Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
 
  20#include "ctree.h"
  21#include "volumes.h"
  22#include "disk-io.h"
  23#include "ordered-data.h"
 
 
 
 
 
 
 
  24
  25/*
  26 * This is only the first step towards a full-features scrub. It reads all
  27 * extent and super block and verifies the checksums. In case a bad checksum
  28 * is found or the extent cannot be read, good data will be written back if
  29 * any can be found.
  30 *
  31 * Future enhancements:
  32 *  - To enhance the performance, better read-ahead strategies for the
  33 *    extent-tree can be employed.
  34 *  - In case an unrepairable extent is encountered, track which files are
  35 *    affected and report them
  36 *  - In case of a read error on files with nodatasum, map the file and read
  37 *    the extent to trigger a writeback of the good copy
  38 *  - track and record media errors, throw out bad devices
  39 *  - add a mode to also read unallocated space
  40 *  - make the prefetch cancellable
  41 */
  42
  43struct scrub_bio;
  44struct scrub_page;
  45struct scrub_dev;
  46static void scrub_bio_end_io(struct bio *bio, int err);
  47static void scrub_checksum(struct btrfs_work *work);
  48static int scrub_checksum_data(struct scrub_dev *sdev,
  49			       struct scrub_page *spag, void *buffer);
  50static int scrub_checksum_tree_block(struct scrub_dev *sdev,
  51				     struct scrub_page *spag, u64 logical,
  52				     void *buffer);
  53static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer);
  54static int scrub_fixup_check(struct scrub_bio *sbio, int ix);
  55static void scrub_fixup_end_io(struct bio *bio, int err);
  56static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
  57			  struct page *page);
  58static void scrub_fixup(struct scrub_bio *sbio, int ix);
  59
  60#define SCRUB_PAGES_PER_BIO	16	/* 64k per bio */
  61#define SCRUB_BIOS_PER_DEV	16	/* 1 MB per device in flight */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62
  63struct scrub_page {
 
 
 
  64	u64			flags;  /* extent flags */
  65	u64			generation;
  66	u64			mirror_num;
  67	int			have_csum;
 
 
 
 
 
 
 
  68	u8			csum[BTRFS_CSUM_SIZE];
  69};
  70
  71struct scrub_bio {
  72	int			index;
  73	struct scrub_dev	*sdev;
 
  74	struct bio		*bio;
  75	int			err;
  76	u64			logical;
  77	u64			physical;
  78	struct scrub_page	spag[SCRUB_PAGES_PER_BIO];
  79	u64			count;
 
 
 
 
  80	int			next_free;
  81	struct btrfs_work	work;
  82};
  83
  84struct scrub_dev {
  85	struct scrub_bio	*bios[SCRUB_BIOS_PER_DEV];
  86	struct btrfs_device	*dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87	int			first_free;
  88	int			curr;
  89	atomic_t		in_flight;
 
  90	spinlock_t		list_lock;
  91	wait_queue_head_t	list_wait;
  92	u16			csum_size;
  93	struct list_head	csum_list;
  94	atomic_t		cancel_req;
  95	int			readonly;
 
 
 
 
 
 
 
 
  96	/*
  97	 * statistics
  98	 */
  99	struct btrfs_scrub_progress stat;
 100	spinlock_t		stat_lock;
 101};
 102
 103static void scrub_free_csums(struct scrub_dev *sdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104{
 105	while (!list_empty(&sdev->csum_list)) {
 106		struct btrfs_ordered_sum *sum;
 107		sum = list_first_entry(&sdev->csum_list,
 108				       struct btrfs_ordered_sum, list);
 109		list_del(&sum->list);
 110		kfree(sum);
 
 
 
 
 
 111	}
 112}
 113
 114static void scrub_free_bio(struct bio *bio)
 115{
 116	int i;
 117	struct page *last_page = NULL;
 118
 119	if (!bio)
 120		return;
 
 
 121
 122	for (i = 0; i < bio->bi_vcnt; ++i) {
 123		if (bio->bi_io_vec[i].bv_page == last_page)
 124			continue;
 125		last_page = bio->bi_io_vec[i].bv_page;
 126		__free_page(last_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127	}
 128	bio_put(bio);
 129}
 130
 131static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
 132{
 133	int i;
 134
 135	if (!sdev)
 136		return;
 137
 138	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
 139		struct scrub_bio *sbio = sdev->bios[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 140
 141		if (!sbio)
 142			break;
 143
 144		scrub_free_bio(sbio->bio);
 145		kfree(sbio);
 146	}
 147
 148	scrub_free_csums(sdev);
 149	kfree(sdev);
 150}
 151
 152static noinline_for_stack
 153struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
 154{
 155	struct scrub_dev *sdev;
 156	int		i;
 157	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
 
 
 158
 159	sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
 160	if (!sdev)
 
 
 
 
 
 
 
 
 
 
 
 
 161		goto nomem;
 162	sdev->dev = dev;
 163	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
 
 
 
 164		struct scrub_bio *sbio;
 165
 166		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
 167		if (!sbio)
 168			goto nomem;
 169		sdev->bios[i] = sbio;
 170
 171		sbio->index = i;
 172		sbio->sdev = sdev;
 173		sbio->count = 0;
 174		sbio->work.func = scrub_checksum;
 175
 176		if (i != SCRUB_BIOS_PER_DEV-1)
 177			sdev->bios[i]->next_free = i + 1;
 178		 else
 179			sdev->bios[i]->next_free = -1;
 180	}
 181	sdev->first_free = 0;
 182	sdev->curr = -1;
 183	atomic_set(&sdev->in_flight, 0);
 184	atomic_set(&sdev->cancel_req, 0);
 185	sdev->csum_size = btrfs_super_csum_size(&fs_info->super_copy);
 186	INIT_LIST_HEAD(&sdev->csum_list);
 187
 188	spin_lock_init(&sdev->list_lock);
 189	spin_lock_init(&sdev->stat_lock);
 190	init_waitqueue_head(&sdev->list_wait);
 191	return sdev;
 
 
 
 
 
 
 
 
 
 
 
 192
 193nomem:
 194	scrub_free_dev(sdev);
 195	return ERR_PTR(-ENOMEM);
 196}
 197
 198/*
 199 * scrub_recheck_error gets called when either verification of the page
 200 * failed or the bio failed to read, e.g. with EIO. In the latter case,
 201 * recheck_error gets called for every page in the bio, even though only
 202 * one may be bad
 203 */
 204static void scrub_recheck_error(struct scrub_bio *sbio, int ix)
 205{
 206	if (sbio->err) {
 207		if (scrub_fixup_io(READ, sbio->sdev->dev->bdev,
 208				   (sbio->physical + ix * PAGE_SIZE) >> 9,
 209				   sbio->bio->bi_io_vec[ix].bv_page) == 0) {
 210			if (scrub_fixup_check(sbio, ix) == 0)
 211				return;
 212		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213	}
 
 214
 215	scrub_fixup(sbio, ix);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 216}
 217
 218static int scrub_fixup_check(struct scrub_bio *sbio, int ix)
 219{
 220	int ret = 1;
 221	struct page *page;
 222	void *buffer;
 223	u64 flags = sbio->spag[ix].flags;
 
 
 
 
 
 
 
 
 
 
 
 224
 225	page = sbio->bio->bi_io_vec[ix].bv_page;
 226	buffer = kmap_atomic(page, KM_USER0);
 227	if (flags & BTRFS_EXTENT_FLAG_DATA) {
 228		ret = scrub_checksum_data(sbio->sdev,
 229					  sbio->spag + ix, buffer);
 230	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 231		ret = scrub_checksum_tree_block(sbio->sdev,
 232						sbio->spag + ix,
 233						sbio->logical + ix * PAGE_SIZE,
 234						buffer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235	} else {
 236		WARN_ON(1);
 
 
 
 
 
 237	}
 238	kunmap_atomic(buffer, KM_USER0);
 239
 240	return ret;
 
 
 
 241}
 242
 243static void scrub_fixup_end_io(struct bio *bio, int err)
 244{
 245	complete((struct completion *)bio->bi_private);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246}
 247
 248static void scrub_fixup(struct scrub_bio *sbio, int ix)
 249{
 250	struct scrub_dev *sdev = sbio->sdev;
 251	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
 252	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
 253	struct btrfs_multi_bio *multi = NULL;
 254	u64 logical = sbio->logical + ix * PAGE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 255	u64 length;
 256	int i;
 
 
 
 
 
 
 
 257	int ret;
 258	DECLARE_COMPLETION_ONSTACK(complete);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 259
 260	if ((sbio->spag[ix].flags & BTRFS_EXTENT_FLAG_DATA) &&
 261	    (sbio->spag[ix].have_csum == 0)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262		/*
 263		 * nodatasum, don't try to fix anything
 264		 * FIXME: we can do better, open the inode and trigger a
 265		 * writeback
 
 
 
 266		 */
 267		goto uncorrectable;
 
 
 
 
 
 
 268	}
 269
 270	length = PAGE_SIZE;
 271	ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length,
 272			      &multi, 0);
 273	if (ret || !multi || length < PAGE_SIZE) {
 274		printk(KERN_ERR
 275		       "scrub_fixup: btrfs_map_block failed us for %llu\n",
 276		       (unsigned long long)logical);
 277		WARN_ON(1);
 278		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279	}
 280
 281	if (multi->num_stripes == 1)
 282		/* there aren't any replicas */
 283		goto uncorrectable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284
 285	/*
 286	 * first find a good copy
 
 
 
 
 
 
 
 
 
 
 
 
 287	 */
 288	for (i = 0; i < multi->num_stripes; ++i) {
 289		if (i == sbio->spag[ix].mirror_num)
 
 
 
 
 
 290			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291
 292		if (scrub_fixup_io(READ, multi->stripes[i].dev->bdev,
 293				   multi->stripes[i].physical >> 9,
 294				   sbio->bio->bi_io_vec[ix].bv_page)) {
 295			/* I/O-error, this is not a good copy */
 
 
 
 
 
 296			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297		}
 298
 299		if (scrub_fixup_check(sbio, ix) == 0)
 300			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 301	}
 302	if (i == multi->num_stripes)
 303		goto uncorrectable;
 304
 305	if (!sdev->readonly) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306		/*
 307		 * bi_io_vec[ix].bv_page now contains good data, write it back
 
 308		 */
 309		if (scrub_fixup_io(WRITE, sdev->dev->bdev,
 310				   (sbio->physical + ix * PAGE_SIZE) >> 9,
 311				   sbio->bio->bi_io_vec[ix].bv_page)) {
 312			/* I/O-error, writeback failed, give up */
 313			goto uncorrectable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314		}
 
 
 
 
 315	}
 316
 317	kfree(multi);
 318	spin_lock(&sdev->stat_lock);
 319	++sdev->stat.corrected_errors;
 320	spin_unlock(&sdev->stat_lock);
 321
 322	if (printk_ratelimit())
 323		printk(KERN_ERR "btrfs: fixed up at %llu\n",
 324		       (unsigned long long)logical);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325	return;
 
 
 
 
 
 
 
 
 
 
 
 
 326
 327uncorrectable:
 328	kfree(multi);
 329	spin_lock(&sdev->stat_lock);
 330	++sdev->stat.uncorrectable_errors;
 331	spin_unlock(&sdev->stat_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 332
 333	if (printk_ratelimit())
 334		printk(KERN_ERR "btrfs: unable to fixup at %llu\n",
 335			 (unsigned long long)logical);
 
 
 
 336}
 337
 338static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
 339			 struct page *page)
 
 340{
 341	struct bio *bio = NULL;
 342	int ret;
 343	DECLARE_COMPLETION_ONSTACK(complete);
 344
 345	bio = bio_alloc(GFP_NOFS, 1);
 346	bio->bi_bdev = bdev;
 347	bio->bi_sector = sector;
 348	bio_add_page(bio, page, PAGE_SIZE, 0);
 349	bio->bi_end_io = scrub_fixup_end_io;
 350	bio->bi_private = &complete;
 351	submit_bio(rw, bio);
 352
 353	/* this will also unplug the queue */
 354	wait_for_completion(&complete);
 
 
 
 
 
 355
 356	ret = !test_bit(BIO_UPTODATE, &bio->bi_flags);
 357	bio_put(bio);
 358	return ret;
 359}
 360
 361static void scrub_bio_end_io(struct bio *bio, int err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 362{
 363	struct scrub_bio *sbio = bio->bi_private;
 364	struct scrub_dev *sdev = sbio->sdev;
 365	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
 366
 367	sbio->err = err;
 368	sbio->bio = bio;
 369
 370	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
 
 371}
 372
 373static void scrub_checksum(struct btrfs_work *work)
 374{
 375	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
 376	struct scrub_dev *sdev = sbio->sdev;
 377	struct page *page;
 378	void *buffer;
 379	int i;
 380	u64 flags;
 381	u64 logical;
 382	int ret;
 383
 
 384	if (sbio->err) {
 385		for (i = 0; i < sbio->count; ++i)
 386			scrub_recheck_error(sbio, i);
 387
 388		sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
 389		sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
 390		sbio->bio->bi_phys_segments = 0;
 391		sbio->bio->bi_idx = 0;
 392
 393		for (i = 0; i < sbio->count; i++) {
 394			struct bio_vec *bi;
 395			bi = &sbio->bio->bi_io_vec[i];
 396			bi->bv_offset = 0;
 397			bi->bv_len = PAGE_SIZE;
 398		}
 399
 400		spin_lock(&sdev->stat_lock);
 401		++sdev->stat.read_errors;
 402		spin_unlock(&sdev->stat_lock);
 403		goto out;
 404	}
 405	for (i = 0; i < sbio->count; ++i) {
 406		page = sbio->bio->bi_io_vec[i].bv_page;
 407		buffer = kmap_atomic(page, KM_USER0);
 408		flags = sbio->spag[i].flags;
 409		logical = sbio->logical + i * PAGE_SIZE;
 410		ret = 0;
 411		if (flags & BTRFS_EXTENT_FLAG_DATA) {
 412			ret = scrub_checksum_data(sdev, sbio->spag + i, buffer);
 413		} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 414			ret = scrub_checksum_tree_block(sdev, sbio->spag + i,
 415							logical, buffer);
 416		} else if (flags & BTRFS_EXTENT_FLAG_SUPER) {
 417			BUG_ON(i);
 418			(void)scrub_checksum_super(sbio, buffer);
 419		} else {
 420			WARN_ON(1);
 421		}
 422		kunmap_atomic(buffer, KM_USER0);
 423		if (ret)
 424			scrub_recheck_error(sbio, i);
 425	}
 426
 427out:
 428	scrub_free_bio(sbio->bio);
 429	sbio->bio = NULL;
 430	spin_lock(&sdev->list_lock);
 431	sbio->next_free = sdev->first_free;
 432	sdev->first_free = sbio->index;
 433	spin_unlock(&sdev->list_lock);
 434	atomic_dec(&sdev->in_flight);
 435	wake_up(&sdev->list_wait);
 436}
 437
 438static int scrub_checksum_data(struct scrub_dev *sdev,
 439			       struct scrub_page *spag, void *buffer)
 440{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441	u8 csum[BTRFS_CSUM_SIZE];
 
 
 
 442	u32 crc = ~(u32)0;
 443	int fail = 0;
 444	struct btrfs_root *root = sdev->dev->dev_root;
 
 445
 446	if (!spag->have_csum)
 
 447		return 0;
 448
 449	crc = btrfs_csum_data(root, buffer, crc, PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450	btrfs_csum_final(crc, csum);
 451	if (memcmp(csum, spag->csum, sdev->csum_size))
 452		fail = 1;
 453
 454	spin_lock(&sdev->stat_lock);
 455	++sdev->stat.data_extents_scrubbed;
 456	sdev->stat.data_bytes_scrubbed += PAGE_SIZE;
 457	if (fail)
 458		++sdev->stat.csum_errors;
 459	spin_unlock(&sdev->stat_lock);
 460
 461	return fail;
 462}
 463
 464static int scrub_checksum_tree_block(struct scrub_dev *sdev,
 465				     struct scrub_page *spag, u64 logical,
 466				     void *buffer)
 467{
 
 468	struct btrfs_header *h;
 469	struct btrfs_root *root = sdev->dev->dev_root;
 470	struct btrfs_fs_info *fs_info = root->fs_info;
 471	u8 csum[BTRFS_CSUM_SIZE];
 
 
 
 
 
 472	u32 crc = ~(u32)0;
 473	int fail = 0;
 474	int crc_fail = 0;
 
 
 
 
 
 
 
 
 475
 476	/*
 477	 * we don't use the getter functions here, as we
 478	 * a) don't have an extent buffer and
 479	 * b) the page is already kmapped
 480	 */
 481	h = (struct btrfs_header *)buffer;
 482
 483	if (logical != le64_to_cpu(h->bytenr))
 484		++fail;
 485
 486	if (spag->generation != le64_to_cpu(h->generation))
 487		++fail;
 488
 489	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
 490		++fail;
 491
 492	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
 493		   BTRFS_UUID_SIZE))
 494		++fail;
 495
 496	crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
 497			      PAGE_SIZE - BTRFS_CSUM_SIZE);
 498	btrfs_csum_final(crc, csum);
 499	if (memcmp(csum, h->csum, sdev->csum_size))
 500		++crc_fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 501
 502	spin_lock(&sdev->stat_lock);
 503	++sdev->stat.tree_extents_scrubbed;
 504	sdev->stat.tree_bytes_scrubbed += PAGE_SIZE;
 505	if (crc_fail)
 506		++sdev->stat.csum_errors;
 507	if (fail)
 508		++sdev->stat.verify_errors;
 509	spin_unlock(&sdev->stat_lock);
 510
 511	return fail || crc_fail;
 512}
 513
 514static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer)
 515{
 516	struct btrfs_super_block *s;
 517	u64 logical;
 518	struct scrub_dev *sdev = sbio->sdev;
 519	struct btrfs_root *root = sdev->dev->dev_root;
 520	struct btrfs_fs_info *fs_info = root->fs_info;
 521	u8 csum[BTRFS_CSUM_SIZE];
 
 
 
 
 
 522	u32 crc = ~(u32)0;
 523	int fail = 0;
 
 
 
 
 
 
 
 
 
 524
 525	s = (struct btrfs_super_block *)buffer;
 526	logical = sbio->logical;
 527
 528	if (logical != le64_to_cpu(s->bytenr))
 529		++fail;
 530
 531	if (sbio->spag[0].generation != le64_to_cpu(s->generation))
 532		++fail;
 533
 534	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
 535		++fail;
 536
 537	crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
 538			      PAGE_SIZE - BTRFS_CSUM_SIZE);
 539	btrfs_csum_final(crc, csum);
 540	if (memcmp(csum, s->csum, sbio->sdev->csum_size))
 541		++fail;
 
 542
 543	if (fail) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544		/*
 545		 * if we find an error in a super block, we just report it.
 546		 * They will get written with the next transaction commit
 547		 * anyway
 548		 */
 549		spin_lock(&sdev->stat_lock);
 550		++sdev->stat.super_errors;
 551		spin_unlock(&sdev->stat_lock);
 
 
 
 
 
 
 552	}
 553
 554	return fail;
 555}
 556
 557static int scrub_submit(struct scrub_dev *sdev)
 558{
 559	struct scrub_bio *sbio;
 560	struct bio *bio;
 561	int i;
 562
 563	if (sdev->curr == -1)
 564		return 0;
 565
 566	sbio = sdev->bios[sdev->curr];
 567
 568	bio = bio_alloc(GFP_NOFS, sbio->count);
 569	if (!bio)
 570		goto nomem;
 571
 572	bio->bi_private = sbio;
 573	bio->bi_end_io = scrub_bio_end_io;
 574	bio->bi_bdev = sdev->dev->bdev;
 575	bio->bi_sector = sbio->physical >> 9;
 576
 577	for (i = 0; i < sbio->count; ++i) {
 578		struct page *page;
 579		int ret;
 
