 void **addr, unsigned int *bit_nr)
481{
482 struct bm_block *bb;
483
484 /*
485 * Check if the pfn corresponds to the current bitmap block and find
486 * the block where it fits if this is not the case.
487 */
488 bb = bm->cur.block;
489 if (pfn < bb->start_pfn)
490 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
491 if (pfn >= bb->start_pfn)
492 break;
493
494 if (pfn >= bb->end_pfn)
495 list_for_each_entry_continue(bb, &bm->blocks, hook)
496 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
497 break;
498
499 if (&bb->hook == &bm->blocks)
500 return -EFAULT;
501
502 /* The block has been found */
503 bm->cur.block = bb;
504 pfn -= bb->start_pfn;
505 bm->cur.bit = pfn + 1;
506 *bit_nr = pfn;
507 *addr = bb->data;
508 return 0;
509}
510
511static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
512{
513 void *addr;
514 unsigned int bit;
515 int error;
516
517 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
518 BUG_ON(error);
519 set_bit(bit, addr);
520}
521
522static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
523{
524 void *addr;
525 unsigned int bit;
526 int error;
527
528 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
529 if (!error)
530 set_bit(bit, addr);
531 return error;
532}
533
534static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
535{
536 void *addr;
537 unsigned int bit;
538 int error;
539
540 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
541 BUG_ON(error);
542 clear_bit(bit, addr);
543}
544
545static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
546{
547 void *addr;
548 unsigned int bit;
549 int error;
550
551 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
552 BUG_ON(error);
553 return test_bit(bit, addr);
554}
555
556static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
557{
558 void *addr;
559 unsigned int bit;
560
561 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
562}
563
564/**
565 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
566 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
567 * returned.
568 *
569 * It is required to run memory_bm_position_reset() before the first call to
570 * this function.
571 */
572
573static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
574{
575 struct bm_block *bb;
576 int bit;
577
578 bb = bm->cur.block;
579 do {
580 bit = bm->cur.bit;
581 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
582 if (bit < bm_block_bits(bb))
583 goto Return_pfn;
584
585 bb = list_entry(bb->hook.next, struct bm_block, hook);
586 bm->cur.block = bb;
587 bm->cur.bit = 0;
588 } while (&bb->hook != &bm->blocks);
589
590 memory_bm_position_reset(bm);
591 return BM_END_OF_MAP;
592
593 Return_pfn:
594 bm->cur.bit = bit + 1;
595 return bb->start_pfn + bit;
596}
597
598/**
599 * This structure represents a range of page frames the contents of which
600 * should not be saved during the suspend.
601 */
602
603struct nosave_region {
604 struct list_head list;
605 unsigned long start_pfn;
606 unsigned long end_pfn;
607};
608
609static LIST_HEAD(nosave_regions);
610
611/**
612 * register_nosave_region - register a range of page frames the contents
613 * of which should not be saved during the suspend (to be used in the early
614 * initialization code)
615 */
616
617void __init
618__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
619 int use_kmalloc)
620{
621 struct nosave_region *region;
622
623 if (start_pfn >= end_pfn)
624 return;
625
626 if (!list_empty(&nosave_regions)) {
627 /* Try to extend the previous region (they should be sorted) */
628 region = list_entry(nosave_regions.prev,
629 struct nosave_region, list);
630 if (region->end_pfn == start_pfn) {
631 region->end_pfn = end_pfn;
632 goto Report;
633 }
634 }
635 if (use_kmalloc) {
636 /* during init, this shouldn't fail */
637 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
638 BUG_ON(!region);
639 } else
640 /* This allocation cannot fail */
641 region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
642 region->start_pfn = start_pfn;
643 region->end_pfn = end_pfn;
644 list_add_tail(®ion->list, &nosave_regions);
645 Report:
646 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
647 (unsigned long long) start_pfn << PAGE_SHIFT,
648 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
649}
650
651/*
652 * Set bits in this map correspond to the page frames the contents of which
653 * should not be saved during the suspend.
654 */
655static struct memory_bitmap *forbidden_pages_map;
656
657/* Set bits in this map correspond to free page frames. */
658static struct memory_bitmap *free_pages_map;
659
660/*
661 * Each page frame allocated for creating the image is marked by setting the
662 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
663 */
664
665void swsusp_set_page_free(struct page *page)
666{
667 if (free_pages_map)
668 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
669}
670
671static int swsusp_page_is_free(struct page *page)
672{
673 return free_pages_map ?
674 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
675}
676
677void swsusp_unset_page_free(struct page *page)
678{
679 if (free_pages_map)
680 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
681}
682
683static void swsusp_set_page_forbidden(struct page *page)
684{
685 if (forbidden_pages_map)
686 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
687}
688
689int swsusp_page_is_forbidden(struct page *page)
690{
691 return forbidden_pages_map ?
692 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
693}
694
695static void swsusp_unset_page_forbidden(struct page *page)
696{
697 if (forbidden_pages_map)
698 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
699}
700
701/**
702 * mark_nosave_pages - set bits corresponding to the page frames the
703 * contents of which should not be saved in a given bitmap.
704 */
705
706static void mark_nosave_pages(struct memory_bitmap *bm)
707{
708 struct nosave_region *region;
709
710 if (list_empty(&nosave_regions))
711 return;
712
713 list_for_each_entry(region, &nosave_regions, list) {
714 unsigned long pfn;
715
716 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
717 (unsigned long long) region->start_pfn << PAGE_SHIFT,
718 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
719 - 1);
720
721 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
722 if (pfn_valid(pfn)) {
723 /*
724 * It is safe to ignore the result of
725 * mem_bm_set_bit_check() here, since we won't
726 * touch the PFNs for which the error is
727 * returned anyway.
728 */
729 mem_bm_set_bit_check(bm, pfn);
730 }
731 }
732}
733
734/**
735 * create_basic_memory_bitmaps - create bitmaps needed for marking page
736 * frames that should not be saved and free page frames. The pointers
737 * forbidden_pages_map and free_pages_map are only modified if everything
738 * goes well, because we don't want the bits to be used before both bitmaps
739 * are set up.
740 */
741
742int create_basic_memory_bitmaps(void)
743{
744 struct memory_bitmap *bm1, *bm2;
745 int error = 0;
746
747 if (forbidden_pages_map && free_pages_map)
748 return 0;
749 else
750 BUG_ON(forbidden_pages_map || free_pages_map);
751
752 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
753 if (!bm1)
754 return -ENOMEM;
755
756 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
757 if (error)
758 goto Free_first_object;
759
760 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
761 if (!bm2)
762 goto Free_first_bitmap;
763
764 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
765 if (error)
766 goto Free_second_object;
767
768 forbidden_pages_map = bm1;
769 free_pages_map = bm2;
770 mark_nosave_pages(forbidden_pages_map);
771
772 pr_debug("PM: Basic memory bitmaps created\n");
773
774 return 0;
775
776 Free_second_object:
777 kfree(bm2);
778 Free_first_bitmap:
779 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
780 Free_first_object:
781 kfree(bm1);
782 return -ENOMEM;
783}
784
785/**
786 * free_basic_memory_bitmaps - free memory bitmaps allocated by
787 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
788 * so that the bitmaps themselves are not referred to while they are being
789 * freed.
