Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3	<http://rt2x00.serialmonkey.com>
   4
   5	This program is free software; you can redistribute it and/or modify
   6	it under the terms of the GNU General Public License as published by
   7	the Free Software Foundation; either version 2 of the License, or
   8	(at your option) any later version.
   9
  10	This program is distributed in the hope that it will be useful,
  11	but WITHOUT ANY WARRANTY; without even the implied warranty of
  12	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13	GNU General Public License for more details.
  14
  15	You should have received a copy of the GNU General Public License
  16	along with this program; if not, write to the
  17	Free Software Foundation, Inc.,
  18	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22	Module: rt61pci
  23	Abstract: rt61pci device specific routines.
  24	Supported chipsets: RT2561, RT2561s, RT2661.
  25 */
  26
  27#include <linux/crc-itu-t.h>
  28#include <linux/delay.h>
  29#include <linux/etherdevice.h>
  30#include <linux/init.h>
  31#include <linux/kernel.h>
  32#include <linux/module.h>
  33#include <linux/slab.h>
  34#include <linux/pci.h>
  35#include <linux/eeprom_93cx6.h>
  36
  37#include "rt2x00.h"
 
  38#include "rt2x00pci.h"
  39#include "rt61pci.h"
  40
  41/*
  42 * Allow hardware encryption to be disabled.
  43 */
  44static int modparam_nohwcrypt = 0;
  45module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  46MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  47
  48/*
  49 * Register access.
  50 * BBP and RF register require indirect register access,
  51 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
  52 * These indirect registers work with busy bits,
  53 * and we will try maximal REGISTER_BUSY_COUNT times to access
  54 * the register while taking a REGISTER_BUSY_DELAY us delay
  55 * between each attempt. When the busy bit is still set at that time,
  56 * the access attempt is considered to have failed,
  57 * and we will print an error.
  58 */
  59#define WAIT_FOR_BBP(__dev, __reg) \
  60	rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
  61#define WAIT_FOR_RF(__dev, __reg) \
  62	rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
  63#define WAIT_FOR_MCU(__dev, __reg) \
  64	rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
  65			       H2M_MAILBOX_CSR_OWNER, (__reg))
  66
  67static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  68			      const unsigned int word, const u8 value)
  69{
  70	u32 reg;
  71
  72	mutex_lock(&rt2x00dev->csr_mutex);
  73
  74	/*
  75	 * Wait until the BBP becomes available, afterwards we
  76	 * can safely write the new data into the register.
  77	 */
  78	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  79		reg = 0;
  80		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
  81		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  82		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  83		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
  84
  85		rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
  86	}
  87
  88	mutex_unlock(&rt2x00dev->csr_mutex);
  89}
  90
  91static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  92			     const unsigned int word, u8 *value)
  93{
  94	u32 reg;
  95
  96	mutex_lock(&rt2x00dev->csr_mutex);
  97
  98	/*
  99	 * Wait until the BBP becomes available, afterwards we
 100	 * can safely write the read request into the register.
 101	 * After the data has been written, we wait until hardware
 102	 * returns the correct value, if at any time the register
 103	 * doesn't become available in time, reg will be 0xffffffff
 104	 * which means we return 0xff to the caller.
 105	 */
 106	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 107		reg = 0;
 108		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
 109		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
 110		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
 111
 112		rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
 113
 114		WAIT_FOR_BBP(rt2x00dev, &reg);
 115	}
 116
 117	*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
 118
 119	mutex_unlock(&rt2x00dev->csr_mutex);
 120}
 121
 122static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
 123			     const unsigned int word, const u32 value)
 124{
 125	u32 reg;
 126
 127	mutex_lock(&rt2x00dev->csr_mutex);
 128
 129	/*
 130	 * Wait until the RF becomes available, afterwards we
 131	 * can safely write the new data into the register.
 132	 */
 133	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 134		reg = 0;
 135		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
 136		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
 137		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
 138		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
 139
 140		rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
 141		rt2x00_rf_write(rt2x00dev, word, value);
 142	}
 143
 144	mutex_unlock(&rt2x00dev->csr_mutex);
 145}
 146
 147static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
 148				const u8 command, const u8 token,
 149				const u8 arg0, const u8 arg1)
 150{
 151	u32 reg;
 152
 153	mutex_lock(&rt2x00dev->csr_mutex);
 154
 155	/*
 156	 * Wait until the MCU becomes available, afterwards we
 157	 * can safely write the new data into the register.
 158	 */
 159	if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
 160		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
 161		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
 162		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
 163		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
 164		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
 165
 166		rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
 167		rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
 168		rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
 169		rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
 170	}
 171
 172	mutex_unlock(&rt2x00dev->csr_mutex);
 173
 174}
 175
 176static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 177{
 178	struct rt2x00_dev *rt2x00dev = eeprom->data;
 179	u32 reg;
 180
 181	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
 182
 183	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
 184	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
 185	eeprom->reg_data_clock =
 186	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
 187	eeprom->reg_chip_select =
 188	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
 189}
 190
 191static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 192{
 193	struct rt2x00_dev *rt2x00dev = eeprom->data;
 194	u32 reg = 0;
 195
 196	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
 197	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
 198	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
 199			   !!eeprom->reg_data_clock);
 200	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
 201			   !!eeprom->reg_chip_select);
 202
 203	rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
 204}
 205
 206#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 207static const struct rt2x00debug rt61pci_rt2x00debug = {
 208	.owner	= THIS_MODULE,
 209	.csr	= {
 210		.read		= rt2x00pci_register_read,
 211		.write		= rt2x00pci_register_write,
 212		.flags		= RT2X00DEBUGFS_OFFSET,
 213		.word_base	= CSR_REG_BASE,
 214		.word_size	= sizeof(u32),
 215		.word_count	= CSR_REG_SIZE / sizeof(u32),
 216	},
 217	.eeprom	= {
 218		.read		= rt2x00_eeprom_read,
 219		.write		= rt2x00_eeprom_write,
 220		.word_base	= EEPROM_BASE,
 221		.word_size	= sizeof(u16),
 222		.word_count	= EEPROM_SIZE / sizeof(u16),
 223	},
 224	.bbp	= {
 225		.read		= rt61pci_bbp_read,
 226		.write		= rt61pci_bbp_write,
 227		.word_base	= BBP_BASE,
 228		.word_size	= sizeof(u8),
 229		.word_count	= BBP_SIZE / sizeof(u8),
 230	},
 231	.rf	= {
 232		.read		= rt2x00_rf_read,
 233		.write		= rt61pci_rf_write,
 234		.word_base	= RF_BASE,
 235		.word_size	= sizeof(u32),
 236		.word_count	= RF_SIZE / sizeof(u32),
 237	},
 238};
 239#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 240
 241static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 242{
 243	u32 reg;
 244
 245	rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
 246	return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
 247}
 248
 249#ifdef CONFIG_RT2X00_LIB_LEDS
 250static void rt61pci_brightness_set(struct led_classdev *led_cdev,
 251				   enum led_brightness brightness)
 252{
 253	struct rt2x00_led *led =
 254	    container_of(led_cdev, struct rt2x00_led, led_dev);
 255	unsigned int enabled = brightness != LED_OFF;
 256	unsigned int a_mode =
 257	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
 258	unsigned int bg_mode =
 259	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 260
 261	if (led->type == LED_TYPE_RADIO) {
 262		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 263				   MCU_LEDCS_RADIO_STATUS, enabled);
 264
 265		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
 266				    (led->rt2x00dev->led_mcu_reg & 0xff),
 267				    ((led->rt2x00dev->led_mcu_reg >> 8)));
 268	} else if (led->type == LED_TYPE_ASSOC) {
 269		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 270				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
 271		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 272				   MCU_LEDCS_LINK_A_STATUS, a_mode);
 273
 274		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
 275				    (led->rt2x00dev->led_mcu_reg & 0xff),
 276				    ((led->rt2x00dev->led_mcu_reg >> 8)));
 277	} else if (led->type == LED_TYPE_QUALITY) {
 278		/*
 279		 * The brightness is divided into 6 levels (0 - 5),
 280		 * this means we need to convert the brightness
 281		 * argument into the matching level within that range.
 282		 */
 283		rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
 284				    brightness / (LED_FULL / 6), 0);
 285	}
 286}
 287
 288static int rt61pci_blink_set(struct led_classdev *led_cdev,
 289			     unsigned long *delay_on,
 290			     unsigned long *delay_off)
 291{
 292	struct rt2x00_led *led =
 293	    container_of(led_cdev, struct rt2x00_led, led_dev);
 294	u32 reg;
 295
 296	rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
 297	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
 298	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
 299	rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
 300
 301	return 0;
 302}
 303
 304static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
 305			     struct rt2x00_led *led,
 306			     enum led_type type)
 307{
 308	led->rt2x00dev = rt2x00dev;
 309	led->type = type;
 310	led->led_dev.brightness_set = rt61pci_brightness_set;
 311	led->led_dev.blink_set = rt61pci_blink_set;
 312	led->flags = LED_INITIALIZED;
 313}
 314#endif /* CONFIG_RT2X00_LIB_LEDS */
 315
 316/*
 317 * Configuration handlers.
 318 */
 319static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
 320				     struct rt2x00lib_crypto *crypto,
 321				     struct ieee80211_key_conf *key)
 322{
 323	struct hw_key_entry key_entry;
 324	struct rt2x00_field32 field;
 325	u32 mask;
 326	u32 reg;
 327
 328	if (crypto->cmd == SET_KEY) {
 329		/*
 330		 * rt2x00lib can't determine the correct free
 331		 * key_idx for shared keys. We have 1 register
 332		 * with key valid bits. The goal is simple, read
 333		 * the register, if that is full we have no slots
 334		 * left.
 335		 * Note that each BSS is allowed to have up to 4
 336		 * shared keys, so put a mask over the allowed
 337		 * entries.
 338		 */
 339		mask = (0xf << crypto->bssidx);
 340
 341		rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
 342		reg &= mask;
 343
 344		if (reg && reg == mask)
 345			return -ENOSPC;
 346
 347		key->hw_key_idx += reg ? ffz(reg) : 0;
 348
 349		/*
 350		 * Upload key to hardware
 351		 */
 352		memcpy(key_entry.key, crypto->key,
 353		       sizeof(key_entry.key));
 354		memcpy(key_entry.tx_mic, crypto->tx_mic,
 355		       sizeof(key_entry.tx_mic));
 356		memcpy(key_entry.rx_mic, crypto->rx_mic,
 357		       sizeof(key_entry.rx_mic));
 358
 359		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
 360		rt2x00pci_register_multiwrite(rt2x00dev, reg,
 361					      &key_entry, sizeof(key_entry));
 362
 363		/*
 364		 * The cipher types are stored over 2 registers.
 365		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
 366		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
 367		 * Using the correct defines correctly will cause overhead,
 368		 * so just calculate the correct offset.
 369		 */
 370		if (key->hw_key_idx < 8) {
 371			field.bit_offset = (3 * key->hw_key_idx);
 372			field.bit_mask = 0x7 << field.bit_offset;
 373
 374			rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
 375			rt2x00_set_field32(&reg, field, crypto->cipher);
 376			rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
 377		} else {
 378			field.bit_offset = (3 * (key->hw_key_idx - 8));
 379			field.bit_mask = 0x7 << field.bit_offset;
 380
 381			rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
 382			rt2x00_set_field32(&reg, field, crypto->cipher);
 383			rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
 384		}
 385
 386		/*
 387		 * The driver does not support the IV/EIV generation
 388		 * in hardware. However it doesn't support the IV/EIV
 389		 * inside the ieee80211 frame either, but requires it
 390		 * to be provided separately for the descriptor.
 391		 * rt2x00lib will cut the IV/EIV data out of all frames
 392		 * given to us by mac80211, but we must tell mac80211
 393		 * to generate the IV/EIV data.
 394		 */
 395		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 396	}
 397
 398	/*
 399	 * SEC_CSR0 contains only single-bit fields to indicate
 400	 * a particular key is valid. Because using the FIELD32()
 401	 * defines directly will cause a lot of overhead, we use
 402	 * a calculation to determine the correct bit directly.
 403	 */
 404	mask = 1 << key->hw_key_idx;
 405
 406	rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
 407	if (crypto->cmd == SET_KEY)
 408		reg |= mask;
 409	else if (crypto->cmd == DISABLE_KEY)
 410		reg &= ~mask;
 411	rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
 412
 413	return 0;
 414}
 415
 416static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
 417				       struct rt2x00lib_crypto *crypto,
 418				       struct ieee80211_key_conf *key)
 419{
 420	struct hw_pairwise_ta_entry addr_entry;
 421	struct hw_key_entry key_entry;
 422	u32 mask;
 423	u32 reg;
 424
 425	if (crypto->cmd == SET_KEY) {
 426		/*
 427		 * rt2x00lib can't determine the correct free
 428		 * key_idx for pairwise keys. We have 2 registers
 429		 * with key valid bits. The goal is simple: read
 430		 * the first register. If that is full, move to
 431		 * the next register.
 432		 * When both registers are full, we drop the key.
 433		 * Otherwise, we use the first invalid entry.
 434		 */
 435		rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
 436		if (reg && reg == ~0) {
 437			key->hw_key_idx = 32;
 438			rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
 439			if (reg && reg == ~0)
 440				return -ENOSPC;
 441		}
 442
 443		key->hw_key_idx += reg ? ffz(reg) : 0;
 444
 445		/*
 446		 * Upload key to hardware
 447		 */
 448		memcpy(key_entry.key, crypto->key,
 449		       sizeof(key_entry.key));
 450		memcpy(key_entry.tx_mic, crypto->tx_mic,
 451		       sizeof(key_entry.tx_mic));
 452		memcpy(key_entry.rx_mic, crypto->rx_mic,
 453		       sizeof(key_entry.rx_mic));
 454
 455		memset(&addr_entry, 0, sizeof(addr_entry));
 456		memcpy(&addr_entry, crypto->address, ETH_ALEN);
 457		addr_entry.cipher = crypto->cipher;
 458
 459		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
 460		rt2x00pci_register_multiwrite(rt2x00dev, reg,
 461					      &key_entry, sizeof(key_entry));
 462
 463		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
 464		rt2x00pci_register_multiwrite(rt2x00dev, reg,
 465					      &addr_entry, sizeof(addr_entry));
 466
 467		/*
 468		 * Enable pairwise lookup table for given BSS idx.
 469		 * Without this, received frames will not be decrypted
 470		 * by the hardware.
 471		 */
 472		rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
 473		reg |= (1 << crypto->bssidx);
 474		rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
 475
 476		/*
 477		 * The driver does not support the IV/EIV generation
 478		 * in hardware. However it doesn't support the IV/EIV
 479		 * inside the ieee80211 frame either, but requires it
 480		 * to be provided separately for the descriptor.
 481		 * rt2x00lib will cut the IV/EIV data out of all frames
 482		 * given to us by mac80211, but we must tell mac80211
 483		 * to generate the IV/EIV data.
 484		 */
 485		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 486	}
 487
 488	/*
 489	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
 490	 * a particular key is valid. Because using the FIELD32()
 491	 * defines directly will cause a lot of overhead, we use
 492	 * a calculation to determine the correct bit directly.
 493	 */
 494	if (key->hw_key_idx < 32) {
 495		mask = 1 << key->hw_key_idx;
 496
 497		rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
 498		if (crypto->cmd == SET_KEY)
 499			reg |= mask;
 500		else if (crypto->cmd == DISABLE_KEY)
 501			reg &= ~mask;
 502		rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
 503	} else {
 504		mask = 1 << (key->hw_key_idx - 32);
 505
 506		rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
 507		if (crypto->cmd == SET_KEY)
 508			reg |= mask;
 509		else if (crypto->cmd == DISABLE_KEY)
 510			reg &= ~mask;
 511		rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
 512	}
 513
 514	return 0;
 515}
 516
 517static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
 518				  const unsigned int filter_flags)
 519{
 520	u32 reg;
 521
 522	/*
 523	 * Start configuration steps.
 524	 * Note that the version error will always be dropped
 525	 * and broadcast frames will always be accepted since
 526	 * there is no filter for it at this time.
 527	 */
 528	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
 529	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
 530			   !(filter_flags & FIF_FCSFAIL));
 531	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
 532			   !(filter_flags & FIF_PLCPFAIL));
 533	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
 534			   !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
 535	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
 536			   !(filter_flags & FIF_PROMISC_IN_BSS));
 537	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
 538			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
 539			   !rt2x00dev->intf_ap_count);
 540	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
 541	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
 542			   !(filter_flags & FIF_ALLMULTI));
 543	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
 544	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
 545			   !(filter_flags & FIF_CONTROL));
 546	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
 547}
 548
 549static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
 550				struct rt2x00_intf *intf,
 551				struct rt2x00intf_conf *conf,
 552				const unsigned int flags)
 553{
 554	u32 reg;
 555
 556	if (flags & CONFIG_UPDATE_TYPE) {
 557		/*
 558		 * Enable synchronisation.
 559		 */
 560		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
 561		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
 562		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
 563	}
 564
 565	if (flags & CONFIG_UPDATE_MAC) {
 566		reg = le32_to_cpu(conf->mac[1]);
 567		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
 568		conf->mac[1] = cpu_to_le32(reg);
 569
 570		rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
 571					      conf->mac, sizeof(conf->mac));
 572	}
 573
 574	if (flags & CONFIG_UPDATE_BSSID) {
 575		reg = le32_to_cpu(conf->bssid[1]);
 576		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
 577		conf->bssid[1] = cpu_to_le32(reg);
 578
 579		rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
 580					      conf->bssid, sizeof(conf->bssid));
 