 
 580
 581		page = alloc_page(GFP_NOFS);
 582		if (!page)
 583			goto nomem;
 
 584
 585		ret = bio_add_page(bio, page, PAGE_SIZE, 0);
 586		if (!ret) {
 587			__free_page(page);
 588			goto nomem;
 589		}
 
 590	}
 
 591
 592	sbio->err = 0;
 593	sdev->curr = -1;
 594	atomic_inc(&sdev->in_flight);
 595
 596	submit_bio(READ, bio);
 597
 598	return 0;
 
 599
 600nomem:
 601	scrub_free_bio(bio);
 
 602
 603	return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 604}
 605
 606static int scrub_page(struct scrub_dev *sdev, u64 logical, u64 len,
 607		      u64 physical, u64 flags, u64 gen, u64 mirror_num,
 608		      u8 *csum, int force)
 609{
 
 610	struct scrub_bio *sbio;
 
 611
 612again:
 613	/*
 614	 * grab a fresh bio or wait for one to become available
 615	 */
 616	while (sdev->curr == -1) {
 617		spin_lock(&sdev->list_lock);
 618		sdev->curr = sdev->first_free;
 619		if (sdev->curr != -1) {
 620			sdev->first_free = sdev->bios[sdev->curr]->next_free;
 621			sdev->bios[sdev->curr]->next_free = -1;
 622			sdev->bios[sdev->curr]->count = 0;
 623			spin_unlock(&sdev->list_lock);
 624		} else {
 625			spin_unlock(&sdev->list_lock);
 626			wait_event(sdev->list_wait, sdev->first_free != -1);
 627		}
 628	}
 629	sbio = sdev->bios[sdev->curr];
 630	if (sbio->count == 0) {
 631		sbio->physical = physical;
 632		sbio->logical = logical;
 633	} else if (sbio->physical + sbio->count * PAGE_SIZE != physical ||
 634		   sbio->logical + sbio->count * PAGE_SIZE != logical) {
 635		int ret;
 
 
 
 
 
 
 
 636
 637		ret = scrub_submit(sdev);
 638		if (ret)
 639			return ret;
 
 
 
 
 
 
 
 
 640		goto again;
 641	}
 642	sbio->spag[sbio->count].flags = flags;
 643	sbio->spag[sbio->count].generation = gen;
 644	sbio->spag[sbio->count].have_csum = 0;
 645	sbio->spag[sbio->count].mirror_num = mirror_num;
 646	if (csum) {
 647		sbio->spag[sbio->count].have_csum = 1;
 648		memcpy(sbio->spag[sbio->count].csum, csum, sdev->csum_size);
 
 
 
 
 649	}
 650	++sbio->count;
 651	if (sbio->count == SCRUB_PAGES_PER_BIO || force) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 652		int ret;
 653
 654		ret = scrub_submit(sdev);
 655		if (ret)
 
 656			return ret;
 
 657	}
 658
 
 
 
 
 
 659	return 0;
 660}
 661
 662static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 663			   u8 *csum)
 664{
 665	struct btrfs_ordered_sum *sum = NULL;
 666	int ret = 0;
 667	unsigned long i;
 668	unsigned long num_sectors;
 669	u32 sectorsize = sdev->dev->dev_root->sectorsize;
 670
 671	while (!list_empty(&sdev->csum_list)) {
 672		sum = list_first_entry(&sdev->csum_list,
 673				       struct btrfs_ordered_sum, list);
 674		if (sum->bytenr > logical)
 675			return 0;
 676		if (sum->bytenr + sum->len > logical)
 677			break;
 678
 679		++sdev->stat.csum_discards;
 680		list_del(&sum->list);
 681		kfree(sum);
 682		sum = NULL;
 683	}
 684	if (!sum)
 685		return 0;
 686
 687	num_sectors = sum->len / sectorsize;
 688	for (i = 0; i < num_sectors; ++i) {
 689		if (sum->sums[i].bytenr == logical) {
 690			memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
 691			ret = 1;
 692			break;
 693		}
 694	}
 695	if (ret && i == num_sectors - 1) {
 696		list_del(&sum->list);
 697		kfree(sum);
 698	}
 699	return ret;
 700}
 701
 702/* scrub extent tries to collect up to 64 kB for each bio */
 703static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
 704			u64 physical, u64 flags, u64 gen, u64 mirror_num)
 
 705{
 706	int ret;
 707	u8 csum[BTRFS_CSUM_SIZE];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 708
 709	while (len) {
 710		u64 l = min_t(u64, len, PAGE_SIZE);
 711		int have_csum = 0;
 712
 713		if (flags & BTRFS_EXTENT_FLAG_DATA) {
 714			/* push csums to sbio */
 715			have_csum = scrub_find_csum(sdev, logical, l, csum);
 716			if (have_csum == 0)
 717				++sdev->stat.no_csum;
 
 
 
 
 
 
 718		}
 719		ret = scrub_page(sdev, logical, l, physical, flags, gen,
 720				 mirror_num, have_csum ? csum : NULL, 0);
 
 
 721		if (ret)
 722			return ret;
 723		len -= l;
 724		logical += l;
 725		physical += l;
 
 726	}
 727	return 0;
 728}
 729
 730static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
 731	struct map_lookup *map, int num, u64 base, u64 length)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732{
 733	struct btrfs_path *path;
 734	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
 735	struct btrfs_root *root = fs_info->extent_root;
 736	struct btrfs_root *csum_root = fs_info->csum_root;
 737	struct btrfs_extent_item *extent;
 738	struct blk_plug plug;
 739	u64 flags;
 740	int ret;
 741	int slot;
 742	int i;
 743	u64 nstripes;
 744	int start_stripe;
 745	struct extent_buffer *l;
 746	struct btrfs_key key;
 747	u64 physical;
 748	u64 logical;
 
 
 749	u64 generation;
 750	u64 mirror_num;
 751
 
 
 
 752	u64 increment = map->stripe_len;
 753	u64 offset;
 
 
 
 
 
 
 754
 755	nstripes = length;
 
 756	offset = 0;
 757	do_div(nstripes, map->stripe_len);
 758	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
 759		offset = map->stripe_len * num;
 760		increment = map->stripe_len * map->num_stripes;
 761		mirror_num = 0;
 762	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
 763		int factor = map->num_stripes / map->sub_stripes;
 764		offset = map->stripe_len * (num / map->sub_stripes);
 765		increment = map->stripe_len * factor;
 766		mirror_num = num % map->sub_stripes;
 767	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
 768		increment = map->stripe_len;
 769		mirror_num = num % map->num_stripes;
 770	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
 771		increment = map->stripe_len;
 772		mirror_num = num % map->num_stripes;
 
 
 
 
 
 773	} else {
 774		increment = map->stripe_len;
 775		mirror_num = 0;
 776	}
 777
 778	path = btrfs_alloc_path();
 779	if (!path)
 780		return -ENOMEM;
 781
 782	path->reada = 2;
 
 
 
 
 783	path->search_commit_root = 1;
 784	path->skip_locking = 1;
 785
 786	/*
 787	 * find all extents for each stripe and just read them to get
 788	 * them into the page cache
 789	 * FIXME: we can do better. build a more intelligent prefetching
 790	 */
 791	logical = base + offset;
 792	physical = map->stripes[num].physical;
 793	ret = 0;
 794	for (i = 0; i < nstripes; ++i) {
 795		key.objectid = logical;
 796		key.type = BTRFS_EXTENT_ITEM_KEY;
 797		key.offset = (u64)0;
 798
 799		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 800		if (ret < 0)
 801			goto out_noplug;
 802
 803		/*
 804		 * we might miss half an extent here, but that doesn't matter,
 805		 * as it's only the prefetch
 806		 */
 807		while (1) {
 808			l = path->nodes[0];
 809			slot = path->slots[0];
 810			if (slot >= btrfs_header_nritems(l)) {
 811				ret = btrfs_next_leaf(root, path);
 812				if (ret == 0)
 813					continue;
 814				if (ret < 0)
 815					goto out_noplug;
 816
 817				break;
 818			}
 819			btrfs_item_key_to_cpu(l, &key, slot);
 820
 821			if (key.objectid >= logical + map->stripe_len)
 822				break;
 823
 824			path->slots[0]++;
 825		}
 826		btrfs_release_path(path);
 827		logical += increment;
 828		physical += map->stripe_len;
 829		cond_resched();
 830	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831
 832	/*
 833	 * collect all data csums for the stripe to avoid seeking during
 834	 * the scrub. This might currently (crc32) end up to be about 1MB
 835	 */
 836	start_stripe = 0;
 837	blk_start_plug(&plug);
 838again:
 839	logical = base + offset + start_stripe * increment;
 840	for (i = start_stripe; i < nstripes; ++i) {
 841		ret = btrfs_lookup_csums_range(csum_root, logical,
 842					       logical + map->stripe_len - 1,
 843					       &sdev->csum_list, 1);
 844		if (ret)
 845			goto out;
 846
 847		logical += increment;
 848		cond_resched();
 849	}
 850	/*
 851	 * now find all extents for each stripe and scrub them
 852	 */
 853	logical = base + offset + start_stripe * increment;
 854	physical = map->stripes[num].physical + start_stripe * map->stripe_len;
 855	ret = 0;
 856	for (i = start_stripe; i < nstripes; ++i) {
 
 
 
 
 
 
 
 
 
 857		/*
 858		 * canceled?
 859		 */
 860		if (atomic_read(&fs_info->scrub_cancel_req) ||
 861		    atomic_read(&sdev->cancel_req)) {
 862			ret = -ECANCELED;
 863			goto out;
 864		}
 865		/*
 866		 * check to see if we have to pause
 867		 */
 868		if (atomic_read(&fs_info->scrub_pause_req)) {
 869			/* push queued extents */
 870			scrub_submit(sdev);
 871			wait_event(sdev->list_wait,
 872				   atomic_read(&sdev->in_flight) == 0);
 873			atomic_inc(&fs_info->scrubs_paused);
 874			wake_up(&fs_info->scrub_pause_wait);
 875			mutex_lock(&fs_info->scrub_lock);
 876			while (atomic_read(&fs_info->scrub_pause_req)) {
 877				mutex_unlock(&fs_info->scrub_lock);
 878				wait_event(fs_info->scrub_pause_wait,
 879				   atomic_read(&fs_info->scrub_pause_req) == 0);
 880				mutex_lock(&fs_info->scrub_lock);
 881			}
 882			atomic_dec(&fs_info->scrubs_paused);
 883			mutex_unlock(&fs_info->scrub_lock);
 884			wake_up(&fs_info->scrub_pause_wait);
 885			scrub_free_csums(sdev);
 886			start_stripe = i;
 887			goto again;
 888		}
 889
 
 
 
 
 890		key.objectid = logical;
 891		key.type = BTRFS_EXTENT_ITEM_KEY;
 892		key.offset = (u64)0;
 893
 894		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 895		if (ret < 0)
 896			goto out;
 
 897		if (ret > 0) {
 898			ret = btrfs_previous_item(root, path, 0,
 899						  BTRFS_EXTENT_ITEM_KEY);
 900			if (ret < 0)
 901				goto out;
 902			if (ret > 0) {
 903				/* there's no smaller item, so stick with the
 904				 * larger one */
 905				btrfs_release_path(path);
 906				ret = btrfs_search_slot(NULL, root, &key,
 907							path, 0, 0);
 908				if (ret < 0)
 909					goto out;
 910			}
 911		}
 912
 
 913		while (1) {
 
 
 914			l = path->nodes[0];
 915			slot = path->slots[0];
 916			if (slot >= btrfs_header_nritems(l)) {
 917				ret = btrfs_next_leaf(root, path);
 918				if (ret == 0)
 919					continue;
 920				if (ret < 0)
 921					goto out;
 922
 
 923				break;
 924			}
 925			btrfs_item_key_to_cpu(l, &key, slot);
 926
 927			if (key.objectid + key.offset <= logical)
 928				goto next;
 
 
 929
 930			if (key.objectid >= logical + map->stripe_len)
 931				break;
 932
 933			if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
 
 934				goto next;
 935
 
 
 
 
 
 
 
 936			extent = btrfs_item_ptr(l, slot,
 937						struct btrfs_extent_item);
 938			flags = btrfs_extent_flags(l, extent);
 939			generation = btrfs_extent_generation(l, extent);
 940
 941			if (key.objectid < logical &&
 942			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
 943				printk(KERN_ERR
 944				       "btrfs scrub: tree block %llu spanning "
 945				       "stripes, ignored. logical=%llu\n",
 946				       (unsigned long long)key.objectid,
 947				       (unsigned long long)logical);
 948				goto next;
 949			}
 950
 
 
 
 
 951			/*
 952			 * trim extent to this stripe
 953			 */
 954			if (key.objectid < logical) {
 955				key.offset -= logical - key.objectid;
 956				key.objectid = logical;
 957			}
 958			if (key.objectid + key.offset >
 959			    logical + map->stripe_len) {
 960				key.offset = logical + map->stripe_len -
 961					     key.objectid;
 962			}
 963
 964			ret = scrub_extent(sdev, key.objectid, key.offset,
 965					   key.objectid - logical + physical,
 966					   flags, generation, mirror_num);
 
 
 
 
 
 
 
 
 
 967			if (ret)
 968				goto out;
 969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970next:
 971			path->slots[0]++;
 972		}
 973		btrfs_release_path(path);
 
 974		logical += increment;
 975		physical += map->stripe_len;
 976		spin_lock(&sdev->stat_lock);
 977		sdev->stat.last_physical = physical;
 978		spin_unlock(&sdev->stat_lock);
 
 
 
 
 
 
 979	}
 
 980	/* push queued extents */
 981	scrub_submit(sdev);
 
 
 
 982
 983out:
 984	blk_finish_plug(&plug);
 985out_noplug:
 986	btrfs_free_path(path);
 987	return ret < 0 ? ret : 0;
 988}
 989
 990static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
 991	u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length)
 
 
 
 992{
 993	struct btrfs_mapping_tree *map_tree =
 994		&sdev->dev->dev_root->fs_info->mapping_tree;
 995	struct map_lookup *map;
 996	struct extent_map *em;
 997	int i;
 998	int ret = -EINVAL;
 999
1000	read_lock(&map_tree->map_tree.lock);
1001	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
1002	read_unlock(&map_tree->map_tree.lock);
1003
1004	if (!em)
1005		return -EINVAL;
1006
1007	map = (struct map_lookup *)em->bdev;
1008	if (em->start != chunk_offset)
1009		goto out;
1010
1011	if (em->len < length)
1012		goto out;
1013
1014	for (i = 0; i < map->num_stripes; ++i) {
1015		if (map->stripes[i].dev == sdev->dev) {
1016			ret = scrub_stripe(sdev, map, i, chunk_offset, length);
 
 
 
1017			if (ret)
1018				goto out;
1019		}
1020	}
1021out:
1022	free_extent_map(em);
1023
1024	return ret;
1025}
1026
1027static noinline_for_stack
1028int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
 
 
1029{
1030	struct btrfs_dev_extent *dev_extent = NULL;
1031	struct btrfs_path *path;
1032	struct btrfs_root *root = sdev->dev->dev_root;
1033	struct btrfs_fs_info *fs_info = root->fs_info;
1034	u64 length;
1035	u64 chunk_tree;
1036	u64 chunk_objectid;
1037	u64 chunk_offset;
1038	int ret;
1039	int slot;
1040	struct extent_buffer *l;
1041	struct btrfs_key key;
1042	struct btrfs_key found_key;
1043	struct btrfs_block_group_cache *cache;
 
1044
1045	path = btrfs_alloc_path();
1046	if (!path)
1047		return -ENOMEM;
1048
1049	path->reada = 2;
1050	path->search_commit_root = 1;
1051	path->skip_locking = 1;
1052
1053	key.objectid = sdev->dev->devid;
1054	key.offset = 0ull;
1055	key.type = BTRFS_DEV_EXTENT_KEY;
1056
1057
1058	while (1) {
1059		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1060		if (ret < 0)
1061			break;
1062		if (ret > 0) {
1063			if (path->slots[0] >=
1064			    btrfs_header_nritems(path->nodes[0])) {
1065				ret = btrfs_next_leaf(root, path);
1066				if (ret)
1067					break;
1068			}
1069		}
1070
1071		l = path->nodes[0];
1072		slot = path->slots[0];
1073
1074		btrfs_item_key_to_cpu(l, &found_key, slot);
1075
1076		if (found_key.objectid != sdev->dev->devid)
1077			break;
1078
1079		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
1080			break;
1081
1082		if (found_key.offset >= end)
1083			break;
1084
1085		if (found_key.offset < key.offset)
1086			break;
1087
1088		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1089		length = btrfs_dev_extent_length(l, dev_extent);
1090
1091		if (found_key.offset + length <= start) {
1092			key.offset = found_key.offset + length;
1093			btrfs_release_path(path);
1094			continue;
1095		}
1096
1097		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1098		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1099		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1100
1101		/*
1102		 * get a reference on the corresponding block group to prevent
1103		 * the chunk from going away while we scrub it
1104		 */
1105		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
1106		if (!cache) {
1107			ret = -ENOENT;
1108			break;
1109		}
1110		ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
1111				  chunk_offset, length);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112		btrfs_put_block_group(cache);
1113		if (ret)
1114			break;
 
 
 
 
 
 
 
 
 
 
 
 
1115
1116		key.offset = found_key.offset + length;
1117		btrfs_release_path(path);
1118	}
1119
1120	btrfs_free_path(path);
1121
1122	/*
1123	 * ret can still be 1 from search_slot or next_leaf,
1124	 * that's not an error
1125	 */
1126	return ret < 0 ? ret : 0;
1127}
1128
1129static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
 
1130{
1131	int	i;
1132	u64	bytenr;
1133	u64	gen;
1134	int	ret;
1135	struct btrfs_device *device = sdev->dev;
1136	struct btrfs_root *root = device->dev_root;
 
 
1137
1138	gen = root->fs_info->last_trans_committed;
1139
1140	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1141		bytenr = btrfs_sb_offset(i);
1142		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
1143			break;
1144
1145		ret = scrub_page(sdev, bytenr, PAGE_SIZE, bytenr,
1146				 BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
 
1147		if (ret)
1148			return ret;
1149	}
1150	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
1151
1152	return 0;
1153}
1154
1155/*
1156 * get a reference count on fs_info->scrub_workers. start worker if necessary
1157 */
1158static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
 
1159{
1160	struct btrfs_fs_info *fs_info = root->fs_info;
 
 
1161
1162	mutex_lock(&fs_info->scrub_lock);
1163	if (fs_info->scrub_workers_refcnt == 0) {
1164		btrfs_init_workers(&fs_info->scrub_workers, "scrub",
1165			   fs_info->thread_pool_size, &fs_info->generic_worker);
1166		fs_info->scrub_workers.idle_thresh = 4;
1167		btrfs_start_workers(&fs_info->scrub_workers, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1168	}
1169	++fs_info->scrub_workers_refcnt;
1170	mutex_unlock(&fs_info->scrub_lock);
1171
1172	return 0;
1173}
1174
1175static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
1176{
1177	struct btrfs_fs_info *fs_info = root->fs_info;
1178
1179	mutex_lock(&fs_info->scrub_lock);
1180	if (--fs_info->scrub_workers_refcnt == 0)
1181		btrfs_stop_workers(&fs_info->scrub_workers);
1182	WARN_ON(fs_info->scrub_workers_refcnt < 0);
1183	mutex_unlock(&fs_info->scrub_lock);
1184}
1185
1186
1187int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
1188		    struct btrfs_scrub_progress *progress, int readonly)
1189{
1190	struct scrub_dev *sdev;
1191	struct btrfs_fs_info *fs_info = root->fs_info;
1192	int ret;
1193	struct btrfs_device *dev;
1194
1195	if (btrfs_fs_closing(root->fs_info))
1196		return -EINVAL;
1197
1198	/*
1199	 * check some assumptions
1200	 */
1201	if (root->sectorsize != PAGE_SIZE ||
1202	    root->sectorsize != root->leafsize ||
1203	    root->sectorsize != root->nodesize) {
1204		printk(KERN_ERR "btrfs_scrub: size assumptions fail\n");
 
