Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1/******************************************************************************
   2 *
   3 * This file is provided under a dual BSD/GPLv2 license.  When using or
   4 * redistributing this file, you may do so under either license.
   5 *
   6 * GPL LICENSE SUMMARY
   7 *
   8 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of version 2 of the GNU General Public License as
  12 * published by the Free Software Foundation.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
  22 * USA
  23 *
  24 * The full GNU General Public License is included in this distribution
  25 * in the file called LICENSE.GPL.
  26 *
  27 * Contact Information:
  28 *  Intel Linux Wireless <ilw@linux.intel.com>
  29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  30 *
  31 * BSD LICENSE
  32 *
  33 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
  34 * All rights reserved.
  35 *
  36 * Redistribution and use in source and binary forms, with or without
  37 * modification, are permitted provided that the following conditions
  38 * are met:
  39 *
  40 *  * Redistributions of source code must retain the above copyright
  41 *    notice, this list of conditions and the following disclaimer.
  42 *  * Redistributions in binary form must reproduce the above copyright
  43 *    notice, this list of conditions and the following disclaimer in
  44 *    the documentation and/or other materials provided with the
  45 *    distribution.
  46 *  * Neither the name Intel Corporation nor the names of its
  47 *    contributors may be used to endorse or promote products derived
  48 *    from this software without specific prior written permission.
  49 *
  50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  61 *
  62 *****************************************************************************/
  63/*
  64 * Please use this file (iwl-commands.h) only for uCode API definitions.
  65 * Please use iwl-xxxx-hw.h for hardware-related definitions.
  66 * Please use iwl-dev.h for driver implementation definitions.
  67 */
  68
  69#ifndef __iwl_commands_h__
  70#define __iwl_commands_h__
  71
  72struct iwl_priv;
  73
  74/* uCode version contains 4 values: Major/Minor/API/Serial */
  75#define IWL_UCODE_MAJOR(ver)	(((ver) & 0xFF000000) >> 24)
  76#define IWL_UCODE_MINOR(ver)	(((ver) & 0x00FF0000) >> 16)
  77#define IWL_UCODE_API(ver)	(((ver) & 0x0000FF00) >> 8)
  78#define IWL_UCODE_SERIAL(ver)	((ver) & 0x000000FF)
  79
  80
  81/* Tx rates */
  82#define IWL_CCK_RATES	4
  83#define IWL_OFDM_RATES	8
  84#define IWL_MAX_RATES	(IWL_CCK_RATES + IWL_OFDM_RATES)
  85
  86enum {
  87	REPLY_ALIVE = 0x1,
  88	REPLY_ERROR = 0x2,
  89
  90	/* RXON and QOS commands */
  91	REPLY_RXON = 0x10,
  92	REPLY_RXON_ASSOC = 0x11,
  93	REPLY_QOS_PARAM = 0x13,
  94	REPLY_RXON_TIMING = 0x14,
  95
  96	/* Multi-Station support */
  97	REPLY_ADD_STA = 0x18,
  98	REPLY_REMOVE_STA = 0x19,
  99	REPLY_REMOVE_ALL_STA = 0x1a,	/* not used */
 100	REPLY_TXFIFO_FLUSH = 0x1e,
 101
 102	/* Security */
 103	REPLY_WEPKEY = 0x20,
 104
 105	/* RX, TX, LEDs */
 106	REPLY_TX = 0x1c,
 107	REPLY_LEDS_CMD = 0x48,
 108	REPLY_TX_LINK_QUALITY_CMD = 0x4e, /* for 4965 and up */
 109
 110	/* WiMAX coexistence */
 111	COEX_PRIORITY_TABLE_CMD = 0x5a,	/* for 5000 series and up */
 112	COEX_MEDIUM_NOTIFICATION = 0x5b,
 113	COEX_EVENT_CMD = 0x5c,
 114
 115	/* Calibration */
 116	TEMPERATURE_NOTIFICATION = 0x62,
 117	CALIBRATION_CFG_CMD = 0x65,
 118	CALIBRATION_RES_NOTIFICATION = 0x66,
 119	CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
 120
 121	/* 802.11h related */
 122	REPLY_QUIET_CMD = 0x71,		/* not used */
 123	REPLY_CHANNEL_SWITCH = 0x72,
 124	CHANNEL_SWITCH_NOTIFICATION = 0x73,
 125	REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
 126	SPECTRUM_MEASURE_NOTIFICATION = 0x75,
 127
 128	/* Power Management */
 129	POWER_TABLE_CMD = 0x77,
 130	PM_SLEEP_NOTIFICATION = 0x7A,
 131	PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
 132
 133	/* Scan commands and notifications */
 134	REPLY_SCAN_CMD = 0x80,
 135	REPLY_SCAN_ABORT_CMD = 0x81,
 136	SCAN_START_NOTIFICATION = 0x82,
 137	SCAN_RESULTS_NOTIFICATION = 0x83,
 138	SCAN_COMPLETE_NOTIFICATION = 0x84,
 139
 140	/* IBSS/AP commands */
 141	BEACON_NOTIFICATION = 0x90,
 142	REPLY_TX_BEACON = 0x91,
 143	WHO_IS_AWAKE_NOTIFICATION = 0x94,	/* not used */
 144
 145	/* Miscellaneous commands */
 146	REPLY_TX_POWER_DBM_CMD = 0x95,
 147	QUIET_NOTIFICATION = 0x96,		/* not used */
 148	REPLY_TX_PWR_TABLE_CMD = 0x97,
 149	REPLY_TX_POWER_DBM_CMD_V1 = 0x98,	/* old version of API */
 150	TX_ANT_CONFIGURATION_CMD = 0x98,
 151	MEASURE_ABORT_NOTIFICATION = 0x99,	/* not used */
 152
 153	/* Bluetooth device coexistence config command */
 154	REPLY_BT_CONFIG = 0x9b,
 155
 156	/* Statistics */
 157	REPLY_STATISTICS_CMD = 0x9c,
 158	STATISTICS_NOTIFICATION = 0x9d,
 159
 160	/* RF-KILL commands and notifications */
 161	REPLY_CARD_STATE_CMD = 0xa0,
 162	CARD_STATE_NOTIFICATION = 0xa1,
 163
 164	/* Missed beacons notification */
 165	MISSED_BEACONS_NOTIFICATION = 0xa2,
 166
 167	REPLY_CT_KILL_CONFIG_CMD = 0xa4,
 168	SENSITIVITY_CMD = 0xa8,
 169	REPLY_PHY_CALIBRATION_CMD = 0xb0,
 170	REPLY_RX_PHY_CMD = 0xc0,
 171	REPLY_RX_MPDU_CMD = 0xc1,
 172	REPLY_RX = 0xc3,
 173	REPLY_COMPRESSED_BA = 0xc5,
 174
 175	/* BT Coex */
 176	REPLY_BT_COEX_PRIO_TABLE = 0xcc,
 177	REPLY_BT_COEX_PROT_ENV = 0xcd,
 178	REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
 179
 180	/* PAN commands */
 181	REPLY_WIPAN_PARAMS = 0xb2,
 182	REPLY_WIPAN_RXON = 0xb3,	/* use REPLY_RXON structure */
 183	REPLY_WIPAN_RXON_TIMING = 0xb4,	/* use REPLY_RXON_TIMING structure */
 184	REPLY_WIPAN_RXON_ASSOC = 0xb6,	/* use REPLY_RXON_ASSOC structure */
 185	REPLY_WIPAN_QOS_PARAM = 0xb7,	/* use REPLY_QOS_PARAM structure */
 186	REPLY_WIPAN_WEPKEY = 0xb8,	/* use REPLY_WEPKEY structure */
 187	REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
 188	REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
 189	REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
 190
 191	REPLY_WOWLAN_PATTERNS = 0xe0,
 192	REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
 193	REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
 194	REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
 195	REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
 196	REPLY_WOWLAN_GET_STATUS = 0xe5,
 197
 198	REPLY_MAX = 0xff
 199};
 200
 201/******************************************************************************
 202 * (0)
 203 * Commonly used structures and definitions:
 204 * Command header, rate_n_flags, txpower
 205 *
 206 *****************************************************************************/
 207
 208/* iwl_cmd_header flags value */
 209#define IWL_CMD_FAILED_MSK 0x40
 210
 211#define SEQ_TO_QUEUE(s)	(((s) >> 8) & 0x1f)
 212#define QUEUE_TO_SEQ(q)	(((q) & 0x1f) << 8)
 213#define SEQ_TO_INDEX(s)	((s) & 0xff)
 214#define INDEX_TO_SEQ(i)	((i) & 0xff)
 215#define SEQ_RX_FRAME	cpu_to_le16(0x8000)
 216
 217/**
 218 * struct iwl_cmd_header
 219 *
 220 * This header format appears in the beginning of each command sent from the
 221 * driver, and each response/notification received from uCode.
 222 */
 223struct iwl_cmd_header {
 224	u8 cmd;		/* Command ID:  REPLY_RXON, etc. */
 225	u8 flags;	/* 0:5 reserved, 6 abort, 7 internal */
 226	/*
 227	 * The driver sets up the sequence number to values of its choosing.
 228	 * uCode does not use this value, but passes it back to the driver
 229	 * when sending the response to each driver-originated command, so
 230	 * the driver can match the response to the command.  Since the values
 231	 * don't get used by uCode, the driver may set up an arbitrary format.
 232	 *
 233	 * There is one exception:  uCode sets bit 15 when it originates
 234	 * the response/notification, i.e. when the response/notification
 235	 * is not a direct response to a command sent by the driver.  For
 236	 * example, uCode issues REPLY_RX when it sends a received frame
 237	 * to the driver; it is not a direct response to any driver command.
 238	 *
 239	 * The Linux driver uses the following format:
 240	 *
 241	 *  0:7		tfd index - position within TX queue
 242	 *  8:12	TX queue id
 243	 *  13:14	reserved
 244	 *  15		unsolicited RX or uCode-originated notification
 245	 */
 246	__le16 sequence;
 247
 248	/* command or response/notification data follows immediately */
 249	u8 data[0];
 250} __packed;
 251
 252
 253/**
 254 * iwlagn rate_n_flags bit fields
 255 *
 256 * rate_n_flags format is used in following iwlagn commands:
 257 *  REPLY_RX (response only)
 258 *  REPLY_RX_MPDU (response only)
 259 *  REPLY_TX (both command and response)
 260 *  REPLY_TX_LINK_QUALITY_CMD
 261 *
 262 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
 263 *  2-0:  0)   6 Mbps
 264 *        1)  12 Mbps
 265 *        2)  18 Mbps
 266 *        3)  24 Mbps
 267 *        4)  36 Mbps
 268 *        5)  48 Mbps
 269 *        6)  54 Mbps
 270 *        7)  60 Mbps
 271 *
 272 *  4-3:  0)  Single stream (SISO)
 273 *        1)  Dual stream (MIMO)
 274 *        2)  Triple stream (MIMO)
 275 *
 276 *    5:  Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
 277 *
 278 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
 279 *  3-0:  0xD)   6 Mbps
 280 *        0xF)   9 Mbps
 281 *        0x5)  12 Mbps
 282 *        0x7)  18 Mbps
 283 *        0x9)  24 Mbps
 284 *        0xB)  36 Mbps
 285 *        0x1)  48 Mbps
 286 *        0x3)  54 Mbps
 287 *
 288 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
 289 *  6-0:   10)  1 Mbps
 290 *         20)  2 Mbps
 291 *         55)  5.5 Mbps
 292 *        110)  11 Mbps
 293 */
 294#define RATE_MCS_CODE_MSK 0x7
 295#define RATE_MCS_SPATIAL_POS 3
 296#define RATE_MCS_SPATIAL_MSK 0x18
 297#define RATE_MCS_HT_DUP_POS 5
 298#define RATE_MCS_HT_DUP_MSK 0x20
 299/* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
 300#define RATE_MCS_RATE_MSK 0xff
 301
 302/* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
 303#define RATE_MCS_FLAGS_POS 8
 304#define RATE_MCS_HT_POS 8
 305#define RATE_MCS_HT_MSK 0x100
 306
 307/* Bit 9: (1) CCK, (0) OFDM.  HT (bit 8) must be "0" for this bit to be valid */
 308#define RATE_MCS_CCK_POS 9
 309#define RATE_MCS_CCK_MSK 0x200
 310
 311/* Bit 10: (1) Use Green Field preamble */
 312#define RATE_MCS_GF_POS 10
 313#define RATE_MCS_GF_MSK 0x400
 314
 315/* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
 316#define RATE_MCS_HT40_POS 11
 317#define RATE_MCS_HT40_MSK 0x800
 318
 319/* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
 320#define RATE_MCS_DUP_POS 12
 321#define RATE_MCS_DUP_MSK 0x1000
 322
 323/* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
 324#define RATE_MCS_SGI_POS 13
 325#define RATE_MCS_SGI_MSK 0x2000
 326
 327/**
 328 * rate_n_flags Tx antenna masks
 329 * 4965 has 2 transmitters
 330 * 5100 has 1 transmitter B
 331 * 5150 has 1 transmitter A
 332 * 5300 has 3 transmitters
 333 * 5350 has 3 transmitters
 334 * bit14:16
 335 */
 336#define RATE_MCS_ANT_POS	14
 337#define RATE_MCS_ANT_A_MSK	0x04000
 338#define RATE_MCS_ANT_B_MSK	0x08000
 339#define RATE_MCS_ANT_C_MSK	0x10000
 340#define RATE_MCS_ANT_AB_MSK	(RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
 341#define RATE_MCS_ANT_ABC_MSK	(RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
 342#define RATE_ANT_NUM 3
 343
 344#define POWER_TABLE_NUM_ENTRIES			33
 345#define POWER_TABLE_NUM_HT_OFDM_ENTRIES		32
 346#define POWER_TABLE_CCK_ENTRY			32
 347
 348#define IWL_PWR_NUM_HT_OFDM_ENTRIES		24
 349#define IWL_PWR_CCK_ENTRIES			2
 350
 351/**
 352 * struct tx_power_dual_stream
 353 *
 354 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
 355 *
 356 * Same format as iwl_tx_power_dual_stream, but __le32
 357 */
 358struct tx_power_dual_stream {
 359	__le32 dw;
 360} __packed;
 361
 362/**
 363 * Command REPLY_TX_POWER_DBM_CMD = 0x98
 364 * struct iwlagn_tx_power_dbm_cmd
 365 */
 366#define IWLAGN_TX_POWER_AUTO 0x7f
 367#define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
 368
 369struct iwlagn_tx_power_dbm_cmd {
 370	s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
 371	u8 flags;
 372	s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
 373	u8 reserved;
 374} __packed;
 375
 376/**
 377 * Command TX_ANT_CONFIGURATION_CMD = 0x98
 378 * This command is used to configure valid Tx antenna.
