Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
   3	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
   4	<http://rt2x00.serialmonkey.com>
   5
   6	This program is free software; you can redistribute it and/or modify
   7	it under the terms of the GNU General Public License as published by
   8	the Free Software Foundation; either version 2 of the License, or
   9	(at your option) any later version.
  10
  11	This program is distributed in the hope that it will be useful,
  12	but WITHOUT ANY WARRANTY; without even the implied warranty of
  13	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14	GNU General Public License for more details.
  15
  16	You should have received a copy of the GNU General Public License
  17	along with this program; if not, write to the
  18	Free Software Foundation, Inc.,
  19	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  20 */
  21
  22/*
  23	Module: rt2x00lib
  24	Abstract: rt2x00 generic device routines.
  25 */
  26
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/slab.h>
  30#include <linux/log2.h>
  31
  32#include "rt2x00.h"
  33#include "rt2x00lib.h"
  34
  35/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  36 * Radio control handlers.
  37 */
  38int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
  39{
  40	int status;
  41
  42	/*
  43	 * Don't enable the radio twice.
  44	 * And check if the hardware button has been disabled.
  45	 */
  46	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  47		return 0;
  48
  49	/*
  50	 * Initialize all data queues.
  51	 */
  52	rt2x00queue_init_queues(rt2x00dev);
  53
  54	/*
  55	 * Enable radio.
  56	 */
  57	status =
  58	    rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
  59	if (status)
  60		return status;
  61
  62	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
  63
  64	rt2x00leds_led_radio(rt2x00dev, true);
  65	rt2x00led_led_activity(rt2x00dev, true);
  66
  67	set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
  68
  69	/*
  70	 * Enable queues.
  71	 */
  72	rt2x00queue_start_queues(rt2x00dev);
  73	rt2x00link_start_tuner(rt2x00dev);
  74	rt2x00link_start_agc(rt2x00dev);
 
 
  75
  76	/*
  77	 * Start watchdog monitoring.
  78	 */
  79	rt2x00link_start_watchdog(rt2x00dev);
  80
  81	return 0;
  82}
  83
  84void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
  85{
  86	if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  87		return;
  88
  89	/*
  90	 * Stop watchdog monitoring.
  91	 */
  92	rt2x00link_stop_watchdog(rt2x00dev);
  93
  94	/*
  95	 * Stop all queues
  96	 */
  97	rt2x00link_stop_agc(rt2x00dev);
 
 
  98	rt2x00link_stop_tuner(rt2x00dev);
  99	rt2x00queue_stop_queues(rt2x00dev);
 100	rt2x00queue_flush_queues(rt2x00dev, true);
 101
 102	/*
 103	 * Disable radio.
 104	 */
 105	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
 106	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
 107	rt2x00led_led_activity(rt2x00dev, false);
 108	rt2x00leds_led_radio(rt2x00dev, false);
 109}
 110
 111static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
 112					  struct ieee80211_vif *vif)
 113{
 114	struct rt2x00_dev *rt2x00dev = data;
 115	struct rt2x00_intf *intf = vif_to_intf(vif);
 116
 117	/*
 118	 * It is possible the radio was disabled while the work had been
 119	 * scheduled. If that happens we should return here immediately,
 120	 * note that in the spinlock protected area above the delayed_flags
 121	 * have been cleared correctly.
 122	 */
 123	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 124		return;
 125
 126	if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
 127		rt2x00queue_update_beacon(rt2x00dev, vif);
 128}
 129
 130static void rt2x00lib_intf_scheduled(struct work_struct *work)
 131{
 132	struct rt2x00_dev *rt2x00dev =
 133	    container_of(work, struct rt2x00_dev, intf_work);
 134
 135	/*
 136	 * Iterate over each interface and perform the
 137	 * requested configurations.
 138	 */
 139	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
 
 140					    rt2x00lib_intf_scheduled_iter,
 141					    rt2x00dev);
 142}
 143
 144static void rt2x00lib_autowakeup(struct work_struct *work)
 145{
 146	struct rt2x00_dev *rt2x00dev =
 147	    container_of(work, struct rt2x00_dev, autowakeup_work.work);
 148
 149	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
 150		return;
 151
 152	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 153		ERROR(rt2x00dev, "Device failed to wakeup.\n");
 154	clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
 155}
 156
 157/*
 158 * Interrupt context handlers.
 159 */
 160static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
 161				     struct ieee80211_vif *vif)
 162{
 
 163	struct rt2x00_dev *rt2x00dev = data;
 164	struct sk_buff *skb;
 165
 166	/*
 167	 * Only AP mode interfaces do broad- and multicast buffering
 168	 */
 169	if (vif->type != NL80211_IFTYPE_AP)
 170		return;
 171
 172	/*
 173	 * Send out buffered broad- and multicast frames
 174	 */
 175	skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
 176	while (skb) {
 177		rt2x00mac_tx(rt2x00dev->hw, skb);
 178		skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
 179	}
 180}
 181
 182static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
 183					struct ieee80211_vif *vif)
 184{
 185	struct rt2x00_dev *rt2x00dev = data;
 186
 187	if (vif->type != NL80211_IFTYPE_AP &&
 188	    vif->type != NL80211_IFTYPE_ADHOC &&
 189	    vif->type != NL80211_IFTYPE_MESH_POINT &&
 190	    vif->type != NL80211_IFTYPE_WDS)
 191		return;
 192
 193	/*
 194	 * Update the beacon without locking. This is safe on PCI devices
 195	 * as they only update the beacon periodically here. This should
 196	 * never be called for USB devices.
 197	 */
 198	WARN_ON(rt2x00_is_usb(rt2x00dev));
 199	rt2x00queue_update_beacon_locked(rt2x00dev, vif);
 200}
 201
 202void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
 203{
 204	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 205		return;
 206
 207	/* send buffered bc/mc frames out for every bssid */
 208	ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
 209						   rt2x00lib_bc_buffer_iter,
 210						   rt2x00dev);
 211	/*
 212	 * Devices with pre tbtt interrupt don't need to update the beacon
 213	 * here as they will fetch the next beacon directly prior to
 214	 * transmission.
 215	 */
 216	if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
 217		return;
 218
 219	/* fetch next beacon */
 220	ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
 221						   rt2x00lib_beaconupdate_iter,
 222						   rt2x00dev);
 223}
 224EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
 225
 226void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
 227{
 228	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 229		return;
 230
 231	/* fetch next beacon */
 232	ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
 233						   rt2x00lib_beaconupdate_iter,
 234						   rt2x00dev);
 235}
 236EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
 237
 238void rt2x00lib_dmastart(struct queue_entry *entry)
 239{
 240	set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 241	rt2x00queue_index_inc(entry, Q_INDEX);
 242}
 243EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
 244
 245void rt2x00lib_dmadone(struct queue_entry *entry)
 246{
 247	set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
 248	clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 249	rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
 250}
 251EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
 252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253void rt2x00lib_txdone(struct queue_entry *entry,
 254		      struct txdone_entry_desc *txdesc)
 255{
 256	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 257	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
 258	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 259	unsigned int header_length, i;
 260	u8 rate_idx, rate_flags, retry_rates;
 261	u8 skbdesc_flags = skbdesc->flags;
 262	bool success;
 263
 264	/*
 265	 * Unmap the skb.
 266	 */
 267	rt2x00queue_unmap_skb(entry);
 268
 269	/*
 270	 * Remove the extra tx headroom from the skb.
 271	 */
 272	skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
 273
 274	/*
 275	 * Signal that the TX descriptor is no longer in the skb.
 276	 */
 277	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
 278
 279	/*
 280	 * Determine the length of 802.11 header.
 281	 */
 282	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
 283
 284	/*
 285	 * Remove L2 padding which was added during
 286	 */
 287	if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
 288		rt2x00queue_remove_l2pad(entry->skb, header_length);
 289
 290	/*
 291	 * If the IV/EIV data was stripped from the frame before it was
 292	 * passed to the hardware, we should now reinsert it again because
 293	 * mac80211 will expect the same data to be present it the
 294	 * frame as it was passed to us.
 295	 */
 296	if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
 297		rt2x00crypto_tx_insert_iv(entry->skb, header_length);
 298
 299	/*
 300	 * Send frame to debugfs immediately, after this call is completed
 301	 * we are going to overwrite the skb->cb array.
 302	 */
 303	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
 304
 305	/*
 306	 * Determine if the frame has been successfully transmitted.
 
 
 307	 */
 308	success =
 
 309	    test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
 310	    test_bit(TXDONE_UNKNOWN, &txdesc->flags);
 311
 312	/*
 313	 * Update TX statistics.
 314	 */
 315	rt2x00dev->link.qual.tx_success += success;
 316	rt2x00dev->link.qual.tx_failed += !success;
 317
 318	rate_idx = skbdesc->tx_rate_idx;
 319	rate_flags = skbdesc->tx_rate_flags;
 320	retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
 321	    (txdesc->retry + 1) : 1;
 322
 323	/*
 324	 * Initialize TX status
 325	 */
 326	memset(&tx_info->status, 0, sizeof(tx_info->status));
 327	tx_info->status.ack_signal = 0;
 328
 329	/*
 330	 * Frame was send with retries, hardware tried
 331	 * different rates to send out the frame, at each
 332	 * retry it lowered the rate 1 step except when the
 333	 * lowest rate was used.
 334	 */
 335	for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
 336		tx_info->status.rates[i].idx = rate_idx - i;
 337		tx_info->status.rates[i].flags = rate_flags;
 338
 339		if (rate_idx - i == 0) {
 340			/*
 341			 * The lowest rate (index 0) was used until the
 342			 * number of max retries was reached.
 343			 */
 344			tx_info->status.rates[i].count = retry_rates - i;
 345			i++;
 346			break;
 347		}
 348		tx_info->status.rates[i].count = 1;
 349	}
 350	if (i < (IEEE80211_TX_MAX_RATES - 1))
 351		tx_info->status.rates[i].idx = -1; /* terminate */
 352
 353	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
 354		if (success)
 355			tx_info->flags |= IEEE80211_TX_STAT_ACK;
 356		else
 357			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
 358	}
 359
 360	/*
 361	 * Every single frame has it's own tx status, hence report
 362	 * every frame as ampdu of size 1.
 363	 *
 364	 * TODO: if we can find out how many frames were aggregated
 365	 * by the hw we could provide the real ampdu_len to mac80211
 366	 * which would allow the rc algorithm to better decide on
 367	 * which rates are suitable.
 368	 */
 369	if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
 370	    tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
 371		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
 372		tx_info->status.ampdu_len = 1;
 373		tx_info->status.ampdu_ack_len = success ? 1 : 0;
 374
 375		if (!success)
 376			tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
 377	}
 378
 379	if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
 380		if (success)
 381			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
 382		else
 383			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
 384	}
 385
 386	/*
 387	 * Only send the status report to mac80211 when it's a frame
 388	 * that originated in mac80211. If this was a extra frame coming
 389	 * through a mac80211 library call (RTS/CTS) then we should not
 390	 * send the status report back.
 391	 */
 392	if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
 393		if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
 394			ieee80211_tx_status(rt2x00dev->hw, entry->skb);
 395		else
 396			ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
 397	} else
 398		dev_kfree_skb_any(entry->skb);
 399
 400	/*
 401	 * Make this entry available for reuse.
 402	 */
 403	entry->skb = NULL;
 404	entry->flags = 0;
 405
 406	rt2x00dev->ops->lib->clear_entry(entry);
 407
 408	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
 409
 410	/*
 411	 * If the data queue was below the threshold before the txdone
 412	 * handler we must make sure the packet queue in the mac80211 stack
 413	 * is reenabled when the txdone handler has finished.
 