 581	}
 582}
 583
 584static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
 585			       struct rt2x00lib_erp *erp,
 586			       u32 changed)
 587{
 588	u32 reg;
 589
 590	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
 591	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
 592	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
 593	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
 594
 595	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 596		rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
 597		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
 598		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
 599				   !!erp->short_preamble);
 600		rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
 601	}
 602
 603	if (changed & BSS_CHANGED_BASIC_RATES)
 604		rt2x00pci_register_write(rt2x00dev, TXRX_CSR5,
 605					 erp->basic_rates);
 606
 607	if (changed & BSS_CHANGED_BEACON_INT) {
 608		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
 609		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
 610				   erp->beacon_int * 16);
 611		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
 612	}
 613
 614	if (changed & BSS_CHANGED_ERP_SLOT) {
 615		rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
 616		rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
 617		rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
 618
 619		rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
 620		rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
 621		rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
 622		rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
 623		rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
 624	}
 625}
 626
 627static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
 628				      struct antenna_setup *ant)
 629{
 630	u8 r3;
 631	u8 r4;
 632	u8 r77;
 633
 634	rt61pci_bbp_read(rt2x00dev, 3, &r3);
 635	rt61pci_bbp_read(rt2x00dev, 4, &r4);
 636	rt61pci_bbp_read(rt2x00dev, 77, &r77);
 637
 638	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
 639
 640	/*
 641	 * Configure the RX antenna.
 642	 */
 643	switch (ant->rx) {
 644	case ANTENNA_HW_DIVERSITY:
 645		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 646		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 647				  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
 648		break;
 649	case ANTENNA_A:
 650		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 651		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 652		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 653			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 654		else
 655			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 656		break;
 657	case ANTENNA_B:
 658	default:
 659		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 660		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 661		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 662			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 663		else
 664			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 665		break;
 666	}
 667
 668	rt61pci_bbp_write(rt2x00dev, 77, r77);
 669	rt61pci_bbp_write(rt2x00dev, 3, r3);
 670	rt61pci_bbp_write(rt2x00dev, 4, r4);
 671}
 672
 673static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
 674				      struct antenna_setup *ant)
 675{
 676	u8 r3;
 677	u8 r4;
 678	u8 r77;
 679
 680	rt61pci_bbp_read(rt2x00dev, 3, &r3);
 681	rt61pci_bbp_read(rt2x00dev, 4, &r4);
 682	rt61pci_bbp_read(rt2x00dev, 77, &r77);
 683
 684	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
 685	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 686			  !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags));
 687
 688	/*
 689	 * Configure the RX antenna.
 690	 */
 691	switch (ant->rx) {
 692	case ANTENNA_HW_DIVERSITY:
 693		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 694		break;
 695	case ANTENNA_A:
 696		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 697		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 698		break;
 699	case ANTENNA_B:
 700	default:
 701		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 702		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 703		break;
 704	}
 705
 706	rt61pci_bbp_write(rt2x00dev, 77, r77);
 707	rt61pci_bbp_write(rt2x00dev, 3, r3);
 708	rt61pci_bbp_write(rt2x00dev, 4, r4);
 709}
 710
 711static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
 712					   const int p1, const int p2)
 713{
 714	u32 reg;
 715
 716	rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
 717
 718	rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
 719	rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
 720
 721	rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
 722	rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
 723
 724	rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
 725}
 726
 727static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
 728					struct antenna_setup *ant)
 729{
 730	u8 r3;
 731	u8 r4;
 732	u8 r77;
 733
 734	rt61pci_bbp_read(rt2x00dev, 3, &r3);
 735	rt61pci_bbp_read(rt2x00dev, 4, &r4);
 736	rt61pci_bbp_read(rt2x00dev, 77, &r77);
 737
 738	/*
 739	 * Configure the RX antenna.
 740	 */
 741	switch (ant->rx) {
 742	case ANTENNA_A:
 743		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 744		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 745		rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
 746		break;
 747	case ANTENNA_HW_DIVERSITY:
 748		/*
 749		 * FIXME: Antenna selection for the rf 2529 is very confusing
 750		 * in the legacy driver. Just default to antenna B until the
 751		 * legacy code can be properly translated into rt2x00 code.
 752		 */
 753	case ANTENNA_B:
 754	default:
 755		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 756		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 757		rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
 758		break;
 759	}
 760
 761	rt61pci_bbp_write(rt2x00dev, 77, r77);
 762	rt61pci_bbp_write(rt2x00dev, 3, r3);
 763	rt61pci_bbp_write(rt2x00dev, 4, r4);
 764}
 765
 766struct antenna_sel {
 767	u8 word;
 768	/*
 769	 * value[0] -> non-LNA
 770	 * value[1] -> LNA
 771	 */
 772	u8 value[2];
 773};
 774
 775static const struct antenna_sel antenna_sel_a[] = {
 776	{ 96,  { 0x58, 0x78 } },
 777	{ 104, { 0x38, 0x48 } },
 778	{ 75,  { 0xfe, 0x80 } },
 779	{ 86,  { 0xfe, 0x80 } },
 780	{ 88,  { 0xfe, 0x80 } },
 781	{ 35,  { 0x60, 0x60 } },
 782	{ 97,  { 0x58, 0x58 } },
 783	{ 98,  { 0x58, 0x58 } },
 784};
 785
 786static const struct antenna_sel antenna_sel_bg[] = {
 787	{ 96,  { 0x48, 0x68 } },
 788	{ 104, { 0x2c, 0x3c } },
 789	{ 75,  { 0xfe, 0x80 } },
 790	{ 86,  { 0xfe, 0x80 } },
 791	{ 88,  { 0xfe, 0x80 } },
 792	{ 35,  { 0x50, 0x50 } },
 793	{ 97,  { 0x48, 0x48 } },
 794	{ 98,  { 0x48, 0x48 } },
 795};
 796
 797static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
 798			       struct antenna_setup *ant)
 799{
 800	const struct antenna_sel *sel;
 801	unsigned int lna;
 802	unsigned int i;
 803	u32 reg;
 804
 805	/*
 806	 * We should never come here because rt2x00lib is supposed
 807	 * to catch this and send us the correct antenna explicitely.
 808	 */
 809	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 810	       ant->tx == ANTENNA_SW_DIVERSITY);
 811
 812	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
 813		sel = antenna_sel_a;
 814		lna = test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
 815	} else {
 816		sel = antenna_sel_bg;
 817		lna = test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
 818	}
 819
 820	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
 821		rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
 822
 823	rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
 824
 825	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
 826			   rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 827	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
 828			   rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
 829
 830	rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
 831
 832	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
 833		rt61pci_config_antenna_5x(rt2x00dev, ant);
 834	else if (rt2x00_rf(rt2x00dev, RF2527))
 835		rt61pci_config_antenna_2x(rt2x00dev, ant);
 836	else if (rt2x00_rf(rt2x00dev, RF2529)) {
 837		if (test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags))
 838			rt61pci_config_antenna_2x(rt2x00dev, ant);
 839		else
 840			rt61pci_config_antenna_2529(rt2x00dev, ant);
 841	}
 842}
 843
 844static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
 845				    struct rt2x00lib_conf *libconf)
 846{
 847	u16 eeprom;
 848	short lna_gain = 0;
 849
 850	if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
 851		if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags))
 852			lna_gain += 14;
 853
 854		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
 855		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
 856	} else {
 857		if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags))
 858			lna_gain += 14;
 859
 860		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
 861		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
 862	}
 863
 864	rt2x00dev->lna_gain = lna_gain;
 865}
 866
 867static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
 868				   struct rf_channel *rf, const int txpower)
 869{
 870	u8 r3;
 871	u8 r94;
 872	u8 smart;
 873
 874	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 875	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
 876
 877	smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
 878
 879	rt61pci_bbp_read(rt2x00dev, 3, &r3);
 880	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
 881	rt61pci_bbp_write(rt2x00dev, 3, r3);
 882
 883	r94 = 6;
 884	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
 885		r94 += txpower - MAX_TXPOWER;
 886	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
 887		r94 += txpower;
 888	rt61pci_bbp_write(rt2x00dev, 94, r94);
 889
 890	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 891	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 892	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 893	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 894
 895	udelay(200);
 896
 897	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 898	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 899	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
 900	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 901
 902	udelay(200);
 903
 904	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 905	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 906	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 907	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 908
 909	msleep(1);
 910}
 911
 912static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
 913				   const int txpower)
 914{
 915	struct rf_channel rf;
 916
 917	rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
 918	rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
 919	rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
 920	rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
 921
 922	rt61pci_config_channel(rt2x00dev, &rf, txpower);
 923}
 924
 925static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 926				    struct rt2x00lib_conf *libconf)
 927{
 928	u32 reg;
 929
 930	rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
 931	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
 932	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
 933	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
 934	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
 935			   libconf->conf->long_frame_max_tx_count);
 936	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
 937			   libconf->conf->short_frame_max_tx_count);
 938	rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
 939}
 940
 941static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
 942				struct rt2x00lib_conf *libconf)
 943{
 944	enum dev_state state =
 945	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
 946		STATE_SLEEP : STATE_AWAKE;
 947	u32 reg;
 948
 949	if (state == STATE_SLEEP) {
 950		rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
 951		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
 952				   rt2x00dev->beacon_int - 10);
 953		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
 954				   libconf->conf->listen_interval - 1);
 955		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
 956
 957		/* We must first disable autowake before it can be enabled */
 958		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 959		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
 960
 961		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
 962		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
 963
 964		rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
 965		rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
 966		rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
 
 967
 968		rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
 969	} else {
 970		rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
 971		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
 972		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
 973		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 974		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
 975		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
 976
 977		rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
 978		rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
 979		rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
 
 980
 981		rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
 982	}
 983}
 984
 985static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
 986			   struct rt2x00lib_conf *libconf,
 987			   const unsigned int flags)
 988{
 989	/* Always recalculate LNA gain before changing configuration */
 990	rt61pci_config_lna_gain(rt2x00dev, libconf);
 991
 992	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 993		rt61pci_config_channel(rt2x00dev, &libconf->rf,
 994				       libconf->conf->power_level);
 995	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 996	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 997		rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
 998	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
 999		rt61pci_config_retry_limit(rt2x00dev, libconf);
1000	if (flags & IEEE80211_CONF_CHANGE_PS)
1001		rt61pci_config_ps(rt2x00dev, libconf);
1002}
1003
1004/*
1005 * Link tuning
1006 */
1007static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1008			       struct link_qual *qual)
1009{
1010	u32 reg;
1011
1012	/*
1013	 * Update FCS error count from register.
1014	 */
1015	rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1016	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1017
1018	/*
1019	 * Update False CCA count from register.
1020	 */
1021	rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1022	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1023}
1024
1025static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1026				   struct link_qual *qual, u8 vgc_level)
1027{
1028	if (qual->vgc_level != vgc_level) {
1029		rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1030		qual->vgc_level = vgc_level;
1031		qual->vgc_level_reg = vgc_level;
1032	}
1033}
1034
1035static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1036				struct link_qual *qual)
1037{
1038	rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1039}
1040
1041static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1042			       struct link_qual *qual, const u32 count)
1043{
1044	u8 up_bound;
1045	u8 low_bound;
1046
1047	/*
1048	 * Determine r17 bounds.
1049	 */
1050	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1051		low_bound = 0x28;
1052		up_bound = 0x48;
1053		if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) {
1054			low_bound += 0x10;
1055			up_bound += 0x10;
1056		}
1057	} else {
1058		low_bound = 0x20;
1059		up_bound = 0x40;
1060		if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) {
1061			low_bound += 0x10;
1062			up_bound += 0x10;
1063		}
1064	}
1065
1066	/*
1067	 * If we are not associated, we should go straight to the
1068	 * dynamic CCA tuning.
1069	 */
1070	if (!rt2x00dev->intf_associated)
1071		goto dynamic_cca_tune;
1072
1073	/*
1074	 * Special big-R17 for very short distance
1075	 */
1076	if (qual->rssi >= -35) {
1077		rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1078		return;
1079	}
1080
1081	/*
1082	 * Special big-R17 for short distance
1083	 */
1084	if (qual->rssi >= -58) {
1085		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1086		return;
1087	}
1088
1089	/*
1090	 * Special big-R17 for middle-short distance
1091	 */
1092	if (qual->rssi >= -66) {
1093		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1094		return;
1095	}
1096
1097	/*
1098	 * Special mid-R17 for middle distance
1099	 */
1100	if (qual->rssi >= -74) {
1101		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1102		return;
1103	}
1104
1105	/*
1106	 * Special case: Change up_bound based on the rssi.
1107	 * Lower up_bound when rssi is weaker then -74 dBm.
1108	 */
1109	up_bound -= 2 * (-74 - qual->rssi);
1110	if (low_bound > up_bound)
1111		up_bound = low_bound;
1112
1113	if (qual->vgc_level > up_bound) {
1114		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1115		return;
1116	}
1117
1118dynamic_cca_tune:
1119
1120	/*
1121	 * r17 does not yet exceed upper limit, continue and base
1122	 * the r17 tuning on the false CCA count.
1123	 */
1124	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1125		rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1126	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1127		rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1128}
1129
1130/*
1131 * Queue handlers.
1132 */
1133static void rt61pci_start_queue(struct data_queue *queue)
1134{
1135	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1136	u32 reg;
1137
1138	switch (queue->qid) {
1139	case QID_RX:
1140		rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1141		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1142		rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1143		break;
1144	case QID_BEACON:
1145		/*
1146		 * Allow the tbtt tasklet to be scheduled.
1147		 */
1148		tasklet_enable(&rt2x00dev->tbtt_tasklet);
1149
1150		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1151		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1152		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1153		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1154		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1155		break;
1156	default:
1157		break;
1158	}
1159}
1160
1161static void rt61pci_kick_queue(struct data_queue *queue)
1162{
1163	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1164	u32 reg;
1165
1166	switch (queue->qid) {
1167	case QID_AC_VO:
1168		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1169		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1170		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1171		break;
1172	case QID_AC_VI:
1173		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1174		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1175		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1176		break;
1177	case QID_AC_BE:
1178		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1179		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1180		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1181		break;
1182	case QID_AC_BK:
1183		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1184		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1185		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1186		break;
1187	default:
1188		break;
1189	}
1190}
1191
1192static void rt61pci_stop_queue(struct data_queue *queue)
1193{
1194	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1195	u32 reg;
1196
1197	switch (queue->qid) {
1198	case QID_AC_VO:
1199		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1200		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1201		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1202		break;
1203	case QID_AC_VI:
1204		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1205		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1206		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1207		break;
1208	case QID_AC_BE:
1209		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1210		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1211		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1212		break;
1213	case QID_AC_BK:
1214		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1215		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1216		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1217		break;
1218	case QID_RX:
1219		rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1220		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1221		rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1222		break;
1223	case QID_BEACON:
1224		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1225		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1226		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1227		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1228		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1229
1230		/*
1231		 * Wait for possibly running tbtt tasklets.
1232		 */
1233		tasklet_disable(&rt2x00dev->tbtt_tasklet);
1234		break;
1235	default:
1236		break;
1237	}
1238}
1239
1240/*
1241 * Firmware functions
1242 */
1243static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1244{
1245	u16 chip;
1246	char *fw_name;
1247
1248	pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1249	switch (chip) {
1250	case RT2561_PCI_ID:
1251		fw_name = FIRMWARE_RT2561;
1252		break;
1253	case RT2561s_PCI_ID:
1254		fw_name = FIRMWARE_RT2561s;
1255		break;
1256	case RT2661_PCI_ID:
1257		fw_name = FIRMWARE_RT2661;
1258		break;
1259	default:
1260		fw_name = NULL;
1261		break;
1262	}
1263
1264	return fw_name;
1265}
1266
1267static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1268				  const u8 *data, const size_t len)
1269{
1270	u16 fw_crc;
1271	u16 crc;
1272
1273	/*
1274	 * Only support 8kb firmware files.
1275	 */
1276	if (len != 8192)
1277		return FW_BAD_LENGTH;
1278
1279	/*
1280	 * The last 2 bytes in the firmware array are the crc checksum itself.
1281	 * This means that we should never pass those 2 bytes to the crc
1282	 * algorithm.
1283	 */
1284	fw_crc = (data[len - 2] << 8 | data[len - 1]);
1285
1286	/*
1287	 * Use the crc itu-t algorithm.
1288	 */
1289	crc = crc_itu_t(0, data, len - 2);
1290	crc = crc_itu_t_byte(crc, 0);
1291	crc = crc_itu_t_byte(crc, 0);
1292
1293	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1294}
1295
1296static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1297				 const u8 *data, const size_t len)
1298{
1299	int i;
1300	u32 reg;
1301
1302	/*
1303	 * Wait for stable hardware.
1304	 */
1305	for (i = 0; i < 100; i++) {
1306		rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1307		if (reg)
1308			break;
1309		msleep(1);
1310	}
1311
1312	if (!reg) {
1313		ERROR(rt2x00dev, "Unstable hardware.\n");
1314		return -EBUSY;
1315	}
1316
1317	/*
1318	 * Prepare MCU and mailbox for firmware loading.
1319	 */
1320	reg = 0;
1321	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1322	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1323	rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1324	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1325	rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1326
1327	/*
1328	 * Write firmware to device.
1329	 */
1330	reg = 0;
1331	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1332	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1333	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1334
1335	rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1336				      data, len);
1337
1338	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1339	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1340
1341	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1342	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1343
1344	for (i = 0; i < 100; i++) {
1345		rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1346		if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1347			break;
1348		msleep(1);
1349	}
1350
1351	if (i == 100) {
1352		ERROR(rt2x00dev, "MCU Control register not ready.\n");
1353		return -EBUSY;
1354	}
1355
1356	/*
1357	 * Hardware needs another millisecond before it is ready.
1358	 */
1359	msleep(1);
1360
1361	/*
1362	 * Reset MAC and BBP registers.
1363	 */
1364	reg = 0;
1365	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1366	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1367	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1368
1369	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1370	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1371	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1372	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1373
1374	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1375	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1376	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1377
1378	return 0;
1379}
1380
1381/*
1382 * Initialization functions.
1383 */
1384static bool rt61pci_get_entry_state(struct queue_entry *entry)
1385{
1386	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1387	u32 word;
1388
1389	if (entry->queue->qid == QID_RX) {
1390		rt2x00_desc_read(entry_priv->desc, 0, &word);
1391
1392		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1393	} else {
1394		rt2x00_desc_read(entry_priv->desc, 0, &word);
1395
1396		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1397		        rt2x00_get_field32(word, TXD_W0_VALID));
1398	}
1399}
1400
1401static void rt61pci_clear_entry(struct queue_entry *entry)
1402{
1403	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1404	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1405	u32 word;
1406
1407	if (entry->queue->qid == QID_RX) {
1408		rt2x00_desc_read(entry_priv->desc, 5, &word);
1409		rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1410				   skbdesc->skb_dma);
1411		rt2x00_desc_write(entry_priv->desc, 5, word);
1412
1413		rt2x00_desc_read(entry_priv->desc, 0, &word);
1414		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1415		rt2x00_desc_write(entry_priv->desc, 0, word);
1416	} else {
1417		rt2x00_desc_read(entry_priv->desc, 0, &word);
1418		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1419		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1420		rt2x00_desc_write(entry_priv->desc, 0, word);
1421	}
1422}
1423
1424static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1425{
1426	struct queue_entry_priv_pci *entry_priv;
1427	u32 reg;
1428
1429	/*
1430	 * Initialize registers.
1431	 */
1432	rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1433	rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1434			   rt2x00dev->tx[0].limit);
1435	rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1436			   rt2x00dev->tx[1].limit);
1437	rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1438			   rt2x00dev->tx[2].limit);
1439	rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1440			   rt2x00dev->tx[3].limit);
1441	rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1442
1443	rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1444	rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1445			   rt2x00dev->tx[0].desc_size / 4);
1446	rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1447
1448	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1449	rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1450	rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1451			   entry_priv->desc_dma);
1452	rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1453
1454	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1455	rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1456	rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1457			   entry_priv->desc_dma);
1458	rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1459
1460	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1461	rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1462	rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1463			   entry_priv->desc_dma);
1464	rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1465
1466	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1467	rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1468	rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1469			   entry_priv->desc_dma);
1470	rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1471
1472	rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1473	rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1474	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1475			   rt2x00dev->rx->desc_size / 4);
1476	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1477	rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1478
1479	entry_priv = rt2x00dev->rx->entries[0].priv_data;
1480	rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1481	rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1482			   entry_priv->desc_dma);
1483	rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1484
1485	rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1486	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1487	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1488	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1489	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1490	rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1491
1492	rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1493	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1494	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1495	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1496	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1497	rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1498
1499	rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1500	rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1501	rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1502
1503	return 0;
1504}
1505
1506static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1507{
1508	u32 reg;
1509
1510	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1511	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1512	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1513	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1514	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1515
1516	rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1517	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1518	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1519	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1520	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1521	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1522	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1523	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1524	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1525	rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1526
1527	/*
1528	 * CCK TXD BBP registers
1529	 */
1530	rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1531	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1532	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1533	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1534	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1535	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1536	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1537	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1538	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1539	rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1540
1541	/*
1542	 * OFDM TXD BBP registers
1543	 */
1544	rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1545	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1546	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1547	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1548	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1549	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1550	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1551	rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1552
1553	rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1554	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1555	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1556	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1557	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1558	rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1559
1560	rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1561	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1562	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1563	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1564	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1565	rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1566
1567	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1568	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1569	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1570	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1571	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1572	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1573	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1574	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1575
1576	rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1577
1578	rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1579
1580	rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1581	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1582	rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1583
1584	rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1585
1586	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1587		return -EBUSY;
1588
1589	rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1590
1591	/*
1592	 * Invalidate all Shared Keys (SEC_CSR0),
1593	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1594	 */
1595	rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1596	rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1597	rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1598
1599	rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1600	rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1601	rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1602	rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1603
1604	rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1605
1606	rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1607
1608	rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1609
1610	/*
1611	 * Clear all beacons
1612	 * For the Beacon base registers we only need to clear
1613	 * the first byte since that byte contains the VALID and OWNER
1614	 * bits which (when set to 0) will invalidate the entire beacon.
1615	 */
1616	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1617	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1618	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1619	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1620
1621	/*
1622	 * We must clear the error counters.
1623	 * These registers are cleared on read,
1624	 * so we may pass a useless variable to store the value.
1625	 */
1626	rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1627	rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1628	rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1629
1630	/*
1631	 * Reset MAC and BBP registers.
1632	 */
1633	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1634	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1635	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1636	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1637
1638	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1639	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1640	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1641	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1642
1643	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1644	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1645	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1646
1647	return 0;
1648}
1649
1650static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1651{
1652	unsigned int i;
1653	u8 value;
1654
1655	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1656		rt61pci_bbp_read(rt2x00dev, 0, &value);
1657		if ((value != 0xff) && (value != 0x00))
1658			return 0;
1659		udelay(REGISTER_BUSY_DELAY);
1660	}
1661
1662	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1663	return -EACCES;
1664}
1665
1666static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1667{
1668	unsigned int i;
1669	u16 eeprom;
1670	u8 reg_id;
1671	u8 value;
1672
1673	if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1674		return -EACCES;
1675
1676	rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1677	rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1678	rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1679	rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1680	rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1681	rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1682	rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1683	rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1684	rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1685	rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1686	rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1687	rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1688	rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1689	rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1690	rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1691	rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1692	rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1693	rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1694	rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1695	rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1696	rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1697	rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1698	rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1699	rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1700
1701	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1702		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1703
1704		if (eeprom != 0xffff && eeprom != 0x0000) {
1705			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1706			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1707			rt61pci_bbp_write(rt2x00dev, reg_id, value);
1708		}
1709	}
1710
1711	return 0;
1712}
1713
1714/*
1715 * Device state switch handlers.
1716 */
1717static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1718			       enum dev_state state)
1719{
1720	int mask = (state == STATE_RADIO_IRQ_OFF);
1721	u32 reg;
1722	unsigned long flags;
1723
1724	/*
1725	 * When interrupts are being enabled, the interrupt registers
1726	 * should clear the register to assure a clean state.
1727	 */
1728	if (state == STATE_RADIO_IRQ_ON) {
1729		rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1730		rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1731
1732		rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1733		rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1734
1735		/*
1736		 * Enable tasklets.
1737		 */
1738		tasklet_enable(&rt2x00dev->txstatus_tasklet);
1739		tasklet_enable(&rt2x00dev->rxdone_tasklet);
1740		tasklet_enable(&rt2x00dev->autowake_tasklet);
1741	}
1742
1743	/*
1744	 * Only toggle the interrupts bits we are going to use.
1745	 * Non-checked interrupt bits are disabled by default.
1746	 */
1747	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1748
1749	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1750	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1751	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1752	rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1753	rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1754	rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1755	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1756
1757	rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1758	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1759	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1760	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1761	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1762	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1763	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1764	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1765	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1766	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1767	rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1768
1769	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1770
1771	if (state == STATE_RADIO_IRQ_OFF) {
1772		/*
1773		 * Ensure that all tasklets are finished.
1774		 */
1775		tasklet_disable(&rt2x00dev->txstatus_tasklet);
1776		tasklet_disable(&rt2x00dev->rxdone_tasklet);
1777		tasklet_disable(&rt2x00dev->autowake_tasklet);
 