790 */
791
792void free_basic_memory_bitmaps(void)
793{
794 struct memory_bitmap *bm1, *bm2;
795
796 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
797 return;
798
799 bm1 = forbidden_pages_map;
800 bm2 = free_pages_map;
801 forbidden_pages_map = NULL;
802 free_pages_map = NULL;
803 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
804 kfree(bm1);
805 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
806 kfree(bm2);
807
808 pr_debug("PM: Basic memory bitmaps freed\n");
809}
810
811/**
812 * snapshot_additional_pages - estimate the number of additional pages
813 * be needed for setting up the suspend image data structures for given
814 * zone (usually the returned value is greater than the exact number)
815 */
816
817unsigned int snapshot_additional_pages(struct zone *zone)
818{
819 unsigned int res;
820
821 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
822 res += DIV_ROUND_UP(res * sizeof(struct bm_block),
823 LINKED_PAGE_DATA_SIZE);
824 return 2 * res;
825}
826
827#ifdef CONFIG_HIGHMEM
828/**
829 * count_free_highmem_pages - compute the total number of free highmem
830 * pages, system-wide.
831 */
832
833static unsigned int count_free_highmem_pages(void)
834{
835 struct zone *zone;
836 unsigned int cnt = 0;
837
838 for_each_populated_zone(zone)
839 if (is_highmem(zone))
840 cnt += zone_page_state(zone, NR_FREE_PAGES);
841
842 return cnt;
843}
844
845/**
846 * saveable_highmem_page - Determine whether a highmem page should be
847 * included in the suspend image.
848 *
849 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
850 * and it isn't a part of a free chunk of pages.
851 */
852static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
853{
854 struct page *page;
855
856 if (!pfn_valid(pfn))
857 return NULL;
858
859 page = pfn_to_page(pfn);
860 if (page_zone(page) != zone)
861 return NULL;
862
863 BUG_ON(!PageHighMem(page));
864
865 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
866 PageReserved(page))
867 return NULL;
868
869 if (page_is_guard(page))
870 return NULL;
871
872 return page;
873}
874
875/**
876 * count_highmem_pages - compute the total number of saveable highmem
877 * pages.
878 */
879
880static unsigned int count_highmem_pages(void)
881{
882 struct zone *zone;
883 unsigned int n = 0;
884
885 for_each_populated_zone(zone) {
886 unsigned long pfn, max_zone_pfn;
887
888 if (!is_highmem(zone))
889 continue;
890
891 mark_free_pages(zone);
892 max_zone_pfn = zone_end_pfn(zone);
893 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
894 if (saveable_highmem_page(zone, pfn))
895 n++;
896 }
897 return n;
898}
899#else
900static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
901{
902 return NULL;
903}
904#endif /* CONFIG_HIGHMEM */
905
906/**
907 * saveable_page - Determine whether a non-highmem page should be included
908 * in the suspend image.
909 *
910 * We should save the page if it isn't Nosave, and is not in the range
911 * of pages statically defined as 'unsaveable', and it isn't a part of
912 * a free chunk of pages.
913 */
914static struct page *saveable_page(struct zone *zone, unsigned long pfn)
915{
916 struct page *page;
917
918 if (!pfn_valid(pfn))
919 return NULL;
920
921 page = pfn_to_page(pfn);
922 if (page_zone(page) != zone)
923 return NULL;
924
925 BUG_ON(PageHighMem(page));
926
927 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
928 return NULL;
929
930 if (PageReserved(page)
931 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
932 return NULL;
933
934 if (page_is_guard(page))
935 return NULL;
936
937 return page;
938}
939
940/**
941 * count_data_pages - compute the total number of saveable non-highmem
942 * pages.
943 */
944
945static unsigned int count_data_pages(void)
946{
947 struct zone *zone;
948 unsigned long pfn, max_zone_pfn;
949 unsigned int n = 0;
950
951 for_each_populated_zone(zone) {
952 if (is_highmem(zone))
953 continue;
954
955 mark_free_pages(zone);
956 max_zone_pfn = zone_end_pfn(zone);
957 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
958 if (saveable_page(zone, pfn))
959 n++;
960 }
961 return n;
962}
963
964/* This is needed, because copy_page and memcpy are not usable for copying
965 * task structs.
966 */
967static inline void do_copy_page(long *dst, long *src)
968{
969 int n;
970
971 for (n = PAGE_SIZE / sizeof(long); n; n--)
972 *dst++ = *src++;
973}
974
975
976/**
977 * safe_copy_page - check if the page we are going to copy is marked as
978 * present in the kernel page tables (this always is the case if
979 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
980 * kernel_page_present() always returns 'true').
981 */
982static void safe_copy_page(void *dst, struct page *s_page)
983{
984 if (kernel_page_present(s_page)) {
985 do_copy_page(dst, page_address(s_page));
986 } else {
987 kernel_map_pages(s_page, 1, 1);
988 do_copy_page(dst, page_address(s_page));
989 kernel_map_pages(s_page, 1, 0);
990 }
991}
992
993
994#ifdef CONFIG_HIGHMEM
995static inline struct page *
996page_is_saveable(struct zone *zone, unsigned long pfn)
997{
998 return is_highmem(zone) ?
999 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1000}
1001
1002static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1003{
1004 struct page *s_page, *d_page;
1005 void *src, *dst;
1006
1007 s_page = pfn_to_page(src_pfn);
1008 d_page = pfn_to_page(dst_pfn);
1009 if (PageHighMem(s_page)) {
1010 src = kmap_atomic(s_page);
1011 dst = kmap_atomic(d_page);
1012 do_copy_page(dst, src);
1013 kunmap_atomic(dst);
1014 kunmap_atomic(src);
1015 } else {
1016 if (PageHighMem(d_page)) {
1017 /* Page pointed to by src may contain some kernel
1018 * data modified by kmap_atomic()
1019 */
1020 safe_copy_page(buffer, s_page);
1021 dst = kmap_atomic(d_page);
1022 copy_page(dst, buffer);
1023 kunmap_atomic(dst);
1024 } else {
1025 safe_copy_page(page_address(d_page), s_page);
1026 }
1027 }
1028}
1029#else
1030#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1031
1032static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1033{
1034 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1035 pfn_to_page(src_pfn));
1036}
1037#endif /* CONFIG_HIGHMEM */
1038
1039static void
1040copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1041{
1042 struct zone *zone;
1043 unsigned long pfn;
1044
1045 for_each_populated_zone(zone) {
1046 unsigned long max_zone_pfn;
1047
1048 mark_free_pages(zone);
1049 max_zone_pfn = zone_end_pfn(zone);
1050 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1051 if (page_is_saveable(zone, pfn))
1052 memory_bm_set_bit(orig_bm, pfn);
1053 }
1054 memory_bm_position_reset(orig_bm);
1055 memory_bm_position_reset(copy_bm);
1056 for(;;) {
1057 pfn = memory_bm_next_pfn(orig_bm);
1058 if (unlikely(pfn == BM_END_OF_MAP))
1059 break;
1060 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1061 }
1062}
1063
1064/* Total number of image pages */
1065static unsigned int nr_copy_pages;
1066/* Number of pages needed for saving the original pfns of the image pages */
1067static unsigned int nr_meta_pages;
1068/*
1069 * Numbers of normal and highmem page frames allocated for hibernation image
1070 * before suspending devices.