 
 414	 */
 
 415	if (!rt2x00queue_threshold(entry->queue))
 416		rt2x00queue_unpause_queue(entry->queue);
 
 417}
 418EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
 419
 420void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
 421{
 422	struct txdone_entry_desc txdesc;
 423
 424	txdesc.flags = 0;
 425	__set_bit(status, &txdesc.flags);
 426	txdesc.retry = 0;
 427
 428	rt2x00lib_txdone(entry, &txdesc);
 429}
 430EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
 431
 432static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
 433{
 434	struct ieee80211_mgmt *mgmt = (void *)data;
 435	u8 *pos, *end;
 436
 437	pos = (u8 *)mgmt->u.beacon.variable;
 438	end = data + len;
 439	while (pos < end) {
 440		if (pos + 2 + pos[1] > end)
 441			return NULL;
 442
 443		if (pos[0] == ie)
 444			return pos;
 445
 446		pos += 2 + pos[1];
 447	}
 448
 449	return NULL;
 450}
 451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
 453				      struct sk_buff *skb,
 454				      struct rxdone_entry_desc *rxdesc)
 455{
 456	struct ieee80211_hdr *hdr = (void *) skb->data;
 457	struct ieee80211_tim_ie *tim_ie;
 458	u8 *tim;
 459	u8 tim_len;
 460	bool cam;
 461
 462	/* If this is not a beacon, or if mac80211 has no powersaving
 463	 * configured, or if the device is already in powersaving mode
 464	 * we can exit now. */
 465	if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
 466		   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
 467		return;
 468
 469	/* min. beacon length + FCS_LEN */
 470	if (skb->len <= 40 + FCS_LEN)
 471		return;
 472
 473	/* and only beacons from the associated BSSID, please */
 474	if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
 475	    !rt2x00dev->aid)
 476		return;
 477
 478	rt2x00dev->last_beacon = jiffies;
 479
 480	tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
 481	if (!tim)
 482		return;
 483
 484	if (tim[1] < sizeof(*tim_ie))
 485		return;
 486
 487	tim_len = tim[1];
 488	tim_ie = (struct ieee80211_tim_ie *) &tim[2];
 489
 490	/* Check whenever the PHY can be turned off again. */
 491
 492	/* 1. What about buffered unicast traffic for our AID? */
 493	cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
 494
 495	/* 2. Maybe the AP wants to send multicast/broadcast data? */
 496	cam |= (tim_ie->bitmap_ctrl & 0x01);
 497
 498	if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
 499		rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
 500				 IEEE80211_CONF_CHANGE_PS);
 501}
 502
 503static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
 504					struct rxdone_entry_desc *rxdesc)
 505{
 506	struct ieee80211_supported_band *sband;
 507	const struct rt2x00_rate *rate;
 508	unsigned int i;
 509	int signal = rxdesc->signal;
 510	int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
 511
 512	switch (rxdesc->rate_mode) {
 513	case RATE_MODE_CCK:
 514	case RATE_MODE_OFDM:
 515		/*
 516		 * For non-HT rates the MCS value needs to contain the
 517		 * actually used rate modulation (CCK or OFDM).
 518		 */
 519		if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
 520			signal = RATE_MCS(rxdesc->rate_mode, signal);
 521
 522		sband = &rt2x00dev->bands[rt2x00dev->curr_band];
 523		for (i = 0; i < sband->n_bitrates; i++) {
 524			rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
 525			if (((type == RXDONE_SIGNAL_PLCP) &&
 526			     (rate->plcp == signal)) ||
 527			    ((type == RXDONE_SIGNAL_BITRATE) &&
 528			      (rate->bitrate == signal)) ||
 529			    ((type == RXDONE_SIGNAL_MCS) &&
 530			      (rate->mcs == signal))) {
 531				return i;
 532			}
 533		}
 534		break;
 535	case RATE_MODE_HT_MIX:
 536	case RATE_MODE_HT_GREENFIELD:
 537		if (signal >= 0 && signal <= 76)
 538			return signal;
 539		break;
 540	default:
 541		break;
 542	}
 543
 544	WARNING(rt2x00dev, "Frame received with unrecognized signal, "
 545		"mode=0x%.4x, signal=0x%.4x, type=%d.\n",
 546		rxdesc->rate_mode, signal, type);
 547	return 0;
 548}
 549
 550void rt2x00lib_rxdone(struct queue_entry *entry)
 551{
 552	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 553	struct rxdone_entry_desc rxdesc;
 554	struct sk_buff *skb;
 555	struct ieee80211_rx_status *rx_status;
 556	unsigned int header_length;
 557	int rate_idx;
 558
 559	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
 560	    !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 561		goto submit_entry;
 562
 563	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
 564		goto submit_entry;
 565
 566	/*
 567	 * Allocate a new sk_buffer. If no new buffer available, drop the
 568	 * received frame and reuse the existing buffer.
 569	 */
 570	skb = rt2x00queue_alloc_rxskb(entry);
 571	if (!skb)
 572		goto submit_entry;
 573
 574	/*
 575	 * Unmap the skb.
 576	 */
 577	rt2x00queue_unmap_skb(entry);
 578
 579	/*
 580	 * Extract the RXD details.
 581	 */
 582	memset(&rxdesc, 0, sizeof(rxdesc));
 583	rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
 584
 585	/*
 586	 * Check for valid size in case we get corrupted descriptor from
 587	 * hardware.
 588	 */
 589	if (unlikely(rxdesc.size == 0 ||
 590		     rxdesc.size > entry->queue->data_size)) {
 591		WARNING(rt2x00dev, "Wrong frame size %d max %d.\n",
 592			rxdesc.size, entry->queue->data_size);
 593		dev_kfree_skb(entry->skb);
 594		goto renew_skb;
 595	}
 596
 597	/*
 598	 * The data behind the ieee80211 header must be
 599	 * aligned on a 4 byte boundary.
 600	 */
 601	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
 602
 603	/*
 604	 * Hardware might have stripped the IV/EIV/ICV data,
 605	 * in that case it is possible that the data was
 606	 * provided separately (through hardware descriptor)
 607	 * in which case we should reinsert the data into the frame.
 608	 */
 609	if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
 610	    (rxdesc.flags & RX_FLAG_IV_STRIPPED))
 611		rt2x00crypto_rx_insert_iv(entry->skb, header_length,
 612					  &rxdesc);
 613	else if (header_length &&
 614		 (rxdesc.size > header_length) &&
 615		 (rxdesc.dev_flags & RXDONE_L2PAD))
 616		rt2x00queue_remove_l2pad(entry->skb, header_length);
 617
 618	/* Trim buffer to correct size */
 619	skb_trim(entry->skb, rxdesc.size);
 620
 621	/*
 622	 * Translate the signal to the correct bitrate index.
 623	 */
 624	rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
 625	if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
 626	    rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
 627		rxdesc.flags |= RX_FLAG_HT;
 628
 629	/*
 630	 * Check if this is a beacon, and more frames have been
 631	 * buffered while we were in powersaving mode.
 632	 */
 633	rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
 634
 635	/*
 
 
 
 
 
 
 636	 * Update extra components
 637	 */
 638	rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
 639	rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
 640	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
 641
 642	/*
 643	 * Initialize RX status information, and send frame
 644	 * to mac80211.
 645	 */
 646	rx_status = IEEE80211_SKB_RXCB(entry->skb);
 
 
 
 
 
 
 