1778	}
1779}
1780
1781static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1782{
1783	u32 reg;
1784
1785	/*
1786	 * Initialize all registers.
1787	 */
1788	if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1789		     rt61pci_init_registers(rt2x00dev) ||
1790		     rt61pci_init_bbp(rt2x00dev)))
1791		return -EIO;
1792
1793	/*
1794	 * Enable RX.
1795	 */
1796	rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1797	rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1798	rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1799
1800	return 0;
1801}
1802
1803static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1804{
1805	/*
1806	 * Disable power
1807	 */
1808	rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1809}
1810
1811static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1812{
1813	u32 reg, reg2;
1814	unsigned int i;
1815	char put_to_sleep;
1816
1817	put_to_sleep = (state != STATE_AWAKE);
1818
1819	rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1820	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1821	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1822	rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1823
1824	/*
1825	 * Device is not guaranteed to be in the requested state yet.
1826	 * We must wait until the register indicates that the
1827	 * device has entered the correct state.
1828	 */
1829	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1830		rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg2);
1831		state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1832		if (state == !put_to_sleep)
1833			return 0;
1834		rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1835		msleep(10);
1836	}
1837
1838	return -EBUSY;
1839}
1840
1841static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1842				    enum dev_state state)
1843{
1844	int retval = 0;
1845
1846	switch (state) {
1847	case STATE_RADIO_ON:
1848		retval = rt61pci_enable_radio(rt2x00dev);
1849		break;
1850	case STATE_RADIO_OFF:
1851		rt61pci_disable_radio(rt2x00dev);
1852		break;
1853	case STATE_RADIO_IRQ_ON:
1854	case STATE_RADIO_IRQ_OFF:
1855		rt61pci_toggle_irq(rt2x00dev, state);
1856		break;
1857	case STATE_DEEP_SLEEP:
1858	case STATE_SLEEP:
1859	case STATE_STANDBY:
1860	case STATE_AWAKE:
1861		retval = rt61pci_set_state(rt2x00dev, state);
1862		break;
1863	default:
1864		retval = -ENOTSUPP;
1865		break;
1866	}
1867
1868	if (unlikely(retval))
1869		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1870		      state, retval);
1871
1872	return retval;
1873}
1874
1875/*
1876 * TX descriptor initialization
1877 */
1878static void rt61pci_write_tx_desc(struct queue_entry *entry,
1879				  struct txentry_desc *txdesc)
1880{
1881	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1882	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1883	__le32 *txd = entry_priv->desc;
1884	u32 word;
1885
1886	/*
1887	 * Start writing the descriptor words.
1888	 */
1889	rt2x00_desc_read(txd, 1, &word);
1890	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1891	rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1892	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1893	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1894	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1895	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1896			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1897	rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1898	rt2x00_desc_write(txd, 1, word);
1899
1900	rt2x00_desc_read(txd, 2, &word);
1901	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1902	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1903	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1904			   txdesc->u.plcp.length_low);
1905	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1906			   txdesc->u.plcp.length_high);
1907	rt2x00_desc_write(txd, 2, word);
1908
1909	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1910		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1911		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1912	}
1913
1914	rt2x00_desc_read(txd, 5, &word);
1915	rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1916	rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1917			   skbdesc->entry->entry_idx);
1918	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1919			   TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1920	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1921	rt2x00_desc_write(txd, 5, word);
1922
1923	if (entry->queue->qid != QID_BEACON) {
1924		rt2x00_desc_read(txd, 6, &word);
1925		rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1926				   skbdesc->skb_dma);
1927		rt2x00_desc_write(txd, 6, word);
1928
1929		rt2x00_desc_read(txd, 11, &word);
1930		rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1931				   txdesc->length);
1932		rt2x00_desc_write(txd, 11, word);
1933	}
1934
1935	/*
1936	 * Writing TXD word 0 must the last to prevent a race condition with
1937	 * the device, whereby the device may take hold of the TXD before we
1938	 * finished updating it.
1939	 */
1940	rt2x00_desc_read(txd, 0, &word);
1941	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1942	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1943	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1944			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1945	rt2x00_set_field32(&word, TXD_W0_ACK,
1946			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1947	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1948			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1949	rt2x00_set_field32(&word, TXD_W0_OFDM,
1950			   (txdesc->rate_mode == RATE_MODE_OFDM));
1951	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1952	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1953			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1954	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1955			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1956	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1957			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1958	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1959	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1960	rt2x00_set_field32(&word, TXD_W0_BURST,
1961			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1962	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1963	rt2x00_desc_write(txd, 0, word);
1964
1965	/*
1966	 * Register descriptor details in skb frame descriptor.
1967	 */
1968	skbdesc->desc = txd;
1969	skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1970			    TXD_DESC_SIZE;
1971}
1972
1973/*
1974 * TX data initialization
1975 */
1976static void rt61pci_write_beacon(struct queue_entry *entry,
1977				 struct txentry_desc *txdesc)
1978{
1979	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1980	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1981	unsigned int beacon_base;
1982	unsigned int padding_len;
1983	u32 orig_reg, reg;
1984
1985	/*
1986	 * Disable beaconing while we are reloading the beacon data,
1987	 * otherwise we might be sending out invalid data.
1988	 */
1989	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1990	orig_reg = reg;
1991	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1992	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1993
1994	/*
1995	 * Write the TX descriptor for the beacon.
1996	 */
1997	rt61pci_write_tx_desc(entry, txdesc);
1998
1999	/*
2000	 * Dump beacon to userspace through debugfs.
2001	 */
2002	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
2003
2004	/*
2005	 * Write entire beacon with descriptor and padding to register.
2006	 */
2007	padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
2008	if (padding_len && skb_pad(entry->skb, padding_len)) {
2009		ERROR(rt2x00dev, "Failure padding beacon, aborting\n");
2010		/* skb freed by skb_pad() on failure */
2011		entry->skb = NULL;
2012		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2013		return;
2014	}
2015
2016	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
2017	rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
2018				      entry_priv->desc, TXINFO_SIZE);
2019	rt2x00pci_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
2020				      entry->skb->data,
2021				      entry->skb->len + padding_len);
2022
2023	/*
2024	 * Enable beaconing again.
2025	 *
2026	 * For Wi-Fi faily generated beacons between participating
2027	 * stations. Set TBTT phase adaptive adjustment step to 8us.
2028	 */
2029	rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
2030
2031	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2032	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2033
2034	/*
2035	 * Clean up beacon skb.
2036	 */
2037	dev_kfree_skb_any(entry->skb);
2038	entry->skb = NULL;
2039}
2040
2041static void rt61pci_clear_beacon(struct queue_entry *entry)
2042{
2043	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2044	u32 reg;
2045
2046	/*
2047	 * Disable beaconing while we are reloading the beacon data,
2048	 * otherwise we might be sending out invalid data.
2049	 */
2050	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
2051	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2052	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2053
2054	/*
2055	 * Clear beacon.
2056	 */
2057	rt2x00pci_register_write(rt2x00dev,
2058				 HW_BEACON_OFFSET(entry->entry_idx), 0);
2059
2060	/*
2061	 * Enable beaconing again.
2062	 */
2063	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2064	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2065}
2066
2067/*
2068 * RX control handlers
2069 */
2070static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2071{
2072	u8 offset = rt2x00dev->lna_gain;
2073	u8 lna;
2074
2075	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2076	switch (lna) {
2077	case 3:
2078		offset += 90;
2079		break;
2080	case 2:
2081		offset += 74;
2082		break;
2083	case 1:
2084		offset += 64;
2085		break;
2086	default:
2087		return 0;
2088	}
2089
2090	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
2091		if (lna == 3 || lna == 2)
2092			offset += 10;
2093	}
2094
2095	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2096}
2097
2098static void rt61pci_fill_rxdone(struct queue_entry *entry,
2099				struct rxdone_entry_desc *rxdesc)
2100{
2101	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2102	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
2103	u32 word0;
2104	u32 word1;
2105
2106	rt2x00_desc_read(entry_priv->desc, 0, &word0);
2107	rt2x00_desc_read(entry_priv->desc, 1, &word1);
2108
2109	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2110		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2111
2112	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2113	rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2114
2115	if (rxdesc->cipher != CIPHER_NONE) {
2116		_rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2117		_rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2118		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2119
2120		_rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2121		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2122
2123		/*
2124		 * Hardware has stripped IV/EIV data from 802.11 frame during
2125		 * decryption. It has provided the data separately but rt2x00lib
2126		 * should decide if it should be reinserted.
2127		 */
2128		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2129
2130		/*
2131		 * The hardware has already checked the Michael Mic and has
2132		 * stripped it from the frame. Signal this to mac80211.
2133		 */
2134		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2135
2136		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2137			rxdesc->flags |= RX_FLAG_DECRYPTED;
2138		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2139			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2140	}
2141
2142	/*
2143	 * Obtain the status about this packet.
2144	 * When frame was received with an OFDM bitrate,
2145	 * the signal is the PLCP value. If it was received with
2146	 * a CCK bitrate the signal is the rate in 100kbit/s.
2147	 */
2148	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2149	rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2150	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2151
2152	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2153		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2154	else
2155		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2156	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2157		rxdesc->dev_flags |= RXDONE_MY_BSS;
2158}
2159
2160/*
2161 * Interrupt functions.
2162 */
2163static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2164{
2165	struct data_queue *queue;
2166	struct queue_entry *entry;
2167	struct queue_entry *entry_done;
2168	struct queue_entry_priv_pci *entry_priv;
2169	struct txdone_entry_desc txdesc;
2170	u32 word;
2171	u32 reg;
2172	int type;
2173	int index;
2174	int i;
2175
2176	/*
2177	 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2178	 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2179	 * flag is not set anymore.
2180	 *
2181	 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2182	 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2183	 * tx ring size for now.
2184	 */
2185	for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
2186		rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2187		if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2188			break;
2189
2190		/*
2191		 * Skip this entry when it contains an invalid
2192		 * queue identication number.
2193		 */
2194		type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2195		queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2196		if (unlikely(!queue))
2197			continue;
2198
2199		/*
2200		 * Skip this entry when it contains an invalid
2201		 * index number.
2202		 */
2203		index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2204		if (unlikely(index >= queue->limit))
2205			continue;
2206
2207		entry = &queue->entries[index];
2208		entry_priv = entry->priv_data;
2209		rt2x00_desc_read(entry_priv->desc, 0, &word);
2210
2211		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2212		    !rt2x00_get_field32(word, TXD_W0_VALID))
2213			return;
2214
2215		entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2216		while (entry != entry_done) {
2217			/* Catch up.
2218			 * Just report any entries we missed as failed.
2219			 */
2220			WARNING(rt2x00dev,
2221				"TX status report missed for entry %d\n",
2222				entry_done->entry_idx);
2223
2224			rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2225			entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2226		}
2227
2228		/*
2229		 * Obtain the status about this packet.
2230		 */
2231		txdesc.flags = 0;
2232		switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2233		case 0: /* Success, maybe with retry */
2234			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
2235			break;
2236		case 6: /* Failure, excessive retries */
2237			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2238			/* Don't break, this is a failed frame! */
2239		default: /* Failure */
2240			__set_bit(TXDONE_FAILURE, &txdesc.flags);
2241		}
2242		txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2243
2244		/*
2245		 * the frame was retried at least once
2246		 * -> hw used fallback rates
2247		 */
2248		if (txdesc.retry)
2249			__set_bit(TXDONE_FALLBACK, &txdesc.flags);
2250
2251		rt2x00lib_txdone(entry, &txdesc);
2252	}
2253}
2254
2255static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2256{
2257	struct ieee80211_conf conf = { .flags = 0 };
2258	struct rt2x00lib_conf libconf = { .conf = &conf };
2259
2260	rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2261}
2262
2263static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2264					    struct rt2x00_field32 irq_field)
2265{
2266	u32 reg;
2267
2268	/*
2269	 * Enable a single interrupt. The interrupt mask register
2270	 * access needs locking.
2271	 */
2272	spin_lock_irq(&rt2x00dev->irqmask_lock);
2273
2274	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2275	rt2x00_set_field32(&reg, irq_field, 0);
2276	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
2277
2278	spin_unlock_irq(&rt2x00dev->irqmask_lock);
2279}
2280
2281static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2282					 struct rt2x00_field32 irq_field)
2283{
2284	u32 reg;
2285
2286	/*
2287	 * Enable a single MCU interrupt. The interrupt mask register
2288	 * access needs locking.
2289	 */
2290	spin_lock_irq(&rt2x00dev->irqmask_lock);
2291
2292	rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2293	rt2x00_set_field32(&reg, irq_field, 0);
2294	rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2295
2296	spin_unlock_irq(&rt2x00dev->irqmask_lock);
2297}
2298
2299static void rt61pci_txstatus_tasklet(unsigned long data)
2300{
2301	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2302	rt61pci_txdone(rt2x00dev);
2303	rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
 
2304}
2305
2306static void rt61pci_tbtt_tasklet(unsigned long data)
2307{
2308	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2309	rt2x00lib_beacondone(rt2x00dev);
2310	rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
 
2311}
2312
2313static void rt61pci_rxdone_tasklet(unsigned long data)
2314{
2315	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2316	if (rt2x00pci_rxdone(rt2x00dev))
2317		rt2x00pci_rxdone(rt2x00dev);
2318	else
2319		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2320}
2321
2322static void rt61pci_autowake_tasklet(unsigned long data)
2323{
2324	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2325	rt61pci_wakeup(rt2x00dev);
2326	rt2x00pci_register_write(rt2x00dev,
2327				 M2H_CMD_DONE_CSR, 0xffffffff);
2328	rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
 