1071 */
1072unsigned int alloc_normal, alloc_highmem;
1073/*
1074 * Memory bitmap used for marking saveable pages (during hibernation) or
1075 * hibernation image pages (during restore)
1076 */
1077static struct memory_bitmap orig_bm;
1078/*
1079 * Memory bitmap used during hibernation for marking allocated page frames that
1080 * will contain copies of saveable pages. During restore it is initially used
1081 * for marking hibernation image pages, but then the set bits from it are
1082 * duplicated in @orig_bm and it is released. On highmem systems it is next
1083 * used for marking "safe" highmem pages, but it has to be reinitialized for
1084 * this purpose.
1085 */
1086static struct memory_bitmap copy_bm;
1087
1088/**
1089 * swsusp_free - free pages allocated for the suspend.
1090 *
1091 * Suspend pages are alocated before the atomic copy is made, so we
1092 * need to release them after the resume.
1093 */
1094
1095void swsusp_free(void)
1096{
1097 struct zone *zone;
1098 unsigned long pfn, max_zone_pfn;
1099
1100 for_each_populated_zone(zone) {
1101 max_zone_pfn = zone_end_pfn(zone);
1102 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1103 if (pfn_valid(pfn)) {
1104 struct page *page = pfn_to_page(pfn);
1105
1106 if (swsusp_page_is_forbidden(page) &&
1107 swsusp_page_is_free(page)) {
1108 swsusp_unset_page_forbidden(page);
1109 swsusp_unset_page_free(page);
1110 __free_page(page);
1111 }
1112 }
1113 }
1114 nr_copy_pages = 0;
1115 nr_meta_pages = 0;
1116 restore_pblist = NULL;
1117 buffer = NULL;
1118 alloc_normal = 0;
1119 alloc_highmem = 0;
1120}
1121
1122/* Helper functions used for the shrinking of memory. */
1123
1124#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1125
1126/**
1127 * preallocate_image_pages - Allocate a number of pages for hibernation image
1128 * @nr_pages: Number of page frames to allocate.
1129 * @mask: GFP flags to use for the allocation.
1130 *
1131 * Return value: Number of page frames actually allocated
1132 */
1133static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1134{
1135 unsigned long nr_alloc = 0;
1136
1137 while (nr_pages > 0) {
1138 struct page *page;
1139
1140 page = alloc_image_page(mask);
1141 if (!page)
1142 break;
1143 memory_bm_set_bit(©_bm, page_to_pfn(page));
1144 if (PageHighMem(page))
1145 alloc_highmem++;
1146 else
1147 alloc_normal++;
1148 nr_pages--;
1149 nr_alloc++;
1150 }
1151
1152 return nr_alloc;
1153}
1154
1155static unsigned long preallocate_image_memory(unsigned long nr_pages,
1156 unsigned long avail_normal)
1157{
1158 unsigned long alloc;
1159
1160 if (avail_normal <= alloc_normal)
1161 return 0;
1162
1163 alloc = avail_normal - alloc_normal;
1164 if (nr_pages < alloc)
1165 alloc = nr_pages;
1166
1167 return preallocate_image_pages(alloc, GFP_IMAGE);
1168}
1169
1170#ifdef CONFIG_HIGHMEM
1171static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1172{
1173 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1174}
1175
1176/**
1177 * __fraction - Compute (an approximation of) x * (multiplier / base)
1178 */
1179static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1180{
1181 x *= multiplier;
1182 do_div(x, base);
1183 return (unsigned long)x;
1184}
1185
1186static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1187 unsigned long highmem,
1188 unsigned long total)
1189{
1190 unsigned long alloc = __fraction(nr_pages, highmem, total);
1191
1192 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1193}
1194#else /* CONFIG_HIGHMEM */
1195static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1196{
1197 return 0;
1198}
1199
1200static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1201 unsigned long highmem,
1202 unsigned long total)
1203{
1204 return 0;
1205}
1206#endif /* CONFIG_HIGHMEM */
1207
1208/**
1209 * free_unnecessary_pages - Release preallocated pages not needed for the image
1210 */
1211static void free_unnecessary_pages(void)
1212{
1213 unsigned long save, to_free_normal, to_free_highmem;
1214
1215 save = count_data_pages();
1216 if (alloc_normal >= save) {
1217 to_free_normal = alloc_normal - save;
1218 save = 0;
1219 } else {
1220 to_free_normal = 0;
1221 save -= alloc_normal;
1222 }
1223 save += count_highmem_pages();
1224 if (alloc_highmem >= save) {
1225 to_free_highmem = alloc_highmem - save;
1226 } else {
1227 to_free_highmem = 0;
1228 save -= alloc_highmem;
1229 if (to_free_normal > save)
1230 to_free_normal -= save;
1231 else
1232 to_free_normal = 0;
1233 }
1234
1235 memory_bm_position_reset(©_bm);
1236
1237 while (to_free_normal > 0 || to_free_highmem > 0) {
1238 unsigned long pfn = memory_bm_next_pfn(©_bm);
1239 struct page *page = pfn_to_page(pfn);
1240
1241 if (PageHighMem(page)) {
1242 if (!to_free_highmem)
1243 continue;
1244 to_free_highmem--;
1245 alloc_highmem--;
1246 } else {
1247 if (!to_free_normal)
1248 continue;
1249 to_free_normal--;
1250 alloc_normal--;
1251 }
1252 memory_bm_clear_bit(©_bm, pfn);
1253 swsusp_unset_page_forbidden(page);
1254 swsusp_unset_page_free(page);
1255 __free_page(page);
1256 }
1257}
1258
1259/**
1260 * minimum_image_size - Estimate the minimum acceptable size of an image
1261 * @saveable: Number of saveable pages in the system.
1262 *
1263 * We want to avoid attempting to free too much memory too hard, so estimate the
1264 * minimum acceptable size of a hibernation image to use as the lower limit for
1265 * preallocating memory.
