Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
   3	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
   4	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
   5	<http://rt2x00.serialmonkey.com>
   6
   7	This program is free software; you can redistribute it and/or modify
   8	it under the terms of the GNU General Public License as published by
   9	the Free Software Foundation; either version 2 of the License, or
  10	(at your option) any later version.
  11
  12	This program is distributed in the hope that it will be useful,
  13	but WITHOUT ANY WARRANTY; without even the implied warranty of
  14	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15	GNU General Public License for more details.
  16
  17	You should have received a copy of the GNU General Public License
  18	along with this program; if not, write to the
  19	Free Software Foundation, Inc.,
  20	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  21 */
  22
  23/*
  24	Module: rt2x00lib
  25	Abstract: rt2x00 queue specific routines.
  26 */
  27
  28#include <linux/slab.h>
  29#include <linux/kernel.h>
  30#include <linux/module.h>
  31#include <linux/dma-mapping.h>
  32
  33#include "rt2x00.h"
  34#include "rt2x00lib.h"
  35
  36struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry)
  37{
  38	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 
  39	struct sk_buff *skb;
  40	struct skb_frame_desc *skbdesc;
  41	unsigned int frame_size;
  42	unsigned int head_size = 0;
  43	unsigned int tail_size = 0;
  44
  45	/*
  46	 * The frame size includes descriptor size, because the
  47	 * hardware directly receive the frame into the skbuffer.
  48	 */
  49	frame_size = entry->queue->data_size + entry->queue->desc_size;
  50
  51	/*
  52	 * The payload should be aligned to a 4-byte boundary,
  53	 * this means we need at least 3 bytes for moving the frame
  54	 * into the correct offset.
  55	 */
  56	head_size = 4;
  57
  58	/*
  59	 * For IV/EIV/ICV assembly we must make sure there is
  60	 * at least 8 bytes bytes available in headroom for IV/EIV
  61	 * and 8 bytes for ICV data as tailroon.
  62	 */
  63	if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) {
  64		head_size += 8;
  65		tail_size += 8;
  66	}
  67
  68	/*
  69	 * Allocate skbuffer.
  70	 */
  71	skb = dev_alloc_skb(frame_size + head_size + tail_size);
  72	if (!skb)
  73		return NULL;
  74
  75	/*
  76	 * Make sure we not have a frame with the requested bytes
  77	 * available in the head and tail.
  78	 */
  79	skb_reserve(skb, head_size);
  80	skb_put(skb, frame_size);
  81
  82	/*
  83	 * Populate skbdesc.
  84	 */
  85	skbdesc = get_skb_frame_desc(skb);
  86	memset(skbdesc, 0, sizeof(*skbdesc));
  87	skbdesc->entry = entry;
  88
  89	if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) {
  90		skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
  91						  skb->data,
  92						  skb->len,
  93						  DMA_FROM_DEVICE);
 
 
 
 
 
 
  94		skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
  95	}
  96
  97	return skb;
  98}
  99
 100void rt2x00queue_map_txskb(struct queue_entry *entry)
 101{
 102	struct device *dev = entry->queue->rt2x00dev->dev;
 103	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 104
 105	skbdesc->skb_dma =
 106	    dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
 
 
 
 
 107	skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
 
 108}
 109EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
 110
 111void rt2x00queue_unmap_skb(struct queue_entry *entry)
 112{
 113	struct device *dev = entry->queue->rt2x00dev->dev;
 114	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 115
 116	if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
 117		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
 118				 DMA_FROM_DEVICE);
 119		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
 120	} else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
 121		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
 122				 DMA_TO_DEVICE);
 123		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
 124	}
 125}
 126EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
 127
 128void rt2x00queue_free_skb(struct queue_entry *entry)
 129{
 130	if (!entry->skb)
 131		return;
 132
 133	rt2x00queue_unmap_skb(entry);
 134	dev_kfree_skb_any(entry->skb);
 135	entry->skb = NULL;
 136}
 137
 138void rt2x00queue_align_frame(struct sk_buff *skb)
 139{
 140	unsigned int frame_length = skb->len;
 141	unsigned int align = ALIGN_SIZE(skb, 0);
 142
 143	if (!align)
 144		return;
 145
 146	skb_push(skb, align);
 147	memmove(skb->data, skb->data + align, frame_length);
 148	skb_trim(skb, frame_length);
 149}
 150
 151void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
 152{
 153	unsigned int payload_length = skb->len - header_length;
 154	unsigned int header_align = ALIGN_SIZE(skb, 0);
 155	unsigned int payload_align = ALIGN_SIZE(skb, header_length);
 156	unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
 157
 158	/*
 159	 * Adjust the header alignment if the payload needs to be moved more
 160	 * than the header.
 161	 */
 162	if (payload_align > header_align)
 163		header_align += 4;
 164
 165	/* There is nothing to do if no alignment is needed */
 166	if (!header_align)
 167		return;
 168
 169	/* Reserve the amount of space needed in front of the frame */
 170	skb_push(skb, header_align);
 171
 172	/*
 173	 * Move the header.
 174	 */
 175	memmove(skb->data, skb->data + header_align, header_length);
 176
 177	/* Move the payload, if present and if required */
 178	if (payload_length && payload_align)
 179		memmove(skb->data + header_length + l2pad,
 180			skb->data + header_length + l2pad + payload_align,
 181			payload_length);
 182
 183	/* Trim the skb to the correct size */
 184	skb_trim(skb, header_length + l2pad + payload_length);
 185}
 186
 187void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
 188{
 189	/*
 190	 * L2 padding is only present if the skb contains more than just the
 191	 * IEEE 802.11 header.
 192	 */
 193	unsigned int l2pad = (skb->len > header_length) ?
 194				L2PAD_SIZE(header_length) : 0;
 195
 196	if (!l2pad)
 197		return;
 198
 199	memmove(skb->data + l2pad, skb->data, header_length);
 200	skb_pull(skb, l2pad);
 201}
 202
 203static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
 204						 struct sk_buff *skb,
 205						 struct txentry_desc *txdesc)
 206{
 207	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
 208	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
 209	struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
 
 210
 211	if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
 212		return;
 213
 214	__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
 215
 216	if (!test_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags))
 217		return;
 
 
 
 
 
 
 
 
 
 
 
 218
 219	/*
 220	 * The hardware is not able to insert a sequence number. Assign a
 221	 * software generated one here.
 222	 *
 223	 * This is wrong because beacons are not getting sequence
 224	 * numbers assigned properly.
 225	 *
 226	 * A secondary problem exists for drivers that cannot toggle
 227	 * sequence counting per-frame, since those will override the
 228	 * sequence counter given by mac80211.
 229	 */
 230	spin_lock(&intf->seqlock);
 231
 232	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
 233		intf->seqno += 0x10;
 234	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
 235	hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
 236
 237	spin_unlock(&intf->seqlock);
 238
 
 
 239}
 240
 241static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
 242						  struct sk_buff *skb,
 243						  struct txentry_desc *txdesc,
 244						  const struct rt2x00_rate *hwrate)
 245{
 246	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
 247	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
 248	unsigned int data_length;
 249	unsigned int duration;
 250	unsigned int residual;
 251
 252	/*
 253	 * Determine with what IFS priority this frame should be send.
 254	 * Set ifs to IFS_SIFS when the this is not the first fragment,
 255	 * or this fragment came after RTS/CTS.
 256	 */
 257	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
 258		txdesc->u.plcp.ifs = IFS_BACKOFF;
 259	else
 260		txdesc->u.plcp.ifs = IFS_SIFS;
 261
 262	/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
 263	data_length = skb->len + 4;
 264	data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
 265
 266	/*
 267	 * PLCP setup
 268	 * Length calculation depends on OFDM/CCK rate.
 269	 */
 270	txdesc->u.plcp.signal = hwrate->plcp;
 271	txdesc->u.plcp.service = 0x04;
 272
 273	if (hwrate->flags & DEV_RATE_OFDM) {
 274		txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
 275		txdesc->u.plcp.length_low = data_length & 0x3f;
 276	} else {
 277		/*
 278		 * Convert length to microseconds.
 279		 */
 280		residual = GET_DURATION_RES(data_length, hwrate->bitrate);
 281		duration = GET_DURATION(data_length, hwrate->bitrate);
 282
 283		if (residual != 0) {
 284			duration++;
 285
 286			/*
 287			 * Check if we need to set the Length Extension
 288			 */
 289			if (hwrate->bitrate == 110 && residual <= 30)
 290				txdesc->u.plcp.service |= 0x80;
 291		}
 292
 293		txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
 294		txdesc->u.plcp.length_low = duration & 0xff;
 295
 296		/*
 297		 * When preamble is enabled we should set the
 298		 * preamble bit for the signal.
 299		 */
 300		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
 301			txdesc->u.plcp.signal |= 0x08;
 302	}
 303}
 304
 305static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
 306						struct sk_buff *skb,
 307						struct txentry_desc *txdesc,
 
 308						const struct rt2x00_rate *hwrate)
 309{
 310	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
 311	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
 312	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
 