2329}
2330
2331static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2332{
2333	struct rt2x00_dev *rt2x00dev = dev_instance;
2334	u32 reg_mcu, mask_mcu;
2335	u32 reg, mask;
2336
2337	/*
2338	 * Get the interrupt sources & saved to local variable.
2339	 * Write register value back to clear pending interrupts.
2340	 */
2341	rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2342	rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2343
2344	rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2345	rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2346
2347	if (!reg && !reg_mcu)
2348		return IRQ_NONE;
2349
2350	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2351		return IRQ_HANDLED;
2352
2353	/*
2354	 * Schedule tasklets for interrupt handling.
2355	 */
2356	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2357		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2358
2359	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2360		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2361
2362	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2363		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2364
2365	if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2366		tasklet_schedule(&rt2x00dev->autowake_tasklet);
2367
2368	/*
2369	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2370	 * for interrupts and interrupt masks we can just use the value of
2371	 * INT_SOURCE_CSR to create the interrupt mask.
2372	 */
2373	mask = reg;
2374	mask_mcu = reg_mcu;
2375
2376	/*
2377	 * Disable all interrupts for which a tasklet was scheduled right now,
2378	 * the tasklet will reenable the appropriate interrupts.
2379	 */
2380	spin_lock(&rt2x00dev->irqmask_lock);
2381
2382	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2383	reg |= mask;
2384	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
2385
2386	rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2387	reg |= mask_mcu;
2388	rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2389
2390	spin_unlock(&rt2x00dev->irqmask_lock);
2391
2392	return IRQ_HANDLED;
2393}
2394
2395/*
2396 * Device probe functions.
2397 */
2398static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2399{
2400	struct eeprom_93cx6 eeprom;
2401	u32 reg;
2402	u16 word;
2403	u8 *mac;
2404	s8 value;
2405
2406	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2407
2408	eeprom.data = rt2x00dev;
2409	eeprom.register_read = rt61pci_eepromregister_read;
2410	eeprom.register_write = rt61pci_eepromregister_write;
2411	eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2412	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2413	eeprom.reg_data_in = 0;
2414	eeprom.reg_data_out = 0;
2415	eeprom.reg_data_clock = 0;
2416	eeprom.reg_chip_select = 0;
2417
2418	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2419			       EEPROM_SIZE / sizeof(u16));
2420
2421	/*
2422	 * Start validation of the data that has been read.
2423	 */
2424	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2425	if (!is_valid_ether_addr(mac)) {
2426		random_ether_addr(mac);
2427		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2428	}
2429
2430	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2431	if (word == 0xffff) {
2432		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2433		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2434				   ANTENNA_B);
2435		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2436				   ANTENNA_B);
2437		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2438		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2439		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2440		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2441		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2442		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2443	}
2444
2445	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2446	if (word == 0xffff) {
2447		rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2448		rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2449		rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2450		rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2451		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2452		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2453		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2454		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2455		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2456	}
2457
2458	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2459	if (word == 0xffff) {
2460		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2461				   LED_MODE_DEFAULT);
2462		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2463		EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2464	}
2465
2466	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2467	if (word == 0xffff) {
2468		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2469		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2470		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2471		EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2472	}
2473
2474	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2475	if (word == 0xffff) {
2476		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2477		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2478		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2479		EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2480	} else {
2481		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2482		if (value < -10 || value > 10)
2483			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2484		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2485		if (value < -10 || value > 10)
2486			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2487		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2488	}
2489
2490	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2491	if (word == 0xffff) {
2492		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2493		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2494		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2495		EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2496	} else {
2497		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2498		if (value < -10 || value > 10)
2499			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2500		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2501		if (value < -10 || value > 10)
2502			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2503		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2504	}
2505
2506	return 0;
2507}
2508
2509static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2510{
2511	u32 reg;
2512	u16 value;
2513	u16 eeprom;
2514
2515	/*
2516	 * Read EEPROM word for configuration.
2517	 */
2518	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2519
2520	/*
2521	 * Identify RF chipset.
2522	 */
2523	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2524	rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2525	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2526			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2527
2528	if (!rt2x00_rf(rt2x00dev, RF5225) &&
2529	    !rt2x00_rf(rt2x00dev, RF5325) &&
2530	    !rt2x00_rf(rt2x00dev, RF2527) &&
2531	    !rt2x00_rf(rt2x00dev, RF2529)) {
2532		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2533		return -ENODEV;
2534	}
2535
2536	/*
2537	 * Determine number of antennas.
2538	 */
2539	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2540		__set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2541
2542	/*
2543	 * Identify default antenna configuration.
2544	 */
2545	rt2x00dev->default_ant.tx =
2546	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2547	rt2x00dev->default_ant.rx =
2548	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2549
2550	/*
2551	 * Read the Frame type.
2552	 */
2553	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2554		__set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2555
2556	/*
2557	 * Detect if this device has a hardware controlled radio.
2558	 */
2559	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2560		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2561
2562	/*
2563	 * Read frequency offset and RF programming sequence.
2564	 */
2565	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2566	if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2567		__set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2568
2569	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2570
2571	/*
2572	 * Read external LNA informations.
2573	 */
2574	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2575
2576	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2577		__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2578	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2579		__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2580
2581	/*
2582	 * When working with a RF2529 chip without double antenna,
2583	 * the antenna settings should be gathered from the NIC
2584	 * eeprom word.
2585	 */
2586	if (rt2x00_rf(rt2x00dev, RF2529) &&
2587	    !test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags)) {
2588		rt2x00dev->default_ant.rx =
2589		    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2590		rt2x00dev->default_ant.tx =
2591		    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2592
2593		if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2594			rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2595		if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2596			rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2597	}
2598
2599	/*
2600	 * Store led settings, for correct led behaviour.
2601	 * If the eeprom value is invalid,
2602	 * switch to default led mode.
2603	 */
2604#ifdef CONFIG_RT2X00_LIB_LEDS
2605	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2606	value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2607
2608	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2609	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2610	if (value == LED_MODE_SIGNAL_STRENGTH)
2611		rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2612				 LED_TYPE_QUALITY);
2613
2614	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2615	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2616			   rt2x00_get_field16(eeprom,
2617					      EEPROM_LED_POLARITY_GPIO_0));
2618	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2619			   rt2x00_get_field16(eeprom,
2620					      EEPROM_LED_POLARITY_GPIO_1));
2621	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2622			   rt2x00_get_field16(eeprom,
2623					      EEPROM_LED_POLARITY_GPIO_2));
2624	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2625			   rt2x00_get_field16(eeprom,
2626					      EEPROM_LED_POLARITY_GPIO_3));
2627	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2628			   rt2x00_get_field16(eeprom,
2629					      EEPROM_LED_POLARITY_GPIO_4));
2630	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2631			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2632	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2633			   rt2x00_get_field16(eeprom,
2634					      EEPROM_LED_POLARITY_RDY_G));
2635	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2636			   rt2x00_get_field16(eeprom,
2637					      EEPROM_LED_POLARITY_RDY_A));
2638#endif /* CONFIG_RT2X00_LIB_LEDS */
2639
2640	return 0;
2641}
2642
2643/*
2644 * RF value list for RF5225 & RF5325
2645 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2646 */
2647static const struct rf_channel rf_vals_noseq[] = {
2648	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2649	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2650	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2651	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2652	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2653	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2654	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2655	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2656	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2657	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2658	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2659	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2660	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2661	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2662
2663	/* 802.11 UNI / HyperLan 2 */
2664	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2665	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2666	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2667	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2668	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2669	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2670	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2671	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2672
2673	/* 802.11 HyperLan 2 */
2674	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2675	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2676	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2677	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2678	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2679	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2680	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2681	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2682	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2683	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2684
2685	/* 802.11 UNII */
2686	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2687	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2688	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2689	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2690	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2691	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2692
2693	/* MMAC(Japan)J52 ch 34,38,42,46 */
2694	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2695	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2696	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2697	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2698};
2699
2700/*
2701 * RF value list for RF5225 & RF5325
2702 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2703 */
2704static const struct rf_channel rf_vals_seq[] = {
2705	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2706	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2707	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2708	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2709	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2710	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2711	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2712	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2713	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2714	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2715	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2716	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2717	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2718	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2719
2720	/* 802.11 UNI / HyperLan 2 */
2721	{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2722	{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2723	{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2724	{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2725	{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2726	{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2727	{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2728	{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2729
2730	/* 802.11 HyperLan 2 */
2731	{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2732	{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2733	{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2734	{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2735	{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2736	{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2737	{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2738	{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2739	{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2740	{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2741
2742	/* 802.11 UNII */
2743	{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2744	{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2745	{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2746	{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2747	{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2748	{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2749
2750	/* MMAC(Japan)J52 ch 34,38,42,46 */
2751	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2752	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2753	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2754	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2755};
2756
2757static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2758{
2759	struct hw_mode_spec *spec = &rt2x00dev->spec;
2760	struct channel_info *info;
2761	char *tx_power;
2762	unsigned int i;
2763
2764	/*
2765	 * Disable powersaving as default.
2766	 */
2767	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2768
2769	/*
2770	 * Initialize all hw fields.
2771	 */
2772	rt2x00dev->hw->flags =
2773	    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2774	    IEEE80211_HW_SIGNAL_DBM |
2775	    IEEE80211_HW_SUPPORTS_PS |
2776	    IEEE80211_HW_PS_NULLFUNC_STACK;
2777
2778	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2779	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2780				rt2x00_eeprom_addr(rt2x00dev,
2781						   EEPROM_MAC_ADDR_0));
2782
2783	/*
2784	 * As rt61 has a global fallback table we cannot specify
2785	 * more then one tx rate per frame but since the hw will
2786	 * try several rates (based on the fallback table) we should
2787	 * initialize max_report_rates to the maximum number of rates
2788	 * we are going to try. Otherwise mac80211 will truncate our
2789	 * reported tx rates and the rc algortihm will end up with
2790	 * incorrect data.
2791	 */
2792	rt2x00dev->hw->max_rates = 1;
2793	rt2x00dev->hw->max_report_rates = 7;
2794	rt2x00dev->hw->max_rate_tries = 1;
2795
2796	/*
2797	 * Initialize hw_mode information.
2798	 */
2799	spec->supported_bands = SUPPORT_BAND_2GHZ;
2800	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2801
2802	if (!test_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags)) {
2803		spec->num_channels = 14;
2804		spec->channels = rf_vals_noseq;
2805	} else {
2806		spec->num_channels = 14;
2807		spec->channels = rf_vals_seq;
2808	}
2809
2810	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2811		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2812		spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2813	}
2814
2815	/*
2816	 * Create channel information array
2817	 */
2818	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2819	if (!info)
2820		return -ENOMEM;
2821
2822	spec->channels_info = info;
2823
2824	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2825	for (i = 0; i < 14; i++) {
2826		info[i].max_power = MAX_TXPOWER;
2827		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2828	}
2829
2830	if (spec->num_channels > 14) {
2831		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2832		for (i = 14; i < spec->num_channels; i++) {
2833			info[i].max_power = MAX_TXPOWER;
2834			info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
 
2835		}
2836	}
2837
2838	return 0;
2839}
2840
2841static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2842{
2843	int retval;
 
2844
2845	/*
2846	 * Disable power saving.
2847	 */
2848	rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2849
2850	/*
2851	 * Allocate eeprom data.
2852	 */
2853	retval = rt61pci_validate_eeprom(rt2x00dev);
2854	if (retval)
2855		return retval;
2856
2857	retval = rt61pci_init_eeprom(rt2x00dev);
2858	if (retval)
2859		return retval;
2860
2861	/*
 
 
 
 
 
 
 
 
2862	 * Initialize hw specifications.
2863	 */
2864	retval = rt61pci_probe_hw_mode(rt2x00dev);
2865	if (retval)
2866		return retval;
2867
2868	/*
2869	 * This device has multiple filters for control frames,
2870	 * but has no a separate filter for PS Poll frames.
2871	 */
2872	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2873
2874	/*
2875	 * This device requires firmware and DMA mapped skbs.
2876	 */
2877	__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2878	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2879	if (!modparam_nohwcrypt)
2880		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2881	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2882
2883	/*
2884	 * Set the rssi offset.
2885	 */
2886	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2887
2888	return 0;
2889}
2890
2891/*
2892 * IEEE80211 stack callback functions.
2893 */
2894static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
 
2895			   const struct ieee80211_tx_queue_params *params)
2896{
2897	struct rt2x00_dev *rt2x00dev = hw->priv;
2898	struct data_queue *queue;
2899	struct rt2x00_field32 field;
2900	int retval;
2901	u32 reg;
2902	u32 offset;
2903
2904	/*
2905	 * First pass the configuration through rt2x00lib, that will
2906	 * update the queue settings and validate the input. After that
2907	 * we are free to update the registers based on the value
2908	 * in the queue parameter.
2909	 */
2910	retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2911	if (retval)
2912		return retval;
2913
2914	/*
2915	 * We only need to perform additional register initialization
2916	 * for WMM queues.
2917	 */
2918	if (queue_idx >= 4)
2919		return 0;
2920
2921	queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2922
2923	/* Update WMM TXOP register */
2924	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2925	field.bit_offset = (queue_idx & 1) * 16;
2926	field.bit_mask = 0xffff << field.bit_offset;
2927
2928	rt2x00pci_register_read(rt2x00dev, offset, &reg);
2929	rt2x00_set_field32(&reg, field, queue->txop);
2930	rt2x00pci_register_write(rt2x00dev, offset, reg);
2931
2932	/* Update WMM registers */
2933	field.bit_offset = queue_idx * 4;
2934	field.bit_mask = 0xf << field.bit_offset;
2935
2936	rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2937	rt2x00_set_field32(&reg, field, queue->aifs);
2938	rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2939
2940	rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2941	rt2x00_set_field32(&reg, field, queue->cw_min);
2942	rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2943
2944	rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2945	rt2x00_set_field32(&reg, field, queue->cw_max);
2946	rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2947
2948	return 0;
2949}
2950
2951static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2952{
2953	struct rt2x00_dev *rt2x00dev = hw->priv;
2954	u64 tsf;
2955	u32 reg;
2956
2957	rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2958	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2959	rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2960	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2961
2962	return tsf;
2963}
2964
2965static const struct ieee80211_ops rt61pci_mac80211_ops = {
2966	.tx			= rt2x00mac_tx,
2967	.start			= rt2x00mac_start,
2968	.stop			= rt2x00mac_stop,
2969	.add_interface		= rt2x00mac_add_interface,
2970	.remove_interface	= rt2x00mac_remove_interface,
2971	.config			= rt2x00mac_config,
2972	.configure_filter	= rt2x00mac_configure_filter,
2973	.set_key		= rt2x00mac_set_key,
2974	.sw_scan_start		= rt2x00mac_sw_scan_start,
2975	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2976	.get_stats		= rt2x00mac_get_stats,
2977	.bss_info_changed	= rt2x00mac_bss_info_changed,
2978	.conf_tx		= rt61pci_conf_tx,
2979	.get_tsf		= rt61pci_get_tsf,
2980	.rfkill_poll		= rt2x00mac_rfkill_poll,
2981	.flush			= rt2x00mac_flush,
2982	.set_antenna		= rt2x00mac_set_antenna,
2983	.get_antenna		= rt2x00mac_get_antenna,
2984	.get_ringparam		= rt2x00mac_get_ringparam,
2985	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2986};
2987
2988static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2989	.irq_handler		= rt61pci_interrupt,
2990	.txstatus_tasklet	= rt61pci_txstatus_tasklet,
2991	.tbtt_tasklet		= rt61pci_tbtt_tasklet,
2992	.rxdone_tasklet		= rt61pci_rxdone_tasklet,
2993	.autowake_tasklet	= rt61pci_autowake_tasklet,
2994	.probe_hw		= rt61pci_probe_hw,
2995	.get_firmware_name	= rt61pci_get_firmware_name,
2996	.check_firmware		= rt61pci_check_firmware,
2997	.load_firmware		= rt61pci_load_firmware,
2998	.initialize		= rt2x00pci_initialize,
2999	.uninitialize		= rt2x00pci_uninitialize,
3000	.get_entry_state	= rt61pci_get_entry_state,
3001	.clear_entry		= rt61pci_clear_entry,
3002	.set_device_state	= rt61pci_set_device_state,
3003	.rfkill_poll		= rt61pci_rfkill_poll,
3004	.link_stats		= rt61pci_link_stats,
3005	.reset_tuner		= rt61pci_reset_tuner,
3006	.link_tuner		= rt61pci_link_tuner,
3007	.start_queue		= rt61pci_start_queue,
3008	.kick_queue		= rt61pci_kick_queue,
3009	.stop_queue		= rt61pci_stop_queue,
3010	.flush_queue		= rt2x00pci_flush_queue,
3011	.write_tx_desc		= rt61pci_write_tx_desc,
3012	.write_beacon		= rt61pci_write_beacon,
3013	.clear_beacon		= rt61pci_clear_beacon,
3014	.fill_rxdone		= rt61pci_fill_rxdone,
3015	.config_shared_key	= rt61pci_config_shared_key,
3016	.config_pairwise_key	= rt61pci_config_pairwise_key,
3017	.config_filter		= rt61pci_config_filter,
3018	.config_intf		= rt61pci_config_intf,
3019	.config_erp		= rt61pci_config_erp,
3020	.config_ant		= rt61pci_config_ant,
3021	.config			= rt61pci_config,
3022};
3023
3024static const struct data_queue_desc rt61pci_queue_rx = {
3025	.entry_num		= 32,
3026	.data_size		= DATA_FRAME_SIZE,
3027	.desc_size		= RXD_DESC_SIZE,
3028	.priv_size		= sizeof(struct queue_entry_priv_pci),
3029};
 
 
 
3030
3031static const struct data_queue_desc rt61pci_queue_tx = {
3032	.entry_num		= 32,
3033	.data_size		= DATA_FRAME_SIZE,
3034	.desc_size		= TXD_DESC_SIZE,
3035	.priv_size		= sizeof(struct queue_entry_priv_pci),
3036};
 
 
 
3037
3038static const struct data_queue_desc rt61pci_queue_bcn = {
3039	.entry_num		= 4,
3040	.data_size		= 0, /* No DMA required for beacons */
3041	.desc_size		= TXINFO_SIZE,
3042	.priv_size		= sizeof(struct queue_entry_priv_pci),
3043};
 
 
 
 
 
 
 
 
3044
3045static const struct rt2x00_ops rt61pci_ops = {
3046	.name			= KBUILD_MODNAME,
3047	.max_sta_intf		= 1,
3048	.max_ap_intf		= 4,
3049	.eeprom_size		= EEPROM_SIZE,
3050	.rf_size		= RF_SIZE,
3051	.tx_queues		= NUM_TX_QUEUES,
3052	.extra_tx_headroom	= 0,
3053	.rx			= &rt61pci_queue_rx,
3054	.tx			= &rt61pci_queue_tx,
3055	.bcn			= &rt61pci_queue_bcn,
3056	.lib			= &rt61pci_rt2x00_ops,
3057	.hw			= &rt61pci_mac80211_ops,
3058#ifdef CONFIG_RT2X00_LIB_DEBUGFS
3059	.debugfs		= &rt61pci_rt2x00debug,
3060#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3061};
3062
3063/*
3064 * RT61pci module information.
3065 */
3066static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
3067	/* RT2561s */
3068	{ PCI_DEVICE(0x1814, 0x0301) },
3069	/* RT2561 v2 */
3070	{ PCI_DEVICE(0x1814, 0x0302) },
3071	/* RT2661 */
3072	{ PCI_DEVICE(0x1814, 0x0401) },
3073	{ 0, }
3074};
3075
3076MODULE_AUTHOR(DRV_PROJECT);
3077MODULE_VERSION(DRV_VERSION);
3078MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3079MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3080			"PCI & PCMCIA chipset based cards");
3081MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3082MODULE_FIRMWARE(FIRMWARE_RT2561);
3083MODULE_FIRMWARE(FIRMWARE_RT2561s);
3084MODULE_FIRMWARE(FIRMWARE_RT2661);
3085MODULE_LICENSE("GPL");
3086
3087static int rt61pci_probe(struct pci_dev *pci_dev,
3088			 const struct pci_device_id *id)
3089{
3090	return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3091}
3092
3093static struct pci_driver rt61pci_driver = {
3094	.name		= KBUILD_MODNAME,
3095	.id_table	= rt61pci_device_table,
3096	.probe		= rt61pci_probe,
3097	.remove		= __devexit_p(rt2x00pci_remove),
3098	.suspend	= rt2x00pci_suspend,
3099	.resume		= rt2x00pci_resume,
3100};
3101
3102static int __init rt61pci_init(void)
3103{
3104	return pci_register_driver(&rt61pci_driver);
3105}
3106
3107static void __exit rt61pci_exit(void)
3108{
3109	pci_unregister_driver(&rt61pci_driver);
3110}
3111
3112module_init(rt61pci_init);
3113module_exit(rt61pci_exit);
v3.15
   1/*
   2	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3	<http://rt2x00.serialmonkey.com>
   4
   5	This program is free software; you can redistribute it and/or modify
   6	it under the terms of the GNU General Public License as published by
   7	the Free Software Foundation; either version 2 of the License, or
   8	(at your option) any later version.
   9
  10	This program is distributed in the hope that it will be useful,
  11	but WITHOUT ANY WARRANTY; without even the implied warranty of
  12	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13	GNU General Public License for more details.
  14
  15	You should have received a copy of the GNU General Public License
  16	along with this program; if not, see <http://www.gnu.org/licenses/>.
 
