Loading...
1/*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 Module: rt73usb
23 Abstract: rt73usb device specific routines.
24 Supported chipsets: rt2571W & rt2671.
25 */
26
27#include <linux/crc-itu-t.h>
28#include <linux/delay.h>
29#include <linux/etherdevice.h>
30#include <linux/init.h>
31#include <linux/kernel.h>
32#include <linux/module.h>
33#include <linux/slab.h>
34#include <linux/usb.h>
35
36#include "rt2x00.h"
37#include "rt2x00usb.h"
38#include "rt73usb.h"
39
40/*
41 * Allow hardware encryption to be disabled.
42 */
43static int modparam_nohwcrypt;
44module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
47/*
48 * Register access.
49 * All access to the CSR registers will go through the methods
50 * rt2x00usb_register_read and rt2x00usb_register_write.
51 * BBP and RF register require indirect register access,
52 * and use the CSR registers BBPCSR and RFCSR to achieve this.
53 * These indirect registers work with busy bits,
54 * and we will try maximal REGISTER_BUSY_COUNT times to access
55 * the register while taking a REGISTER_BUSY_DELAY us delay
56 * between each attampt. When the busy bit is still set at that time,
57 * the access attempt is considered to have failed,
58 * and we will print an error.
59 * The _lock versions must be used if you already hold the csr_mutex
60 */
61#define WAIT_FOR_BBP(__dev, __reg) \
62 rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
63#define WAIT_FOR_RF(__dev, __reg) \
64 rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
65
66static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
67 const unsigned int word, const u8 value)
68{
69 u32 reg;
70
71 mutex_lock(&rt2x00dev->csr_mutex);
72
73 /*
74 * Wait until the BBP becomes available, afterwards we
75 * can safely write the new data into the register.
76 */
77 if (WAIT_FOR_BBP(rt2x00dev, ®)) {
78 reg = 0;
79 rt2x00_set_field32(®, PHY_CSR3_VALUE, value);
80 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
81 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
82 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0);
83
84 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
85 }
86
87 mutex_unlock(&rt2x00dev->csr_mutex);
88}
89
90static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
91 const unsigned int word, u8 *value)
92{
93 u32 reg;
94
95 mutex_lock(&rt2x00dev->csr_mutex);
96
97 /*
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
104 */
105 if (WAIT_FOR_BBP(rt2x00dev, ®)) {
106 reg = 0;
107 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
108 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
109 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1);
110
111 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
112
113 WAIT_FOR_BBP(rt2x00dev, ®);
114 }
115
116 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
117
118 mutex_unlock(&rt2x00dev->csr_mutex);
119}
120
121static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
122 const unsigned int word, const u32 value)
123{
124 u32 reg;
125
126 mutex_lock(&rt2x00dev->csr_mutex);
127
128 /*
129 * Wait until the RF becomes available, afterwards we
130 * can safely write the new data into the register.
131 */
132 if (WAIT_FOR_RF(rt2x00dev, ®)) {
133 reg = 0;
134 rt2x00_set_field32(®, PHY_CSR4_VALUE, value);
135 /*
136 * RF5225 and RF2527 contain 21 bits per RF register value,
137 * all others contain 20 bits.
138 */
139 rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS,
140 20 + (rt2x00_rf(rt2x00dev, RF5225) ||
141 rt2x00_rf(rt2x00dev, RF2527)));
142 rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0);
143 rt2x00_set_field32(®, PHY_CSR4_BUSY, 1);
144
145 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
146 rt2x00_rf_write(rt2x00dev, word, value);
147 }
148
149 mutex_unlock(&rt2x00dev->csr_mutex);
150}
151
152#ifdef CONFIG_RT2X00_LIB_DEBUGFS
153static const struct rt2x00debug rt73usb_rt2x00debug = {
154 .owner = THIS_MODULE,
155 .csr = {
156 .read = rt2x00usb_register_read,
157 .write = rt2x00usb_register_write,
158 .flags = RT2X00DEBUGFS_OFFSET,
159 .word_base = CSR_REG_BASE,
160 .word_size = sizeof(u32),
161 .word_count = CSR_REG_SIZE / sizeof(u32),
162 },
163 .eeprom = {
164 .read = rt2x00_eeprom_read,
165 .write = rt2x00_eeprom_write,
166 .word_base = EEPROM_BASE,
167 .word_size = sizeof(u16),
168 .word_count = EEPROM_SIZE / sizeof(u16),
169 },
170 .bbp = {
171 .read = rt73usb_bbp_read,
172 .write = rt73usb_bbp_write,
173 .word_base = BBP_BASE,
174 .word_size = sizeof(u8),
175 .word_count = BBP_SIZE / sizeof(u8),
176 },
177 .rf = {
178 .read = rt2x00_rf_read,
179 .write = rt73usb_rf_write,
180 .word_base = RF_BASE,
181 .word_size = sizeof(u32),
182 .word_count = RF_SIZE / sizeof(u32),
183 },
184};
185#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
186
187static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
188{
189 u32 reg;
190
191 rt2x00usb_register_read(rt2x00dev, MAC_CSR13, ®);
192 return rt2x00_get_field32(reg, MAC_CSR13_BIT7);
193}
194
195#ifdef CONFIG_RT2X00_LIB_LEDS
196static void rt73usb_brightness_set(struct led_classdev *led_cdev,
197 enum led_brightness brightness)
198{
199 struct rt2x00_led *led =
200 container_of(led_cdev, struct rt2x00_led, led_dev);
201 unsigned int enabled = brightness != LED_OFF;
202 unsigned int a_mode =
203 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
204 unsigned int bg_mode =
205 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
206
207 if (led->type == LED_TYPE_RADIO) {
208 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
209 MCU_LEDCS_RADIO_STATUS, enabled);
210
211 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
212 0, led->rt2x00dev->led_mcu_reg,
213 REGISTER_TIMEOUT);
214 } else if (led->type == LED_TYPE_ASSOC) {
215 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
216 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
217 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
218 MCU_LEDCS_LINK_A_STATUS, a_mode);
219
220 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
221 0, led->rt2x00dev->led_mcu_reg,
222 REGISTER_TIMEOUT);
223 } else if (led->type == LED_TYPE_QUALITY) {
224 /*
225 * The brightness is divided into 6 levels (0 - 5),
226 * this means we need to convert the brightness
227 * argument into the matching level within that range.
228 */
229 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
230 brightness / (LED_FULL / 6),
231 led->rt2x00dev->led_mcu_reg,
232 REGISTER_TIMEOUT);
233 }
234}
235
236static int rt73usb_blink_set(struct led_classdev *led_cdev,
237 unsigned long *delay_on,
238 unsigned long *delay_off)
239{
240 struct rt2x00_led *led =
241 container_of(led_cdev, struct rt2x00_led, led_dev);
242 u32 reg;
243
244 rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, ®);
245 rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on);
246 rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off);
247 rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
248
249 return 0;
250}
251
252static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
253 struct rt2x00_led *led,
254 enum led_type type)
255{
256 led->rt2x00dev = rt2x00dev;
257 led->type = type;
258 led->led_dev.brightness_set = rt73usb_brightness_set;
259 led->led_dev.blink_set = rt73usb_blink_set;
260 led->flags = LED_INITIALIZED;
261}
262#endif /* CONFIG_RT2X00_LIB_LEDS */
263
264/*
265 * Configuration handlers.
266 */
267static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
268 struct rt2x00lib_crypto *crypto,
269 struct ieee80211_key_conf *key)
270{
271 struct hw_key_entry key_entry;
272 struct rt2x00_field32 field;
273 u32 mask;
274 u32 reg;
275
276 if (crypto->cmd == SET_KEY) {
277 /*
278 * rt2x00lib can't determine the correct free
279 * key_idx for shared keys. We have 1 register
280 * with key valid bits. The goal is simple, read
281 * the register, if that is full we have no slots
282 * left.
283 * Note that each BSS is allowed to have up to 4
284 * shared keys, so put a mask over the allowed
285 * entries.
286 */
287 mask = (0xf << crypto->bssidx);
288
289 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, ®);
290 reg &= mask;
291
292 if (reg && reg == mask)
293 return -ENOSPC;
294
295 key->hw_key_idx += reg ? ffz(reg) : 0;
296
297 /*
298 * Upload key to hardware
299 */
300 memcpy(key_entry.key, crypto->key,
301 sizeof(key_entry.key));
302 memcpy(key_entry.tx_mic, crypto->tx_mic,
303 sizeof(key_entry.tx_mic));
304 memcpy(key_entry.rx_mic, crypto->rx_mic,
305 sizeof(key_entry.rx_mic));
306
307 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
308 rt2x00usb_register_multiwrite(rt2x00dev, reg,
309 &key_entry, sizeof(key_entry));
310
311 /*
312 * The cipher types are stored over 2 registers.
313 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
314 * bssidx 1 and 2 keys are stored in SEC_CSR5.
315 * Using the correct defines correctly will cause overhead,
316 * so just calculate the correct offset.
317 */
318 if (key->hw_key_idx < 8) {
319 field.bit_offset = (3 * key->hw_key_idx);
320 field.bit_mask = 0x7 << field.bit_offset;
321
322 rt2x00usb_register_read(rt2x00dev, SEC_CSR1, ®);
323 rt2x00_set_field32(®, field, crypto->cipher);
324 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
325 } else {
326 field.bit_offset = (3 * (key->hw_key_idx - 8));
327 field.bit_mask = 0x7 << field.bit_offset;
328
329 rt2x00usb_register_read(rt2x00dev, SEC_CSR5, ®);
330 rt2x00_set_field32(®, field, crypto->cipher);
331 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
332 }
333
334 /*
335 * The driver does not support the IV/EIV generation
336 * in hardware. However it doesn't support the IV/EIV
337 * inside the ieee80211 frame either, but requires it
338 * to be provided separately for the descriptor.
339 * rt2x00lib will cut the IV/EIV data out of all frames
340 * given to us by mac80211, but we must tell mac80211
341 * to generate the IV/EIV data.
342 */
343 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
344 }
345
346 /*
347 * SEC_CSR0 contains only single-bit fields to indicate
348 * a particular key is valid. Because using the FIELD32()
349 * defines directly will cause a lot of overhead we use
350 * a calculation to determine the correct bit directly.
351 */
352 mask = 1 << key->hw_key_idx;
353
354 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, ®);
355 if (crypto->cmd == SET_KEY)
356 reg |= mask;
357 else if (crypto->cmd == DISABLE_KEY)
358 reg &= ~mask;
359 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
360
361 return 0;
362}
363
364static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
365 struct rt2x00lib_crypto *crypto,
366 struct ieee80211_key_conf *key)
367{
368 struct hw_pairwise_ta_entry addr_entry;
369 struct hw_key_entry key_entry;
370 u32 mask;
371 u32 reg;
372
373 if (crypto->cmd == SET_KEY) {
374 /*
375 * rt2x00lib can't determine the correct free
376 * key_idx for pairwise keys. We have 2 registers
377 * with key valid bits. The goal is simple, read
378 * the first register, if that is full move to
379 * the next register.
380 * When both registers are full, we drop the key,
381 * otherwise we use the first invalid entry.
382 */
383 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, ®);
384 if (reg && reg == ~0) {
385 key->hw_key_idx = 32;
386 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, ®);
387 if (reg && reg == ~0)
388 return -ENOSPC;
389 }
390
391 key->hw_key_idx += reg ? ffz(reg) : 0;
392
393 /*
394 * Upload key to hardware
395 */
396 memcpy(key_entry.key, crypto->key,
397 sizeof(key_entry.key));
398 memcpy(key_entry.tx_mic, crypto->tx_mic,
399 sizeof(key_entry.tx_mic));
400 memcpy(key_entry.rx_mic, crypto->rx_mic,
401 sizeof(key_entry.rx_mic));
402
403 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
404 rt2x00usb_register_multiwrite(rt2x00dev, reg,
405 &key_entry, sizeof(key_entry));
406
407 /*
408 * Send the address and cipher type to the hardware register.
409 */
410 memset(&addr_entry, 0, sizeof(addr_entry));
411 memcpy(&addr_entry, crypto->address, ETH_ALEN);
412 addr_entry.cipher = crypto->cipher;
413
414 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
415 rt2x00usb_register_multiwrite(rt2x00dev, reg,
416 &addr_entry, sizeof(addr_entry));
417
418 /*
419 * Enable pairwise lookup table for given BSS idx,
420 * without this received frames will not be decrypted
421 * by the hardware.
422 */
423 rt2x00usb_register_read(rt2x00dev, SEC_CSR4, ®);
424 reg |= (1 << crypto->bssidx);
425 rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
426
427 /*
428 * The driver does not support the IV/EIV generation
429 * in hardware. However it doesn't support the IV/EIV
430 * inside the ieee80211 frame either, but requires it
431 * to be provided separately for the descriptor.
432 * rt2x00lib will cut the IV/EIV data out of all frames
433 * given to us by mac80211, but we must tell mac80211
434 * to generate the IV/EIV data.
435 */
436 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
437 }
438
439 /*
440 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
441 * a particular key is valid. Because using the FIELD32()
442 * defines directly will cause a lot of overhead we use
443 * a calculation to determine the correct bit directly.
444 */
445 if (key->hw_key_idx < 32) {
446 mask = 1 << key->hw_key_idx;
447
448 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, ®);
449 if (crypto->cmd == SET_KEY)
450 reg |= mask;
451 else if (crypto->cmd == DISABLE_KEY)
452 reg &= ~mask;
453 rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
454 } else {
455 mask = 1 << (key->hw_key_idx - 32);
456
457 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, ®);
458 if (crypto->cmd == SET_KEY)
459 reg |= mask;
460 else if (crypto->cmd == DISABLE_KEY)
461 reg &= ~mask;
462 rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
463 }
464
465 return 0;
466}
467
468static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
469 const unsigned int filter_flags)
470{
471 u32 reg;
472
473 /*
474 * Start configuration steps.
475 * Note that the version error will always be dropped
476 * and broadcast frames will always be accepted since
477 * there is no filter for it at this time.
478 */
479 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®);
480 rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC,
481 !(filter_flags & FIF_FCSFAIL));
482 rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL,
483 !(filter_flags & FIF_PLCPFAIL));
484 rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL,
485 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
486 rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME,
487 !(filter_flags & FIF_PROMISC_IN_BSS));
488 rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS,
489 !(filter_flags & FIF_PROMISC_IN_BSS) &&
490 !rt2x00dev->intf_ap_count);
491 rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1);
492 rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST,
493 !(filter_flags & FIF_ALLMULTI));
494 rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0);
495 rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS,
496 !(filter_flags & FIF_CONTROL));
497 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
498}
499
500static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
501 struct rt2x00_intf *intf,
502 struct rt2x00intf_conf *conf,
503 const unsigned int flags)
504{
505 u32 reg;
506
507 if (flags & CONFIG_UPDATE_TYPE) {
508 /*
509 * Enable synchronisation.
510 */
511 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®);
512 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync);
513 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
514 }
515
516 if (flags & CONFIG_UPDATE_MAC) {
517 reg = le32_to_cpu(conf->mac[1]);
518 rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
519 conf->mac[1] = cpu_to_le32(reg);
520
521 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
522 conf->mac, sizeof(conf->mac));
523 }
524
525 if (flags & CONFIG_UPDATE_BSSID) {
526 reg = le32_to_cpu(conf->bssid[1]);
527 rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3);
528 conf->bssid[1] = cpu_to_le32(reg);
529
530 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
531 conf->bssid, sizeof(conf->bssid));
532 }
533}
534
535static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
536 struct rt2x00lib_erp *erp,
537 u32 changed)
538{
539 u32 reg;
540
541 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®);
542 rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
543 rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
544 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
545
546 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
547 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, ®);
548 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
549 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE,
550 !!erp->short_preamble);
551 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
552 }
553
554 if (changed & BSS_CHANGED_BASIC_RATES)
555 rt2x00usb_register_write(rt2x00dev, TXRX_CSR5,
556 erp->basic_rates);
557
558 if (changed & BSS_CHANGED_BEACON_INT) {
559 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®);
560 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL,
561 erp->beacon_int * 16);
562 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
563 }
564
565 if (changed & BSS_CHANGED_ERP_SLOT) {
566 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, ®);
567 rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, erp->slot_time);
568 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
569
570 rt2x00usb_register_read(rt2x00dev, MAC_CSR8, ®);
571 rt2x00_set_field32(®, MAC_CSR8_SIFS, erp->sifs);
572 rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
573 rt2x00_set_field32(®, MAC_CSR8_EIFS, erp->eifs);
574 rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
575 }
576}
577
578static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
579 struct antenna_setup *ant)
580{
581 u8 r3;
582 u8 r4;
583 u8 r77;
584 u8 temp;
585
586 rt73usb_bbp_read(rt2x00dev, 3, &r3);
587 rt73usb_bbp_read(rt2x00dev, 4, &r4);
588 rt73usb_bbp_read(rt2x00dev, 77, &r77);
589
590 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
591
592 /*
593 * Configure the RX antenna.