 379 * By default uCode concludes the valid antenna according to the radio flavor.
 380 * This command enables the driver to override/modify this conclusion.
 381 */
 382struct iwl_tx_ant_config_cmd {
 383	__le32 valid;
 384} __packed;
 385
 386/******************************************************************************
 387 * (0a)
 388 * Alive and Error Commands & Responses:
 389 *
 390 *****************************************************************************/
 391
 392#define UCODE_VALID_OK	cpu_to_le32(0x1)
 393
 394/**
 395 * REPLY_ALIVE = 0x1 (response only, not a command)
 396 *
 397 * uCode issues this "alive" notification once the runtime image is ready
 398 * to receive commands from the driver.  This is the *second* "alive"
 399 * notification that the driver will receive after rebooting uCode;
 400 * this "alive" is indicated by subtype field != 9.
 401 *
 402 * See comments documenting "BSM" (bootstrap state machine).
 403 *
 404 * This response includes two pointers to structures within the device's
 405 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
 406 *
 407 * 1)  log_event_table_ptr indicates base of the event log.  This traces
 408 *     a 256-entry history of uCode execution within a circular buffer.
 409 *     Its header format is:
 410 *
 411 *	__le32 log_size;     log capacity (in number of entries)
 412 *	__le32 type;         (1) timestamp with each entry, (0) no timestamp
 413 *	__le32 wraps;        # times uCode has wrapped to top of circular buffer
 414 *      __le32 write_index;  next circular buffer entry that uCode would fill
 415 *
 416 *     The header is followed by the circular buffer of log entries.  Entries
 417 *     with timestamps have the following format:
 418 *
 419 *	__le32 event_id;     range 0 - 1500
 420 *	__le32 timestamp;    low 32 bits of TSF (of network, if associated)
 421 *	__le32 data;         event_id-specific data value
 422 *
 423 *     Entries without timestamps contain only event_id and data.
 424 *
 425 *
 426 * 2)  error_event_table_ptr indicates base of the error log.  This contains
 427 *     information about any uCode error that occurs.  For agn, the format
 428 *     of the error log is defined by struct iwl_error_event_table.
 429 *
 430 * The Linux driver can print both logs to the system log when a uCode error
 431 * occurs.
 432 */
 433
 434/*
 435 * Note: This structure is read from the device with IO accesses,
 436 * and the reading already does the endian conversion. As it is
 437 * read with u32-sized accesses, any members with a different size
 438 * need to be ordered correctly though!
 439 */
 440struct iwl_error_event_table {
 441	u32 valid;		/* (nonzero) valid, (0) log is empty */
 442	u32 error_id;		/* type of error */
 443	u32 pc;			/* program counter */
 444	u32 blink1;		/* branch link */
 445	u32 blink2;		/* branch link */
 446	u32 ilink1;		/* interrupt link */
 447	u32 ilink2;		/* interrupt link */
 448	u32 data1;		/* error-specific data */
 449	u32 data2;		/* error-specific data */
 450	u32 line;		/* source code line of error */
 451	u32 bcon_time;		/* beacon timer */
 452	u32 tsf_low;		/* network timestamp function timer */
 453	u32 tsf_hi;		/* network timestamp function timer */
 454	u32 gp1;		/* GP1 timer register */
 455	u32 gp2;		/* GP2 timer register */
 456	u32 gp3;		/* GP3 timer register */
 457	u32 ucode_ver;		/* uCode version */
 458	u32 hw_ver;		/* HW Silicon version */
 459	u32 brd_ver;		/* HW board version */
 460	u32 log_pc;		/* log program counter */
 461	u32 frame_ptr;		/* frame pointer */
 462	u32 stack_ptr;		/* stack pointer */
 463	u32 hcmd;		/* last host command header */
 464#if 0
 465	/* no need to read the remainder, we don't use the values */
 466	u32 isr0;		/* isr status register LMPM_NIC_ISR0: rxtx_flag */
 467	u32 isr1;		/* isr status register LMPM_NIC_ISR1: host_flag */
 468	u32 isr2;		/* isr status register LMPM_NIC_ISR2: enc_flag */
 469	u32 isr3;		/* isr status register LMPM_NIC_ISR3: time_flag */
 470	u32 isr4;		/* isr status register LMPM_NIC_ISR4: wico interrupt */
 471	u32 isr_pref;		/* isr status register LMPM_NIC_PREF_STAT */
 472	u32 wait_event;		/* wait event() caller address */
 473	u32 l2p_control;	/* L2pControlField */
 474	u32 l2p_duration;	/* L2pDurationField */
 475	u32 l2p_mhvalid;	/* L2pMhValidBits */
 476	u32 l2p_addr_match;	/* L2pAddrMatchStat */
 477	u32 lmpm_pmg_sel;	/* indicate which clocks are turned on (LMPM_PMG_SEL) */
 478	u32 u_timestamp;	/* indicate when the date and time of the compilation */
 479	u32 flow_handler;	/* FH read/write pointers, RX credit */
 480#endif
 481} __packed;
 482
 483struct iwl_alive_resp {
 484	u8 ucode_minor;
 485	u8 ucode_major;
 486	__le16 reserved1;
 487	u8 sw_rev[8];
 488	u8 ver_type;
 489	u8 ver_subtype;			/* not "9" for runtime alive */
 490	__le16 reserved2;
 491	__le32 log_event_table_ptr;	/* SRAM address for event log */
 492	__le32 error_event_table_ptr;	/* SRAM address for error log */
 493	__le32 timestamp;
 494	__le32 is_valid;
 495} __packed;
 496
 497/*
 498 * REPLY_ERROR = 0x2 (response only, not a command)
 499 */
 500struct iwl_error_resp {
 501	__le32 error_type;
 502	u8 cmd_id;
 503	u8 reserved1;
 504	__le16 bad_cmd_seq_num;
 505	__le32 error_info;
 506	__le64 timestamp;
 507} __packed;
 508
 509/******************************************************************************
 510 * (1)
 511 * RXON Commands & Responses:
 512 *
 513 *****************************************************************************/
 514
 515/*
 516 * Rx config defines & structure
 517 */
 518/* rx_config device types  */
 519enum {
 520	RXON_DEV_TYPE_AP = 1,
 521	RXON_DEV_TYPE_ESS = 3,
 522	RXON_DEV_TYPE_IBSS = 4,
 523	RXON_DEV_TYPE_SNIFFER = 6,
 524	RXON_DEV_TYPE_CP = 7,
 525	RXON_DEV_TYPE_2STA = 8,
 526	RXON_DEV_TYPE_P2P = 9,
 527};
 528
 529
 530#define RXON_RX_CHAIN_DRIVER_FORCE_MSK		cpu_to_le16(0x1 << 0)
 531#define RXON_RX_CHAIN_DRIVER_FORCE_POS		(0)
 532#define RXON_RX_CHAIN_VALID_MSK			cpu_to_le16(0x7 << 1)
 533#define RXON_RX_CHAIN_VALID_POS			(1)
 534#define RXON_RX_CHAIN_FORCE_SEL_MSK		cpu_to_le16(0x7 << 4)
 535#define RXON_RX_CHAIN_FORCE_SEL_POS		(4)
 536#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK	cpu_to_le16(0x7 << 7)
 537#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS	(7)
 538#define RXON_RX_CHAIN_CNT_MSK			cpu_to_le16(0x3 << 10)
 539#define RXON_RX_CHAIN_CNT_POS			(10)
 540#define RXON_RX_CHAIN_MIMO_CNT_MSK		cpu_to_le16(0x3 << 12)
 541#define RXON_RX_CHAIN_MIMO_CNT_POS		(12)
 542#define RXON_RX_CHAIN_MIMO_FORCE_MSK		cpu_to_le16(0x1 << 14)
 543#define RXON_RX_CHAIN_MIMO_FORCE_POS		(14)
 544
 545/* rx_config flags */
 546/* band & modulation selection */
 547#define RXON_FLG_BAND_24G_MSK           cpu_to_le32(1 << 0)
 548#define RXON_FLG_CCK_MSK                cpu_to_le32(1 << 1)
 549/* auto detection enable */
 550#define RXON_FLG_AUTO_DETECT_MSK        cpu_to_le32(1 << 2)
 551/* TGg protection when tx */
 552#define RXON_FLG_TGG_PROTECT_MSK        cpu_to_le32(1 << 3)
 553/* cck short slot & preamble */
 554#define RXON_FLG_SHORT_SLOT_MSK          cpu_to_le32(1 << 4)
 555#define RXON_FLG_SHORT_PREAMBLE_MSK     cpu_to_le32(1 << 5)
 556/* antenna selection */
 557#define RXON_FLG_DIS_DIV_MSK            cpu_to_le32(1 << 7)
 558#define RXON_FLG_ANT_SEL_MSK            cpu_to_le32(0x0f00)
 559#define RXON_FLG_ANT_A_MSK              cpu_to_le32(1 << 8)
 560#define RXON_FLG_ANT_B_MSK              cpu_to_le32(1 << 9)
 561/* radar detection enable */
 562#define RXON_FLG_RADAR_DETECT_MSK       cpu_to_le32(1 << 12)
 563#define RXON_FLG_TGJ_NARROW_BAND_MSK    cpu_to_le32(1 << 13)
 564/* rx response to host with 8-byte TSF
 565* (according to ON_AIR deassertion) */
 566#define RXON_FLG_TSF2HOST_MSK           cpu_to_le32(1 << 15)
 567
 568
 569/* HT flags */
 570#define RXON_FLG_CTRL_CHANNEL_LOC_POS		(22)
 571#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK	cpu_to_le32(0x1 << 22)
 572
 573#define RXON_FLG_HT_OPERATING_MODE_POS		(23)
 574
 575#define RXON_FLG_HT_PROT_MSK			cpu_to_le32(0x1 << 23)
 576#define RXON_FLG_HT40_PROT_MSK			cpu_to_le32(0x2 << 23)
 577
 578#define RXON_FLG_CHANNEL_MODE_POS		(25)
 579#define RXON_FLG_CHANNEL_MODE_MSK		cpu_to_le32(0x3 << 25)
 580
 581/* channel mode */
 582enum {
 583	CHANNEL_MODE_LEGACY = 0,
 584	CHANNEL_MODE_PURE_40 = 1,
 585	CHANNEL_MODE_MIXED = 2,
 586	CHANNEL_MODE_RESERVED = 3,
 587};
 588#define RXON_FLG_CHANNEL_MODE_LEGACY	cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
 589#define RXON_FLG_CHANNEL_MODE_PURE_40	cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
 590#define RXON_FLG_CHANNEL_MODE_MIXED	cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
 591
 592/* CTS to self (if spec allows) flag */
 593#define RXON_FLG_SELF_CTS_EN			cpu_to_le32(0x1<<30)
 594
 595/* rx_config filter flags */
 596/* accept all data frames */
 597#define RXON_FILTER_PROMISC_MSK         cpu_to_le32(1 << 0)
 598/* pass control & management to host */
 599#define RXON_FILTER_CTL2HOST_MSK        cpu_to_le32(1 << 1)
 600/* accept multi-cast */
 601#define RXON_FILTER_ACCEPT_GRP_MSK      cpu_to_le32(1 << 2)
 602/* don't decrypt uni-cast frames */
 603#define RXON_FILTER_DIS_DECRYPT_MSK     cpu_to_le32(1 << 3)
 604/* don't decrypt multi-cast frames */
 605#define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
 606/* STA is associated */
 607#define RXON_FILTER_ASSOC_MSK           cpu_to_le32(1 << 5)
 608/* transfer to host non bssid beacons in associated state */
 609#define RXON_FILTER_BCON_AWARE_MSK      cpu_to_le32(1 << 6)
 610
 611/**
 612 * REPLY_RXON = 0x10 (command, has simple generic response)
 613 *
 614 * RXON tunes the radio tuner to a service channel, and sets up a number
 615 * of parameters that are used primarily for Rx, but also for Tx operations.