1266 *
1267 * We assume that the minimum image size should be proportional to
1268 *
1269 * [number of saveable pages] - [number of pages that can be freed in theory]
1270 *
1271 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1272 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1273 * minus mapped file pages.
1274 */
1275static unsigned long minimum_image_size(unsigned long saveable)
1276{
1277 unsigned long size;
1278
1279 size = global_page_state(NR_SLAB_RECLAIMABLE)
1280 + global_page_state(NR_ACTIVE_ANON)
1281 + global_page_state(NR_INACTIVE_ANON)
1282 + global_page_state(NR_ACTIVE_FILE)
1283 + global_page_state(NR_INACTIVE_FILE)
1284 - global_page_state(NR_FILE_MAPPED);
1285
1286 return saveable <= size ? 0 : saveable - size;
1287}
1288
1289/**
1290 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1291 *
1292 * To create a hibernation image it is necessary to make a copy of every page
1293 * frame in use. We also need a number of page frames to be free during
1294 * hibernation for allocations made while saving the image and for device
1295 * drivers, in case they need to allocate memory from their hibernation
1296 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1297 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1298 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1299 * total number of available page frames and allocate at least
1300 *
1301 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1302 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1303 *
1304 * of them, which corresponds to the maximum size of a hibernation image.
1305 *
1306 * If image_size is set below the number following from the above formula,
1307 * the preallocation of memory is continued until the total number of saveable
1308 * pages in the system is below the requested image size or the minimum
1309 * acceptable image size returned by minimum_image_size(), whichever is greater.
1310 */
1311int hibernate_preallocate_memory(void)
1312{
1313 struct zone *zone;
1314 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1315 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1316 struct timeval start, stop;
1317 int error;
1318
1319 printk(KERN_INFO "PM: Preallocating image memory... ");
1320 do_gettimeofday(&start);
1321
1322 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1323 if (error)
1324 goto err_out;
1325
1326 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY);
1327 if (error)
1328 goto err_out;
1329
1330 alloc_normal = 0;
1331 alloc_highmem = 0;
1332
1333 /* Count the number of saveable data pages. */
1334 save_highmem = count_highmem_pages();
1335 saveable = count_data_pages();
1336
1337 /*
1338 * Compute the total number of page frames we can use (count) and the
1339 * number of pages needed for image metadata (size).
1340 */
1341 count = saveable;
1342 saveable += save_highmem;
1343 highmem = save_highmem;
1344 size = 0;
1345 for_each_populated_zone(zone) {
1346 size += snapshot_additional_pages(zone);
1347 if (is_highmem(zone))
1348 highmem += zone_page_state(zone, NR_FREE_PAGES);
1349 else
1350 count += zone_page_state(zone, NR_FREE_PAGES);
1351 }
1352 avail_normal = count;
1353 count += highmem;
1354 count -= totalreserve_pages;
1355
1356 /* Add number of pages required for page keys (s390 only). */
1357 size += page_key_additional_pages(saveable);
1358
1359 /* Compute the maximum number of saveable pages to leave in memory. */
1360 max_size = (count - (size + PAGES_FOR_IO)) / 2
1361 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1362 /* Compute the desired number of image pages specified by image_size. */
1363 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1364 if (size > max_size)
1365 size = max_size;
1366 /*
1367 * If the desired number of image pages is at least as large as the
1368 * current number of saveable pages in memory, allocate page frames for
1369 * the image and we're done.
1370 */
1371 if (size >= saveable) {
1372 pages = preallocate_image_highmem(save_highmem);
1373 pages += preallocate_image_memory(saveable - pages, avail_normal);
1374 goto out;
1375 }
1376
1377 /* Estimate the minimum size of the image. */
1378 pages = minimum_image_size(saveable);
1379 /*
1380 * To avoid excessive pressure on the normal zone, leave room in it to
1381 * accommodate an image of the minimum size (unless it's already too
1382 * small, in which case don't preallocate pages from it at all).
1383 */
1384 if (avail_normal > pages)
1385 avail_normal -= pages;
1386 else
1387 avail_normal = 0;
1388 if (size < pages)
1389 size = min_t(unsigned long, pages, max_size);
1390
1391 /*
1392 * Let the memory management subsystem know that we're going to need a
1393 * large number of page frames to allocate and make it free some memory.
1394 * NOTE: If this is not done, performance will be hurt badly in some
1395 * test cases.
1396 */
1397 shrink_all_memory(saveable - size);
1398
1399 /*
1400 * The number of saveable pages in memory was too high, so apply some
1401 * pressure to decrease it. First, make room for the largest possible
1402 * image and fail if that doesn't work. Next, try to decrease the size
1403 * of the image as much as indicated by 'size' using allocations from
1404 * highmem and non-highmem zones separately.
1405 */
1406 pages_highmem = preallocate_image_highmem(highmem / 2);
1407 alloc = count - max_size;
1408 if (alloc > pages_highmem)
1409 alloc -= pages_highmem;
1410 else
1411 alloc = 0;
1412 pages = preallocate_image_memory(alloc, avail_normal);
1413 if (pages < alloc) {
1414 /* We have exhausted non-highmem pages, try highmem. */
1415 alloc -= pages;
1416 pages += pages_highmem;
1417 pages_highmem = preallocate_image_highmem(alloc);
1418 if (pages_highmem < alloc)
1419 goto err_out;
1420 pages += pages_highmem;
1421 /*
1422 * size is the desired number of saveable pages to leave in
1423 * memory, so try to preallocate (all memory - size) pages.
1424 */
1425 alloc = (count - pages) - size;
1426 pages += preallocate_image_highmem(alloc);
1427 } else {
1428 /*
1429 * There are approximately max_size saveable pages at this point
1430 * and we want to reduce this number down to size.
1431 */
1432 alloc = max_size - size;
1433 size = preallocate_highmem_fraction(alloc, highmem, count);
1434 pages_highmem += size;
1435 alloc -= size;
1436 size = preallocate_image_memory(alloc, avail_normal);
1437 pages_highmem += preallocate_image_highmem(alloc - size);
1438 pages += pages_highmem + size;
1439 }
1440
1441 /*
1442 * We only need as many page frames for the image as there are saveable
1443 * pages in memory, but we have allocated more. Release the excessive
1444 * ones now.
1445 */
1446 free_unnecessary_pages();
1447
1448 out:
1449 do_gettimeofday(&stop);
1450 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1451 swsusp_show_speed(&start, &stop, pages, "Allocated");
1452
1453 return 0;
1454
1455 err_out:
1456 printk(KERN_CONT "\n");
1457 swsusp_free();
1458 return -ENOMEM;
1459}
1460
1461#ifdef CONFIG_HIGHMEM
1462/**
1463 * count_pages_for_highmem - compute the number of non-highmem pages
1464 * that will be necessary for creating copies of highmem pages.