 313
 314	if (tx_info->control.sta)
 315		txdesc->u.ht.mpdu_density =
 316		    tx_info->control.sta->ht_cap.ampdu_density;
 317
 318	txdesc->u.ht.ba_size = 7;	/* FIXME: What value is needed? */
 319
 320	/*
 321	 * Only one STBC stream is supported for now.
 322	 */
 323	if (tx_info->flags & IEEE80211_TX_CTL_STBC)
 324		txdesc->u.ht.stbc = 1;
 325
 326	/*
 327	 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
 328	 * mcs rate to be used
 329	 */
 330	if (txrate->flags & IEEE80211_TX_RC_MCS) {
 331		txdesc->u.ht.mcs = txrate->idx;
 332
 333		/*
 334		 * MIMO PS should be set to 1 for STA's using dynamic SM PS
 335		 * when using more then one tx stream (>MCS7).
 336		 */
 337		if (tx_info->control.sta && txdesc->u.ht.mcs > 7 &&
 338		    ((tx_info->control.sta->ht_cap.cap &
 339		      IEEE80211_HT_CAP_SM_PS) >>
 340		     IEEE80211_HT_CAP_SM_PS_SHIFT) ==
 341		    WLAN_HT_CAP_SM_PS_DYNAMIC)
 342			__set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
 343	} else {
 344		txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
 345		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
 346			txdesc->u.ht.mcs |= 0x08;
 347	}
 348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349	/*
 350	 * This frame is eligible for an AMPDU, however, don't aggregate
 351	 * frames that are intended to probe a specific tx rate.
 352	 */
 353	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
 354	    !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
 355		__set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
 356
 357	/*
 358	 * Set 40Mhz mode if necessary (for legacy rates this will
 359	 * duplicate the frame to both channels).
 360	 */
 361	if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
 362	    txrate->flags & IEEE80211_TX_RC_DUP_DATA)
 363		__set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
 364	if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
 365		__set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
 366
 367	/*
 368	 * Determine IFS values
 369	 * - Use TXOP_BACKOFF for management frames except beacons
 370	 * - Use TXOP_SIFS for fragment bursts
 371	 * - Use TXOP_HTTXOP for everything else
 372	 *
 373	 * Note: rt2800 devices won't use CTS protection (if used)
 374	 * for frames not transmitted with TXOP_HTTXOP
 375	 */
 376	if (ieee80211_is_mgmt(hdr->frame_control) &&
 377	    !ieee80211_is_beacon(hdr->frame_control))
 378		txdesc->u.ht.txop = TXOP_BACKOFF;
 379	else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
 380		txdesc->u.ht.txop = TXOP_SIFS;
 381	else
 382		txdesc->u.ht.txop = TXOP_HTTXOP;
 383}
 384
 385static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
 386					     struct sk_buff *skb,
 387					     struct txentry_desc *txdesc)
 
 388{
 389	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
 390	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
 391	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
 392	struct ieee80211_rate *rate;
 393	const struct rt2x00_rate *hwrate = NULL;
 394
 395	memset(txdesc, 0, sizeof(*txdesc));
 396
 397	/*
 398	 * Header and frame information.
 399	 */
 400	txdesc->length = skb->len;
 401	txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
 402
 403	/*
 404	 * Check whether this frame is to be acked.
 405	 */
 406	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
 407		__set_bit(ENTRY_TXD_ACK, &txdesc->flags);
 408
 409	/*
 410	 * Check if this is a RTS/CTS frame
 411	 */
 412	if (ieee80211_is_rts(hdr->frame_control) ||
 413	    ieee80211_is_cts(hdr->frame_control)) {
 414		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
 415		if (ieee80211_is_rts(hdr->frame_control))
 416			__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
 417		else
 418			__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
 419		if (tx_info->control.rts_cts_rate_idx >= 0)
 420			rate =
 421			    ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
 422	}
 423
 424	/*
 425	 * Determine retry information.
 426	 */
 427	txdesc->retry_limit = tx_info->control.rates[0].count - 1;
 428	if (txdesc->retry_limit >= rt2x00dev->long_retry)
 429		__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
 430
 431	/*
 432	 * Check if more fragments are pending
 433	 */
 434	if (ieee80211_has_morefrags(hdr->frame_control)) {
 435		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
 436		__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
 437	}
 438
 439	/*
 440	 * Check if more frames (!= fragments) are pending
 441	 */
 442	if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
 443		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
 444
 445	/*
 446	 * Beacons and probe responses require the tsf timestamp
 447	 * to be inserted into the frame.
 448	 */
 449	if (ieee80211_is_beacon(hdr->frame_control) ||
 450	    ieee80211_is_probe_resp(hdr->frame_control))
 451		__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
 452
 453	if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
 454	    !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
 455		__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
 456
 457	/*
 458	 * Determine rate modulation.
 459	 */
 460	if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
 461		txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
 462	else if (txrate->flags & IEEE80211_TX_RC_MCS)
 463		txdesc->rate_mode = RATE_MODE_HT_MIX;
 464	else {
 465		rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
 466		hwrate = rt2x00_get_rate(rate->hw_value);
 467		if (hwrate->flags & DEV_RATE_OFDM)
 468			txdesc->rate_mode = RATE_MODE_OFDM;
 469		else
 470			txdesc->rate_mode = RATE_MODE_CCK;
 471	}
 472
 473	/*
 474	 * Apply TX descriptor handling by components
 475	 */
 476	rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
 477	rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
 478
 479	if (test_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags))
 480		rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
 481						    hwrate);
 482	else
 483		rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
 484						      hwrate);
 485}
 486
 487static int rt2x00queue_write_tx_data(struct queue_entry *entry,
 488				     struct txentry_desc *txdesc)
 489{
 490	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 491
 492	/*
 493	 * This should not happen, we already checked the entry
 494	 * was ours. When the hardware disagrees there has been
 495	 * a queue corruption!
 496	 */
 497	if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
 498		     rt2x00dev->ops->lib->get_entry_state(entry))) {
 499		ERROR(rt2x00dev,
 500		      "Corrupt queue %d, accessing entry which is not ours.\n"
 501		      "Please file bug report to %s.\n",
 502		      entry->queue->qid, DRV_PROJECT);
 503		return -EINVAL;
 504	}
 505
 506	/*
 507	 * Add the requested extra tx headroom in front of the skb.
 508	 */
 509	skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
 510	memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
 511
 512	/*
 513	 * Call the driver's write_tx_data function, if it exists.
 514	 */
 515	if (rt2x00dev->ops->lib->write_tx_data)
 516		rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
 517
 518	/*
 519	 * Map the skb to DMA.
 520	 */
 521	if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
 522		rt2x00queue_map_txskb(entry);
 
 523
 524	return 0;
 525}
 526
 527static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
 528					    struct txentry_desc *txdesc)
 529{
 530	struct data_queue *queue = entry->queue;
 531
 532	queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
 533
 534	/*
 535	 * All processing on the frame has been completed, this means
 536	 * it is now ready to be dumped to userspace through debugfs.
 537	 */
 538	rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
 539}
 540
 541static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
 542				      struct txentry_desc *txdesc)
 543{
 544	/*
 545	 * Check if we need to kick the queue, there are however a few rules
 546	 *	1) Don't kick unless this is the last in frame in a burst.
 547	 *	   When the burst flag is set, this frame is always followed
 548	 *	   by another frame which in some way are related to eachother.
 549	 *	   This is true for fragments, RTS or CTS-to-self frames.
 550	 *	2) Rule 1 can be broken when the available entries
 551	 *	   in the queue are less then a certain threshold.
 552	 */
 553	if (rt2x00queue_threshold(queue) ||
 554	    !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
 555		queue->rt2x00dev->ops->lib->kick_queue(queue);
 556}
 557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 558int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
 559			       bool local)
 560{
 561	struct ieee80211_tx_info *tx_info;
 562	struct queue_entry *entry;
 563	struct txentry_desc txdesc;
 564	struct skb_frame_desc *skbdesc;
 565	u8 rate_idx, rate_flags;
 566	int ret = 0;
 567
 568	/*
 569	 * Copy all TX descriptor information into txdesc,
 570	 * after that we are free to use the skb->cb array
 571	 * for our information.
 572	 */
 573	rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc);
 574
 575	/*
 576	 * All information is retrieved from the skb->cb array,
 577	 * now we should claim ownership of the driver part of that
 578	 * array, preserving the bitrate index and flags.
 579	 */
 580	tx_info = IEEE80211_SKB_CB(skb);
 581	rate_idx = tx_info->control.rates[0].idx;
 582	rate_flags = tx_info->control.rates[0].flags;
 583	skbdesc = get_skb_frame_desc(skb);
 584	memset(skbdesc, 0, sizeof(*skbdesc));
 585	skbdesc->tx_rate_idx = rate_idx;
 586	skbdesc->tx_rate_flags = rate_flags;
 587
 588	if (local)
 589		skbdesc->flags |= SKBDESC_NOT_MAC80211;
 590
 591	/*
 592	 * When hardware encryption is supported, and this frame
 593	 * is to be encrypted, we should strip the IV/EIV data from
 594	 * the frame so we can provide it to the driver separately.
 595	 */
 596	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
 597	    !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
 598		if (test_bit(REQUIRE_COPY_IV, &queue->rt2x00dev->cap_flags))
 599			rt2x00crypto_tx_copy_iv(skb, &txdesc);
 600		else
 601			rt2x00crypto_tx_remove_iv(skb, &txdesc);
 602	}
 603
 604	/*
 605	 * When DMA allocation is required we should guarantee to the
 606	 * driver that the DMA is aligned to a 4-byte boundary.
 607	 * However some drivers require L2 padding to pad the payload
 608	 * rather then the header. This could be a requirement for
 609	 * PCI and USB devices, while header alignment only is valid
 610	 * for PCI devices.
 611	 */
 612	if (test_bit(REQUIRE_L2PAD, &queue->rt2x00dev->cap_flags))
 613		rt2x00queue_insert_l2pad(skb, txdesc.header_length);
 614	else if (test_bit(REQUIRE_DMA, &queue->rt2x00dev->cap_flags))
 615		rt2x00queue_align_frame(skb);
 616
 
 
 