594 */
595 switch (ant->rx) {
596 case ANTENNA_HW_DIVERSITY:
597 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
598 temp = !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags)
599 && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
600 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
601 break;
602 case ANTENNA_A:
603 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
604 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
605 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
606 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
607 else
608 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
609 break;
610 case ANTENNA_B:
611 default:
612 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
613 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
614 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
615 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
616 else
617 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
618 break;
619 }
620
621 rt73usb_bbp_write(rt2x00dev, 77, r77);
622 rt73usb_bbp_write(rt2x00dev, 3, r3);
623 rt73usb_bbp_write(rt2x00dev, 4, r4);
624}
625
626static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
627 struct antenna_setup *ant)
628{
629 u8 r3;
630 u8 r4;
631 u8 r77;
632
633 rt73usb_bbp_read(rt2x00dev, 3, &r3);
634 rt73usb_bbp_read(rt2x00dev, 4, &r4);
635 rt73usb_bbp_read(rt2x00dev, 77, &r77);
636
637 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
638 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
639 !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags));
640
641 /*
642 * Configure the RX antenna.
643 */
644 switch (ant->rx) {
645 case ANTENNA_HW_DIVERSITY:
646 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
647 break;
648 case ANTENNA_A:
649 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
650 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
651 break;
652 case ANTENNA_B:
653 default:
654 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
655 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
656 break;
657 }
658
659 rt73usb_bbp_write(rt2x00dev, 77, r77);
660 rt73usb_bbp_write(rt2x00dev, 3, r3);
661 rt73usb_bbp_write(rt2x00dev, 4, r4);
662}
663
664struct antenna_sel {
665 u8 word;
666 /*
667 * value[0] -> non-LNA
668 * value[1] -> LNA
669 */
670 u8 value[2];
671};
672
673static const struct antenna_sel antenna_sel_a[] = {
674 { 96, { 0x58, 0x78 } },
675 { 104, { 0x38, 0x48 } },
676 { 75, { 0xfe, 0x80 } },
677 { 86, { 0xfe, 0x80 } },
678 { 88, { 0xfe, 0x80 } },
679 { 35, { 0x60, 0x60 } },
680 { 97, { 0x58, 0x58 } },
681 { 98, { 0x58, 0x58 } },
682};
683
684static const struct antenna_sel antenna_sel_bg[] = {
685 { 96, { 0x48, 0x68 } },
686 { 104, { 0x2c, 0x3c } },
687 { 75, { 0xfe, 0x80 } },
688 { 86, { 0xfe, 0x80 } },
689 { 88, { 0xfe, 0x80 } },
690 { 35, { 0x50, 0x50 } },
691 { 97, { 0x48, 0x48 } },
692 { 98, { 0x48, 0x48 } },
693};
694
695static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
696 struct antenna_setup *ant)
697{
698 const struct antenna_sel *sel;
699 unsigned int lna;
700 unsigned int i;
701 u32 reg;
702
703 /*
704 * We should never come here because rt2x00lib is supposed
705 * to catch this and send us the correct antenna explicitely.
706 */
707 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
708 ant->tx == ANTENNA_SW_DIVERSITY);
709
710 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
711 sel = antenna_sel_a;
712 lna = test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
713 } else {
714 sel = antenna_sel_bg;
715 lna = test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
716 }
717
718 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
719 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
720
721 rt2x00usb_register_read(rt2x00dev, PHY_CSR0, ®);
722
723 rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG,
724 (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
725 rt2x00_set_field32(®, PHY_CSR0_PA_PE_A,
726 (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
727
728 rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
729
730 if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
731 rt73usb_config_antenna_5x(rt2x00dev, ant);
732 else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
733 rt73usb_config_antenna_2x(rt2x00dev, ant);
734}
735
736static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
737 struct rt2x00lib_conf *libconf)
738{
739 u16 eeprom;
740 short lna_gain = 0;
741
742 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
743 if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags))
744 lna_gain += 14;
745
746 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
747 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
748 } else {
749 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
750 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
751 }
752
753 rt2x00dev->lna_gain = lna_gain;
754}
755
756static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
757 struct rf_channel *rf, const int txpower)
758{
759 u8 r3;
760 u8 r94;
761 u8 smart;
762
763 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
764 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
765
766 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
767
768 rt73usb_bbp_read(rt2x00dev, 3, &r3);
769 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
770 rt73usb_bbp_write(rt2x00dev, 3, r3);
771
772 r94 = 6;
773 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
774 r94 += txpower - MAX_TXPOWER;
775 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
776 r94 += txpower;
777 rt73usb_bbp_write(rt2x00dev, 94, r94);
778
779 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
780 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
781 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
782 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
783
784 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
785 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
786 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
787 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
788
789 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
790 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
791 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
792 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
793
794 udelay(10);
795}
796
797static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
798 const int txpower)
799{
800 struct rf_channel rf;
801
802 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
803 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
804 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
805 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
806
807 rt73usb_config_channel(rt2x00dev, &rf, txpower);
808}
809
810static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
811 struct rt2x00lib_conf *libconf)
812{
813 u32 reg;
814
815 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, ®);
816 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
817 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
818 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
819 rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT,
820 libconf->conf->long_frame_max_tx_count);
821 rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT,
822 libconf->conf->short_frame_max_tx_count);
823 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
824}
825
826static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
827 struct rt2x00lib_conf *libconf)
828{
829 enum dev_state state =
830 (libconf->conf->flags & IEEE80211_CONF_PS) ?
831 STATE_SLEEP : STATE_AWAKE;
832 u32 reg;
833
834 if (state == STATE_SLEEP) {
835 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, ®);
836 rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN,
837 rt2x00dev->beacon_int - 10);
838 rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP,
839 libconf->conf->listen_interval - 1);
840 rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 5);
841
842 /* We must first disable autowake before it can be enabled */
843 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0);
844 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
845
846 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 1);
847 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
848
849 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
850 USB_MODE_SLEEP, REGISTER_TIMEOUT);
851 } else {
852 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, ®);
853 rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 0);
854 rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
855 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0);
856 rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 0);
857 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
858
859 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
860 USB_MODE_WAKEUP, REGISTER_TIMEOUT);
861 }
862}
863
864static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
865 struct rt2x00lib_conf *libconf,
866 const unsigned int flags)
867{
868 /* Always recalculate LNA gain before changing configuration */
869 rt73usb_config_lna_gain(rt2x00dev, libconf);
870
871 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
872 rt73usb_config_channel(rt2x00dev, &libconf->rf,
873 libconf->conf->power_level);
874 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
875 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
876 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
877 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
878 rt73usb_config_retry_limit(rt2x00dev, libconf);
879 if (flags & IEEE80211_CONF_CHANGE_PS)
880 rt73usb_config_ps(rt2x00dev, libconf);
881}
882
883/*
884 * Link tuning
885 */
886static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
887 struct link_qual *qual)
888{
889 u32 reg;
890
891 /*
892 * Update FCS error count from register.
893 */
894 rt2x00usb_register_read(rt2x00dev, STA_CSR0, ®);
895 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
896
897 /*
898 * Update False CCA count from register.
899 */
900 rt2x00usb_register_read(rt2x00dev, STA_CSR1, ®);
901 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
902}
903
904static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
905 struct link_qual *qual, u8 vgc_level)
906{
907 if (qual->vgc_level != vgc_level) {
908 rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
909 qual->vgc_level = vgc_level;
910 qual->vgc_level_reg = vgc_level;
911 }
912}
913
914static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
915 struct link_qual *qual)
916{
917 rt73usb_set_vgc(rt2x00dev, qual, 0x20);
918}
919
920static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
921 struct link_qual *qual, const u32 count)
922{
923 u8 up_bound;
924 u8 low_bound;
925
926 /*
927 * Determine r17 bounds.
928 */
929 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
930 low_bound = 0x28;
931 up_bound = 0x48;
932
933 if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) {
934 low_bound += 0x10;
935 up_bound += 0x10;
936 }
937 } else {
938 if (qual->rssi > -82) {
939 low_bound = 0x1c;
940 up_bound = 0x40;
941 } else if (qual->rssi > -84) {
942 low_bound = 0x1c;
943 up_bound = 0x20;
944 } else {
945 low_bound = 0x1c;
946 up_bound = 0x1c;
947 }
948
949 if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) {
950 low_bound += 0x14;
951 up_bound += 0x10;
952 }
953 }
954
955 /*
956 * If we are not associated, we should go straight to the
957 * dynamic CCA tuning.
958 */
959 if (!rt2x00dev->intf_associated)
960 goto dynamic_cca_tune;
961
962 /*
963 * Special big-R17 for very short distance
964 */
965 if (qual->rssi > -35) {
966 rt73usb_set_vgc(rt2x00dev, qual, 0x60);
967 return;
968 }
969
970 /*
971 * Special big-R17 for short distance
972 */
973 if (qual->rssi >= -58) {
974 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
975 return;
976 }
977
978 /*
979 * Special big-R17 for middle-short distance
980 */
981 if (qual->rssi >= -66) {
982 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
983 return;
984 }
985
986 /*
987 * Special mid-R17 for middle distance
988 */
989 if (qual->rssi >= -74) {
990 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
991 return;
992 }
993
994 /*
995 * Special case: Change up_bound based on the rssi.
996 * Lower up_bound when rssi is weaker then -74 dBm.
997 */
998 up_bound -= 2 * (-74 - qual->rssi);
999 if (low_bound > up_bound)
1000 up_bound = low_bound;
1001
1002 if (qual->vgc_level > up_bound) {
1003 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
1004 return;
1005 }
1006
1007dynamic_cca_tune:
1008
1009 /*
1010 * r17 does not yet exceed upper limit, continue and base
1011 * the r17 tuning on the false CCA count.
1012 */
1013 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1014 rt73usb_set_vgc(rt2x00dev, qual,
1015 min_t(u8, qual->vgc_level + 4, up_bound));
1016 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1017 rt73usb_set_vgc(rt2x00dev, qual,
1018 max_t(u8, qual->vgc_level - 4, low_bound));
1019}
1020
1021/*
1022 * Queue handlers.
1023 */
1024static void rt73usb_start_queue(struct data_queue *queue)
1025{
1026 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1027 u32 reg;
1028
1029 switch (queue->qid) {
1030 case QID_RX:
1031 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®);
1032 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0);
1033 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1034 break;
1035 case QID_BEACON:
1036 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®);
1037 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1);
1038 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1);
1039 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1);
1040 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1041 break;
1042 default:
1043 break;
1044 }
1045}
1046
1047static void rt73usb_stop_queue(struct data_queue *queue)
1048{
1049 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1050 u32 reg;
1051
1052 switch (queue->qid) {
1053 case QID_RX:
1054 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®);
1055 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 1);
1056 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1057 break;
1058 case QID_BEACON:
1059 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®);
1060 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0);
1061 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0);
1062 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
1063 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1064 break;
1065 default:
1066 break;
1067 }
1068}
1069
1070/*
1071 * Firmware functions
1072 */
1073static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1074{
1075 return FIRMWARE_RT2571;
1076}
1077
1078static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
1079 const u8 *data, const size_t len)
1080{
1081 u16 fw_crc;
1082 u16 crc;
1083
1084 /*
1085 * Only support 2kb firmware files.
1086 */
1087 if (len != 2048)
1088 return FW_BAD_LENGTH;
1089
1090 /*
1091 * The last 2 bytes in the firmware array are the crc checksum itself,
1092 * this means that we should never pass those 2 bytes to the crc
1093 * algorithm.
1094 */
1095 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1096
1097 /*
1098 * Use the crc itu-t algorithm.
1099 */
1100 crc = crc_itu_t(0, data, len - 2);
1101 crc = crc_itu_t_byte(crc, 0);
1102 crc = crc_itu_t_byte(crc, 0);
1103
1104 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1105}
1106
1107static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
1108 const u8 *data, const size_t len)
1109{
1110 unsigned int i;
1111 int status;
1112 u32 reg;
1113
1114 /*
1115 * Wait for stable hardware.
1116 */
1117 for (i = 0; i < 100; i++) {
1118 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, ®);
1119 if (reg)
1120 break;
1121 msleep(1);
1122 }
1123
1124 if (!reg) {
1125 ERROR(rt2x00dev, "Unstable hardware.\n");
1126 return -EBUSY;
1127 }
1128
1129 /*
1130 * Write firmware to device.
1131 */
1132 rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len);
1133
1134 /*
1135 * Send firmware request to device to load firmware,
1136 * we need to specify a long timeout time.
1137 */
1138 status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1139 0, USB_MODE_FIRMWARE,
1140 REGISTER_TIMEOUT_FIRMWARE);
1141 if (status < 0) {
1142 ERROR(rt2x00dev, "Failed to write Firmware to device.\n");
1143 return status;
1144 }
1145
1146 return 0;
1147}
1148
1149/*
1150 * Initialization functions.
1151 */
1152static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1153{
1154 u32 reg;
1155
1156 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®);
1157 rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1);
1158 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0);
1159 rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1160 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1161
1162 rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, ®);
1163 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1164 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1);
1165 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1166 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1);
1167 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1168 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1);
1169 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1170 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1);
1171 rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1172
1173 /*
1174 * CCK TXD BBP registers
1175 */
1176 rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, ®);
1177 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13);
1178 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1);
1179 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12);
1180 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1);
1181 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11);
1182 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1);
1183 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10);
1184 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1);
1185 rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1186
1187 /*
1188 * OFDM TXD BBP registers
1189 */
1190 rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, ®);
1191 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7);
1192 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1);
1193 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6);
1194 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1);
1195 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5);
1196 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1);
1197 rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1198
1199 rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, ®);
1200 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59);
1201 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53);
1202 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49);
1203 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46);
1204 rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1205
1206 rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, ®);
1207 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44);
1208 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42);
1209 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42);
1210 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42);
1211 rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1212
1213 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®);
1214 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0);
1215 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0);
1216 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0);
1217 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0);
1218 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
1219 rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1220 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1221
1222 rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1223
1224 rt2x00usb_register_read(rt2x00dev, MAC_CSR6, ®);
1225 rt2x00_set_field32(®, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1226 rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1227
1228 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1229
1230 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1231 return -EBUSY;
1232
1233 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1234
1235 /*
1236 * Invalidate all Shared Keys (SEC_CSR0),
1237 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1238 */
1239 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1240 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1241 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1242
1243 reg = 0x000023b0;
1244 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))
1245 rt2x00_set_field32(®, PHY_CSR1_RF_RPI, 1);
1246 rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1247
1248 rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1249 rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1250 rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1251
1252 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, ®);
1253 rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0);
1254 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1255
1256 /*
1257 * Clear all beacons
1258 * For the Beacon base registers we only need to clear
1259 * the first byte since that byte contains the VALID and OWNER
1260 * bits which (when set to 0) will invalidate the entire beacon.
1261 */
1262 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1263 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1264 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1265 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1266
1267 /*
1268 * We must clear the error counters.
1269 * These registers are cleared on read,
1270 * so we may pass a useless variable to store the value.
1271 */
1272 rt2x00usb_register_read(rt2x00dev, STA_CSR0, ®);
1273 rt2x00usb_register_read(rt2x00dev, STA_CSR1, ®);
1274 rt2x00usb_register_read(rt2x00dev, STA_CSR2, ®);
1275
1276 /*
1277 * Reset MAC and BBP registers.
1278 */
1279 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, ®);
1280 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1);
1281 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1);
1282 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1283
1284 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, ®);
1285 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0);
1286 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0);
1287 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1288
1289 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, ®);
1290 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1);
1291 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1292
1293 return 0;
1294}
1295
1296static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1297{
1298 unsigned int i;
1299 u8 value;
1300
1301 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1302 rt73usb_bbp_read(rt2x00dev, 0, &value);
1303 if ((value != 0xff) && (value != 0x00))
1304 return 0;
1305 udelay(REGISTER_BUSY_DELAY);
1306 }
1307
1308 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1309 return -EACCES;
1310}
1311
1312static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1313{
1314 unsigned int i;
1315 u16 eeprom;
1316 u8 reg_id;
1317 u8 value;
1318
1319 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1320 return -EACCES;
1321
1322 rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1323 rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1324 rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1325 rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1326 rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1327 rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1328 rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1329 rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1330 rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1331 rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1332 rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1333 rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1334 rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1335 rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1336 rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1337 rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1338 rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1339 rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1340 rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1341 rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1342 rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1343 rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1344 rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1345 rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1346 rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1347
1348 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1349 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1350
1351 if (eeprom != 0xffff && eeprom != 0x0000) {
1352 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1353 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1354 rt73usb_bbp_write(rt2x00dev, reg_id, value);
1355 }
1356 }
1357
1358 return 0;
1359}
1360
1361/*
1362 * Device state switch handlers.