 616 *
 617 * NOTE:  When tuning to a new channel, driver must set the
 618 *        RXON_FILTER_ASSOC_MSK to 0.  This will clear station-dependent
 619 *        info within the device, including the station tables, tx retry
 620 *        rate tables, and txpower tables.  Driver must build a new station
 621 *        table and txpower table before transmitting anything on the RXON
 622 *        channel.
 623 *
 624 * NOTE:  All RXONs wipe clean the internal txpower table.  Driver must
 625 *        issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
 626 *        regardless of whether RXON_FILTER_ASSOC_MSK is set.
 627 */
 628
 629struct iwl_rxon_cmd {
 630	u8 node_addr[6];
 631	__le16 reserved1;
 632	u8 bssid_addr[6];
 633	__le16 reserved2;
 634	u8 wlap_bssid_addr[6];
 635	__le16 reserved3;
 636	u8 dev_type;
 637	u8 air_propagation;
 638	__le16 rx_chain;
 639	u8 ofdm_basic_rates;
 640	u8 cck_basic_rates;
 641	__le16 assoc_id;
 642	__le32 flags;
 643	__le32 filter_flags;
 644	__le16 channel;
 645	u8 ofdm_ht_single_stream_basic_rates;
 646	u8 ofdm_ht_dual_stream_basic_rates;
 647	u8 ofdm_ht_triple_stream_basic_rates;
 648	u8 reserved5;
 649	__le16 acquisition_data;
 650	__le16 reserved6;
 651} __packed;
 652
 653/*
 654 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
 655 */
 656struct iwl_rxon_assoc_cmd {
 657	__le32 flags;
 658	__le32 filter_flags;
 659	u8 ofdm_basic_rates;
 660	u8 cck_basic_rates;
 661	__le16 reserved1;
 662	u8 ofdm_ht_single_stream_basic_rates;
 663	u8 ofdm_ht_dual_stream_basic_rates;
 664	u8 ofdm_ht_triple_stream_basic_rates;
 665	u8 reserved2;
 666	__le16 rx_chain_select_flags;
 667	__le16 acquisition_data;
 668	__le32 reserved3;
 669} __packed;
 670
 671#define IWL_CONN_MAX_LISTEN_INTERVAL	10
 672#define IWL_MAX_UCODE_BEACON_INTERVAL	4 /* 4096 */
 673#define IWL39_MAX_UCODE_BEACON_INTERVAL	1 /* 1024 */
 674
 675/*
 676 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
 677 */
 678struct iwl_rxon_time_cmd {
 679	__le64 timestamp;
 680	__le16 beacon_interval;
 681	__le16 atim_window;
 682	__le32 beacon_init_val;
 683	__le16 listen_interval;
 684	u8 dtim_period;
 685	u8 delta_cp_bss_tbtts;
 686} __packed;
 687
 688/*
 689 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
 690 */
 691/**
 692 * struct iwl5000_channel_switch_cmd
 693 * @band: 0- 5.2GHz, 1- 2.4GHz
 694 * @expect_beacon: 0- resume transmits after channel switch
 695 *		   1- wait for beacon to resume transmits
 696 * @channel: new channel number
 697 * @rxon_flags: Rx on flags
 698 * @rxon_filter_flags: filtering parameters
 699 * @switch_time: switch time in extended beacon format
 700 * @reserved: reserved bytes
 701 */
 702struct iwl5000_channel_switch_cmd {
 703	u8 band;
 704	u8 expect_beacon;
 705	__le16 channel;
 706	__le32 rxon_flags;
 707	__le32 rxon_filter_flags;
 708	__le32 switch_time;
 709	__le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
 710} __packed;
 711
 712/**
 713 * struct iwl6000_channel_switch_cmd
 714 * @band: 0- 5.2GHz, 1- 2.4GHz
 715 * @expect_beacon: 0- resume transmits after channel switch
 716 *		   1- wait for beacon to resume transmits
 717 * @channel: new channel number
 718 * @rxon_flags: Rx on flags
 719 * @rxon_filter_flags: filtering parameters
 720 * @switch_time: switch time in extended beacon format
 721 * @reserved: reserved bytes
 722 */
 723struct iwl6000_channel_switch_cmd {
 724	u8 band;
 725	u8 expect_beacon;
 726	__le16 channel;
 727	__le32 rxon_flags;
 728	__le32 rxon_filter_flags;
 729	__le32 switch_time;
 730	__le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
 731} __packed;
 732
 733/*
 734 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
 735 */
 736struct iwl_csa_notification {
 737	__le16 band;
 738	__le16 channel;
 739	__le32 status;		/* 0 - OK, 1 - fail */
 740} __packed;
 741
 742/******************************************************************************
 743 * (2)
 744 * Quality-of-Service (QOS) Commands & Responses:
 745 *
 746 *****************************************************************************/
 747
 748/**
 749 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
 750 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
 751 *
 752 * @cw_min: Contention window, start value in numbers of slots.
 753 *          Should be a power-of-2, minus 1.  Device's default is 0x0f.
 754 * @cw_max: Contention window, max value in numbers of slots.
 755 *          Should be a power-of-2, minus 1.  Device's default is 0x3f.
 756 * @aifsn:  Number of slots in Arbitration Interframe Space (before
 757 *          performing random backoff timing prior to Tx).  Device default 1.
 758 * @edca_txop:  Length of Tx opportunity, in uSecs.  Device default is 0.
 759 *
 760 * Device will automatically increase contention window by (2*CW) + 1 for each
 761 * transmission retry.  Device uses cw_max as a bit mask, ANDed with new CW
 762 * value, to cap the CW value.
 763 */
 764struct iwl_ac_qos {
 765	__le16 cw_min;
 766	__le16 cw_max;
 767	u8 aifsn;
 768	u8 reserved1;
 769	__le16 edca_txop;
 770} __packed;
 771
 772/* QoS flags defines */
 773#define QOS_PARAM_FLG_UPDATE_EDCA_MSK	cpu_to_le32(0x01)
 774#define QOS_PARAM_FLG_TGN_MSK		cpu_to_le32(0x02)
 775#define QOS_PARAM_FLG_TXOP_TYPE_MSK	cpu_to_le32(0x10)
 776
 777/* Number of Access Categories (AC) (EDCA), queues 0..3 */
 778#define AC_NUM                4
 779
 780/*
 781 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
 782 *
 783 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
 784 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
 785 */
 786struct iwl_qosparam_cmd {
 787	__le32 qos_flags;
 788	struct iwl_ac_qos ac[AC_NUM];
 789} __packed;
 790
 791/******************************************************************************
 792 * (3)
 793 * Add/Modify Stations Commands & Responses:
 794 *
 795 *****************************************************************************/
 796/*
 797 * Multi station support
 798 */
 799
 800/* Special, dedicated locations within device's station table */
 801#define	IWL_AP_ID		0
 802#define	IWL_AP_ID_PAN		1
 803#define	IWL_STA_ID		2
 804#define IWLAGN_PAN_BCAST_ID	14
 805#define IWLAGN_BROADCAST_ID	15
 806#define	IWLAGN_STATION_COUNT	16
 807
 808#define	IWL_INVALID_STATION 	255
 809
 810#define STA_FLG_TX_RATE_MSK		cpu_to_le32(1 << 2)
 811#define STA_FLG_PWR_SAVE_MSK		cpu_to_le32(1 << 8)
 812#define STA_FLG_PAN_STATION		cpu_to_le32(1 << 13)
 813#define STA_FLG_RTS_MIMO_PROT_MSK	cpu_to_le32(1 << 17)
 814#define STA_FLG_AGG_MPDU_8US_MSK	cpu_to_le32(1 << 18)
 815#define STA_FLG_MAX_AGG_SIZE_POS	(19)
 816#define STA_FLG_MAX_AGG_SIZE_MSK	cpu_to_le32(3 << 19)
 817#define STA_FLG_HT40_EN_MSK		cpu_to_le32(1 << 21)
 818#define STA_FLG_MIMO_DIS_MSK		cpu_to_le32(1 << 22)
 819#define STA_FLG_AGG_MPDU_DENSITY_POS	(23)
 820#define STA_FLG_AGG_MPDU_DENSITY_MSK	cpu_to_le32(7 << 23)
 821
 822/* Use in mode field.  1: modify existing entry, 0: add new station entry */
 823#define STA_CONTROL_MODIFY_MSK		0x01
 824
 825/* key flags __le16*/
 826#define STA_KEY_FLG_ENCRYPT_MSK	cpu_to_le16(0x0007)
 827#define STA_KEY_FLG_NO_ENC	cpu_to_le16(0x0000)
 828#define STA_KEY_FLG_WEP		cpu_to_le16(0x0001)
 829#define STA_KEY_FLG_CCMP	cpu_to_le16(0x0002)
 830#define STA_KEY_FLG_TKIP	cpu_to_le16(0x0003)
 831
 832#define STA_KEY_FLG_KEYID_POS	8
 833#define STA_KEY_FLG_INVALID 	cpu_to_le16(0x0800)
 834/* wep key is either from global key (0) or from station info array (1) */
 835#define STA_KEY_FLG_MAP_KEY_MSK	cpu_to_le16(0x0008)
 836
 837/* wep key in STA: 5-bytes (0) or 13-bytes (1) */
 838#define STA_KEY_FLG_KEY_SIZE_MSK     cpu_to_le16(0x1000)
 839#define STA_KEY_MULTICAST_MSK        cpu_to_le16(0x4000)
 840#define STA_KEY_MAX_NUM		8
 841#define STA_KEY_MAX_NUM_PAN	16
 842/* must not match WEP_INVALID_OFFSET */
 843#define IWLAGN_HW_KEY_DEFAULT	0xfe
 844
 845/* Flags indicate whether to modify vs. don't change various station params */
 846#define	STA_MODIFY_KEY_MASK		0x01
 847#define	STA_MODIFY_TID_DISABLE_TX	0x02
 848#define	STA_MODIFY_TX_RATE_MSK		0x04
 849#define STA_MODIFY_ADDBA_TID_MSK	0x08
 850#define STA_MODIFY_DELBA_TID_MSK	0x10
 851#define STA_MODIFY_SLEEP_TX_COUNT_MSK	0x20
 852
 853/* Receiver address (actually, Rx station's index into station table),
 854 * combined with Traffic ID (QOS priority), in format used by Tx Scheduler */
 855#define BUILD_RAxTID(sta_id, tid)	(((sta_id) << 4) + (tid))
 856
 857/* agn */
 858struct iwl_keyinfo {
 859	__le16 key_flags;
 860	u8 tkip_rx_tsc_byte2;	/* TSC[2] for key mix ph1 detection */
 861	u8 reserved1;
 862	__le16 tkip_rx_ttak[5];	/* 10-byte unicast TKIP TTAK */
 863	u8 key_offset;
 864	u8 reserved2;
 865	u8 key[16];		/* 16-byte unicast decryption key */
 866	__le64 tx_secur_seq_cnt;
 867	__le64 hw_tkip_mic_rx_key;
 868	__le64 hw_tkip_mic_tx_key;
 869} __packed;
 870
 871/**
 872 * struct sta_id_modify
 873 * @addr[ETH_ALEN]: station's MAC address
 874 * @sta_id: index of station in uCode's station table
 875 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
 876 *
 877 * Driver selects unused table index when adding new station,
 878 * or the index to a pre-existing station entry when modifying that station.
 879 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
 880 *
 881 * modify_mask flags select which parameters to modify vs. leave alone.
 882 */
 883struct sta_id_modify {
 884	u8 addr[ETH_ALEN];
 885	__le16 reserved1;
 886	u8 sta_id;
 887	u8 modify_mask;
 888	__le16 reserved2;
 889} __packed;
 890
 891/*
 892 * REPLY_ADD_STA = 0x18 (command)
 893 *
 894 * The device contains an internal table of per-station information,
 895 * with info on security keys, aggregation parameters, and Tx rates for
 896 * initial Tx attempt and any retries (agn devices uses
 897 * REPLY_TX_LINK_QUALITY_CMD,
 898 *
 899 * REPLY_ADD_STA sets up the table entry for one station, either creating
 900 * a new entry, or modifying a pre-existing one.