 617	spin_lock(&queue->tx_lock);
 618
 619	if (unlikely(rt2x00queue_full(queue))) {
 620		ERROR(queue->rt2x00dev,
 621		      "Dropping frame due to full tx queue %d.\n", queue->qid);
 622		ret = -ENOBUFS;
 623		goto out;
 624	}
 625
 626	entry = rt2x00queue_get_entry(queue, Q_INDEX);
 627
 628	if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
 629				      &entry->flags))) {
 630		ERROR(queue->rt2x00dev,
 631		      "Arrived at non-free entry in the non-full queue %d.\n"
 632		      "Please file bug report to %s.\n",
 633		      queue->qid, DRV_PROJECT);
 634		ret = -EINVAL;
 635		goto out;
 636	}
 637
 638	skbdesc->entry = entry;
 639	entry->skb = skb;
 640
 641	/*
 642	 * It could be possible that the queue was corrupted and this
 643	 * call failed. Since we always return NETDEV_TX_OK to mac80211,
 644	 * this frame will simply be dropped.
 645	 */
 646	if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
 647		clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 648		entry->skb = NULL;
 649		ret = -EIO;
 650		goto out;
 651	}
 652
 
 
 
 
 
 653	set_bit(ENTRY_DATA_PENDING, &entry->flags);
 654
 655	rt2x00queue_index_inc(entry, Q_INDEX);
 656	rt2x00queue_write_tx_descriptor(entry, &txdesc);
 657	rt2x00queue_kick_tx_queue(queue, &txdesc);
 658
 659out:
 660	spin_unlock(&queue->tx_lock);
 661	return ret;
 662}
 663
 664int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
 665			     struct ieee80211_vif *vif)
 666{
 667	struct rt2x00_intf *intf = vif_to_intf(vif);
 668
 669	if (unlikely(!intf->beacon))
 670		return -ENOBUFS;
 671
 672	mutex_lock(&intf->beacon_skb_mutex);
 673
 674	/*
 675	 * Clean up the beacon skb.
 676	 */
 677	rt2x00queue_free_skb(intf->beacon);
 678
 679	/*
 680	 * Clear beacon (single bssid devices don't need to clear the beacon
 681	 * since the beacon queue will get stopped anyway).
 682	 */
 683	if (rt2x00dev->ops->lib->clear_beacon)
 684		rt2x00dev->ops->lib->clear_beacon(intf->beacon);
 685
 686	mutex_unlock(&intf->beacon_skb_mutex);
 687
 688	return 0;
 689}
 690
 691int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
 692				     struct ieee80211_vif *vif)
 693{
 694	struct rt2x00_intf *intf = vif_to_intf(vif);
 695	struct skb_frame_desc *skbdesc;
 696	struct txentry_desc txdesc;
 697
 698	if (unlikely(!intf->beacon))
 699		return -ENOBUFS;
 700
 701	/*
 702	 * Clean up the beacon skb.
 703	 */
 704	rt2x00queue_free_skb(intf->beacon);
 705
 706	intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
 707	if (!intf->beacon->skb)
 708		return -ENOMEM;
 709
 710	/*
 711	 * Copy all TX descriptor information into txdesc,
 712	 * after that we are free to use the skb->cb array
 713	 * for our information.
 714	 */
 715	rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc);
 716
 717	/*
 718	 * Fill in skb descriptor
 719	 */
 720	skbdesc = get_skb_frame_desc(intf->beacon->skb);
 721	memset(skbdesc, 0, sizeof(*skbdesc));
 722	skbdesc->entry = intf->beacon;
 723
 724	/*
 725	 * Send beacon to hardware.
 726	 */
 727	rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
 728
 729	return 0;
 730
 731}
 732
 733int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
 734			      struct ieee80211_vif *vif)
 735{
 736	struct rt2x00_intf *intf = vif_to_intf(vif);
 737	int ret;
 738
 739	mutex_lock(&intf->beacon_skb_mutex);
 740	ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif);
 741	mutex_unlock(&intf->beacon_skb_mutex);
 742
 743	return ret;
 744}
 745
 746bool rt2x00queue_for_each_entry(struct data_queue *queue,
 747				enum queue_index start,
 748				enum queue_index end,
 749				void *data,
 750				bool (*fn)(struct queue_entry *entry,
 751					   void *data))
 752{
 753	unsigned long irqflags;
 754	unsigned int index_start;
 755	unsigned int index_end;
 756	unsigned int i;
 757
 758	if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
 759		ERROR(queue->rt2x00dev,
 760		      "Entry requested from invalid index range (%d - %d)\n",
 761		      start, end);
 762		return true;
 763	}
 764
 765	/*
 766	 * Only protect the range we are going to loop over,
 767	 * if during our loop a extra entry is set to pending
 768	 * it should not be kicked during this run, since it
 769	 * is part of another TX operation.
 770	 */
 771	spin_lock_irqsave(&queue->index_lock, irqflags);
 772	index_start = queue->index[start];
 773	index_end = queue->index[end];
 774	spin_unlock_irqrestore(&queue->index_lock, irqflags);
 775
 776	/*
 777	 * Start from the TX done pointer, this guarantees that we will
 778	 * send out all frames in the correct order.
 779	 */
 780	if (index_start < index_end) {
 781		for (i = index_start; i < index_end; i++) {
 782			if (fn(&queue->entries[i], data))
 783				return true;
 784		}
 785	} else {
 786		for (i = index_start; i < queue->limit; i++) {
 787			if (fn(&queue->entries[i], data))
 788				return true;
 789		}
 790
 791		for (i = 0; i < index_end; i++) {
 792			if (fn(&queue->entries[i], data))
 793				return true;
 794		}
 795	}
 796
 797	return false;
 798}
 799EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
 800
 801struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
 802					  enum queue_index index)
 803{
 804	struct queue_entry *entry;
 805	unsigned long irqflags;
 806
 807	if (unlikely(index >= Q_INDEX_MAX)) {
 808		ERROR(queue->rt2x00dev,
 809		      "Entry requested from invalid index type (%d)\n", index);
 810		return NULL;
 811	}
 812
 813	spin_lock_irqsave(&queue->index_lock, irqflags);
 814
 815	entry = &queue->entries[queue->index[index]];
 816
 817	spin_unlock_irqrestore(&queue->index_lock, irqflags);
 818
 819	return entry;
 820}
 821EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
 822
 823void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
 824{
 825	struct data_queue *queue = entry->queue;
 826	unsigned long irqflags;
 827
 828	if (unlikely(index >= Q_INDEX_MAX)) {
 829		ERROR(queue->rt2x00dev,
 830		      "Index change on invalid index type (%d)\n", index);
 831		return;
 832	}
 833
 834	spin_lock_irqsave(&queue->index_lock, irqflags);
 835
 836	queue->index[index]++;
 837	if (queue->index[index] >= queue->limit)
 838		queue->index[index] = 0;
 839
 840	entry->last_action = jiffies;
 841
 842	if (index == Q_INDEX) {
 843		queue->length++;
 844	} else if (index == Q_INDEX_DONE) {
 845		queue->length--;
 846		queue->count++;
 847	}
 848
 849	spin_unlock_irqrestore(&queue->index_lock, irqflags);
 850}
 851
 852void rt2x00queue_pause_queue(struct data_queue *queue)
 853{
 854	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
 855	    !test_bit(QUEUE_STARTED, &queue->flags) ||
 856	    test_and_set_bit(QUEUE_PAUSED, &queue->flags))
 857		return;
 858
 859	switch (queue->qid) {
 860	case QID_AC_VO:
 861	case QID_AC_VI:
 862	case QID_AC_BE:
 863	case QID_AC_BK:
 864		/*
 865		 * For TX queues, we have to disable the queue
 866		 * inside mac80211.
 867		 */
 868		ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
 869		break;
 870	default:
 871		break;
 872	}
 873}
 
 
 
 
 
 
 
 
 