1465 */
1466
1467static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1468{
1469 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1470
1471 if (free_highmem >= nr_highmem)
1472 nr_highmem = 0;
1473 else
1474 nr_highmem -= free_highmem;
1475
1476 return nr_highmem;
1477}
1478#else
1479static unsigned int
1480count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1481#endif /* CONFIG_HIGHMEM */
1482
1483/**
1484 * enough_free_mem - Make sure we have enough free memory for the
1485 * snapshot image.
1486 */
1487
1488static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1489{
1490 struct zone *zone;
1491 unsigned int free = alloc_normal;
1492
1493 for_each_populated_zone(zone)
1494 if (!is_highmem(zone))
1495 free += zone_page_state(zone, NR_FREE_PAGES);
1496
1497 nr_pages += count_pages_for_highmem(nr_highmem);
1498 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1499 nr_pages, PAGES_FOR_IO, free);
1500
1501 return free > nr_pages + PAGES_FOR_IO;
1502}
1503
1504#ifdef CONFIG_HIGHMEM
1505/**
1506 * get_highmem_buffer - if there are some highmem pages in the suspend
1507 * image, we may need the buffer to copy them and/or load their data.
1508 */
1509
1510static inline int get_highmem_buffer(int safe_needed)
1511{
1512 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1513 return buffer ? 0 : -ENOMEM;
1514}
1515
1516/**
1517 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1518 * Try to allocate as many pages as needed, but if the number of free
1519 * highmem pages is lesser than that, allocate them all.
1520 */
1521
1522static inline unsigned int
1523alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1524{
1525 unsigned int to_alloc = count_free_highmem_pages();
1526
1527 if (to_alloc > nr_highmem)
1528 to_alloc = nr_highmem;
1529
1530 nr_highmem -= to_alloc;
1531 while (to_alloc-- > 0) {
1532 struct page *page;
1533
1534 page = alloc_image_page(__GFP_HIGHMEM);
1535 memory_bm_set_bit(bm, page_to_pfn(page));
1536 }
1537 return nr_highmem;
1538}
1539#else
1540static inline int get_highmem_buffer(int safe_needed) { return 0; }
1541
1542static inline unsigned int
1543alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1544#endif /* CONFIG_HIGHMEM */
1545
1546/**
1547 * swsusp_alloc - allocate memory for the suspend image
1548 *
1549 * We first try to allocate as many highmem pages as there are
1550 * saveable highmem pages in the system. If that fails, we allocate
1551 * non-highmem pages for the copies of the remaining highmem ones.
1552 *
1553 * In this approach it is likely that the copies of highmem pages will
1554 * also be located in the high memory, because of the way in which
1555 * copy_data_pages() works.
1556 */
1557
1558static int
1559swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1560 unsigned int nr_pages, unsigned int nr_highmem)
1561{
1562 if (nr_highmem > 0) {
1563 if (get_highmem_buffer(PG_ANY))
1564 goto err_out;
1565 if (nr_highmem > alloc_highmem) {
1566 nr_highmem -= alloc_highmem;
1567 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1568 }
1569 }
1570 if (nr_pages > alloc_normal) {
1571 nr_pages -= alloc_normal;
1572 while (nr_pages-- > 0) {
1573 struct page *page;
1574
1575 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1576 if (!page)
1577 goto err_out;
1578 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1579 }
1580 }
1581
1582 return 0;
1583
1584 err_out:
1585 swsusp_free();
1586 return -ENOMEM;
1587}
1588
1589asmlinkage __visible int swsusp_save(void)
1590{
1591 unsigned int nr_pages, nr_highmem;
1592
1593 printk(KERN_INFO "PM: Creating hibernation image:\n");
1594
1595 drain_local_pages(NULL);
1596 nr_pages = count_data_pages();
1597 nr_highmem = count_highmem_pages();
1598 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1599
1600 if (!enough_free_mem(nr_pages, nr_highmem)) {
1601 printk(KERN_ERR "PM: Not enough free memory\n");
1602 return -ENOMEM;
1603 }
1604
1605 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) {
1606 printk(KERN_ERR "PM: Memory allocation failed\n");
1607 return -ENOMEM;
1608 }
1609
1610 /* During allocating of suspend pagedir, new cold pages may appear.
1611 * Kill them.
1612 */
1613 drain_local_pages(NULL);
1614 copy_data_pages(©_bm, &orig_bm);
1615
1616 /*
1617 * End of critical section. From now on, we can write to memory,
1618 * but we should not touch disk. This specially means we must _not_
1619 * touch swap space! Except we must write out our image of course.
1620 */
1621
1622 nr_pages += nr_highmem;
1623 nr_copy_pages = nr_pages;
1624 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1625
1626 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1627 nr_pages);
1628
1629 return 0;
1630}
1631
1632#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1633static int init_header_complete(struct swsusp_info *info)
1634{
1635 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1636 info->version_code = LINUX_VERSION_CODE;
1637 return 0;
1638}
1639
1640static char *check_image_kernel(struct swsusp_info *info)
1641{
1642 if (info->version_code != LINUX_VERSION_CODE)
1643 return "kernel version";
1644 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1645 return "system type";
1646 if (strcmp(info->uts.release,init_utsname()->release))
1647 return "kernel release";
1648 if (strcmp(info->uts.version,init_utsname()->version))
1649 return "version";
1650 if (strcmp(info->uts.machine,init_utsname()->machine))
1651 return "machine";
1652 return NULL;
1653}
1654#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1655
1656unsigned long snapshot_get_image_size(void)
1657{
1658 return nr_copy_pages + nr_meta_pages + 1;
1659}
1660
1661static int init_header(struct swsusp_info *info)
1662{
1663 memset(info, 0, sizeof(struct swsusp_info));
1664 info->num_physpages = get_num_physpages();
1665 info->image_pages = nr_copy_pages;
1666 info->pages = snapshot_get_image_size();
1667 info->size = info->pages;
1668 info->size <<= PAGE_SHIFT;
1669 return init_header_complete(info);
1670}
1671
1672/**
1673 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1674 * are stored in the array @buf[] (1 page at a time)
1675 */
1676
1677static inline void
1678pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1679{
1680 int j;
1681
1682 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1683 buf[j] = memory_bm_next_pfn(bm);
1684 if (unlikely(buf[j] == BM_END_OF_MAP))
1685 break;
1686 /* Save page key for data page (s390 only). */
1687 page_key_read(buf + j);
1688 }
1689}
1690
1691/**
1692 * snapshot_read_next - used for reading the system memory snapshot.
1693 *
1694 * On the first call to it @handle should point to a zeroed
1695 * snapshot_handle structure. The structure gets updated and a pointer
1696 * to it should be passed to this function every next time.
1697 *
1698 * On success the function returns a positive number. Then, the caller
1699 * is allowed to read up to the returned number of bytes from the memory
1700 * location computed by the data_of() macro.