 
  17 */
  18
  19/*
  20	Module: rt61pci
  21	Abstract: rt61pci device specific routines.
  22	Supported chipsets: RT2561, RT2561s, RT2661.
  23 */
  24
  25#include <linux/crc-itu-t.h>
  26#include <linux/delay.h>
  27#include <linux/etherdevice.h>
 
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/slab.h>
  31#include <linux/pci.h>
  32#include <linux/eeprom_93cx6.h>
  33
  34#include "rt2x00.h"
  35#include "rt2x00mmio.h"
  36#include "rt2x00pci.h"
  37#include "rt61pci.h"
  38
  39/*
  40 * Allow hardware encryption to be disabled.
  41 */
  42static bool modparam_nohwcrypt = false;
  43module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  44MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  45
  46/*
  47 * Register access.
  48 * BBP and RF register require indirect register access,
  49 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
  50 * These indirect registers work with busy bits,
  51 * and we will try maximal REGISTER_BUSY_COUNT times to access
  52 * the register while taking a REGISTER_BUSY_DELAY us delay
  53 * between each attempt. When the busy bit is still set at that time,
  54 * the access attempt is considered to have failed,
  55 * and we will print an error.
  56 */
  57#define WAIT_FOR_BBP(__dev, __reg) \
  58	rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
  59#define WAIT_FOR_RF(__dev, __reg) \
  60	rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
  61#define WAIT_FOR_MCU(__dev, __reg) \
  62	rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
  63				H2M_MAILBOX_CSR_OWNER, (__reg))
  64
  65static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  66			      const unsigned int word, const u8 value)
  67{
  68	u32 reg;
  69
  70	mutex_lock(&rt2x00dev->csr_mutex);
  71
  72	/*
  73	 * Wait until the BBP becomes available, afterwards we
  74	 * can safely write the new data into the register.
  75	 */
  76	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  77		reg = 0;
  78		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
  79		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  80		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  81		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
  82
  83		rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
  84	}
  85
  86	mutex_unlock(&rt2x00dev->csr_mutex);
  87}
  88
  89static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  90			     const unsigned int word, u8 *value)
  91{
  92	u32 reg;
  93
  94	mutex_lock(&rt2x00dev->csr_mutex);
  95
  96	/*
  97	 * Wait until the BBP becomes available, afterwards we
  98	 * can safely write the read request into the register.
  99	 * After the data has been written, we wait until hardware
 100	 * returns the correct value, if at any time the register
 101	 * doesn't become available in time, reg will be 0xffffffff
 102	 * which means we return 0xff to the caller.
 103	 */
 104	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 105		reg = 0;
 106		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
 107		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
 108		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
 109
 110		rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
 111
 112		WAIT_FOR_BBP(rt2x00dev, &reg);
 113	}
 114
 115	*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
 116
 117	mutex_unlock(&rt2x00dev->csr_mutex);
 118}
 119
 120static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
 121			     const unsigned int word, const u32 value)
 122{
 123	u32 reg;
 124
 125	mutex_lock(&rt2x00dev->csr_mutex);
 126
 127	/*
 128	 * Wait until the RF becomes available, afterwards we
 129	 * can safely write the new data into the register.
 130	 */
 131	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 132		reg = 0;
 133		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
 134		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
 135		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
 136		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
 137
 138		rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
 139		rt2x00_rf_write(rt2x00dev, word, value);
 140	}
 141
 142	mutex_unlock(&rt2x00dev->csr_mutex);
 143}
 144
 145static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
 146				const u8 command, const u8 token,
 147				const u8 arg0, const u8 arg1)
 148{
 149	u32 reg;
 150
 151	mutex_lock(&rt2x00dev->csr_mutex);
 152
 153	/*
 154	 * Wait until the MCU becomes available, afterwards we
 155	 * can safely write the new data into the register.
 156	 */
 157	if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
 158		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
 159		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
 160		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
 161		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
 162		rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
 163
 164		rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
 165		rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
 166		rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
 167		rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
 168	}
 169
 170	mutex_unlock(&rt2x00dev->csr_mutex);
 171
 172}
 173
 174static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 175{
 176	struct rt2x00_dev *rt2x00dev = eeprom->data;
 177	u32 reg;
 178
 179	rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
 180
 181	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
 182	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
 183	eeprom->reg_data_clock =
 184	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
 185	eeprom->reg_chip_select =
 186	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
 187}
 188
 189static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 190{
 191	struct rt2x00_dev *rt2x00dev = eeprom->data;
 192	u32 reg = 0;
 193
 194	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
 195	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
 196	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
 197			   !!eeprom->reg_data_clock);
 198	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
 199			   !!eeprom->reg_chip_select);
 200
 201	rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
 202}
 203
 204#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 205static const struct rt2x00debug rt61pci_rt2x00debug = {
 206	.owner	= THIS_MODULE,
 207	.csr	= {
 208		.read		= rt2x00mmio_register_read,
 209		.write		= rt2x00mmio_register_write,
 210		.flags		= RT2X00DEBUGFS_OFFSET,
 211		.word_base	= CSR_REG_BASE,
 212		.word_size	= sizeof(u32),
 213		.word_count	= CSR_REG_SIZE / sizeof(u32),
 214	},
 215	.eeprom	= {
 216		.read		= rt2x00_eeprom_read,
 217		.write		= rt2x00_eeprom_write,
 218		.word_base	= EEPROM_BASE,
 219		.word_size	= sizeof(u16),
 220		.word_count	= EEPROM_SIZE / sizeof(u16),
 221	},
 222	.bbp	= {
 223		.read		= rt61pci_bbp_read,
 224		.write		= rt61pci_bbp_write,
 225		.word_base	= BBP_BASE,
 226		.word_size	= sizeof(u8),
 227		.word_count	= BBP_SIZE / sizeof(u8),
 228	},
 229	.rf	= {
 230		.read		= rt2x00_rf_read,
 231		.write		= rt61pci_rf_write,
 232		.word_base	= RF_BASE,
 233		.word_size	= sizeof(u32),
 234		.word_count	= RF_SIZE / sizeof(u32),
 235	},
 236};
 237#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 238
 239static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 240{
 241	u32 reg;
 242
 243	rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
 244	return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
 245}
 246
 247#ifdef CONFIG_RT2X00_LIB_LEDS
 248static void rt61pci_brightness_set(struct led_classdev *led_cdev,
 249				   enum led_brightness brightness)
 250{
 251	struct rt2x00_led *led =
 252	    container_of(led_cdev, struct rt2x00_led, led_dev);
 253	unsigned int enabled = brightness != LED_OFF;
 254	unsigned int a_mode =
 255	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
 256	unsigned int bg_mode =
 257	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 258
 259	if (led->type == LED_TYPE_RADIO) {
 260		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 261				   MCU_LEDCS_RADIO_STATUS, enabled);
 262
 263		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
 264				    (led->rt2x00dev->led_mcu_reg & 0xff),
 265				    ((led->rt2x00dev->led_mcu_reg >> 8)));
 266	} else if (led->type == LED_TYPE_ASSOC) {
 267		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 268				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
 269		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 270				   MCU_LEDCS_LINK_A_STATUS, a_mode);
 271
 272		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
 273				    (led->rt2x00dev->led_mcu_reg & 0xff),
 274				    ((led->rt2x00dev->led_mcu_reg >> 8)));
 275	} else if (led->type == LED_TYPE_QUALITY) {
 276		/*
 277		 * The brightness is divided into 6 levels (0 - 5),
 278		 * this means we need to convert the brightness
 279		 * argument into the matching level within that range.
 280		 */
 281		rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
 282				    brightness / (LED_FULL / 6), 0);
 283	}
 284}
 285
 286static int rt61pci_blink_set(struct led_classdev *led_cdev,
 287			     unsigned long *delay_on,
 288			     unsigned long *delay_off)
 289{
 290	struct rt2x00_led *led =
 291	    container_of(led_cdev, struct rt2x00_led, led_dev);
 292	u32 reg;
 293
 294	rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14, &reg);
 295	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
 296	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
 297	rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);
 298
 299	return 0;
 300}
 301
 302static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
 303			     struct rt2x00_led *led,
 304			     enum led_type type)
 305{
 306	led->rt2x00dev = rt2x00dev;
 307	led->type = type;
 308	led->led_dev.brightness_set = rt61pci_brightness_set;
 309	led->led_dev.blink_set = rt61pci_blink_set;
 310	led->flags = LED_INITIALIZED;
 311}
 312#endif /* CONFIG_RT2X00_LIB_LEDS */
 313
 314/*
 315 * Configuration handlers.
 316 */
 317static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
 318				     struct rt2x00lib_crypto *crypto,
 319				     struct ieee80211_key_conf *key)
 320{
 321	struct hw_key_entry key_entry;
 322	struct rt2x00_field32 field;
 323	u32 mask;
 324	u32 reg;
 325
 326	if (crypto->cmd == SET_KEY) {
 327		/*
 328		 * rt2x00lib can't determine the correct free
 329		 * key_idx for shared keys. We have 1 register
 330		 * with key valid bits. The goal is simple, read
 331		 * the register, if that is full we have no slots
 332		 * left.
 333		 * Note that each BSS is allowed to have up to 4
 334		 * shared keys, so put a mask over the allowed
 335		 * entries.
 336		 */
 337		mask = (0xf << crypto->bssidx);
 338
 339		rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
 340		reg &= mask;
 341
 342		if (reg && reg == mask)
 343			return -ENOSPC;
 344
 345		key->hw_key_idx += reg ? ffz(reg) : 0;
 346
 347		/*
 348		 * Upload key to hardware
 349		 */
 350		memcpy(key_entry.key, crypto->key,
 351		       sizeof(key_entry.key));
 352		memcpy(key_entry.tx_mic, crypto->tx_mic,
 353		       sizeof(key_entry.tx_mic));
 354		memcpy(key_entry.rx_mic, crypto->rx_mic,
 355		       sizeof(key_entry.rx_mic));
 356
 357		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
 358		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
 359					       &key_entry, sizeof(key_entry));
 360
 361		/*
 362		 * The cipher types are stored over 2 registers.
 363		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
 364		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
 365		 * Using the correct defines correctly will cause overhead,
 366		 * so just calculate the correct offset.
 367		 */
 368		if (key->hw_key_idx < 8) {
 369			field.bit_offset = (3 * key->hw_key_idx);
 370			field.bit_mask = 0x7 << field.bit_offset;
 371
 372			rt2x00mmio_register_read(rt2x00dev, SEC_CSR1, &reg);
 373			rt2x00_set_field32(&reg, field, crypto->cipher);
 374			rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, reg);
 375		} else {
 376			field.bit_offset = (3 * (key->hw_key_idx - 8));
 377			field.bit_mask = 0x7 << field.bit_offset;
 378
 379			rt2x00mmio_register_read(rt2x00dev, SEC_CSR5, &reg);
 380			rt2x00_set_field32(&reg, field, crypto->cipher);
 381			rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, reg);
 382		}
 383
 384		/*
 385		 * The driver does not support the IV/EIV generation
 386		 * in hardware. However it doesn't support the IV/EIV
 387		 * inside the ieee80211 frame either, but requires it
 388		 * to be provided separately for the descriptor.
 389		 * rt2x00lib will cut the IV/EIV data out of all frames
 390		 * given to us by mac80211, but we must tell mac80211
 391		 * to generate the IV/EIV data.
 392		 */
 393		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 394	}
 395
 396	/*
 397	 * SEC_CSR0 contains only single-bit fields to indicate
 398	 * a particular key is valid. Because using the FIELD32()
 399	 * defines directly will cause a lot of overhead, we use
 400	 * a calculation to determine the correct bit directly.
 401	 */
 402	mask = 1 << key->hw_key_idx;
 403
 404	rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
 405	if (crypto->cmd == SET_KEY)
 406		reg |= mask;
 407	else if (crypto->cmd == DISABLE_KEY)
 408		reg &= ~mask;
 409	rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, reg);
 410
 411	return 0;
 412}
 413
 414static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
 415				       struct rt2x00lib_crypto *crypto,
 416				       struct ieee80211_key_conf *key)
 417{
 418	struct hw_pairwise_ta_entry addr_entry;
 419	struct hw_key_entry key_entry;
 420	u32 mask;
 421	u32 reg;
 422
 423	if (crypto->cmd == SET_KEY) {
 424		/*
 425		 * rt2x00lib can't determine the correct free
 426		 * key_idx for pairwise keys. We have 2 registers
 427		 * with key valid bits. The goal is simple: read
 428		 * the first register. If that is full, move to
 429		 * the next register.
 430		 * When both registers are full, we drop the key.
 431		 * Otherwise, we use the first invalid entry.
 432		 */
 433		rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
 434		if (reg && reg == ~0) {
 435			key->hw_key_idx = 32;
 436			rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
 437			if (reg && reg == ~0)
 438				return -ENOSPC;
 439		}
 440
 441		key->hw_key_idx += reg ? ffz(reg) : 0;
 442
 443		/*
 444		 * Upload key to hardware
 445		 */
 446		memcpy(key_entry.key, crypto->key,
 447		       sizeof(key_entry.key));
 448		memcpy(key_entry.tx_mic, crypto->tx_mic,
 449		       sizeof(key_entry.tx_mic));
 450		memcpy(key_entry.rx_mic, crypto->rx_mic,
 451		       sizeof(key_entry.rx_mic));
 452
 453		memset(&addr_entry, 0, sizeof(addr_entry));
 454		memcpy(&addr_entry, crypto->address, ETH_ALEN);
 455		addr_entry.cipher = crypto->cipher;
 456
 457		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
 458		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
 459					       &key_entry, sizeof(key_entry));
 460
 461		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
 462		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
 463					       &addr_entry, sizeof(addr_entry));
 464
 465		/*
 466		 * Enable pairwise lookup table for given BSS idx.
 467		 * Without this, received frames will not be decrypted
 468		 * by the hardware.
 469		 */
 470		rt2x00mmio_register_read(rt2x00dev, SEC_CSR4, &reg);
 471		reg |= (1 << crypto->bssidx);
 472		rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);
 473
 474		/*
 475		 * The driver does not support the IV/EIV generation
 476		 * in hardware. However it doesn't support the IV/EIV
 477		 * inside the ieee80211 frame either, but requires it
 478		 * to be provided separately for the descriptor.
 479		 * rt2x00lib will cut the IV/EIV data out of all frames
 480		 * given to us by mac80211, but we must tell mac80211
 481		 * to generate the IV/EIV data.
 482		 */
 483		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 484	}
 485
 486	/*
 487	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
 488	 * a particular key is valid. Because using the FIELD32()
 489	 * defines directly will cause a lot of overhead, we use
 490	 * a calculation to determine the correct bit directly.
 491	 */
 492	if (key->hw_key_idx < 32) {
 493		mask = 1 << key->hw_key_idx;
 494
 495		rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
 496		if (crypto->cmd == SET_KEY)
 497			reg |= mask;
 498		else if (crypto->cmd == DISABLE_KEY)
 499			reg &= ~mask;
 500		rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
 501	} else {
 502		mask = 1 << (key->hw_key_idx - 32);
 503
 504		rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
 505		if (crypto->cmd == SET_KEY)
 506			reg |= mask;
 507		else if (crypto->cmd == DISABLE_KEY)
 508			reg &= ~mask;
 509		rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
 510	}
 511
 512	return 0;
 513}
 514
 515static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
 516				  const unsigned int filter_flags)
 517{
 518	u32 reg;
 519
 520	/*
 521	 * Start configuration steps.
 522	 * Note that the version error will always be dropped
 523	 * and broadcast frames will always be accepted since
 524	 * there is no filter for it at this time.
 525	 */
 526	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
 527	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
 528			   !(filter_flags & FIF_FCSFAIL));
 529	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
 530			   !(filter_flags & FIF_PLCPFAIL));
 531	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
 532			   !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
 533	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
 534			   !(filter_flags & FIF_PROMISC_IN_BSS));
 535	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
 536			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
 537			   !rt2x00dev->intf_ap_count);
 538	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
 539	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
 540			   !(filter_flags & FIF_ALLMULTI));
 541	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
 542	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
 543			   !(filter_flags & FIF_CONTROL));
 544	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
 545}
 546
 547static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
 548				struct rt2x00_intf *intf,
 549				struct rt2x00intf_conf *conf,
 550				const unsigned int flags)
 551{
 552	u32 reg;
 553
 554	if (flags & CONFIG_UPDATE_TYPE) {
 555		/*
 556		 * Enable synchronisation.
 557		 */
 558		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
 559		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
 560		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
 561	}
 562
 563	if (flags & CONFIG_UPDATE_MAC) {
 564		reg = le32_to_cpu(conf->mac[1]);
 565		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
 566		conf->mac[1] = cpu_to_le32(reg);
 567
 568		rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
 569					       conf->mac, sizeof(conf->mac));
 570	}
 571
 572	if (flags & CONFIG_UPDATE_BSSID) {
 573		reg = le32_to_cpu(conf->bssid[1]);
 574		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
 575		conf->bssid[1] = cpu_to_le32(reg);
 576
 577		rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
 578					       conf->bssid,
 579					       sizeof(conf->bssid));
 580	}
 581}
 582
 583static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
 584			       struct rt2x00lib_erp *erp,
 585			       u32 changed)
 586{
 587	u32 reg;
 588
 589	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
 590	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
 591	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
 592	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
 593
 594	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 595		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
 596		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
 597		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
 598				   !!erp->short_preamble);
 599		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
 600	}
 601
 602	if (changed & BSS_CHANGED_BASIC_RATES)
 603		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
 604					  erp->basic_rates);
 605
 606	if (changed & BSS_CHANGED_BEACON_INT) {
 607		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
 608		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
 609				   erp->beacon_int * 16);
 610		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
 611	}
 612
 613	if (changed & BSS_CHANGED_ERP_SLOT) {
 614		rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
 615		rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
 616		rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
 617
 618		rt2x00mmio_register_read(rt2x00dev, MAC_CSR8, &reg);
 619		rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
 620		rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
 621		rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
 622		rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
 623	}
 624}
 625
 626static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
 627				      struct antenna_setup *ant)
 628{
 629	u8 r3;
 630	u8 r4;
 631	u8 r77;
 632
 633	rt61pci_bbp_read(rt2x00dev, 3, &r3);
 634	rt61pci_bbp_read(rt2x00dev, 4, &r4);
 635	rt61pci_bbp_read(rt2x00dev, 77, &r77);
 636
 637	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
 638
 639	/*
 640	 * Configure the RX antenna.
 641	 */
 642	switch (ant->rx) {
 643	case ANTENNA_HW_DIVERSITY:
 644		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 645		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 646				  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
 647		break;
 648	case ANTENNA_A:
 649		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 650		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 651		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 652			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 653		else
 654			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 655		break;
 656	case ANTENNA_B:
 657	default:
 658		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 659		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 660		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 661			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 662		else
 663			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 664		break;
 665	}
 666
 667	rt61pci_bbp_write(rt2x00dev, 77, r77);
 668	rt61pci_bbp_write(rt2x00dev, 3, r3);
 669	rt61pci_bbp_write(rt2x00dev, 4, r4);
 670}
 671
 672static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
 673				      struct antenna_setup *ant)
 674{
 675	u8 r3;
 676	u8 r4;
 677	u8 r77;
 678
 679	rt61pci_bbp_read(rt2x00dev, 3, &r3);
 680	rt61pci_bbp_read(rt2x00dev, 4, &r4);
 681	rt61pci_bbp_read(rt2x00dev, 77, &r77);
 682
 683	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
 684	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 685			  !rt2x00_has_cap_frame_type(rt2x00dev));
 686
 687	/*
 688	 * Configure the RX antenna.
 689	 */
 690	switch (ant->rx) {
 691	case ANTENNA_HW_DIVERSITY:
 692		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 693		break;
 694	case ANTENNA_A:
 695		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 696		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 697		break;
 698	case ANTENNA_B:
 699	default:
 700		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 701		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 702		break;
 703	}
 704
 705	rt61pci_bbp_write(rt2x00dev, 77, r77);
 706	rt61pci_bbp_write(rt2x00dev, 3, r3);
 707	rt61pci_bbp_write(rt2x00dev, 4, r4);
 708}
 709
 710static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
 711					   const int p1, const int p2)
 712{
 713	u32 reg;
 714
 715	rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
 716
 717	rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
 718	rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
 719
 720	rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
 721	rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
 722
 723	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
 724}
 725
 726static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
 727					struct antenna_setup *ant)
 728{
 729	u8 r3;
 730	u8 r4;
 731	u8 r77;
 732
 733	rt61pci_bbp_read(rt2x00dev, 3, &r3);
 734	rt61pci_bbp_read(rt2x00dev, 4, &r4);
 735	rt61pci_bbp_read(rt2x00dev, 77, &r77);
 736
 737	/*
 738	 * Configure the RX antenna.
 739	 */
 740	switch (ant->rx) {
 741	case ANTENNA_A:
 742		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 743		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 744		rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
 745		break;
 746	case ANTENNA_HW_DIVERSITY:
 747		/*
 748		 * FIXME: Antenna selection for the rf 2529 is very confusing
 749		 * in the legacy driver. Just default to antenna B until the
 750		 * legacy code can be properly translated into rt2x00 code.
 751		 */
 752	case ANTENNA_B:
 753	default:
 754		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 755		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 756		rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
 757		break;
 758	}
 759
 760	rt61pci_bbp_write(rt2x00dev, 77, r77);
 761	rt61pci_bbp_write(rt2x00dev, 3, r3);
 762	rt61pci_bbp_write(rt2x00dev, 4, r4);
 763}
 764
 765struct antenna_sel {
 766	u8 word;
 767	/*
 768	 * value[0] -> non-LNA
 769	 * value[1] -> LNA
 770	 */
 771	u8 value[2];
 772};
 773
 774static const struct antenna_sel antenna_sel_a[] = {
 775	{ 96,  { 0x58, 0x78 } },
 776	{ 104, { 0x38, 0x48 } },
 777	{ 75,  { 0xfe, 0x80 } },
 778	{ 86,  { 0xfe, 0x80 } },
 779	{ 88,  { 0xfe, 0x80 } },
 780	{ 35,  { 0x60, 0x60 } },
 781	{ 97,  { 0x58, 0x58 } },
 782	{ 98,  { 0x58, 0x58 } },
 783};
 784
 785static const struct antenna_sel antenna_sel_bg[] = {
 786	{ 96,  { 0x48, 0x68 } },
 787	{ 104, { 0x2c, 0x3c } },
 788	{ 75,  { 0xfe, 0x80 } },
 789	{ 86,  { 0xfe, 0x80 } },
 790	{ 88,  { 0xfe, 0x80 } },
 791	{ 35,  { 0x50, 0x50 } },
 792	{ 97,  { 0x48, 0x48 } },
 793	{ 98,  { 0x48, 0x48 } },
 794};
 795
 796static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
 797			       struct antenna_setup *ant)
 798{
 799	const struct antenna_sel *sel;
 800	unsigned int lna;
 801	unsigned int i;
 802	u32 reg;
 803
 804	/*
 805	 * We should never come here because rt2x00lib is supposed
 806	 * to catch this and send us the correct antenna explicitely.
 807	 */
 808	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 809	       ant->tx == ANTENNA_SW_DIVERSITY);
 810
 811	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
 812		sel = antenna_sel_a;
 813		lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
 814	} else {
 815		sel = antenna_sel_bg;
 816		lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
 817	}
 818
 819	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
 820		rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
 821
 822	rt2x00mmio_register_read(rt2x00dev, PHY_CSR0, &reg);
 823
 824	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
 825			   rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 826	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
 827			   rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
 828
 829	rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);
 830
 831	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
 832		rt61pci_config_antenna_5x(rt2x00dev, ant);
 833	else if (rt2x00_rf(rt2x00dev, RF2527))
 834		rt61pci_config_antenna_2x(rt2x00dev, ant);
 835	else if (rt2x00_rf(rt2x00dev, RF2529)) {
 836		if (rt2x00_has_cap_double_antenna(rt2x00dev))
 837			rt61pci_config_antenna_2x(rt2x00dev, ant);
 838		else
 839			rt61pci_config_antenna_2529(rt2x00dev, ant);
 840	}
 841}
 842
 843static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
 844				    struct rt2x00lib_conf *libconf)
 845{
 846	u16 eeprom;
 847	short lna_gain = 0;
 848
 849	if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) {
 850		if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
 851			lna_gain += 14;
 852
 853		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
 854		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
 855	} else {
 856		if (rt2x00_has_cap_external_lna_a(rt2x00dev))
 857			lna_gain += 14;
 858
 859		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
 860		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
 861	}
 862
 863	rt2x00dev->lna_gain = lna_gain;
 864}
 865
 866static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
 867				   struct rf_channel *rf, const int txpower)
 868{
 869	u8 r3;
 870	u8 r94;
 871	u8 smart;
 872
 873	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 874	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
 875
 876	smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
 877
 878	rt61pci_bbp_read(rt2x00dev, 3, &r3);
 879	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
 880	rt61pci_bbp_write(rt2x00dev, 3, r3);
 881
 882	r94 = 6;
 883	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
 884		r94 += txpower - MAX_TXPOWER;
 885	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
 886		r94 += txpower;
 887	rt61pci_bbp_write(rt2x00dev, 94, r94);
 888
 889	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 890	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 891	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 892	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 893
 894	udelay(200);
 895
 896	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 897	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 898	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
 899	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 900
 901	udelay(200);
 902
 903	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 904	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 905	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 906	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 907
 908	msleep(1);
 909}
 910
 911static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
 912				   const int txpower)
 913{
 914	struct rf_channel rf;
 915
 916	rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
 917	rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
 918	rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
 919	rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
 920
 921	rt61pci_config_channel(rt2x00dev, &rf, txpower);
 922}
 923
 924static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 925				    struct rt2x00lib_conf *libconf)
 926{
 927	u32 reg;
 928
 929	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
 930	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
 931	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
 932	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
 933	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
 934			   libconf->conf->long_frame_max_tx_count);
 935	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
 936			   libconf->conf->short_frame_max_tx_count);
 937	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
 938}
 939
 940static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
 941				struct rt2x00lib_conf *libconf)
 942{
 943	enum dev_state state =
 944	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
 945		STATE_SLEEP : STATE_AWAKE;
 946	u32 reg;
 947
 948	if (state == STATE_SLEEP) {
 949		rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
 950		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
 951				   rt2x00dev->beacon_int - 10);
 952		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
 953				   libconf->conf->listen_interval - 1);
 954		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
 955
 956		/* We must first disable autowake before it can be enabled */
 957		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 958		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
 959
 960		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
 961		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
 962
 963		rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
 964					  0x00000005);
 965		rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
 966		rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
 967
 968		rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
 969	} else {
 970		rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
 971		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
 972		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
 973		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 974		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
 975		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
 976
 977		rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
 978					  0x00000007);
 979		rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
 980		rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
 981
 982		rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
 983	}
 984}
 985
 986static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
 987			   struct rt2x00lib_conf *libconf,
 988			   const unsigned int flags)
 989{
 990	/* Always recalculate LNA gain before changing configuration */
 991	rt61pci_config_lna_gain(rt2x00dev, libconf);
 992
 993	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 994		rt61pci_config_channel(rt2x00dev, &libconf->rf,
 995				       libconf->conf->power_level);
 996	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 997	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 998		rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
 999	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1000		rt61pci_config_retry_limit(rt2x00dev, libconf);
1001	if (flags & IEEE80211_CONF_CHANGE_PS)
1002		rt61pci_config_ps(rt2x00dev, libconf);
1003}
1004
1005/*
1006 * Link tuning
1007 */
1008static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1009			       struct link_qual *qual)
1010{
1011	u32 reg;
1012
1013	/*
1014	 * Update FCS error count from register.
1015	 */
1016	rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
1017	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1018
1019	/*
1020	 * Update False CCA count from register.
1021	 */
1022	rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
1023	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1024}
1025
1026static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1027				   struct link_qual *qual, u8 vgc_level)
1028{
1029	if (qual->vgc_level != vgc_level) {
1030		rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1031		qual->vgc_level = vgc_level;
1032		qual->vgc_level_reg = vgc_level;
1033	}
1034}
1035
1036static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1037				struct link_qual *qual)
1038{
1039	rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1040}
1041
1042static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1043			       struct link_qual *qual, const u32 count)
1044{
1045	u8 up_bound;
1046	u8 low_bound;
1047
1048	/*
1049	 * Determine r17 bounds.
1050	 */
1051	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1052		low_bound = 0x28;
1053		up_bound = 0x48;
1054		if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
1055			low_bound += 0x10;
1056			up_bound += 0x10;
1057		}
1058	} else {
1059		low_bound = 0x20;
1060		up_bound = 0x40;
1061		if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
1062			low_bound += 0x10;
1063			up_bound += 0x10;
1064		}
1065	}
1066
1067	/*
1068	 * If we are not associated, we should go straight to the
1069	 * dynamic CCA tuning.
1070	 */
1071	if (!rt2x00dev->intf_associated)
1072		goto dynamic_cca_tune;
1073
1074	/*
1075	 * Special big-R17 for very short distance
1076	 */
1077	if (qual->rssi >= -35) {
1078		rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1079		return;
1080	}
1081
1082	/*
1083	 * Special big-R17 for short distance
1084	 */
1085	if (qual->rssi >= -58) {
1086		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1087		return;
1088	}
1089
1090	/*
1091	 * Special big-R17 for middle-short distance
1092	 */
1093	if (qual->rssi >= -66) {
1094		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1095		return;
1096	}
1097
1098	/*
1099	 * Special mid-R17 for middle distance
1100	 */
1101	if (qual->rssi >= -74) {
1102		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1103		return;
1104	}
1105
1106	/*
1107	 * Special case: Change up_bound based on the rssi.
1108	 * Lower up_bound when rssi is weaker then -74 dBm.
1109	 */
1110	up_bound -= 2 * (-74 - qual->rssi);
1111	if (low_bound > up_bound)
1112		up_bound = low_bound;
1113
1114	if (qual->vgc_level > up_bound) {
1115		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1116		return;
1117	}
1118
1119dynamic_cca_tune:
1120
1121	/*
1122	 * r17 does not yet exceed upper limit, continue and base
1123	 * the r17 tuning on the false CCA count.
1124	 */
1125	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1126		rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1127	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1128		rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1129}
1130
1131/*
1132 * Queue handlers.
1133 */
1134static void rt61pci_start_queue(struct data_queue *queue)
1135{
1136	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1137	u32 reg;
1138
1139	switch (queue->qid) {
1140	case QID_RX:
1141		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1142		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1143		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1144		break;
1145	case QID_BEACON:
1146		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
 