1363 */
1364static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1365{
1366 /*
1367 * Initialize all registers.
1368 */
1369 if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1370 rt73usb_init_bbp(rt2x00dev)))
1371 return -EIO;
1372
1373 return 0;
1374}
1375
1376static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1377{
1378 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1379
1380 /*
1381 * Disable synchronisation.
1382 */
1383 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1384
1385 rt2x00usb_disable_radio(rt2x00dev);
1386}
1387
1388static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1389{
1390 u32 reg, reg2;
1391 unsigned int i;
1392 char put_to_sleep;
1393
1394 put_to_sleep = (state != STATE_AWAKE);
1395
1396 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, ®);
1397 rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1398 rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1399 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1400
1401 /*
1402 * Device is not guaranteed to be in the requested state yet.
1403 * We must wait until the register indicates that the
1404 * device has entered the correct state.
1405 */
1406 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1407 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, ®2);
1408 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1409 if (state == !put_to_sleep)
1410 return 0;
1411 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1412 msleep(10);
1413 }
1414
1415 return -EBUSY;
1416}
1417
1418static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1419 enum dev_state state)
1420{
1421 int retval = 0;
1422
1423 switch (state) {
1424 case STATE_RADIO_ON:
1425 retval = rt73usb_enable_radio(rt2x00dev);
1426 break;
1427 case STATE_RADIO_OFF:
1428 rt73usb_disable_radio(rt2x00dev);
1429 break;
1430 case STATE_RADIO_IRQ_ON:
1431 case STATE_RADIO_IRQ_OFF:
1432 /* No support, but no error either */
1433 break;
1434 case STATE_DEEP_SLEEP:
1435 case STATE_SLEEP:
1436 case STATE_STANDBY:
1437 case STATE_AWAKE:
1438 retval = rt73usb_set_state(rt2x00dev, state);
1439 break;
1440 default:
1441 retval = -ENOTSUPP;
1442 break;
1443 }
1444
1445 if (unlikely(retval))
1446 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1447 state, retval);
1448
1449 return retval;
1450}
1451
1452/*
1453 * TX descriptor initialization
1454 */
1455static void rt73usb_write_tx_desc(struct queue_entry *entry,
1456 struct txentry_desc *txdesc)
1457{
1458 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1459 __le32 *txd = (__le32 *) entry->skb->data;
1460 u32 word;
1461
1462 /*
1463 * Start writing the descriptor words.
1464 */
1465 rt2x00_desc_read(txd, 0, &word);
1466 rt2x00_set_field32(&word, TXD_W0_BURST,
1467 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1468 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1469 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1470 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1471 rt2x00_set_field32(&word, TXD_W0_ACK,
1472 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1473 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1474 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1475 rt2x00_set_field32(&word, TXD_W0_OFDM,
1476 (txdesc->rate_mode == RATE_MODE_OFDM));
1477 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1478 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1479 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1480 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1481 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1482 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1483 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1484 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1485 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1486 rt2x00_set_field32(&word, TXD_W0_BURST2,
1487 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1488 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1489 rt2x00_desc_write(txd, 0, word);
1490
1491 rt2x00_desc_read(txd, 1, &word);
1492 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1493 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1494 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1495 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1496 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1497 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1498 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1499 rt2x00_desc_write(txd, 1, word);
1500
1501 rt2x00_desc_read(txd, 2, &word);
1502 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1503 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1504 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1505 txdesc->u.plcp.length_low);
1506 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1507 txdesc->u.plcp.length_high);
1508 rt2x00_desc_write(txd, 2, word);
1509
1510 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1511 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1512 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1513 }
1514
1515 rt2x00_desc_read(txd, 5, &word);
1516 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1517 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1518 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1519 rt2x00_desc_write(txd, 5, word);
1520
1521 /*
1522 * Register descriptor details in skb frame descriptor.
1523 */
1524 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1525 skbdesc->desc = txd;
1526 skbdesc->desc_len = TXD_DESC_SIZE;
1527}
1528
1529/*
1530 * TX data initialization
1531 */
1532static void rt73usb_write_beacon(struct queue_entry *entry,
1533 struct txentry_desc *txdesc)
1534{
1535 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1536 unsigned int beacon_base;
1537 unsigned int padding_len;
1538 u32 orig_reg, reg;
1539
1540 /*
1541 * Disable beaconing while we are reloading the beacon data,
1542 * otherwise we might be sending out invalid data.
1543 */
1544 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®);
1545 orig_reg = reg;
1546 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
1547 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1548
1549 /*
1550 * Add space for the descriptor in front of the skb.
1551 */
1552 skb_push(entry->skb, TXD_DESC_SIZE);
1553 memset(entry->skb->data, 0, TXD_DESC_SIZE);
1554
1555 /*
1556 * Write the TX descriptor for the beacon.
1557 */
1558 rt73usb_write_tx_desc(entry, txdesc);
1559
1560 /*
1561 * Dump beacon to userspace through debugfs.
1562 */
1563 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1564
1565 /*
1566 * Write entire beacon with descriptor and padding to register.
1567 */
1568 padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1569 if (padding_len && skb_pad(entry->skb, padding_len)) {
1570 ERROR(rt2x00dev, "Failure padding beacon, aborting\n");
1571 /* skb freed by skb_pad() on failure */
1572 entry->skb = NULL;
1573 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1574 return;
1575 }
1576
1577 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1578 rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
1579 entry->skb->len + padding_len);
1580
1581 /*
1582 * Enable beaconing again.
1583 *
1584 * For Wi-Fi faily generated beacons between participating stations.
1585 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1586 */
1587 rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1588
1589 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1);
1590 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1591
1592 /*
1593 * Clean up the beacon skb.
1594 */
1595 dev_kfree_skb(entry->skb);
1596 entry->skb = NULL;
1597}
1598
1599static void rt73usb_clear_beacon(struct queue_entry *entry)
1600{
1601 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1602 unsigned int beacon_base;
1603 u32 reg;
1604
1605 /*
1606 * Disable beaconing while we are reloading the beacon data,
1607 * otherwise we might be sending out invalid data.
1608 */
1609 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®);
1610 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
1611 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1612
1613 /*
1614 * Clear beacon.
1615 */
1616 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1617 rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
1618
1619 /*
1620 * Enable beaconing again.
1621 */
1622 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1);
1623 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1624}
1625
1626static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1627{
1628 int length;
1629
1630 /*
1631 * The length _must_ be a multiple of 4,
1632 * but it must _not_ be a multiple of the USB packet size.
1633 */
1634 length = roundup(entry->skb->len, 4);
1635 length += (4 * !(length % entry->queue->usb_maxpacket));
1636
1637 return length;
1638}
1639
1640/*
1641 * RX control handlers
1642 */
1643static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1644{
1645 u8 offset = rt2x00dev->lna_gain;
1646 u8 lna;
1647
1648 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1649 switch (lna) {
1650 case 3:
1651 offset += 90;
1652 break;
1653 case 2:
1654 offset += 74;
1655 break;
1656 case 1:
1657 offset += 64;
1658 break;
1659 default:
1660 return 0;
1661 }
1662
1663 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1664 if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) {
1665 if (lna == 3 || lna == 2)
1666 offset += 10;
1667 } else {
1668 if (lna == 3)
1669 offset += 6;
1670 else if (lna == 2)
1671 offset += 8;
1672 }
1673 }
1674
1675 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1676}
1677
1678static void rt73usb_fill_rxdone(struct queue_entry *entry,
1679 struct rxdone_entry_desc *rxdesc)
1680{
1681 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1682 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1683 __le32 *rxd = (__le32 *)entry->skb->data;
1684 u32 word0;
1685 u32 word1;
1686
1687 /*
1688 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1689 * frame data in rt2x00usb.
1690 */
1691 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1692 rxd = (__le32 *)skbdesc->desc;
1693
1694 /*
1695 * It is now safe to read the descriptor on all architectures.
1696 */
1697 rt2x00_desc_read(rxd, 0, &word0);
1698 rt2x00_desc_read(rxd, 1, &word1);
1699
1700 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1701 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1702
1703 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1704 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1705
1706 if (rxdesc->cipher != CIPHER_NONE) {
1707 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1708 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1709 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1710
1711 _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1712 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1713
1714 /*
1715 * Hardware has stripped IV/EIV data from 802.11 frame during
1716 * decryption. It has provided the data separately but rt2x00lib
1717 * should decide if it should be reinserted.
1718 */
1719 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1720
1721 /*
1722 * The hardware has already checked the Michael Mic and has
1723 * stripped it from the frame. Signal this to mac80211.
1724 */
1725 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1726
1727 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1728 rxdesc->flags |= RX_FLAG_DECRYPTED;
1729 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1730 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1731 }
1732
1733 /*
1734 * Obtain the status about this packet.
1735 * When frame was received with an OFDM bitrate,
1736 * the signal is the PLCP value. If it was received with
1737 * a CCK bitrate the signal is the rate in 100kbit/s.
1738 */
1739 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1740 rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1741 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1742
1743 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1744 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1745 else
1746 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1747 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1748 rxdesc->dev_flags |= RXDONE_MY_BSS;
1749
1750 /*
1751 * Set skb pointers, and update frame information.
1752 */
1753 skb_pull(entry->skb, entry->queue->desc_size);
1754 skb_trim(entry->skb, rxdesc->size);
1755}
1756
1757/*
1758 * Device probe functions.
1759 */
1760static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1761{
1762 u16 word;
1763 u8 *mac;
1764 s8 value;
1765
1766 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1767
1768 /*
1769 * Start validation of the data that has been read.
1770 */
1771 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1772 if (!is_valid_ether_addr(mac)) {
1773 random_ether_addr(mac);
1774 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1775 }
1776
1777 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1778 if (word == 0xffff) {
1779 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1780 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1781 ANTENNA_B);
1782 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1783 ANTENNA_B);
1784 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1785 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1786 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1787 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1788 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1789 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1790 }
1791
1792 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1793 if (word == 0xffff) {
1794 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1795 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1796 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1797 }
1798
1799 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1800 if (word == 0xffff) {
1801 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1802 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1803 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1804 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1805 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1806 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1807 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1808 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1809 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1810 LED_MODE_DEFAULT);
1811 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1812 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1813 }
1814
1815 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1816 if (word == 0xffff) {
1817 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1818 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1819 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1820 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1821 }
1822
1823 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1824 if (word == 0xffff) {
1825 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1826 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1827 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1828 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1829 } else {
1830 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1831 if (value < -10 || value > 10)
1832 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1833 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1834 if (value < -10 || value > 10)
1835 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1836 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1837 }
1838
1839 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1840 if (word == 0xffff) {
1841 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1842 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1843 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1844 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1845 } else {
1846 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1847 if (value < -10 || value > 10)
1848 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1849 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1850 if (value < -10 || value > 10)
1851 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1852 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1853 }
1854
1855 return 0;
1856}
1857
1858static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1859{
1860 u32 reg;
1861 u16 value;
1862 u16 eeprom;
1863
1864 /*
1865 * Read EEPROM word for configuration.
1866 */
1867 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1868
1869 /*
1870 * Identify RF chipset.
1871 */
1872 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1873 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, ®);
1874 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
1875 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
1876
1877 if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) {
1878 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1879 return -ENODEV;
1880 }
1881
1882 if (!rt2x00_rf(rt2x00dev, RF5226) &&
1883 !rt2x00_rf(rt2x00dev, RF2528) &&
1884 !rt2x00_rf(rt2x00dev, RF5225) &&
1885 !rt2x00_rf(rt2x00dev, RF2527)) {
1886 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1887 return -ENODEV;
1888 }
1889
1890 /*
1891 * Identify default antenna configuration.
1892 */
1893 rt2x00dev->default_ant.tx =
1894 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1895 rt2x00dev->default_ant.rx =
1896 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1897
1898 /*
1899 * Read the Frame type.
1900 */
1901 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1902 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
1903
1904 /*
1905 * Detect if this device has an hardware controlled radio.
1906 */
1907 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1908 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1909
1910 /*
1911 * Read frequency offset.
1912 */
1913 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1914 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1915
1916 /*
1917 * Read external LNA informations.
1918 */
1919 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1920
1921 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1922 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
1923 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
1924 }
1925
1926 /*
1927 * Store led settings, for correct led behaviour.
1928 */
1929#ifdef CONFIG_RT2X00_LIB_LEDS
1930 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1931
1932 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1933 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1934 if (value == LED_MODE_SIGNAL_STRENGTH)
1935 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1936 LED_TYPE_QUALITY);
1937
1938 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1939 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1940 rt2x00_get_field16(eeprom,
1941 EEPROM_LED_POLARITY_GPIO_0));
1942 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1943 rt2x00_get_field16(eeprom,
1944 EEPROM_LED_POLARITY_GPIO_1));
1945 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1946 rt2x00_get_field16(eeprom,
1947 EEPROM_LED_POLARITY_GPIO_2));
1948 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1949 rt2x00_get_field16(eeprom,
1950 EEPROM_LED_POLARITY_GPIO_3));
1951 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1952 rt2x00_get_field16(eeprom,
1953 EEPROM_LED_POLARITY_GPIO_4));
1954 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1955 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1956 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1957 rt2x00_get_field16(eeprom,
1958 EEPROM_LED_POLARITY_RDY_G));
1959 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1960 rt2x00_get_field16(eeprom,
1961 EEPROM_LED_POLARITY_RDY_A));
1962#endif /* CONFIG_RT2X00_LIB_LEDS */
1963
1964 return 0;
1965}
1966
1967/*
1968 * RF value list for RF2528
1969 * Supports: 2.4 GHz
1970 */
1971static const struct rf_channel rf_vals_bg_2528[] = {
1972 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1973 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1974 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1975 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1976 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1977 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1978 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1979 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1980 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1981 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1982 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1983 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1984 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1985 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1986};
1987
1988/*
1989 * RF value list for RF5226
1990 * Supports: 2.4 GHz & 5.2 GHz
1991 */
1992static const struct rf_channel rf_vals_5226[] = {
1993 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1994 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1995 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1996 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1997 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1998 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1999 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
2000 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
2001 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
2002 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
2003 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
2004 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
2005 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
2006 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
2007
2008 /* 802.11 UNI / HyperLan 2 */
2009 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
2010 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
2011 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
2012 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
2013 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
2014 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
2015 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
2016 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
2017
2018 /* 802.11 HyperLan 2 */
2019 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2020 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2021 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2022 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2023 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2024 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2025 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2026 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2027 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2028 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2029
2030 /* 802.11 UNII */
2031 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2032 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2033 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2034 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2035 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2036 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2037
2038 /* MMAC(Japan)J52 ch 34,38,42,46 */
2039 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2040 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2041 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2042 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2043};
2044
2045/*
2046 * RF value list for RF5225 & RF2527
2047 * Supports: 2.4 GHz & 5.2 GHz
2048 */
2049static const struct rf_channel rf_vals_5225_2527[] = {
2050 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2051 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2052 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2053 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2054 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2055 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2056 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2057 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2058 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2059 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2060 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2061 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2062 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2063 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2064
2065 /* 802.11 UNI / HyperLan 2 */
2066 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2067 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2068 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2069 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2070 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2071 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2072 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2073 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2074
2075 /* 802.11 HyperLan 2 */
2076 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2077 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2078 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2079 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2080 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2081 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2082 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2083 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2084 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2085 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2086
2087 /* 802.11 UNII */
2088 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2089 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2090 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2091 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2092 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2093 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2094
2095 /* MMAC(Japan)J52 ch 34,38,42,46 */
2096 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2097 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2098 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2099 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2100};
2101
2102
2103static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2104{
2105 struct hw_mode_spec *spec = &rt2x00dev->spec;
2106 struct channel_info *info;
2107 char *tx_power;
2108 unsigned int i;
2109
2110 /*
2111 * Initialize all hw fields.
2112 *
2113 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
2114 * capable of sending the buffered frames out after the DTIM
2115 * transmission using rt2x00lib_beacondone. This will send out
2116 * multicast and broadcast traffic immediately instead of buffering it
2117 * infinitly and thus dropping it after some time.