1701 *
1702 * The function returns 0 to indicate the end of data stream condition,
1703 * and a negative number is returned on error. In such cases the
1704 * structure pointed to by @handle is not updated and should not be used
1705 * any more.
1706 */
1707
1708int snapshot_read_next(struct snapshot_handle *handle)
1709{
1710 if (handle->cur > nr_meta_pages + nr_copy_pages)
1711 return 0;
1712
1713 if (!buffer) {
1714 /* This makes the buffer be freed by swsusp_free() */
1715 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1716 if (!buffer)
1717 return -ENOMEM;
1718 }
1719 if (!handle->cur) {
1720 int error;
1721
1722 error = init_header((struct swsusp_info *)buffer);
1723 if (error)
1724 return error;
1725 handle->buffer = buffer;
1726 memory_bm_position_reset(&orig_bm);
1727 memory_bm_position_reset(©_bm);
1728 } else if (handle->cur <= nr_meta_pages) {
1729 clear_page(buffer);
1730 pack_pfns(buffer, &orig_bm);
1731 } else {
1732 struct page *page;
1733
1734 page = pfn_to_page(memory_bm_next_pfn(©_bm));
1735 if (PageHighMem(page)) {
1736 /* Highmem pages are copied to the buffer,
1737 * because we can't return with a kmapped
1738 * highmem page (we may not be called again).
1739 */
1740 void *kaddr;
1741
1742 kaddr = kmap_atomic(page);
1743 copy_page(buffer, kaddr);
1744 kunmap_atomic(kaddr);
1745 handle->buffer = buffer;
1746 } else {
1747 handle->buffer = page_address(page);
1748 }
1749 }
1750 handle->cur++;
1751 return PAGE_SIZE;
1752}
1753
1754/**
1755 * mark_unsafe_pages - mark the pages that cannot be used for storing
1756 * the image during resume, because they conflict with the pages that
1757 * had been used before suspend
1758 */
1759
1760static int mark_unsafe_pages(struct memory_bitmap *bm)
1761{
1762 struct zone *zone;
1763 unsigned long pfn, max_zone_pfn;
1764
1765 /* Clear page flags */
1766 for_each_populated_zone(zone) {
1767 max_zone_pfn = zone_end_pfn(zone);
1768 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1769 if (pfn_valid(pfn))
1770 swsusp_unset_page_free(pfn_to_page(pfn));
1771 }
1772
1773 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1774 memory_bm_position_reset(bm);
1775 do {
1776 pfn = memory_bm_next_pfn(bm);
1777 if (likely(pfn != BM_END_OF_MAP)) {
1778 if (likely(pfn_valid(pfn)))
1779 swsusp_set_page_free(pfn_to_page(pfn));
1780 else
1781 return -EFAULT;
1782 }
1783 } while (pfn != BM_END_OF_MAP);
1784
1785 allocated_unsafe_pages = 0;
1786
1787 return 0;
1788}
1789
1790static void
1791duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1792{
1793 unsigned long pfn;
1794
1795 memory_bm_position_reset(src);
1796 pfn = memory_bm_next_pfn(src);
1797 while (pfn != BM_END_OF_MAP) {
1798 memory_bm_set_bit(dst, pfn);
1799 pfn = memory_bm_next_pfn(src);
1800 }
1801}
1802
1803static int check_header(struct swsusp_info *info)
1804{
1805 char *reason;
1806
1807 reason = check_image_kernel(info);
1808 if (!reason && info->num_physpages != get_num_physpages())
1809 reason = "memory size";
1810 if (reason) {
1811 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1812 return -EPERM;
1813 }
1814 return 0;
1815}
1816
1817/**
1818 * load header - check the image header and copy data from it
1819 */
1820
1821static int
1822load_header(struct swsusp_info *info)
1823{
1824 int error;
1825
1826 restore_pblist = NULL;
1827 error = check_header(info);
1828 if (!error) {
1829 nr_copy_pages = info->image_pages;
1830 nr_meta_pages = info->pages - info->image_pages - 1;
1831 }
1832 return error;
1833}
1834
1835/**
1836 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1837 * the corresponding bit in the memory bitmap @bm
1838 */
1839static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1840{
1841 int j;
1842
1843 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1844 if (unlikely(buf[j] == BM_END_OF_MAP))
1845 break;
1846
1847 /* Extract and buffer page key for data page (s390 only). */
1848 page_key_memorize(buf + j);
1849
1850 if (memory_bm_pfn_present(bm, buf[j]))
1851 memory_bm_set_bit(bm, buf[j]);
1852 else
1853 return -EFAULT;
1854 }
1855
1856 return 0;
1857}
1858
1859/* List of "safe" pages that may be used to store data loaded from the suspend
1860 * image
1861 */
1862static struct linked_page *safe_pages_list;
1863
1864#ifdef CONFIG_HIGHMEM
1865/* struct highmem_pbe is used for creating the list of highmem pages that
1866 * should be restored atomically during the resume from disk, because the page
1867 * frames they have occupied before the suspend are in use.
1868 */
1869struct highmem_pbe {
1870 struct page *copy_page; /* data is here now */
1871 struct page *orig_page; /* data was here before the suspend */
1872 struct highmem_pbe *next;
1873};
1874
1875/* List of highmem PBEs needed for restoring the highmem pages that were
1876 * allocated before the suspend and included in the suspend image, but have
1877 * also been allocated by the "resume" kernel, so their contents cannot be
1878 * written directly to their "original" page frames.
1879 */
1880static struct highmem_pbe *highmem_pblist;
1881
1882/**
1883 * count_highmem_image_pages - compute the number of highmem pages in the
1884 * suspend image. The bits in the memory bitmap @bm that correspond to the
1885 * image pages are assumed to be set.
1886 */
1887
1888static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1889{
1890 unsigned long pfn;
1891 unsigned int cnt = 0;
1892
1893 memory_bm_position_reset(bm);
1894 pfn = memory_bm_next_pfn(bm);
1895 while (pfn != BM_END_OF_MAP) {
1896 if (PageHighMem(pfn_to_page(pfn)))
1897 cnt++;
1898
1899 pfn = memory_bm_next_pfn(bm);
1900 }
1901 return cnt;
1902}
1903
1904/**
1905 * prepare_highmem_image - try to allocate as many highmem pages as
1906 * there are highmem image pages (@nr_highmem_p points to the variable
1907 * containing the number of highmem image pages). The pages that are
1908 * "safe" (ie. will not be overwritten when the suspend image is
1909 * restored) have the corresponding bits set in @bm (it must be
1910 * unitialized).
1911 *
1912 * NOTE: This function should not be called if there are no highmem
1913 * image pages.