 
 
 
 
1147		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1148		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1149		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1150		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1151		break;
1152	default:
1153		break;
1154	}
1155}
1156
1157static void rt61pci_kick_queue(struct data_queue *queue)
1158{
1159	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1160	u32 reg;
1161
1162	switch (queue->qid) {
1163	case QID_AC_VO:
1164		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1165		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1166		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1167		break;
1168	case QID_AC_VI:
1169		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1170		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1171		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1172		break;
1173	case QID_AC_BE:
1174		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1175		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1176		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1177		break;
1178	case QID_AC_BK:
1179		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1180		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1181		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1182		break;
1183	default:
1184		break;
1185	}
1186}
1187
1188static void rt61pci_stop_queue(struct data_queue *queue)
1189{
1190	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1191	u32 reg;
1192
1193	switch (queue->qid) {
1194	case QID_AC_VO:
1195		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1196		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1197		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1198		break;
1199	case QID_AC_VI:
1200		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1201		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1202		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1203		break;
1204	case QID_AC_BE:
1205		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1206		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1207		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1208		break;
1209	case QID_AC_BK:
1210		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1211		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1212		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1213		break;
1214	case QID_RX:
1215		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1216		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1217		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1218		break;
1219	case QID_BEACON:
1220		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1221		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1222		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1223		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1224		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1225
1226		/*
1227		 * Wait for possibly running tbtt tasklets.
1228		 */
1229		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1230		break;
1231	default:
1232		break;
1233	}
1234}
1235
1236/*
1237 * Firmware functions
1238 */
1239static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1240{
1241	u16 chip;
1242	char *fw_name;
1243
1244	pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1245	switch (chip) {
1246	case RT2561_PCI_ID:
1247		fw_name = FIRMWARE_RT2561;
1248		break;
1249	case RT2561s_PCI_ID:
1250		fw_name = FIRMWARE_RT2561s;
1251		break;
1252	case RT2661_PCI_ID:
1253		fw_name = FIRMWARE_RT2661;
1254		break;
1255	default:
1256		fw_name = NULL;
1257		break;
1258	}
1259
1260	return fw_name;
1261}
1262
1263static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1264				  const u8 *data, const size_t len)
1265{
1266	u16 fw_crc;
1267	u16 crc;
1268
1269	/*
1270	 * Only support 8kb firmware files.
1271	 */
1272	if (len != 8192)
1273		return FW_BAD_LENGTH;
1274
1275	/*
1276	 * The last 2 bytes in the firmware array are the crc checksum itself.
1277	 * This means that we should never pass those 2 bytes to the crc
1278	 * algorithm.
1279	 */
1280	fw_crc = (data[len - 2] << 8 | data[len - 1]);
1281
1282	/*
1283	 * Use the crc itu-t algorithm.
1284	 */
1285	crc = crc_itu_t(0, data, len - 2);
1286	crc = crc_itu_t_byte(crc, 0);
1287	crc = crc_itu_t_byte(crc, 0);
1288
1289	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1290}
1291
1292static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1293				 const u8 *data, const size_t len)
1294{
1295	int i;
1296	u32 reg;
1297
1298	/*
1299	 * Wait for stable hardware.
1300	 */
1301	for (i = 0; i < 100; i++) {
1302		rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
1303		if (reg)
1304			break;
1305		msleep(1);
1306	}
1307
1308	if (!reg) {
1309		rt2x00_err(rt2x00dev, "Unstable hardware\n");
1310		return -EBUSY;
1311	}
1312
1313	/*
1314	 * Prepare MCU and mailbox for firmware loading.
1315	 */
1316	reg = 0;
1317	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1318	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1319	rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1320	rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1321	rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1322
1323	/*
1324	 * Write firmware to device.
1325	 */
1326	reg = 0;
1327	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1328	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1329	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1330
1331	rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1332				       data, len);
1333
1334	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1335	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1336
1337	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1338	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1339
1340	for (i = 0; i < 100; i++) {
1341		rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1342		if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1343			break;
1344		msleep(1);
1345	}
1346
1347	if (i == 100) {
1348		rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
1349		return -EBUSY;
1350	}
1351
1352	/*
1353	 * Hardware needs another millisecond before it is ready.
1354	 */
1355	msleep(1);
1356
1357	/*
1358	 * Reset MAC and BBP registers.
1359	 */
1360	reg = 0;
1361	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1362	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1363	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1364
1365	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1366	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1367	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1368	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1369
1370	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1371	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1372	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1373
1374	return 0;
1375}
1376
1377/*
1378 * Initialization functions.
1379 */
1380static bool rt61pci_get_entry_state(struct queue_entry *entry)
1381{
1382	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1383	u32 word;
1384
1385	if (entry->queue->qid == QID_RX) {
1386		rt2x00_desc_read(entry_priv->desc, 0, &word);
1387
1388		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1389	} else {
1390		rt2x00_desc_read(entry_priv->desc, 0, &word);
1391
1392		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1393		        rt2x00_get_field32(word, TXD_W0_VALID));
1394	}
1395}
1396
1397static void rt61pci_clear_entry(struct queue_entry *entry)
1398{
1399	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1400	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1401	u32 word;
1402
1403	if (entry->queue->qid == QID_RX) {
1404		rt2x00_desc_read(entry_priv->desc, 5, &word);
1405		rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1406				   skbdesc->skb_dma);
1407		rt2x00_desc_write(entry_priv->desc, 5, word);
1408
1409		rt2x00_desc_read(entry_priv->desc, 0, &word);
1410		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1411		rt2x00_desc_write(entry_priv->desc, 0, word);
1412	} else {
1413		rt2x00_desc_read(entry_priv->desc, 0, &word);
1414		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1415		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1416		rt2x00_desc_write(entry_priv->desc, 0, word);
1417	}
1418}
1419
1420static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1421{
1422	struct queue_entry_priv_mmio *entry_priv;
1423	u32 reg;
1424
1425	/*
1426	 * Initialize registers.
1427	 */
1428	rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1429	rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1430			   rt2x00dev->tx[0].limit);
1431	rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1432			   rt2x00dev->tx[1].limit);
1433	rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1434			   rt2x00dev->tx[2].limit);
1435	rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1436			   rt2x00dev->tx[3].limit);
1437	rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);
1438
1439	rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1440	rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1441			   rt2x00dev->tx[0].desc_size / 4);
1442	rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);
1443
1444	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1445	rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1446	rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1447			   entry_priv->desc_dma);
1448	rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1449
1450	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1451	rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1452	rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1453			   entry_priv->desc_dma);
1454	rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1455
1456	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1457	rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1458	rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1459			   entry_priv->desc_dma);
1460	rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1461
1462	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1463	rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1464	rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1465			   entry_priv->desc_dma);
1466	rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1467
1468	rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR, &reg);
1469	rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1470	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1471			   rt2x00dev->rx->desc_size / 4);
1472	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1473	rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);
1474
1475	entry_priv = rt2x00dev->rx->entries[0].priv_data;
1476	rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1477	rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1478			   entry_priv->desc_dma);
1479	rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);
1480
1481	rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1482	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1483	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1484	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1485	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1486	rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1487
1488	rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1489	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1490	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1491	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1492	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1493	rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1494
1495	rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1496	rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1497	rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1498
1499	return 0;
1500}
1501
1502static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1503{
1504	u32 reg;
1505
1506	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1507	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1508	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1509	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1510	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1511
1512	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1, &reg);
1513	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1514	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1515	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1516	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1517	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1518	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1519	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1520	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1521	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);
1522
1523	/*
1524	 * CCK TXD BBP registers
1525	 */
1526	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2, &reg);
1527	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1528	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1529	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1530	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1531	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1532	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1533	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1534	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1535	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);
1536
1537	/*
1538	 * OFDM TXD BBP registers
1539	 */
1540	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3, &reg);
1541	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1542	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1543	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1544	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1545	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1546	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1547	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);
1548
1549	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7, &reg);
1550	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1551	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1552	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1553	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1554	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);
1555
1556	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8, &reg);
1557	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1558	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1559	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1560	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1561	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);
1562
1563	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1564	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1565	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1566	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1567	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1568	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1569	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1570	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1571
1572	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1573
1574	rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1575
1576	rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
1577	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1578	rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
1579
1580	rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1581
1582	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1583		return -EBUSY;
1584
1585	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1586
1587	/*
1588	 * Invalidate all Shared Keys (SEC_CSR0),
1589	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1590	 */
1591	rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1592	rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1593	rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1594
1595	rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1596	rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1597	rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1598	rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1599
1600	rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1601
1602	rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1603
1604	rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1605
1606	/*
1607	 * Clear all beacons
1608	 * For the Beacon base registers we only need to clear
1609	 * the first byte since that byte contains the VALID and OWNER
1610	 * bits which (when set to 0) will invalidate the entire beacon.
1611	 */
1612	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1613	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1614	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1615	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1616
1617	/*
1618	 * We must clear the error counters.
1619	 * These registers are cleared on read,
1620	 * so we may pass a useless variable to store the value.
1621	 */
1622	rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
1623	rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
1624	rt2x00mmio_register_read(rt2x00dev, STA_CSR2, &reg);
1625
1626	/*
1627	 * Reset MAC and BBP registers.
1628	 */
1629	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1630	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1631	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1632	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1633
1634	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1635	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1636	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1637	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1638
1639	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1640	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1641	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1642
1643	return 0;
1644}
1645
1646static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1647{
1648	unsigned int i;
1649	u8 value;
1650
1651	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1652		rt61pci_bbp_read(rt2x00dev, 0, &value);
1653		if ((value != 0xff) && (value != 0x00))
1654			return 0;
1655		udelay(REGISTER_BUSY_DELAY);
1656	}
1657
1658	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1659	return -EACCES;
1660}
1661
1662static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1663{
1664	unsigned int i;
1665	u16 eeprom;
1666	u8 reg_id;
1667	u8 value;
1668
1669	if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1670		return -EACCES;
1671
1672	rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1673	rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1674	rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1675	rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1676	rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1677	rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1678	rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1679	rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1680	rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1681	rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1682	rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1683	rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1684	rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1685	rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1686	rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1687	rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1688	rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1689	rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1690	rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1691	rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1692	rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1693	rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1694	rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1695	rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1696
1697	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1698		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1699
1700		if (eeprom != 0xffff && eeprom != 0x0000) {
1701			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1702			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1703			rt61pci_bbp_write(rt2x00dev, reg_id, value);
1704		}
1705	}
1706
1707	return 0;
1708}
1709
1710/*
1711 * Device state switch handlers.
1712 */
1713static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1714			       enum dev_state state)
1715{
1716	int mask = (state == STATE_RADIO_IRQ_OFF);
1717	u32 reg;
1718	unsigned long flags;
1719
1720	/*
1721	 * When interrupts are being enabled, the interrupt registers
1722	 * should clear the register to assure a clean state.
1723	 */
1724	if (state == STATE_RADIO_IRQ_ON) {
1725		rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1726		rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1727
1728		rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1729		rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
 