2118 */
2119 rt2x00dev->hw->flags =
2120 IEEE80211_HW_SIGNAL_DBM |
2121 IEEE80211_HW_SUPPORTS_PS |
2122 IEEE80211_HW_PS_NULLFUNC_STACK;
2123
2124 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2125 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2126 rt2x00_eeprom_addr(rt2x00dev,
2127 EEPROM_MAC_ADDR_0));
2128
2129 /*
2130 * Initialize hw_mode information.
2131 */
2132 spec->supported_bands = SUPPORT_BAND_2GHZ;
2133 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2134
2135 if (rt2x00_rf(rt2x00dev, RF2528)) {
2136 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2137 spec->channels = rf_vals_bg_2528;
2138 } else if (rt2x00_rf(rt2x00dev, RF5226)) {
2139 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2140 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2141 spec->channels = rf_vals_5226;
2142 } else if (rt2x00_rf(rt2x00dev, RF2527)) {
2143 spec->num_channels = 14;
2144 spec->channels = rf_vals_5225_2527;
2145 } else if (rt2x00_rf(rt2x00dev, RF5225)) {
2146 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2147 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2148 spec->channels = rf_vals_5225_2527;
2149 }
2150
2151 /*
2152 * Create channel information array
2153 */
2154 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2155 if (!info)
2156 return -ENOMEM;
2157
2158 spec->channels_info = info;
2159
2160 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2161 for (i = 0; i < 14; i++) {
2162 info[i].max_power = MAX_TXPOWER;
2163 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2164 }
2165
2166 if (spec->num_channels > 14) {
2167 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2168 for (i = 14; i < spec->num_channels; i++) {
2169 info[i].max_power = MAX_TXPOWER;
2170 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2171 }
2172 }
2173
2174 return 0;
2175}
2176
2177static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2178{
2179 int retval;
2180
2181 /*
2182 * Allocate eeprom data.
2183 */
2184 retval = rt73usb_validate_eeprom(rt2x00dev);
2185 if (retval)
2186 return retval;
2187
2188 retval = rt73usb_init_eeprom(rt2x00dev);
2189 if (retval)
2190 return retval;
2191
2192 /*
2193 * Initialize hw specifications.
2194 */
2195 retval = rt73usb_probe_hw_mode(rt2x00dev);
2196 if (retval)
2197 return retval;
2198
2199 /*
2200 * This device has multiple filters for control frames,
2201 * but has no a separate filter for PS Poll frames.
2202 */
2203 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2204
2205 /*
2206 * This device requires firmware.
2207 */
2208 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2209 if (!modparam_nohwcrypt)
2210 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2211 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2212 __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
2213
2214 /*
2215 * Set the rssi offset.
2216 */
2217 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2218
2219 return 0;
2220}
2221
2222/*
2223 * IEEE80211 stack callback functions.
2224 */
2225static int rt73usb_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2226 const struct ieee80211_tx_queue_params *params)
2227{
2228 struct rt2x00_dev *rt2x00dev = hw->priv;
2229 struct data_queue *queue;
2230 struct rt2x00_field32 field;
2231 int retval;
2232 u32 reg;
2233 u32 offset;
2234
2235 /*
2236 * First pass the configuration through rt2x00lib, that will
2237 * update the queue settings and validate the input. After that
2238 * we are free to update the registers based on the value
2239 * in the queue parameter.
2240 */
2241 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2242 if (retval)
2243 return retval;
2244
2245 /*
2246 * We only need to perform additional register initialization
2247 * for WMM queues/
2248 */
2249 if (queue_idx >= 4)
2250 return 0;
2251
2252 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2253
2254 /* Update WMM TXOP register */
2255 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2256 field.bit_offset = (queue_idx & 1) * 16;
2257 field.bit_mask = 0xffff << field.bit_offset;
2258
2259 rt2x00usb_register_read(rt2x00dev, offset, ®);
2260 rt2x00_set_field32(®, field, queue->txop);
2261 rt2x00usb_register_write(rt2x00dev, offset, reg);
2262
2263 /* Update WMM registers */
2264 field.bit_offset = queue_idx * 4;
2265 field.bit_mask = 0xf << field.bit_offset;
2266
2267 rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, ®);
2268 rt2x00_set_field32(®, field, queue->aifs);
2269 rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2270
2271 rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, ®);
2272 rt2x00_set_field32(®, field, queue->cw_min);
2273 rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2274
2275 rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, ®);
2276 rt2x00_set_field32(®, field, queue->cw_max);
2277 rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2278
2279 return 0;
2280}
2281
2282static u64 rt73usb_get_tsf(struct ieee80211_hw *hw)
2283{
2284 struct rt2x00_dev *rt2x00dev = hw->priv;
2285 u64 tsf;
2286 u32 reg;
2287
2288 rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, ®);
2289 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2290 rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, ®);
2291 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2292
2293 return tsf;
2294}
2295
2296static const struct ieee80211_ops rt73usb_mac80211_ops = {
2297 .tx = rt2x00mac_tx,
2298 .start = rt2x00mac_start,
2299 .stop = rt2x00mac_stop,
2300 .add_interface = rt2x00mac_add_interface,
2301 .remove_interface = rt2x00mac_remove_interface,
2302 .config = rt2x00mac_config,
2303 .configure_filter = rt2x00mac_configure_filter,
2304 .set_tim = rt2x00mac_set_tim,
2305 .set_key = rt2x00mac_set_key,
2306 .sw_scan_start = rt2x00mac_sw_scan_start,
2307 .sw_scan_complete = rt2x00mac_sw_scan_complete,
2308 .get_stats = rt2x00mac_get_stats,
2309 .bss_info_changed = rt2x00mac_bss_info_changed,
2310 .conf_tx = rt73usb_conf_tx,
2311 .get_tsf = rt73usb_get_tsf,
2312 .rfkill_poll = rt2x00mac_rfkill_poll,
2313 .flush = rt2x00mac_flush,
2314 .set_antenna = rt2x00mac_set_antenna,
2315 .get_antenna = rt2x00mac_get_antenna,
2316 .get_ringparam = rt2x00mac_get_ringparam,
2317 .tx_frames_pending = rt2x00mac_tx_frames_pending,
2318};
2319
2320static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2321 .probe_hw = rt73usb_probe_hw,
2322 .get_firmware_name = rt73usb_get_firmware_name,
2323 .check_firmware = rt73usb_check_firmware,
2324 .load_firmware = rt73usb_load_firmware,
2325 .initialize = rt2x00usb_initialize,
2326 .uninitialize = rt2x00usb_uninitialize,
2327 .clear_entry = rt2x00usb_clear_entry,
2328 .set_device_state = rt73usb_set_device_state,
2329 .rfkill_poll = rt73usb_rfkill_poll,
2330 .link_stats = rt73usb_link_stats,
2331 .reset_tuner = rt73usb_reset_tuner,
2332 .link_tuner = rt73usb_link_tuner,
2333 .watchdog = rt2x00usb_watchdog,
2334 .start_queue = rt73usb_start_queue,
2335 .kick_queue = rt2x00usb_kick_queue,
2336 .stop_queue = rt73usb_stop_queue,
2337 .flush_queue = rt2x00usb_flush_queue,
2338 .write_tx_desc = rt73usb_write_tx_desc,
2339 .write_beacon = rt73usb_write_beacon,
2340 .clear_beacon = rt73usb_clear_beacon,
2341 .get_tx_data_len = rt73usb_get_tx_data_len,
2342 .fill_rxdone = rt73usb_fill_rxdone,
2343 .config_shared_key = rt73usb_config_shared_key,
2344 .config_pairwise_key = rt73usb_config_pairwise_key,
2345 .config_filter = rt73usb_config_filter,
2346 .config_intf = rt73usb_config_intf,
2347 .config_erp = rt73usb_config_erp,
2348 .config_ant = rt73usb_config_ant,
2349 .config = rt73usb_config,
2350};
2351
2352static const struct data_queue_desc rt73usb_queue_rx = {
2353 .entry_num = 32,
2354 .data_size = DATA_FRAME_SIZE,
2355 .desc_size = RXD_DESC_SIZE,
2356 .priv_size = sizeof(struct queue_entry_priv_usb),
2357};
2358
2359static const struct data_queue_desc rt73usb_queue_tx = {
2360 .entry_num = 32,
2361 .data_size = DATA_FRAME_SIZE,
2362 .desc_size = TXD_DESC_SIZE,
2363 .priv_size = sizeof(struct queue_entry_priv_usb),
2364};
2365
2366static const struct data_queue_desc rt73usb_queue_bcn = {
2367 .entry_num = 4,
2368 .data_size = MGMT_FRAME_SIZE,
2369 .desc_size = TXINFO_SIZE,
2370 .priv_size = sizeof(struct queue_entry_priv_usb),
2371};
2372
2373static const struct rt2x00_ops rt73usb_ops = {
2374 .name = KBUILD_MODNAME,
2375 .max_sta_intf = 1,
2376 .max_ap_intf = 4,
2377 .eeprom_size = EEPROM_SIZE,
2378 .rf_size = RF_SIZE,
2379 .tx_queues = NUM_TX_QUEUES,
2380 .extra_tx_headroom = TXD_DESC_SIZE,
2381 .rx = &rt73usb_queue_rx,
2382 .tx = &rt73usb_queue_tx,
2383 .bcn = &rt73usb_queue_bcn,
2384 .lib = &rt73usb_rt2x00_ops,
2385 .hw = &rt73usb_mac80211_ops,
2386#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2387 .debugfs = &rt73usb_rt2x00debug,
2388#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2389};
2390
2391/*
2392 * rt73usb module information.
2393 */
2394static struct usb_device_id rt73usb_device_table[] = {
2395 /* AboCom */
2396 { USB_DEVICE(0x07b8, 0xb21b) },
2397 { USB_DEVICE(0x07b8, 0xb21c) },
2398 { USB_DEVICE(0x07b8, 0xb21d) },
2399 { USB_DEVICE(0x07b8, 0xb21e) },
2400 { USB_DEVICE(0x07b8, 0xb21f) },
2401 /* AL */
2402 { USB_DEVICE(0x14b2, 0x3c10) },
2403 /* Amigo */
2404 { USB_DEVICE(0x148f, 0x9021) },
2405 { USB_DEVICE(0x0eb0, 0x9021) },
2406 /* AMIT */
2407 { USB_DEVICE(0x18c5, 0x0002) },
2408 /* Askey */
2409 { USB_DEVICE(0x1690, 0x0722) },
2410 /* ASUS */
2411 { USB_DEVICE(0x0b05, 0x1723) },
2412 { USB_DEVICE(0x0b05, 0x1724) },
2413 /* Belkin */
2414 { USB_DEVICE(0x050d, 0x705a) },
2415 { USB_DEVICE(0x050d, 0x905b) },
2416 { USB_DEVICE(0x050d, 0x905c) },
2417 /* Billionton */
2418 { USB_DEVICE(0x1631, 0xc019) },
2419 { USB_DEVICE(0x08dd, 0x0120) },
2420 /* Buffalo */
2421 { USB_DEVICE(0x0411, 0x00d8) },
2422 { USB_DEVICE(0x0411, 0x00d9) },
2423 { USB_DEVICE(0x0411, 0x00e6) },
2424 { USB_DEVICE(0x0411, 0x00f4) },
2425 { USB_DEVICE(0x0411, 0x0116) },
2426 { USB_DEVICE(0x0411, 0x0119) },
2427 { USB_DEVICE(0x0411, 0x0137) },
2428 /* CEIVA */
2429 { USB_DEVICE(0x178d, 0x02be) },
2430 /* CNet */
2431 { USB_DEVICE(0x1371, 0x9022) },
2432 { USB_DEVICE(0x1371, 0x9032) },
2433 /* Conceptronic */
2434 { USB_DEVICE(0x14b2, 0x3c22) },
2435 /* Corega */
2436 { USB_DEVICE(0x07aa, 0x002e) },
2437 /* D-Link */
2438 { USB_DEVICE(0x07d1, 0x3c03) },
2439 { USB_DEVICE(0x07d1, 0x3c04) },
2440 { USB_DEVICE(0x07d1, 0x3c06) },
2441 { USB_DEVICE(0x07d1, 0x3c07) },
2442 /* Edimax */
2443 { USB_DEVICE(0x7392, 0x7318) },
2444 { USB_DEVICE(0x7392, 0x7618) },
2445 /* EnGenius */
2446 { USB_DEVICE(0x1740, 0x3701) },
2447 /* Gemtek */
2448 { USB_DEVICE(0x15a9, 0x0004) },
2449 /* Gigabyte */
2450 { USB_DEVICE(0x1044, 0x8008) },
2451 { USB_DEVICE(0x1044, 0x800a) },
2452 /* Huawei-3Com */
2453 { USB_DEVICE(0x1472, 0x0009) },
2454 /* Hercules */
2455 { USB_DEVICE(0x06f8, 0xe002) },
2456 { USB_DEVICE(0x06f8, 0xe010) },
2457 { USB_DEVICE(0x06f8, 0xe020) },
2458 /* Linksys */
2459 { USB_DEVICE(0x13b1, 0x0020) },
2460 { USB_DEVICE(0x13b1, 0x0023) },
2461 { USB_DEVICE(0x13b1, 0x0028) },
2462 /* MSI */
2463 { USB_DEVICE(0x0db0, 0x4600) },
2464 { USB_DEVICE(0x0db0, 0x6877) },
2465 { USB_DEVICE(0x0db0, 0x6874) },
2466 { USB_DEVICE(0x0db0, 0xa861) },
2467 { USB_DEVICE(0x0db0, 0xa874) },
2468 /* Ovislink */
2469 { USB_DEVICE(0x1b75, 0x7318) },
2470 /* Ralink */
2471 { USB_DEVICE(0x04bb, 0x093d) },
2472 { USB_DEVICE(0x148f, 0x2573) },
2473 { USB_DEVICE(0x148f, 0x2671) },
2474 { USB_DEVICE(0x0812, 0x3101) },
2475 /* Qcom */
2476 { USB_DEVICE(0x18e8, 0x6196) },
2477 { USB_DEVICE(0x18e8, 0x6229) },
2478 { USB_DEVICE(0x18e8, 0x6238) },
2479 /* Samsung */
2480 { USB_DEVICE(0x04e8, 0x4471) },
2481 /* Senao */
2482 { USB_DEVICE(0x1740, 0x7100) },
2483 /* Sitecom */
2484 { USB_DEVICE(0x0df6, 0x0024) },
2485 { USB_DEVICE(0x0df6, 0x0027) },
2486 { USB_DEVICE(0x0df6, 0x002f) },
2487 { USB_DEVICE(0x0df6, 0x90ac) },
2488 { USB_DEVICE(0x0df6, 0x9712) },
2489 /* Surecom */
2490 { USB_DEVICE(0x0769, 0x31f3) },
2491 /* Tilgin */
2492 { USB_DEVICE(0x6933, 0x5001) },
2493 /* Philips */
2494 { USB_DEVICE(0x0471, 0x200a) },
2495 /* Planex */
2496 { USB_DEVICE(0x2019, 0xab01) },
2497 { USB_DEVICE(0x2019, 0xab50) },
2498 /* WideTell */
2499 { USB_DEVICE(0x7167, 0x3840) },
2500 /* Zcom */
2501 { USB_DEVICE(0x0cde, 0x001c) },
2502 /* ZyXEL */
2503 { USB_DEVICE(0x0586, 0x3415) },
2504 { 0, }
2505};
2506
2507MODULE_AUTHOR(DRV_PROJECT);
2508MODULE_VERSION(DRV_VERSION);
2509MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2510MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2511MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2512MODULE_FIRMWARE(FIRMWARE_RT2571);
2513MODULE_LICENSE("GPL");
2514
2515static int rt73usb_probe(struct usb_interface *usb_intf,
2516 const struct usb_device_id *id)
2517{
2518 return rt2x00usb_probe(usb_intf, &rt73usb_ops);
2519}
2520
2521static struct usb_driver rt73usb_driver = {
2522 .name = KBUILD_MODNAME,
2523 .id_table = rt73usb_device_table,
2524 .probe = rt73usb_probe,
2525 .disconnect = rt2x00usb_disconnect,
2526 .suspend = rt2x00usb_suspend,
2527 .resume = rt2x00usb_resume,
2528};
2529
2530static int __init rt73usb_init(void)
2531{
2532 return usb_register(&rt73usb_driver);
2533}
2534
2535static void __exit rt73usb_exit(void)
2536{
2537 usb_deregister(&rt73usb_driver);
2538}
2539
2540module_init(rt73usb_init);
2541module_exit(rt73usb_exit);
1/*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19/*
20 Module: rt73usb
21 Abstract: rt73usb device specific routines.
22 Supported chipsets: rt2571W & rt2671.
23 */
24
25#include <linux/crc-itu-t.h>
26#include <linux/delay.h>
27#include <linux/etherdevice.h>
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/slab.h>
31#include <linux/usb.h>
32
33#include "rt2x00.h"
34#include "rt2x00usb.h"
35#include "rt73usb.h"
36
37/*
38 * Allow hardware encryption to be disabled.