 901 *
 902 * NOTE:  RXON command (without "associated" bit set) wipes the station table
 903 *        clean.  Moving into RF_KILL state does this also.  Driver must set up
 904 *        new station table before transmitting anything on the RXON channel
 905 *        (except active scans or active measurements; those commands carry
 906 *        their own txpower/rate setup data).
 907 *
 908 *        When getting started on a new channel, driver must set up the
 909 *        IWL_BROADCAST_ID entry (last entry in the table).  For a client
 910 *        station in a BSS, once an AP is selected, driver sets up the AP STA
 911 *        in the IWL_AP_ID entry (1st entry in the table).  BROADCAST and AP
 912 *        are all that are needed for a BSS client station.  If the device is
 913 *        used as AP, or in an IBSS network, driver must set up station table
 914 *        entries for all STAs in network, starting with index IWL_STA_ID.
 915 */
 916
 917struct iwl_addsta_cmd {
 918	u8 mode;		/* 1: modify existing, 0: add new station */
 919	u8 reserved[3];
 920	struct sta_id_modify sta;
 921	struct iwl_keyinfo key;
 922	__le32 station_flags;		/* STA_FLG_* */
 923	__le32 station_flags_msk;	/* STA_FLG_* */
 924
 925	/* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
 926	 * corresponding to bit (e.g. bit 5 controls TID 5).
 927	 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
 928	__le16 tid_disable_tx;
 929
 930	__le16	rate_n_flags;		/* 3945 only */
 931
 932	/* TID for which to add block-ack support.
 933	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
 934	u8 add_immediate_ba_tid;
 935
 936	/* TID for which to remove block-ack support.
 937	 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
 938	u8 remove_immediate_ba_tid;
 939
 940	/* Starting Sequence Number for added block-ack support.
 941	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
 942	__le16 add_immediate_ba_ssn;
 943
 944	/*
 945	 * Number of packets OK to transmit to station even though
 946	 * it is asleep -- used to synchronise PS-poll and u-APSD
 947	 * responses while ucode keeps track of STA sleep state.
 948	 */
 949	__le16 sleep_tx_count;
 950
 951	__le16 reserved2;
 952} __packed;
 953
 954
 955#define ADD_STA_SUCCESS_MSK		0x1
 956#define ADD_STA_NO_ROOM_IN_TABLE	0x2
 957#define ADD_STA_NO_BLOCK_ACK_RESOURCE	0x4
 958#define ADD_STA_MODIFY_NON_EXIST_STA	0x8
 959/*
 960 * REPLY_ADD_STA = 0x18 (response)
 961 */
 962struct iwl_add_sta_resp {
 963	u8 status;	/* ADD_STA_* */
 964} __packed;
 965
 966#define REM_STA_SUCCESS_MSK              0x1
 967/*
 968 *  REPLY_REM_STA = 0x19 (response)
 969 */
 970struct iwl_rem_sta_resp {
 971	u8 status;
 972} __packed;
 973
 974/*
 975 *  REPLY_REM_STA = 0x19 (command)
 976 */
 977struct iwl_rem_sta_cmd {
 978	u8 num_sta;     /* number of removed stations */
 979	u8 reserved[3];
 980	u8 addr[ETH_ALEN]; /* MAC addr of the first station */
 981	u8 reserved2[2];
 982} __packed;
 983
 984
 985/* WiFi queues mask */
 986#define IWL_SCD_BK_MSK			cpu_to_le32(BIT(0))
 987#define IWL_SCD_BE_MSK			cpu_to_le32(BIT(1))
 988#define IWL_SCD_VI_MSK			cpu_to_le32(BIT(2))
 989#define IWL_SCD_VO_MSK			cpu_to_le32(BIT(3))
 990#define IWL_SCD_MGMT_MSK		cpu_to_le32(BIT(3))
 991
 992/* PAN queues mask */
 993#define IWL_PAN_SCD_BK_MSK		cpu_to_le32(BIT(4))
 994#define IWL_PAN_SCD_BE_MSK		cpu_to_le32(BIT(5))
 995#define IWL_PAN_SCD_VI_MSK		cpu_to_le32(BIT(6))
 996#define IWL_PAN_SCD_VO_MSK		cpu_to_le32(BIT(7))
 997#define IWL_PAN_SCD_MGMT_MSK		cpu_to_le32(BIT(7))
 998#define IWL_PAN_SCD_MULTICAST_MSK	cpu_to_le32(BIT(8))
 999
1000#define IWL_AGG_TX_QUEUE_MSK		cpu_to_le32(0xffc00)
1001
1002#define IWL_DROP_SINGLE		0
1003#define IWL_DROP_ALL		(BIT(IWL_RXON_CTX_BSS) | BIT(IWL_RXON_CTX_PAN))
1004
1005/*
1006 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
1007 *
1008 * When using full FIFO flush this command checks the scheduler HW block WR/RD
1009 * pointers to check if all the frames were transferred by DMA into the
1010 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
1011 * empty the command can finish.
1012 * This command is used to flush the TXFIFO from transmit commands, it may
1013 * operate on single or multiple queues, the command queue can't be flushed by
1014 * this command. The command response is returned when all the queue flush
1015 * operations are done. Each TX command flushed return response with the FLUSH
1016 * status set in the TX response status. When FIFO flush operation is used,
1017 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
1018 * are set.
1019 *
1020 * @fifo_control: bit mask for which queues to flush
1021 * @flush_control: flush controls
1022 *	0: Dump single MSDU
1023 *	1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
1024 *	2: Dump all FIFO
1025 */
1026struct iwl_txfifo_flush_cmd {
1027	__le32 fifo_control;
1028	__le16 flush_control;
1029	__le16 reserved;
1030} __packed;
1031
1032/*
1033 * REPLY_WEP_KEY = 0x20
1034 */
1035struct iwl_wep_key {
1036	u8 key_index;
1037	u8 key_offset;
1038	u8 reserved1[2];
1039	u8 key_size;
1040	u8 reserved2[3];
1041	u8 key[16];
1042} __packed;
1043
1044struct iwl_wep_cmd {
1045	u8 num_keys;
1046	u8 global_key_type;
1047	u8 flags;
1048	u8 reserved;
1049	struct iwl_wep_key key[0];
1050} __packed;
1051
1052#define WEP_KEY_WEP_TYPE 1
1053#define WEP_KEYS_MAX 4
1054#define WEP_INVALID_OFFSET 0xff
1055#define WEP_KEY_LEN_64 5
1056#define WEP_KEY_LEN_128 13
1057
1058/******************************************************************************
1059 * (4)
1060 * Rx Responses:
1061 *
1062 *****************************************************************************/
1063
1064#define RX_RES_STATUS_NO_CRC32_ERROR	cpu_to_le32(1 << 0)
1065#define RX_RES_STATUS_NO_RXE_OVERFLOW	cpu_to_le32(1 << 1)
1066
1067#define RX_RES_PHY_FLAGS_BAND_24_MSK	cpu_to_le16(1 << 0)
1068#define RX_RES_PHY_FLAGS_MOD_CCK_MSK		cpu_to_le16(1 << 1)
1069#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK	cpu_to_le16(1 << 2)
1070#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK	cpu_to_le16(1 << 3)
1071#define RX_RES_PHY_FLAGS_ANTENNA_MSK		0xf0
1072#define RX_RES_PHY_FLAGS_ANTENNA_POS		4
1073
1074#define RX_RES_STATUS_SEC_TYPE_MSK	(0x7 << 8)
1075#define RX_RES_STATUS_SEC_TYPE_NONE	(0x0 << 8)
1076#define RX_RES_STATUS_SEC_TYPE_WEP	(0x1 << 8)
1077#define RX_RES_STATUS_SEC_TYPE_CCMP	(0x2 << 8)
1078#define RX_RES_STATUS_SEC_TYPE_TKIP	(0x3 << 8)
1079#define	RX_RES_STATUS_SEC_TYPE_ERR	(0x7 << 8)
1080
1081#define RX_RES_STATUS_STATION_FOUND	(1<<6)
1082#define RX_RES_STATUS_NO_STATION_INFO_MISMATCH	(1<<7)
1083
1084#define RX_RES_STATUS_DECRYPT_TYPE_MSK	(0x3 << 11)
1085#define RX_RES_STATUS_NOT_DECRYPT	(0x0 << 11)
1086#define RX_RES_STATUS_DECRYPT_OK	(0x3 << 11)
1087#define RX_RES_STATUS_BAD_ICV_MIC	(0x1 << 11)
1088#define RX_RES_STATUS_BAD_KEY_TTAK	(0x2 << 11)
1089
1090#define RX_MPDU_RES_STATUS_ICV_OK	(0x20)
1091#define RX_MPDU_RES_STATUS_MIC_OK	(0x40)
1092#define RX_MPDU_RES_STATUS_TTAK_OK	(1 << 7)
1093#define RX_MPDU_RES_STATUS_DEC_DONE_MSK	(0x800)
1094
1095
1096#define IWLAGN_RX_RES_PHY_CNT 8
1097#define IWLAGN_RX_RES_AGC_IDX     1
1098#define IWLAGN_RX_RES_RSSI_AB_IDX 2
1099#define IWLAGN_RX_RES_RSSI_C_IDX  3
1100#define IWLAGN_OFDM_AGC_MSK 0xfe00
1101#define IWLAGN_OFDM_AGC_BIT_POS 9
1102#define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1103#define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1104#define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1105#define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1106#define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1107#define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1108#define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1109#define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1110#define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1111
1112struct iwlagn_non_cfg_phy {
1113	__le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT];  /* up to 8 phy entries */
1114} __packed;
1115
1116
1117/*
1118 * REPLY_RX = 0xc3 (response only, not a command)
1119 * Used only for legacy (non 11n) frames.
1120 */
1121struct iwl_rx_phy_res {
1122	u8 non_cfg_phy_cnt;     /* non configurable DSP phy data byte count */
1123	u8 cfg_phy_cnt;		/* configurable DSP phy data byte count */
1124	u8 stat_id;		/* configurable DSP phy data set ID */
1125	u8 reserved1;
1126	__le64 timestamp;	/* TSF at on air rise */
1127	__le32 beacon_time_stamp; /* beacon at on-air rise */
1128	__le16 phy_flags;	/* general phy flags: band, modulation, ... */
1129	__le16 channel;		/* channel number */
1130	u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1131	__le32 rate_n_flags;	/* RATE_MCS_* */
1132	__le16 byte_count;	/* frame's byte-count */
1133	__le16 frame_time;	/* frame's time on the air */
1134} __packed;
1135
1136struct iwl_rx_mpdu_res_start {
1137	__le16 byte_count;
1138	__le16 reserved;
1139} __packed;
1140
1141
1142/******************************************************************************
1143 * (5)
1144 * Tx Commands & Responses:
1145 *
1146 * Driver must place each REPLY_TX command into one of the prioritized Tx
1147 * queues in host DRAM, shared between driver and device (see comments for
1148 * SCD registers and Tx/Rx Queues).  When the device's Tx scheduler and uCode
1149 * are preparing to transmit, the device pulls the Tx command over the PCI
1150 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1151 * from which data will be transmitted.
1152 *
1153 * uCode handles all timing and protocol related to control frames
1154 * (RTS/CTS/ACK), based on flags in the Tx command.  uCode and Tx scheduler
1155 * handle reception of block-acks; uCode updates the host driver via
1156 * REPLY_COMPRESSED_BA.
1157 *
1158 * uCode handles retrying Tx when an ACK is expected but not received.
1159 * This includes trying lower data rates than the one requested in the Tx
1160 * command, as set up by the REPLY_RATE_SCALE (for 3945) or
1161 * REPLY_TX_LINK_QUALITY_CMD (agn).
1162 *
1163 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1164 * This command must be executed after every RXON command, before Tx can occur.
1165 *****************************************************************************/
1166
1167/* REPLY_TX Tx flags field */
1168
1169/*
1170 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1171 * before this frame. if CTS-to-self required check
1172 * RXON_FLG_SELF_CTS_EN status.
1173 * unused in 3945/4965, used in 5000 series and after
1174 */
1175#define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1176
1177/*
1178 * 1: Use Request-To-Send protocol before this frame.
1179 * Mutually exclusive vs. TX_CMD_FLG_CTS_MSK.
1180 * used in 3945/4965, unused in 5000 series and after
1181 */
1182#define TX_CMD_FLG_RTS_MSK cpu_to_le32(1 << 1)
1183
1184/*
1185 * 1: Transmit Clear-To-Send to self before this frame.
1186 * Driver should set this for AUTH/DEAUTH/ASSOC-REQ/REASSOC mgmnt frames.
1187 * Mutually exclusive vs. TX_CMD_FLG_RTS_MSK.
1188 * used in 3945/4965, unused in 5000 series and after
1189 */
1190#define TX_CMD_FLG_CTS_MSK cpu_to_le32(1 << 2)
1191
1192/* 1: Expect ACK from receiving station
1193 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1194 * Set this for unicast frames, but not broadcast/multicast. */
1195#define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1196
1197/* For agn devices:
1198 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1199 *    Tx command's initial_rate_index indicates first rate to try;
1200 *    uCode walks through table for additional Tx attempts.