 
 
 
 
 
 
1730	}
1731
1732	/*
1733	 * Only toggle the interrupts bits we are going to use.
1734	 * Non-checked interrupt bits are disabled by default.
1735	 */
1736	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1737
1738	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1739	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1740	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1741	rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1742	rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1743	rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1744	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
1745
1746	rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1747	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1748	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1749	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1750	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1751	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1752	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1753	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1754	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1755	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1756	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1757
1758	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1759
1760	if (state == STATE_RADIO_IRQ_OFF) {
1761		/*
1762		 * Ensure that all tasklets are finished.
1763		 */
1764		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1765		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1766		tasklet_kill(&rt2x00dev->autowake_tasklet);
1767		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1768	}
1769}
1770
1771static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1772{
1773	u32 reg;
1774
1775	/*
1776	 * Initialize all registers.
1777	 */
1778	if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1779		     rt61pci_init_registers(rt2x00dev) ||
1780		     rt61pci_init_bbp(rt2x00dev)))
1781		return -EIO;
1782
1783	/*
1784	 * Enable RX.
1785	 */
1786	rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1787	rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1788	rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1789
1790	return 0;
1791}
1792
1793static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1794{
1795	/*
1796	 * Disable power
1797	 */
1798	rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1799}
1800
1801static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1802{
1803	u32 reg, reg2;
1804	unsigned int i;
1805	char put_to_sleep;
1806
1807	put_to_sleep = (state != STATE_AWAKE);
1808
1809	rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg);
1810	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1811	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1812	rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1813
1814	/*
1815	 * Device is not guaranteed to be in the requested state yet.
1816	 * We must wait until the register indicates that the
1817	 * device has entered the correct state.
1818	 */
1819	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1820		rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg2);
1821		state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1822		if (state == !put_to_sleep)
1823			return 0;
1824		rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1825		msleep(10);
1826	}
1827
1828	return -EBUSY;
1829}
1830
1831static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1832				    enum dev_state state)
1833{
1834	int retval = 0;
1835
1836	switch (state) {
1837	case STATE_RADIO_ON:
1838		retval = rt61pci_enable_radio(rt2x00dev);
1839		break;
1840	case STATE_RADIO_OFF:
1841		rt61pci_disable_radio(rt2x00dev);
1842		break;
1843	case STATE_RADIO_IRQ_ON:
1844	case STATE_RADIO_IRQ_OFF:
1845		rt61pci_toggle_irq(rt2x00dev, state);
1846		break;
1847	case STATE_DEEP_SLEEP:
1848	case STATE_SLEEP:
1849	case STATE_STANDBY:
1850	case STATE_AWAKE:
1851		retval = rt61pci_set_state(rt2x00dev, state);
1852		break;
1853	default:
1854		retval = -ENOTSUPP;
1855		break;
1856	}
1857
1858	if (unlikely(retval))
1859		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1860			   state, retval);
1861
1862	return retval;
1863}
1864
1865/*
1866 * TX descriptor initialization
1867 */
1868static void rt61pci_write_tx_desc(struct queue_entry *entry,
1869				  struct txentry_desc *txdesc)
1870{
1871	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1872	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1873	__le32 *txd = entry_priv->desc;
1874	u32 word;
1875
1876	/*
1877	 * Start writing the descriptor words.
1878	 */
1879	rt2x00_desc_read(txd, 1, &word);
1880	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1881	rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1882	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1883	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1884	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1885	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1886			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1887	rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1888	rt2x00_desc_write(txd, 1, word);
1889
1890	rt2x00_desc_read(txd, 2, &word);
1891	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1892	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1893	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1894			   txdesc->u.plcp.length_low);
1895	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1896			   txdesc->u.plcp.length_high);
1897	rt2x00_desc_write(txd, 2, word);
1898
1899	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1900		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1901		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1902	}
1903
1904	rt2x00_desc_read(txd, 5, &word);
1905	rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1906	rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1907			   skbdesc->entry->entry_idx);
1908	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1909			   TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1910	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1911	rt2x00_desc_write(txd, 5, word);
1912
1913	if (entry->queue->qid != QID_BEACON) {
1914		rt2x00_desc_read(txd, 6, &word);
1915		rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1916				   skbdesc->skb_dma);
1917		rt2x00_desc_write(txd, 6, word);
1918
1919		rt2x00_desc_read(txd, 11, &word);
1920		rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1921				   txdesc->length);
1922		rt2x00_desc_write(txd, 11, word);
1923	}
1924
1925	/*
1926	 * Writing TXD word 0 must the last to prevent a race condition with
1927	 * the device, whereby the device may take hold of the TXD before we
1928	 * finished updating it.
1929	 */
1930	rt2x00_desc_read(txd, 0, &word);
1931	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1932	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1933	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1934			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1935	rt2x00_set_field32(&word, TXD_W0_ACK,
1936			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1937	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1938			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1939	rt2x00_set_field32(&word, TXD_W0_OFDM,
1940			   (txdesc->rate_mode == RATE_MODE_OFDM));
1941	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1942	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1943			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1944	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1945			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1946	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1947			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1948	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1949	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1950	rt2x00_set_field32(&word, TXD_W0_BURST,
1951			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1952	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1953	rt2x00_desc_write(txd, 0, word);
1954
1955	/*
1956	 * Register descriptor details in skb frame descriptor.
1957	 */
1958	skbdesc->desc = txd;
1959	skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1960			    TXD_DESC_SIZE;
1961}
1962
1963/*
1964 * TX data initialization
1965 */
1966static void rt61pci_write_beacon(struct queue_entry *entry,
1967				 struct txentry_desc *txdesc)
1968{
1969	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1970	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1971	unsigned int beacon_base;
1972	unsigned int padding_len;
1973	u32 orig_reg, reg;
1974
1975	/*
1976	 * Disable beaconing while we are reloading the beacon data,
1977	 * otherwise we might be sending out invalid data.
1978	 */
1979	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1980	orig_reg = reg;
1981	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1982	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1983
1984	/*
1985	 * Write the TX descriptor for the beacon.
1986	 */
1987	rt61pci_write_tx_desc(entry, txdesc);
1988
1989	/*
1990	 * Dump beacon to userspace through debugfs.
1991	 */
1992	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1993
1994	/*
1995	 * Write entire beacon with descriptor and padding to register.
1996	 */
1997	padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1998	if (padding_len && skb_pad(entry->skb, padding_len)) {
1999		rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
2000		/* skb freed by skb_pad() on failure */
2001		entry->skb = NULL;
2002		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2003		return;
2004	}
2005
2006	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
2007	rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
2008				       entry_priv->desc, TXINFO_SIZE);
2009	rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
2010				       entry->skb->data,
2011				       entry->skb->len + padding_len);
2012
2013	/*
2014	 * Enable beaconing again.
2015	 *
2016	 * For Wi-Fi faily generated beacons between participating
2017	 * stations. Set TBTT phase adaptive adjustment step to 8us.
2018	 */
2019	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
2020
2021	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2022	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2023
2024	/*
2025	 * Clean up beacon skb.
2026	 */
2027	dev_kfree_skb_any(entry->skb);
2028	entry->skb = NULL;
2029}
2030
2031static void rt61pci_clear_beacon(struct queue_entry *entry)
2032{
2033	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2034	u32 reg;
2035
2036	/*
2037	 * Disable beaconing while we are reloading the beacon data,
2038	 * otherwise we might be sending out invalid data.
2039	 */
2040	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
2041	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2042	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2043
2044	/*
2045	 * Clear beacon.
2046	 */
2047	rt2x00mmio_register_write(rt2x00dev,
2048				  HW_BEACON_OFFSET(entry->entry_idx), 0);
2049
2050	/*
2051	 * Enable beaconing again.
2052	 */
2053	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2054	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2055}
2056
2057/*
2058 * RX control handlers
2059 */
2060static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2061{
2062	u8 offset = rt2x00dev->lna_gain;
2063	u8 lna;
2064
2065	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2066	switch (lna) {
2067	case 3:
2068		offset += 90;
2069		break;
2070	case 2:
2071		offset += 74;
2072		break;
2073	case 1:
2074		offset += 64;
2075		break;
2076	default:
2077		return 0;
2078	}
2079
2080	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
2081		if (lna == 3 || lna == 2)
2082			offset += 10;
2083	}
2084
2085	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2086}
2087
2088static void rt61pci_fill_rxdone(struct queue_entry *entry,
2089				struct rxdone_entry_desc *rxdesc)
2090{
2091	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2092	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
2093	u32 word0;
2094	u32 word1;
2095
2096	rt2x00_desc_read(entry_priv->desc, 0, &word0);
2097	rt2x00_desc_read(entry_priv->desc, 1, &word1);
2098
2099	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2100		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2101
2102	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2103	rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2104
2105	if (rxdesc->cipher != CIPHER_NONE) {
2106		_rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2107		_rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2108		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2109
2110		_rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2111		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2112
2113		/*
2114		 * Hardware has stripped IV/EIV data from 802.11 frame during
2115		 * decryption. It has provided the data separately but rt2x00lib
2116		 * should decide if it should be reinserted.
2117		 */
2118		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2119
2120		/*
2121		 * The hardware has already checked the Michael Mic and has
2122		 * stripped it from the frame. Signal this to mac80211.
2123		 */
2124		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2125
2126		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2127			rxdesc->flags |= RX_FLAG_DECRYPTED;
2128		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2129			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2130	}
2131
2132	/*
2133	 * Obtain the status about this packet.
2134	 * When frame was received with an OFDM bitrate,
2135	 * the signal is the PLCP value. If it was received with
2136	 * a CCK bitrate the signal is the rate in 100kbit/s.
2137	 */
2138	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2139	rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2140	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2141
2142	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2143		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2144	else
2145		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2146	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2147		rxdesc->dev_flags |= RXDONE_MY_BSS;
2148}
2149
2150/*
2151 * Interrupt functions.
2152 */
2153static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2154{
2155	struct data_queue *queue;
2156	struct queue_entry *entry;
2157	struct queue_entry *entry_done;
2158	struct queue_entry_priv_mmio *entry_priv;
2159	struct txdone_entry_desc txdesc;
2160	u32 word;
2161	u32 reg;
2162	int type;
2163	int index;
2164	int i;
2165
2166	/*
2167	 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2168	 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2169	 * flag is not set anymore.
2170	 *
2171	 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2172	 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2173	 * tx ring size for now.
2174	 */
2175	for (i = 0; i < rt2x00dev->tx->limit; i++) {
2176		rt2x00mmio_register_read(rt2x00dev, STA_CSR4, &reg);
2177		if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2178			break;
2179
2180		/*
2181		 * Skip this entry when it contains an invalid
2182		 * queue identication number.
2183		 */
2184		type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2185		queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2186		if (unlikely(!queue))
2187			continue;
2188
2189		/*
2190		 * Skip this entry when it contains an invalid
2191		 * index number.
2192		 */
2193		index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2194		if (unlikely(index >= queue->limit))
2195			continue;
2196
2197		entry = &queue->entries[index];
2198		entry_priv = entry->priv_data;
2199		rt2x00_desc_read(entry_priv->desc, 0, &word);
2200
2201		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2202		    !rt2x00_get_field32(word, TXD_W0_VALID))
2203			return;
2204
2205		entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2206		while (entry != entry_done) {
2207			/* Catch up.
2208			 * Just report any entries we missed as failed.
2209			 */
2210			rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
2211				    entry_done->entry_idx);
 
2212
2213			rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2214			entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2215		}
2216
2217		/*
2218		 * Obtain the status about this packet.
2219		 */
2220		txdesc.flags = 0;
2221		switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2222		case 0: /* Success, maybe with retry */
2223			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
2224			break;
2225		case 6: /* Failure, excessive retries */
2226			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2227			/* Don't break, this is a failed frame! */
2228		default: /* Failure */
2229			__set_bit(TXDONE_FAILURE, &txdesc.flags);
2230		}
2231		txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2232
2233		/*
2234		 * the frame was retried at least once
2235		 * -> hw used fallback rates
2236		 */
2237		if (txdesc.retry)
2238			__set_bit(TXDONE_FALLBACK, &txdesc.flags);
2239
2240		rt2x00lib_txdone(entry, &txdesc);
2241	}
2242}
2243
2244static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2245{
2246	struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
 