1205		return -EINVAL;
1206	}
1207
1208	ret = scrub_workers_get(root);
1209	if (ret)
1210		return ret;
 
 
 
 
 
 
 
 
1211
1212	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1213	dev = btrfs_find_device(root, devid, NULL, NULL);
1214	if (!dev || dev->missing) {
1215		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1216		scrub_workers_put(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1217		return -ENODEV;
1218	}
1219	mutex_lock(&fs_info->scrub_lock);
1220
1221	if (!dev->in_fs_metadata) {
 
1222		mutex_unlock(&fs_info->scrub_lock);
1223		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1224		scrub_workers_put(root);
1225		return -ENODEV;
1226	}
1227
1228	if (dev->scrub_device) {
 
 
 
 
1229		mutex_unlock(&fs_info->scrub_lock);
1230		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1231		scrub_workers_put(root);
1232		return -EINPROGRESS;
1233	}
1234	sdev = scrub_setup_dev(dev);
1235	if (IS_ERR(sdev)) {
 
 
1236		mutex_unlock(&fs_info->scrub_lock);
1237		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1238		scrub_workers_put(root);
1239		return PTR_ERR(sdev);
1240	}
1241	sdev->readonly = readonly;
1242	dev->scrub_device = sdev;
1243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244	atomic_inc(&fs_info->scrubs_running);
1245	mutex_unlock(&fs_info->scrub_lock);
1246	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1247
1248	down_read(&fs_info->scrub_super_lock);
1249	ret = scrub_supers(sdev);
1250	up_read(&fs_info->scrub_super_lock);
 
 
 
 
 
 
1251
1252	if (!ret)
1253		ret = scrub_enumerate_chunks(sdev, start, end);
1254
1255	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
1256
 
1257	atomic_dec(&fs_info->scrubs_running);
1258	wake_up(&fs_info->scrub_pause_wait);
1259
 
 
1260	if (progress)
1261		memcpy(progress, &sdev->stat, sizeof(*progress));
1262
1263	mutex_lock(&fs_info->scrub_lock);
1264	dev->scrub_device = NULL;
 
1265	mutex_unlock(&fs_info->scrub_lock);
1266
1267	scrub_free_dev(sdev);
1268	scrub_workers_put(root);
1269
1270	return ret;
1271}
1272
1273int btrfs_scrub_pause(struct btrfs_root *root)
1274{
1275	struct btrfs_fs_info *fs_info = root->fs_info;
1276
1277	mutex_lock(&fs_info->scrub_lock);
1278	atomic_inc(&fs_info->scrub_pause_req);
1279	while (atomic_read(&fs_info->scrubs_paused) !=
1280	       atomic_read(&fs_info->scrubs_running)) {
1281		mutex_unlock(&fs_info->scrub_lock);
1282		wait_event(fs_info->scrub_pause_wait,
1283			   atomic_read(&fs_info->scrubs_paused) ==
1284			   atomic_read(&fs_info->scrubs_running));
1285		mutex_lock(&fs_info->scrub_lock);
1286	}
1287	mutex_unlock(&fs_info->scrub_lock);
1288
1289	return 0;
1290}
1291
1292int btrfs_scrub_continue(struct btrfs_root *root)
1293{
1294	struct btrfs_fs_info *fs_info = root->fs_info;
1295
1296	atomic_dec(&fs_info->scrub_pause_req);
1297	wake_up(&fs_info->scrub_pause_wait);
1298	return 0;
1299}
1300
1301int btrfs_scrub_pause_super(struct btrfs_root *root)
1302{
1303	down_write(&root->fs_info->scrub_super_lock);
1304	return 0;
1305}
1306
1307int btrfs_scrub_continue_super(struct btrfs_root *root)
1308{
1309	up_write(&root->fs_info->scrub_super_lock);
1310	return 0;
1311}
1312
1313int btrfs_scrub_cancel(struct btrfs_root *root)
1314{
1315	struct btrfs_fs_info *fs_info = root->fs_info;
1316
1317	mutex_lock(&fs_info->scrub_lock);
1318	if (!atomic_read(&fs_info->scrubs_running)) {
1319		mutex_unlock(&fs_info->scrub_lock);
1320		return -ENOTCONN;
1321	}
1322
1323	atomic_inc(&fs_info->scrub_cancel_req);
1324	while (atomic_read(&fs_info->scrubs_running)) {
1325		mutex_unlock(&fs_info->scrub_lock);
1326		wait_event(fs_info->scrub_pause_wait,
1327			   atomic_read(&fs_info->scrubs_running) == 0);
1328		mutex_lock(&fs_info->scrub_lock);
1329	}
1330	atomic_dec(&fs_info->scrub_cancel_req);
1331	mutex_unlock(&fs_info->scrub_lock);
1332
1333	return 0;
1334}
1335
1336int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
 
1337{
1338	struct btrfs_fs_info *fs_info = root->fs_info;
1339	struct scrub_dev *sdev;
1340
1341	mutex_lock(&fs_info->scrub_lock);
1342	sdev = dev->scrub_device;
1343	if (!sdev) {
1344		mutex_unlock(&fs_info->scrub_lock);
1345		return -ENOTCONN;
1346	}
1347	atomic_inc(&sdev->cancel_req);
1348	while (dev->scrub_device) {
1349		mutex_unlock(&fs_info->scrub_lock);
1350		wait_event(fs_info->scrub_pause_wait,
1351			   dev->scrub_device == NULL);
1352		mutex_lock(&fs_info->scrub_lock);
1353	}
1354	mutex_unlock(&fs_info->scrub_lock);
1355
1356	return 0;
1357}
1358int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
 
 
1359{
1360	struct btrfs_fs_info *fs_info = root->fs_info;
1361	struct btrfs_device *dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1362	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1363
1364	/*
1365	 * we have to hold the device_list_mutex here so the device
1366	 * does not go away in cancel_dev. FIXME: find a better solution
1367	 */
1368	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1369	dev = btrfs_find_device(root, devid, NULL, NULL);
1370	if (!dev) {
1371		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1372		return -ENODEV;
1373	}
1374	ret = btrfs_scrub_cancel_dev(root, dev);
1375	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377	return ret;
1378}
1379
1380int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
1381			 struct btrfs_scrub_progress *progress)
1382{
 
1383	struct btrfs_device *dev;
1384	struct scrub_dev *sdev = NULL;
1385
1386	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1387	dev = btrfs_find_device(root, devid, NULL, NULL);
1388	if (dev)
1389		sdev = dev->scrub_device;
1390	if (sdev)
1391		memcpy(progress, &sdev->stat, sizeof(*progress));
1392	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1393
1394	return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
 
 
 
 
1395}
v3.15
   1/*
   2 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/ratelimit.h>
  21#include "ctree.h"
  22#include "volumes.h"
  23#include "disk-io.h"
  24#include "ordered-data.h"
  25#include "transaction.h"
  26#include "backref.h"
  27#include "extent_io.h"
  28#include "dev-replace.h"
  29#include "check-integrity.h"
  30#include "rcu-string.h"
  31#include "raid56.h"
  32
  33/*
  34 * This is only the first step towards a full-features scrub. It reads all
  35 * extent and super block and verifies the checksums. In case a bad checksum
  36 * is found or the extent cannot be read, good data will be written back if
  37 * any can be found.
  38 *
  39 * Future enhancements:
 
 
  40 *  - In case an unrepairable extent is encountered, track which files are
  41 *    affected and report them
 
 
  42 *  - track and record media errors, throw out bad devices
  43 *  - add a mode to also read unallocated space
 
  44 */
  45
  46struct scrub_block;
  47struct scrub_ctx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48
  49/*
  50 * the following three values only influence the performance.
  51 * The last one configures the number of parallel and outstanding I/O
  52 * operations. The first two values configure an upper limit for the number
  53 * of (dynamically allocated) pages that are added to a bio.
  54 */
  55#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
  56#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
  57#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
  58
  59/*
  60 * the following value times PAGE_SIZE needs to be large enough to match the
  61 * largest node/leaf/sector size that shall be supported.
  62 * Values larger than BTRFS_STRIPE_LEN are not supported.
  63 */
  64#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
  65
  66struct scrub_page {
  67	struct scrub_block	*sblock;
  68	struct page		*page;
  69	struct btrfs_device	*dev;
  70	u64			flags;  /* extent flags */
  71	u64			generation;
  72	u64			logical;
  73	u64			physical;
  74	u64			physical_for_dev_replace;
  75	atomic_t		ref_count;
  76	struct {
  77		unsigned int	mirror_num:8;
  78		unsigned int	have_csum:1;
  79		unsigned int	io_error:1;
  80	};
  81	u8			csum[BTRFS_CSUM_SIZE];
  82};
  83
  84struct scrub_bio {
  85	int			index;
  86	struct scrub_ctx	*sctx;
  87	struct btrfs_device	*dev;
  88	struct bio		*bio;
  89	int			err;
  90	u64			logical;
  91	u64			physical;
  92#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  93	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
  94#else
  95	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
  96#endif
  97	int			page_count;
  98	int			next_free;
  99	struct btrfs_work	work;
 100};
 101
 102struct scrub_block {
 103	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 104	int			page_count;
 105	atomic_t		outstanding_pages;
 106	atomic_t		ref_count; /* free mem on transition to zero */
 107	struct scrub_ctx	*sctx;
 108	struct {
 109		unsigned int	header_error:1;
 110		unsigned int	checksum_error:1;
 111		unsigned int	no_io_error_seen:1;
 112		unsigned int	generation_error:1; /* also sets header_error */
 113	};
 114};
 115
 116struct scrub_wr_ctx {
 117	struct scrub_bio *wr_curr_bio;
 118	struct btrfs_device *tgtdev;
 119	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 120	atomic_t flush_all_writes;
 121	struct mutex wr_lock;
 122};
 123
 124struct scrub_ctx {
 125	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 126	struct btrfs_root	*dev_root;
 127	int			first_free;
 128	int			curr;
 129	atomic_t		bios_in_flight;
 130	atomic_t		workers_pending;
 131	spinlock_t		list_lock;
 132	wait_queue_head_t	list_wait;
 133	u16			csum_size;
 134	struct list_head	csum_list;
 135	atomic_t		cancel_req;
 136	int			readonly;
 137	int			pages_per_rd_bio;
 138	u32			sectorsize;
 139	u32			nodesize;
 140	u32			leafsize;
 141
 142	int			is_dev_replace;
 143	struct scrub_wr_ctx	wr_ctx;
 144
 145	/*
 146	 * statistics
 147	 */
 148	struct btrfs_scrub_progress stat;
 149	spinlock_t		stat_lock;
 150};
 151
 152struct scrub_fixup_nodatasum {
 153	struct scrub_ctx	*sctx;
 154	struct btrfs_device	*dev;
 155	u64			logical;
 156	struct btrfs_root	*root;
 157	struct btrfs_work	work;
 158	int			mirror_num;
 159};
 160
 161struct scrub_nocow_inode {
 162	u64			inum;
 163	u64			offset;
 164	u64			root;
 165	struct list_head	list;
 166};
 167
 168struct scrub_copy_nocow_ctx {
 169	struct scrub_ctx	*sctx;
 170	u64			logical;
 171	u64			len;
 172	int			mirror_num;
 173	u64			physical_for_dev_replace;
 174	struct list_head	inodes;
 175	struct btrfs_work	work;
 176};
 177
 178struct scrub_warning {
 179	struct btrfs_path	*path;
 180	u64			extent_item_size;
 181	char			*scratch_buf;
 182	char			*msg_buf;
 183	const char		*errstr;
 184	sector_t		sector;
 185	u64			logical;
 186	struct btrfs_device	*dev;
 187	int			msg_bufsize;
 188	int			scratch_bufsize;
 189};
 190
 191
 192static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 193static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 194static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
 195static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
 196static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 197static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
 198				     struct btrfs_fs_info *fs_info,
 199				     struct scrub_block *original_sblock,
 200				     u64 length, u64 logical,
 201				     struct scrub_block *sblocks_for_recheck);
 202static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 203				struct scrub_block *sblock, int is_metadata,
 204				int have_csum, u8 *csum, u64 generation,
 205				u16 csum_size);
 206static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
 207					 struct scrub_block *sblock,
 208					 int is_metadata, int have_csum,
 209					 const u8 *csum, u64 generation,
 210					 u16 csum_size);
 211static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 212					     struct scrub_block *sblock_good,
 213					     int force_write);
 214static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 215					    struct scrub_block *sblock_good,
 216					    int page_num, int force_write);
 217static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 218static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 219					   int page_num);
 220static int scrub_checksum_data(struct scrub_block *sblock);
 221static int scrub_checksum_tree_block(struct scrub_block *sblock);
 222static int scrub_checksum_super(struct scrub_block *sblock);
 223static void scrub_block_get(struct scrub_block *sblock);
 224static void scrub_block_put(struct scrub_block *sblock);
 225static void scrub_page_get(struct scrub_page *spage);
 226static void scrub_page_put(struct scrub_page *spage);
 227static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 228				    struct scrub_page *spage);
 229static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 230		       u64 physical, struct btrfs_device *dev, u64 flags,
 231		       u64 gen, int mirror_num, u8 *csum, int force,
 232		       u64 physical_for_dev_replace);
 233static void scrub_bio_end_io(struct bio *bio, int err);
 234static void scrub_bio_end_io_worker(struct btrfs_work *work);
 235static void scrub_block_complete(struct scrub_block *sblock);
 236static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 237			       u64 extent_logical, u64 extent_len,
 238			       u64 *extent_physical,
 239			       struct btrfs_device **extent_dev,
 240			       int *extent_mirror_num);
 241static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
 242			      struct scrub_wr_ctx *wr_ctx,
 243			      struct btrfs_fs_info *fs_info,
 244			      struct btrfs_device *dev,
 245			      int is_dev_replace);
 246static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
 247static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 248				    struct scrub_page *spage);
 249static void scrub_wr_submit(struct scrub_ctx *sctx);
 250static void scrub_wr_bio_end_io(struct bio *bio, int err);
 251static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 252static int write_page_nocow(struct scrub_ctx *sctx,
 253			    u64 physical_for_dev_replace, struct page *page);
 254static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
 255				      struct scrub_copy_nocow_ctx *ctx);
 256static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 257			    int mirror_num, u64 physical_for_dev_replace);
 258static void copy_nocow_pages_worker(struct btrfs_work *work);
 259static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 260static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 261
 262
 263static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 264{
 265	atomic_inc(&sctx->bios_in_flight);
 266}
 267
 268static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 269{
 270	atomic_dec(&sctx->bios_in_flight);
 271	wake_up(&sctx->list_wait);
 272}
 273
 274static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 275{
 276	while (atomic_read(&fs_info->scrub_pause_req)) {
 277		mutex_unlock(&fs_info->scrub_lock);
 278		wait_event(fs_info->scrub_pause_wait,
 279		   atomic_read(&fs_info->scrub_pause_req) == 0);
 280		mutex_lock(&fs_info->scrub_lock);
 281	}
 282}
 283
 284static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 285{
 286	atomic_inc(&fs_info->scrubs_paused);
 287	wake_up(&fs_info->scrub_pause_wait);
 288
 289	mutex_lock(&fs_info->scrub_lock);
 290	__scrub_blocked_if_needed(fs_info);
 291	atomic_dec(&fs_info->scrubs_paused);
 292	mutex_unlock(&fs_info->scrub_lock);
 293
 294	wake_up(&fs_info->scrub_pause_wait);
 295}
 296
 297/*
 298 * used for workers that require transaction commits (i.e., for the
 299 * NOCOW case)
 300 */
 301static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
 302{
 303	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
 304
 305	/*
 306	 * increment scrubs_running to prevent cancel requests from
 307	 * completing as long as a worker is running. we must also
 308	 * increment scrubs_paused to prevent deadlocking on pause
 309	 * requests used for transactions commits (as the worker uses a
 310	 * transaction context). it is safe to regard the worker
 311	 * as paused for all matters practical. effectively, we only
 312	 * avoid cancellation requests from completing.
 313	 */
 314	mutex_lock(&fs_info->scrub_lock);
 315	atomic_inc(&fs_info->scrubs_running);
 316	atomic_inc(&fs_info->scrubs_paused);
 317	mutex_unlock(&fs_info->scrub_lock);
 318
 319	/*
 320	 * check if @scrubs_running=@scrubs_paused condition
 321	 * inside wait_event() is not an atomic operation.
 322	 * which means we may inc/dec @scrub_running/paused
 323	 * at any time. Let's wake up @scrub_pause_wait as
 324	 * much as we can to let commit transaction blocked less.
 325	 */
 326	wake_up(&fs_info->scrub_pause_wait);
 327
 328	atomic_inc(&sctx->workers_pending);
 329}
 330
 331/* used for workers that require transaction commits */
 332static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
 333{
 334	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
 335
 336	/*
 337	 * see scrub_pending_trans_workers_inc() why we're pretending
 338	 * to be paused in the scrub counters
 339	 */
 340	mutex_lock(&fs_info->scrub_lock);
 341	atomic_dec(&fs_info->scrubs_running);
 342	atomic_dec(&fs_info->scrubs_paused);
 343	mutex_unlock(&fs_info->scrub_lock);
 344	atomic_dec(&sctx->workers_pending);
 345	wake_up(&fs_info->scrub_pause_wait);
 346	wake_up(&sctx->list_wait);
 347}
 348
 349static void scrub_free_csums(struct scrub_ctx *sctx)
 350{
 351	while (!list_empty(&sctx->csum_list)) {
 352		struct btrfs_ordered_sum *sum;
 353		sum = list_first_entry(&sctx->csum_list,
 354				       struct btrfs_ordered_sum, list);
 355		list_del(&sum->list);
 356		kfree(sum);
 357	}
 
 358}
 359
 360static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 361{
 362	int i;
 363
 364	if (!sctx)
 365		return;
 366
 367	scrub_free_wr_ctx(&sctx->wr_ctx);
 368
 369	/* this can happen when scrub is cancelled */
 370	if (sctx->curr != -1) {
 371		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 372
 373		for (i = 0; i < sbio->page_count; i++) {
 374			WARN_ON(!sbio->pagev[i]->page);
 375			scrub_block_put(sbio->pagev[i]->sblock);
 376		}
 377		bio_put(sbio->bio);
 378	}
 379
 380	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 381		struct scrub_bio *sbio = sctx->bios[i];
 382
 383		if (!sbio)
 384			break;
 