39 */
40static bool modparam_nohwcrypt;
41module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
42MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
43
44/*
45 * Register access.
46 * All access to the CSR registers will go through the methods
47 * rt2x00usb_register_read and rt2x00usb_register_write.
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers BBPCSR and RFCSR to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attampt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
56 * The _lock versions must be used if you already hold the csr_mutex
57 */
58#define WAIT_FOR_BBP(__dev, __reg) \
59 rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60#define WAIT_FOR_RF(__dev, __reg) \
61 rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62
63static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
64 const unsigned int word, const u8 value)
65{
66 u32 reg;
67
68 mutex_lock(&rt2x00dev->csr_mutex);
69
70 /*
71 * Wait until the BBP becomes available, afterwards we
72 * can safely write the new data into the register.
73 */
74 if (WAIT_FOR_BBP(rt2x00dev, ®)) {
75 reg = 0;
76 rt2x00_set_field32(®, PHY_CSR3_VALUE, value);
77 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
78 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
79 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0);
80
81 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
82 }
83
84 mutex_unlock(&rt2x00dev->csr_mutex);
85}
86
87static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
88 const unsigned int word, u8 *value)
89{
90 u32 reg;
91
92 mutex_lock(&rt2x00dev->csr_mutex);
93
94 /*
95 * Wait until the BBP becomes available, afterwards we
96 * can safely write the read request into the register.
97 * After the data has been written, we wait until hardware
98 * returns the correct value, if at any time the register
99 * doesn't become available in time, reg will be 0xffffffff
100 * which means we return 0xff to the caller.
101 */
102 if (WAIT_FOR_BBP(rt2x00dev, ®)) {
103 reg = 0;
104 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word);
105 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1);
106 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1);
107
108 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
109
110 WAIT_FOR_BBP(rt2x00dev, ®);
111 }
112
113 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
114
115 mutex_unlock(&rt2x00dev->csr_mutex);
116}
117
118static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
119 const unsigned int word, const u32 value)
120{
121 u32 reg;
122
123 mutex_lock(&rt2x00dev->csr_mutex);
124
125 /*
126 * Wait until the RF becomes available, afterwards we
127 * can safely write the new data into the register.
128 */
129 if (WAIT_FOR_RF(rt2x00dev, ®)) {
130 reg = 0;
131 rt2x00_set_field32(®, PHY_CSR4_VALUE, value);
132 /*
133 * RF5225 and RF2527 contain 21 bits per RF register value,
134 * all others contain 20 bits.
135 */
136 rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS,
137 20 + (rt2x00_rf(rt2x00dev, RF5225) ||
138 rt2x00_rf(rt2x00dev, RF2527)));
139 rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0);
140 rt2x00_set_field32(®, PHY_CSR4_BUSY, 1);
141
142 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
143 rt2x00_rf_write(rt2x00dev, word, value);
144 }
145
146 mutex_unlock(&rt2x00dev->csr_mutex);
147}
148
149#ifdef CONFIG_RT2X00_LIB_DEBUGFS
150static const struct rt2x00debug rt73usb_rt2x00debug = {
151 .owner = THIS_MODULE,
152 .csr = {
153 .read = rt2x00usb_register_read,
154 .write = rt2x00usb_register_write,
155 .flags = RT2X00DEBUGFS_OFFSET,
156 .word_base = CSR_REG_BASE,
157 .word_size = sizeof(u32),
158 .word_count = CSR_REG_SIZE / sizeof(u32),
159 },
160 .eeprom = {
161 .read = rt2x00_eeprom_read,
162 .write = rt2x00_eeprom_write,
163 .word_base = EEPROM_BASE,
164 .word_size = sizeof(u16),
165 .word_count = EEPROM_SIZE / sizeof(u16),
166 },
167 .bbp = {
168 .read = rt73usb_bbp_read,
169 .write = rt73usb_bbp_write,
170 .word_base = BBP_BASE,
171 .word_size = sizeof(u8),
172 .word_count = BBP_SIZE / sizeof(u8),
173 },
174 .rf = {
175 .read = rt2x00_rf_read,
176 .write = rt73usb_rf_write,
177 .word_base = RF_BASE,
178 .word_size = sizeof(u32),
179 .word_count = RF_SIZE / sizeof(u32),
180 },
181};
182#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
183
184static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
185{
186 u32 reg;
187
188 rt2x00usb_register_read(rt2x00dev, MAC_CSR13, ®);
189 return rt2x00_get_field32(reg, MAC_CSR13_VAL7);
190}
191
192#ifdef CONFIG_RT2X00_LIB_LEDS
193static void rt73usb_brightness_set(struct led_classdev *led_cdev,
194 enum led_brightness brightness)
195{
196 struct rt2x00_led *led =
197 container_of(led_cdev, struct rt2x00_led, led_dev);
198 unsigned int enabled = brightness != LED_OFF;
199 unsigned int a_mode =
200 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
201 unsigned int bg_mode =
202 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
203
204 if (led->type == LED_TYPE_RADIO) {
205 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
206 MCU_LEDCS_RADIO_STATUS, enabled);
207
208 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
209 0, led->rt2x00dev->led_mcu_reg,
210 REGISTER_TIMEOUT);
211 } else if (led->type == LED_TYPE_ASSOC) {
212 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
213 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
214 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
215 MCU_LEDCS_LINK_A_STATUS, a_mode);
216
217 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
218 0, led->rt2x00dev->led_mcu_reg,
219 REGISTER_TIMEOUT);
220 } else if (led->type == LED_TYPE_QUALITY) {
221 /*
222 * The brightness is divided into 6 levels (0 - 5),
223 * this means we need to convert the brightness
224 * argument into the matching level within that range.
225 */
226 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
227 brightness / (LED_FULL / 6),
228 led->rt2x00dev->led_mcu_reg,
229 REGISTER_TIMEOUT);
230 }
231}
232
233static int rt73usb_blink_set(struct led_classdev *led_cdev,
234 unsigned long *delay_on,
235 unsigned long *delay_off)
236{
237 struct rt2x00_led *led =
238 container_of(led_cdev, struct rt2x00_led, led_dev);
239 u32 reg;
240
241 rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, ®);
242 rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on);
243 rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off);
244 rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
245
246 return 0;
247}
248
249static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
250 struct rt2x00_led *led,
251 enum led_type type)
252{
253 led->rt2x00dev = rt2x00dev;
254 led->type = type;
255 led->led_dev.brightness_set = rt73usb_brightness_set;
256 led->led_dev.blink_set = rt73usb_blink_set;
257 led->flags = LED_INITIALIZED;
258}
259#endif /* CONFIG_RT2X00_LIB_LEDS */
260
261/*
262 * Configuration handlers.
263 */
264static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
265 struct rt2x00lib_crypto *crypto,
266 struct ieee80211_key_conf *key)
267{
268 struct hw_key_entry key_entry;
269 struct rt2x00_field32 field;
270 u32 mask;
271 u32 reg;
272
273 if (crypto->cmd == SET_KEY) {
274 /*
275 * rt2x00lib can't determine the correct free
276 * key_idx for shared keys. We have 1 register
277 * with key valid bits. The goal is simple, read
278 * the register, if that is full we have no slots
279 * left.
280 * Note that each BSS is allowed to have up to 4
281 * shared keys, so put a mask over the allowed
282 * entries.
283 */
284 mask = (0xf << crypto->bssidx);
285
286 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, ®);
287 reg &= mask;
288
289 if (reg && reg == mask)
290 return -ENOSPC;
291
292 key->hw_key_idx += reg ? ffz(reg) : 0;
293
294 /*
295 * Upload key to hardware
296 */
297 memcpy(key_entry.key, crypto->key,
298 sizeof(key_entry.key));
299 memcpy(key_entry.tx_mic, crypto->tx_mic,
300 sizeof(key_entry.tx_mic));
301 memcpy(key_entry.rx_mic, crypto->rx_mic,
302 sizeof(key_entry.rx_mic));
303
304 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
305 rt2x00usb_register_multiwrite(rt2x00dev, reg,
306 &key_entry, sizeof(key_entry));
307
308 /*
309 * The cipher types are stored over 2 registers.
310 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
311 * bssidx 1 and 2 keys are stored in SEC_CSR5.
312 * Using the correct defines correctly will cause overhead,
313 * so just calculate the correct offset.
314 */
315 if (key->hw_key_idx < 8) {
316 field.bit_offset = (3 * key->hw_key_idx);
317 field.bit_mask = 0x7 << field.bit_offset;
318
319 rt2x00usb_register_read(rt2x00dev, SEC_CSR1, ®);
320 rt2x00_set_field32(®, field, crypto->cipher);
321 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
322 } else {
323 field.bit_offset = (3 * (key->hw_key_idx - 8));
324 field.bit_mask = 0x7 << field.bit_offset;
325
326 rt2x00usb_register_read(rt2x00dev, SEC_CSR5, ®);
327 rt2x00_set_field32(®, field, crypto->cipher);
328 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
329 }
330
331 /*
332 * The driver does not support the IV/EIV generation
333 * in hardware. However it doesn't support the IV/EIV
334 * inside the ieee80211 frame either, but requires it
335 * to be provided separately for the descriptor.
336 * rt2x00lib will cut the IV/EIV data out of all frames
337 * given to us by mac80211, but we must tell mac80211
338 * to generate the IV/EIV data.
339 */
340 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
341 }
342
343 /*
344 * SEC_CSR0 contains only single-bit fields to indicate
345 * a particular key is valid. Because using the FIELD32()
346 * defines directly will cause a lot of overhead we use
347 * a calculation to determine the correct bit directly.
348 */
349 mask = 1 << key->hw_key_idx;
350
351 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, ®);
352 if (crypto->cmd == SET_KEY)
353 reg |= mask;
354 else if (crypto->cmd == DISABLE_KEY)
355 reg &= ~mask;
356 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
357
358 return 0;
359}
360
361static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
362 struct rt2x00lib_crypto *crypto,
363 struct ieee80211_key_conf *key)
364{
365 struct hw_pairwise_ta_entry addr_entry;
366 struct hw_key_entry key_entry;
367 u32 mask;
368 u32 reg;
369
370 if (crypto->cmd == SET_KEY) {
371 /*
372 * rt2x00lib can't determine the correct free
373 * key_idx for pairwise keys. We have 2 registers
374 * with key valid bits. The goal is simple, read
375 * the first register, if that is full move to
376 * the next register.
377 * When both registers are full, we drop the key,
378 * otherwise we use the first invalid entry.
379 */
380 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, ®);
381 if (reg && reg == ~0) {
382 key->hw_key_idx = 32;
383 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, ®);
384 if (reg && reg == ~0)
385 return -ENOSPC;
386 }
387
388 key->hw_key_idx += reg ? ffz(reg) : 0;
389
390 /*
391 * Upload key to hardware
392 */
393 memcpy(key_entry.key, crypto->key,
394 sizeof(key_entry.key));
395 memcpy(key_entry.tx_mic, crypto->tx_mic,
396 sizeof(key_entry.tx_mic));
397 memcpy(key_entry.rx_mic, crypto->rx_mic,
398 sizeof(key_entry.rx_mic));
399
400 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
401 rt2x00usb_register_multiwrite(rt2x00dev, reg,
402 &key_entry, sizeof(key_entry));
403
404 /*
405 * Send the address and cipher type to the hardware register.
406 */
407 memset(&addr_entry, 0, sizeof(addr_entry));
408 memcpy(&addr_entry, crypto->address, ETH_ALEN);
409 addr_entry.cipher = crypto->cipher;
410
411 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
412 rt2x00usb_register_multiwrite(rt2x00dev, reg,
413 &addr_entry, sizeof(addr_entry));
414
415 /*
416 * Enable pairwise lookup table for given BSS idx,
417 * without this received frames will not be decrypted
418 * by the hardware.
419 */
420 rt2x00usb_register_read(rt2x00dev, SEC_CSR4, ®);
421 reg |= (1 << crypto->bssidx);
422 rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
423
424 /*
425 * The driver does not support the IV/EIV generation
426 * in hardware. However it doesn't support the IV/EIV
427 * inside the ieee80211 frame either, but requires it
428 * to be provided separately for the descriptor.
429 * rt2x00lib will cut the IV/EIV data out of all frames
430 * given to us by mac80211, but we must tell mac80211
431 * to generate the IV/EIV data.
432 */
433 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
434 }
435
436 /*
437 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
438 * a particular key is valid. Because using the FIELD32()
439 * defines directly will cause a lot of overhead we use
440 * a calculation to determine the correct bit directly.
441 */
442 if (key->hw_key_idx < 32) {
443 mask = 1 << key->hw_key_idx;
444
445 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, ®);
446 if (crypto->cmd == SET_KEY)
447 reg |= mask;
448 else if (crypto->cmd == DISABLE_KEY)
449 reg &= ~mask;
450 rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
451 } else {
452 mask = 1 << (key->hw_key_idx - 32);
453
454 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, ®);
455 if (crypto->cmd == SET_KEY)
456 reg |= mask;
457 else if (crypto->cmd == DISABLE_KEY)
458 reg &= ~mask;
459 rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
460 }
461
462 return 0;
463}
464
465static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
466 const unsigned int filter_flags)
467{
468 u32 reg;
469
470 /*
471 * Start configuration steps.
472 * Note that the version error will always be dropped
473 * and broadcast frames will always be accepted since
474 * there is no filter for it at this time.
475 */
476 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®);
477 rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC,
478 !(filter_flags & FIF_FCSFAIL));
479 rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL,
480 !(filter_flags & FIF_PLCPFAIL));
481 rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL,
482 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
483 rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME,
484 !(filter_flags & FIF_PROMISC_IN_BSS));
485 rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS,
486 !(filter_flags & FIF_PROMISC_IN_BSS) &&
487 !rt2x00dev->intf_ap_count);
488 rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1);
489 rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST,
490 !(filter_flags & FIF_ALLMULTI));
491 rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0);
492 rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS,
493 !(filter_flags & FIF_CONTROL));
494 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
495}
496
497static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
498 struct rt2x00_intf *intf,
499 struct rt2x00intf_conf *conf,
500 const unsigned int flags)
501{
502 u32 reg;
503
504 if (flags & CONFIG_UPDATE_TYPE) {
505 /*
506 * Enable synchronisation.
507 */
508 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®);
509 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync);
510 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
511 }
512
513 if (flags & CONFIG_UPDATE_MAC) {
514 reg = le32_to_cpu(conf->mac[1]);
515 rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
516 conf->mac[1] = cpu_to_le32(reg);
517
518 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
519 conf->mac, sizeof(conf->mac));
520 }
521
522 if (flags & CONFIG_UPDATE_BSSID) {
523 reg = le32_to_cpu(conf->bssid[1]);
524 rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3);
525 conf->bssid[1] = cpu_to_le32(reg);
526
527 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
528 conf->bssid, sizeof(conf->bssid));
529 }
530}
531
532static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
533 struct rt2x00lib_erp *erp,
534 u32 changed)
535{
536 u32 reg;
537
538 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®);
539 rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
540 rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
541 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
542
543 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
544 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, ®);
545 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
546 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE,
547 !!erp->short_preamble);
548 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
549 }
550
551 if (changed & BSS_CHANGED_BASIC_RATES)
552 rt2x00usb_register_write(rt2x00dev, TXRX_CSR5,
553 erp->basic_rates);
554
555 if (changed & BSS_CHANGED_BEACON_INT) {
556 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®);
557 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL,
558 erp->beacon_int * 16);
559 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
560 }
561
562 if (changed & BSS_CHANGED_ERP_SLOT) {
563 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, ®);
564 rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, erp->slot_time);
565 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
566
567 rt2x00usb_register_read(rt2x00dev, MAC_CSR8, ®);
568 rt2x00_set_field32(®, MAC_CSR8_SIFS, erp->sifs);
569 rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
570 rt2x00_set_field32(®, MAC_CSR8_EIFS, erp->eifs);
571 rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
572 }
573}
574
575static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
576 struct antenna_setup *ant)
577{
578 u8 r3;
579 u8 r4;
580 u8 r77;
581 u8 temp;
582
583 rt73usb_bbp_read(rt2x00dev, 3, &r3);
584 rt73usb_bbp_read(rt2x00dev, 4, &r4);
585 rt73usb_bbp_read(rt2x00dev, 77, &r77);
586
587 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
588
589 /*
590 * Configure the RX antenna.