1201 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1202 *    This rate will be used for all Tx attempts; it will not be scaled. */
1203#define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1204
1205/* 1: Expect immediate block-ack.
1206 * Set when Txing a block-ack request frame.  Also set TX_CMD_FLG_ACK_MSK. */
1207#define TX_CMD_FLG_IMM_BA_RSP_MASK  cpu_to_le32(1 << 6)
1208
1209/*
1210 * 1: Frame requires full Tx-Op protection.
1211 * Set this if either RTS or CTS Tx Flag gets set.
1212 * used in 3945/4965, unused in 5000 series and after
1213 */
1214#define TX_CMD_FLG_FULL_TXOP_PROT_MSK cpu_to_le32(1 << 7)
1215
1216/* Tx antenna selection field; used only for 3945, reserved (0) for agn devices.
1217 * Set field to "0" to allow 3945 uCode to select antenna (normal usage). */
1218#define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1219#define TX_CMD_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
1220#define TX_CMD_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
1221
1222/* 1: Ignore Bluetooth priority for this frame.
1223 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1224#define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1225
1226/* 1: uCode overrides sequence control field in MAC header.
1227 * 0: Driver provides sequence control field in MAC header.
1228 * Set this for management frames, non-QOS data frames, non-unicast frames,
1229 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1230#define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1231
1232/* 1: This frame is non-last MPDU; more fragments are coming.
1233 * 0: Last fragment, or not using fragmentation. */
1234#define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1235
1236/* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1237 * 0: No TSF required in outgoing frame.
1238 * Set this for transmitting beacons and probe responses. */
1239#define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1240
1241/* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1242 *    alignment of frame's payload data field.
1243 * 0: No pad
1244 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1245 * field (but not both).  Driver must align frame data (i.e. data following
1246 * MAC header) to DWORD boundary. */
1247#define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1248
1249/* accelerate aggregation support
1250 * 0 - no CCMP encryption; 1 - CCMP encryption */
1251#define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1252
1253/* HCCA-AP - disable duration overwriting. */
1254#define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1255
1256
1257/*
1258 * TX command security control
1259 */
1260#define TX_CMD_SEC_WEP  	0x01
1261#define TX_CMD_SEC_CCM  	0x02
1262#define TX_CMD_SEC_TKIP		0x03
1263#define TX_CMD_SEC_MSK		0x03
1264#define TX_CMD_SEC_SHIFT	6
1265#define TX_CMD_SEC_KEY128	0x08
1266
1267/*
1268 * security overhead sizes
1269 */
1270#define WEP_IV_LEN 4
1271#define WEP_ICV_LEN 4
1272#define CCMP_MIC_LEN 8
1273#define TKIP_ICV_LEN 4
1274
1275/*
1276 * REPLY_TX = 0x1c (command)
1277 */
1278
1279/*
1280 * 4965 uCode updates these Tx attempt count values in host DRAM.
1281 * Used for managing Tx retries when expecting block-acks.
1282 * Driver should set these fields to 0.
1283 */
1284struct iwl_dram_scratch {
1285	u8 try_cnt;		/* Tx attempts */
1286	u8 bt_kill_cnt;		/* Tx attempts blocked by Bluetooth device */
1287	__le16 reserved;
1288} __packed;
1289
1290struct iwl_tx_cmd {
1291	/*
1292	 * MPDU byte count:
1293	 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1294	 * + 8 byte IV for CCM or TKIP (not used for WEP)
1295	 * + Data payload
1296	 * + 8-byte MIC (not used for CCM/WEP)
1297	 * NOTE:  Does not include Tx command bytes, post-MAC pad bytes,
1298	 *        MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1299	 * Range: 14-2342 bytes.
1300	 */
1301	__le16 len;
1302
1303	/*
1304	 * MPDU or MSDU byte count for next frame.
1305	 * Used for fragmentation and bursting, but not 11n aggregation.
1306	 * Same as "len", but for next frame.  Set to 0 if not applicable.
1307	 */
1308	__le16 next_frame_len;
1309
1310	__le32 tx_flags;	/* TX_CMD_FLG_* */
1311
1312	/* uCode may modify this field of the Tx command (in host DRAM!).
1313	 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1314	struct iwl_dram_scratch scratch;
1315
1316	/* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1317	__le32 rate_n_flags;	/* RATE_MCS_* */
1318
1319	/* Index of destination station in uCode's station table */
1320	u8 sta_id;
1321
1322	/* Type of security encryption:  CCM or TKIP */
1323	u8 sec_ctl;		/* TX_CMD_SEC_* */
1324
1325	/*
1326	 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1327	 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set.  Normally "0" for
1328	 * data frames, this field may be used to selectively reduce initial
1329	 * rate (via non-0 value) for special frames (e.g. management), while
1330	 * still supporting rate scaling for all frames.
1331	 */
1332	u8 initial_rate_index;
1333	u8 reserved;
1334	u8 key[16];
1335	__le16 next_frame_flags;
1336	__le16 reserved2;
1337	union {
1338		__le32 life_time;
1339		__le32 attempt;
1340	} stop_time;
1341
1342	/* Host DRAM physical address pointer to "scratch" in this command.
1343	 * Must be dword aligned.  "0" in dram_lsb_ptr disables usage. */
1344	__le32 dram_lsb_ptr;
1345	u8 dram_msb_ptr;
1346
1347	u8 rts_retry_limit;	/*byte 50 */
1348	u8 data_retry_limit;	/*byte 51 */
1349	u8 tid_tspec;
1350	union {
1351		__le16 pm_frame_timeout;
1352		__le16 attempt_duration;
1353	} timeout;
1354
1355	/*
1356	 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1357	 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1358	 */
1359	__le16 driver_txop;
1360
1361	/*
1362	 * MAC header goes here, followed by 2 bytes padding if MAC header
1363	 * length is 26 or 30 bytes, followed by payload data
1364	 */
1365	u8 payload[0];
1366	struct ieee80211_hdr hdr[0];
1367} __packed;
1368
1369/*
1370 * TX command response is sent after *agn* transmission attempts.
1371 *
1372 * both postpone and abort status are expected behavior from uCode. there is
1373 * no special operation required from driver; except for RFKILL_FLUSH,
1374 * which required tx flush host command to flush all the tx frames in queues
1375 */
1376enum {
1377	TX_STATUS_SUCCESS = 0x01,
1378	TX_STATUS_DIRECT_DONE = 0x02,
1379	/* postpone TX */
1380	TX_STATUS_POSTPONE_DELAY = 0x40,
1381	TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1382	TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1383	TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1384	TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1385	/* abort TX */
1386	TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1387	TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1388	TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1389	TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1390	TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1391	TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1392	TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1393	TX_STATUS_FAIL_DEST_PS = 0x88,
1394	TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1395	TX_STATUS_FAIL_BT_RETRY = 0x8a,
1396	TX_STATUS_FAIL_STA_INVALID = 0x8b,
1397	TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1398	TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1399	TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1400	TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1401	TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1402	TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1403};
1404
1405#define	TX_PACKET_MODE_REGULAR		0x0000
1406#define	TX_PACKET_MODE_BURST_SEQ	0x0100
1407#define	TX_PACKET_MODE_BURST_FIRST	0x0200
1408
1409enum {
1410	TX_POWER_PA_NOT_ACTIVE = 0x0,
1411};
1412
1413enum {
1414	TX_STATUS_MSK = 0x000000ff,		/* bits 0:7 */
1415	TX_STATUS_DELAY_MSK = 0x00000040,
1416	TX_STATUS_ABORT_MSK = 0x00000080,
1417	TX_PACKET_MODE_MSK = 0x0000ff00,	/* bits 8:15 */
1418	TX_FIFO_NUMBER_MSK = 0x00070000,	/* bits 16:18 */
1419	TX_RESERVED = 0x00780000,		/* bits 19:22 */
1420	TX_POWER_PA_DETECT_MSK = 0x7f800000,	/* bits 23:30 */
1421	TX_ABORT_REQUIRED_MSK = 0x80000000,	/* bits 31:31 */
1422};
1423
1424/* *******************************
1425 * TX aggregation status
1426 ******************************* */
1427
1428enum {
1429	AGG_TX_STATE_TRANSMITTED = 0x00,
1430	AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1431	AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1432	AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1433	AGG_TX_STATE_ABORT_MSK = 0x08,
1434	AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1435	AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1436	AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1437	AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1438	AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1439	AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1440	AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1441	AGG_TX_STATE_DELAY_TX_MSK = 0x400
1442};
1443
1444#define AGG_TX_STATUS_MSK	0x00000fff	/* bits 0:11 */
1445#define AGG_TX_TRY_MSK		0x0000f000	/* bits 12:15 */
1446
1447#define AGG_TX_STATE_LAST_SENT_MSK  (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1448				     AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1449				     AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1450
1451/* # tx attempts for first frame in aggregation */
1452#define AGG_TX_STATE_TRY_CNT_POS 12
1453#define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1454
1455/* Command ID and sequence number of Tx command for this frame */
1456#define AGG_TX_STATE_SEQ_NUM_POS 16
1457#define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1458
1459/*
1460 * REPLY_TX = 0x1c (response)
1461 *
1462 * This response may be in one of two slightly different formats, indicated
1463 * by the frame_count field:
1464 *
1465 * 1)  No aggregation (frame_count == 1).  This reports Tx results for
1466 *     a single frame.  Multiple attempts, at various bit rates, may have
1467 *     been made for this frame.
1468 *
1469 * 2)  Aggregation (frame_count > 1).  This reports Tx results for
1470 *     2 or more frames that used block-acknowledge.  All frames were
1471 *     transmitted at same rate.  Rate scaling may have been used if first
1472 *     frame in this new agg block failed in previous agg block(s).
1473 *
1474 *     Note that, for aggregation, ACK (block-ack) status is not delivered here;
1475 *     block-ack has not been received by the time the agn device records
1476 *     this status.
1477 *     This status relates to reasons the tx might have been blocked or aborted
1478 *     within the sending station (this agn device), rather than whether it was
1479 *     received successfully by the destination station.
1480 */
1481struct agg_tx_status {
1482	__le16 status;
1483	__le16 sequence;
1484} __packed;
1485
1486/*
1487 * definitions for initial rate index field
1488 * bits [3:0] initial rate index
1489 * bits [6:4] rate table color, used for the initial rate
1490 * bit-7 invalid rate indication
1491 *   i.e. rate was not chosen from rate table
1492 *   or rate table color was changed during frame retries
1493 * refer tlc rate info
1494 */
1495
1496#define IWL50_TX_RES_INIT_RATE_INDEX_POS	0
1497#define IWL50_TX_RES_INIT_RATE_INDEX_MSK	0x0f
1498#define IWL50_TX_RES_RATE_TABLE_COLOR_POS	4
1499#define IWL50_TX_RES_RATE_TABLE_COLOR_MSK	0x70
1500#define IWL50_TX_RES_INV_RATE_INDEX_MSK	0x80
1501
1502/* refer to ra_tid */
1503#define IWLAGN_TX_RES_TID_POS	0
1504#define IWLAGN_TX_RES_TID_MSK	0x0f
1505#define IWLAGN_TX_RES_RA_POS	4
1506#define IWLAGN_TX_RES_RA_MSK	0xf0
1507
1508struct iwlagn_tx_resp {
1509	u8 frame_count;		/* 1 no aggregation, >1 aggregation */
1510	u8 bt_kill_count;	/* # blocked by bluetooth (unused for agg) */
1511	u8 failure_rts;		/* # failures due to unsuccessful RTS */
1512	u8 failure_frame;	/* # failures due to no ACK (unused for agg) */
1513
1514	/* For non-agg:  Rate at which frame was successful.
1515	 * For agg:  Rate at which all frames were transmitted. */
1516	__le32 rate_n_flags;	/* RATE_MCS_*  */
1517
1518	/* For non-agg:  RTS + CTS + frame tx attempts time + ACK.
1519	 * For agg:  RTS + CTS + aggregation tx time + block-ack time. */
1520	__le16 wireless_media_time;	/* uSecs */
1521
1522	u8 pa_status;		/* RF power amplifier measurement (not used) */
1523	u8 pa_integ_res_a[3];
1524	u8 pa_integ_res_b[3];
1525	u8 pa_integ_res_C[3];
1526
1527	__le32 tfd_info;
1528	__le16 seq_ctl;
1529	__le16 byte_cnt;
1530	u8 tlc_info;
1531	u8 ra_tid;		/* tid (0:3), sta_id (4:7) */
1532	__le16 frame_ctrl;
1533	/*
1534	 * For non-agg:  frame status TX_STATUS_*
1535	 * For agg:  status of 1st frame, AGG_TX_STATE_*; other frame status
1536	 *           fields follow this one, up to frame_count.