 
 385		kfree(sbio);
 386	}
 387
 388	scrub_free_csums(sctx);
 389	kfree(sctx);
 390}
 391
 392static noinline_for_stack
 393struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
 394{
 395	struct scrub_ctx *sctx;
 396	int		i;
 397	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
 398	int pages_per_rd_bio;
 399	int ret;
 400
 401	/*
 402	 * the setting of pages_per_rd_bio is correct for scrub but might
 403	 * be wrong for the dev_replace code where we might read from
 404	 * different devices in the initial huge bios. However, that
 405	 * code is able to correctly handle the case when adding a page
 406	 * to a bio fails.
 407	 */
 408	if (dev->bdev)
 409		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
 410					 bio_get_nr_vecs(dev->bdev));
 411	else
 412		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 413	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
 414	if (!sctx)
 415		goto nomem;
 416	sctx->is_dev_replace = is_dev_replace;
 417	sctx->pages_per_rd_bio = pages_per_rd_bio;
 418	sctx->curr = -1;
 419	sctx->dev_root = dev->dev_root;
 420	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 421		struct scrub_bio *sbio;
 422
 423		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
 424		if (!sbio)
 425			goto nomem;
 426		sctx->bios[i] = sbio;
 427
 428		sbio->index = i;
 429		sbio->sctx = sctx;
 430		sbio->page_count = 0;
 431		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker,
 432				NULL, NULL);
 433
 434		if (i != SCRUB_BIOS_PER_SCTX - 1)
 435			sctx->bios[i]->next_free = i + 1;
 436		else
 437			sctx->bios[i]->next_free = -1;
 438	}
 439	sctx->first_free = 0;
 440	sctx->nodesize = dev->dev_root->nodesize;
 441	sctx->leafsize = dev->dev_root->leafsize;
 442	sctx->sectorsize = dev->dev_root->sectorsize;
 443	atomic_set(&sctx->bios_in_flight, 0);
 444	atomic_set(&sctx->workers_pending, 0);
 445	atomic_set(&sctx->cancel_req, 0);
 446	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 447	INIT_LIST_HEAD(&sctx->csum_list);
 448
 449	spin_lock_init(&sctx->list_lock);
 450	spin_lock_init(&sctx->stat_lock);
 451	init_waitqueue_head(&sctx->list_wait);
 452
 453	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
 454				 fs_info->dev_replace.tgtdev, is_dev_replace);
 455	if (ret) {
 456		scrub_free_ctx(sctx);
 457		return ERR_PTR(ret);
 458	}
 459	return sctx;
 460
 461nomem:
 462	scrub_free_ctx(sctx);
 463	return ERR_PTR(-ENOMEM);
 464}
 465
 466static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 467				     void *warn_ctx)
 
 
 
 
 
 468{
 469	u64 isize;
 470	u32 nlink;
 471	int ret;
 472	int i;
 473	struct extent_buffer *eb;
 474	struct btrfs_inode_item *inode_item;
 475	struct scrub_warning *swarn = warn_ctx;
 476	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
 477	struct inode_fs_paths *ipath = NULL;
 478	struct btrfs_root *local_root;
 479	struct btrfs_key root_key;
 480
 481	root_key.objectid = root;
 482	root_key.type = BTRFS_ROOT_ITEM_KEY;
 483	root_key.offset = (u64)-1;
 484	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 485	if (IS_ERR(local_root)) {
 486		ret = PTR_ERR(local_root);
 487		goto err;
 488	}
 489
 490	ret = inode_item_info(inum, 0, local_root, swarn->path);
 491	if (ret) {
 492		btrfs_release_path(swarn->path);
 493		goto err;
 494	}
 495
 496	eb = swarn->path->nodes[0];
 497	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 498					struct btrfs_inode_item);
 499	isize = btrfs_inode_size(eb, inode_item);
 500	nlink = btrfs_inode_nlink(eb, inode_item);
 501	btrfs_release_path(swarn->path);
 502
 503	ipath = init_ipath(4096, local_root, swarn->path);
 504	if (IS_ERR(ipath)) {
 505		ret = PTR_ERR(ipath);
 506		ipath = NULL;
 507		goto err;
 508	}
 509	ret = paths_from_inode(inum, ipath);
 510
 511	if (ret < 0)
 512		goto err;
 513
 514	/*
 515	 * we deliberately ignore the bit ipath might have been too small to
 516	 * hold all of the paths here
 517	 */
 518	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 519		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
 520			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
 521			"length %llu, links %u (path: %s)\n", swarn->errstr,
 522			swarn->logical, rcu_str_deref(swarn->dev->name),
 523			(unsigned long long)swarn->sector, root, inum, offset,
 524			min(isize - offset, (u64)PAGE_SIZE), nlink,
 525			(char *)(unsigned long)ipath->fspath->val[i]);
 526
 527	free_ipath(ipath);
 528	return 0;
 529
 530err:
 531	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
 532		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
 533		"resolving failed with ret=%d\n", swarn->errstr,
 534		swarn->logical, rcu_str_deref(swarn->dev->name),
 535		(unsigned long long)swarn->sector, root, inum, offset, ret);
 536
 537	free_ipath(ipath);
 538	return 0;
 539}
 540
 541static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 542{
 543	struct btrfs_device *dev;
 544	struct btrfs_fs_info *fs_info;
 545	struct btrfs_path *path;
 546	struct btrfs_key found_key;
 547	struct extent_buffer *eb;
 548	struct btrfs_extent_item *ei;
 549	struct scrub_warning swarn;
 550	unsigned long ptr = 0;
 551	u64 extent_item_pos;
 552	u64 flags = 0;
 553	u64 ref_root;
 554	u32 item_size;
 555	u8 ref_level;
 556	const int bufsize = 4096;
 557	int ret;
 558
 559	WARN_ON(sblock->page_count < 1);
 560	dev = sblock->pagev[0]->dev;
 561	fs_info = sblock->sctx->dev_root->fs_info;
 562
 563	path = btrfs_alloc_path();
 564
 565	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
 566	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
 567	swarn.sector = (sblock->pagev[0]->physical) >> 9;
 568	swarn.logical = sblock->pagev[0]->logical;
 569	swarn.errstr = errstr;
 570	swarn.dev = NULL;
 571	swarn.msg_bufsize = bufsize;
 572	swarn.scratch_bufsize = bufsize;
 573
 574	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
 575		goto out;
 576
 577	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 578				  &flags);
 579	if (ret < 0)
 580		goto out;
 581
 582	extent_item_pos = swarn.logical - found_key.objectid;
 583	swarn.extent_item_size = found_key.offset;
 584
 585	eb = path->nodes[0];
 586	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 587	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 588
 589	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 590		do {
 591			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
 592							&ref_root, &ref_level);
 593			printk_in_rcu(KERN_WARNING
 594				"BTRFS: %s at logical %llu on dev %s, "
 595				"sector %llu: metadata %s (level %d) in tree "
 596				"%llu\n", errstr, swarn.logical,
 597				rcu_str_deref(dev->name),
 598				(unsigned long long)swarn.sector,
 599				ref_level ? "node" : "leaf",
 600				ret < 0 ? -1 : ref_level,
 601				ret < 0 ? -1 : ref_root);
 602		} while (ret != 1);
 603		btrfs_release_path(path);
 604	} else {
 605		btrfs_release_path(path);
 606		swarn.path = path;
 607		swarn.dev = dev;
 608		iterate_extent_inodes(fs_info, found_key.objectid,
 609					extent_item_pos, 1,
 610					scrub_print_warning_inode, &swarn);
 611	}
 
 612
 613out:
 614	btrfs_free_path(path);
 615	kfree(swarn.scratch_buf);
 616	kfree(swarn.msg_buf);
 617}
 618
 619static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
 620{
 621	struct page *page = NULL;
 622	unsigned long index;
 623	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
 624	int ret;
 625	int corrected = 0;
 626	struct btrfs_key key;
 627	struct inode *inode = NULL;
 628	struct btrfs_fs_info *fs_info;
 629	u64 end = offset + PAGE_SIZE - 1;
 630	struct btrfs_root *local_root;
 631	int srcu_index;
 632
 633	key.objectid = root;
 634	key.type = BTRFS_ROOT_ITEM_KEY;
 635	key.offset = (u64)-1;
 636
 637	fs_info = fixup->root->fs_info;
 638	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
 639
 640	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
 641	if (IS_ERR(local_root)) {
 642		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 643		return PTR_ERR(local_root);
 644	}
 645
 646	key.type = BTRFS_INODE_ITEM_KEY;
 647	key.objectid = inum;
 648	key.offset = 0;
 649	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
 650	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 651	if (IS_ERR(inode))
 652		return PTR_ERR(inode);
 653
 654	index = offset >> PAGE_CACHE_SHIFT;
 655
 656	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 657	if (!page) {
 658		ret = -ENOMEM;
 659		goto out;
 660	}
 661
 662	if (PageUptodate(page)) {
 663		if (PageDirty(page)) {
 664			/*
 665			 * we need to write the data to the defect sector. the
 666			 * data that was in that sector is not in memory,
 667			 * because the page was modified. we must not write the
 668			 * modified page to that sector.
 669			 *
 670			 * TODO: what could be done here: wait for the delalloc
 671			 *       runner to write out that page (might involve
 672			 *       COW) and see whether the sector is still
 673			 *       referenced afterwards.
 674			 *
 675			 * For the meantime, we'll treat this error
 676			 * incorrectable, although there is a chance that a
 677			 * later scrub will find the bad sector again and that
 678			 * there's no dirty page in memory, then.
 679			 */
 680			ret = -EIO;
 681			goto out;
 682		}
 683		fs_info = BTRFS_I(inode)->root->fs_info;
 684		ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
 685					fixup->logical, page,
 686					fixup->mirror_num);
 687		unlock_page(page);
 688		corrected = !ret;
 689	} else {
 690		/*
 691		 * we need to get good data first. the general readpage path
 692		 * will call repair_io_failure for us, we just have to make
 693		 * sure we read the bad mirror.
 694		 */
 695		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 696					EXTENT_DAMAGED, GFP_NOFS);
 697		if (ret) {
 698			/* set_extent_bits should give proper error */
 699			WARN_ON(ret > 0);
 700			if (ret > 0)
 701				ret = -EFAULT;
 702			goto out;
 703		}
 704
 705		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
 706						btrfs_get_extent,
 707						fixup->mirror_num);
 708		wait_on_page_locked(page);
 709
 710		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
 711						end, EXTENT_DAMAGED, 0, NULL);
 712		if (!corrected)
 713			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 714						EXTENT_DAMAGED, GFP_NOFS);
 715	}
 716
 717out:
 718	if (page)
 719		put_page(page);
 720	if (inode)
 721		iput(inode);
 722
 723	if (ret < 0)
 724		return ret;
 725
 726	if (ret == 0 && corrected) {
 727		/*
 728		 * we only need to call readpage for one of the inodes belonging
 729		 * to this extent. so make iterate_extent_inodes stop
 730		 */
 731		return 1;
 732	}
 733
 734	return -EIO;
 735}
 736
 737static void scrub_fixup_nodatasum(struct btrfs_work *work)
 738{
 739	int ret;
 740	struct scrub_fixup_nodatasum *fixup;
 741	struct scrub_ctx *sctx;
 742	struct btrfs_trans_handle *trans = NULL;
 743	struct btrfs_path *path;
 744	int uncorrectable = 0;
 745
 746	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
 747	sctx = fixup->sctx;
 748
 749	path = btrfs_alloc_path();
 750	if (!path) {
 751		spin_lock(&sctx->stat_lock);
 752		++sctx->stat.malloc_errors;
 753		spin_unlock(&sctx->stat_lock);
 754		uncorrectable = 1;
 755		goto out;
 756	}
 757
 758	trans = btrfs_join_transaction(fixup->root);
 759	if (IS_ERR(trans)) {
 760		uncorrectable = 1;
 761		goto out;
 762	}
 763
 764	/*
 765	 * the idea is to trigger a regular read through the standard path. we
 766	 * read a page from the (failed) logical address by specifying the
 767	 * corresponding copynum of the failed sector. thus, that readpage is
 768	 * expected to fail.
 769	 * that is the point where on-the-fly error correction will kick in
 770	 * (once it's finished) and rewrite the failed sector if a good copy
 771	 * can be found.
 772	 */
 773	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
 774						path, scrub_fixup_readpage,
 775						fixup);
 776	if (ret < 0) {
 777		uncorrectable = 1;
 778		goto out;
 779	}
 780	WARN_ON(ret != 1);
 781
 782	spin_lock(&sctx->stat_lock);
 783	++sctx->stat.corrected_errors;
 784	spin_unlock(&sctx->stat_lock);
 785
 786out:
 787	if (trans && !IS_ERR(trans))
 788		btrfs_end_transaction(trans, fixup->root);
 789	if (uncorrectable) {
 790		spin_lock(&sctx->stat_lock);
 791		++sctx->stat.uncorrectable_errors;
 792		spin_unlock(&sctx->stat_lock);
 793		btrfs_dev_replace_stats_inc(
 794			&sctx->dev_root->fs_info->dev_replace.
 795			num_uncorrectable_read_errors);
 796		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
 797		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
 798			fixup->logical, rcu_str_deref(fixup->dev->name));
 799	}
 800
 801	btrfs_free_path(path);
 802	kfree(fixup);
 803
 804	scrub_pending_trans_workers_dec(sctx);
 805}
 806
 807/*
 808 * scrub_handle_errored_block gets called when either verification of the
 809 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 810 * case, this function handles all pages in the bio, even though only one
 811 * may be bad.
 812 * The goal of this function is to repair the errored block by using the
 813 * contents of one of the mirrors.
 814 */
 815static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 816{
 817	struct scrub_ctx *sctx = sblock_to_check->sctx;
 818	struct btrfs_device *dev;
 819	struct btrfs_fs_info *fs_info;
 820	u64 length;
 821	u64 logical;
 822	u64 generation;
 823	unsigned int failed_mirror_index;
 824	unsigned int is_metadata;
 825	unsigned int have_csum;
 826	u8 *csum;
 827	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 828	struct scrub_block *sblock_bad;
 829	int ret;
 830	int mirror_index;
 831	int page_num;
 832	int success;
 833	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 834				      DEFAULT_RATELIMIT_BURST);
 835
 836	BUG_ON(sblock_to_check->page_count < 1);
 837	fs_info = sctx->dev_root->fs_info;
 838	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 839		/*
 840		 * if we find an error in a super block, we just report it.
 841		 * They will get written with the next transaction commit
 842		 * anyway
 843		 */
 844		spin_lock(&sctx->stat_lock);
 845		++sctx->stat.super_errors;
 846		spin_unlock(&sctx->stat_lock);
 847		return 0;
 848	}
 849	length = sblock_to_check->page_count * PAGE_SIZE;
 850	logical = sblock_to_check->pagev[0]->logical;
 851	generation = sblock_to_check->pagev[0]->generation;
 852	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 853	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 854	is_metadata = !(sblock_to_check->pagev[0]->flags &
 855			BTRFS_EXTENT_FLAG_DATA);
 856	have_csum = sblock_to_check->pagev[0]->have_csum;
 857	csum = sblock_to_check->pagev[0]->csum;
 858	dev = sblock_to_check->pagev[0]->dev;
 859
 860	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
 861		sblocks_for_recheck = NULL;
 862		goto nodatasum_case;
 863	}
 864
 865	/*
 866	 * read all mirrors one after the other. This includes to
 867	 * re-read the extent or metadata block that failed (that was
 868	 * the cause that this fixup code is called) another time,
 869	 * page by page this time in order to know which pages
 870	 * caused I/O errors and which ones are good (for all mirrors).
 871	 * It is the goal to handle the situation when more than one
 872	 * mirror contains I/O errors, but the errors do not
 873	 * overlap, i.e. the data can be repaired by selecting the
 874	 * pages from those mirrors without I/O error on the
 875	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 876	 * would be that mirror #1 has an I/O error on the first page,
 877	 * the second page is good, and mirror #2 has an I/O error on
 878	 * the second page, but the first page is good.
 879	 * Then the first page of the first mirror can be repaired by
 880	 * taking the first page of the second mirror, and the
 881	 * second page of the second mirror can be repaired by
 882	 * copying the contents of the 2nd page of the 1st mirror.
 883	 * One more note: if the pages of one mirror contain I/O
 884	 * errors, the checksum cannot be verified. In order to get
 885	 * the best data for repairing, the first attempt is to find
 886	 * a mirror without I/O errors and with a validated checksum.
 887	 * Only if this is not possible, the pages are picked from
 888	 * mirrors with I/O errors without considering the checksum.
 889	 * If the latter is the case, at the end, the checksum of the
 890	 * repaired area is verified in order to correctly maintain
 891	 * the statistics.
 892	 */
 893
 894	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
 895				     sizeof(*sblocks_for_recheck),
 896				     GFP_NOFS);
 897	if (!sblocks_for_recheck) {
 898		spin_lock(&sctx->stat_lock);
 899		sctx->stat.malloc_errors++;
 900		sctx->stat.read_errors++;
 901		sctx->stat.uncorrectable_errors++;
 902		spin_unlock(&sctx->stat_lock);
 903		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 904		goto out;
 905	}
 906
 907	/* setup the context, map the logical blocks and alloc the pages */
 908	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
 909					logical, sblocks_for_recheck);
 910	if (ret) {
 911		spin_lock(&sctx->stat_lock);
 912		sctx->stat.read_errors++;
 913		sctx->stat.uncorrectable_errors++;
 914		spin_unlock(&sctx->stat_lock);
 915		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 916		goto out;
 917	}
 918	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 919	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 920
 921	/* build and submit the bios for the failed mirror, check checksums */
 922	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
 923			    csum, generation, sctx->csum_size);
 924
 925	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 926	    sblock_bad->no_io_error_seen) {
 927		/*
 928		 * the error disappeared after reading page by page, or
 929		 * the area was part of a huge bio and other parts of the
 930		 * bio caused I/O errors, or the block layer merged several
 931		 * read requests into one and the error is caused by a
 932		 * different bio (usually one of the two latter cases is
 933		 * the cause)
 934		 */
 935		spin_lock(&sctx->stat_lock);
 936		sctx->stat.unverified_errors++;
 937		spin_unlock(&sctx->stat_lock);
 938
 939		if (sctx->is_dev_replace)
 940			scrub_write_block_to_dev_replace(sblock_bad);
 941		goto out;
 942	}
 943
 944	if (!sblock_bad->no_io_error_seen) {
 945		spin_lock(&sctx->stat_lock);
 946		sctx->stat.read_errors++;
 947		spin_unlock(&sctx->stat_lock);
 948		if (__ratelimit(&_rs))
 949			scrub_print_warning("i/o error", sblock_to_check);
 950		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 951	} else if (sblock_bad->checksum_error) {
 952		spin_lock(&sctx->stat_lock);
 953		sctx->stat.csum_errors++;
 954		spin_unlock(&sctx->stat_lock);
 955		if (__ratelimit(&_rs))
 956			scrub_print_warning("checksum error", sblock_to_check);
 957		btrfs_dev_stat_inc_and_print(dev,
 958					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
 959	} else if (sblock_bad->header_error) {
 960		spin_lock(&sctx->stat_lock);
 961		sctx->stat.verify_errors++;
 962		spin_unlock(&sctx->stat_lock);
 963		if (__ratelimit(&_rs))
 964			scrub_print_warning("checksum/header error",
 965					    sblock_to_check);
 966		if (sblock_bad->generation_error)
 967			btrfs_dev_stat_inc_and_print(dev,
 968				BTRFS_DEV_STAT_GENERATION_ERRS);
 969		else
 970			btrfs_dev_stat_inc_and_print(dev,
 971				BTRFS_DEV_STAT_CORRUPTION_ERRS);
 972	}
 973
 974	if (sctx->readonly) {
 975		ASSERT(!sctx->is_dev_replace);
 976		goto out;
 977	}
 978
 979	if (!is_metadata && !have_csum) {
 980		struct scrub_fixup_nodatasum *fixup_nodatasum;
 981
 982nodatasum_case:
 983		WARN_ON(sctx->is_dev_replace);
 984
 985		/*
 986		 * !is_metadata and !have_csum, this means that the data
 987		 * might not be COW'ed, that it might be modified
 988		 * concurrently. The general strategy to work on the
 989		 * commit root does not help in the case when COW is not
 990		 * used.
 991		 */
 992		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
 993		if (!fixup_nodatasum)
 994			goto did_not_correct_error;
 995		fixup_nodatasum->sctx = sctx;
 996		fixup_nodatasum->dev = dev;
 997		fixup_nodatasum->logical = logical;
 998		fixup_nodatasum->root = fs_info->extent_root;
 999		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1000		scrub_pending_trans_workers_inc(sctx);
1001		btrfs_init_work(&fixup_nodatasum->work, scrub_fixup_nodatasum,
1002				NULL, NULL);
1003		btrfs_queue_work(fs_info->scrub_workers,
1004				 &fixup_nodatasum->work);
1005		goto out;
1006	}
1007
1008	/*
1009	 * now build and submit the bios for the other mirrors, check
1010	 * checksums.
1011	 * First try to pick the mirror which is completely without I/O
1012	 * errors and also does not have a checksum error.
1013	 * If one is found, and if a checksum is present, the full block
1014	 * that is known to contain an error is rewritten. Afterwards
1015	 * the block is known to be corrected.
1016	 * If a mirror is found which is completely correct, and no
1017	 * checksum is present, only those pages are rewritten that had
1018	 * an I/O error in the block to be repaired, since it cannot be
1019	 * determined, which copy of the other pages is better (and it
1020	 * could happen otherwise that a correct page would be
1021	 * overwritten by a bad one).
1022	 */
1023	for (mirror_index = 0;
1024	     mirror_index < BTRFS_MAX_MIRRORS &&
1025	     sblocks_for_recheck[mirror_index].page_count > 0;
1026	     mirror_index++) {
1027		struct scrub_block *sblock_other;
1028
1029		if (mirror_index == failed_mirror_index)
1030			continue;
1031		sblock_other = sblocks_for_recheck + mirror_index;
1032
1033		/* build and submit the bios, check checksums */
1034		scrub_recheck_block(fs_info, sblock_other, is_metadata,
1035				    have_csum, csum, generation,
1036				    sctx->csum_size);
1037
1038		if (!sblock_other->header_error &&
1039		    !sblock_other->checksum_error &&
1040		    sblock_other->no_io_error_seen) {
1041			if (sctx->is_dev_replace) {
1042				scrub_write_block_to_dev_replace(sblock_other);
1043			} else {
1044				int force_write = is_metadata || have_csum;
1045
1046				ret = scrub_repair_block_from_good_copy(
1047						sblock_bad, sblock_other,
1048						force_write);
1049			}
1050			if (0 == ret)
1051				goto corrected_error;
1052		}
1053	}
1054
1055	/*
1056	 * for dev_replace, pick good pages and write to the target device.
1057	 */
1058	if (sctx->is_dev_replace) {
1059		success = 1;
1060		for (page_num = 0; page_num < sblock_bad->page_count;
1061		     page_num++) {
1062			int sub_success;
1063
1064			sub_success = 0;
1065			for (mirror_index = 0;
1066			     mirror_index < BTRFS_MAX_MIRRORS &&
1067			     sblocks_for_recheck[mirror_index].page_count > 0;
1068			     mirror_index++) {
1069				struct scrub_block *sblock_other =
1070					sblocks_for_recheck + mirror_index;
1071				struct scrub_page *page_other =
1072					sblock_other->pagev[page_num];
1073
1074				if (!page_other->io_error) {
1075					ret = scrub_write_page_to_dev_replace(
1076							sblock_other, page_num);
1077					if (ret == 0) {
1078						/* succeeded for this page */
1079						sub_success = 1;
1080						break;
1081					} else {
1082						btrfs_dev_replace_stats_inc(
1083							&sctx->dev_root->
1084							fs_info->dev_replace.
1085							num_write_errors);
1086					}
1087				}
1088			}
1089
1090			if (!sub_success) {
1091				/*
1092				 * did not find a mirror to fetch the page
1093				 * from. scrub_write_page_to_dev_replace()
1094				 * handles this case (page->io_error), by
1095				 * filling the block with zeros before
1096				 * submitting the write request
1097				 */
1098				success = 0;
1099				ret = scrub_write_page_to_dev_replace(
1100						sblock_bad, page_num);
1101				if (ret)
1102					btrfs_dev_replace_stats_inc(
1103						&sctx->dev_root->fs_info->
1104						dev_replace.num_write_errors);
1105			}
1106		}
1107
1108		goto out;
1109	}
1110
1111	/*
1112	 * for regular scrub, repair those pages that are errored.
1113	 * In case of I/O errors in the area that is supposed to be
1114	 * repaired, continue by picking good copies of those pages.
1115	 * Select the good pages from mirrors to rewrite bad pages from
1116	 * the area to fix. Afterwards verify the checksum of the block
1117	 * that is supposed to be repaired. This verification step is
1118	 * only done for the purpose of statistic counting and for the
1119	 * final scrub report, whether errors remain.
1120	 * A perfect algorithm could make use of the checksum and try
1121	 * all possible combinations of pages from the different mirrors
1122	 * until the checksum verification succeeds. For example, when
1123	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1124	 * of mirror #2 is readable but the final checksum test fails,
1125	 * then the 2nd page of mirror #3 could be tried, whether now
1126	 * the final checksum succeedes. But this would be a rare
1127	 * exception and is therefore not implemented. At least it is
1128	 * avoided that the good copy is overwritten.
1129	 * A more useful improvement would be to pick the sectors
1130	 * without I/O error based on sector sizes (512 bytes on legacy
1131	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1132	 * mirror could be repaired by taking 512 byte of a different
1133	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1134	 * area are unreadable.
1135	 */
1136
1137	/* can only fix I/O errors from here on */
1138	if (sblock_bad->no_io_error_seen)
1139		goto did_not_correct_error;
1140
1141	success = 1;
1142	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1143		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1144
1145		if (!page_bad->io_error)
1146			continue;
1147
1148		for (mirror_index = 0;
1149		     mirror_index < BTRFS_MAX_MIRRORS &&
1150		     sblocks_for_recheck[mirror_index].page_count > 0;
1151		     mirror_index++) {
1152			struct scrub_block *sblock_other = sblocks_for_recheck +
1153							   mirror_index;
1154			struct scrub_page *page_other = sblock_other->pagev[
1155							page_num];
1156
1157			if (!page_other->io_error) {
1158				ret = scrub_repair_page_from_good_copy(
1159					sblock_bad, sblock_other, page_num, 0);
1160				if (0 == ret) {
1161					page_bad->io_error = 0;
1162					break; /* succeeded for this page */
1163				}
1164			}
1165		}
1166
1167		if (page_bad->io_error) {
1168			/* did not find a mirror to copy the page from */
1169			success = 0;
1170		}
1171	}
1172
1173	if (success) {
1174		if (is_metadata || have_csum) {
1175			/*
1176			 * need to verify the checksum now that all
1177			 * sectors on disk are repaired (the write
1178			 * request for data to be repaired is on its way).
1179			 * Just be lazy and use scrub_recheck_block()
1180			 * which re-reads the data before the checksum
1181			 * is verified, but most likely the data comes out
1182			 * of the page cache.
1183			 */
1184			scrub_recheck_block(fs_info, sblock_bad,
1185					    is_metadata, have_csum, csum,
1186					    generation, sctx->csum_size);
1187			if (!sblock_bad->header_error &&
1188			    !sblock_bad->checksum_error &&
1189			    sblock_bad->no_io_error_seen)
1190				goto corrected_error;
1191			else
1192				goto did_not_correct_error;
1193		} else {
1194corrected_error:
1195			spin_lock(&sctx->stat_lock);
1196			sctx->stat.corrected_errors++;
1197			spin_unlock(&sctx->stat_lock);
1198			printk_ratelimited_in_rcu(KERN_ERR
1199				"BTRFS: fixed up error at logical %llu on dev %s\n",
1200				logical, rcu_str_deref(dev->name));
1201		}
1202	} else {
1203did_not_correct_error:
1204		spin_lock(&sctx->stat_lock);
1205		sctx->stat.uncorrectable_errors++;
1206		spin_unlock(&sctx->stat_lock);
1207		printk_ratelimited_in_rcu(KERN_ERR
1208			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1209			logical, rcu_str_deref(dev->name));
1210	}
 