 874EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
 875
 876void rt2x00queue_unpause_queue(struct data_queue *queue)
 877{
 878	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
 879	    !test_bit(QUEUE_STARTED, &queue->flags) ||
 880	    !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
 881		return;
 882
 883	switch (queue->qid) {
 884	case QID_AC_VO:
 885	case QID_AC_VI:
 886	case QID_AC_BE:
 887	case QID_AC_BK:
 888		/*
 889		 * For TX queues, we have to enable the queue
 890		 * inside mac80211.
 891		 */
 892		ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
 893		break;
 894	case QID_RX:
 895		/*
 896		 * For RX we need to kick the queue now in order to
 897		 * receive frames.
 898		 */
 899		queue->rt2x00dev->ops->lib->kick_queue(queue);
 900	default:
 901		break;
 902	}
 903}
 904EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
 905
 906void rt2x00queue_start_queue(struct data_queue *queue)
 907{
 908	mutex_lock(&queue->status_lock);
 909
 910	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
 911	    test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
 912		mutex_unlock(&queue->status_lock);
 913		return;
 914	}
 915
 916	set_bit(QUEUE_PAUSED, &queue->flags);
 917
 918	queue->rt2x00dev->ops->lib->start_queue(queue);
 919
 920	rt2x00queue_unpause_queue(queue);
 921
 922	mutex_unlock(&queue->status_lock);
 923}
 924EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
 925
 926void rt2x00queue_stop_queue(struct data_queue *queue)
 927{
 928	mutex_lock(&queue->status_lock);
 929
 930	if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
 931		mutex_unlock(&queue->status_lock);
 932		return;
 933	}
 934
 935	rt2x00queue_pause_queue(queue);
 936
 937	queue->rt2x00dev->ops->lib->stop_queue(queue);
 938
 939	mutex_unlock(&queue->status_lock);
 940}
 941EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
 942
 943void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
 944{
 945	bool started;
 946	bool tx_queue =
 947		(queue->qid == QID_AC_VO) ||
 948		(queue->qid == QID_AC_VI) ||
 949		(queue->qid == QID_AC_BE) ||
 950		(queue->qid == QID_AC_BK);
 951
 952	mutex_lock(&queue->status_lock);
 953
 954	/*
 955	 * If the queue has been started, we must stop it temporarily
 956	 * to prevent any new frames to be queued on the device. If
 957	 * we are not dropping the pending frames, the queue must
 958	 * only be stopped in the software and not the hardware,
 959	 * otherwise the queue will never become empty on its own.
 960	 */
 961	started = test_bit(QUEUE_STARTED, &queue->flags);
 962	if (started) {
 963		/*
 964		 * Pause the queue
 965		 */
 966		rt2x00queue_pause_queue(queue);
 967
 968		/*
 969		 * If we are not supposed to drop any pending
 970		 * frames, this means we must force a start (=kick)
 971		 * to the queue to make sure the hardware will
 972		 * start transmitting.
 973		 */
 974		if (!drop && tx_queue)
 975			queue->rt2x00dev->ops->lib->kick_queue(queue);
 976	}
 977
 978	/*
 979	 * Check if driver supports flushing, if that is the case we can
 980	 * defer the flushing to the driver. Otherwise we must use the
 981	 * alternative which just waits for the queue to become empty.
 982	 */
 983	if (likely(queue->rt2x00dev->ops->lib->flush_queue))
 984		queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
 985
 986	/*
 987	 * The queue flush has failed...
 988	 */
 989	if (unlikely(!rt2x00queue_empty(queue)))
 990		WARNING(queue->rt2x00dev, "Queue %d failed to flush\n", queue->qid);
 991
 992	/*
 993	 * Restore the queue to the previous status
 994	 */
 995	if (started)
 996		rt2x00queue_unpause_queue(queue);
 997
 998	mutex_unlock(&queue->status_lock);
 999}
1000EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1001
1002void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1003{
1004	struct data_queue *queue;
1005
1006	/*
1007	 * rt2x00queue_start_queue will call ieee80211_wake_queue
1008	 * for each queue after is has been properly initialized.
1009	 */
1010	tx_queue_for_each(rt2x00dev, queue)
1011		rt2x00queue_start_queue(queue);
1012
1013	rt2x00queue_start_queue(rt2x00dev->rx);
1014}
1015EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1016
1017void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1018{
1019	struct data_queue *queue;
1020
1021	/*
1022	 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1023	 * as well, but we are completely shutting doing everything
1024	 * now, so it is much safer to stop all TX queues at once,
1025	 * and use rt2x00queue_stop_queue for cleaning up.
1026	 */
1027	ieee80211_stop_queues(rt2x00dev->hw);
1028
1029	tx_queue_for_each(rt2x00dev, queue)
1030		rt2x00queue_stop_queue(queue);
1031
1032	rt2x00queue_stop_queue(rt2x00dev->rx);
1033}
1034EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1035
1036void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1037{
1038	struct data_queue *queue;
1039
1040	tx_queue_for_each(rt2x00dev, queue)
1041		rt2x00queue_flush_queue(queue, drop);
1042
1043	rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1044}
1045EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1046
1047static void rt2x00queue_reset(struct data_queue *queue)
1048{
1049	unsigned long irqflags;
1050	unsigned int i;
1051
1052	spin_lock_irqsave(&queue->index_lock, irqflags);
1053
1054	queue->count = 0;
1055	queue->length = 0;
1056
1057	for (i = 0; i < Q_INDEX_MAX; i++)
1058		queue->index[i] = 0;
1059
1060	spin_unlock_irqrestore(&queue->index_lock, irqflags);
1061}
1062
1063void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1064{
1065	struct data_queue *queue;
1066	unsigned int i;
1067
1068	queue_for_each(rt2x00dev, queue) {
1069		rt2x00queue_reset(queue);
1070
1071		for (i = 0; i < queue->limit; i++)
1072			rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1073	}
1074}
1075
1076static int rt2x00queue_alloc_entries(struct data_queue *queue,
1077				     const struct data_queue_desc *qdesc)
1078{
1079	struct queue_entry *entries;
1080	unsigned int entry_size;
1081	unsigned int i;
1082
1083	rt2x00queue_reset(queue);
1084
1085	queue->limit = qdesc->entry_num;
1086	queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
1087	queue->data_size = qdesc->data_size;
1088	queue->desc_size = qdesc->desc_size;
1089
1090	/*
1091	 * Allocate all queue entries.
1092	 */
1093	entry_size = sizeof(*entries) + qdesc->priv_size;
1094	entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1095	if (!entries)
1096		return -ENOMEM;
1097
1098#define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1099	(((char *)(__base)) + ((__limit) * (__esize)) + \
1100	    ((__index) * (__psize)))
1101
1102	for (i = 0; i < queue->limit; i++) {
1103		entries[i].flags = 0;
1104		entries[i].queue = queue;
1105		entries[i].skb = NULL;
1106		entries[i].entry_idx = i;
1107		entries[i].priv_data =
1108		    QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1109					    sizeof(*entries), qdesc->priv_size);
1110	}
1111
1112#undef QUEUE_ENTRY_PRIV_OFFSET
1113
1114	queue->entries = entries;
1115
1116	return 0;
1117}
1118
1119static void rt2x00queue_free_skbs(struct data_queue *queue)
1120{
1121	unsigned int i;
1122
1123	if (!queue->entries)
1124		return;
1125
1126	for (i = 0; i < queue->limit; i++) {
1127		rt2x00queue_free_skb(&queue->entries[i]);
1128	}
1129}
1130
1131static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1132{
1133	unsigned int i;
1134	struct sk_buff *skb;
1135
1136	for (i = 0; i < queue->limit; i++) {
1137		skb = rt2x00queue_alloc_rxskb(&queue->entries[i]);
1138		if (!skb)
1139			return -ENOMEM;
1140		queue->entries[i].skb = skb;
1141	}
1142
1143	return 0;
1144}
1145
1146int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1147{
1148	struct data_queue *queue;
1149	int status;
1150
1151	status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
1152	if (status)
1153		goto exit;
1154
1155	tx_queue_for_each(rt2x00dev, queue) {
1156		status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
1157		if (status)
1158			goto exit;
1159	}
1160
1161	status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
1162	if (status)
1163		goto exit;
1164
1165	if (test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags)) {
1166		status = rt2x00queue_alloc_entries(rt2x00dev->atim,
1167						   rt2x00dev->ops->atim);
1168		if (status)
1169			goto exit;
1170	}
1171
1172	status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1173	if (status)
1174		goto exit;
1175
1176	return 0;
1177
1178exit:
1179	ERROR(rt2x00dev, "Queue entries allocation failed.\n");
1180
1181	rt2x00queue_uninitialize(rt2x00dev);
1182
1183	return status;
1184}
1185
1186void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1187{
1188	struct data_queue *queue;
1189
1190	rt2x00queue_free_skbs(rt2x00dev->rx);
1191
1192	queue_for_each(rt2x00dev, queue) {
1193		kfree(queue->entries);
1194		queue->entries = NULL;
1195	}
1196}
1197
1198static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1199			     struct data_queue *queue, enum data_queue_qid qid)
1200{
1201	mutex_init(&queue->status_lock);
1202	spin_lock_init(&queue->tx_lock);
1203	spin_lock_init(&queue->index_lock);
1204
1205	queue->rt2x00dev = rt2x00dev;
1206	queue->qid = qid;
1207	queue->txop = 0;
1208	queue->aifs = 2;
1209	queue->cw_min = 5;
1210	queue->cw_max = 10;
 
 
 
 
1211}
1212
1213int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1214{
1215	struct data_queue *queue;
1216	enum data_queue_qid qid;
1217	unsigned int req_atim =
1218	    !!test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1219
1220	/*
1221	 * We need the following queues:
1222	 * RX: 1
1223	 * TX: ops->tx_queues
1224	 * Beacon: 1
1225	 * Atim: 1 (if required)
1226	 */
1227	rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1228
1229	queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1230	if (!queue) {
1231		ERROR(rt2x00dev, "Queue allocation failed.\n");
1232		return -ENOMEM;
1233	}
1234
1235	/*
1236	 * Initialize pointers
1237	 */
1238	rt2x00dev->rx = queue;
1239	rt2x00dev->tx = &queue[1];
1240	rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1241	rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1242
1243	/*
1244	 * Initialize queue parameters.
1245	 * RX: qid = QID_RX
1246	 * TX: qid = QID_AC_VO + index
1247	 * TX: cw_min: 2^5 = 32.
1248	 * TX: cw_max: 2^10 = 1024.
1249	 * BCN: qid = QID_BEACON
1250	 * ATIM: qid = QID_ATIM
1251	 */
1252	rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1253
1254	qid = QID_AC_VO;
1255	tx_queue_for_each(rt2x00dev, queue)
1256		rt2x00queue_init(rt2x00dev, queue, qid++);
1257
1258	rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1259	if (req_atim)
1260		rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1261
1262	return 0;
1263}
1264
1265void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1266{
1267	kfree(rt2x00dev->rx);
1268	rt2x00dev->rx = NULL;
1269	rt2x00dev->tx = NULL;
1270	rt2x00dev->bcn = NULL;
1271}
v3.15
   1/*
   2	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
   3	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
   4	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
   5	<http://rt2x00.serialmonkey.com>
   6
   7	This program is free software; you can redistribute it and/or modify
   8	it under the terms of the GNU General Public License as published by
   9	the Free Software Foundation; either version 2 of the License, or
  10	(at your option) any later version.
  11
  12	This program is distributed in the hope that it will be useful,
  13	but WITHOUT ANY WARRANTY; without even the implied warranty of
  14	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15	GNU General Public License for more details.
  16
  17	You should have received a copy of the GNU General Public License
  18	along with this program; if not, see <http://www.gnu.org/licenses/>.
 