 
 647	rx_status->mactime = rxdesc.timestamp;
 648	rx_status->band = rt2x00dev->curr_band;
 649	rx_status->freq = rt2x00dev->curr_freq;
 650	rx_status->rate_idx = rate_idx;
 651	rx_status->signal = rxdesc.rssi;
 652	rx_status->flag = rxdesc.flags;
 653	rx_status->antenna = rt2x00dev->link.ant.active.rx;
 654
 655	ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
 656
 657renew_skb:
 658	/*
 659	 * Replace the skb with the freshly allocated one.
 660	 */
 661	entry->skb = skb;
 662
 663submit_entry:
 664	entry->flags = 0;
 665	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
 666	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
 667	    test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 668		rt2x00dev->ops->lib->clear_entry(entry);
 669}
 670EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
 671
 672/*
 673 * Driver initialization handlers.
 674 */
 675const struct rt2x00_rate rt2x00_supported_rates[12] = {
 676	{
 677		.flags = DEV_RATE_CCK,
 678		.bitrate = 10,
 679		.ratemask = BIT(0),
 680		.plcp = 0x00,
 681		.mcs = RATE_MCS(RATE_MODE_CCK, 0),
 682	},
 683	{
 684		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 685		.bitrate = 20,
 686		.ratemask = BIT(1),
 687		.plcp = 0x01,
 688		.mcs = RATE_MCS(RATE_MODE_CCK, 1),
 689	},
 690	{
 691		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 692		.bitrate = 55,
 693		.ratemask = BIT(2),
 694		.plcp = 0x02,
 695		.mcs = RATE_MCS(RATE_MODE_CCK, 2),
 696	},
 697	{
 698		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 699		.bitrate = 110,
 700		.ratemask = BIT(3),
 701		.plcp = 0x03,
 702		.mcs = RATE_MCS(RATE_MODE_CCK, 3),
 703	},
 704	{
 705		.flags = DEV_RATE_OFDM,
 706		.bitrate = 60,
 707		.ratemask = BIT(4),
 708		.plcp = 0x0b,
 709		.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
 710	},
 711	{
 712		.flags = DEV_RATE_OFDM,
 713		.bitrate = 90,
 714		.ratemask = BIT(5),
 715		.plcp = 0x0f,
 716		.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
 717	},
 718	{
 719		.flags = DEV_RATE_OFDM,
 720		.bitrate = 120,
 721		.ratemask = BIT(6),
 722		.plcp = 0x0a,
 723		.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
 724	},
 725	{
 726		.flags = DEV_RATE_OFDM,
 727		.bitrate = 180,
 728		.ratemask = BIT(7),
 729		.plcp = 0x0e,
 730		.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
 731	},
 732	{
 733		.flags = DEV_RATE_OFDM,
 734		.bitrate = 240,
 735		.ratemask = BIT(8),
 736		.plcp = 0x09,
 737		.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
 738	},
 739	{
 740		.flags = DEV_RATE_OFDM,
 741		.bitrate = 360,
 742		.ratemask = BIT(9),
 743		.plcp = 0x0d,
 744		.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
 745	},
 746	{
 747		.flags = DEV_RATE_OFDM,
 748		.bitrate = 480,
 749		.ratemask = BIT(10),
 750		.plcp = 0x08,
 751		.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
 752	},
 753	{
 754		.flags = DEV_RATE_OFDM,
 755		.bitrate = 540,
 756		.ratemask = BIT(11),
 757		.plcp = 0x0c,
 758		.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
 759	},
 760};
 761
 762static void rt2x00lib_channel(struct ieee80211_channel *entry,
 763			      const int channel, const int tx_power,
 764			      const int value)
 765{
 766	/* XXX: this assumption about the band is wrong for 802.11j */
 767	entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
 768	entry->center_freq = ieee80211_channel_to_frequency(channel,
 769							    entry->band);
 770	entry->hw_value = value;
 771	entry->max_power = tx_power;
 772	entry->max_antenna_gain = 0xff;
 773}
 774
 775static void rt2x00lib_rate(struct ieee80211_rate *entry,
 776			   const u16 index, const struct rt2x00_rate *rate)
 777{
 778	entry->flags = 0;
 779	entry->bitrate = rate->bitrate;
 780	entry->hw_value = index;
 781	entry->hw_value_short = index;
 782
 783	if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
 784		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
 785}
 786
 787static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
 788				    struct hw_mode_spec *spec)
 789{
 790	struct ieee80211_hw *hw = rt2x00dev->hw;
 791	struct ieee80211_channel *channels;
 792	struct ieee80211_rate *rates;
 793	unsigned int num_rates;
 794	unsigned int i;
 795
 796	num_rates = 0;
 797	if (spec->supported_rates & SUPPORT_RATE_CCK)
 798		num_rates += 4;
 799	if (spec->supported_rates & SUPPORT_RATE_OFDM)
 800		num_rates += 8;
 801
 802	channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
 803	if (!channels)
 804		return -ENOMEM;
 805
 806	rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
 807	if (!rates)
 808		goto exit_free_channels;
 809
 810	/*
 811	 * Initialize Rate list.
 812	 */
 813	for (i = 0; i < num_rates; i++)
 814		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
 815
 816	/*
 817	 * Initialize Channel list.
 818	 */
 819	for (i = 0; i < spec->num_channels; i++) {
 820		rt2x00lib_channel(&channels[i],
 821				  spec->channels[i].channel,
 822				  spec->channels_info[i].max_power, i);
 823	}
 824
 825	/*
 826	 * Intitialize 802.11b, 802.11g
 827	 * Rates: CCK, OFDM.
 828	 * Channels: 2.4 GHz
 829	 */
 830	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
 831		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
 832		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
 833		rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
 834		rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
 835		hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
 836		    &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
 837		memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
 838		       &spec->ht, sizeof(spec->ht));
 839	}
 840
 841	/*
 842	 * Intitialize 802.11a
 843	 * Rates: OFDM.
 844	 * Channels: OFDM, UNII, HiperLAN2.
 845	 */
 846	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
 847		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
 848		    spec->num_channels - 14;
 849		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
 850		    num_rates - 4;
 851		rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
 852		rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
 853		hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
 854		    &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
 855		memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
 856		       &spec->ht, sizeof(spec->ht));
 857	}
 858
 859	return 0;
 860
 861 exit_free_channels:
 862	kfree(channels);
 863	ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
 864	return -ENOMEM;
 865}
 866
 867static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
 868{
 869	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
 870		ieee80211_unregister_hw(rt2x00dev->hw);
 871
 872	if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
 873		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
 874		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
 875		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
 876		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
 877	}
 878
 879	kfree(rt2x00dev->spec.channels_info);
 880}
 881
 882static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
 883{
 884	struct hw_mode_spec *spec = &rt2x00dev->spec;
 885	int status;
 886
 887	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
 888		return 0;
 889
 890	/*
 891	 * Initialize HW modes.
 892	 */
 893	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
 894	if (status)
 895		return status;
 896
 897	/*
 898	 * Initialize HW fields.
 899	 */
 900	rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
 901
 902	/*
 903	 * Initialize extra TX headroom required.
 904	 */
 905	rt2x00dev->hw->extra_tx_headroom =
 906		max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
 907		      rt2x00dev->ops->extra_tx_headroom);
 908
 909	/*
 910	 * Take TX headroom required for alignment into account.
 911	 */
 912	if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
 913		rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
 914	else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
 915		rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
 916
 917	/*
 
 
 
 
 
 918	 * Allocate tx status FIFO for driver use.
 919	 */
 920	if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
 921		/*
 922		 * Allocate the txstatus fifo. In the worst case the tx
 923		 * status fifo has to hold the tx status of all entries
 924		 * in all tx queues. Hence, calculate the kfifo size as
 925		 * tx_queues * entry_num and round up to the nearest
 926		 * power of 2.
 927		 */
 928		int kfifo_size =
 929			roundup_pow_of_two(rt2x00dev->ops->tx_queues *
 930					   rt2x00dev->ops->tx->entry_num *
 931					   sizeof(u32));
 932
 933		status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
 934				     GFP_KERNEL);
 935		if (status)
 936			return status;
 937	}
 938
 939	/*
 940	 * Initialize tasklets if used by the driver. Tasklets are
 941	 * disabled until the interrupts are turned on. The driver
 942	 * has to handle that.
 943	 */
 944#define RT2X00_TASKLET_INIT(taskletname) \
 945	if (rt2x00dev->ops->lib->taskletname) { \
 946		tasklet_init(&rt2x00dev->taskletname, \
 947			     rt2x00dev->ops->lib->taskletname, \
 948			     (unsigned long)rt2x00dev); \
 949		tasklet_disable(&rt2x00dev->taskletname); \
 950	}
 951
 952	RT2X00_TASKLET_INIT(txstatus_tasklet);
 953	RT2X00_TASKLET_INIT(pretbtt_tasklet);
 954	RT2X00_TASKLET_INIT(tbtt_tasklet);
 955	RT2X00_TASKLET_INIT(rxdone_tasklet);
 956	RT2X00_TASKLET_INIT(autowake_tasklet);
 957
 958#undef RT2X00_TASKLET_INIT
 959
 960	/*
 961	 * Register HW.
 962	 */
 963	status = ieee80211_register_hw(rt2x00dev->hw);
 964	if (status)
 965		return status;
 966
 967	set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
 968
 969	return 0;
 970}
 971
 972/*
 973 * Initialization/uninitialization handlers.
 974 */
 975static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
 976{
 977	if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
 978		return;
 979
 980	/*
 981	 * Unregister extra components.
 982	 */
 983	rt2x00rfkill_unregister(rt2x00dev);
 984
 985	/*
 986	 * Allow the HW to uninitialize.
 987	 */
 988	rt2x00dev->ops->lib->uninitialize(rt2x00dev);
 989
 990	/*
 991	 * Free allocated queue entries.
 992	 */
 993	rt2x00queue_uninitialize(rt2x00dev);
 994}
 995
 996static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
 997{
 998	int status;
 999
1000	if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1001		return 0;
1002
1003	/*
1004	 * Allocate all queue entries.
1005	 */
1006	status = rt2x00queue_initialize(rt2x00dev);
1007	if (status)
1008		return status;
1009
1010	/*
1011	 * Initialize the device.
1012	 */
1013	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1014	if (status) {
1015		rt2x00queue_uninitialize(rt2x00dev);
1016		return status;
1017	}
1018
1019	set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1020
1021	/*
1022	 * Register the extra components.
1023	 */
1024	rt2x00rfkill_register(rt2x00dev);
1025
1026	return 0;
1027}
1028
1029int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1030{
1031	int retval;
1032
1033	if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1034		return 0;
1035
1036	/*
1037	 * If this is the first interface which is added,
1038	 * we should load the firmware now.
1039	 */
1040	retval = rt2x00lib_load_firmware(rt2x00dev);
1041	if (retval)
1042		return retval;
1043
1044	/*
1045	 * Initialize the device.
1046	 */
1047	retval = rt2x00lib_initialize(rt2x00dev);
1048	if (retval)
1049		return retval;
1050
1051	rt2x00dev->intf_ap_count = 0;
1052	rt2x00dev->intf_sta_count = 0;
1053	rt2x00dev->intf_associated = 0;
1054
1055	/* Enable the radio */
1056	retval = rt2x00lib_enable_radio(rt2x00dev);
1057	if (retval)
1058		return retval;
1059
1060	set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1061
1062	return 0;
1063}
1064
1065void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1066{
1067	if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1068		return;
1069
1070	/*
1071	 * Perhaps we can add something smarter here,
1072	 * but for now just disabling the radio should do.
1073	 */
1074	rt2x00lib_disable_radio(rt2x00dev);
1075
1076	rt2x00dev->intf_ap_count = 0;
1077	rt2x00dev->intf_sta_count = 0;
1078	rt2x00dev->intf_associated = 0;
1079}
1080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1081/*
1082 * driver allocation handlers.
1083 */
1084int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1085{
1086	int retval = -ENOMEM;
1087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088	spin_lock_init(&rt2x00dev->irqmask_lock);
1089	mutex_init(&rt2x00dev->csr_mutex);
 