591 */
592 switch (ant->rx) {
593 case ANTENNA_HW_DIVERSITY:
594 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
595 temp = !rt2x00_has_cap_frame_type(rt2x00dev) &&
596 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
597 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
598 break;
599 case ANTENNA_A:
600 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
601 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
602 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
603 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
604 else
605 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
606 break;
607 case ANTENNA_B:
608 default:
609 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
610 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
611 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
612 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
613 else
614 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
615 break;
616 }
617
618 rt73usb_bbp_write(rt2x00dev, 77, r77);
619 rt73usb_bbp_write(rt2x00dev, 3, r3);
620 rt73usb_bbp_write(rt2x00dev, 4, r4);
621}
622
623static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
624 struct antenna_setup *ant)
625{
626 u8 r3;
627 u8 r4;
628 u8 r77;
629
630 rt73usb_bbp_read(rt2x00dev, 3, &r3);
631 rt73usb_bbp_read(rt2x00dev, 4, &r4);
632 rt73usb_bbp_read(rt2x00dev, 77, &r77);
633
634 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
635 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
636 !rt2x00_has_cap_frame_type(rt2x00dev));
637
638 /*
639 * Configure the RX antenna.
640 */
641 switch (ant->rx) {
642 case ANTENNA_HW_DIVERSITY:
643 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
644 break;
645 case ANTENNA_A:
646 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
647 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
648 break;
649 case ANTENNA_B:
650 default:
651 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
652 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
653 break;
654 }
655
656 rt73usb_bbp_write(rt2x00dev, 77, r77);
657 rt73usb_bbp_write(rt2x00dev, 3, r3);
658 rt73usb_bbp_write(rt2x00dev, 4, r4);
659}
660
661struct antenna_sel {
662 u8 word;
663 /*
664 * value[0] -> non-LNA
665 * value[1] -> LNA
666 */
667 u8 value[2];
668};
669
670static const struct antenna_sel antenna_sel_a[] = {
671 { 96, { 0x58, 0x78 } },
672 { 104, { 0x38, 0x48 } },
673 { 75, { 0xfe, 0x80 } },
674 { 86, { 0xfe, 0x80 } },
675 { 88, { 0xfe, 0x80 } },
676 { 35, { 0x60, 0x60 } },
677 { 97, { 0x58, 0x58 } },
678 { 98, { 0x58, 0x58 } },
679};
680
681static const struct antenna_sel antenna_sel_bg[] = {
682 { 96, { 0x48, 0x68 } },
683 { 104, { 0x2c, 0x3c } },
684 { 75, { 0xfe, 0x80 } },
685 { 86, { 0xfe, 0x80 } },
686 { 88, { 0xfe, 0x80 } },
687 { 35, { 0x50, 0x50 } },
688 { 97, { 0x48, 0x48 } },
689 { 98, { 0x48, 0x48 } },
690};
691
692static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
693 struct antenna_setup *ant)
694{
695 const struct antenna_sel *sel;
696 unsigned int lna;
697 unsigned int i;
698 u32 reg;
699
700 /*
701 * We should never come here because rt2x00lib is supposed
702 * to catch this and send us the correct antenna explicitely.
703 */
704 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
705 ant->tx == ANTENNA_SW_DIVERSITY);
706
707 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
708 sel = antenna_sel_a;
709 lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
710 } else {
711 sel = antenna_sel_bg;
712 lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
713 }
714
715 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
716 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
717
718 rt2x00usb_register_read(rt2x00dev, PHY_CSR0, ®);
719
720 rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG,
721 (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
722 rt2x00_set_field32(®, PHY_CSR0_PA_PE_A,
723 (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
724
725 rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
726
727 if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
728 rt73usb_config_antenna_5x(rt2x00dev, ant);
729 else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
730 rt73usb_config_antenna_2x(rt2x00dev, ant);
731}
732
733static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
734 struct rt2x00lib_conf *libconf)
735{
736 u16 eeprom;
737 short lna_gain = 0;
738
739 if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) {
740 if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
741 lna_gain += 14;
742
743 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
744 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
745 } else {
746 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
747 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
748 }
749
750 rt2x00dev->lna_gain = lna_gain;
751}
752
753static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
754 struct rf_channel *rf, const int txpower)
755{
756 u8 r3;
757 u8 r94;
758 u8 smart;
759
760 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
761 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
762
763 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
764
765 rt73usb_bbp_read(rt2x00dev, 3, &r3);
766 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
767 rt73usb_bbp_write(rt2x00dev, 3, r3);
768
769 r94 = 6;
770 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
771 r94 += txpower - MAX_TXPOWER;
772 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
773 r94 += txpower;
774 rt73usb_bbp_write(rt2x00dev, 94, r94);
775
776 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
777 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
778 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
779 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
780
781 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
782 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
783 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
784 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
785
786 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
787 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
788 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
789 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
790
791 udelay(10);
792}
793
794static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
795 const int txpower)
796{
797 struct rf_channel rf;
798
799 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
800 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
801 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
802 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
803
804 rt73usb_config_channel(rt2x00dev, &rf, txpower);
805}
806
807static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
808 struct rt2x00lib_conf *libconf)
809{
810 u32 reg;
811
812 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, ®);
813 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
814 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
815 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
816 rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT,
817 libconf->conf->long_frame_max_tx_count);
818 rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT,
819 libconf->conf->short_frame_max_tx_count);
820 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
821}
822
823static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
824 struct rt2x00lib_conf *libconf)
825{
826 enum dev_state state =
827 (libconf->conf->flags & IEEE80211_CONF_PS) ?
828 STATE_SLEEP : STATE_AWAKE;
829 u32 reg;
830
831 if (state == STATE_SLEEP) {
832 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, ®);
833 rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN,
834 rt2x00dev->beacon_int - 10);
835 rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP,
836 libconf->conf->listen_interval - 1);
837 rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 5);
838
839 /* We must first disable autowake before it can be enabled */
840 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0);
841 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
842
843 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 1);
844 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
845
846 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
847 USB_MODE_SLEEP, REGISTER_TIMEOUT);
848 } else {
849 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, ®);
850 rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 0);
851 rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
852 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0);
853 rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 0);
854 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
855
856 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
857 USB_MODE_WAKEUP, REGISTER_TIMEOUT);
858 }
859}
860
861static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
862 struct rt2x00lib_conf *libconf,
863 const unsigned int flags)
864{
865 /* Always recalculate LNA gain before changing configuration */
866 rt73usb_config_lna_gain(rt2x00dev, libconf);
867
868 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
869 rt73usb_config_channel(rt2x00dev, &libconf->rf,
870 libconf->conf->power_level);
871 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
872 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
873 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
874 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
875 rt73usb_config_retry_limit(rt2x00dev, libconf);
876 if (flags & IEEE80211_CONF_CHANGE_PS)
877 rt73usb_config_ps(rt2x00dev, libconf);
878}
879
880/*
881 * Link tuning
882 */
883static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
884 struct link_qual *qual)
885{
886 u32 reg;
887
888 /*
889 * Update FCS error count from register.
890 */
891 rt2x00usb_register_read(rt2x00dev, STA_CSR0, ®);
892 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
893
894 /*
895 * Update False CCA count from register.
896 */
897 rt2x00usb_register_read(rt2x00dev, STA_CSR1, ®);
898 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
899}
900
901static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
902 struct link_qual *qual, u8 vgc_level)
903{
904 if (qual->vgc_level != vgc_level) {
905 rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
906 qual->vgc_level = vgc_level;
907 qual->vgc_level_reg = vgc_level;
908 }
909}
910
911static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
912 struct link_qual *qual)
913{
914 rt73usb_set_vgc(rt2x00dev, qual, 0x20);
915}
916
917static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
918 struct link_qual *qual, const u32 count)
919{
920 u8 up_bound;
921 u8 low_bound;
922
923 /*
924 * Determine r17 bounds.
925 */
926 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
927 low_bound = 0x28;
928 up_bound = 0x48;
929
930 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
931 low_bound += 0x10;
932 up_bound += 0x10;
933 }
934 } else {
935 if (qual->rssi > -82) {
936 low_bound = 0x1c;
937 up_bound = 0x40;
938 } else if (qual->rssi > -84) {
939 low_bound = 0x1c;
940 up_bound = 0x20;
941 } else {
942 low_bound = 0x1c;
943 up_bound = 0x1c;
944 }
945
946 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
947 low_bound += 0x14;
948 up_bound += 0x10;
949 }
950 }
951
952 /*
953 * If we are not associated, we should go straight to the
954 * dynamic CCA tuning.
955 */
956 if (!rt2x00dev->intf_associated)
957 goto dynamic_cca_tune;
958
959 /*
960 * Special big-R17 for very short distance
961 */
962 if (qual->rssi > -35) {
963 rt73usb_set_vgc(rt2x00dev, qual, 0x60);
964 return;
965 }
966
967 /*
968 * Special big-R17 for short distance
969 */
970 if (qual->rssi >= -58) {
971 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
972 return;
973 }
974
975 /*
976 * Special big-R17 for middle-short distance
977 */
978 if (qual->rssi >= -66) {
979 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
980 return;
981 }
982
983 /*
984 * Special mid-R17 for middle distance
985 */
986 if (qual->rssi >= -74) {
987 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
988 return;
989 }
990
991 /*
992 * Special case: Change up_bound based on the rssi.
993 * Lower up_bound when rssi is weaker then -74 dBm.
994 */
995 up_bound -= 2 * (-74 - qual->rssi);
996 if (low_bound > up_bound)
997 up_bound = low_bound;
998
999 if (qual->vgc_level > up_bound) {
1000 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
1001 return;
1002 }
1003
1004dynamic_cca_tune:
1005
1006 /*
1007 * r17 does not yet exceed upper limit, continue and base
1008 * the r17 tuning on the false CCA count.
1009 */
1010 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1011 rt73usb_set_vgc(rt2x00dev, qual,
1012 min_t(u8, qual->vgc_level + 4, up_bound));
1013 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1014 rt73usb_set_vgc(rt2x00dev, qual,
1015 max_t(u8, qual->vgc_level - 4, low_bound));
1016}
1017
1018/*
1019 * Queue handlers.
1020 */
1021static void rt73usb_start_queue(struct data_queue *queue)
1022{
1023 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1024 u32 reg;
1025
1026 switch (queue->qid) {
1027 case QID_RX:
1028 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®);
1029 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0);
1030 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1031 break;
1032 case QID_BEACON:
1033 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®);
1034 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1);
1035 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1);
1036 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1);
1037 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1038 break;
1039 default:
1040 break;
1041 }
1042}
1043
1044static void rt73usb_stop_queue(struct data_queue *queue)
1045{
1046 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1047 u32 reg;
1048
1049 switch (queue->qid) {
1050 case QID_RX:
1051 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®);
1052 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 1);
1053 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1054 break;
1055 case QID_BEACON:
1056 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®);
1057 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0);
1058 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0);
1059 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
1060 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1061 break;
1062 default:
1063 break;
1064 }
1065}
1066
1067/*
1068 * Firmware functions
1069 */
1070static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1071{
1072 return FIRMWARE_RT2571;
1073}
1074
1075static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
1076 const u8 *data, const size_t len)
1077{
1078 u16 fw_crc;
1079 u16 crc;
1080
1081 /*
1082 * Only support 2kb firmware files.
1083 */
1084 if (len != 2048)
1085 return FW_BAD_LENGTH;
1086
1087 /*
1088 * The last 2 bytes in the firmware array are the crc checksum itself,
1089 * this means that we should never pass those 2 bytes to the crc
1090 * algorithm.
1091 */
1092 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1093
1094 /*
1095 * Use the crc itu-t algorithm.
1096 */
1097 crc = crc_itu_t(0, data, len - 2);
1098 crc = crc_itu_t_byte(crc, 0);
1099 crc = crc_itu_t_byte(crc, 0);
1100
1101 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1102}
1103
1104static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
1105 const u8 *data, const size_t len)
1106{
1107 unsigned int i;
1108 int status;
1109 u32 reg;
1110
1111 /*
1112 * Wait for stable hardware.
1113 */
1114 for (i = 0; i < 100; i++) {
1115 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, ®);
1116 if (reg)
1117 break;
1118 msleep(1);
1119 }
1120
1121 if (!reg) {
1122 rt2x00_err(rt2x00dev, "Unstable hardware\n");
1123 return -EBUSY;
1124 }
1125
1126 /*
1127 * Write firmware to device.
1128 */
1129 rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len);
1130
1131 /*
1132 * Send firmware request to device to load firmware,
1133 * we need to specify a long timeout time.
1134 */
1135 status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1136 0, USB_MODE_FIRMWARE,
1137 REGISTER_TIMEOUT_FIRMWARE);
1138 if (status < 0) {
1139 rt2x00_err(rt2x00dev, "Failed to write Firmware to device\n");
1140 return status;
1141 }
1142
1143 return 0;
1144}
1145
1146/*
1147 * Initialization functions.
1148 */
1149static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1150{
1151 u32 reg;
1152
1153 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®);
1154 rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1);
1155 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0);
1156 rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1157 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1158
1159 rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, ®);
1160 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1161 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1);
1162 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1163 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1);
1164 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1165 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1);
1166 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1167 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1);
1168 rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1169
1170 /*
1171 * CCK TXD BBP registers
1172 */
1173 rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, ®);
1174 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13);
1175 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1);
1176 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12);
1177 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1);
1178 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11);
1179 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1);
1180 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10);
1181 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1);
1182 rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1183
1184 /*
1185 * OFDM TXD BBP registers
1186 */
1187 rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, ®);
1188 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7);
1189 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1);
1190 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6);
1191 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1);
1192 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5);
1193 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1);
1194 rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1195
1196 rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, ®);
1197 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59);
1198 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53);
1199 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49);
1200 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46);
1201 rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1202
1203 rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, ®);
1204 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44);
1205 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42);
1206 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42);
1207 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42);
1208 rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1209
1210 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®);
1211 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0);
1212 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0);
1213 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0);
1214 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0);
1215 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
1216 rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1217 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1218
1219 rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1220
1221 rt2x00usb_register_read(rt2x00dev, MAC_CSR6, ®);
1222 rt2x00_set_field32(®, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1223 rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1224
1225 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1226
1227 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1228 return -EBUSY;
1229
1230 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1231
1232 /*
1233 * Invalidate all Shared Keys (SEC_CSR0),
1234 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1235 */
1236 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1237 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1238 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1239
1240 reg = 0x000023b0;
1241 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))
1242 rt2x00_set_field32(®, PHY_CSR1_RF_RPI, 1);
1243 rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1244
1245 rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1246 rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1247 rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1248
1249 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, ®);
1250 rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0);
1251 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1252
1253 /*
1254 * Clear all beacons
1255 * For the Beacon base registers we only need to clear
1256 * the first byte since that byte contains the VALID and OWNER
1257 * bits which (when set to 0) will invalidate the entire beacon.
1258 */
1259 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1260 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1261 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1262 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1263
1264 /*
1265 * We must clear the error counters.
1266 * These registers are cleared on read,
1267 * so we may pass a useless variable to store the value.
1268 */
1269 rt2x00usb_register_read(rt2x00dev, STA_CSR0, ®);
1270 rt2x00usb_register_read(rt2x00dev, STA_CSR1, ®);
1271 rt2x00usb_register_read(rt2x00dev, STA_CSR2, ®);
1272
1273 /*
1274 * Reset MAC and BBP registers.
1275 */
1276 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, ®);
1277 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1);
1278 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1);
1279 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1280
1281 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, ®);
1282 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0);
1283 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0);
1284 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1285
1286 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, ®);
1287 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1);
1288 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1289
1290 return 0;
1291}
1292
1293static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1294{
1295 unsigned int i;
1296 u8 value;
1297
1298 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1299 rt73usb_bbp_read(rt2x00dev, 0, &value);
1300 if ((value != 0xff) && (value != 0x00))
1301 return 0;
1302 udelay(REGISTER_BUSY_DELAY);
1303 }
1304
1305 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1306 return -EACCES;
1307}
1308
1309static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1310{
1311 unsigned int i;
1312 u16 eeprom;
1313 u8 reg_id;
1314 u8 value;
1315
1316 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1317 return -EACCES;
1318
1319 rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1320 rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1321 rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1322 rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1323 rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1324 rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1325 rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1326 rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1327 rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1328 rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1329 rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1330 rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1331 rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1332 rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1333 rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1334 rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1335 rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1336 rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1337 rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1338 rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1339 rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1340 rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1341 rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1342 rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1343 rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1344
1345 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1346 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1347
1348 if (eeprom != 0xffff && eeprom != 0x0000) {
1349 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1350 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1351 rt73usb_bbp_write(rt2x00dev, reg_id, value);
1352 }
1353 }
1354
1355 return 0;
1356}
1357
1358/*
1359 * Device state switch handlers.