 
  19 */
  20
  21/*
  22	Module: rt2x00lib
  23	Abstract: rt2x00 queue specific routines.
  24 */
  25
  26#include <linux/slab.h>
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/dma-mapping.h>
  30
  31#include "rt2x00.h"
  32#include "rt2x00lib.h"
  33
  34struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
  35{
  36	struct data_queue *queue = entry->queue;
  37	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  38	struct sk_buff *skb;
  39	struct skb_frame_desc *skbdesc;
  40	unsigned int frame_size;
  41	unsigned int head_size = 0;
  42	unsigned int tail_size = 0;
  43
  44	/*
  45	 * The frame size includes descriptor size, because the
  46	 * hardware directly receive the frame into the skbuffer.
  47	 */
  48	frame_size = queue->data_size + queue->desc_size + queue->winfo_size;
  49
  50	/*
  51	 * The payload should be aligned to a 4-byte boundary,
  52	 * this means we need at least 3 bytes for moving the frame
  53	 * into the correct offset.
  54	 */
  55	head_size = 4;
  56
  57	/*
  58	 * For IV/EIV/ICV assembly we must make sure there is
  59	 * at least 8 bytes bytes available in headroom for IV/EIV
  60	 * and 8 bytes for ICV data as tailroon.
  61	 */
  62	if (rt2x00_has_cap_hw_crypto(rt2x00dev)) {
  63		head_size += 8;
  64		tail_size += 8;
  65	}
  66
  67	/*
  68	 * Allocate skbuffer.
  69	 */
  70	skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
  71	if (!skb)
  72		return NULL;
  73
  74	/*
  75	 * Make sure we not have a frame with the requested bytes
  76	 * available in the head and tail.
  77	 */
  78	skb_reserve(skb, head_size);
  79	skb_put(skb, frame_size);
  80
  81	/*
  82	 * Populate skbdesc.
  83	 */
  84	skbdesc = get_skb_frame_desc(skb);
  85	memset(skbdesc, 0, sizeof(*skbdesc));
  86	skbdesc->entry = entry;
  87
  88	if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) {
  89		dma_addr_t skb_dma;
  90
  91		skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
  92					 DMA_FROM_DEVICE);
  93		if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) {
  94			dev_kfree_skb_any(skb);
  95			return NULL;
  96		}
  97
  98		skbdesc->skb_dma = skb_dma;
  99		skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
 100	}
 101
 102	return skb;
 103}
 104
 105int rt2x00queue_map_txskb(struct queue_entry *entry)
 106{
 107	struct device *dev = entry->queue->rt2x00dev->dev;
 108	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 109
 110	skbdesc->skb_dma =
 111	    dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
 112
 113	if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma)))
 114		return -ENOMEM;
 115
 116	skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
 117	return 0;
 118}
 119EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
 120
 121void rt2x00queue_unmap_skb(struct queue_entry *entry)
 122{
 123	struct device *dev = entry->queue->rt2x00dev->dev;
 124	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 125
 126	if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
 127		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
 128				 DMA_FROM_DEVICE);
 129		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
 130	} else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
 131		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
 132				 DMA_TO_DEVICE);
 133		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
 134	}
 135}
 136EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
 137
 138void rt2x00queue_free_skb(struct queue_entry *entry)
 139{
 140	if (!entry->skb)
 141		return;
 142
 143	rt2x00queue_unmap_skb(entry);
 144	dev_kfree_skb_any(entry->skb);
 145	entry->skb = NULL;
 146}
 147
 148void rt2x00queue_align_frame(struct sk_buff *skb)
 149{
 150	unsigned int frame_length = skb->len;
 151	unsigned int align = ALIGN_SIZE(skb, 0);
 152
 153	if (!align)
 154		return;
 155
 156	skb_push(skb, align);
 157	memmove(skb->data, skb->data + align, frame_length);
 158	skb_trim(skb, frame_length);
 159}
 160
 161void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
 162{
 163	unsigned int payload_length = skb->len - header_length;
 164	unsigned int header_align = ALIGN_SIZE(skb, 0);
 165	unsigned int payload_align = ALIGN_SIZE(skb, header_length);
 166	unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
 167
 168	/*
 169	 * Adjust the header alignment if the payload needs to be moved more
 170	 * than the header.
 171	 */
 172	if (payload_align > header_align)
 173		header_align += 4;
 174
 175	/* There is nothing to do if no alignment is needed */
 176	if (!header_align)
 177		return;
 178
 179	/* Reserve the amount of space needed in front of the frame */
 180	skb_push(skb, header_align);
 181
 182	/*
 183	 * Move the header.
 184	 */
 185	memmove(skb->data, skb->data + header_align, header_length);
 186
 187	/* Move the payload, if present and if required */
 188	if (payload_length && payload_align)
 189		memmove(skb->data + header_length + l2pad,
 190			skb->data + header_length + l2pad + payload_align,
 191			payload_length);
 192
 193	/* Trim the skb to the correct size */
 194	skb_trim(skb, header_length + l2pad + payload_length);
 195}
 196
 197void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
 198{
 199	/*
 200	 * L2 padding is only present if the skb contains more than just the
 201	 * IEEE 802.11 header.
 202	 */
 203	unsigned int l2pad = (skb->len > header_length) ?
 204				L2PAD_SIZE(header_length) : 0;
 205
 206	if (!l2pad)
 207		return;
 208
 209	memmove(skb->data + l2pad, skb->data, header_length);
 210	skb_pull(skb, l2pad);
 211}
 212
 213static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
 214						 struct sk_buff *skb,
 215						 struct txentry_desc *txdesc)
 216{
 217	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
 218	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
 219	struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
 220	u16 seqno;
 221
 222	if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
 223		return;
 224
 225	__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
 226
 227	if (!test_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags)) {
 228		/*
 229		 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
 230		 * seqno on retransmited data (non-QOS) frames. To workaround
 231		 * the problem let's generate seqno in software if QOS is
 232		 * disabled.
 233		 */
 234		if (test_bit(CONFIG_QOS_DISABLED, &rt2x00dev->flags))
 235			__clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
 236		else
 237			/* H/W will generate sequence number */
 238			return;
 239	}
 240
 241	/*
 242	 * The hardware is not able to insert a sequence number. Assign a
 243	 * software generated one here.
 244	 *
 245	 * This is wrong because beacons are not getting sequence
 246	 * numbers assigned properly.
 247	 *
 248	 * A secondary problem exists for drivers that cannot toggle
 249	 * sequence counting per-frame, since those will override the
 250	 * sequence counter given by mac80211.
 251	 */
 
 
 252	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
 253		seqno = atomic_add_return(0x10, &intf->seqno);
 254	else
 255		seqno = atomic_read(&intf->seqno);
 
 
 256
 257	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
 258	hdr->seq_ctrl |= cpu_to_le16(seqno);
 259}
 260
 261static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
 262						  struct sk_buff *skb,
 263						  struct txentry_desc *txdesc,
 264						  const struct rt2x00_rate *hwrate)
 265{
 266	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
 267	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
 268	unsigned int data_length;
 269	unsigned int duration;
 270	unsigned int residual;
 271
 272	/*
 273	 * Determine with what IFS priority this frame should be send.
 274	 * Set ifs to IFS_SIFS when the this is not the first fragment,
 275	 * or this fragment came after RTS/CTS.
 276	 */
 277	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
 278		txdesc->u.plcp.ifs = IFS_BACKOFF;
 279	else
 280		txdesc->u.plcp.ifs = IFS_SIFS;
 281
 282	/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
 283	data_length = skb->len + 4;
 284	data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
 285
 286	/*
 287	 * PLCP setup
 288	 * Length calculation depends on OFDM/CCK rate.
 289	 */
 290	txdesc->u.plcp.signal = hwrate->plcp;
 291	txdesc->u.plcp.service = 0x04;
 292
 293	if (hwrate->flags & DEV_RATE_OFDM) {
 294		txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
 295		txdesc->u.plcp.length_low = data_length & 0x3f;
 296	} else {
 297		/*
 298		 * Convert length to microseconds.
 299		 */
 300		residual = GET_DURATION_RES(data_length, hwrate->bitrate);
 301		duration = GET_DURATION(data_length, hwrate->bitrate);
 302
 303		if (residual != 0) {
 304			duration++;
 305
 306			/*
 307			 * Check if we need to set the Length Extension
 308			 */
 309			if (hwrate->bitrate == 110 && residual <= 30)
 310				txdesc->u.plcp.service |= 0x80;
 311		}
 312
 313		txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
 314		txdesc->u.plcp.length_low = duration & 0xff;
 315
 316		/*
 317		 * When preamble is enabled we should set the
 318		 * preamble bit for the signal.
 319		 */
 320		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
 321			txdesc->u.plcp.signal |= 0x08;
 322	}
 323}
 324
 325static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
 326						struct sk_buff *skb,
 327						struct txentry_desc *txdesc,
 328						struct ieee80211_sta *sta,
 329						const struct rt2x00_rate *hwrate)
 330{
 331	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
 332	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
 333	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
 334	struct rt2x00_sta *sta_priv = NULL;
 335
 336	if (sta) {
 337		txdesc->u.ht.mpdu_density =
 338		    sta->ht_cap.ampdu_density;
 
 
 339
 340		sta_priv = sta_to_rt2x00_sta(sta);
 341		txdesc->u.ht.wcid = sta_priv->wcid;
 342	}
 
 
 343
 344	/*
 345	 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
 346	 * mcs rate to be used
 347	 */
 348	if (txrate->flags & IEEE80211_TX_RC_MCS) {
 349		txdesc->u.ht.mcs = txrate->idx;
 350
 351		/*
 352		 * MIMO PS should be set to 1 for STA's using dynamic SM PS
 353		 * when using more then one tx stream (>MCS7).
 354		 */
 355		if (sta && txdesc->u.ht.mcs > 7 &&
 356		    sta->smps_mode == IEEE80211_SMPS_DYNAMIC)
 
 
 