 
1090
1091	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1092
1093	/*
1094	 * Make room for rt2x00_intf inside the per-interface
1095	 * structure ieee80211_vif.
1096	 */
1097	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1098
1099	/*
1100	 * Determine which operating modes are supported, all modes
1101	 * which require beaconing, depend on the availability of
1102	 * beacon entries.
1103	 */
1104	rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1105	if (rt2x00dev->ops->bcn->entry_num > 0)
1106		rt2x00dev->hw->wiphy->interface_modes |=
1107		    BIT(NL80211_IFTYPE_ADHOC) |
1108		    BIT(NL80211_IFTYPE_AP) |
1109		    BIT(NL80211_IFTYPE_MESH_POINT) |
1110		    BIT(NL80211_IFTYPE_WDS);
1111
1112	/*
1113	 * Initialize work.
1114	 */
1115	rt2x00dev->workqueue =
1116	    alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1117	if (!rt2x00dev->workqueue) {
1118		retval = -ENOMEM;
1119		goto exit;
1120	}
1121
1122	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1123	INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
 
1124
1125	/*
1126	 * Let the driver probe the device to detect the capabilities.
1127	 */
1128	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1129	if (retval) {
1130		ERROR(rt2x00dev, "Failed to allocate device.\n");
1131		goto exit;
1132	}
1133
1134	/*
1135	 * Allocate queue array.
1136	 */
1137	retval = rt2x00queue_allocate(rt2x00dev);
1138	if (retval)
1139		goto exit;
1140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141	/*
1142	 * Initialize ieee80211 structure.
1143	 */
1144	retval = rt2x00lib_probe_hw(rt2x00dev);
1145	if (retval) {
1146		ERROR(rt2x00dev, "Failed to initialize hw.\n");
1147		goto exit;
1148	}
1149
1150	/*
1151	 * Register extra components.
1152	 */
1153	rt2x00link_register(rt2x00dev);
1154	rt2x00leds_register(rt2x00dev);
1155	rt2x00debug_register(rt2x00dev);
 
1156
1157	return 0;
1158
1159exit:
1160	rt2x00lib_remove_dev(rt2x00dev);
1161
1162	return retval;
1163}
1164EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1165
1166void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1167{
1168	clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1169
1170	/*
1171	 * Disable radio.
1172	 */
1173	rt2x00lib_disable_radio(rt2x00dev);
1174
1175	/*
1176	 * Stop all work.
1177	 */
1178	cancel_work_sync(&rt2x00dev->intf_work);
1179	cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
 
1180	if (rt2x00_is_usb(rt2x00dev)) {
1181		del_timer_sync(&rt2x00dev->txstatus_timer);
1182		cancel_work_sync(&rt2x00dev->rxdone_work);
1183		cancel_work_sync(&rt2x00dev->txdone_work);
1184	}
1185	destroy_workqueue(rt2x00dev->workqueue);
 
1186
1187	/*
1188	 * Free the tx status fifo.
1189	 */
1190	kfifo_free(&rt2x00dev->txstatus_fifo);
1191
1192	/*
1193	 * Kill the tx status tasklet.
1194	 */
1195	tasklet_kill(&rt2x00dev->txstatus_tasklet);
1196	tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1197	tasklet_kill(&rt2x00dev->tbtt_tasklet);
1198	tasklet_kill(&rt2x00dev->rxdone_tasklet);
1199	tasklet_kill(&rt2x00dev->autowake_tasklet);
1200
1201	/*
1202	 * Uninitialize device.
1203	 */
1204	rt2x00lib_uninitialize(rt2x00dev);
1205
1206	/*
1207	 * Free extra components
1208	 */
1209	rt2x00debug_deregister(rt2x00dev);
1210	rt2x00leds_unregister(rt2x00dev);
1211
1212	/*
1213	 * Free ieee80211_hw memory.
1214	 */
1215	rt2x00lib_remove_hw(rt2x00dev);
1216
1217	/*
1218	 * Free firmware image.
1219	 */
1220	rt2x00lib_free_firmware(rt2x00dev);
1221
1222	/*
1223	 * Free queue structures.
1224	 */
1225	rt2x00queue_free(rt2x00dev);
 
 
 
 
 
 
1226}
1227EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1228
1229/*
1230 * Device state handlers
1231 */
1232#ifdef CONFIG_PM
1233int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1234{
1235	NOTICE(rt2x00dev, "Going to sleep.\n");
1236
1237	/*
1238	 * Prevent mac80211 from accessing driver while suspended.
1239	 */
1240	if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1241		return 0;
1242
1243	/*
1244	 * Cleanup as much as possible.
1245	 */
1246	rt2x00lib_uninitialize(rt2x00dev);
1247
1248	/*
1249	 * Suspend/disable extra components.
1250	 */
1251	rt2x00leds_suspend(rt2x00dev);
1252	rt2x00debug_deregister(rt2x00dev);
1253
1254	/*
1255	 * Set device mode to sleep for power management,
1256	 * on some hardware this call seems to consistently fail.
1257	 * From the specifications it is hard to tell why it fails,
1258	 * and if this is a "bad thing".
1259	 * Overall it is safe to just ignore the failure and
1260	 * continue suspending. The only downside is that the
1261	 * device will not be in optimal power save mode, but with
1262	 * the radio and the other components already disabled the
1263	 * device is as good as disabled.
1264	 */
1265	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1266		WARNING(rt2x00dev, "Device failed to enter sleep state, "
1267			"continue suspending.\n");
1268
1269	return 0;
1270}
1271EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1272
1273int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1274{
1275	NOTICE(rt2x00dev, "Waking up.\n");
1276
1277	/*
1278	 * Restore/enable extra components.
1279	 */
1280	rt2x00debug_register(rt2x00dev);
1281	rt2x00leds_resume(rt2x00dev);
1282
1283	/*
1284	 * We are ready again to receive requests from mac80211.
1285	 */
1286	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1287
1288	return 0;
1289}
1290EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1291#endif /* CONFIG_PM */
1292
1293/*
1294 * rt2x00lib module information.
1295 */
1296MODULE_AUTHOR(DRV_PROJECT);
1297MODULE_VERSION(DRV_VERSION);
1298MODULE_DESCRIPTION("rt2x00 library");
1299MODULE_LICENSE("GPL");
v3.15
   1/*
   2	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
   3	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
   4	<http://rt2x00.serialmonkey.com>
   5
   6	This program is free software; you can redistribute it and/or modify
   7	it under the terms of the GNU General Public License as published by
   8	the Free Software Foundation; either version 2 of the License, or
   9	(at your option) any later version.
  10
  11	This program is distributed in the hope that it will be useful,
  12	but WITHOUT ANY WARRANTY; without even the implied warranty of
  13	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14	GNU General Public License for more details.
  15
  16	You should have received a copy of the GNU General Public License
  17	along with this program; if not, see <http://www.gnu.org/licenses/>.
 