1537	 *           Bit fields:
1538	 *           11- 0:  AGG_TX_STATE_* status code
1539	 *           15-12:  Retry count for 1st frame in aggregation (retries
1540	 *                   occur if tx failed for this frame when it was a
1541	 *                   member of a previous aggregation block).  If rate
1542	 *                   scaling is used, retry count indicates the rate
1543	 *                   table entry used for all frames in the new agg.
1544	 *           31-16:  Sequence # for this frame's Tx cmd (not SSN!)
1545	 */
1546	struct agg_tx_status status;	/* TX status (in aggregation -
1547					 * status of 1st frame) */
1548} __packed;
1549/*
1550 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1551 *
1552 * Reports Block-Acknowledge from recipient station
1553 */
1554struct iwl_compressed_ba_resp {
1555	__le32 sta_addr_lo32;
1556	__le16 sta_addr_hi16;
1557	__le16 reserved;
1558
1559	/* Index of recipient (BA-sending) station in uCode's station table */
1560	u8 sta_id;
1561	u8 tid;
1562	__le16 seq_ctl;
1563	__le64 bitmap;
1564	__le16 scd_flow;
1565	__le16 scd_ssn;
1566	/* following only for 5000 series and up */
1567	u8 txed;	/* number of frames sent */
1568	u8 txed_2_done; /* number of frames acked */
1569} __packed;
1570
1571/*
1572 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1573 *
1574 */
1575
1576/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1577#define  LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK	(1 << 0)
1578
1579/* # of EDCA prioritized tx fifos */
1580#define  LINK_QUAL_AC_NUM AC_NUM
1581
1582/* # entries in rate scale table to support Tx retries */
1583#define  LINK_QUAL_MAX_RETRY_NUM 16
1584
1585/* Tx antenna selection values */
1586#define  LINK_QUAL_ANT_A_MSK (1 << 0)
1587#define  LINK_QUAL_ANT_B_MSK (1 << 1)
1588#define  LINK_QUAL_ANT_MSK   (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1589
1590
1591/**
1592 * struct iwl_link_qual_general_params
1593 *
1594 * Used in REPLY_TX_LINK_QUALITY_CMD
1595 */
1596struct iwl_link_qual_general_params {
1597	u8 flags;
1598
1599	/* No entries at or above this (driver chosen) index contain MIMO */
1600	u8 mimo_delimiter;
1601
1602	/* Best single antenna to use for single stream (legacy, SISO). */
1603	u8 single_stream_ant_msk;	/* LINK_QUAL_ANT_* */
1604
1605	/* Best antennas to use for MIMO (unused for 4965, assumes both). */
1606	u8 dual_stream_ant_msk;		/* LINK_QUAL_ANT_* */
1607
1608	/*
1609	 * If driver needs to use different initial rates for different
1610	 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1611	 * this table will set that up, by indicating the indexes in the
1612	 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1613	 * Otherwise, driver should set all entries to 0.
1614	 *
1615	 * Entry usage:
1616	 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1617	 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1618	 */
1619	u8 start_rate_index[LINK_QUAL_AC_NUM];
1620} __packed;
1621
1622#define LINK_QUAL_AGG_TIME_LIMIT_DEF	(4000) /* 4 milliseconds */
1623#define LINK_QUAL_AGG_TIME_LIMIT_MAX	(8000)
1624#define LINK_QUAL_AGG_TIME_LIMIT_MIN	(100)
1625
1626#define LINK_QUAL_AGG_DISABLE_START_DEF	(3)
1627#define LINK_QUAL_AGG_DISABLE_START_MAX	(255)
1628#define LINK_QUAL_AGG_DISABLE_START_MIN	(0)
1629
1630#define LINK_QUAL_AGG_FRAME_LIMIT_DEF	(63)
1631#define LINK_QUAL_AGG_FRAME_LIMIT_MAX	(63)
1632#define LINK_QUAL_AGG_FRAME_LIMIT_MIN	(0)
1633
1634/**
1635 * struct iwl_link_qual_agg_params
1636 *
1637 * Used in REPLY_TX_LINK_QUALITY_CMD
1638 */
1639struct iwl_link_qual_agg_params {
1640
1641	/*
1642	 *Maximum number of uSec in aggregation.
1643	 * default set to 4000 (4 milliseconds) if not configured in .cfg
1644	 */
1645	__le16 agg_time_limit;
1646
1647	/*
1648	 * Number of Tx retries allowed for a frame, before that frame will
1649	 * no longer be considered for the start of an aggregation sequence
1650	 * (scheduler will then try to tx it as single frame).
1651	 * Driver should set this to 3.
1652	 */
1653	u8 agg_dis_start_th;
1654
1655	/*
1656	 * Maximum number of frames in aggregation.
1657	 * 0 = no limit (default).  1 = no aggregation.
1658	 * Other values = max # frames in aggregation.
1659	 */
1660	u8 agg_frame_cnt_limit;
1661
1662	__le32 reserved;
1663} __packed;
1664
1665/*
1666 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1667 *
1668 * For agn devices only; 3945 uses REPLY_RATE_SCALE.
1669 *
1670 * Each station in the agn device's internal station table has its own table
1671 * of 16
1672 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1673 * an ACK is not received.  This command replaces the entire table for
1674 * one station.
1675 *
1676 * NOTE:  Station must already be in agn device's station table.
1677 *	  Use REPLY_ADD_STA.
1678 *
1679 * The rate scaling procedures described below work well.  Of course, other
1680 * procedures are possible, and may work better for particular environments.
1681 *
1682 *
1683 * FILLING THE RATE TABLE
1684 *
1685 * Given a particular initial rate and mode, as determined by the rate
1686 * scaling algorithm described below, the Linux driver uses the following
1687 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1688 * Link Quality command:
1689 *
1690 *
1691 * 1)  If using High-throughput (HT) (SISO or MIMO) initial rate:
1692 *     a) Use this same initial rate for first 3 entries.
1693 *     b) Find next lower available rate using same mode (SISO or MIMO),
1694 *        use for next 3 entries.  If no lower rate available, switch to
1695 *        legacy mode (no HT40 channel, no MIMO, no short guard interval).
1696 *     c) If using MIMO, set command's mimo_delimiter to number of entries
1697 *        using MIMO (3 or 6).
1698 *     d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1699 *        no MIMO, no short guard interval), at the next lower bit rate
1700 *        (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1701 *        legacy procedure for remaining table entries.
1702 *
1703 * 2)  If using legacy initial rate:
1704 *     a) Use the initial rate for only one entry.
1705 *     b) For each following entry, reduce the rate to next lower available
1706 *        rate, until reaching the lowest available rate.
1707 *     c) When reducing rate, also switch antenna selection.
1708 *     d) Once lowest available rate is reached, repeat this rate until
1709 *        rate table is filled (16 entries), switching antenna each entry.
1710 *
1711 *
1712 * ACCUMULATING HISTORY
1713 *
1714 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1715 * uses two sets of frame Tx success history:  One for the current/active
1716 * modulation mode, and one for a speculative/search mode that is being
1717 * attempted. If the speculative mode turns out to be more effective (i.e.
1718 * actual transfer rate is better), then the driver continues to use the
1719 * speculative mode as the new current active mode.
1720 *
1721 * Each history set contains, separately for each possible rate, data for a
1722 * sliding window of the 62 most recent tx attempts at that rate.  The data
1723 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1724 * and attempted frames, from which the driver can additionally calculate a
1725 * success ratio (success / attempted) and number of failures
1726 * (attempted - success), and control the size of the window (attempted).
1727 * The driver uses the bit map to remove successes from the success sum, as
1728 * the oldest tx attempts fall out of the window.
1729 *
1730 * When the agn device makes multiple tx attempts for a given frame, each
1731 * attempt might be at a different rate, and have different modulation
1732 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1733 * up in the rate scaling table in the Link Quality command.  The driver must
1734 * determine which rate table entry was used for each tx attempt, to determine
1735 * which rate-specific history to update, and record only those attempts that
1736 * match the modulation characteristics of the history set.
1737 *
1738 * When using block-ack (aggregation), all frames are transmitted at the same
1739 * rate, since there is no per-attempt acknowledgment from the destination
1740 * station.  The Tx response struct iwl_tx_resp indicates the Tx rate in
1741 * rate_n_flags field.  After receiving a block-ack, the driver can update
1742 * history for the entire block all at once.
1743 *
1744 *
1745 * FINDING BEST STARTING RATE:
1746 *
1747 * When working with a selected initial modulation mode (see below), the
1748 * driver attempts to find a best initial rate.  The initial rate is the
1749 * first entry in the Link Quality command's rate table.
1750 *
1751 * 1)  Calculate actual throughput (success ratio * expected throughput, see
1752 *     table below) for current initial rate.  Do this only if enough frames
1753 *     have been attempted to make the value meaningful:  at least 6 failed
1754 *     tx attempts, or at least 8 successes.  If not enough, don't try rate
1755 *     scaling yet.
1756 *
1757 * 2)  Find available rates adjacent to current initial rate.  Available means:
1758 *     a)  supported by hardware &&
1759 *     b)  supported by association &&
1760 *     c)  within any constraints selected by user
1761 *
1762 * 3)  Gather measured throughputs for adjacent rates.  These might not have
1763 *     enough history to calculate a throughput.  That's okay, we might try
1764 *     using one of them anyway!
1765 *
1766 * 4)  Try decreasing rate if, for current rate:
1767 *     a)  success ratio is < 15% ||
1768 *     b)  lower adjacent rate has better measured throughput ||
1769 *     c)  higher adjacent rate has worse throughput, and lower is unmeasured
1770 *
1771 *     As a sanity check, if decrease was determined above, leave rate
1772 *     unchanged if:
1773 *     a)  lower rate unavailable
1774 *     b)  success ratio at current rate > 85% (very good)
1775 *     c)  current measured throughput is better than expected throughput
1776 *         of lower rate (under perfect 100% tx conditions, see table below)
1777 *
1778 * 5)  Try increasing rate if, for current rate:
1779 *     a)  success ratio is < 15% ||
1780 *     b)  both adjacent rates' throughputs are unmeasured (try it!) ||
1781 *     b)  higher adjacent rate has better measured throughput ||
1782 *     c)  lower adjacent rate has worse throughput, and higher is unmeasured
1783 *
1784 *     As a sanity check, if increase was determined above, leave rate
1785 *     unchanged if:
1786 *     a)  success ratio at current rate < 70%.  This is not particularly
1787 *         good performance; higher rate is sure to have poorer success.
1788 *
1789 * 6)  Re-evaluate the rate after each tx frame.  If working with block-
1790 *     acknowledge, history and statistics may be calculated for the entire
1791 *     block (including prior history that fits within the history windows),
1792 *     before re-evaluation.
1793 *
1794 * FINDING BEST STARTING MODULATION MODE:
1795 *
1796 * After working with a modulation mode for a "while" (and doing rate scaling),
1797 * the driver searches for a new initial mode in an attempt to improve
1798 * throughput.  The "while" is measured by numbers of attempted frames:
1799 *
1800 * For legacy mode, search for new mode after:
1801 *   480 successful frames, or 160 failed frames
1802 * For high-throughput modes (SISO or MIMO), search for new mode after:
1803 *   4500 successful frames, or 400 failed frames
1804 *
1805 * Mode switch possibilities are (3 for each mode):
1806 *
1807 * For legacy:
1808 *   Change antenna, try SISO (if HT association), try MIMO (if HT association)
1809 * For SISO:
1810 *   Change antenna, try MIMO, try shortened guard interval (SGI)
1811 * For MIMO:
1812 *   Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1813 *
1814 * When trying a new mode, use the same bit rate as the old/current mode when
1815 * trying antenna switches and shortened guard interval.  When switching to
1816 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1817 * for which the expected throughput (under perfect conditions) is about the
1818 * same or slightly better than the actual measured throughput delivered by
1819 * the old/current mode.
1820 *
1821 * Actual throughput can be estimated by multiplying the expected throughput
1822 * by the success ratio (successful / attempted tx frames).  Frame size is
1823 * not considered in this calculation; it assumes that frame size will average
1824 * out to be fairly consistent over several samples.  The following are
1825 * metric values for expected throughput assuming 100% success ratio.
1826 * Only G band has support for CCK rates:
1827 *
1828 *           RATE:  1    2    5   11    6   9   12   18   24   36   48   54   60
1829 *
1830 *              G:  7   13   35   58   40  57   72   98  121  154  177  186  186
1831 *              A:  0    0    0    0   40  57   72   98  121  154  177  186  186
1832 *     SISO 20MHz:  0    0    0    0   42  42   76  102  124  159  183  193  202
1833 * SGI SISO 20MHz:  0    0    0    0   46  46   82  110  132  168  192  202  211
1834 *     MIMO 20MHz:  0    0    0    0   74  74  123  155  179  214  236  244  251
1835 * SGI MIMO 20MHz:  0    0    0    0   81  81  131  164  188  222  243  251  257
1836 *     SISO 40MHz:  0    0    0    0   77  77  127  160  184  220  242  250  257
1837 * SGI SISO 40MHz:  0    0    0    0   83  83  135  169  193  229  250  257  264
1838 *     MIMO 40MHz:  0    0    0    0  123 123  182  214  235  264  279  285  289
1839 * SGI MIMO 40MHz:  0    0    0    0  131 131  191  222  242  270  284  289  293
1840 *
1841 * After the new mode has been tried for a short while (minimum of 6 failed
1842 * frames or 8 successful frames), compare success ratio and actual throughput
1843 * estimate of the new mode with the old.  If either is better with the new
1844 * mode, continue to use the new mode.