 357			__set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
 358	} else {
 359		txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
 360		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
 361			txdesc->u.ht.mcs |= 0x08;
 362	}
 363
 364	if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
 365		if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
 366			txdesc->u.ht.txop = TXOP_SIFS;
 367		else
 368			txdesc->u.ht.txop = TXOP_BACKOFF;
 369
 370		/* Left zero on all other settings. */
 371		return;
 372	}
 373
 374	txdesc->u.ht.ba_size = 7;	/* FIXME: What value is needed? */
 375
 376	/*
 377	 * Only one STBC stream is supported for now.
 378	 */
 379	if (tx_info->flags & IEEE80211_TX_CTL_STBC)
 380		txdesc->u.ht.stbc = 1;
 381
 382	/*
 383	 * This frame is eligible for an AMPDU, however, don't aggregate
 384	 * frames that are intended to probe a specific tx rate.
 385	 */
 386	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
 387	    !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
 388		__set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
 389
 390	/*
 391	 * Set 40Mhz mode if necessary (for legacy rates this will
 392	 * duplicate the frame to both channels).
 393	 */
 394	if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
 395	    txrate->flags & IEEE80211_TX_RC_DUP_DATA)
 396		__set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
 397	if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
 398		__set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
 399
 400	/*
 401	 * Determine IFS values
 402	 * - Use TXOP_BACKOFF for management frames except beacons
 403	 * - Use TXOP_SIFS for fragment bursts
 404	 * - Use TXOP_HTTXOP for everything else
 405	 *
 406	 * Note: rt2800 devices won't use CTS protection (if used)
 407	 * for frames not transmitted with TXOP_HTTXOP
 408	 */
 409	if (ieee80211_is_mgmt(hdr->frame_control) &&
 410	    !ieee80211_is_beacon(hdr->frame_control))
 411		txdesc->u.ht.txop = TXOP_BACKOFF;
 412	else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
 413		txdesc->u.ht.txop = TXOP_SIFS;
 414	else
 415		txdesc->u.ht.txop = TXOP_HTTXOP;
 416}
 417
 418static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
 419					     struct sk_buff *skb,
 420					     struct txentry_desc *txdesc,
 421					     struct ieee80211_sta *sta)
 422{
 423	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
 424	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
 425	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
 426	struct ieee80211_rate *rate;
 427	const struct rt2x00_rate *hwrate = NULL;
 428
 429	memset(txdesc, 0, sizeof(*txdesc));
 430
 431	/*
 432	 * Header and frame information.
 433	 */
 434	txdesc->length = skb->len;
 435	txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
 436
 437	/*
 438	 * Check whether this frame is to be acked.
 439	 */
 440	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
 441		__set_bit(ENTRY_TXD_ACK, &txdesc->flags);
 442
 443	/*
 444	 * Check if this is a RTS/CTS frame
 445	 */
 446	if (ieee80211_is_rts(hdr->frame_control) ||
 447	    ieee80211_is_cts(hdr->frame_control)) {
 448		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
 449		if (ieee80211_is_rts(hdr->frame_control))
 450			__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
 451		else
 452			__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
 453		if (tx_info->control.rts_cts_rate_idx >= 0)
 454			rate =
 455			    ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
 456	}
 457
 458	/*
 459	 * Determine retry information.
 460	 */
 461	txdesc->retry_limit = tx_info->control.rates[0].count - 1;
 462	if (txdesc->retry_limit >= rt2x00dev->long_retry)
 463		__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
 464
 465	/*
 466	 * Check if more fragments are pending
 467	 */
 468	if (ieee80211_has_morefrags(hdr->frame_control)) {
 469		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
 470		__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
 471	}
 472
 473	/*
 474	 * Check if more frames (!= fragments) are pending
 475	 */
 476	if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
 477		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
 478
 479	/*
 480	 * Beacons and probe responses require the tsf timestamp
 481	 * to be inserted into the frame.
 482	 */
 483	if (ieee80211_is_beacon(hdr->frame_control) ||
 484	    ieee80211_is_probe_resp(hdr->frame_control))
 485		__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
 486
 487	if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
 488	    !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
 489		__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
 490
 491	/*
 492	 * Determine rate modulation.
 493	 */
 494	if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
 495		txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
 496	else if (txrate->flags & IEEE80211_TX_RC_MCS)
 497		txdesc->rate_mode = RATE_MODE_HT_MIX;
 498	else {
 499		rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
 500		hwrate = rt2x00_get_rate(rate->hw_value);
 501		if (hwrate->flags & DEV_RATE_OFDM)
 502			txdesc->rate_mode = RATE_MODE_OFDM;
 503		else
 504			txdesc->rate_mode = RATE_MODE_CCK;
 505	}
 506
 507	/*
 508	 * Apply TX descriptor handling by components
 509	 */
 510	rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
 511	rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
 512
 513	if (test_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags))
 514		rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
 515						   sta, hwrate);
 516	else
 517		rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
 518						      hwrate);
 519}
 520
 521static int rt2x00queue_write_tx_data(struct queue_entry *entry,
 522				     struct txentry_desc *txdesc)
 523{
 524	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 525
 526	/*
 527	 * This should not happen, we already checked the entry
 528	 * was ours. When the hardware disagrees there has been
 529	 * a queue corruption!
 530	 */
 531	if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
 532		     rt2x00dev->ops->lib->get_entry_state(entry))) {
 533		rt2x00_err(rt2x00dev,
 534			   "Corrupt queue %d, accessing entry which is not ours\n"
 535			   "Please file bug report to %s\n",
 536			   entry->queue->qid, DRV_PROJECT);
 537		return -EINVAL;
 538	}
 539
 540	/*
 541	 * Add the requested extra tx headroom in front of the skb.
 542	 */
 543	skb_push(entry->skb, rt2x00dev->extra_tx_headroom);
 544	memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom);
 545
 546	/*
 547	 * Call the driver's write_tx_data function, if it exists.
 548	 */
 549	if (rt2x00dev->ops->lib->write_tx_data)
 550		rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
 551
 552	/*
 553	 * Map the skb to DMA.
 554	 */
 555	if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags) &&
 556	    rt2x00queue_map_txskb(entry))
 557		return -ENOMEM;
 558
 559	return 0;
 560}
 561
 562static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
 563					    struct txentry_desc *txdesc)
 564{
 565	struct data_queue *queue = entry->queue;
 566
 567	queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
 568
 569	/*
 570	 * All processing on the frame has been completed, this means
 571	 * it is now ready to be dumped to userspace through debugfs.
 572	 */
 573	rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
 574}
 575
 576static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
 577				      struct txentry_desc *txdesc)
 578{
 579	/*
 580	 * Check if we need to kick the queue, there are however a few rules
 581	 *	1) Don't kick unless this is the last in frame in a burst.
 582	 *	   When the burst flag is set, this frame is always followed
 583	 *	   by another frame which in some way are related to eachother.
 584	 *	   This is true for fragments, RTS or CTS-to-self frames.
 585	 *	2) Rule 1 can be broken when the available entries
 586	 *	   in the queue are less then a certain threshold.
 587	 */
 588	if (rt2x00queue_threshold(queue) ||
 589	    !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
 590		queue->rt2x00dev->ops->lib->kick_queue(queue);
 591}
 592
 593static void rt2x00queue_bar_check(struct queue_entry *entry)
 594{
 595	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 596	struct ieee80211_bar *bar = (void *) (entry->skb->data +
 597				    rt2x00dev->extra_tx_headroom);
 598	struct rt2x00_bar_list_entry *bar_entry;
 599
 600	if (likely(!ieee80211_is_back_req(bar->frame_control)))
 601		return;
 602
 603	bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC);
 604
 605	/*
 606	 * If the alloc fails we still send the BAR out but just don't track
 607	 * it in our bar list. And as a result we will report it to mac80211
 608	 * back as failed.
 609	 */
 610	if (!bar_entry)
 611		return;
 612
 613	bar_entry->entry = entry;
 614	bar_entry->block_acked = 0;
 615
 616	/*
 617	 * Copy the relevant parts of the 802.11 BAR into out check list
 618	 * such that we can use RCU for less-overhead in the RX path since
 619	 * sending BARs and processing the according BlockAck should be
 620	 * the exception.
 621	 */
 622	memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra));