 
  18 */
  19
  20/*
  21	Module: rt2x00lib
  22	Abstract: rt2x00 generic device routines.
  23 */
  24
  25#include <linux/kernel.h>
  26#include <linux/module.h>
  27#include <linux/slab.h>
  28#include <linux/log2.h>
  29
  30#include "rt2x00.h"
  31#include "rt2x00lib.h"
  32
  33/*
  34 * Utility functions.
  35 */
  36u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
  37			 struct ieee80211_vif *vif)
  38{
  39	/*
  40	 * When in STA mode, bssidx is always 0 otherwise local_address[5]
  41	 * contains the bss number, see BSS_ID_MASK comments for details.
  42	 */
  43	if (rt2x00dev->intf_sta_count)
  44		return 0;
  45	return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
  46}
  47EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
  48
  49/*
  50 * Radio control handlers.
  51 */
  52int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
  53{
  54	int status;
  55
  56	/*
  57	 * Don't enable the radio twice.
  58	 * And check if the hardware button has been disabled.
  59	 */
  60	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  61		return 0;
  62
  63	/*
  64	 * Initialize all data queues.
  65	 */
  66	rt2x00queue_init_queues(rt2x00dev);
  67
  68	/*
  69	 * Enable radio.
  70	 */
  71	status =
  72	    rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
  73	if (status)
  74		return status;
  75
  76	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
  77
  78	rt2x00leds_led_radio(rt2x00dev, true);
  79	rt2x00led_led_activity(rt2x00dev, true);
  80
  81	set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
  82
  83	/*
  84	 * Enable queues.
  85	 */
  86	rt2x00queue_start_queues(rt2x00dev);
  87	rt2x00link_start_tuner(rt2x00dev);
  88	rt2x00link_start_agc(rt2x00dev);
  89	if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
  90		rt2x00link_start_vcocal(rt2x00dev);
  91
  92	/*
  93	 * Start watchdog monitoring.
  94	 */
  95	rt2x00link_start_watchdog(rt2x00dev);
  96
  97	return 0;
  98}
  99
 100void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
 101{
 102	if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 103		return;
 104
 105	/*
 106	 * Stop watchdog monitoring.
 107	 */
 108	rt2x00link_stop_watchdog(rt2x00dev);
 109
 110	/*
 111	 * Stop all queues
 112	 */
 113	rt2x00link_stop_agc(rt2x00dev);
 114	if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
 115		rt2x00link_stop_vcocal(rt2x00dev);
 116	rt2x00link_stop_tuner(rt2x00dev);
 117	rt2x00queue_stop_queues(rt2x00dev);
 118	rt2x00queue_flush_queues(rt2x00dev, true);
 119
 120	/*
 121	 * Disable radio.
 122	 */
 123	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
 124	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
 125	rt2x00led_led_activity(rt2x00dev, false);
 126	rt2x00leds_led_radio(rt2x00dev, false);
 127}
 128
 129static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
 130					  struct ieee80211_vif *vif)
 131{
 132	struct rt2x00_dev *rt2x00dev = data;
 133	struct rt2x00_intf *intf = vif_to_intf(vif);
 134
 135	/*
 136	 * It is possible the radio was disabled while the work had been
 137	 * scheduled. If that happens we should return here immediately,
 138	 * note that in the spinlock protected area above the delayed_flags
 139	 * have been cleared correctly.
 140	 */
 141	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 142		return;
 143
 144	if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
 145		rt2x00queue_update_beacon(rt2x00dev, vif);
 146}
 147
 148static void rt2x00lib_intf_scheduled(struct work_struct *work)
 149{
 150	struct rt2x00_dev *rt2x00dev =
 151	    container_of(work, struct rt2x00_dev, intf_work);
 152
 153	/*
 154	 * Iterate over each interface and perform the
 155	 * requested configurations.
 156	 */
 157	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
 158					    IEEE80211_IFACE_ITER_RESUME_ALL,
 159					    rt2x00lib_intf_scheduled_iter,
 160					    rt2x00dev);
 161}
 162
 163static void rt2x00lib_autowakeup(struct work_struct *work)
 164{
 165	struct rt2x00_dev *rt2x00dev =
 166	    container_of(work, struct rt2x00_dev, autowakeup_work.work);
 167
 168	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
 169		return;
 170
 171	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 172		rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
 173	clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
 174}
 175
 176/*
 177 * Interrupt context handlers.
 178 */
 179static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
 180				     struct ieee80211_vif *vif)
 181{
 182	struct ieee80211_tx_control control = {};
 183	struct rt2x00_dev *rt2x00dev = data;
 184	struct sk_buff *skb;
 185
 186	/*
 187	 * Only AP mode interfaces do broad- and multicast buffering
 188	 */
 189	if (vif->type != NL80211_IFTYPE_AP)
 190		return;
 191
 192	/*
 193	 * Send out buffered broad- and multicast frames
 194	 */
 195	skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
 196	while (skb) {
 197		rt2x00mac_tx(rt2x00dev->hw, &control, skb);
 198		skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
 199	}
 200}
 201
 202static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
 203					struct ieee80211_vif *vif)
 204{
 205	struct rt2x00_dev *rt2x00dev = data;
 206
 207	if (vif->type != NL80211_IFTYPE_AP &&
 208	    vif->type != NL80211_IFTYPE_ADHOC &&
 209	    vif->type != NL80211_IFTYPE_MESH_POINT &&
 210	    vif->type != NL80211_IFTYPE_WDS)
 211		return;
 212
 213	/*
 214	 * Update the beacon without locking. This is safe on PCI devices
 215	 * as they only update the beacon periodically here. This should
 216	 * never be called for USB devices.
 217	 */
 218	WARN_ON(rt2x00_is_usb(rt2x00dev));
 219	rt2x00queue_update_beacon_locked(rt2x00dev, vif);
 220}
 221
 222void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
 223{
 224	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 225		return;
 226
 227	/* send buffered bc/mc frames out for every bssid */
 228	ieee80211_iterate_active_interfaces_atomic(
 229		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 230		rt2x00lib_bc_buffer_iter, rt2x00dev);
 231	/*
 232	 * Devices with pre tbtt interrupt don't need to update the beacon
 233	 * here as they will fetch the next beacon directly prior to
 234	 * transmission.
 235	 */
 236	if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
 237		return;
 238
 239	/* fetch next beacon */
 240	ieee80211_iterate_active_interfaces_atomic(
 241		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 242		rt2x00lib_beaconupdate_iter, rt2x00dev);
 243}
 244EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
 245
 246void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
 247{
 248	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 249		return;
 250
 251	/* fetch next beacon */
 252	ieee80211_iterate_active_interfaces_atomic(
 253		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 254		rt2x00lib_beaconupdate_iter, rt2x00dev);
 255}
 256EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
 257
 258void rt2x00lib_dmastart(struct queue_entry *entry)
 259{
 260	set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 261	rt2x00queue_index_inc(entry, Q_INDEX);
 262}
 263EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
 264
 265void rt2x00lib_dmadone(struct queue_entry *entry)
 266{
 267	set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
 268	clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 269	rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
 270}
 271EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
 272
 273static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
 274{
 275	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 276	struct ieee80211_bar *bar = (void *) entry->skb->data;
 277	struct rt2x00_bar_list_entry *bar_entry;
 278	int ret;
 279
 280	if (likely(!ieee80211_is_back_req(bar->frame_control)))
 281		return 0;
 282
 283	/*
 284	 * Unlike all other frames, the status report for BARs does
 285	 * not directly come from the hardware as it is incapable of
 286	 * matching a BA to a previously send BAR. The hardware will
 287	 * report all BARs as if they weren't acked at all.
 288	 *
 289	 * Instead the RX-path will scan for incoming BAs and set the
 290	 * block_acked flag if it sees one that was likely caused by
 291	 * a BAR from us.
 292	 *
 293	 * Remove remaining BARs here and return their status for
 294	 * TX done processing.
 295	 */
 296	ret = 0;
 297	rcu_read_lock();
 298	list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
 299		if (bar_entry->entry != entry)
 300			continue;
 301
 302		spin_lock_bh(&rt2x00dev->bar_list_lock);
 303		/* Return whether this BAR was blockacked or not */
 304		ret = bar_entry->block_acked;
 305		/* Remove the BAR from our checklist */
 306		list_del_rcu(&bar_entry->list);
 307		spin_unlock_bh(&rt2x00dev->bar_list_lock);
 308		kfree_rcu(bar_entry, head);
 309
 310		break;
 311	}
 312	rcu_read_unlock();
 313
 314	return ret;
 315}
 316
 317void rt2x00lib_txdone(struct queue_entry *entry,
 318		      struct txdone_entry_desc *txdesc)
 319{
 320	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 321	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
 322	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 323	unsigned int header_length, i;
 324	u8 rate_idx, rate_flags, retry_rates;
 325	u8 skbdesc_flags = skbdesc->flags;
 326	bool success;
 327
 328	/*
 329	 * Unmap the skb.
 330	 */
 331	rt2x00queue_unmap_skb(entry);
 332
 333	/*
 334	 * Remove the extra tx headroom from the skb.
 335	 */
 336	skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
 337
 338	/*
 339	 * Signal that the TX descriptor is no longer in the skb.
 340	 */
 341	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
 342
 343	/*
 344	 * Determine the length of 802.11 header.
 345	 */
 346	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
 347
 348	/*
 349	 * Remove L2 padding which was added during
 350	 */
 351	if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
 352		rt2x00queue_remove_l2pad(entry->skb, header_length);
 353
 354	/*
 355	 * If the IV/EIV data was stripped from the frame before it was
 356	 * passed to the hardware, we should now reinsert it again because
 357	 * mac80211 will expect the same data to be present it the
 358	 * frame as it was passed to us.
 359	 */
 360	if (rt2x00_has_cap_hw_crypto(rt2x00dev))
 361		rt2x00crypto_tx_insert_iv(entry->skb, header_length);
 362
 363	/*
 364	 * Send frame to debugfs immediately, after this call is completed
 365	 * we are going to overwrite the skb->cb array.
 366	 */
 367	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
 368
 369	/*
 370	 * Determine if the frame has been successfully transmitted and
 371	 * remove BARs from our check list while checking for their
 372	 * TX status.
 373	 */
 374	success =
 375	    rt2x00lib_txdone_bar_status(entry) ||
 376	    test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
 377	    test_bit(TXDONE_UNKNOWN, &txdesc->flags);
 378
 379	/*
 380	 * Update TX statistics.
 381	 */
 382	rt2x00dev->link.qual.tx_success += success;
 383	rt2x00dev->link.qual.tx_failed += !success;
 384
 385	rate_idx = skbdesc->tx_rate_idx;
 386	rate_flags = skbdesc->tx_rate_flags;
 387	retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
 388	    (txdesc->retry + 1) : 1;
 389
 390	/*
 391	 * Initialize TX status
 392	 */
 393	memset(&tx_info->status, 0, sizeof(tx_info->status));
 394	tx_info->status.ack_signal = 0;
 395
 396	/*
 397	 * Frame was send with retries, hardware tried
 398	 * different rates to send out the frame, at each
 399	 * retry it lowered the rate 1 step except when the
 400	 * lowest rate was used.
 401	 */
 402	for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
 403		tx_info->status.rates[i].idx = rate_idx - i;
 404		tx_info->status.rates[i].flags = rate_flags;
 405
 406		if (rate_idx - i == 0) {
 407			/*
 408			 * The lowest rate (index 0) was used until the
 409			 * number of max retries was reached.
 410			 */
 411			tx_info->status.rates[i].count = retry_rates - i;
 412			i++;
 413			break;
 414		}
 415		tx_info->status.rates[i].count = 1;
 416	}
 417	if (i < (IEEE80211_TX_MAX_RATES - 1))
 418		tx_info->status.rates[i].idx = -1; /* terminate */
 419
 420	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
 421		if (success)
 422			tx_info->flags |= IEEE80211_TX_STAT_ACK;
 423		else
 424			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
 425	}
 426
 427	/*
 428	 * Every single frame has it's own tx status, hence report
 429	 * every frame as ampdu of size 1.
 430	 *
 431	 * TODO: if we can find out how many frames were aggregated
 432	 * by the hw we could provide the real ampdu_len to mac80211
 433	 * which would allow the rc algorithm to better decide on
 434	 * which rates are suitable.
 435	 */
 436	if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
 437	    tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
 438		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
 439		tx_info->status.ampdu_len = 1;
 440		tx_info->status.ampdu_ack_len = success ? 1 : 0;
 441
 442		if (!success)
 443			tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
 444	}
 445
 446	if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
 447		if (success)
 448			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
 449		else
 450			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
 451	}
 452
 453	/*
 454	 * Only send the status report to mac80211 when it's a frame
 455	 * that originated in mac80211. If this was a extra frame coming
 456	 * through a mac80211 library call (RTS/CTS) then we should not
 457	 * send the status report back.
 458	 */
 459	if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
 460		if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
 461			ieee80211_tx_status(rt2x00dev->hw, entry->skb);
 462		else
 463			ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
 464	} else
 465		dev_kfree_skb_any(entry->skb);
 466
 467	/*
 468	 * Make this entry available for reuse.
 469	 */
 470	entry->skb = NULL;
 471	entry->flags = 0;
 472
 473	rt2x00dev->ops->lib->clear_entry(entry);
 474
 475	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
 476
 477	/*
 478	 * If the data queue was below the threshold before the txdone
 479	 * handler we must make sure the packet queue in the mac80211 stack
 480	 * is reenabled when the txdone handler has finished. This has to be
 481	 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
 482	 * before it was stopped.
 483	 */
 484	spin_lock_bh(&entry->queue->tx_lock);
 485	if (!rt2x00queue_threshold(entry->queue))
 486		rt2x00queue_unpause_queue(entry->queue);
 487	spin_unlock_bh(&entry->queue->tx_lock);
 488}
 489EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
 490
 491void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
 492{
 493	struct txdone_entry_desc txdesc;
 494
 495	txdesc.flags = 0;
 496	__set_bit(status, &txdesc.flags);
 497	txdesc.retry = 0;
 498
 499	rt2x00lib_txdone(entry, &txdesc);
 500}
 501EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
 502
 503static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
 504{
 505	struct ieee80211_mgmt *mgmt = (void *)data;
 506	u8 *pos, *end;
 507
 508	pos = (u8 *)mgmt->u.beacon.variable;
 509	end = data + len;
 510	while (pos < end) {
 511		if (pos + 2 + pos[1] > end)
 512			return NULL;
 513
 514		if (pos[0] == ie)
 515			return pos;
 516
 517		pos += 2 + pos[1];
 518	}
 519
 520	return NULL;
 521}
 522
 523static void rt2x00lib_sleep(struct work_struct *work)
 524{
 525	struct rt2x00_dev *rt2x00dev =
 526	    container_of(work, struct rt2x00_dev, sleep_work);
 527
 528	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
 529		return;
 530
 531	/*
 532	 * Check again is powersaving is enabled, to prevent races from delayed
 533	 * work execution.
 534	 */
 535	if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
 536		rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
 537				 IEEE80211_CONF_CHANGE_PS);
 538}
 539
 540static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
 541				      struct sk_buff *skb,
 542				      struct rxdone_entry_desc *rxdesc)
 543{
 544	struct rt2x00_bar_list_entry *entry;
 545	struct ieee80211_bar *ba = (void *)skb->data;
 546
 547	if (likely(!ieee80211_is_back(ba->frame_control)))
 548		return;
 549
 550	if (rxdesc->size < sizeof(*ba) + FCS_LEN)
 551		return;
 552
 553	rcu_read_lock();
 554	list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
 555
 556		if (ba->start_seq_num != entry->start_seq_num)
 557			continue;
 558
 559#define TID_CHECK(a, b) (						\
 560	((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==	\
 561	((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))		\
 562
 563		if (!TID_CHECK(ba->control, entry->control))
 564			continue;
 565
 566#undef TID_CHECK
 567
 568		if (!ether_addr_equal_64bits(ba->ra, entry->ta))
 569			continue;
 570
 571		if (!ether_addr_equal_64bits(ba->ta, entry->ra))
 572			continue;
 573
 574		/* Mark BAR since we received the according BA */
 575		spin_lock_bh(&rt2x00dev->bar_list_lock);
 576		entry->block_acked = 1;
 577		spin_unlock_bh(&rt2x00dev->bar_list_lock);
 578		break;
 579	}
 580	rcu_read_unlock();
 581
 582}
 583
 584static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
 585				      struct sk_buff *skb,
 586				      struct rxdone_entry_desc *rxdesc)
 587{
 588	struct ieee80211_hdr *hdr = (void *) skb->data;
 589	struct ieee80211_tim_ie *tim_ie;
 590	u8 *tim;
 591	u8 tim_len;
 592	bool cam;
 593
 594	/* If this is not a beacon, or if mac80211 has no powersaving
 595	 * configured, or if the device is already in powersaving mode
 596	 * we can exit now. */
 597	if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
 598		   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
 599		return;
 600
 601	/* min. beacon length + FCS_LEN */
 602	if (skb->len <= 40 + FCS_LEN)
 603		return;
 604
 605	/* and only beacons from the associated BSSID, please */
 606	if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
 607	    !rt2x00dev->aid)
 608		return;
 609
 610	rt2x00dev->last_beacon = jiffies;
 611
 612	tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
 613	if (!tim)
 614		return;
 615
 616	if (tim[1] < sizeof(*tim_ie))
 617		return;
 618
 619	tim_len = tim[1];
 620	tim_ie = (struct ieee80211_tim_ie *) &tim[2];
 621
 622	/* Check whenever the PHY can be turned off again. */
 623
 624	/* 1. What about buffered unicast traffic for our AID? */
 625	cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
 626
 627	/* 2. Maybe the AP wants to send multicast/broadcast data? */
 628	cam |= (tim_ie->bitmap_ctrl & 0x01);
 629
 630	if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
 631		queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
 