1845 *
1846 * Continue comparing modes until all 3 possibilities have been tried.
1847 * If moving from legacy to HT, try all 3 possibilities from the new HT
1848 * mode.  After trying all 3, a best mode is found.  Continue to use this mode
1849 * for the longer "while" described above (e.g. 480 successful frames for
1850 * legacy), and then repeat the search process.
1851 *
1852 */
1853struct iwl_link_quality_cmd {
1854
1855	/* Index of destination/recipient station in uCode's station table */
1856	u8 sta_id;
1857	u8 reserved1;
1858	__le16 control;		/* not used */
1859	struct iwl_link_qual_general_params general_params;
1860	struct iwl_link_qual_agg_params agg_params;
1861
1862	/*
1863	 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1864	 * specifies 1st Tx rate attempted, via index into this table.
1865	 * agn devices works its way through table when retrying Tx.
1866	 */
1867	struct {
1868		__le32 rate_n_flags;	/* RATE_MCS_*, IWL_RATE_* */
1869	} rs_table[LINK_QUAL_MAX_RETRY_NUM];
1870	__le32 reserved2;
1871} __packed;
1872
1873/*
1874 * BT configuration enable flags:
1875 *   bit 0 - 1: BT channel announcement enabled
1876 *           0: disable
1877 *   bit 1 - 1: priority of BT device enabled
1878 *           0: disable
1879 *   bit 2 - 1: BT 2 wire support enabled
1880 *           0: disable
1881 */
1882#define BT_COEX_DISABLE (0x0)
1883#define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1884#define BT_ENABLE_PRIORITY	   BIT(1)
1885#define BT_ENABLE_2_WIRE	   BIT(2)
1886
1887#define BT_COEX_DISABLE (0x0)
1888#define BT_COEX_ENABLE  (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1889
1890#define BT_LEAD_TIME_MIN (0x0)
1891#define BT_LEAD_TIME_DEF (0x1E)
1892#define BT_LEAD_TIME_MAX (0xFF)
1893
1894#define BT_MAX_KILL_MIN (0x1)
1895#define BT_MAX_KILL_DEF (0x5)
1896#define BT_MAX_KILL_MAX (0xFF)
1897
1898#define BT_DURATION_LIMIT_DEF	625
1899#define BT_DURATION_LIMIT_MAX	1250
1900#define BT_DURATION_LIMIT_MIN	625
1901
1902#define BT_ON_THRESHOLD_DEF	4
1903#define BT_ON_THRESHOLD_MAX	1000
1904#define BT_ON_THRESHOLD_MIN	1
1905
1906#define BT_FRAG_THRESHOLD_DEF	0
1907#define BT_FRAG_THRESHOLD_MAX	0
1908#define BT_FRAG_THRESHOLD_MIN	0
1909
1910#define BT_AGG_THRESHOLD_DEF	1200
1911#define BT_AGG_THRESHOLD_MAX	8000
1912#define BT_AGG_THRESHOLD_MIN	400
1913
1914/*
1915 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1916 *
1917 * 3945 and agn devices support hardware handshake with Bluetooth device on
1918 * same platform.  Bluetooth device alerts wireless device when it will Tx;
1919 * wireless device can delay or kill its own Tx to accommodate.
1920 */
1921struct iwl_bt_cmd {
1922	u8 flags;
1923	u8 lead_time;
1924	u8 max_kill;
1925	u8 reserved;
1926	__le32 kill_ack_mask;
1927	__le32 kill_cts_mask;
1928} __packed;
1929
1930#define IWLAGN_BT_FLAG_CHANNEL_INHIBITION	BIT(0)
1931
1932#define IWLAGN_BT_FLAG_COEX_MODE_MASK		(BIT(3)|BIT(4)|BIT(5))
1933#define IWLAGN_BT_FLAG_COEX_MODE_SHIFT		3
1934#define IWLAGN_BT_FLAG_COEX_MODE_DISABLED	0
1935#define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W	1
1936#define IWLAGN_BT_FLAG_COEX_MODE_3W		2
1937#define IWLAGN_BT_FLAG_COEX_MODE_4W		3
1938
1939#define IWLAGN_BT_FLAG_UCODE_DEFAULT		BIT(6)
1940/* Disable Sync PSPoll on SCO/eSCO */
1941#define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE	BIT(7)
1942
1943#define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD	-75 /* dBm */
1944#define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD	-65 /* dBm */
1945
1946#define IWLAGN_BT_PRIO_BOOST_MAX	0xFF
1947#define IWLAGN_BT_PRIO_BOOST_MIN	0x00
1948#define IWLAGN_BT_PRIO_BOOST_DEFAULT	0xF0
1949
1950#define IWLAGN_BT_MAX_KILL_DEFAULT	5
1951
1952#define IWLAGN_BT3_T7_DEFAULT		1
1953
1954#define IWLAGN_BT_KILL_ACK_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1955#define IWLAGN_BT_KILL_CTS_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1956#define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO	cpu_to_le32(0xffffffff)
1957
1958#define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT	2
1959
1960#define IWLAGN_BT3_T2_DEFAULT		0xc
1961
1962#define IWLAGN_BT_VALID_ENABLE_FLAGS	cpu_to_le16(BIT(0))
1963#define IWLAGN_BT_VALID_BOOST		cpu_to_le16(BIT(1))
1964#define IWLAGN_BT_VALID_MAX_KILL	cpu_to_le16(BIT(2))
1965#define IWLAGN_BT_VALID_3W_TIMERS	cpu_to_le16(BIT(3))
1966#define IWLAGN_BT_VALID_KILL_ACK_MASK	cpu_to_le16(BIT(4))
1967#define IWLAGN_BT_VALID_KILL_CTS_MASK	cpu_to_le16(BIT(5))
1968#define IWLAGN_BT_VALID_BT4_TIMES	cpu_to_le16(BIT(6))
1969#define IWLAGN_BT_VALID_3W_LUT		cpu_to_le16(BIT(7))
1970
1971#define IWLAGN_BT_ALL_VALID_MSK		(IWLAGN_BT_VALID_ENABLE_FLAGS | \
1972					IWLAGN_BT_VALID_BOOST | \
1973					IWLAGN_BT_VALID_MAX_KILL | \
1974					IWLAGN_BT_VALID_3W_TIMERS | \
1975					IWLAGN_BT_VALID_KILL_ACK_MASK | \
1976					IWLAGN_BT_VALID_KILL_CTS_MASK | \
1977					IWLAGN_BT_VALID_BT4_TIMES | \
1978					IWLAGN_BT_VALID_3W_LUT)
1979
1980struct iwl_basic_bt_cmd {
1981	u8 flags;
1982	u8 ledtime; /* unused */
1983	u8 max_kill;
1984	u8 bt3_timer_t7_value;
1985	__le32 kill_ack_mask;
1986	__le32 kill_cts_mask;
1987	u8 bt3_prio_sample_time;
1988	u8 bt3_timer_t2_value;
1989	__le16 bt4_reaction_time; /* unused */
1990	__le32 bt3_lookup_table[12];
1991	__le16 bt4_decision_time; /* unused */
1992	__le16 valid;
1993};
1994
1995struct iwl6000_bt_cmd {
1996	struct iwl_basic_bt_cmd basic;
1997	u8 prio_boost;
1998	/*
1999	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
2000	 * if configure the following patterns
2001	 */
2002	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
2003	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
2004};
2005
2006struct iwl2000_bt_cmd {
2007	struct iwl_basic_bt_cmd basic;
2008	__le32 prio_boost;
2009	/*
2010	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
2011	 * if configure the following patterns
2012	 */
2013	u8 reserved;
2014	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
2015	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
2016};
2017
2018#define IWLAGN_BT_SCO_ACTIVE	cpu_to_le32(BIT(0))
2019
2020struct iwlagn_bt_sco_cmd {
2021	__le32 flags;
2022};
2023
2024/******************************************************************************
2025 * (6)
2026 * Spectrum Management (802.11h) Commands, Responses, Notifications:
2027 *
2028 *****************************************************************************/
2029
2030/*
2031 * Spectrum Management
2032 */
2033#define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK         | \
2034				 RXON_FILTER_CTL2HOST_MSK        | \
2035				 RXON_FILTER_ACCEPT_GRP_MSK      | \
2036				 RXON_FILTER_DIS_DECRYPT_MSK     | \
2037				 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
2038				 RXON_FILTER_ASSOC_MSK           | \
2039				 RXON_FILTER_BCON_AWARE_MSK)
2040
2041struct iwl_measure_channel {
2042	__le32 duration;	/* measurement duration in extended beacon
2043				 * format */
2044	u8 channel;		/* channel to measure */
2045	u8 type;		/* see enum iwl_measure_type */
2046	__le16 reserved;
2047} __packed;
2048
2049/*
2050 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
2051 */
2052struct iwl_spectrum_cmd {
2053	__le16 len;		/* number of bytes starting from token */
2054	u8 token;		/* token id */
2055	u8 id;			/* measurement id -- 0 or 1 */
2056	u8 origin;		/* 0 = TGh, 1 = other, 2 = TGk */
2057	u8 periodic;		/* 1 = periodic */
2058	__le16 path_loss_timeout;
2059	__le32 start_time;	/* start time in extended beacon format */
2060	__le32 reserved2;
2061	__le32 flags;		/* rxon flags */
2062	__le32 filter_flags;	/* rxon filter flags */
2063	__le16 channel_count;	/* minimum 1, maximum 10 */
2064	__le16 reserved3;
2065	struct iwl_measure_channel channels[10];
2066} __packed;
2067
2068/*
2069 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2070 */
2071struct iwl_spectrum_resp {
2072	u8 token;
2073	u8 id;			/* id of the prior command replaced, or 0xff */
2074	__le16 status;		/* 0 - command will be handled
2075				 * 1 - cannot handle (conflicts with another
2076				 *     measurement) */
2077} __packed;
2078
2079enum iwl_measurement_state {
2080	IWL_MEASUREMENT_START = 0,
2081	IWL_MEASUREMENT_STOP = 1,
2082};
2083
2084enum iwl_measurement_status {
2085	IWL_MEASUREMENT_OK = 0,
2086	IWL_MEASUREMENT_CONCURRENT = 1,
2087	IWL_MEASUREMENT_CSA_CONFLICT = 2,
2088	IWL_MEASUREMENT_TGH_CONFLICT = 3,
2089	/* 4-5 reserved */
2090	IWL_MEASUREMENT_STOPPED = 6,
2091	IWL_MEASUREMENT_TIMEOUT = 7,
2092	IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2093};
2094
2095#define NUM_ELEMENTS_IN_HISTOGRAM 8
2096
2097struct iwl_measurement_histogram {
2098	__le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 0.8usec counts */
2099	__le32 cck[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 1usec counts */
2100} __packed;
2101
2102/* clear channel availability counters */
2103struct iwl_measurement_cca_counters {
2104	__le32 ofdm;
2105	__le32 cck;
2106} __packed;
2107
2108enum iwl_measure_type {
2109	IWL_MEASURE_BASIC = (1 << 0),
2110	IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2111	IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2112	IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2113	IWL_MEASURE_FRAME = (1 << 4),
2114	/* bits 5:6 are reserved */
2115	IWL_MEASURE_IDLE = (1 << 7),
2116};
2117
2118/*
2119 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2120 */
2121struct iwl_spectrum_notification {
2122	u8 id;			/* measurement id -- 0 or 1 */
2123	u8 token;
2124	u8 channel_index;	/* index in measurement channel list */
2125	u8 state;		/* 0 - start, 1 - stop */
2126	__le32 start_time;	/* lower 32-bits of TSF */
2127	u8 band;		/* 0 - 5.2GHz, 1 - 2.4GHz */
2128	u8 channel;
2129	u8 type;		/* see enum iwl_measurement_type */
2130	u8 reserved1;
2131	/* NOTE:  cca_ofdm, cca_cck, basic_type, and histogram are only only
2132	 * valid if applicable for measurement type requested. */
2133	__le32 cca_ofdm;	/* cca fraction time in 40Mhz clock periods */
2134	__le32 cca_cck;		/* cca fraction time in 44Mhz clock periods */
2135	__le32 cca_time;	/* channel load time in usecs */
2136	u8 basic_type;		/* 0 - bss, 1 - ofdm preamble, 2 -
2137				 * unidentified */
2138	u8 reserved2[3];
2139	struct iwl_measurement_histogram histogram;
2140	__le32 stop_time;	/* lower 32-bits of TSF */
2141	__le32 status;		/* see iwl_measurement_status */
2142} __packed;
2143
2144/******************************************************************************
2145 * (7)
2146 * Power Management Commands, Responses, Notifications:
2147 *
2148 *****************************************************************************/
2149
2150/**
2151 * struct iwl_powertable_cmd - Power Table Command
2152 * @flags: See below:
2153 *
2154 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2155 *
2156 * PM allow:
2157 *   bit 0 - '0' Driver not allow power management
2158 *           '1' Driver allow PM (use rest of parameters)
2159 *
2160 * uCode send sleep notifications:
2161 *   bit 1 - '0' Don't send sleep notification
2162 *           '1' send sleep notification (SEND_PM_NOTIFICATION)
2163 *
2164 * Sleep over DTIM
2165 *   bit 2 - '0' PM have to walk up every DTIM
2166 *           '1' PM could sleep over DTIM till listen Interval.