 
1211
1212out:
1213	if (sblocks_for_recheck) {
1214		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1215		     mirror_index++) {
1216			struct scrub_block *sblock = sblocks_for_recheck +
1217						     mirror_index;
1218			int page_index;
1219
1220			for (page_index = 0; page_index < sblock->page_count;
1221			     page_index++) {
1222				sblock->pagev[page_index]->sblock = NULL;
1223				scrub_page_put(sblock->pagev[page_index]);
1224			}
1225		}
1226		kfree(sblocks_for_recheck);
1227	}
1228
1229	return 0;
1230}
1231
1232static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1233				     struct btrfs_fs_info *fs_info,
1234				     struct scrub_block *original_sblock,
1235				     u64 length, u64 logical,
1236				     struct scrub_block *sblocks_for_recheck)
1237{
1238	int page_index;
1239	int mirror_index;
1240	int ret;
1241
1242	/*
1243	 * note: the two members ref_count and outstanding_pages
1244	 * are not used (and not set) in the blocks that are used for
1245	 * the recheck procedure
1246	 */
1247
1248	page_index = 0;
1249	while (length > 0) {
1250		u64 sublen = min_t(u64, length, PAGE_SIZE);
1251		u64 mapped_length = sublen;
1252		struct btrfs_bio *bbio = NULL;
1253
1254		/*
1255		 * with a length of PAGE_SIZE, each returned stripe
1256		 * represents one mirror
1257		 */
1258		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1259				      &mapped_length, &bbio, 0);
1260		if (ret || !bbio || mapped_length < sublen) {
1261			kfree(bbio);
1262			return -EIO;
1263		}
1264
1265		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1266		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1267		     mirror_index++) {
1268			struct scrub_block *sblock;
1269			struct scrub_page *page;
1270
1271			if (mirror_index >= BTRFS_MAX_MIRRORS)
1272				continue;
1273
1274			sblock = sblocks_for_recheck + mirror_index;
1275			sblock->sctx = sctx;
1276			page = kzalloc(sizeof(*page), GFP_NOFS);
1277			if (!page) {
1278leave_nomem:
1279				spin_lock(&sctx->stat_lock);
1280				sctx->stat.malloc_errors++;
1281				spin_unlock(&sctx->stat_lock);
1282				kfree(bbio);
1283				return -ENOMEM;
1284			}
1285			scrub_page_get(page);
1286			sblock->pagev[page_index] = page;
1287			page->logical = logical;
1288			page->physical = bbio->stripes[mirror_index].physical;
1289			BUG_ON(page_index >= original_sblock->page_count);
1290			page->physical_for_dev_replace =
1291				original_sblock->pagev[page_index]->
1292				physical_for_dev_replace;
1293			/* for missing devices, dev->bdev is NULL */
1294			page->dev = bbio->stripes[mirror_index].dev;
1295			page->mirror_num = mirror_index + 1;
1296			sblock->page_count++;
1297			page->page = alloc_page(GFP_NOFS);
1298			if (!page->page)
1299				goto leave_nomem;
1300		}
1301		kfree(bbio);
1302		length -= sublen;
1303		logical += sublen;
1304		page_index++;
1305	}
1306
1307	return 0;
1308}
1309
1310/*
1311 * this function will check the on disk data for checksum errors, header
1312 * errors and read I/O errors. If any I/O errors happen, the exact pages
1313 * which are errored are marked as being bad. The goal is to enable scrub
1314 * to take those pages that are not errored from all the mirrors so that
1315 * the pages that are errored in the just handled mirror can be repaired.
1316 */
1317static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1318				struct scrub_block *sblock, int is_metadata,
1319				int have_csum, u8 *csum, u64 generation,
1320				u16 csum_size)
1321{
1322	int page_num;
1323
1324	sblock->no_io_error_seen = 1;
1325	sblock->header_error = 0;
1326	sblock->checksum_error = 0;
1327
1328	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1329		struct bio *bio;
1330		struct scrub_page *page = sblock->pagev[page_num];
1331
1332		if (page->dev->bdev == NULL) {
1333			page->io_error = 1;
1334			sblock->no_io_error_seen = 0;
1335			continue;
1336		}
1337
1338		WARN_ON(!page->page);
1339		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1340		if (!bio) {
1341			page->io_error = 1;
1342			sblock->no_io_error_seen = 0;
1343			continue;
1344		}
1345		bio->bi_bdev = page->dev->bdev;
1346		bio->bi_iter.bi_sector = page->physical >> 9;
1347
1348		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1349		if (btrfsic_submit_bio_wait(READ, bio))
1350			sblock->no_io_error_seen = 0;
1351
1352		bio_put(bio);
1353	}
1354
1355	if (sblock->no_io_error_seen)
1356		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1357					     have_csum, csum, generation,
1358					     csum_size);
1359
1360	return;
1361}
1362
1363static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1364					 struct scrub_block *sblock,
1365					 int is_metadata, int have_csum,
1366					 const u8 *csum, u64 generation,
1367					 u16 csum_size)
1368{
1369	int page_num;
1370	u8 calculated_csum[BTRFS_CSUM_SIZE];
1371	u32 crc = ~(u32)0;
1372	void *mapped_buffer;
1373
1374	WARN_ON(!sblock->pagev[0]->page);
1375	if (is_metadata) {
1376		struct btrfs_header *h;
1377
1378		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1379		h = (struct btrfs_header *)mapped_buffer;
1380
1381		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1382		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1383		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1384			   BTRFS_UUID_SIZE)) {
1385			sblock->header_error = 1;
1386		} else if (generation != btrfs_stack_header_generation(h)) {
1387			sblock->header_error = 1;
1388			sblock->generation_error = 1;
1389		}
1390		csum = h->csum;
1391	} else {
1392		if (!have_csum)
1393			return;
1394
1395		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1396	}
1397
1398	for (page_num = 0;;) {
1399		if (page_num == 0 && is_metadata)
1400			crc = btrfs_csum_data(
1401				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1402				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1403		else
1404			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1405
1406		kunmap_atomic(mapped_buffer);
1407		page_num++;
1408		if (page_num >= sblock->page_count)
1409			break;
1410		WARN_ON(!sblock->pagev[page_num]->page);
1411
1412		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1413	}
1414
1415	btrfs_csum_final(crc, calculated_csum);
1416	if (memcmp(calculated_csum, csum, csum_size))
1417		sblock->checksum_error = 1;
1418}
1419
1420static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1421					     struct scrub_block *sblock_good,
1422					     int force_write)
1423{
1424	int page_num;
1425	int ret = 0;
 
1426
1427	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1428		int ret_sub;
 
 
 
 
 
1429
1430		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1431							   sblock_good,
1432							   page_num,
1433							   force_write);
1434		if (ret_sub)
1435			ret = ret_sub;
1436	}
1437
 
 
1438	return ret;
1439}
1440
1441static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1442					    struct scrub_block *sblock_good,
1443					    int page_num, int force_write)
1444{
1445	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1446	struct scrub_page *page_good = sblock_good->pagev[page_num];
1447
1448	BUG_ON(page_bad->page == NULL);
1449	BUG_ON(page_good->page == NULL);
1450	if (force_write || sblock_bad->header_error ||
1451	    sblock_bad->checksum_error || page_bad->io_error) {
1452		struct bio *bio;
1453		int ret;
1454
1455		if (!page_bad->dev->bdev) {
1456			printk_ratelimited(KERN_WARNING "BTRFS: "
1457				"scrub_repair_page_from_good_copy(bdev == NULL) "
1458				"is unexpected!\n");
1459			return -EIO;
1460		}
1461
1462		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1463		if (!bio)
1464			return -EIO;
1465		bio->bi_bdev = page_bad->dev->bdev;
1466		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1467
1468		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1469		if (PAGE_SIZE != ret) {
1470			bio_put(bio);
1471			return -EIO;
1472		}
1473
1474		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1475			btrfs_dev_stat_inc_and_print(page_bad->dev,
1476				BTRFS_DEV_STAT_WRITE_ERRS);
1477			btrfs_dev_replace_stats_inc(
1478				&sblock_bad->sctx->dev_root->fs_info->
1479				dev_replace.num_write_errors);
1480			bio_put(bio);
1481			return -EIO;
1482		}
1483		bio_put(bio);
1484	}
1485
1486	return 0;
1487}
1488
1489static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1490{
1491	int page_num;
1492
1493	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1494		int ret;
1495
1496		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1497		if (ret)
1498			btrfs_dev_replace_stats_inc(
1499				&sblock->sctx->dev_root->fs_info->dev_replace.
1500				num_write_errors);
1501	}
1502}
1503
1504static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1505					   int page_num)
1506{
1507	struct scrub_page *spage = sblock->pagev[page_num];
1508
1509	BUG_ON(spage->page == NULL);
1510	if (spage->io_error) {
1511		void *mapped_buffer = kmap_atomic(spage->page);
1512
1513		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1514		flush_dcache_page(spage->page);
1515		kunmap_atomic(mapped_buffer);
1516	}
1517	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1518}
1519
1520static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1521				    struct scrub_page *spage)
1522{
1523	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1524	struct scrub_bio *sbio;
1525	int ret;
1526
1527	mutex_lock(&wr_ctx->wr_lock);
1528again:
1529	if (!wr_ctx->wr_curr_bio) {
1530		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1531					      GFP_NOFS);
1532		if (!wr_ctx->wr_curr_bio) {
1533			mutex_unlock(&wr_ctx->wr_lock);
1534			return -ENOMEM;
1535		}
1536		wr_ctx->wr_curr_bio->sctx = sctx;
1537		wr_ctx->wr_curr_bio->page_count = 0;
1538	}
1539	sbio = wr_ctx->wr_curr_bio;
1540	if (sbio->page_count == 0) {
1541		struct bio *bio;
1542
1543		sbio->physical = spage->physical_for_dev_replace;
1544		sbio->logical = spage->logical;
1545		sbio->dev = wr_ctx->tgtdev;
1546		bio = sbio->bio;
1547		if (!bio) {
1548			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1549			if (!bio) {
1550				mutex_unlock(&wr_ctx->wr_lock);
1551				return -ENOMEM;
1552			}
1553			sbio->bio = bio;
1554		}
1555
1556		bio->bi_private = sbio;
1557		bio->bi_end_io = scrub_wr_bio_end_io;
1558		bio->bi_bdev = sbio->dev->bdev;
1559		bio->bi_iter.bi_sector = sbio->physical >> 9;
1560		sbio->err = 0;
1561	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1562		   spage->physical_for_dev_replace ||
1563		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1564		   spage->logical) {
1565		scrub_wr_submit(sctx);
1566		goto again;
1567	}
1568
1569	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1570	if (ret != PAGE_SIZE) {
1571		if (sbio->page_count < 1) {
1572			bio_put(sbio->bio);
1573			sbio->bio = NULL;
1574			mutex_unlock(&wr_ctx->wr_lock);
1575			return -EIO;
1576		}
1577		scrub_wr_submit(sctx);
1578		goto again;
1579	}
1580
1581	sbio->pagev[sbio->page_count] = spage;
1582	scrub_page_get(spage);
1583	sbio->page_count++;
1584	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1585		scrub_wr_submit(sctx);
1586	mutex_unlock(&wr_ctx->wr_lock);
1587
1588	return 0;
1589}
1590
1591static void scrub_wr_submit(struct scrub_ctx *sctx)
1592{
1593	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1594	struct scrub_bio *sbio;
1595
1596	if (!wr_ctx->wr_curr_bio)
1597		return;
1598
1599	sbio = wr_ctx->wr_curr_bio;
1600	wr_ctx->wr_curr_bio = NULL;
1601	WARN_ON(!sbio->bio->bi_bdev);
1602	scrub_pending_bio_inc(sctx);
1603	/* process all writes in a single worker thread. Then the block layer
1604	 * orders the requests before sending them to the driver which
1605	 * doubled the write performance on spinning disks when measured
1606	 * with Linux 3.5 */
1607	btrfsic_submit_bio(WRITE, sbio->bio);
1608}
1609
1610static void scrub_wr_bio_end_io(struct bio *bio, int err)
1611{
1612	struct scrub_bio *sbio = bio->bi_private;
1613	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
 