 632}
 633
 634static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
 635					struct rxdone_entry_desc *rxdesc)
 636{
 637	struct ieee80211_supported_band *sband;
 638	const struct rt2x00_rate *rate;
 639	unsigned int i;
 640	int signal = rxdesc->signal;
 641	int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
 642
 643	switch (rxdesc->rate_mode) {
 644	case RATE_MODE_CCK:
 645	case RATE_MODE_OFDM:
 646		/*
 647		 * For non-HT rates the MCS value needs to contain the
 648		 * actually used rate modulation (CCK or OFDM).
 649		 */
 650		if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
 651			signal = RATE_MCS(rxdesc->rate_mode, signal);
 652
 653		sband = &rt2x00dev->bands[rt2x00dev->curr_band];
 654		for (i = 0; i < sband->n_bitrates; i++) {
 655			rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
 656			if (((type == RXDONE_SIGNAL_PLCP) &&
 657			     (rate->plcp == signal)) ||
 658			    ((type == RXDONE_SIGNAL_BITRATE) &&
 659			      (rate->bitrate == signal)) ||
 660			    ((type == RXDONE_SIGNAL_MCS) &&
 661			      (rate->mcs == signal))) {
 662				return i;
 663			}
 664		}
 665		break;
 666	case RATE_MODE_HT_MIX:
 667	case RATE_MODE_HT_GREENFIELD:
 668		if (signal >= 0 && signal <= 76)
 669			return signal;
 670		break;
 671	default:
 672		break;
 673	}
 674
 675	rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
 676		    rxdesc->rate_mode, signal, type);
 