1914 */
1915
1916static unsigned int safe_highmem_pages;
1917
1918static struct memory_bitmap *safe_highmem_bm;
1919
1920static int
1921prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1922{
1923 unsigned int to_alloc;
1924
1925 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1926 return -ENOMEM;
1927
1928 if (get_highmem_buffer(PG_SAFE))
1929 return -ENOMEM;
1930
1931 to_alloc = count_free_highmem_pages();
1932 if (to_alloc > *nr_highmem_p)
1933 to_alloc = *nr_highmem_p;
1934 else
1935 *nr_highmem_p = to_alloc;
1936
1937 safe_highmem_pages = 0;
1938 while (to_alloc-- > 0) {
1939 struct page *page;
1940
1941 page = alloc_page(__GFP_HIGHMEM);
1942 if (!swsusp_page_is_free(page)) {
1943 /* The page is "safe", set its bit the bitmap */
1944 memory_bm_set_bit(bm, page_to_pfn(page));
1945 safe_highmem_pages++;
1946 }
1947 /* Mark the page as allocated */
1948 swsusp_set_page_forbidden(page);
1949 swsusp_set_page_free(page);
1950 }
1951 memory_bm_position_reset(bm);
1952 safe_highmem_bm = bm;
1953 return 0;
1954}
1955
1956/**
1957 * get_highmem_page_buffer - for given highmem image page find the buffer
1958 * that suspend_write_next() should set for its caller to write to.
1959 *
1960 * If the page is to be saved to its "original" page frame or a copy of
1961 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1962 * the copy of the page is to be made in normal memory, so the address of
1963 * the copy is returned.
1964 *
1965 * If @buffer is returned, the caller of suspend_write_next() will write
1966 * the page's contents to @buffer, so they will have to be copied to the
1967 * right location on the next call to suspend_write_next() and it is done
1968 * with the help of copy_last_highmem_page(). For this purpose, if
1969 * @buffer is returned, @last_highmem page is set to the page to which
1970 * the data will have to be copied from @buffer.
1971 */
1972
1973static struct page *last_highmem_page;
1974
1975static void *
1976get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1977{
1978 struct highmem_pbe *pbe;
1979 void *kaddr;
1980
1981 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1982 /* We have allocated the "original" page frame and we can
1983 * use it directly to store the loaded page.
1984 */
1985 last_highmem_page = page;
1986 return buffer;
1987 }
1988 /* The "original" page frame has not been allocated and we have to
1989 * use a "safe" page frame to store the loaded page.
1990 */
1991 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1992 if (!pbe) {
1993 swsusp_free();
1994 return ERR_PTR(-ENOMEM);
1995 }
1996 pbe->orig_page = page;
1997 if (safe_highmem_pages > 0) {
1998 struct page *tmp;
1999
2000 /* Copy of the page will be stored in high memory */
2001 kaddr = buffer;
2002 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2003 safe_highmem_pages--;
2004 last_highmem_page = tmp;
2005 pbe->copy_page = tmp;
2006 } else {
2007 /* Copy of the page will be stored in normal memory */
2008 kaddr = safe_pages_list;
2009 safe_pages_list = safe_pages_list->next;
2010 pbe->copy_page = virt_to_page(kaddr);
2011 }
2012 pbe->next = highmem_pblist;
2013 highmem_pblist = pbe;
2014 return kaddr;
2015}
2016
2017/**
2018 * copy_last_highmem_page - copy the contents of a highmem image from
2019 * @buffer, where the caller of snapshot_write_next() has place them,
2020 * to the right location represented by @last_highmem_page .
2021 */
2022
2023static void copy_last_highmem_page(void)
2024{
2025 if (last_highmem_page) {
2026 void *dst;
2027
2028 dst = kmap_atomic(last_highmem_page);
2029 copy_page(dst, buffer);
2030 kunmap_atomic(dst);
2031 last_highmem_page = NULL;
2032 }
2033}
2034
2035static inline int last_highmem_page_copied(void)
2036{
2037 return !last_highmem_page;
2038}
2039
2040static inline void free_highmem_data(void)
2041{
2042 if (safe_highmem_bm)
2043 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2044
2045 if (buffer)
2046 free_image_page(buffer, PG_UNSAFE_CLEAR);
2047}
2048#else
2049static inline int get_safe_write_buffer(void) { return 0; }
2050
2051static unsigned int
2052count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2053
2054static inline int
2055prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2056{
2057 return 0;
2058}
2059
2060static inline void *
2061get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2062{
2063 return ERR_PTR(-EINVAL);
2064}
2065
2066static inline void copy_last_highmem_page(void) {}
2067static inline int last_highmem_page_copied(void) { return 1; }
2068static inline void free_highmem_data(void) {}
2069#endif /* CONFIG_HIGHMEM */
2070
2071/**
2072 * prepare_image - use the memory bitmap @bm to mark the pages that will
2073 * be overwritten in the process of restoring the system memory state
2074 * from the suspend image ("unsafe" pages) and allocate memory for the
2075 * image.
2076 *
2077 * The idea is to allocate a new memory bitmap first and then allocate
2078 * as many pages as needed for the image data, but not to assign these
2079 * pages to specific tasks initially. Instead, we just mark them as
2080 * allocated and create a lists of "safe" pages that will be used
2081 * later. On systems with high memory a list of "safe" highmem pages is
2082 * also created.
2083 */
2084
2085#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2086
2087static int
2088prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2089{
2090 unsigned int nr_pages, nr_highmem;
2091 struct linked_page *sp_list, *lp;
2092 int error;
2093
2094 /* If there is no highmem, the buffer will not be necessary */
2095 free_image_page(buffer, PG_UNSAFE_CLEAR);
2096 buffer = NULL;
2097
2098 nr_highmem = count_highmem_image_pages(bm);
2099 error = mark_unsafe_pages(bm);
2100 if (error)
2101 goto Free;
2102
2103 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2104 if (error)
2105 goto Free;
2106
2107 duplicate_memory_bitmap(new_bm, bm);
2108 memory_bm_free(bm, PG_UNSAFE_KEEP);
2109 if (nr_highmem > 0) {
2110 error = prepare_highmem_image(bm, &nr_highmem);
2111 if (error)
2112 goto Free;
2113 }
2114 /* Reserve some safe pages for potential later use.
2115 *
2116 * NOTE: This way we make sure there will be enough safe pages for the
2117 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2118 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2119 */
2120 sp_list = NULL;
2121 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2122 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2123 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2124 while (nr_pages > 0) {
2125 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2126 if (!lp) {
2127 error = -ENOMEM;
2128 goto Free;
2129 }
2130 lp->next = sp_list;
2131 sp_list = lp;
2132 nr_pages--;
2133 }
2134 /* Preallocate memory for the image */
2135 safe_pages_list = NULL;
2136 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2137 while (nr_pages > 0) {
2138 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2139 if (!lp) {
2140 error = -ENOMEM;
2141 goto Free;
2142 }
2143 if (!swsusp_page_is_free(virt_to_page(lp))) {
2144 /* The page is "safe", add it to the list */
2145 lp->next = safe_pages_list;
2146 safe_pages_list = lp;
2147 }
2148 /* Mark the page as allocated */
2149 swsusp_set_page_forbidden(virt_to_page(lp));
2150 swsusp_set_page_free(virt_to_page(lp));
2151 nr_pages--;
2152 }
2153 /* Free the reserved safe pages so that chain_alloc() can use them */
2154 while (sp_list) {
2155 lp = sp_list->next;
2156 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2157 sp_list = lp;
2158 }
2159 return 0;
2160
2161 Free:
2162 swsusp_free();
2163 return error;
2164}
2165
2166/**
2167 * get_buffer - compute the address that snapshot_write_next() should
2168 * set for its caller to write to.