1614
1615	sbio->err = err;
1616	sbio->bio = bio;
1617
1618	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1619	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1620}
1621
1622static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1623{
1624	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1625	struct scrub_ctx *sctx = sbio->sctx;
 
 
1626	int i;
 
 
 
1627
1628	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1629	if (sbio->err) {
1630		struct btrfs_dev_replace *dev_replace =
1631			&sbio->sctx->dev_root->fs_info->dev_replace;
1632
1633		for (i = 0; i < sbio->page_count; i++) {
1634			struct scrub_page *spage = sbio->pagev[i];
1635
1636			spage->io_error = 1;
1637			btrfs_dev_replace_stats_inc(&dev_replace->
1638						    num_write_errors);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1639		}
 
 
 
1640	}
1641
1642	for (i = 0; i < sbio->page_count; i++)
1643		scrub_page_put(sbio->pagev[i]);
1644
1645	bio_put(sbio->bio);
1646	kfree(sbio);
1647	scrub_pending_bio_dec(sctx);
 
 
 
1648}
1649
1650static int scrub_checksum(struct scrub_block *sblock)
 
1651{
1652	u64 flags;
1653	int ret;
1654
1655	WARN_ON(sblock->page_count < 1);
1656	flags = sblock->pagev[0]->flags;
1657	ret = 0;
1658	if (flags & BTRFS_EXTENT_FLAG_DATA)
1659		ret = scrub_checksum_data(sblock);
1660	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1661		ret = scrub_checksum_tree_block(sblock);
1662	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1663		(void)scrub_checksum_super(sblock);
1664	else
1665		WARN_ON(1);
1666	if (ret)
1667		scrub_handle_errored_block(sblock);
1668
1669	return ret;
1670}
1671
1672static int scrub_checksum_data(struct scrub_block *sblock)
1673{
1674	struct scrub_ctx *sctx = sblock->sctx;
1675	u8 csum[BTRFS_CSUM_SIZE];
1676	u8 *on_disk_csum;
1677	struct page *page;
1678	void *buffer;
1679	u32 crc = ~(u32)0;
1680	int fail = 0;
1681	u64 len;
1682	int index;
1683
1684	BUG_ON(sblock->page_count < 1);
1685	if (!sblock->pagev[0]->have_csum)
1686		return 0;
1687
1688	on_disk_csum = sblock->pagev[0]->csum;
1689	page = sblock->pagev[0]->page;
1690	buffer = kmap_atomic(page);
1691
1692	len = sctx->sectorsize;
1693	index = 0;
1694	for (;;) {
1695		u64 l = min_t(u64, len, PAGE_SIZE);
1696
1697		crc = btrfs_csum_data(buffer, crc, l);
1698		kunmap_atomic(buffer);
1699		len -= l;
1700		if (len == 0)
1701			break;
1702		index++;
1703		BUG_ON(index >= sblock->page_count);
1704		BUG_ON(!sblock->pagev[index]->page);
1705		page = sblock->pagev[index]->page;
1706		buffer = kmap_atomic(page);
1707	}
1708
1709	btrfs_csum_final(crc, csum);
1710	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1711		fail = 1;
1712
 
 
 
 
 
 
 
1713	return fail;
1714}
1715
1716static int scrub_checksum_tree_block(struct scrub_block *sblock)
 
 
1717{
1718	struct scrub_ctx *sctx = sblock->sctx;
1719	struct btrfs_header *h;
1720	struct btrfs_root *root = sctx->dev_root;
1721	struct btrfs_fs_info *fs_info = root->fs_info;
1722	u8 calculated_csum[BTRFS_CSUM_SIZE];
1723	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1724	struct page *page;
1725	void *mapped_buffer;
1726	u64 mapped_size;
1727	void *p;
1728	u32 crc = ~(u32)0;
1729	int fail = 0;
1730	int crc_fail = 0;
1731	u64 len;
1732	int index;
1733
1734	BUG_ON(sblock->page_count < 1);
1735	page = sblock->pagev[0]->page;
1736	mapped_buffer = kmap_atomic(page);
1737	h = (struct btrfs_header *)mapped_buffer;
1738	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1739
1740	/*
1741	 * we don't use the getter functions here, as we
1742	 * a) don't have an extent buffer and
1743	 * b) the page is already kmapped
1744	 */
 
1745
1746	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1747		++fail;
1748
1749	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1750		++fail;
1751
1752	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1753		++fail;
1754
1755	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1756		   BTRFS_UUID_SIZE))
1757		++fail;
1758
1759	WARN_ON(sctx->nodesize != sctx->leafsize);
1760	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1761	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1762	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1763	index = 0;
1764	for (;;) {
1765		u64 l = min_t(u64, len, mapped_size);
1766
1767		crc = btrfs_csum_data(p, crc, l);
1768		kunmap_atomic(mapped_buffer);
1769		len -= l;
1770		if (len == 0)
1771			break;
1772		index++;
1773		BUG_ON(index >= sblock->page_count);
1774		BUG_ON(!sblock->pagev[index]->page);
1775		page = sblock->pagev[index]->page;
1776		mapped_buffer = kmap_atomic(page);
1777		mapped_size = PAGE_SIZE;
1778		p = mapped_buffer;
1779	}
1780
1781	btrfs_csum_final(crc, calculated_csum);
1782	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1783		++crc_fail;
 
 
 
 
 
1784
1785	return fail || crc_fail;
1786}
1787
1788static int scrub_checksum_super(struct scrub_block *sblock)
1789{
1790	struct btrfs_super_block *s;
1791	struct scrub_ctx *sctx = sblock->sctx;
1792	struct btrfs_root *root = sctx->dev_root;
 
1793	struct btrfs_fs_info *fs_info = root->fs_info;
1794	u8 calculated_csum[BTRFS_CSUM_SIZE];
1795	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1796	struct page *page;
1797	void *mapped_buffer;
1798	u64 mapped_size;
1799	void *p;
1800	u32 crc = ~(u32)0;
1801	int fail_gen = 0;
1802	int fail_cor = 0;
1803	u64 len;
1804	int index;
1805
1806	BUG_ON(sblock->page_count < 1);
1807	page = sblock->pagev[0]->page;
1808	mapped_buffer = kmap_atomic(page);
1809	s = (struct btrfs_super_block *)mapped_buffer;
1810	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1811
1812	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1813		++fail_cor;
1814
1815	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1816		++fail_gen;
 
 
 
1817
1818	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1819		++fail_cor;
1820
1821	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1822	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1823	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1824	index = 0;
1825	for (;;) {
1826		u64 l = min_t(u64, len, mapped_size);
1827
1828		crc = btrfs_csum_data(p, crc, l);
1829		kunmap_atomic(mapped_buffer);
1830		len -= l;
1831		if (len == 0)
1832			break;
1833		index++;
1834		BUG_ON(index >= sblock->page_count);
1835		BUG_ON(!sblock->pagev[index]->page);
1836		page = sblock->pagev[index]->page;
1837		mapped_buffer = kmap_atomic(page);
1838		mapped_size = PAGE_SIZE;
1839		p = mapped_buffer;
1840	}
1841
1842	btrfs_csum_final(crc, calculated_csum);
1843	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1844		++fail_cor;
1845
1846	if (fail_cor + fail_gen) {
1847		/*
1848		 * if we find an error in a super block, we just report it.
1849		 * They will get written with the next transaction commit
1850		 * anyway
1851		 */
1852		spin_lock(&sctx->stat_lock);
1853		++sctx->stat.super_errors;
1854		spin_unlock(&sctx->stat_lock);
1855		if (fail_cor)
1856			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1857				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1858		else
1859			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1860				BTRFS_DEV_STAT_GENERATION_ERRS);
1861	}
1862
1863	return fail_cor + fail_gen;
1864}
1865
1866static void scrub_block_get(struct scrub_block *sblock)
1867{
1868	atomic_inc(&sblock->ref_count);
1869}
 
 
 
 
 
 
 
 
 
 
1870
1871static void scrub_block_put(struct scrub_block *sblock)
1872{
1873	if (atomic_dec_and_test(&sblock->ref_count)) {
1874		int i;
1875
1876		for (i = 0; i < sblock->page_count; i++)
1877			scrub_page_put(sblock->pagev[i]);
1878		kfree(sblock);
1879	}
1880}
1881
1882static void scrub_page_get(struct scrub_page *spage)
1883{
1884	atomic_inc(&spage->ref_count);
1885}
1886
1887static void scrub_page_put(struct scrub_page *spage)
1888{
1889	if (atomic_dec_and_test(&spage->ref_count)) {
1890		if (spage->page)
1891			__free_page(spage->page);
1892		kfree(spage);
1893	}
1894}
1895
1896static void scrub_submit(struct scrub_ctx *sctx)
1897{
1898	struct scrub_bio *sbio;
 
 
1899
1900	if (sctx->curr == -1)
1901		return;
1902
1903	sbio = sctx->bios[sctx->curr];
1904	sctx->curr = -1;
1905	scrub_pending_bio_inc(sctx);
1906
1907	if (!sbio->bio->bi_bdev) {
1908		/*
1909		 * this case should not happen. If btrfs_map_block() is
1910		 * wrong, it could happen for dev-replace operations on
1911		 * missing devices when no mirrors are available, but in
1912		 * this case it should already fail the mount.
1913		 * This case is handled correctly (but _very_ slowly).
1914		 */
1915		printk_ratelimited(KERN_WARNING
1916			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1917		bio_endio(sbio->bio, -EIO);
1918	} else {
1919		btrfsic_submit_bio(READ, sbio->bio);
1920	}
1921}
1922
1923static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1924				    struct scrub_page *spage)
 
1925{
1926	struct scrub_block *sblock = spage->sblock;
1927	struct scrub_bio *sbio;
1928	int ret;
1929
1930again:
1931	/*
1932	 * grab a fresh bio or wait for one to become available
1933	 */
1934	while (sctx->curr == -1) {
1935		spin_lock(&sctx->list_lock);
1936		sctx->curr = sctx->first_free;
1937		if (sctx->curr != -1) {
1938			sctx->first_free = sctx->bios[sctx->curr]->next_free;
1939			sctx->bios[sctx->curr]->next_free = -1;
1940			sctx->bios[sctx->curr]->page_count = 0;
1941			spin_unlock(&sctx->list_lock);
1942		} else {
1943			spin_unlock(&sctx->list_lock);
1944			wait_event(sctx->list_wait, sctx->first_free != -1);
1945		}
1946	}
1947	sbio = sctx->bios[sctx->curr];
1948	if (sbio->page_count == 0) {
1949		struct bio *bio;
1950
1951		sbio->physical = spage->physical;
1952		sbio->logical = spage->logical;
1953		sbio->dev = spage->dev;
1954		bio = sbio->bio;
1955		if (!bio) {
1956			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1957			if (!bio)
1958				return -ENOMEM;
1959			sbio->bio = bio;
1960		}
1961
1962		bio->bi_private = sbio;
1963		bio->bi_end_io = scrub_bio_end_io;
1964		bio->bi_bdev = sbio->dev->bdev;
1965		bio->bi_iter.bi_sector = sbio->physical >> 9;
1966		sbio->err = 0;
1967	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1968		   spage->physical ||
1969		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1970		   spage->logical ||
1971		   sbio->dev != spage->dev) {
1972		scrub_submit(sctx);
1973		goto again;
1974	}
1975
1976	sbio->pagev[sbio->page_count] = spage;
1977	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1978	if (ret != PAGE_SIZE) {
1979		if (sbio->page_count < 1) {
1980			bio_put(sbio->bio);
1981			sbio->bio = NULL;
1982			return -EIO;
1983		}
1984		scrub_submit(sctx);
1985		goto again;
1986	}
1987
1988	scrub_block_get(sblock); /* one for the page added to the bio */
1989	atomic_inc(&sblock->outstanding_pages);
1990	sbio->page_count++;
1991	if (sbio->page_count == sctx->pages_per_rd_bio)
1992		scrub_submit(sctx);
1993
1994	return 0;
1995}
1996
1997static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1998		       u64 physical, struct btrfs_device *dev, u64 flags,
1999		       u64 gen, int mirror_num, u8 *csum, int force,
2000		       u64 physical_for_dev_replace)
2001{
2002	struct scrub_block *sblock;
2003	int index;
2004
2005	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2006	if (!sblock) {
2007		spin_lock(&sctx->stat_lock);
2008		sctx->stat.malloc_errors++;
2009		spin_unlock(&sctx->stat_lock);
2010		return -ENOMEM;
2011	}
2012
2013	/* one ref inside this function, plus one for each page added to
2014	 * a bio later on */
2015	atomic_set(&sblock->ref_count, 1);
2016	sblock->sctx = sctx;
2017	sblock->no_io_error_seen = 1;
2018
2019	for (index = 0; len > 0; index++) {
2020		struct scrub_page *spage;
2021		u64 l = min_t(u64, len, PAGE_SIZE);
2022
2023		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2024		if (!spage) {
2025leave_nomem:
2026			spin_lock(&sctx->stat_lock);
2027			sctx->stat.malloc_errors++;
2028			spin_unlock(&sctx->stat_lock);
2029			scrub_block_put(sblock);
2030			return -ENOMEM;
2031		}
2032		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2033		scrub_page_get(spage);
2034		sblock->pagev[index] = spage;
2035		spage->sblock = sblock;
2036		spage->dev = dev;
2037		spage->flags = flags;
2038		spage->generation = gen;
2039		spage->logical = logical;
2040		spage->physical = physical;
2041		spage->physical_for_dev_replace = physical_for_dev_replace;
2042		spage->mirror_num = mirror_num;
2043		if (csum) {
2044			spage->have_csum = 1;
2045			memcpy(spage->csum, csum, sctx->csum_size);
2046		} else {
2047			spage->have_csum = 0;
2048		}
2049		sblock->page_count++;
2050		spage->page = alloc_page(GFP_NOFS);
2051		if (!spage->page)
2052			goto leave_nomem;
2053		len -= l;
2054		logical += l;
2055		physical += l;
2056		physical_for_dev_replace += l;
2057	}
2058
2059	WARN_ON(sblock->page_count == 0);
2060	for (index = 0; index < sblock->page_count; index++) {
2061		struct scrub_page *spage = sblock->pagev[index];
2062		int ret;
2063
2064		ret = scrub_add_page_to_rd_bio(sctx, spage);
2065		if (ret) {
2066			scrub_block_put(sblock);
2067			return ret;
2068		}
2069	}
2070
2071	if (force)
2072		scrub_submit(sctx);
2073
2074	/* last one frees, either here or in bio completion for last page */
2075	scrub_block_put(sblock);
2076	return 0;
2077}
2078
2079static void scrub_bio_end_io(struct bio *bio, int err)
2080{
2081	struct scrub_bio *sbio = bio->bi_private;
2082	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2083
2084	sbio->err = err;
2085	sbio->bio = bio;
2086
2087	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2088}
2089
2090static void scrub_bio_end_io_worker(struct btrfs_work *work)
2091{
2092	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2093	struct scrub_ctx *sctx = sbio->sctx;
2094	int i;
2095
2096	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2097	if (sbio->err) {
2098		for (i = 0; i < sbio->page_count; i++) {
2099			struct scrub_page *spage = sbio->pagev[i];
2100
2101			spage->io_error = 1;
2102			spage->sblock->no_io_error_seen = 0;
2103		}
2104	}
2105
2106	/* now complete the scrub_block items that have all pages completed */
2107	for (i = 0; i < sbio->page_count; i++) {
2108		struct scrub_page *spage = sbio->pagev[i];
2109		struct scrub_block *sblock = spage->sblock;
2110
2111		if (atomic_dec_and_test(&sblock->outstanding_pages))
2112			scrub_block_complete(sblock);
2113		scrub_block_put(sblock);
2114	}
2115
2116	bio_put(sbio->bio);
2117	sbio->bio = NULL;
2118	spin_lock(&sctx->list_lock);
2119	sbio->next_free = sctx->first_free;
2120	sctx->first_free = sbio->index;
2121	spin_unlock(&sctx->list_lock);
2122
2123	if (sctx->is_dev_replace &&
2124	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2125		mutex_lock(&sctx->wr_ctx.wr_lock);
2126		scrub_wr_submit(sctx);
2127		mutex_unlock(&sctx->wr_ctx.wr_lock);
2128	}
2129
2130	scrub_pending_bio_dec(sctx);
2131}
2132
2133static void scrub_block_complete(struct scrub_block *sblock)
2134{
2135	if (!sblock->no_io_error_seen) {
2136		scrub_handle_errored_block(sblock);
2137	} else {
2138		/*
2139		 * if has checksum error, write via repair mechanism in
2140		 * dev replace case, otherwise write here in dev replace
2141		 * case.
2142		 */
2143		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2144			scrub_write_block_to_dev_replace(sblock);
2145	}
2146}
2147
2148static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2149			   u8 *csum)
2150{
2151	struct btrfs_ordered_sum *sum = NULL;
2152	unsigned long index;
 
2153	unsigned long num_sectors;
 
2154
2155	while (!list_empty(&sctx->csum_list)) {
2156		sum = list_first_entry(&sctx->csum_list,
2157				       struct btrfs_ordered_sum, list);
2158		if (sum->bytenr > logical)
2159			return 0;
2160		if (sum->bytenr + sum->len > logical)
2161			break;
2162
2163		++sctx->stat.csum_discards;
2164		list_del(&sum->list);
2165		kfree(sum);
2166		sum = NULL;
2167	}
2168	if (!sum)
2169		return 0;
2170
2171	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2172	num_sectors = sum->len / sctx->sectorsize;
2173	memcpy(csum, sum->sums + index, sctx->csum_size);
2174	if (index == num_sectors - 1) {
 
 
 
 
 
2175		list_del(&sum->list);
2176		kfree(sum);
2177	}
2178	return 1;
2179}
2180
2181/* scrub extent tries to collect up to 64 kB for each bio */
2182static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2183			u64 physical, struct btrfs_device *dev, u64 flags,
2184			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2185{
2186	int ret;
2187	u8 csum[BTRFS_CSUM_SIZE];
2188	u32 blocksize;
2189
2190	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2191		blocksize = sctx->sectorsize;
2192		spin_lock(&sctx->stat_lock);
2193		sctx->stat.data_extents_scrubbed++;
2194		sctx->stat.data_bytes_scrubbed += len;
2195		spin_unlock(&sctx->stat_lock);
2196	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2197		WARN_ON(sctx->nodesize != sctx->leafsize);
2198		blocksize = sctx->nodesize;
2199		spin_lock(&sctx->stat_lock);
2200		sctx->stat.tree_extents_scrubbed++;
2201		sctx->stat.tree_bytes_scrubbed += len;
2202		spin_unlock(&sctx->stat_lock);
2203	} else {
2204		blocksize = sctx->sectorsize;
2205		WARN_ON(1);
2206	}
2207
2208	while (len) {
2209		u64 l = min_t(u64, len, blocksize);
2210		int have_csum = 0;
2211
2212		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2213			/* push csums to sbio */
2214			have_csum = scrub_find_csum(sctx, logical, l, csum);
2215			if (have_csum == 0)
2216				++sctx->stat.no_csum;
2217			if (sctx->is_dev_replace && !have_csum) {
2218				ret = copy_nocow_pages(sctx, logical, l,
2219						       mirror_num,
2220						      physical_for_dev_replace);
2221				goto behind_scrub_pages;
2222			}
2223		}
2224		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2225				  mirror_num, have_csum ? csum : NULL, 0,
2226				  physical_for_dev_replace);
2227behind_scrub_pages:
2228		if (ret)
2229			return ret;
2230		len -= l;
2231		logical += l;
2232		physical += l;
2233		physical_for_dev_replace += l;
2234	}
2235	return 0;
2236}
2237
2238/*
2239 * Given a physical address, this will calculate it's
2240 * logical offset. if this is a parity stripe, it will return
2241 * the most left data stripe's logical offset.
2242 *
2243 * return 0 if it is a data stripe, 1 means parity stripe.
2244 */
2245static int get_raid56_logic_offset(u64 physical, int num,
2246				   struct map_lookup *map, u64 *offset)
2247{
2248	int i;
2249	int j = 0;
2250	u64 stripe_nr;
2251	u64 last_offset;
2252	int stripe_index;
2253	int rot;
2254
2255	last_offset = (physical - map->stripes[num].physical) *
2256		      nr_data_stripes(map);
2257	*offset = last_offset;
2258	for (i = 0; i < nr_data_stripes(map); i++) {
2259		*offset = last_offset + i * map->stripe_len;
2260
2261		stripe_nr = *offset;
2262		do_div(stripe_nr, map->stripe_len);
2263		do_div(stripe_nr, nr_data_stripes(map));
2264
2265		/* Work out the disk rotation on this stripe-set */
2266		rot = do_div(stripe_nr, map->num_stripes);
2267		/* calculate which stripe this data locates */
2268		rot += i;
2269		stripe_index = rot % map->num_stripes;
2270		if (stripe_index == num)
2271			return 0;
2272		if (stripe_index < num)
2273			j++;
2274	}
2275	*offset = last_offset + j * map->stripe_len;
2276	return 1;
2277}
2278
2279static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2280					   struct map_lookup *map,
2281					   struct btrfs_device *scrub_dev,
2282					   int num, u64 base, u64 length,
2283					   int is_dev_replace)
2284{
2285	struct btrfs_path *path;
2286	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2287	struct btrfs_root *root = fs_info->extent_root;
2288	struct btrfs_root *csum_root = fs_info->csum_root;
2289	struct btrfs_extent_item *extent;
2290	struct blk_plug plug;
2291	u64 flags;
2292	int ret;
2293	int slot;
 