1360 */
1361static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1362{
1363 /*
1364 * Initialize all registers.
1365 */
1366 if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1367 rt73usb_init_bbp(rt2x00dev)))
1368 return -EIO;
1369
1370 return 0;
1371}
1372
1373static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1374{
1375 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1376
1377 /*
1378 * Disable synchronisation.
1379 */
1380 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1381
1382 rt2x00usb_disable_radio(rt2x00dev);
1383}
1384
1385static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1386{
1387 u32 reg, reg2;
1388 unsigned int i;
1389 char put_to_sleep;
1390
1391 put_to_sleep = (state != STATE_AWAKE);
1392
1393 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, ®);
1394 rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1395 rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1396 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1397
1398 /*
1399 * Device is not guaranteed to be in the requested state yet.
1400 * We must wait until the register indicates that the
1401 * device has entered the correct state.
1402 */
1403 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1404 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, ®2);
1405 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1406 if (state == !put_to_sleep)
1407 return 0;
1408 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1409 msleep(10);
1410 }
1411
1412 return -EBUSY;
1413}
1414
1415static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1416 enum dev_state state)
1417{
1418 int retval = 0;
1419
1420 switch (state) {
1421 case STATE_RADIO_ON:
1422 retval = rt73usb_enable_radio(rt2x00dev);
1423 break;
1424 case STATE_RADIO_OFF:
1425 rt73usb_disable_radio(rt2x00dev);
1426 break;
1427 case STATE_RADIO_IRQ_ON:
1428 case STATE_RADIO_IRQ_OFF:
1429 /* No support, but no error either */
1430 break;
1431 case STATE_DEEP_SLEEP:
1432 case STATE_SLEEP:
1433 case STATE_STANDBY:
1434 case STATE_AWAKE:
1435 retval = rt73usb_set_state(rt2x00dev, state);
1436 break;
1437 default:
1438 retval = -ENOTSUPP;
1439 break;
1440 }
1441
1442 if (unlikely(retval))
1443 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1444 state, retval);
1445
1446 return retval;
1447}
1448
1449/*
1450 * TX descriptor initialization
1451 */
1452static void rt73usb_write_tx_desc(struct queue_entry *entry,
1453 struct txentry_desc *txdesc)
1454{
1455 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1456 __le32 *txd = (__le32 *) entry->skb->data;
1457 u32 word;
1458
1459 /*
1460 * Start writing the descriptor words.
1461 */
1462 rt2x00_desc_read(txd, 0, &word);
1463 rt2x00_set_field32(&word, TXD_W0_BURST,
1464 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1465 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1466 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1467 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1468 rt2x00_set_field32(&word, TXD_W0_ACK,
1469 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1470 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1471 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1472 rt2x00_set_field32(&word, TXD_W0_OFDM,
1473 (txdesc->rate_mode == RATE_MODE_OFDM));
1474 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1475 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1476 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1477 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1478 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1479 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1480 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1481 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1482 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1483 rt2x00_set_field32(&word, TXD_W0_BURST2,
1484 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1485 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1486 rt2x00_desc_write(txd, 0, word);
1487
1488 rt2x00_desc_read(txd, 1, &word);
1489 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1490 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1491 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1492 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1493 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1494 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1495 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1496 rt2x00_desc_write(txd, 1, word);
1497
1498 rt2x00_desc_read(txd, 2, &word);
1499 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1500 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1501 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1502 txdesc->u.plcp.length_low);
1503 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1504 txdesc->u.plcp.length_high);
1505 rt2x00_desc_write(txd, 2, word);
1506
1507 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1508 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1509 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1510 }
1511
1512 rt2x00_desc_read(txd, 5, &word);
1513 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1514 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1515 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1516 rt2x00_desc_write(txd, 5, word);
1517
1518 /*
1519 * Register descriptor details in skb frame descriptor.
1520 */
1521 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1522 skbdesc->desc = txd;
1523 skbdesc->desc_len = TXD_DESC_SIZE;
1524}
1525
1526/*
1527 * TX data initialization
1528 */
1529static void rt73usb_write_beacon(struct queue_entry *entry,
1530 struct txentry_desc *txdesc)
1531{
1532 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1533 unsigned int beacon_base;
1534 unsigned int padding_len;
1535 u32 orig_reg, reg;
1536
1537 /*
1538 * Disable beaconing while we are reloading the beacon data,
1539 * otherwise we might be sending out invalid data.
1540 */
1541 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®);
1542 orig_reg = reg;
1543 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
1544 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1545
1546 /*
1547 * Add space for the descriptor in front of the skb.
1548 */
1549 skb_push(entry->skb, TXD_DESC_SIZE);
1550 memset(entry->skb->data, 0, TXD_DESC_SIZE);
1551
1552 /*
1553 * Write the TX descriptor for the beacon.
1554 */
1555 rt73usb_write_tx_desc(entry, txdesc);
1556
1557 /*
1558 * Dump beacon to userspace through debugfs.
1559 */
1560 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1561
1562 /*
1563 * Write entire beacon with descriptor and padding to register.
1564 */
1565 padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1566 if (padding_len && skb_pad(entry->skb, padding_len)) {
1567 rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
1568 /* skb freed by skb_pad() on failure */
1569 entry->skb = NULL;
1570 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1571 return;
1572 }
1573
1574 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1575 rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
1576 entry->skb->len + padding_len);
1577
1578 /*
1579 * Enable beaconing again.
1580 *
1581 * For Wi-Fi faily generated beacons between participating stations.
1582 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1583 */
1584 rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1585
1586 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1);
1587 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1588
1589 /*
1590 * Clean up the beacon skb.
1591 */
1592 dev_kfree_skb(entry->skb);
1593 entry->skb = NULL;
1594}
1595
1596static void rt73usb_clear_beacon(struct queue_entry *entry)
1597{
1598 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1599 unsigned int beacon_base;
1600 u32 reg;
1601
1602 /*
1603 * Disable beaconing while we are reloading the beacon data,
1604 * otherwise we might be sending out invalid data.
1605 */
1606 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®);
1607 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0);
1608 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1609
1610 /*
1611 * Clear beacon.
1612 */
1613 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1614 rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
1615
1616 /*
1617 * Enable beaconing again.
1618 */
1619 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1);
1620 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1621}
1622
1623static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1624{
1625 int length;
1626
1627 /*
1628 * The length _must_ be a multiple of 4,
1629 * but it must _not_ be a multiple of the USB packet size.
1630 */
1631 length = roundup(entry->skb->len, 4);
1632 length += (4 * !(length % entry->queue->usb_maxpacket));
1633
1634 return length;
1635}
1636
1637/*
1638 * RX control handlers
1639 */
1640static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1641{
1642 u8 offset = rt2x00dev->lna_gain;
1643 u8 lna;
1644
1645 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1646 switch (lna) {
1647 case 3:
1648 offset += 90;
1649 break;
1650 case 2:
1651 offset += 74;
1652 break;
1653 case 1:
1654 offset += 64;
1655 break;
1656 default:
1657 return 0;
1658 }
1659
1660 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1661 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
1662 if (lna == 3 || lna == 2)
1663 offset += 10;
1664 } else {
1665 if (lna == 3)
1666 offset += 6;
1667 else if (lna == 2)
1668 offset += 8;
1669 }
1670 }
1671
1672 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1673}
1674
1675static void rt73usb_fill_rxdone(struct queue_entry *entry,
1676 struct rxdone_entry_desc *rxdesc)
1677{
1678 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1679 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1680 __le32 *rxd = (__le32 *)entry->skb->data;
1681 u32 word0;
1682 u32 word1;
1683
1684 /*
1685 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1686 * frame data in rt2x00usb.
1687 */
1688 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1689 rxd = (__le32 *)skbdesc->desc;
1690
1691 /*
1692 * It is now safe to read the descriptor on all architectures.
1693 */
1694 rt2x00_desc_read(rxd, 0, &word0);
1695 rt2x00_desc_read(rxd, 1, &word1);
1696
1697 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1698 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1699
1700 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1701 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1702
1703 if (rxdesc->cipher != CIPHER_NONE) {
1704 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1705 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1706 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1707
1708 _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1709 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1710
1711 /*
1712 * Hardware has stripped IV/EIV data from 802.11 frame during
1713 * decryption. It has provided the data separately but rt2x00lib
1714 * should decide if it should be reinserted.
1715 */
1716 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1717
1718 /*
1719 * The hardware has already checked the Michael Mic and has
1720 * stripped it from the frame. Signal this to mac80211.
1721 */
1722 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1723
1724 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1725 rxdesc->flags |= RX_FLAG_DECRYPTED;
1726 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1727 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1728 }
1729
1730 /*
1731 * Obtain the status about this packet.
1732 * When frame was received with an OFDM bitrate,
1733 * the signal is the PLCP value. If it was received with
1734 * a CCK bitrate the signal is the rate in 100kbit/s.
1735 */
1736 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1737 rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1738 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1739
1740 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1741 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1742 else
1743 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1744 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1745 rxdesc->dev_flags |= RXDONE_MY_BSS;
1746
1747 /*
1748 * Set skb pointers, and update frame information.
1749 */
1750 skb_pull(entry->skb, entry->queue->desc_size);
1751 skb_trim(entry->skb, rxdesc->size);
1752}
1753
1754/*
1755 * Device probe functions.
1756 */
1757static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1758{
1759 u16 word;
1760 u8 *mac;
1761 s8 value;
1762
1763 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1764
1765 /*
1766 * Start validation of the data that has been read.
1767 */
1768 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1769 if (!is_valid_ether_addr(mac)) {
1770 eth_random_addr(mac);
1771 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1772 }
1773
1774 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1775 if (word == 0xffff) {
1776 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1777 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1778 ANTENNA_B);
1779 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1780 ANTENNA_B);
1781 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1782 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1783 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1784 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1785 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1786 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1787 }
1788
1789 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1790 if (word == 0xffff) {
1791 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1792 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1793 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1794 }
1795
1796 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1797 if (word == 0xffff) {
1798 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1799 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1800 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1801 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1802 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1803 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1804 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1805 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1806 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1807 LED_MODE_DEFAULT);
1808 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1809 rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
1810 }
1811
1812 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1813 if (word == 0xffff) {
1814 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1815 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1816 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1817 rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
1818 }
1819
1820 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1821 if (word == 0xffff) {
1822 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1823 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1824 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1825 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1826 } else {
1827 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1828 if (value < -10 || value > 10)
1829 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1830 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1831 if (value < -10 || value > 10)
1832 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1833 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1834 }
1835
1836 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1837 if (word == 0xffff) {
1838 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1839 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1840 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1841 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1842 } else {
1843 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1844 if (value < -10 || value > 10)
1845 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1846 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1847 if (value < -10 || value > 10)
1848 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1849 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1850 }
1851
1852 return 0;
1853}
1854
1855static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1856{
1857 u32 reg;
1858 u16 value;
1859 u16 eeprom;
1860
1861 /*
1862 * Read EEPROM word for configuration.
1863 */
1864 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1865
1866 /*
1867 * Identify RF chipset.
1868 */
1869 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1870 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, ®);
1871 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
1872 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
1873
1874 if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) {
1875 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1876 return -ENODEV;
1877 }
1878
1879 if (!rt2x00_rf(rt2x00dev, RF5226) &&
1880 !rt2x00_rf(rt2x00dev, RF2528) &&
1881 !rt2x00_rf(rt2x00dev, RF5225) &&
1882 !rt2x00_rf(rt2x00dev, RF2527)) {
1883 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1884 return -ENODEV;
1885 }
1886
1887 /*
1888 * Identify default antenna configuration.
1889 */
1890 rt2x00dev->default_ant.tx =
1891 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1892 rt2x00dev->default_ant.rx =
1893 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1894
1895 /*
1896 * Read the Frame type.
1897 */
1898 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1899 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
1900
1901 /*
1902 * Detect if this device has an hardware controlled radio.
1903 */
1904 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1905 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1906
1907 /*
1908 * Read frequency offset.
1909 */
1910 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1911 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1912
1913 /*
1914 * Read external LNA informations.
1915 */
1916 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1917
1918 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1919 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
1920 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
1921 }
1922
1923 /*
1924 * Store led settings, for correct led behaviour.
1925 */
1926#ifdef CONFIG_RT2X00_LIB_LEDS
1927 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1928
1929 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1930 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1931 if (value == LED_MODE_SIGNAL_STRENGTH)
1932 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1933 LED_TYPE_QUALITY);
1934
1935 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1936 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1937 rt2x00_get_field16(eeprom,
1938 EEPROM_LED_POLARITY_GPIO_0));
1939 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1940 rt2x00_get_field16(eeprom,
1941 EEPROM_LED_POLARITY_GPIO_1));
1942 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1943 rt2x00_get_field16(eeprom,
1944 EEPROM_LED_POLARITY_GPIO_2));
1945 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1946 rt2x00_get_field16(eeprom,
1947 EEPROM_LED_POLARITY_GPIO_3));
1948 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1949 rt2x00_get_field16(eeprom,
1950 EEPROM_LED_POLARITY_GPIO_4));
1951 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1952 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1953 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1954 rt2x00_get_field16(eeprom,
1955 EEPROM_LED_POLARITY_RDY_G));
1956 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1957 rt2x00_get_field16(eeprom,
1958 EEPROM_LED_POLARITY_RDY_A));
1959#endif /* CONFIG_RT2X00_LIB_LEDS */
1960
1961 return 0;
1962}
1963
1964/*
1965 * RF value list for RF2528
1966 * Supports: 2.4 GHz
1967 */
1968static const struct rf_channel rf_vals_bg_2528[] = {
1969 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1970 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1971 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1972 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1973 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1974 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1975 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1976 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1977 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1978 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1979 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1980 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1981 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1982 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1983};
1984
1985/*
1986 * RF value list for RF5226
1987 * Supports: 2.4 GHz & 5.2 GHz
1988 */
1989static const struct rf_channel rf_vals_5226[] = {
1990 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1991 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1992 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1993 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1994 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1995 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1996 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1997 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1998 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1999 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
2000 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
2001 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
2002 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
2003 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
2004
2005 /* 802.11 UNI / HyperLan 2 */
2006 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
2007 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
2008 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
2009 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
2010 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
2011 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
2012 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
2013 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
2014
2015 /* 802.11 HyperLan 2 */
2016 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2017 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2018 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2019 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2020 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2021 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2022 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2023 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2024 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2025 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2026
2027 /* 802.11 UNII */
2028 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2029 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2030 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2031 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2032 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2033 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2034
2035 /* MMAC(Japan)J52 ch 34,38,42,46 */
2036 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2037 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2038 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2039 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2040};
2041
2042/*
2043 * RF value list for RF5225 & RF2527
2044 * Supports: 2.4 GHz & 5.2 GHz
2045 */
2046static const struct rf_channel rf_vals_5225_2527[] = {
2047 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2048 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2049 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2050 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2051 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2052 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2053 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2054 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2055 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2056 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2057 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2058 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2059 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2060 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2061
2062 /* 802.11 UNI / HyperLan 2 */
2063 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2064 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2065 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2066 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2067 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2068 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2069 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2070 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2071
2072 /* 802.11 HyperLan 2 */
2073 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2074 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2075 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2076 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2077 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2078 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2079 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2080 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2081 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2082 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2083
2084 /* 802.11 UNII */
2085 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2086 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2087 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2088 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2089 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2090 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2091
2092 /* MMAC(Japan)J52 ch 34,38,42,46 */
2093 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2094 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2095 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2096 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2097};
2098
2099
2100static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2101{
2102 struct hw_mode_spec *spec = &rt2x00dev->spec;
2103 struct channel_info *info;
2104 char *tx_power;
2105 unsigned int i;
2106
2107 /*
2108 * Initialize all hw fields.
2109 *
2110 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
2111 * capable of sending the buffered frames out after the DTIM
2112 * transmission using rt2x00lib_beacondone. This will send out
2113 * multicast and broadcast traffic immediately instead of buffering it
2114 * infinitly and thus dropping it after some time.
2115 */
2116 rt2x00dev->hw->flags =
2117 IEEE80211_HW_SIGNAL_DBM |
2118 IEEE80211_HW_SUPPORTS_PS |
2119 IEEE80211_HW_PS_NULLFUNC_STACK;
2120
2121 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2122 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2123 rt2x00_eeprom_addr(rt2x00dev,
2124 EEPROM_MAC_ADDR_0));
2125
2126 /*
2127 * Initialize hw_mode information.