2169 */
2170
2171static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2172{
2173 struct pbe *pbe;
2174 struct page *page;
2175 unsigned long pfn = memory_bm_next_pfn(bm);
2176
2177 if (pfn == BM_END_OF_MAP)
2178 return ERR_PTR(-EFAULT);
2179
2180 page = pfn_to_page(pfn);
2181 if (PageHighMem(page))
2182 return get_highmem_page_buffer(page, ca);
2183
2184 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2185 /* We have allocated the "original" page frame and we can
2186 * use it directly to store the loaded page.
2187 */
2188 return page_address(page);
2189
2190 /* The "original" page frame has not been allocated and we have to
2191 * use a "safe" page frame to store the loaded page.
2192 */
2193 pbe = chain_alloc(ca, sizeof(struct pbe));
2194 if (!pbe) {
2195 swsusp_free();
2196 return ERR_PTR(-ENOMEM);
2197 }
2198 pbe->orig_address = page_address(page);
2199 pbe->address = safe_pages_list;
2200 safe_pages_list = safe_pages_list->next;
2201 pbe->next = restore_pblist;
2202 restore_pblist = pbe;
2203 return pbe->address;
2204}
2205
2206/**
2207 * snapshot_write_next - used for writing the system memory snapshot.
2208 *
2209 * On the first call to it @handle should point to a zeroed
2210 * snapshot_handle structure. The structure gets updated and a pointer
2211 * to it should be passed to this function every next time.
2212 *
2213 * On success the function returns a positive number. Then, the caller
2214 * is allowed to write up to the returned number of bytes to the memory
2215 * location computed by the data_of() macro.
2216 *
2217 * The function returns 0 to indicate the "end of file" condition,
2218 * and a negative number is returned on error. In such cases the
2219 * structure pointed to by @handle is not updated and should not be used
2220 * any more.
2221 */
2222
2223int snapshot_write_next(struct snapshot_handle *handle)
2224{
2225 static struct chain_allocator ca;
2226 int error = 0;
2227
2228 /* Check if we have already loaded the entire image */
2229 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2230 return 0;
2231
2232 handle->sync_read = 1;
2233
2234 if (!handle->cur) {
2235 if (!buffer)
2236 /* This makes the buffer be freed by swsusp_free() */
2237 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2238
2239 if (!buffer)
2240 return -ENOMEM;
2241
2242 handle->buffer = buffer;
2243 } else if (handle->cur == 1) {
2244 error = load_header(buffer);
2245 if (error)
2246 return error;
2247
2248 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY);
2249 if (error)
2250 return error;
2251
2252 /* Allocate buffer for page keys. */
2253 error = page_key_alloc(nr_copy_pages);
2254 if (error)
2255 return error;
2256
2257 } else if (handle->cur <= nr_meta_pages + 1) {
2258 error = unpack_orig_pfns(buffer, ©_bm);
2259 if (error)
2260 return error;
2261
2262 if (handle->cur == nr_meta_pages + 1) {
2263 error = prepare_image(&orig_bm, ©_bm);
2264 if (error)
2265 return error;
2266
2267 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2268 memory_bm_position_reset(&orig_bm);
2269 restore_pblist = NULL;
2270 handle->buffer = get_buffer(&orig_bm, &ca);
2271 handle->sync_read = 0;
2272 if (IS_ERR(handle->buffer))
2273 return PTR_ERR(handle->buffer);
2274 }
2275 } else {
2276 copy_last_highmem_page();
2277 /* Restore page key for data page (s390 only). */
2278 page_key_write(handle->buffer);
2279 handle->buffer = get_buffer(&orig_bm, &ca);
2280 if (IS_ERR(handle->buffer))
2281 return PTR_ERR(handle->buffer);
2282 if (handle->buffer != buffer)
2283 handle->sync_read = 0;
2284 }
2285 handle->cur++;
2286 return PAGE_SIZE;
2287}
2288
2289/**
2290 * snapshot_write_finalize - must be called after the last call to
2291 * snapshot_write_next() in case the last page in the image happens
2292 * to be a highmem page and its contents should be stored in the
2293 * highmem. Additionally, it releases the memory that will not be
2294 * used any more.
2295 */
2296
2297void snapshot_write_finalize(struct snapshot_handle *handle)
2298{
2299 copy_last_highmem_page();
2300 /* Restore page key for data page (s390 only). */
2301 page_key_write(handle->buffer);
2302 page_key_free();
2303 /* Free only if we have loaded the image entirely */
2304 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2305 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2306 free_highmem_data();
2307 }
2308}
2309
2310int snapshot_image_loaded(struct snapshot_handle *handle)
2311{
2312 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2313 handle->cur <= nr_meta_pages + nr_copy_pages);
2314}
2315
2316#ifdef CONFIG_HIGHMEM
2317/* Assumes that @buf is ready and points to a "safe" page */
2318static inline void
2319swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2320{
2321 void *kaddr1, *kaddr2;
2322
2323 kaddr1 = kmap_atomic(p1);
2324 kaddr2 = kmap_atomic(p2);
2325 copy_page(buf, kaddr1);
2326 copy_page(kaddr1, kaddr2);
2327 copy_page(kaddr2, buf);
2328 kunmap_atomic(kaddr2);
2329 kunmap_atomic(kaddr1);
2330}
2331
2332/**
2333 * restore_highmem - for each highmem page that was allocated before
2334 * the suspend and included in the suspend image, and also has been
2335 * allocated by the "resume" kernel swap its current (ie. "before
2336 * resume") contents with the previous (ie. "before suspend") one.
2337 *
2338 * If the resume eventually fails, we can call this function once
2339 * again and restore the "before resume" highmem state.
2340 */
2341
2342int restore_highmem(void)
2343{
2344 struct highmem_pbe *pbe = highmem_pblist;
2345 void *buf;
2346
2347 if (!pbe)
2348 return 0;
2349
2350 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2351 if (!buf)
2352 return -ENOMEM;
2353
2354 while (pbe) {
2355 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2356 pbe = pbe->next;
2357 }
2358 free_image_page(buf, PG_UNSAFE_CLEAR);
2359 return 0;
2360}
2361#endif /* CONFIG_HIGHMEM */