2294	u64 nstripes;
 
2295	struct extent_buffer *l;
2296	struct btrfs_key key;
2297	u64 physical;
2298	u64 logical;
2299	u64 logic_end;
2300	u64 physical_end;
2301	u64 generation;
2302	int mirror_num;
2303	struct reada_control *reada1;
2304	struct reada_control *reada2;
2305	struct btrfs_key key_start;
2306	struct btrfs_key key_end;
2307	u64 increment = map->stripe_len;
2308	u64 offset;
2309	u64 extent_logical;
2310	u64 extent_physical;
2311	u64 extent_len;
2312	struct btrfs_device *extent_dev;
2313	int extent_mirror_num;
2314	int stop_loop = 0;
2315
2316	nstripes = length;
2317	physical = map->stripes[num].physical;
2318	offset = 0;
2319	do_div(nstripes, map->stripe_len);
2320	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2321		offset = map->stripe_len * num;
2322		increment = map->stripe_len * map->num_stripes;
2323		mirror_num = 1;
2324	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2325		int factor = map->num_stripes / map->sub_stripes;
2326		offset = map->stripe_len * (num / map->sub_stripes);
2327		increment = map->stripe_len * factor;
2328		mirror_num = num % map->sub_stripes + 1;
2329	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2330		increment = map->stripe_len;
2331		mirror_num = num % map->num_stripes + 1;
2332	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2333		increment = map->stripe_len;
2334		mirror_num = num % map->num_stripes + 1;
2335	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2336				BTRFS_BLOCK_GROUP_RAID6)) {
2337		get_raid56_logic_offset(physical, num, map, &offset);
2338		increment = map->stripe_len * nr_data_stripes(map);
2339		mirror_num = 1;
2340	} else {
2341		increment = map->stripe_len;
2342		mirror_num = 1;
2343	}
2344
2345	path = btrfs_alloc_path();
2346	if (!path)
2347		return -ENOMEM;
2348
2349	/*
2350	 * work on commit root. The related disk blocks are static as
2351	 * long as COW is applied. This means, it is save to rewrite
2352	 * them to repair disk errors without any race conditions
2353	 */
2354	path->search_commit_root = 1;
2355	path->skip_locking = 1;
2356
2357	/*
2358	 * trigger the readahead for extent tree csum tree and wait for
2359	 * completion. During readahead, the scrub is officially paused
2360	 * to not hold off transaction commits
2361	 */
2362	logical = base + offset;
2363	physical_end = physical + nstripes * map->stripe_len;
2364	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2365			 BTRFS_BLOCK_GROUP_RAID6)) {
2366		get_raid56_logic_offset(physical_end, num,
2367					map, &logic_end);
2368		logic_end += base;
2369	} else {
2370		logic_end = logical + increment * nstripes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2371	}
2372	wait_event(sctx->list_wait,
2373		   atomic_read(&sctx->bios_in_flight) == 0);
2374	scrub_blocked_if_needed(fs_info);
2375
2376	/* FIXME it might be better to start readahead at commit root */
2377	key_start.objectid = logical;
2378	key_start.type = BTRFS_EXTENT_ITEM_KEY;
2379	key_start.offset = (u64)0;
2380	key_end.objectid = logic_end;
2381	key_end.type = BTRFS_METADATA_ITEM_KEY;
2382	key_end.offset = (u64)-1;
2383	reada1 = btrfs_reada_add(root, &key_start, &key_end);
2384
2385	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2386	key_start.type = BTRFS_EXTENT_CSUM_KEY;
2387	key_start.offset = logical;
2388	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2389	key_end.type = BTRFS_EXTENT_CSUM_KEY;
2390	key_end.offset = logic_end;
2391	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2392
2393	if (!IS_ERR(reada1))
2394		btrfs_reada_wait(reada1);
2395	if (!IS_ERR(reada2))
2396		btrfs_reada_wait(reada2);
2397
2398
2399	/*
2400	 * collect all data csums for the stripe to avoid seeking during
2401	 * the scrub. This might currently (crc32) end up to be about 1MB
2402	 */
 
2403	blk_start_plug(&plug);
 
 
 
 
 
 
 
 
2404
 
 
 
2405	/*
2406	 * now find all extents for each stripe and scrub them
2407	 */
 
 
2408	ret = 0;
2409	while (physical < physical_end) {
2410		/* for raid56, we skip parity stripe */
2411		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2412				BTRFS_BLOCK_GROUP_RAID6)) {
2413			ret = get_raid56_logic_offset(physical, num,
2414					map, &logical);
2415			logical += base;
2416			if (ret)
2417				goto skip;
2418		}
2419		/*
2420		 * canceled?
2421		 */
2422		if (atomic_read(&fs_info->scrub_cancel_req) ||
2423		    atomic_read(&sctx->cancel_req)) {
2424			ret = -ECANCELED;
2425			goto out;
2426		}
2427		/*
2428		 * check to see if we have to pause
2429		 */
2430		if (atomic_read(&fs_info->scrub_pause_req)) {
2431			/* push queued extents */
2432			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2433			scrub_submit(sctx);
2434			mutex_lock(&sctx->wr_ctx.wr_lock);
2435			scrub_wr_submit(sctx);
2436			mutex_unlock(&sctx->wr_ctx.wr_lock);
2437			wait_event(sctx->list_wait,
2438				   atomic_read(&sctx->bios_in_flight) == 0);
2439			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2440			scrub_blocked_if_needed(fs_info);
 
 
 
 
 
 
 
 
 
2441		}
2442
2443		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2444			key.type = BTRFS_METADATA_ITEM_KEY;
2445		else
2446			key.type = BTRFS_EXTENT_ITEM_KEY;
2447		key.objectid = logical;
2448		key.offset = (u64)-1;
 
2449
2450		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2451		if (ret < 0)
2452			goto out;
2453
2454		if (ret > 0) {
2455			ret = btrfs_previous_extent_item(root, path, 0);
 
2456			if (ret < 0)
2457				goto out;
2458			if (ret > 0) {
2459				/* there's no smaller item, so stick with the
2460				 * larger one */
2461				btrfs_release_path(path);
2462				ret = btrfs_search_slot(NULL, root, &key,
2463							path, 0, 0);
2464				if (ret < 0)
2465					goto out;
2466			}
2467		}
2468
2469		stop_loop = 0;
2470		while (1) {
2471			u64 bytes;
2472
2473			l = path->nodes[0];
2474			slot = path->slots[0];
2475			if (slot >= btrfs_header_nritems(l)) {
2476				ret = btrfs_next_leaf(root, path);
2477				if (ret == 0)
2478					continue;
2479				if (ret < 0)
2480					goto out;
2481
2482				stop_loop = 1;
2483				break;
2484			}
2485			btrfs_item_key_to_cpu(l, &key, slot);
2486
2487			if (key.type == BTRFS_METADATA_ITEM_KEY)
2488				bytes = root->leafsize;
2489			else
2490				bytes = key.offset;
2491
2492			if (key.objectid + bytes <= logical)
2493				goto next;
2494
2495			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2496			    key.type != BTRFS_METADATA_ITEM_KEY)
2497				goto next;
2498
2499			if (key.objectid >= logical + map->stripe_len) {
2500				/* out of this device extent */
2501				if (key.objectid >= logic_end)
2502					stop_loop = 1;
2503				break;
2504			}
2505
2506			extent = btrfs_item_ptr(l, slot,
2507						struct btrfs_extent_item);
2508			flags = btrfs_extent_flags(l, extent);
2509			generation = btrfs_extent_generation(l, extent);
2510
2511			if (key.objectid < logical &&
2512			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2513				btrfs_err(fs_info,
2514					   "scrub: tree block %llu spanning "
2515					   "stripes, ignored. logical=%llu",
2516				       key.objectid, logical);
 
2517				goto next;
2518			}
2519
2520again:
2521			extent_logical = key.objectid;
2522			extent_len = bytes;
2523
2524			/*
2525			 * trim extent to this stripe
2526			 */
2527			if (extent_logical < logical) {
2528				extent_len -= logical - extent_logical;
2529				extent_logical = logical;
2530			}
2531			if (extent_logical + extent_len >
2532			    logical + map->stripe_len) {
2533				extent_len = logical + map->stripe_len -
2534					     extent_logical;
2535			}
2536
2537			extent_physical = extent_logical - logical + physical;
2538			extent_dev = scrub_dev;
2539			extent_mirror_num = mirror_num;
2540			if (is_dev_replace)
2541				scrub_remap_extent(fs_info, extent_logical,
2542						   extent_len, &extent_physical,
2543						   &extent_dev,
2544						   &extent_mirror_num);
2545
2546			ret = btrfs_lookup_csums_range(csum_root, logical,
2547						logical + map->stripe_len - 1,
2548						&sctx->csum_list, 1);
2549			if (ret)
2550				goto out;
2551
2552			ret = scrub_extent(sctx, extent_logical, extent_len,
2553					   extent_physical, extent_dev, flags,
2554					   generation, extent_mirror_num,
2555					   extent_logical - logical + physical);
2556			if (ret)
2557				goto out;
2558
2559			scrub_free_csums(sctx);
2560			if (extent_logical + extent_len <
2561			    key.objectid + bytes) {
2562				if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2563					BTRFS_BLOCK_GROUP_RAID6)) {
2564					/*
2565					 * loop until we find next data stripe
2566					 * or we have finished all stripes.
2567					 */
2568					do {
2569						physical += map->stripe_len;
2570						ret = get_raid56_logic_offset(
2571								physical, num,
2572								map, &logical);
2573						logical += base;
2574					} while (physical < physical_end && ret);
2575				} else {
2576					physical += map->stripe_len;
2577					logical += increment;
2578				}
2579				if (logical < key.objectid + bytes) {
2580					cond_resched();
2581					goto again;
2582				}
2583
2584				if (physical >= physical_end) {
2585					stop_loop = 1;
2586					break;
2587				}
2588			}
2589next:
2590			path->slots[0]++;
2591		}
2592		btrfs_release_path(path);
2593skip:
2594		logical += increment;
2595		physical += map->stripe_len;
2596		spin_lock(&sctx->stat_lock);
2597		if (stop_loop)
2598			sctx->stat.last_physical = map->stripes[num].physical +
2599						   length;
2600		else
2601			sctx->stat.last_physical = physical;
2602		spin_unlock(&sctx->stat_lock);
2603		if (stop_loop)
2604			break;
2605	}
2606out:
2607	/* push queued extents */
2608	scrub_submit(sctx);
2609	mutex_lock(&sctx->wr_ctx.wr_lock);
2610	scrub_wr_submit(sctx);
2611	mutex_unlock(&sctx->wr_ctx.wr_lock);
2612
 
2613	blk_finish_plug(&plug);
 
2614	btrfs_free_path(path);
2615	return ret < 0 ? ret : 0;
2616}
2617
2618static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2619					  struct btrfs_device *scrub_dev,
2620					  u64 chunk_tree, u64 chunk_objectid,
2621					  u64 chunk_offset, u64 length,
2622					  u64 dev_offset, int is_dev_replace)
2623{
2624	struct btrfs_mapping_tree *map_tree =
2625		&sctx->dev_root->fs_info->mapping_tree;
2626	struct map_lookup *map;
2627	struct extent_map *em;
2628	int i;
2629	int ret = 0;
2630
2631	read_lock(&map_tree->map_tree.lock);
2632	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2633	read_unlock(&map_tree->map_tree.lock);
2634
2635	if (!em)
2636		return -EINVAL;
2637
2638	map = (struct map_lookup *)em->bdev;
2639	if (em->start != chunk_offset)
2640		goto out;
2641
2642	if (em->len < length)
2643		goto out;
2644
2645	for (i = 0; i < map->num_stripes; ++i) {
2646		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2647		    map->stripes[i].physical == dev_offset) {
2648			ret = scrub_stripe(sctx, map, scrub_dev, i,
2649					   chunk_offset, length,
2650					   is_dev_replace);
2651			if (ret)
2652				goto out;
2653		}
2654	}
2655out:
2656	free_extent_map(em);
2657
2658	return ret;
2659}
2660
2661static noinline_for_stack
2662int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2663			   struct btrfs_device *scrub_dev, u64 start, u64 end,
2664			   int is_dev_replace)
2665{
2666	struct btrfs_dev_extent *dev_extent = NULL;
2667	struct btrfs_path *path;
2668	struct btrfs_root *root = sctx->dev_root;
2669	struct btrfs_fs_info *fs_info = root->fs_info;
2670	u64 length;
2671	u64 chunk_tree;
2672	u64 chunk_objectid;
2673	u64 chunk_offset;
2674	int ret;
2675	int slot;
2676	struct extent_buffer *l;
2677	struct btrfs_key key;
2678	struct btrfs_key found_key;
2679	struct btrfs_block_group_cache *cache;
2680	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2681
2682	path = btrfs_alloc_path();
2683	if (!path)
2684		return -ENOMEM;
2685
2686	path->reada = 2;
2687	path->search_commit_root = 1;
2688	path->skip_locking = 1;
2689
2690	key.objectid = scrub_dev->devid;
2691	key.offset = 0ull;
2692	key.type = BTRFS_DEV_EXTENT_KEY;
2693
 
2694	while (1) {
2695		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2696		if (ret < 0)
2697			break;
2698		if (ret > 0) {
2699			if (path->slots[0] >=
2700			    btrfs_header_nritems(path->nodes[0])) {
2701				ret = btrfs_next_leaf(root, path);
2702				if (ret)
2703					break;
2704			}
2705		}
2706
2707		l = path->nodes[0];
2708		slot = path->slots[0];
2709
2710		btrfs_item_key_to_cpu(l, &found_key, slot);
2711
2712		if (found_key.objectid != scrub_dev->devid)
2713			break;
2714
2715		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2716			break;
2717
2718		if (found_key.offset >= end)
2719			break;
2720
2721		if (found_key.offset < key.offset)
2722			break;
2723
2724		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2725		length = btrfs_dev_extent_length(l, dev_extent);
2726
2727		if (found_key.offset + length <= start) {
2728			key.offset = found_key.offset + length;
2729			btrfs_release_path(path);
2730			continue;
2731		}
2732
2733		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2734		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2735		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2736
2737		/*
2738		 * get a reference on the corresponding block group to prevent
2739		 * the chunk from going away while we scrub it
2740		 */
2741		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2742		if (!cache) {
2743			ret = -ENOENT;
2744			break;
2745		}
2746		dev_replace->cursor_right = found_key.offset + length;
2747		dev_replace->cursor_left = found_key.offset;
2748		dev_replace->item_needs_writeback = 1;
2749		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2750				  chunk_offset, length, found_key.offset,
2751				  is_dev_replace);
2752
2753		/*
2754		 * flush, submit all pending read and write bios, afterwards
2755		 * wait for them.
2756		 * Note that in the dev replace case, a read request causes
2757		 * write requests that are submitted in the read completion
2758		 * worker. Therefore in the current situation, it is required
2759		 * that all write requests are flushed, so that all read and
2760		 * write requests are really completed when bios_in_flight
2761		 * changes to 0.
2762		 */
2763		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2764		scrub_submit(sctx);
2765		mutex_lock(&sctx->wr_ctx.wr_lock);
2766		scrub_wr_submit(sctx);
2767		mutex_unlock(&sctx->wr_ctx.wr_lock);
2768
2769		wait_event(sctx->list_wait,
2770			   atomic_read(&sctx->bios_in_flight) == 0);
2771		atomic_inc(&fs_info->scrubs_paused);
2772		wake_up(&fs_info->scrub_pause_wait);
2773
2774		/*
2775		 * must be called before we decrease @scrub_paused.
2776		 * make sure we don't block transaction commit while
2777		 * we are waiting pending workers finished.
2778		 */
2779		wait_event(sctx->list_wait,
2780			   atomic_read(&sctx->workers_pending) == 0);
2781		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2782
2783		mutex_lock(&fs_info->scrub_lock);
2784		__scrub_blocked_if_needed(fs_info);
2785		atomic_dec(&fs_info->scrubs_paused);
2786		mutex_unlock(&fs_info->scrub_lock);
2787		wake_up(&fs_info->scrub_pause_wait);
2788
2789		btrfs_put_block_group(cache);
2790		if (ret)
2791			break;
2792		if (is_dev_replace &&
2793		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2794			ret = -EIO;
2795			break;
2796		}
2797		if (sctx->stat.malloc_errors > 0) {
2798			ret = -ENOMEM;
2799			break;
2800		}
2801
2802		dev_replace->cursor_left = dev_replace->cursor_right;
2803		dev_replace->item_needs_writeback = 1;
2804
2805		key.offset = found_key.offset + length;
2806		btrfs_release_path(path);
2807	}
2808
2809	btrfs_free_path(path);
2810
2811	/*
2812	 * ret can still be 1 from search_slot or next_leaf,
2813	 * that's not an error
2814	 */
2815	return ret < 0 ? ret : 0;
2816}
2817
2818static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2819					   struct btrfs_device *scrub_dev)
2820{
2821	int	i;
2822	u64	bytenr;
2823	u64	gen;
2824	int	ret;
2825	struct btrfs_root *root = sctx->dev_root;
2826
2827	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2828		return -EIO;
2829
2830	gen = root->fs_info->last_trans_committed;
2831
2832	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2833		bytenr = btrfs_sb_offset(i);
2834		if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2835			break;
2836
2837		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2838				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2839				  NULL, 1, bytenr);
2840		if (ret)
2841			return ret;
2842	}
2843	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2844
2845	return 0;
2846}
2847
2848/*
2849 * get a reference count on fs_info->scrub_workers. start worker if necessary
2850 */
2851static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2852						int is_dev_replace)
2853{
2854	int ret = 0;
2855	int flags = WQ_FREEZABLE | WQ_UNBOUND;
2856	int max_active = fs_info->thread_pool_size;
2857
 