 623	memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta));
 624	bar_entry->control = bar->control;
 625	bar_entry->start_seq_num = bar->start_seq_num;
 626
 627	/*
 628	 * Insert BAR into our BAR check list.
 629	 */
 630	spin_lock_bh(&rt2x00dev->bar_list_lock);
 631	list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list);
 632	spin_unlock_bh(&rt2x00dev->bar_list_lock);
 633}
 634
 635int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
 636			       struct ieee80211_sta *sta, bool local)
 637{
 638	struct ieee80211_tx_info *tx_info;
 639	struct queue_entry *entry;
 640	struct txentry_desc txdesc;
 641	struct skb_frame_desc *skbdesc;
 642	u8 rate_idx, rate_flags;
 643	int ret = 0;
 644
 645	/*
 646	 * Copy all TX descriptor information into txdesc,
 647	 * after that we are free to use the skb->cb array
 648	 * for our information.
 649	 */
 650	rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta);
 651
 652	/*
 653	 * All information is retrieved from the skb->cb array,
 654	 * now we should claim ownership of the driver part of that
 655	 * array, preserving the bitrate index and flags.
 656	 */
 657	tx_info = IEEE80211_SKB_CB(skb);
 658	rate_idx = tx_info->control.rates[0].idx;
 659	rate_flags = tx_info->control.rates[0].flags;
 660	skbdesc = get_skb_frame_desc(skb);
 661	memset(skbdesc, 0, sizeof(*skbdesc));
 662	skbdesc->tx_rate_idx = rate_idx;
 663	skbdesc->tx_rate_flags = rate_flags;
 664
 665	if (local)
 666		skbdesc->flags |= SKBDESC_NOT_MAC80211;
 667
 668	/*
 669	 * When hardware encryption is supported, and this frame
 670	 * is to be encrypted, we should strip the IV/EIV data from
 671	 * the frame so we can provide it to the driver separately.
 672	 */
 673	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
 674	    !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
 675		if (test_bit(REQUIRE_COPY_IV, &queue->rt2x00dev->cap_flags))
 676			rt2x00crypto_tx_copy_iv(skb, &txdesc);
 677		else
 678			rt2x00crypto_tx_remove_iv(skb, &txdesc);
 679	}
 680
 681	/*
 682	 * When DMA allocation is required we should guarantee to the
 683	 * driver that the DMA is aligned to a 4-byte boundary.
 684	 * However some drivers require L2 padding to pad the payload
 685	 * rather then the header. This could be a requirement for
 686	 * PCI and USB devices, while header alignment only is valid
 687	 * for PCI devices.
 688	 */
 689	if (test_bit(REQUIRE_L2PAD, &queue->rt2x00dev->cap_flags))
 690		rt2x00queue_insert_l2pad(skb, txdesc.header_length);
 691	else if (test_bit(REQUIRE_DMA, &queue->rt2x00dev->cap_flags))
 692		rt2x00queue_align_frame(skb);
 693
 694	/*
 695	 * That function must be called with bh disabled.
 696	 */
 697	spin_lock(&queue->tx_lock);
 698
 699	if (unlikely(rt2x00queue_full(queue))) {
 700		rt2x00_err(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n",
 701			   queue->qid);
 702		ret = -ENOBUFS;
 703		goto out;
 704	}
 705
 706	entry = rt2x00queue_get_entry(queue, Q_INDEX);
 707
 708	if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
 709				      &entry->flags))) {
 710		rt2x00_err(queue->rt2x00dev,
 711			   "Arrived at non-free entry in the non-full queue %d\n"
 712			   "Please file bug report to %s\n",
 713			   queue->qid, DRV_PROJECT);
 714		ret = -EINVAL;
 715		goto out;
 716	}
 717
 718	skbdesc->entry = entry;
 719	entry->skb = skb;
 720
 721	/*
 722	 * It could be possible that the queue was corrupted and this
 723	 * call failed. Since we always return NETDEV_TX_OK to mac80211,
 724	 * this frame will simply be dropped.
 725	 */
 726	if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
 727		clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 728		entry->skb = NULL;
 729		ret = -EIO;
 730		goto out;
 731	}
 732
 733	/*
 734	 * Put BlockAckReqs into our check list for driver BA processing.
 735	 */
 736	rt2x00queue_bar_check(entry);
 737
 738	set_bit(ENTRY_DATA_PENDING, &entry->flags);
 739
 740	rt2x00queue_index_inc(entry, Q_INDEX);
 741	rt2x00queue_write_tx_descriptor(entry, &txdesc);
 742	rt2x00queue_kick_tx_queue(queue, &txdesc);
 743
 744out:
 745	spin_unlock(&queue->tx_lock);
 746	return ret;
 747}
 748
 749int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
 750			     struct ieee80211_vif *vif)
 751{
 752	struct rt2x00_intf *intf = vif_to_intf(vif);
 753
 754	if (unlikely(!intf->beacon))
 755		return -ENOBUFS;
 756
 757	mutex_lock(&intf->beacon_skb_mutex);
 758
 759	/*
 760	 * Clean up the beacon skb.
 761	 */
 762	rt2x00queue_free_skb(intf->beacon);
 763
 764	/*
 765	 * Clear beacon (single bssid devices don't need to clear the beacon
 766	 * since the beacon queue will get stopped anyway).
 767	 */
 768	if (rt2x00dev->ops->lib->clear_beacon)
 769		rt2x00dev->ops->lib->clear_beacon(intf->beacon);
 770
 771	mutex_unlock(&intf->beacon_skb_mutex);
 772
 773	return 0;
 774}
 775
 776int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
 777				     struct ieee80211_vif *vif)
 778{
 779	struct rt2x00_intf *intf = vif_to_intf(vif);
 780	struct skb_frame_desc *skbdesc;
 781	struct txentry_desc txdesc;
 782
 783	if (unlikely(!intf->beacon))
 784		return -ENOBUFS;
 785
 786	/*
 787	 * Clean up the beacon skb.
 788	 */
 789	rt2x00queue_free_skb(intf->beacon);
 790
 791	intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
 792	if (!intf->beacon->skb)
 793		return -ENOMEM;
 794
 795	/*
 796	 * Copy all TX descriptor information into txdesc,
 797	 * after that we are free to use the skb->cb array
 798	 * for our information.
 799	 */
 800	rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
 801
 802	/*
 803	 * Fill in skb descriptor
 804	 */
 805	skbdesc = get_skb_frame_desc(intf->beacon->skb);
 806	memset(skbdesc, 0, sizeof(*skbdesc));
 807	skbdesc->entry = intf->beacon;
 808
 809	/*
 810	 * Send beacon to hardware.
 811	 */
 812	rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
 813
 814	return 0;
 815
 816}
 817
 818int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
 819			      struct ieee80211_vif *vif)
 820{
 821	struct rt2x00_intf *intf = vif_to_intf(vif);
 822	int ret;
 823
 824	mutex_lock(&intf->beacon_skb_mutex);
 825	ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif);
 826	mutex_unlock(&intf->beacon_skb_mutex);
 827
 828	return ret;
 829}
 830
 831bool rt2x00queue_for_each_entry(struct data_queue *queue,
 832				enum queue_index start,
 833				enum queue_index end,
 834				void *data,
 835				bool (*fn)(struct queue_entry *entry,
 836					   void *data))
 837{
 838	unsigned long irqflags;
 839	unsigned int index_start;
 840	unsigned int index_end;
 841	unsigned int i;
 842
 843	if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
 844		rt2x00_err(queue->rt2x00dev,
 845			   "Entry requested from invalid index range (%d - %d)\n",
 846			   start, end);
 847		return true;
 848	}
 849
 850	/*
 851	 * Only protect the range we are going to loop over,
 852	 * if during our loop a extra entry is set to pending
 853	 * it should not be kicked during this run, since it
 854	 * is part of another TX operation.
 855	 */
 856	spin_lock_irqsave(&queue->index_lock, irqflags);
 857	index_start = queue->index[start];
 858	index_end = queue->index[end];
 859	spin_unlock_irqrestore(&queue->index_lock, irqflags);
 860
 861	/*
 862	 * Start from the TX done pointer, this guarantees that we will
 863	 * send out all frames in the correct order.
 864	 */
 865	if (index_start < index_end) {
 866		for (i = index_start; i < index_end; i++) {
 867			if (fn(&queue->entries[i], data))
 868				return true;
 869		}
 870	} else {
 871		for (i = index_start; i < queue->limit; i++) {
 872			if (fn(&queue->entries[i], data))
 873				return true;
 874		}
 875
 876		for (i = 0; i < index_end; i++) {
 877			if (fn(&queue->entries[i], data))
 878				return true;
 879		}
 880	}
 881
 882	return false;
 883}
 884EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
 885
 886struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
 887					  enum queue_index index)
 888{
 889	struct queue_entry *entry;
 890	unsigned long irqflags;
 891
 892	if (unlikely(index >= Q_INDEX_MAX)) {
 893		rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n",
 894			   index);
 895		return NULL;
 896	}
 897
 898	spin_lock_irqsave(&queue->index_lock, irqflags);
 899
 900	entry = &queue->entries[queue->index[index]];
 901
 902	spin_unlock_irqrestore(&queue->index_lock, irqflags);
 903
 904	return entry;
 905}
 906EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
 907
 908void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
 909{
 910	struct data_queue *queue = entry->queue;
 911	unsigned long irqflags;
 912
 913	if (unlikely(index >= Q_INDEX_MAX)) {
 914		rt2x00_err(queue->rt2x00dev,
 915			   "Index change on invalid index type (%d)\n", index);
 916		return;
 917	}
 918
 919	spin_lock_irqsave(&queue->index_lock, irqflags);
 920
 921	queue->index[index]++;
 922	if (queue->index[index] >= queue->limit)
 923		queue->index[index] = 0;
 924
 925	entry->last_action = jiffies;
 926
 927	if (index == Q_INDEX) {
 928		queue->length++;
 929	} else if (index == Q_INDEX_DONE) {
 930		queue->length--;
 931		queue->count++;
 932	}
 933
 934	spin_unlock_irqrestore(&queue->index_lock, irqflags);
 935}
 936
 937static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
 938{
 