2128 */
2129 spec->supported_bands = SUPPORT_BAND_2GHZ;
2130 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2131
2132 if (rt2x00_rf(rt2x00dev, RF2528)) {
2133 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2134 spec->channels = rf_vals_bg_2528;
2135 } else if (rt2x00_rf(rt2x00dev, RF5226)) {
2136 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2137 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2138 spec->channels = rf_vals_5226;
2139 } else if (rt2x00_rf(rt2x00dev, RF2527)) {
2140 spec->num_channels = 14;
2141 spec->channels = rf_vals_5225_2527;
2142 } else if (rt2x00_rf(rt2x00dev, RF5225)) {
2143 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2144 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2145 spec->channels = rf_vals_5225_2527;
2146 }
2147
2148 /*
2149 * Create channel information array
2150 */
2151 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2152 if (!info)
2153 return -ENOMEM;
2154
2155 spec->channels_info = info;
2156
2157 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2158 for (i = 0; i < 14; i++) {
2159 info[i].max_power = MAX_TXPOWER;
2160 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2161 }
2162
2163 if (spec->num_channels > 14) {
2164 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2165 for (i = 14; i < spec->num_channels; i++) {
2166 info[i].max_power = MAX_TXPOWER;
2167 info[i].default_power1 =
2168 TXPOWER_FROM_DEV(tx_power[i - 14]);
2169 }
2170 }
2171
2172 return 0;
2173}
2174
2175static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2176{
2177 int retval;
2178 u32 reg;
2179
2180 /*
2181 * Allocate eeprom data.
2182 */
2183 retval = rt73usb_validate_eeprom(rt2x00dev);
2184 if (retval)
2185 return retval;
2186
2187 retval = rt73usb_init_eeprom(rt2x00dev);
2188 if (retval)
2189 return retval;
2190
2191 /*
2192 * Enable rfkill polling by setting GPIO direction of the
2193 * rfkill switch GPIO pin correctly.
2194 */
2195 rt2x00usb_register_read(rt2x00dev, MAC_CSR13, ®);
2196 rt2x00_set_field32(®, MAC_CSR13_DIR7, 0);
2197 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, reg);
2198
2199 /*
2200 * Initialize hw specifications.
2201 */
2202 retval = rt73usb_probe_hw_mode(rt2x00dev);
2203 if (retval)
2204 return retval;
2205
2206 /*
2207 * This device has multiple filters for control frames,
2208 * but has no a separate filter for PS Poll frames.
2209 */
2210 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2211
2212 /*
2213 * This device requires firmware.
2214 */
2215 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2216 if (!modparam_nohwcrypt)
2217 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2218 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2219 __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
2220
2221 /*
2222 * Set the rssi offset.
2223 */
2224 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2225
2226 return 0;
2227}
2228
2229/*
2230 * IEEE80211 stack callback functions.
2231 */
2232static int rt73usb_conf_tx(struct ieee80211_hw *hw,
2233 struct ieee80211_vif *vif, u16 queue_idx,
2234 const struct ieee80211_tx_queue_params *params)
2235{
2236 struct rt2x00_dev *rt2x00dev = hw->priv;
2237 struct data_queue *queue;
2238 struct rt2x00_field32 field;
2239 int retval;
2240 u32 reg;
2241 u32 offset;
2242
2243 /*
2244 * First pass the configuration through rt2x00lib, that will
2245 * update the queue settings and validate the input. After that
2246 * we are free to update the registers based on the value
2247 * in the queue parameter.
2248 */
2249 retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2250 if (retval)
2251 return retval;
2252
2253 /*
2254 * We only need to perform additional register initialization
2255 * for WMM queues/
2256 */
2257 if (queue_idx >= 4)
2258 return 0;
2259
2260 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2261
2262 /* Update WMM TXOP register */
2263 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2264 field.bit_offset = (queue_idx & 1) * 16;
2265 field.bit_mask = 0xffff << field.bit_offset;
2266
2267 rt2x00usb_register_read(rt2x00dev, offset, ®);
2268 rt2x00_set_field32(®, field, queue->txop);
2269 rt2x00usb_register_write(rt2x00dev, offset, reg);
2270
2271 /* Update WMM registers */
2272 field.bit_offset = queue_idx * 4;
2273 field.bit_mask = 0xf << field.bit_offset;
2274
2275 rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, ®);
2276 rt2x00_set_field32(®, field, queue->aifs);
2277 rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2278
2279 rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, ®);
2280 rt2x00_set_field32(®, field, queue->cw_min);
2281 rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2282
2283 rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, ®);
2284 rt2x00_set_field32(®, field, queue->cw_max);
2285 rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2286
2287 return 0;
2288}
2289
2290static u64 rt73usb_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2291{
2292 struct rt2x00_dev *rt2x00dev = hw->priv;
2293 u64 tsf;
2294 u32 reg;
2295
2296 rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, ®);
2297 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2298 rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, ®);
2299 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2300
2301 return tsf;
2302}
2303
2304static const struct ieee80211_ops rt73usb_mac80211_ops = {
2305 .tx = rt2x00mac_tx,
2306 .start = rt2x00mac_start,
2307 .stop = rt2x00mac_stop,
2308 .add_interface = rt2x00mac_add_interface,
2309 .remove_interface = rt2x00mac_remove_interface,
2310 .config = rt2x00mac_config,
2311 .configure_filter = rt2x00mac_configure_filter,
2312 .set_tim = rt2x00mac_set_tim,
2313 .set_key = rt2x00mac_set_key,
2314 .sw_scan_start = rt2x00mac_sw_scan_start,
2315 .sw_scan_complete = rt2x00mac_sw_scan_complete,
2316 .get_stats = rt2x00mac_get_stats,
2317 .bss_info_changed = rt2x00mac_bss_info_changed,
2318 .conf_tx = rt73usb_conf_tx,
2319 .get_tsf = rt73usb_get_tsf,
2320 .rfkill_poll = rt2x00mac_rfkill_poll,
2321 .flush = rt2x00mac_flush,
2322 .set_antenna = rt2x00mac_set_antenna,
2323 .get_antenna = rt2x00mac_get_antenna,
2324 .get_ringparam = rt2x00mac_get_ringparam,
2325 .tx_frames_pending = rt2x00mac_tx_frames_pending,
2326};
2327
2328static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2329 .probe_hw = rt73usb_probe_hw,
2330 .get_firmware_name = rt73usb_get_firmware_name,
2331 .check_firmware = rt73usb_check_firmware,
2332 .load_firmware = rt73usb_load_firmware,
2333 .initialize = rt2x00usb_initialize,
2334 .uninitialize = rt2x00usb_uninitialize,
2335 .clear_entry = rt2x00usb_clear_entry,
2336 .set_device_state = rt73usb_set_device_state,
2337 .rfkill_poll = rt73usb_rfkill_poll,
2338 .link_stats = rt73usb_link_stats,
2339 .reset_tuner = rt73usb_reset_tuner,
2340 .link_tuner = rt73usb_link_tuner,
2341 .watchdog = rt2x00usb_watchdog,
2342 .start_queue = rt73usb_start_queue,
2343 .kick_queue = rt2x00usb_kick_queue,
2344 .stop_queue = rt73usb_stop_queue,
2345 .flush_queue = rt2x00usb_flush_queue,
2346 .write_tx_desc = rt73usb_write_tx_desc,
2347 .write_beacon = rt73usb_write_beacon,
2348 .clear_beacon = rt73usb_clear_beacon,
2349 .get_tx_data_len = rt73usb_get_tx_data_len,
2350 .fill_rxdone = rt73usb_fill_rxdone,
2351 .config_shared_key = rt73usb_config_shared_key,
2352 .config_pairwise_key = rt73usb_config_pairwise_key,
2353 .config_filter = rt73usb_config_filter,
2354 .config_intf = rt73usb_config_intf,
2355 .config_erp = rt73usb_config_erp,
2356 .config_ant = rt73usb_config_ant,
2357 .config = rt73usb_config,
2358};
2359
2360static void rt73usb_queue_init(struct data_queue *queue)
2361{
2362 switch (queue->qid) {
2363 case QID_RX:
2364 queue->limit = 32;
2365 queue->data_size = DATA_FRAME_SIZE;
2366 queue->desc_size = RXD_DESC_SIZE;
2367 queue->priv_size = sizeof(struct queue_entry_priv_usb);
2368 break;
2369
2370 case QID_AC_VO:
2371 case QID_AC_VI:
2372 case QID_AC_BE:
2373 case QID_AC_BK:
2374 queue->limit = 32;
2375 queue->data_size = DATA_FRAME_SIZE;
2376 queue->desc_size = TXD_DESC_SIZE;
2377 queue->priv_size = sizeof(struct queue_entry_priv_usb);
2378 break;
2379
2380 case QID_BEACON:
2381 queue->limit = 4;
2382 queue->data_size = MGMT_FRAME_SIZE;
2383 queue->desc_size = TXINFO_SIZE;
2384 queue->priv_size = sizeof(struct queue_entry_priv_usb);
2385 break;
2386
2387 case QID_ATIM:
2388 /* fallthrough */
2389 default:
2390 BUG();
2391 break;
2392 }
2393}
2394
2395static const struct rt2x00_ops rt73usb_ops = {
2396 .name = KBUILD_MODNAME,
2397 .max_ap_intf = 4,
2398 .eeprom_size = EEPROM_SIZE,
2399 .rf_size = RF_SIZE,
2400 .tx_queues = NUM_TX_QUEUES,
2401 .queue_init = rt73usb_queue_init,
2402 .lib = &rt73usb_rt2x00_ops,
2403 .hw = &rt73usb_mac80211_ops,
2404#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2405 .debugfs = &rt73usb_rt2x00debug,
2406#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2407};
2408
2409/*
2410 * rt73usb module information.
2411 */
2412static struct usb_device_id rt73usb_device_table[] = {
2413 /* AboCom */
2414 { USB_DEVICE(0x07b8, 0xb21b) },
2415 { USB_DEVICE(0x07b8, 0xb21c) },
2416 { USB_DEVICE(0x07b8, 0xb21d) },
2417 { USB_DEVICE(0x07b8, 0xb21e) },
2418 { USB_DEVICE(0x07b8, 0xb21f) },
2419 /* AL */
2420 { USB_DEVICE(0x14b2, 0x3c10) },
2421 /* Amigo */
2422 { USB_DEVICE(0x148f, 0x9021) },
2423 { USB_DEVICE(0x0eb0, 0x9021) },
2424 /* AMIT */
2425 { USB_DEVICE(0x18c5, 0x0002) },
2426 /* Askey */
2427 { USB_DEVICE(0x1690, 0x0722) },
2428 /* ASUS */
2429 { USB_DEVICE(0x0b05, 0x1723) },
2430 { USB_DEVICE(0x0b05, 0x1724) },
2431 /* Belkin */
2432 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050B ver. 3.x */
2433 { USB_DEVICE(0x050d, 0x705a) },
2434 { USB_DEVICE(0x050d, 0x905b) },
2435 { USB_DEVICE(0x050d, 0x905c) },
2436 /* Billionton */
2437 { USB_DEVICE(0x1631, 0xc019) },
2438 { USB_DEVICE(0x08dd, 0x0120) },
2439 /* Buffalo */
2440 { USB_DEVICE(0x0411, 0x00d8) },
2441 { USB_DEVICE(0x0411, 0x00d9) },
2442 { USB_DEVICE(0x0411, 0x00e6) },
2443 { USB_DEVICE(0x0411, 0x00f4) },
2444 { USB_DEVICE(0x0411, 0x0116) },
2445 { USB_DEVICE(0x0411, 0x0119) },
2446 { USB_DEVICE(0x0411, 0x0137) },
2447 /* CEIVA */
2448 { USB_DEVICE(0x178d, 0x02be) },
2449 /* CNet */
2450 { USB_DEVICE(0x1371, 0x9022) },
2451 { USB_DEVICE(0x1371, 0x9032) },
2452 /* Conceptronic */
2453 { USB_DEVICE(0x14b2, 0x3c22) },
2454 /* Corega */
2455 { USB_DEVICE(0x07aa, 0x002e) },
2456 /* D-Link */
2457 { USB_DEVICE(0x07d1, 0x3c03) },
2458 { USB_DEVICE(0x07d1, 0x3c04) },
2459 { USB_DEVICE(0x07d1, 0x3c06) },
2460 { USB_DEVICE(0x07d1, 0x3c07) },
2461 /* Edimax */
2462 { USB_DEVICE(0x7392, 0x7318) },
2463 { USB_DEVICE(0x7392, 0x7618) },
2464 /* EnGenius */
2465 { USB_DEVICE(0x1740, 0x3701) },
2466 /* Gemtek */
2467 { USB_DEVICE(0x15a9, 0x0004) },
2468 /* Gigabyte */
2469 { USB_DEVICE(0x1044, 0x8008) },
2470 { USB_DEVICE(0x1044, 0x800a) },
2471 /* Huawei-3Com */
2472 { USB_DEVICE(0x1472, 0x0009) },
2473 /* Hercules */
2474 { USB_DEVICE(0x06f8, 0xe002) },
2475 { USB_DEVICE(0x06f8, 0xe010) },
2476 { USB_DEVICE(0x06f8, 0xe020) },
2477 /* Linksys */
2478 { USB_DEVICE(0x13b1, 0x0020) },
2479 { USB_DEVICE(0x13b1, 0x0023) },
2480 { USB_DEVICE(0x13b1, 0x0028) },
2481 /* MSI */
2482 { USB_DEVICE(0x0db0, 0x4600) },
2483 { USB_DEVICE(0x0db0, 0x6877) },
2484 { USB_DEVICE(0x0db0, 0x6874) },
2485 { USB_DEVICE(0x0db0, 0xa861) },
2486 { USB_DEVICE(0x0db0, 0xa874) },
2487 /* Ovislink */
2488 { USB_DEVICE(0x1b75, 0x7318) },
2489 /* Ralink */
2490 { USB_DEVICE(0x04bb, 0x093d) },
2491 { USB_DEVICE(0x148f, 0x2573) },
2492 { USB_DEVICE(0x148f, 0x2671) },
2493 { USB_DEVICE(0x0812, 0x3101) },
2494 /* Qcom */
2495 { USB_DEVICE(0x18e8, 0x6196) },
2496 { USB_DEVICE(0x18e8, 0x6229) },
2497 { USB_DEVICE(0x18e8, 0x6238) },
2498 /* Samsung */
2499 { USB_DEVICE(0x04e8, 0x4471) },
2500 /* Senao */
2501 { USB_DEVICE(0x1740, 0x7100) },
2502 /* Sitecom */
2503 { USB_DEVICE(0x0df6, 0x0024) },
2504 { USB_DEVICE(0x0df6, 0x0027) },
2505 { USB_DEVICE(0x0df6, 0x002f) },
2506 { USB_DEVICE(0x0df6, 0x90ac) },
2507 { USB_DEVICE(0x0df6, 0x9712) },
2508 /* Surecom */
2509 { USB_DEVICE(0x0769, 0x31f3) },
2510 /* Tilgin */
2511 { USB_DEVICE(0x6933, 0x5001) },
2512 /* Philips */
2513 { USB_DEVICE(0x0471, 0x200a) },
2514 /* Planex */
2515 { USB_DEVICE(0x2019, 0xab01) },
2516 { USB_DEVICE(0x2019, 0xab50) },
2517 /* WideTell */
2518 { USB_DEVICE(0x7167, 0x3840) },
2519 /* Zcom */
2520 { USB_DEVICE(0x0cde, 0x001c) },
2521 /* ZyXEL */
2522 { USB_DEVICE(0x0586, 0x3415) },
2523 { 0, }
2524};
2525
2526MODULE_AUTHOR(DRV_PROJECT);
2527MODULE_VERSION(DRV_VERSION);
2528MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2529MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2530MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2531MODULE_FIRMWARE(FIRMWARE_RT2571);
2532MODULE_LICENSE("GPL");
2533
2534static int rt73usb_probe(struct usb_interface *usb_intf,
2535 const struct usb_device_id *id)
2536{
2537 return rt2x00usb_probe(usb_intf, &rt73usb_ops);
2538}
2539
2540static struct usb_driver rt73usb_driver = {
2541 .name = KBUILD_MODNAME,
2542 .id_table = rt73usb_device_table,
2543 .probe = rt73usb_probe,
2544 .disconnect = rt2x00usb_disconnect,
2545 .suspend = rt2x00usb_suspend,
2546 .resume = rt2x00usb_resume,
2547 .reset_resume = rt2x00usb_resume,
2548 .disable_hub_initiated_lpm = 1,
2549};
2550
2551module_usb_driver(rt73usb_driver);