 677	return 0;
 678}
 679
 680void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
 681{
 682	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 683	struct rxdone_entry_desc rxdesc;
 684	struct sk_buff *skb;
 685	struct ieee80211_rx_status *rx_status;
 686	unsigned int header_length;
 687	int rate_idx;
 688
 689	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
 690	    !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 691		goto submit_entry;
 692
 693	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
 694		goto submit_entry;
 695
 696	/*
 697	 * Allocate a new sk_buffer. If no new buffer available, drop the
 698	 * received frame and reuse the existing buffer.
 699	 */
 700	skb = rt2x00queue_alloc_rxskb(entry, gfp);
 701	if (!skb)
 702		goto submit_entry;
 703
 704	/*
 705	 * Unmap the skb.
 706	 */
 707	rt2x00queue_unmap_skb(entry);
 708
 709	/*
 710	 * Extract the RXD details.
 711	 */
 712	memset(&rxdesc, 0, sizeof(rxdesc));
 713	rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
 714
 715	/*
 716	 * Check for valid size in case we get corrupted descriptor from
 717	 * hardware.
 718	 */
 719	if (unlikely(rxdesc.size == 0 ||
 720		     rxdesc.size > entry->queue->data_size)) {
 721		rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
 722			   rxdesc.size, entry->queue->data_size);
 723		dev_kfree_skb(entry->skb);
 724		goto renew_skb;
 725	}
 726
 727	/*
 728	 * The data behind the ieee80211 header must be
 729	 * aligned on a 4 byte boundary.
 730	 */
 731	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
 732
 733	/*
 734	 * Hardware might have stripped the IV/EIV/ICV data,
 735	 * in that case it is possible that the data was
 736	 * provided separately (through hardware descriptor)
 737	 * in which case we should reinsert the data into the frame.
 738	 */
 739	if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
 740	    (rxdesc.flags & RX_FLAG_IV_STRIPPED))
 741		rt2x00crypto_rx_insert_iv(entry->skb, header_length,
 742					  &rxdesc);
 743	else if (header_length &&
 744		 (rxdesc.size > header_length) &&
 745		 (rxdesc.dev_flags & RXDONE_L2PAD))
 746		rt2x00queue_remove_l2pad(entry->skb, header_length);
 747
 748	/* Trim buffer to correct size */
 749	skb_trim(entry->skb, rxdesc.size);
 750
 751	/*
 752	 * Translate the signal to the correct bitrate index.
 753	 */
 754	rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
 755	if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
 756	    rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
 757		rxdesc.flags |= RX_FLAG_HT;
 758
 759	/*
 760	 * Check if this is a beacon, and more frames have been
 761	 * buffered while we were in powersaving mode.
 762	 */
 763	rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
 764
 765	/*
 766	 * Check for incoming BlockAcks to match to the BlockAckReqs
 767	 * we've send out.
 768	 */
 769	rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
 770
 771	/*
 772	 * Update extra components
 773	 */
 774	rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
 775	rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
 776	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
 777
 778	/*
 779	 * Initialize RX status information, and send frame
 780	 * to mac80211.
 781	 */
 782	rx_status = IEEE80211_SKB_RXCB(entry->skb);
 783
 784	/* Ensure that all fields of rx_status are initialized
 785	 * properly. The skb->cb array was used for driver
 786	 * specific informations, so rx_status might contain
 787	 * garbage.
 788	 */
 789	memset(rx_status, 0, sizeof(*rx_status));
 790
 791	rx_status->mactime = rxdesc.timestamp;
 792	rx_status->band = rt2x00dev->curr_band;
 793	rx_status->freq = rt2x00dev->curr_freq;
 794	rx_status->rate_idx = rate_idx;
 795	rx_status->signal = rxdesc.rssi;
 796	rx_status->flag = rxdesc.flags;
 797	rx_status->antenna = rt2x00dev->link.ant.active.rx;
 798
 799	ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
 800
 801renew_skb:
 802	/*
 803	 * Replace the skb with the freshly allocated one.
 804	 */
 805	entry->skb = skb;
 806
 807submit_entry:
 808	entry->flags = 0;
 809	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
 810	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
 811	    test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 812		rt2x00dev->ops->lib->clear_entry(entry);
 813}
 814EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
 815
 816/*
 817 * Driver initialization handlers.
 818 */
 819const struct rt2x00_rate rt2x00_supported_rates[12] = {
 820	{
 821		.flags = DEV_RATE_CCK,
 822		.bitrate = 10,
 823		.ratemask = BIT(0),
 824		.plcp = 0x00,
 825		.mcs = RATE_MCS(RATE_MODE_CCK, 0),
 826	},
 827	{
 828		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 829		.bitrate = 20,
 830		.ratemask = BIT(1),
 831		.plcp = 0x01,
 832		.mcs = RATE_MCS(RATE_MODE_CCK, 1),
 833	},
 834	{
 835		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 836		.bitrate = 55,
 837		.ratemask = BIT(2),
 838		.plcp = 0x02,
 839		.mcs = RATE_MCS(RATE_MODE_CCK, 2),
 840	},
 841	{
 842		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 843		.bitrate = 110,
 844		.ratemask = BIT(3),
 845		.plcp = 0x03,
 846		.mcs = RATE_MCS(RATE_MODE_CCK, 3),
 847	},
 848	{
 849		.flags = DEV_RATE_OFDM,
 850		.bitrate = 60,
 851		.ratemask = BIT(4),
 852		.plcp = 0x0b,
 853		.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
 854	},
 855	{
 856		.flags = DEV_RATE_OFDM,
 857		.bitrate = 90,
 858		.ratemask = BIT(5),
 859		.plcp = 0x0f,
 860		.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
 861	},
 862	{
 863		.flags = DEV_RATE_OFDM,
 864		.bitrate = 120,
 865		.ratemask = BIT(6),
 866		.plcp = 0x0a,
 867		.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
 868	},
 869	{
 870		.flags = DEV_RATE_OFDM,
 871		.bitrate = 180,
 872		.ratemask = BIT(7),
 873		.plcp = 0x0e,
 874		.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
 875	},
 876	{
 877		.flags = DEV_RATE_OFDM,
 878		.bitrate = 240,
 879		.ratemask = BIT(8),
 880		.plcp = 0x09,
 881		.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
 882	},
 883	{
 884		.flags = DEV_RATE_OFDM,
 885		.bitrate = 360,
 886		.ratemask = BIT(9),
 887		.plcp = 0x0d,
 888		.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
 889	},
 890	{
 891		.flags = DEV_RATE_OFDM,
 892		.bitrate = 480,
 893		.ratemask = BIT(10),
 894		.plcp = 0x08,
 895		.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
 896	},
 897	{
 898		.flags = DEV_RATE_OFDM,
 899		.bitrate = 540,
 900		.ratemask = BIT(11),
 901		.plcp = 0x0c,
 902		.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
 903	},
 904};
 905
 906static void rt2x00lib_channel(struct ieee80211_channel *entry,
 907			      const int channel, const int tx_power,
 908			      const int value)
 909{
 910	/* XXX: this assumption about the band is wrong for 802.11j */
 911	entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
 912	entry->center_freq = ieee80211_channel_to_frequency(channel,
 913							    entry->band);
 914	entry->hw_value = value;
 915	entry->max_power = tx_power;
 916	entry->max_antenna_gain = 0xff;
 917}
 918
 919static void rt2x00lib_rate(struct ieee80211_rate *entry,
 920			   const u16 index, const struct rt2x00_rate *rate)
 921{
 922	entry->flags = 0;
 923	entry->bitrate = rate->bitrate;
 924	entry->hw_value = index;
 925	entry->hw_value_short = index;
 926
 927	if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
 928		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
 929}
 930
 931static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
 932				    struct hw_mode_spec *spec)
 933{
 934	struct ieee80211_hw *hw = rt2x00dev->hw;
 935	struct ieee80211_channel *channels;
 936	struct ieee80211_rate *rates;
 937	unsigned int num_rates;
 938	unsigned int i;
 939
 940	num_rates = 0;
 941	if (spec->supported_rates & SUPPORT_RATE_CCK)
 942		num_rates += 4;
 943	if (spec->supported_rates & SUPPORT_RATE_OFDM)
 944		num_rates += 8;
 945
 946	channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
 947	if (!channels)
 948		return -ENOMEM;
 949
 950	rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
 951	if (!rates)
 952		goto exit_free_channels;
 953
 954	/*
 955	 * Initialize Rate list.
 956	 */
 957	for (i = 0; i < num_rates; i++)
 958		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
 959
 960	/*
 961	 * Initialize Channel list.
 962	 */
 963	for (i = 0; i < spec->num_channels; i++) {
 964		rt2x00lib_channel(&channels[i],
 965				  spec->channels[i].channel,
 966				  spec->channels_info[i].max_power, i);
 967	}
 968
 969	/*
 970	 * Intitialize 802.11b, 802.11g
 971	 * Rates: CCK, OFDM.
 972	 * Channels: 2.4 GHz
 973	 */
 974	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
 975		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
 976		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
 977		rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
 978		rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
 979		hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
 980		    &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
 981		memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
 982		       &spec->ht, sizeof(spec->ht));
 983	}
 984
 985	/*
 986	 * Intitialize 802.11a
 987	 * Rates: OFDM.
 988	 * Channels: OFDM, UNII, HiperLAN2.
 989	 */
 990	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
 991		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
 992		    spec->num_channels - 14;
 993		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
 994		    num_rates - 4;
 995		rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
 996		rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
 997		hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
 998		    &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
 999		memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
1000		       &spec->ht, sizeof(spec->ht));
1001	}
1002
1003	return 0;
1004
1005 exit_free_channels:
1006	kfree(channels);
1007	rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1008	return -ENOMEM;
1009}
1010
1011static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1012{
1013	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1014		ieee80211_unregister_hw(rt2x00dev->hw);
1015
1016	if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
1017		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
1018		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
1019		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
1020		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
1021	}
1022
1023	kfree(rt2x00dev->spec.channels_info);
1024}
1025
1026static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1027{
1028	struct hw_mode_spec *spec = &rt2x00dev->spec;
1029	int status;
1030
1031	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1032		return 0;
1033
1034	/*
1035	 * Initialize HW modes.
1036	 */
1037	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1038	if (status)
1039		return status;
1040
1041	/*
1042	 * Initialize HW fields.
1043	 */
1044	rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1045
1046	/*
1047	 * Initialize extra TX headroom required.
1048	 */
1049	rt2x00dev->hw->extra_tx_headroom =
1050		max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1051		      rt2x00dev->extra_tx_headroom);
1052
1053	/*
1054	 * Take TX headroom required for alignment into account.
1055	 */
1056	if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
1057		rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1058	else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
1059		rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1060
1061	/*
1062	 * Tell mac80211 about the size of our private STA structure.
1063	 */
1064	rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1065
1066	/*
1067	 * Allocate tx status FIFO for driver use.
1068	 */
1069	if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
1070		/*
1071		 * Allocate the txstatus fifo. In the worst case the tx
1072		 * status fifo has to hold the tx status of all entries
1073		 * in all tx queues. Hence, calculate the kfifo size as
1074		 * tx_queues * entry_num and round up to the nearest
1075		 * power of 2.
1076		 */
1077		int kfifo_size =
1078			roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1079					   rt2x00dev->tx->limit *
1080					   sizeof(u32));
1081
1082		status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1083				     GFP_KERNEL);
1084		if (status)
1085			return status;
1086	}
1087
1088	/*
1089	 * Initialize tasklets if used by the driver. Tasklets are
1090	 * disabled until the interrupts are turned on. The driver
1091	 * has to handle that.
1092	 */
1093#define RT2X00_TASKLET_INIT(taskletname) \
1094	if (rt2x00dev->ops->lib->taskletname) { \
1095		tasklet_init(&rt2x00dev->taskletname, \
1096			     rt2x00dev->ops->lib->taskletname, \
1097			     (unsigned long)rt2x00dev); \
 
1098	}
1099
1100	RT2X00_TASKLET_INIT(txstatus_tasklet);
1101	RT2X00_TASKLET_INIT(pretbtt_tasklet);
1102	RT2X00_TASKLET_INIT(tbtt_tasklet);
1103	RT2X00_TASKLET_INIT(rxdone_tasklet);
1104	RT2X00_TASKLET_INIT(autowake_tasklet);
1105
1106#undef RT2X00_TASKLET_INIT
1107
1108	/*
1109	 * Register HW.
1110	 */
1111	status = ieee80211_register_hw(rt2x00dev->hw);
1112	if (status)
1113		return status;
1114
1115	set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1116
1117	return 0;
1118}
1119
1120/*
1121 * Initialization/uninitialization handlers.
1122 */
1123static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1124{
1125	if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1126		return;
1127
1128	/*
1129	 * Unregister extra components.
1130	 */
1131	rt2x00rfkill_unregister(rt2x00dev);
1132
1133	/*
1134	 * Allow the HW to uninitialize.
1135	 */
1136	rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1137
1138	/*
1139	 * Free allocated queue entries.
1140	 */
1141	rt2x00queue_uninitialize(rt2x00dev);
1142}
1143
1144static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1145{
1146	int status;
1147
1148	if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1149		return 0;
1150
1151	/*
1152	 * Allocate all queue entries.
1153	 */
1154	status = rt2x00queue_initialize(rt2x00dev);
1155	if (status)
1156		return status;
1157
1158	/*
1159	 * Initialize the device.
1160	 */
1161	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1162	if (status) {
1163		rt2x00queue_uninitialize(rt2x00dev);
1164		return status;
1165	}
1166
1167	set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1168
 
 
 