 
 
 
 
 939	switch (queue->qid) {
 940	case QID_AC_VO:
 941	case QID_AC_VI:
 942	case QID_AC_BE:
 943	case QID_AC_BK:
 944		/*
 945		 * For TX queues, we have to disable the queue
 946		 * inside mac80211.
 947		 */
 948		ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
 949		break;
 950	default:
 951		break;
 952	}
 953}
 954void rt2x00queue_pause_queue(struct data_queue *queue)
 955{
 956	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
 957	    !test_bit(QUEUE_STARTED, &queue->flags) ||
 958	    test_and_set_bit(QUEUE_PAUSED, &queue->flags))
 959		return;
 960
 961	rt2x00queue_pause_queue_nocheck(queue);
 962}
 963EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
 964
 965void rt2x00queue_unpause_queue(struct data_queue *queue)
 966{
 967	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
 968	    !test_bit(QUEUE_STARTED, &queue->flags) ||
 969	    !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
 970		return;
 971
 972	switch (queue->qid) {
 973	case QID_AC_VO:
 974	case QID_AC_VI:
 975	case QID_AC_BE:
 976	case QID_AC_BK:
 977		/*
 978		 * For TX queues, we have to enable the queue
 979		 * inside mac80211.
 980		 */
 981		ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
 982		break;
 983	case QID_RX:
 984		/*
 985		 * For RX we need to kick the queue now in order to
 986		 * receive frames.
 987		 */
 988		queue->rt2x00dev->ops->lib->kick_queue(queue);
 989	default:
 990		break;
 991	}
 992}
 993EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
 994
 995void rt2x00queue_start_queue(struct data_queue *queue)
 996{
 997	mutex_lock(&queue->status_lock);
 998
 999	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
1000	    test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
1001		mutex_unlock(&queue->status_lock);
1002		return;
1003	}
1004
1005	set_bit(QUEUE_PAUSED, &queue->flags);
1006
1007	queue->rt2x00dev->ops->lib->start_queue(queue);
1008
1009	rt2x00queue_unpause_queue(queue);
1010
1011	mutex_unlock(&queue->status_lock);
1012}
1013EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
1014
1015void rt2x00queue_stop_queue(struct data_queue *queue)
1016{
1017	mutex_lock(&queue->status_lock);
1018
1019	if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
1020		mutex_unlock(&queue->status_lock);
1021		return;
1022	}
1023
1024	rt2x00queue_pause_queue_nocheck(queue);
1025
1026	queue->rt2x00dev->ops->lib->stop_queue(queue);
1027
1028	mutex_unlock(&queue->status_lock);
1029}
1030EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
1031
1032void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
1033{
 
1034	bool tx_queue =
1035		(queue->qid == QID_AC_VO) ||
1036		(queue->qid == QID_AC_VI) ||
1037		(queue->qid == QID_AC_BE) ||
1038		(queue->qid == QID_AC_BK);
1039
 
1040
1041	/*
1042	 * If we are not supposed to drop any pending
1043	 * frames, this means we must force a start (=kick)
1044	 * to the queue to make sure the hardware will
1045	 * start transmitting.
 
1046	 */
1047	if (!drop && tx_queue)
1048		queue->rt2x00dev->ops->lib->kick_queue(queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049
1050	/*
1051	 * Check if driver supports flushing, if that is the case we can
1052	 * defer the flushing to the driver. Otherwise we must use the
1053	 * alternative which just waits for the queue to become empty.
1054	 */
1055	if (likely(queue->rt2x00dev->ops->lib->flush_queue))
1056		queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
1057
1058	/*
1059	 * The queue flush has failed...
1060	 */
1061	if (unlikely(!rt2x00queue_empty(queue)))
1062		rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n",
1063			    queue->qid);
 
 
 
 
 
 
 
1064}
1065EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1066
1067void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1068{
1069	struct data_queue *queue;
1070
1071	/*
1072	 * rt2x00queue_start_queue will call ieee80211_wake_queue
1073	 * for each queue after is has been properly initialized.
1074	 */
1075	tx_queue_for_each(rt2x00dev, queue)
1076		rt2x00queue_start_queue(queue);
1077
1078	rt2x00queue_start_queue(rt2x00dev->rx);
1079}
1080EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1081
1082void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1083{
1084	struct data_queue *queue;
1085
1086	/*
1087	 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1088	 * as well, but we are completely shutting doing everything
1089	 * now, so it is much safer to stop all TX queues at once,
1090	 * and use rt2x00queue_stop_queue for cleaning up.
1091	 */
1092	ieee80211_stop_queues(rt2x00dev->hw);
1093
1094	tx_queue_for_each(rt2x00dev, queue)
1095		rt2x00queue_stop_queue(queue);
1096
1097	rt2x00queue_stop_queue(rt2x00dev->rx);
1098}
1099EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1100
1101void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1102{
1103	struct data_queue *queue;
1104
1105	tx_queue_for_each(rt2x00dev, queue)
1106		rt2x00queue_flush_queue(queue, drop);
1107
1108	rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1109}
1110EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1111
1112static void rt2x00queue_reset(struct data_queue *queue)
1113{
1114	unsigned long irqflags;
1115	unsigned int i;
1116
1117	spin_lock_irqsave(&queue->index_lock, irqflags);
1118
1119	queue->count = 0;
1120	queue->length = 0;
1121
1122	for (i = 0; i < Q_INDEX_MAX; i++)
1123		queue->index[i] = 0;
1124
1125	spin_unlock_irqrestore(&queue->index_lock, irqflags);
1126}
1127
1128void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1129{
1130	struct data_queue *queue;
1131	unsigned int i;
1132
1133	queue_for_each(rt2x00dev, queue) {
1134		rt2x00queue_reset(queue);
1135
1136		for (i = 0; i < queue->limit; i++)
1137			rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1138	}
1139}
1140
1141static int rt2x00queue_alloc_entries(struct data_queue *queue)
 
1142{
1143	struct queue_entry *entries;
1144	unsigned int entry_size;
1145	unsigned int i;
1146
1147	rt2x00queue_reset(queue);
1148
 
 
 
 
 
1149	/*
1150	 * Allocate all queue entries.
1151	 */
1152	entry_size = sizeof(*entries) + queue->priv_size;
1153	entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1154	if (!entries)
1155		return -ENOMEM;
1156
1157#define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1158	(((char *)(__base)) + ((__limit) * (__esize)) + \
1159	    ((__index) * (__psize)))
1160
1161	for (i = 0; i < queue->limit; i++) {
1162		entries[i].flags = 0;
1163		entries[i].queue = queue;
1164		entries[i].skb = NULL;
1165		entries[i].entry_idx = i;
1166		entries[i].priv_data =
1167		    QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1168					    sizeof(*entries), queue->priv_size);
1169	}
1170
1171#undef QUEUE_ENTRY_PRIV_OFFSET
1172
1173	queue->entries = entries;
1174
1175	return 0;
1176}
1177
1178static void rt2x00queue_free_skbs(struct data_queue *queue)
1179{
1180	unsigned int i;
1181
1182	if (!queue->entries)
1183		return;
1184
1185	for (i = 0; i < queue->limit; i++) {
1186		rt2x00queue_free_skb(&queue->entries[i]);
1187	}
1188}
1189
1190static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1191{
1192	unsigned int i;
1193	struct sk_buff *skb;
1194
1195	for (i = 0; i < queue->limit; i++) {
1196		skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
1197		if (!skb)
1198			return -ENOMEM;
1199		queue->entries[i].skb = skb;
1200	}
1201
1202	return 0;
1203}
1204
1205int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1206{
1207	struct data_queue *queue;
1208	int status;
1209
1210	status = rt2x00queue_alloc_entries(rt2x00dev->rx);
1211	if (status)
1212		goto exit;
1213
1214	tx_queue_for_each(rt2x00dev, queue) {
1215		status = rt2x00queue_alloc_entries(queue);
1216		if (status)
1217			goto exit;
1218	}
1219
1220	status = rt2x00queue_alloc_entries(rt2x00dev->bcn);
1221	if (status)
1222		goto exit;
1223
1224	if (test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags)) {
1225		status = rt2x00queue_alloc_entries(rt2x00dev->atim);
 
1226		if (status)
1227			goto exit;
1228	}
1229
1230	status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1231	if (status)
1232		goto exit;
1233
1234	return 0;
1235
1236exit:
1237	rt2x00_err(rt2x00dev, "Queue entries allocation failed\n");
1238
1239	rt2x00queue_uninitialize(rt2x00dev);
1240
1241	return status;
1242}
1243
1244void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1245{
1246	struct data_queue *queue;
1247
1248	rt2x00queue_free_skbs(rt2x00dev->rx);
1249
1250	queue_for_each(rt2x00dev, queue) {
1251		kfree(queue->entries);
1252		queue->entries = NULL;
1253	}
1254}
1255
1256static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1257			     struct data_queue *queue, enum data_queue_qid qid)
1258{
1259	mutex_init(&queue->status_lock);
1260	spin_lock_init(&queue->tx_lock);
1261	spin_lock_init(&queue->index_lock);
1262
1263	queue->rt2x00dev = rt2x00dev;
1264	queue->qid = qid;
1265	queue->txop = 0;
1266	queue->aifs = 2;
1267	queue->cw_min = 5;
1268	queue->cw_max = 10;
1269
1270	rt2x00dev->ops->queue_init(queue);
1271
1272	queue->threshold = DIV_ROUND_UP(queue->limit, 10);
1273}
1274
1275int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1276{
1277	struct data_queue *queue;
1278	enum data_queue_qid qid;
1279	unsigned int req_atim =
1280	    !!test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1281
1282	/*
1283	 * We need the following queues:
1284	 * RX: 1
1285	 * TX: ops->tx_queues
1286	 * Beacon: 1
1287	 * Atim: 1 (if required)
1288	 */
1289	rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1290
1291	queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1292	if (!queue) {
1293		rt2x00_err(rt2x00dev, "Queue allocation failed\n");
1294		return -ENOMEM;
1295	}
1296
1297	/*
1298	 * Initialize pointers
1299	 */
1300	rt2x00dev->rx = queue;
1301	rt2x00dev->tx = &queue[1];
1302	rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1303	rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1304
1305	/*
1306	 * Initialize queue parameters.
1307	 * RX: qid = QID_RX
1308	 * TX: qid = QID_AC_VO + index
1309	 * TX: cw_min: 2^5 = 32.
1310	 * TX: cw_max: 2^10 = 1024.
1311	 * BCN: qid = QID_BEACON
1312	 * ATIM: qid = QID_ATIM
1313	 */
1314	rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1315
1316	qid = QID_AC_VO;
1317	tx_queue_for_each(rt2x00dev, queue)
1318		rt2x00queue_init(rt2x00dev, queue, qid++);
1319
1320	rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1321	if (req_atim)
1322		rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1323
1324	return 0;
1325}
1326
1327void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1328{
1329	kfree(rt2x00dev->rx);
1330	rt2x00dev->rx = NULL;
1331	rt2x00dev->tx = NULL;
1332	rt2x00dev->bcn = NULL;
1333}