2247
2248	rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2249}
2250
2251static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2252					    struct rt2x00_field32 irq_field)
2253{
2254	u32 reg;
2255
2256	/*
2257	 * Enable a single interrupt. The interrupt mask register
2258	 * access needs locking.
2259	 */
2260	spin_lock_irq(&rt2x00dev->irqmask_lock);
2261
2262	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2263	rt2x00_set_field32(&reg, irq_field, 0);
2264	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2265
2266	spin_unlock_irq(&rt2x00dev->irqmask_lock);
2267}
2268
2269static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2270					 struct rt2x00_field32 irq_field)
2271{
2272	u32 reg;
2273
2274	/*
2275	 * Enable a single MCU interrupt. The interrupt mask register
2276	 * access needs locking.
2277	 */
2278	spin_lock_irq(&rt2x00dev->irqmask_lock);
2279
2280	rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2281	rt2x00_set_field32(&reg, irq_field, 0);
2282	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2283
2284	spin_unlock_irq(&rt2x00dev->irqmask_lock);
2285}
2286
2287static void rt61pci_txstatus_tasklet(unsigned long data)
2288{
2289	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2290	rt61pci_txdone(rt2x00dev);
2291	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2292		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2293}
2294
2295static void rt61pci_tbtt_tasklet(unsigned long data)
2296{
2297	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2298	rt2x00lib_beacondone(rt2x00dev);
2299	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2300		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2301}
2302
2303static void rt61pci_rxdone_tasklet(unsigned long data)
2304{
2305	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2306	if (rt2x00mmio_rxdone(rt2x00dev))
2307		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2308	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2309		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2310}
2311
2312static void rt61pci_autowake_tasklet(unsigned long data)
2313{
2314	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2315	rt61pci_wakeup(rt2x00dev);
2316	rt2x00mmio_register_write(rt2x00dev,
2317				  M2H_CMD_DONE_CSR, 0xffffffff);
2318	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2319		rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2320}
2321
2322static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2323{
2324	struct rt2x00_dev *rt2x00dev = dev_instance;
2325	u32 reg_mcu, mask_mcu;
2326	u32 reg, mask;
2327
2328	/*
2329	 * Get the interrupt sources & saved to local variable.
2330	 * Write register value back to clear pending interrupts.
2331	 */
2332	rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2333	rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2334
2335	rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2336	rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2337
2338	if (!reg && !reg_mcu)
2339		return IRQ_NONE;
2340
2341	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2342		return IRQ_HANDLED;
2343
2344	/*
2345	 * Schedule tasklets for interrupt handling.
2346	 */
2347	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2348		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2349
2350	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2351		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2352
2353	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2354		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2355
2356	if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2357		tasklet_schedule(&rt2x00dev->autowake_tasklet);
2358
2359	/*
2360	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2361	 * for interrupts and interrupt masks we can just use the value of
2362	 * INT_SOURCE_CSR to create the interrupt mask.
2363	 */
2364	mask = reg;
2365	mask_mcu = reg_mcu;
2366
2367	/*
2368	 * Disable all interrupts for which a tasklet was scheduled right now,
2369	 * the tasklet will reenable the appropriate interrupts.
2370	 */
2371	spin_lock(&rt2x00dev->irqmask_lock);
2372
2373	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2374	reg |= mask;
2375	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2376
2377	rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2378	reg |= mask_mcu;
2379	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2380
2381	spin_unlock(&rt2x00dev->irqmask_lock);
2382
2383	return IRQ_HANDLED;
2384}
2385
2386/*
2387 * Device probe functions.
2388 */
2389static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2390{
2391	struct eeprom_93cx6 eeprom;
2392	u32 reg;
2393	u16 word;
2394	u8 *mac;
2395	s8 value;
2396
2397	rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
2398
2399	eeprom.data = rt2x00dev;
2400	eeprom.register_read = rt61pci_eepromregister_read;
2401	eeprom.register_write = rt61pci_eepromregister_write;
2402	eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2403	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2404	eeprom.reg_data_in = 0;
2405	eeprom.reg_data_out = 0;
2406	eeprom.reg_data_clock = 0;
2407	eeprom.reg_chip_select = 0;
2408
2409	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2410			       EEPROM_SIZE / sizeof(u16));
2411
2412	/*
2413	 * Start validation of the data that has been read.
2414	 */
2415	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2416	if (!is_valid_ether_addr(mac)) {
2417		eth_random_addr(mac);
2418		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
2419	}
2420
2421	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2422	if (word == 0xffff) {
2423		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2424		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2425				   ANTENNA_B);
2426		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2427				   ANTENNA_B);
2428		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2429		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2430		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2431		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2432		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2433		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
2434	}
2435
2436	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2437	if (word == 0xffff) {
2438		rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2439		rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2440		rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2441		rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2442		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2443		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2444		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2445		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2446		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
2447	}
2448
2449	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2450	if (word == 0xffff) {
2451		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2452				   LED_MODE_DEFAULT);
2453		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2454		rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
2455	}
2456
2457	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2458	if (word == 0xffff) {
2459		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2460		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2461		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2462		rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
2463	}
2464
2465	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2466	if (word == 0xffff) {
2467		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2468		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2469		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2470		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2471	} else {
2472		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2473		if (value < -10 || value > 10)
2474			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2475		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2476		if (value < -10 || value > 10)
2477			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2478		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2479	}
2480
2481	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2482	if (word == 0xffff) {
2483		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2484		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2485		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2486		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2487	} else {
2488		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2489		if (value < -10 || value > 10)
2490			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2491		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2492		if (value < -10 || value > 10)
2493			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2494		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2495	}
2496
2497	return 0;
2498}
2499
2500static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2501{
2502	u32 reg;
2503	u16 value;
2504	u16 eeprom;
2505
2506	/*
2507	 * Read EEPROM word for configuration.
2508	 */
2509	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2510
2511	/*
2512	 * Identify RF chipset.
2513	 */
2514	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2515	rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
2516	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2517			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2518
2519	if (!rt2x00_rf(rt2x00dev, RF5225) &&
2520	    !rt2x00_rf(rt2x00dev, RF5325) &&
2521	    !rt2x00_rf(rt2x00dev, RF2527) &&
2522	    !rt2x00_rf(rt2x00dev, RF2529)) {
2523		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
2524		return -ENODEV;
2525	}
2526
2527	/*
2528	 * Determine number of antennas.
2529	 */
2530	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2531		__set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2532
2533	/*
2534	 * Identify default antenna configuration.
2535	 */
2536	rt2x00dev->default_ant.tx =
2537	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2538	rt2x00dev->default_ant.rx =
2539	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2540
2541	/*
2542	 * Read the Frame type.
2543	 */
2544	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2545		__set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2546
2547	/*
2548	 * Detect if this device has a hardware controlled radio.
2549	 */
2550	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2551		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2552
2553	/*
2554	 * Read frequency offset and RF programming sequence.
2555	 */
2556	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2557	if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2558		__set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2559
2560	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2561
2562	/*
2563	 * Read external LNA informations.
2564	 */
2565	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2566
2567	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2568		__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2569	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2570		__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2571
2572	/*
2573	 * When working with a RF2529 chip without double antenna,
2574	 * the antenna settings should be gathered from the NIC
2575	 * eeprom word.
2576	 */
2577	if (rt2x00_rf(rt2x00dev, RF2529) &&
2578	    !rt2x00_has_cap_double_antenna(rt2x00dev)) {
2579		rt2x00dev->default_ant.rx =
2580		    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2581		rt2x00dev->default_ant.tx =
2582		    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2583
2584		if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2585			rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2586		if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2587			rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2588	}
2589
2590	/*
2591	 * Store led settings, for correct led behaviour.
2592	 * If the eeprom value is invalid,
2593	 * switch to default led mode.
2594	 */
2595#ifdef CONFIG_RT2X00_LIB_LEDS
2596	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2597	value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2598
2599	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2600	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2601	if (value == LED_MODE_SIGNAL_STRENGTH)
2602		rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2603				 LED_TYPE_QUALITY);
2604
2605	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2606	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2607			   rt2x00_get_field16(eeprom,
2608					      EEPROM_LED_POLARITY_GPIO_0));
2609	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2610			   rt2x00_get_field16(eeprom,
2611					      EEPROM_LED_POLARITY_GPIO_1));
2612	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2613			   rt2x00_get_field16(eeprom,
2614					      EEPROM_LED_POLARITY_GPIO_2));
2615	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2616			   rt2x00_get_field16(eeprom,
2617					      EEPROM_LED_POLARITY_GPIO_3));
2618	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2619			   rt2x00_get_field16(eeprom,
2620					      EEPROM_LED_POLARITY_GPIO_4));
2621	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2622			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2623	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2624			   rt2x00_get_field16(eeprom,
2625					      EEPROM_LED_POLARITY_RDY_G));
2626	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2627			   rt2x00_get_field16(eeprom,
2628					      EEPROM_LED_POLARITY_RDY_A));
2629#endif /* CONFIG_RT2X00_LIB_LEDS */
2630
2631	return 0;
2632}
2633
2634/*
2635 * RF value list for RF5225 & RF5325
2636 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2637 */
2638static const struct rf_channel rf_vals_noseq[] = {
2639	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2640	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2641	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2642	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2643	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2644	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2645	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2646	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2647	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2648	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2649	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2650	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2651	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2652	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2653
2654	/* 802.11 UNI / HyperLan 2 */
2655	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2656	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2657	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2658	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2659	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2660	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2661	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2662	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2663
2664	/* 802.11 HyperLan 2 */
2665	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2666	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2667	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2668	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2669	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2670	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2671	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2672	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2673	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2674	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2675
2676	/* 802.11 UNII */
2677	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2678	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2679	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2680	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2681	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2682	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2683
2684	/* MMAC(Japan)J52 ch 34,38,42,46 */
2685	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2686	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2687	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2688	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2689};
2690
2691/*
2692 * RF value list for RF5225 & RF5325
2693 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2694 */
2695static const struct rf_channel rf_vals_seq[] = {
2696	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2697	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2698	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2699	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2700	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2701	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2702	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2703	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2704	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2705	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2706	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2707	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2708	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2709	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2710
2711	/* 802.11 UNI / HyperLan 2 */
2712	{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2713	{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2714	{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2715	{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2716	{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2717	{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2718	{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2719	{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2720
2721	/* 802.11 HyperLan 2 */
2722	{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2723	{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2724	{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2725	{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2726	{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2727	{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2728	{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2729	{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2730	{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2731	{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2732
2733	/* 802.11 UNII */
2734	{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2735	{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2736	{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2737	{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2738	{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2739	{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2740
2741	/* MMAC(Japan)J52 ch 34,38,42,46 */
2742	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2743	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2744	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2745	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2746};
2747
2748static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2749{
2750	struct hw_mode_spec *spec = &rt2x00dev->spec;
2751	struct channel_info *info;
2752	char *tx_power;
2753	unsigned int i;
2754
2755	/*
2756	 * Disable powersaving as default.
2757	 */
2758	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2759
2760	/*
2761	 * Initialize all hw fields.
2762	 */
2763	rt2x00dev->hw->flags =
2764	    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2765	    IEEE80211_HW_SIGNAL_DBM |
2766	    IEEE80211_HW_SUPPORTS_PS |
2767	    IEEE80211_HW_PS_NULLFUNC_STACK;
2768
2769	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2770	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2771				rt2x00_eeprom_addr(rt2x00dev,
2772						   EEPROM_MAC_ADDR_0));
2773
2774	/*
2775	 * As rt61 has a global fallback table we cannot specify
2776	 * more then one tx rate per frame but since the hw will
2777	 * try several rates (based on the fallback table) we should
2778	 * initialize max_report_rates to the maximum number of rates
2779	 * we are going to try. Otherwise mac80211 will truncate our
2780	 * reported tx rates and the rc algortihm will end up with
2781	 * incorrect data.
2782	 */
2783	rt2x00dev->hw->max_rates = 1;
2784	rt2x00dev->hw->max_report_rates = 7;
2785	rt2x00dev->hw->max_rate_tries = 1;
2786
2787	/*
2788	 * Initialize hw_mode information.
2789	 */
2790	spec->supported_bands = SUPPORT_BAND_2GHZ;
2791	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2792
2793	if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) {
2794		spec->num_channels = 14;
2795		spec->channels = rf_vals_noseq;
2796	} else {
2797		spec->num_channels = 14;
2798		spec->channels = rf_vals_seq;
2799	}
2800
2801	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2802		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2803		spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2804	}
2805
2806	/*
2807	 * Create channel information array
2808	 */
2809	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2810	if (!info)
2811		return -ENOMEM;
2812
2813	spec->channels_info = info;
2814
2815	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2816	for (i = 0; i < 14; i++) {
2817		info[i].max_power = MAX_TXPOWER;
2818		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2819	}
2820
2821	if (spec->num_channels > 14) {
2822		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2823		for (i = 14; i < spec->num_channels; i++) {
2824			info[i].max_power = MAX_TXPOWER;
2825			info[i].default_power1 =
2826					TXPOWER_FROM_DEV(tx_power[i - 14]);
2827		}
2828	}
2829
2830	return 0;
2831}
2832
2833static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2834{
2835	int retval;
2836	u32 reg;
2837
2838	/*
2839	 * Disable power saving.
2840	 */
2841	rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2842
2843	/*
2844	 * Allocate eeprom data.
2845	 */
2846	retval = rt61pci_validate_eeprom(rt2x00dev);
2847	if (retval)
2848		return retval;
2849
2850	retval = rt61pci_init_eeprom(rt2x00dev);
2851	if (retval)
2852		return retval;
2853
2854	/*
2855	 * Enable rfkill polling by setting GPIO direction of the
2856	 * rfkill switch GPIO pin correctly.
2857	 */
2858	rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
2859	rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
2860	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
2861
2862	/*
2863	 * Initialize hw specifications.
2864	 */
2865	retval = rt61pci_probe_hw_mode(rt2x00dev);
2866	if (retval)
2867		return retval;
2868
2869	/*
2870	 * This device has multiple filters for control frames,
2871	 * but has no a separate filter for PS Poll frames.
2872	 */
2873	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2874
2875	/*
2876	 * This device requires firmware and DMA mapped skbs.
2877	 */
2878	__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2879	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2880	if (!modparam_nohwcrypt)
2881		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2882	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2883
2884	/*
2885	 * Set the rssi offset.
2886	 */
2887	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2888
2889	return 0;
2890}
2891
2892/*
2893 * IEEE80211 stack callback functions.
2894 */
2895static int rt61pci_conf_tx(struct ieee80211_hw *hw,
2896			   struct ieee80211_vif *vif, u16 queue_idx,
2897			   const struct ieee80211_tx_queue_params *params)
2898{
2899	struct rt2x00_dev *rt2x00dev = hw->priv;
2900	struct data_queue *queue;
2901	struct rt2x00_field32 field;
2902	int retval;
2903	u32 reg;
2904	u32 offset;
2905
2906	/*
2907	 * First pass the configuration through rt2x00lib, that will
2908	 * update the queue settings and validate the input. After that
2909	 * we are free to update the registers based on the value
2910	 * in the queue parameter.
2911	 */
2912	retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2913	if (retval)
2914		return retval;
2915
2916	/*
2917	 * We only need to perform additional register initialization
2918	 * for WMM queues.
2919	 */
2920	if (queue_idx >= 4)
2921		return 0;
2922
2923	queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2924
2925	/* Update WMM TXOP register */
2926	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2927	field.bit_offset = (queue_idx & 1) * 16;
2928	field.bit_mask = 0xffff << field.bit_offset;
2929
2930	rt2x00mmio_register_read(rt2x00dev, offset, &reg);
2931	rt2x00_set_field32(&reg, field, queue->txop);
2932	rt2x00mmio_register_write(rt2x00dev, offset, reg);
2933
2934	/* Update WMM registers */
2935	field.bit_offset = queue_idx * 4;
2936	field.bit_mask = 0xf << field.bit_offset;
2937
2938	rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR, &reg);
2939	rt2x00_set_field32(&reg, field, queue->aifs);
2940	rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);
2941
2942	rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR, &reg);
2943	rt2x00_set_field32(&reg, field, queue->cw_min);
2944	rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);
2945
2946	rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR, &reg);
2947	rt2x00_set_field32(&reg, field, queue->cw_max);
2948	rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);
2949
2950	return 0;
2951}
2952
2953static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2954{
2955	struct rt2x00_dev *rt2x00dev = hw->priv;
2956	u64 tsf;
2957	u32 reg;
2958
2959	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13, &reg);
2960	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2961	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12, &reg);
2962	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2963
2964	return tsf;
2965}
2966
2967static const struct ieee80211_ops rt61pci_mac80211_ops = {
2968	.tx			= rt2x00mac_tx,
2969	.start			= rt2x00mac_start,
2970	.stop			= rt2x00mac_stop,
2971	.add_interface		= rt2x00mac_add_interface,
2972	.remove_interface	= rt2x00mac_remove_interface,
2973	.config			= rt2x00mac_config,
2974	.configure_filter	= rt2x00mac_configure_filter,
2975	.set_key		= rt2x00mac_set_key,
2976	.sw_scan_start		= rt2x00mac_sw_scan_start,
2977	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2978	.get_stats		= rt2x00mac_get_stats,
2979	.bss_info_changed	= rt2x00mac_bss_info_changed,
2980	.conf_tx		= rt61pci_conf_tx,
2981	.get_tsf		= rt61pci_get_tsf,
2982	.rfkill_poll		= rt2x00mac_rfkill_poll,
2983	.flush			= rt2x00mac_flush,
2984	.set_antenna		= rt2x00mac_set_antenna,
2985	.get_antenna		= rt2x00mac_get_antenna,
2986	.get_ringparam		= rt2x00mac_get_ringparam,
2987	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2988};
2989
2990static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2991	.irq_handler		= rt61pci_interrupt,
2992	.txstatus_tasklet	= rt61pci_txstatus_tasklet,
2993	.tbtt_tasklet		= rt61pci_tbtt_tasklet,
2994	.rxdone_tasklet		= rt61pci_rxdone_tasklet,
2995	.autowake_tasklet	= rt61pci_autowake_tasklet,
2996	.probe_hw		= rt61pci_probe_hw,
2997	.get_firmware_name	= rt61pci_get_firmware_name,
2998	.check_firmware		= rt61pci_check_firmware,
2999	.load_firmware		= rt61pci_load_firmware,
3000	.initialize		= rt2x00mmio_initialize,
3001	.uninitialize		= rt2x00mmio_uninitialize,
3002	.get_entry_state	= rt61pci_get_entry_state,
3003	.clear_entry		= rt61pci_clear_entry,
3004	.set_device_state	= rt61pci_set_device_state,
3005	.rfkill_poll		= rt61pci_rfkill_poll,
3006	.link_stats		= rt61pci_link_stats,
3007	.reset_tuner		= rt61pci_reset_tuner,
3008	.link_tuner		= rt61pci_link_tuner,
3009	.start_queue		= rt61pci_start_queue,
3010	.kick_queue		= rt61pci_kick_queue,
3011	.stop_queue		= rt61pci_stop_queue,
3012	.flush_queue		= rt2x00mmio_flush_queue,
3013	.write_tx_desc		= rt61pci_write_tx_desc,
3014	.write_beacon		= rt61pci_write_beacon,
3015	.clear_beacon		= rt61pci_clear_beacon,
3016	.fill_rxdone		= rt61pci_fill_rxdone,
3017	.config_shared_key	= rt61pci_config_shared_key,
3018	.config_pairwise_key	= rt61pci_config_pairwise_key,
3019	.config_filter		= rt61pci_config_filter,
3020	.config_intf		= rt61pci_config_intf,
3021	.config_erp		= rt61pci_config_erp,
3022	.config_ant		= rt61pci_config_ant,
3023	.config			= rt61pci_config,
3024};
3025
3026static void rt61pci_queue_init(struct data_queue *queue)
3027{
3028	switch (queue->qid) {
3029	case QID_RX:
3030		queue->limit = 32;
3031		queue->data_size = DATA_FRAME_SIZE;
3032		queue->desc_size = RXD_DESC_SIZE;
3033		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3034		break;
3035
3036	case QID_AC_VO:
3037	case QID_AC_VI:
3038	case QID_AC_BE:
3039	case QID_AC_BK:
3040		queue->limit = 32;
3041		queue->data_size = DATA_FRAME_SIZE;
3042		queue->desc_size = TXD_DESC_SIZE;
3043		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3044		break;
3045
3046	case QID_BEACON:
3047		queue->limit = 4;
3048		queue->data_size = 0; /* No DMA required for beacons */
3049		queue->desc_size = TXINFO_SIZE;
3050		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3051		break;
3052
3053	case QID_ATIM:
3054		/* fallthrough */
3055	default:
3056		BUG();
3057		break;
3058	}
3059}
3060
3061static const struct rt2x00_ops rt61pci_ops = {
3062	.name			= KBUILD_MODNAME,
 
3063	.max_ap_intf		= 4,
3064	.eeprom_size		= EEPROM_SIZE,
3065	.rf_size		= RF_SIZE,
3066	.tx_queues		= NUM_TX_QUEUES,
3067	.queue_init		= rt61pci_queue_init,
 
 
 
3068	.lib			= &rt61pci_rt2x00_ops,
3069	.hw			= &rt61pci_mac80211_ops,
3070#ifdef CONFIG_RT2X00_LIB_DEBUGFS
3071	.debugfs		= &rt61pci_rt2x00debug,
3072#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3073};
3074
3075/*
3076 * RT61pci module information.
3077 */
3078static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
3079	/* RT2561s */
3080	{ PCI_DEVICE(0x1814, 0x0301) },
3081	/* RT2561 v2 */
3082	{ PCI_DEVICE(0x1814, 0x0302) },
3083	/* RT2661 */
3084	{ PCI_DEVICE(0x1814, 0x0401) },
3085	{ 0, }
3086};
3087
3088MODULE_AUTHOR(DRV_PROJECT);
3089MODULE_VERSION(DRV_VERSION);
3090MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3091MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3092			"PCI & PCMCIA chipset based cards");
3093MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3094MODULE_FIRMWARE(FIRMWARE_RT2561);
3095MODULE_FIRMWARE(FIRMWARE_RT2561s);
3096MODULE_FIRMWARE(FIRMWARE_RT2661);
3097MODULE_LICENSE("GPL");
3098
3099static int rt61pci_probe(struct pci_dev *pci_dev,
3100			 const struct pci_device_id *id)
3101{
3102	return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3103}
3104
3105static struct pci_driver rt61pci_driver = {
3106	.name		= KBUILD_MODNAME,
3107	.id_table	= rt61pci_device_table,
3108	.probe		= rt61pci_probe,
3109	.remove		= rt2x00pci_remove,
3110	.suspend	= rt2x00pci_suspend,
3111	.resume		= rt2x00pci_resume,
3112};
3113
3114module_pci_driver(rt61pci_driver);