 
 
1169	return 0;
1170}
1171
1172int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1173{
1174	int retval;
1175
1176	if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1177		return 0;
1178
1179	/*
1180	 * If this is the first interface which is added,
1181	 * we should load the firmware now.
1182	 */
1183	retval = rt2x00lib_load_firmware(rt2x00dev);
1184	if (retval)
1185		return retval;
1186
1187	/*
1188	 * Initialize the device.
1189	 */
1190	retval = rt2x00lib_initialize(rt2x00dev);
1191	if (retval)
1192		return retval;
1193
1194	rt2x00dev->intf_ap_count = 0;
1195	rt2x00dev->intf_sta_count = 0;
1196	rt2x00dev->intf_associated = 0;
1197
1198	/* Enable the radio */
1199	retval = rt2x00lib_enable_radio(rt2x00dev);
1200	if (retval)
1201		return retval;
1202
1203	set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1204
1205	return 0;
1206}
1207
1208void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1209{
1210	if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1211		return;
1212
1213	/*
1214	 * Perhaps we can add something smarter here,
1215	 * but for now just disabling the radio should do.
1216	 */
1217	rt2x00lib_disable_radio(rt2x00dev);
1218
1219	rt2x00dev->intf_ap_count = 0;
1220	rt2x00dev->intf_sta_count = 0;
1221	rt2x00dev->intf_associated = 0;
1222}
1223
1224static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1225{
1226	struct ieee80211_iface_limit *if_limit;
1227	struct ieee80211_iface_combination *if_combination;
1228
1229	if (rt2x00dev->ops->max_ap_intf < 2)
1230		return;
1231
1232	/*
1233	 * Build up AP interface limits structure.
1234	 */
1235	if_limit = &rt2x00dev->if_limits_ap;
1236	if_limit->max = rt2x00dev->ops->max_ap_intf;
1237	if_limit->types = BIT(NL80211_IFTYPE_AP);
1238#ifdef CONFIG_MAC80211_MESH
1239	if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1240#endif
1241
1242	/*
1243	 * Build up AP interface combinations structure.
1244	 */
1245	if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1246	if_combination->limits = if_limit;
1247	if_combination->n_limits = 1;
1248	if_combination->max_interfaces = if_limit->max;
1249	if_combination->num_different_channels = 1;
1250
1251	/*
1252	 * Finally, specify the possible combinations to mac80211.
1253	 */
1254	rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1255	rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1256}
1257
1258static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1259{
1260	if (WARN_ON(!rt2x00dev->tx))
1261		return 0;
1262
1263	if (rt2x00_is_usb(rt2x00dev))
1264		return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1265
1266	return rt2x00dev->tx[0].winfo_size;
1267}
1268
1269/*
1270 * driver allocation handlers.
1271 */
1272int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1273{
1274	int retval = -ENOMEM;
1275
1276	/*
1277	 * Set possible interface combinations.
1278	 */
1279	rt2x00lib_set_if_combinations(rt2x00dev);
1280
1281	/*
1282	 * Allocate the driver data memory, if necessary.
1283	 */
1284	if (rt2x00dev->ops->drv_data_size > 0) {
1285		rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1286			                      GFP_KERNEL);
1287		if (!rt2x00dev->drv_data) {
1288			retval = -ENOMEM;
1289			goto exit;
1290		}
1291	}
1292
1293	spin_lock_init(&rt2x00dev->irqmask_lock);
1294	mutex_init(&rt2x00dev->csr_mutex);
1295	INIT_LIST_HEAD(&rt2x00dev->bar_list);
1296	spin_lock_init(&rt2x00dev->bar_list_lock);
1297
1298	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1299
1300	/*
1301	 * Make room for rt2x00_intf inside the per-interface
1302	 * structure ieee80211_vif.
1303	 */
1304	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1305
1306	/*
1307	 * rt2x00 devices can only use the last n bits of the MAC address
1308	 * for virtual interfaces.
 
1309	 */
1310	rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1311		(rt2x00dev->ops->max_ap_intf - 1);
 
 
 
 
 
1312
1313	/*
1314	 * Initialize work.
1315	 */
1316	rt2x00dev->workqueue =
1317	    alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1318	if (!rt2x00dev->workqueue) {
1319		retval = -ENOMEM;
1320		goto exit;
1321	}
1322
1323	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1324	INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1325	INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1326
1327	/*
1328	 * Let the driver probe the device to detect the capabilities.
1329	 */
1330	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1331	if (retval) {
1332		rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1333		goto exit;
1334	}
1335
1336	/*
1337	 * Allocate queue array.
1338	 */
1339	retval = rt2x00queue_allocate(rt2x00dev);
1340	if (retval)
1341		goto exit;
1342
1343	/* Cache TX headroom value */
1344	rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1345
1346	/*
1347	 * Determine which operating modes are supported, all modes
1348	 * which require beaconing, depend on the availability of
1349	 * beacon entries.
1350	 */
1351	rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1352	if (rt2x00dev->bcn->limit > 0)
1353		rt2x00dev->hw->wiphy->interface_modes |=
1354		    BIT(NL80211_IFTYPE_ADHOC) |
1355		    BIT(NL80211_IFTYPE_AP) |
1356#ifdef CONFIG_MAC80211_MESH
1357		    BIT(NL80211_IFTYPE_MESH_POINT) |
1358#endif
1359		    BIT(NL80211_IFTYPE_WDS);
1360
1361	rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1362
1363	/*
1364	 * Initialize ieee80211 structure.
1365	 */
1366	retval = rt2x00lib_probe_hw(rt2x00dev);
1367	if (retval) {
1368		rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1369		goto exit;
1370	}
1371
1372	/*
1373	 * Register extra components.
1374	 */
1375	rt2x00link_register(rt2x00dev);
1376	rt2x00leds_register(rt2x00dev);
1377	rt2x00debug_register(rt2x00dev);
1378	rt2x00rfkill_register(rt2x00dev);
1379
1380	return 0;
1381
1382exit:
1383	rt2x00lib_remove_dev(rt2x00dev);
1384
1385	return retval;
1386}
1387EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1388
1389void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1390{
1391	clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1392
1393	/*
1394	 * Disable radio.
1395	 */
1396	rt2x00lib_disable_radio(rt2x00dev);
1397
1398	/*
1399	 * Stop all work.
1400	 */
1401	cancel_work_sync(&rt2x00dev->intf_work);
1402	cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1403	cancel_work_sync(&rt2x00dev->sleep_work);
1404	if (rt2x00_is_usb(rt2x00dev)) {
1405		hrtimer_cancel(&rt2x00dev->txstatus_timer);
1406		cancel_work_sync(&rt2x00dev->rxdone_work);
1407		cancel_work_sync(&rt2x00dev->txdone_work);
1408	}
1409	if (rt2x00dev->workqueue)
1410		destroy_workqueue(rt2x00dev->workqueue);
1411
1412	/*
1413	 * Free the tx status fifo.
1414	 */
1415	kfifo_free(&rt2x00dev->txstatus_fifo);
1416
1417	/*
1418	 * Kill the tx status tasklet.
1419	 */
1420	tasklet_kill(&rt2x00dev->txstatus_tasklet);
1421	tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1422	tasklet_kill(&rt2x00dev->tbtt_tasklet);
1423	tasklet_kill(&rt2x00dev->rxdone_tasklet);
1424	tasklet_kill(&rt2x00dev->autowake_tasklet);
1425
1426	/*
1427	 * Uninitialize device.
1428	 */
1429	rt2x00lib_uninitialize(rt2x00dev);
1430
1431	/*
1432	 * Free extra components
1433	 */
1434	rt2x00debug_deregister(rt2x00dev);
1435	rt2x00leds_unregister(rt2x00dev);
1436
1437	/*
1438	 * Free ieee80211_hw memory.
1439	 */
1440	rt2x00lib_remove_hw(rt2x00dev);
1441
1442	/*
1443	 * Free firmware image.
1444	 */
1445	rt2x00lib_free_firmware(rt2x00dev);
1446
1447	/*
1448	 * Free queue structures.
1449	 */
1450	rt2x00queue_free(rt2x00dev);
1451
1452	/*
1453	 * Free the driver data.
1454	 */
1455	if (rt2x00dev->drv_data)
1456		kfree(rt2x00dev->drv_data);
1457}
1458EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1459
1460/*
1461 * Device state handlers
1462 */
1463#ifdef CONFIG_PM
1464int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1465{
1466	rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1467
1468	/*
1469	 * Prevent mac80211 from accessing driver while suspended.
1470	 */
1471	if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1472		return 0;
1473
1474	/*
1475	 * Cleanup as much as possible.
1476	 */
1477	rt2x00lib_uninitialize(rt2x00dev);
1478
1479	/*
1480	 * Suspend/disable extra components.
1481	 */
1482	rt2x00leds_suspend(rt2x00dev);
1483	rt2x00debug_deregister(rt2x00dev);
1484
1485	/*
1486	 * Set device mode to sleep for power management,
1487	 * on some hardware this call seems to consistently fail.
1488	 * From the specifications it is hard to tell why it fails,
1489	 * and if this is a "bad thing".
1490	 * Overall it is safe to just ignore the failure and
1491	 * continue suspending. The only downside is that the
1492	 * device will not be in optimal power save mode, but with
1493	 * the radio and the other components already disabled the
1494	 * device is as good as disabled.
1495	 */
1496	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1497		rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
 
1498
1499	return 0;
1500}
1501EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1502
1503int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1504{
1505	rt2x00_dbg(rt2x00dev, "Waking up\n");
1506
1507	/*
1508	 * Restore/enable extra components.
1509	 */
1510	rt2x00debug_register(rt2x00dev);
1511	rt2x00leds_resume(rt2x00dev);
1512
1513	/*
1514	 * We are ready again to receive requests from mac80211.
1515	 */
1516	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1517
1518	return 0;
1519}
1520EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1521#endif /* CONFIG_PM */
1522
1523/*
1524 * rt2x00lib module information.
1525 */
1526MODULE_AUTHOR(DRV_PROJECT);
1527MODULE_VERSION(DRV_VERSION);
1528MODULE_DESCRIPTION("rt2x00 library");
1529MODULE_LICENSE("GPL");