2858	if (fs_info->scrub_workers_refcnt == 0) {
2859		if (is_dev_replace)
2860			fs_info->scrub_workers =
2861				btrfs_alloc_workqueue("btrfs-scrub", flags,
2862						      1, 4);
2863		else
2864			fs_info->scrub_workers =
2865				btrfs_alloc_workqueue("btrfs-scrub", flags,
2866						      max_active, 4);
2867		if (!fs_info->scrub_workers) {
2868			ret = -ENOMEM;
2869			goto out;
2870		}
2871		fs_info->scrub_wr_completion_workers =
2872			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
2873					      max_active, 2);
2874		if (!fs_info->scrub_wr_completion_workers) {
2875			ret = -ENOMEM;
2876			goto out;
2877		}
2878		fs_info->scrub_nocow_workers =
2879			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
2880		if (!fs_info->scrub_nocow_workers) {
2881			ret = -ENOMEM;
2882			goto out;
2883		}
2884	}
2885	++fs_info->scrub_workers_refcnt;
2886out:
2887	return ret;
 
2888}
2889
2890static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2891{
2892	if (--fs_info->scrub_workers_refcnt == 0) {
2893		btrfs_destroy_workqueue(fs_info->scrub_workers);
2894		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
2895		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
2896	}
2897	WARN_ON(fs_info->scrub_workers_refcnt < 0);
 
2898}
2899
2900int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2901		    u64 end, struct btrfs_scrub_progress *progress,
2902		    int readonly, int is_dev_replace)
2903{
2904	struct scrub_ctx *sctx;
 
2905	int ret;
2906	struct btrfs_device *dev;
2907
2908	if (btrfs_fs_closing(fs_info))
2909		return -EINVAL;
2910
2911	/*
2912	 * check some assumptions
2913	 */
2914	if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2915		btrfs_err(fs_info,
2916			   "scrub: size assumption nodesize == leafsize (%d == %d) fails",
2917		       fs_info->chunk_root->nodesize,
2918		       fs_info->chunk_root->leafsize);
2919		return -EINVAL;
2920	}
2921
2922	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2923		/*
2924		 * in this case scrub is unable to calculate the checksum
2925		 * the way scrub is implemented. Do not handle this
2926		 * situation at all because it won't ever happen.
2927		 */
2928		btrfs_err(fs_info,
2929			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2930		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2931		return -EINVAL;
2932	}
2933
2934	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2935		/* not supported for data w/o checksums */
2936		btrfs_err(fs_info,
2937			   "scrub: size assumption sectorsize != PAGE_SIZE "
2938			   "(%d != %lu) fails",
2939		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
2940		return -EINVAL;
2941	}
2942
2943	if (fs_info->chunk_root->nodesize >
2944	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2945	    fs_info->chunk_root->sectorsize >
2946	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2947		/*
2948		 * would exhaust the array bounds of pagev member in
2949		 * struct scrub_block
2950		 */
2951		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2952			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2953		       fs_info->chunk_root->nodesize,
2954		       SCRUB_MAX_PAGES_PER_BLOCK,
2955		       fs_info->chunk_root->sectorsize,
2956		       SCRUB_MAX_PAGES_PER_BLOCK);
2957		return -EINVAL;
2958	}
2959
2960
2961	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2962	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2963	if (!dev || (dev->missing && !is_dev_replace)) {
2964		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2965		return -ENODEV;
2966	}
 
2967
2968	mutex_lock(&fs_info->scrub_lock);
2969	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2970		mutex_unlock(&fs_info->scrub_lock);
2971		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2972		return -EIO;
 
2973	}
2974
2975	btrfs_dev_replace_lock(&fs_info->dev_replace);
2976	if (dev->scrub_device ||
2977	    (!is_dev_replace &&
2978	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2979		btrfs_dev_replace_unlock(&fs_info->dev_replace);
2980		mutex_unlock(&fs_info->scrub_lock);
2981		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 
2982		return -EINPROGRESS;
2983	}
2984	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2985
2986	ret = scrub_workers_get(fs_info, is_dev_replace);
2987	if (ret) {
2988		mutex_unlock(&fs_info->scrub_lock);
2989		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2990		return ret;
 
2991	}
 
 
2992
2993	sctx = scrub_setup_ctx(dev, is_dev_replace);
2994	if (IS_ERR(sctx)) {
2995		mutex_unlock(&fs_info->scrub_lock);
2996		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2997		scrub_workers_put(fs_info);
2998		return PTR_ERR(sctx);
2999	}
3000	sctx->readonly = readonly;
3001	dev->scrub_device = sctx;
3002	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3003
3004	/*
3005	 * checking @scrub_pause_req here, we can avoid
3006	 * race between committing transaction and scrubbing.
3007	 */
3008	__scrub_blocked_if_needed(fs_info);
3009	atomic_inc(&fs_info->scrubs_running);
3010	mutex_unlock(&fs_info->scrub_lock);
 
3011
3012	if (!is_dev_replace) {
3013		/*
3014		 * by holding device list mutex, we can
3015		 * kick off writing super in log tree sync.
3016		 */
3017		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3018		ret = scrub_supers(sctx, dev);
3019		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3020	}
3021
3022	if (!ret)
3023		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3024					     is_dev_replace);
 
3025
3026	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3027	atomic_dec(&fs_info->scrubs_running);
3028	wake_up(&fs_info->scrub_pause_wait);
3029
3030	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3031
3032	if (progress)
3033		memcpy(progress, &sctx->stat, sizeof(*progress));
3034
3035	mutex_lock(&fs_info->scrub_lock);
3036	dev->scrub_device = NULL;
3037	scrub_workers_put(fs_info);
3038	mutex_unlock(&fs_info->scrub_lock);
3039
3040	scrub_free_ctx(sctx);
 
3041
3042	return ret;
3043}
3044
3045void btrfs_scrub_pause(struct btrfs_root *root)
3046{
3047	struct btrfs_fs_info *fs_info = root->fs_info;
3048
3049	mutex_lock(&fs_info->scrub_lock);
3050	atomic_inc(&fs_info->scrub_pause_req);
3051	while (atomic_read(&fs_info->scrubs_paused) !=
3052	       atomic_read(&fs_info->scrubs_running)) {
3053		mutex_unlock(&fs_info->scrub_lock);
3054		wait_event(fs_info->scrub_pause_wait,
3055			   atomic_read(&fs_info->scrubs_paused) ==
3056			   atomic_read(&fs_info->scrubs_running));
3057		mutex_lock(&fs_info->scrub_lock);
3058	}
3059	mutex_unlock(&fs_info->scrub_lock);
 
 
3060}
3061
3062void btrfs_scrub_continue(struct btrfs_root *root)
3063{
3064	struct btrfs_fs_info *fs_info = root->fs_info;
3065
3066	atomic_dec(&fs_info->scrub_pause_req);
3067	wake_up(&fs_info->scrub_pause_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
3068}
3069
3070int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3071{
 
 
3072	mutex_lock(&fs_info->scrub_lock);
3073	if (!atomic_read(&fs_info->scrubs_running)) {
3074		mutex_unlock(&fs_info->scrub_lock);
3075		return -ENOTCONN;
3076	}
3077
3078	atomic_inc(&fs_info->scrub_cancel_req);
3079	while (atomic_read(&fs_info->scrubs_running)) {
3080		mutex_unlock(&fs_info->scrub_lock);
3081		wait_event(fs_info->scrub_pause_wait,
3082			   atomic_read(&fs_info->scrubs_running) == 0);
3083		mutex_lock(&fs_info->scrub_lock);
3084	}
3085	atomic_dec(&fs_info->scrub_cancel_req);
3086	mutex_unlock(&fs_info->scrub_lock);
3087
3088	return 0;
3089}
3090
3091int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3092			   struct btrfs_device *dev)
3093{
3094	struct scrub_ctx *sctx;
 
3095
3096	mutex_lock(&fs_info->scrub_lock);
3097	sctx = dev->scrub_device;
3098	if (!sctx) {
3099		mutex_unlock(&fs_info->scrub_lock);
3100		return -ENOTCONN;
3101	}
3102	atomic_inc(&sctx->cancel_req);
3103	while (dev->scrub_device) {
3104		mutex_unlock(&fs_info->scrub_lock);
3105		wait_event(fs_info->scrub_pause_wait,
3106			   dev->scrub_device == NULL);
3107		mutex_lock(&fs_info->scrub_lock);
3108	}
3109	mutex_unlock(&fs_info->scrub_lock);
3110
3111	return 0;
3112}
3113
3114int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3115			 struct btrfs_scrub_progress *progress)
3116{
 
3117	struct btrfs_device *dev;
3118	struct scrub_ctx *sctx = NULL;
3119
3120	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3121	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3122	if (dev)
3123		sctx = dev->scrub_device;
3124	if (sctx)
3125		memcpy(progress, &sctx->stat, sizeof(*progress));
3126	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3127
3128	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3129}
3130
3131static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3132			       u64 extent_logical, u64 extent_len,
3133			       u64 *extent_physical,
3134			       struct btrfs_device **extent_dev,
3135			       int *extent_mirror_num)
3136{
3137	u64 mapped_length;
3138	struct btrfs_bio *bbio = NULL;
3139	int ret;
3140
3141	mapped_length = extent_len;
3142	ret = btrfs_map_block(fs_info, READ, extent_logical,
3143			      &mapped_length, &bbio, 0);
3144	if (ret || !bbio || mapped_length < extent_len ||
3145	    !bbio->stripes[0].dev->bdev) {
3146		kfree(bbio);
3147		return;
3148	}
3149
3150	*extent_physical = bbio->stripes[0].physical;
3151	*extent_mirror_num = bbio->mirror_num;
3152	*extent_dev = bbio->stripes[0].dev;
3153	kfree(bbio);
3154}
3155
3156static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3157			      struct scrub_wr_ctx *wr_ctx,
3158			      struct btrfs_fs_info *fs_info,
3159			      struct btrfs_device *dev,
3160			      int is_dev_replace)
3161{
3162	WARN_ON(wr_ctx->wr_curr_bio != NULL);
3163
3164	mutex_init(&wr_ctx->wr_lock);
3165	wr_ctx->wr_curr_bio = NULL;
3166	if (!is_dev_replace)
3167		return 0;
3168
3169	WARN_ON(!dev->bdev);
3170	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3171					 bio_get_nr_vecs(dev->bdev));
3172	wr_ctx->tgtdev = dev;
3173	atomic_set(&wr_ctx->flush_all_writes, 0);
3174	return 0;
3175}
3176
3177static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3178{
3179	mutex_lock(&wr_ctx->wr_lock);
3180	kfree(wr_ctx->wr_curr_bio);
3181	wr_ctx->wr_curr_bio = NULL;
3182	mutex_unlock(&wr_ctx->wr_lock);
3183}
3184
3185static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3186			    int mirror_num, u64 physical_for_dev_replace)
3187{
3188	struct scrub_copy_nocow_ctx *nocow_ctx;
3189	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3190
3191	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3192	if (!nocow_ctx) {
3193		spin_lock(&sctx->stat_lock);
3194		sctx->stat.malloc_errors++;
3195		spin_unlock(&sctx->stat_lock);
3196		return -ENOMEM;
3197	}
3198
3199	scrub_pending_trans_workers_inc(sctx);
3200
3201	nocow_ctx->sctx = sctx;
3202	nocow_ctx->logical = logical;
3203	nocow_ctx->len = len;
3204	nocow_ctx->mirror_num = mirror_num;
3205	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3206	btrfs_init_work(&nocow_ctx->work, copy_nocow_pages_worker, NULL, NULL);
3207	INIT_LIST_HEAD(&nocow_ctx->inodes);
3208	btrfs_queue_work(fs_info->scrub_nocow_workers,
3209			 &nocow_ctx->work);
3210
3211	return 0;
3212}
3213
3214static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3215{
3216	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3217	struct scrub_nocow_inode *nocow_inode;
3218
3219	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3220	if (!nocow_inode)
3221		return -ENOMEM;
3222	nocow_inode->inum = inum;
3223	nocow_inode->offset = offset;
3224	nocow_inode->root = root;
3225	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3226	return 0;
3227}
3228
3229#define COPY_COMPLETE 1
3230
3231static void copy_nocow_pages_worker(struct btrfs_work *work)
3232{
3233	struct scrub_copy_nocow_ctx *nocow_ctx =
3234		container_of(work, struct scrub_copy_nocow_ctx, work);
3235	struct scrub_ctx *sctx = nocow_ctx->sctx;
3236	u64 logical = nocow_ctx->logical;
3237	u64 len = nocow_ctx->len;
3238	int mirror_num = nocow_ctx->mirror_num;
3239	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3240	int ret;
3241	struct btrfs_trans_handle *trans = NULL;
3242	struct btrfs_fs_info *fs_info;
3243	struct btrfs_path *path;
3244	struct btrfs_root *root;
3245	int not_written = 0;
3246
3247	fs_info = sctx->dev_root->fs_info;
3248	root = fs_info->extent_root;
3249
3250	path = btrfs_alloc_path();
3251	if (!path) {
3252		spin_lock(&sctx->stat_lock);
3253		sctx->stat.malloc_errors++;
3254		spin_unlock(&sctx->stat_lock);
3255		not_written = 1;
3256		goto out;
3257	}
3258
3259	trans = btrfs_join_transaction(root);
3260	if (IS_ERR(trans)) {
3261		not_written = 1;
3262		goto out;
3263	}
3264
3265	ret = iterate_inodes_from_logical(logical, fs_info, path,
3266					  record_inode_for_nocow, nocow_ctx);
3267	if (ret != 0 && ret != -ENOENT) {
3268		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3269			"phys %llu, len %llu, mir %u, ret %d",
3270			logical, physical_for_dev_replace, len, mirror_num,
3271			ret);
3272		not_written = 1;
3273		goto out;
3274	}
3275
3276	btrfs_end_transaction(trans, root);
3277	trans = NULL;
3278	while (!list_empty(&nocow_ctx->inodes)) {
3279		struct scrub_nocow_inode *entry;
3280		entry = list_first_entry(&nocow_ctx->inodes,
3281					 struct scrub_nocow_inode,
3282					 list);
3283		list_del_init(&entry->list);
3284		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3285						 entry->root, nocow_ctx);
3286		kfree(entry);
3287		if (ret == COPY_COMPLETE) {
3288			ret = 0;
3289			break;
3290		} else if (ret) {
3291			break;
3292		}
3293	}
3294out:
3295	while (!list_empty(&nocow_ctx->inodes)) {
3296		struct scrub_nocow_inode *entry;
3297		entry = list_first_entry(&nocow_ctx->inodes,
3298					 struct scrub_nocow_inode,
3299					 list);
3300		list_del_init(&entry->list);
3301		kfree(entry);
3302	}
3303	if (trans && !IS_ERR(trans))
3304		btrfs_end_transaction(trans, root);
3305	if (not_written)
3306		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3307					    num_uncorrectable_read_errors);
3308
3309	btrfs_free_path(path);
3310	kfree(nocow_ctx);
3311
3312	scrub_pending_trans_workers_dec(sctx);
3313}
3314
3315static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3316				      struct scrub_copy_nocow_ctx *nocow_ctx)
3317{
3318	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3319	struct btrfs_key key;
3320	struct inode *inode;
3321	struct page *page;
3322	struct btrfs_root *local_root;
3323	struct btrfs_ordered_extent *ordered;
3324	struct extent_map *em;
3325	struct extent_state *cached_state = NULL;
3326	struct extent_io_tree *io_tree;
3327	u64 physical_for_dev_replace;
3328	u64 len = nocow_ctx->len;
3329	u64 lockstart = offset, lockend = offset + len - 1;
3330	unsigned long index;
3331	int srcu_index;
3332	int ret = 0;
3333	int err = 0;
3334
3335	key.objectid = root;
3336	key.type = BTRFS_ROOT_ITEM_KEY;
3337	key.offset = (u64)-1;
3338
3339	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3340
3341	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3342	if (IS_ERR(local_root)) {
3343		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3344		return PTR_ERR(local_root);
3345	}
3346
3347	key.type = BTRFS_INODE_ITEM_KEY;
3348	key.objectid = inum;
3349	key.offset = 0;
3350	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3351	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3352	if (IS_ERR(inode))
3353		return PTR_ERR(inode);
3354
3355	/* Avoid truncate/dio/punch hole.. */
3356	mutex_lock(&inode->i_mutex);
3357	inode_dio_wait(inode);
3358
3359	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3360	io_tree = &BTRFS_I(inode)->io_tree;
3361
3362	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3363	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3364	if (ordered) {
3365		btrfs_put_ordered_extent(ordered);
3366		goto out_unlock;
3367	}
3368
3369	em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3370	if (IS_ERR(em)) {
3371		ret = PTR_ERR(em);
3372		goto out_unlock;
3373	}
3374
3375	/*
3376	 * This extent does not actually cover the logical extent anymore,
3377	 * move on to the next inode.
3378	 */
3379	if (em->block_start > nocow_ctx->logical ||
3380	    em->block_start + em->block_len < nocow_ctx->logical + len) {
3381		free_extent_map(em);
3382		goto out_unlock;
 
3383	}
3384	free_extent_map(em);
 
3385
3386	while (len >= PAGE_CACHE_SIZE) {
3387		index = offset >> PAGE_CACHE_SHIFT;
3388again:
3389		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3390		if (!page) {
3391			btrfs_err(fs_info, "find_or_create_page() failed");
3392			ret = -ENOMEM;
3393			goto out;
3394		}
3395
3396		if (PageUptodate(page)) {
3397			if (PageDirty(page))
3398				goto next_page;
3399		} else {
3400			ClearPageError(page);
3401			err = extent_read_full_page_nolock(io_tree, page,
3402							   btrfs_get_extent,
3403							   nocow_ctx->mirror_num);
3404			if (err) {
3405				ret = err;
3406				goto next_page;
3407			}
3408
3409			lock_page(page);
3410			/*
3411			 * If the page has been remove from the page cache,
3412			 * the data on it is meaningless, because it may be
3413			 * old one, the new data may be written into the new
3414			 * page in the page cache.
3415			 */
3416			if (page->mapping != inode->i_mapping) {
3417				unlock_page(page);
3418				page_cache_release(page);
3419				goto again;
3420			}
3421			if (!PageUptodate(page)) {
3422				ret = -EIO;
3423				goto next_page;
3424			}
3425		}
3426		err = write_page_nocow(nocow_ctx->sctx,
3427				       physical_for_dev_replace, page);
3428		if (err)
3429			ret = err;
3430next_page:
3431		unlock_page(page);
3432		page_cache_release(page);
3433
3434		if (ret)
3435			break;
3436
3437		offset += PAGE_CACHE_SIZE;
3438		physical_for_dev_replace += PAGE_CACHE_SIZE;
3439		len -= PAGE_CACHE_SIZE;
3440	}
3441	ret = COPY_COMPLETE;
3442out_unlock:
3443	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3444			     GFP_NOFS);
3445out:
3446	mutex_unlock(&inode->i_mutex);
3447	iput(inode);
3448	return ret;
3449}
3450
3451static int write_page_nocow(struct scrub_ctx *sctx,
3452			    u64 physical_for_dev_replace, struct page *page)
3453{
3454	struct bio *bio;
3455	struct btrfs_device *dev;
3456	int ret;
3457
3458	dev = sctx->wr_ctx.tgtdev;
3459	if (!dev)
3460		return -EIO;
3461	if (!dev->bdev) {
3462		printk_ratelimited(KERN_WARNING
3463			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3464		return -EIO;
3465	}
3466	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3467	if (!bio) {
3468		spin_lock(&sctx->stat_lock);
3469		sctx->stat.malloc_errors++;
3470		spin_unlock(&sctx->stat_lock);
3471		return -ENOMEM;
3472	}
3473	bio->bi_iter.bi_size = 0;
3474	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
3475	bio->bi_bdev = dev->bdev;
3476	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3477	if (ret != PAGE_CACHE_SIZE) {
3478leave_with_eio:
3479		bio_put(bio);
3480		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3481		return -EIO;
3482	}
3483
3484	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3485		goto leave_with_eio;
3486
3487	bio_put(bio);
3488	return 0;
3489}