2167 *
2168 * PCI power managed
2169 *   bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2170 *           '1' !(PCI_CFG_LINK_CTRL & 0x1)
2171 *
2172 * Fast PD
2173 *   bit 4 - '1' Put radio to sleep when receiving frame for others
2174 *
2175 * Force sleep Modes
2176 *   bit 31/30- '00' use both mac/xtal sleeps
2177 *              '01' force Mac sleep
2178 *              '10' force xtal sleep
2179 *              '11' Illegal set
2180 *
2181 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2182 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2183 * for every DTIM.
2184 */
2185#define IWL_POWER_VEC_SIZE 5
2186
2187#define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK	cpu_to_le16(BIT(0))
2188#define IWL_POWER_POWER_SAVE_ENA_MSK		cpu_to_le16(BIT(0))
2189#define IWL_POWER_POWER_MANAGEMENT_ENA_MSK	cpu_to_le16(BIT(1))
2190#define IWL_POWER_SLEEP_OVER_DTIM_MSK		cpu_to_le16(BIT(2))
2191#define IWL_POWER_PCI_PM_MSK			cpu_to_le16(BIT(3))
2192#define IWL_POWER_FAST_PD			cpu_to_le16(BIT(4))
2193#define IWL_POWER_BEACON_FILTERING		cpu_to_le16(BIT(5))
2194#define IWL_POWER_SHADOW_REG_ENA		cpu_to_le16(BIT(6))
2195#define IWL_POWER_CT_KILL_SET			cpu_to_le16(BIT(7))
2196#define IWL_POWER_BT_SCO_ENA			cpu_to_le16(BIT(8))
2197#define IWL_POWER_ADVANCE_PM_ENA_MSK		cpu_to_le16(BIT(9))
2198
2199struct iwl_powertable_cmd {
2200	__le16 flags;
2201	u8 keep_alive_seconds;		/* 3945 reserved */
2202	u8 debug_flags;			/* 3945 reserved */
2203	__le32 rx_data_timeout;
2204	__le32 tx_data_timeout;
2205	__le32 sleep_interval[IWL_POWER_VEC_SIZE];
2206	__le32 keep_alive_beacons;
2207} __packed;
2208
2209/*
2210 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2211 * all devices identical.
2212 */
2213struct iwl_sleep_notification {
2214	u8 pm_sleep_mode;
2215	u8 pm_wakeup_src;
2216	__le16 reserved;
2217	__le32 sleep_time;
2218	__le32 tsf_low;
2219	__le32 bcon_timer;
2220} __packed;
2221
2222/* Sleep states.  all devices identical. */
2223enum {
2224	IWL_PM_NO_SLEEP = 0,
2225	IWL_PM_SLP_MAC = 1,
2226	IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2227	IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2228	IWL_PM_SLP_PHY = 4,
2229	IWL_PM_SLP_REPENT = 5,
2230	IWL_PM_WAKEUP_BY_TIMER = 6,
2231	IWL_PM_WAKEUP_BY_DRIVER = 7,
2232	IWL_PM_WAKEUP_BY_RFKILL = 8,
2233	/* 3 reserved */
2234	IWL_PM_NUM_OF_MODES = 12,
2235};
2236
2237/*
2238 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2239 */
2240#define CARD_STATE_CMD_DISABLE 0x00	/* Put card to sleep */
2241#define CARD_STATE_CMD_ENABLE  0x01	/* Wake up card */
2242#define CARD_STATE_CMD_HALT    0x02	/* Power down permanently */
2243struct iwl_card_state_cmd {
2244	__le32 status;		/* CARD_STATE_CMD_* request new power state */
2245} __packed;
2246
2247/*
2248 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2249 */
2250struct iwl_card_state_notif {
2251	__le32 flags;
2252} __packed;
2253
2254#define HW_CARD_DISABLED   0x01
2255#define SW_CARD_DISABLED   0x02
2256#define CT_CARD_DISABLED   0x04
2257#define RXON_CARD_DISABLED 0x10
2258
2259struct iwl_ct_kill_config {
2260	__le32   reserved;
2261	__le32   critical_temperature_M;
2262	__le32   critical_temperature_R;
2263}  __packed;
2264
2265/* 1000, and 6x00 */
2266struct iwl_ct_kill_throttling_config {
2267	__le32   critical_temperature_exit;
2268	__le32   reserved;
2269	__le32   critical_temperature_enter;
2270}  __packed;
2271
2272/******************************************************************************
2273 * (8)
2274 * Scan Commands, Responses, Notifications:
2275 *
2276 *****************************************************************************/
2277
2278#define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2279#define SCAN_CHANNEL_TYPE_ACTIVE  cpu_to_le32(1)
2280
2281/**
2282 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2283 *
2284 * One for each channel in the scan list.
2285 * Each channel can independently select:
2286 * 1)  SSID for directed active scans
2287 * 2)  Txpower setting (for rate specified within Tx command)
2288 * 3)  How long to stay on-channel (behavior may be modified by quiet_time,
2289 *     quiet_plcp_th, good_CRC_th)
2290 *
2291 * To avoid uCode errors, make sure the following are true (see comments
2292 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2293 * 1)  If using passive_dwell (i.e. passive_dwell != 0):
2294 *     active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2295 * 2)  quiet_time <= active_dwell
2296 * 3)  If restricting off-channel time (i.e. max_out_time !=0):
2297 *     passive_dwell < max_out_time
2298 *     active_dwell < max_out_time
2299 */
2300
2301struct iwl_scan_channel {
2302	/*
2303	 * type is defined as:
2304	 * 0:0 1 = active, 0 = passive
2305	 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2306	 *     SSID IE is transmitted in probe request.
2307	 * 21:31 reserved
2308	 */
2309	__le32 type;
2310	__le16 channel;	/* band is selected by iwl_scan_cmd "flags" field */
2311	u8 tx_gain;		/* gain for analog radio */
2312	u8 dsp_atten;		/* gain for DSP */
2313	__le16 active_dwell;	/* in 1024-uSec TU (time units), typ 5-50 */
2314	__le16 passive_dwell;	/* in 1024-uSec TU (time units), typ 20-500 */
2315} __packed;
2316
2317/* set number of direct probes __le32 type */
2318#define IWL_SCAN_PROBE_MASK(n) 	cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2319
2320/**
2321 * struct iwl_ssid_ie - directed scan network information element
2322 *
2323 * Up to 20 of these may appear in REPLY_SCAN_CMD (Note: Only 4 are in
2324 * 3945 SCAN api), selected by "type" bit field in struct iwl_scan_channel;
2325 * each channel may select different ssids from among the 20 (4) entries.
2326 * SSID IEs get transmitted in reverse order of entry.
2327 */
2328struct iwl_ssid_ie {
2329	u8 id;
2330	u8 len;
2331	u8 ssid[32];
2332} __packed;
2333
2334#define PROBE_OPTION_MAX_3945		4
2335#define PROBE_OPTION_MAX		20
2336#define TX_CMD_LIFE_TIME_INFINITE	cpu_to_le32(0xFFFFFFFF)
2337#define IWL_GOOD_CRC_TH_DISABLED	0
2338#define IWL_GOOD_CRC_TH_DEFAULT		cpu_to_le16(1)
2339#define IWL_GOOD_CRC_TH_NEVER		cpu_to_le16(0xffff)
2340#define IWL_MAX_SCAN_SIZE 1024
2341#define IWL_MAX_CMD_SIZE 4096
2342
2343/*
2344 * REPLY_SCAN_CMD = 0x80 (command)
2345 *
2346 * The hardware scan command is very powerful; the driver can set it up to
2347 * maintain (relatively) normal network traffic while doing a scan in the
2348 * background.  The max_out_time and suspend_time control the ratio of how
2349 * long the device stays on an associated network channel ("service channel")
2350 * vs. how long it's away from the service channel, i.e. tuned to other channels
2351 * for scanning.
2352 *
2353 * max_out_time is the max time off-channel (in usec), and suspend_time
2354 * is how long (in "extended beacon" format) that the scan is "suspended"
2355 * after returning to the service channel.  That is, suspend_time is the
2356 * time that we stay on the service channel, doing normal work, between
2357 * scan segments.  The driver may set these parameters differently to support
2358 * scanning when associated vs. not associated, and light vs. heavy traffic
2359 * loads when associated.
2360 *
2361 * After receiving this command, the device's scan engine does the following;
2362 *
2363 * 1)  Sends SCAN_START notification to driver
2364 * 2)  Checks to see if it has time to do scan for one channel
2365 * 3)  Sends NULL packet, with power-save (PS) bit set to 1,
2366 *     to tell AP that we're going off-channel
2367 * 4)  Tunes to first channel in scan list, does active or passive scan
2368 * 5)  Sends SCAN_RESULT notification to driver
2369 * 6)  Checks to see if it has time to do scan on *next* channel in list
2370 * 7)  Repeats 4-6 until it no longer has time to scan the next channel
2371 *     before max_out_time expires
2372 * 8)  Returns to service channel
2373 * 9)  Sends NULL packet with PS=0 to tell AP that we're back
2374 * 10) Stays on service channel until suspend_time expires
2375 * 11) Repeats entire process 2-10 until list is complete
2376 * 12) Sends SCAN_COMPLETE notification
2377 *
2378 * For fast, efficient scans, the scan command also has support for staying on
2379 * a channel for just a short time, if doing active scanning and getting no
2380 * responses to the transmitted probe request.  This time is controlled by
2381 * quiet_time, and the number of received packets below which a channel is
2382 * considered "quiet" is controlled by quiet_plcp_threshold.
2383 *
2384 * For active scanning on channels that have regulatory restrictions against
2385 * blindly transmitting, the scan can listen before transmitting, to make sure
2386 * that there is already legitimate activity on the channel.  If enough
2387 * packets are cleanly received on the channel (controlled by good_CRC_th,
2388 * typical value 1), the scan engine starts transmitting probe requests.
2389 *
2390 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2391 *
2392 * To avoid uCode errors, see timing restrictions described under
2393 * struct iwl_scan_channel.
2394 */
2395
2396enum iwl_scan_flags {
2397	/* BIT(0) currently unused */
2398	IWL_SCAN_FLAGS_ACTION_FRAME_TX	= BIT(1),
2399	/* bits 2-7 reserved */
2400};
2401
2402struct iwl_scan_cmd {
2403	__le16 len;
2404	u8 scan_flags;		/* scan flags: see enum iwl_scan_flags */
2405	u8 channel_count;	/* # channels in channel list */
2406	__le16 quiet_time;	/* dwell only this # millisecs on quiet channel
2407				 * (only for active scan) */
2408	__le16 quiet_plcp_th;	/* quiet chnl is < this # pkts (typ. 1) */
2409	__le16 good_CRC_th;	/* passive -> active promotion threshold */
2410	__le16 rx_chain;	/* RXON_RX_CHAIN_* */
2411	__le32 max_out_time;	/* max usec to be away from associated (service)
2412				 * channel */
2413	__le32 suspend_time;	/* pause scan this long (in "extended beacon
2414				 * format") when returning to service chnl:
2415				 * 3945; 31:24 # beacons, 19:0 additional usec,
2416				 * 4965; 31:22 # beacons, 21:0 additional usec.
2417				 */
2418	__le32 flags;		/* RXON_FLG_* */
2419	__le32 filter_flags;	/* RXON_FILTER_* */
2420
2421	/* For active scans (set to all-0s for passive scans).
2422	 * Does not include payload.  Must specify Tx rate; no rate scaling. */
2423	struct iwl_tx_cmd tx_cmd;
2424
2425	/* For directed active scans (set to all-0s otherwise) */
2426	struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2427
2428	/*
2429	 * Probe request frame, followed by channel list.
2430	 *
2431	 * Size of probe request frame is specified by byte count in tx_cmd.
2432	 * Channel list follows immediately after probe request frame.
2433	 * Number of channels in list is specified by channel_count.
2434	 * Each channel in list is of type:
2435	 *
2436	 * struct iwl_scan_channel channels[0];
2437	 *
2438	 * NOTE:  Only one band of channels can be scanned per pass.  You
2439	 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2440	 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2441	 * before requesting another scan.
2442	 */
2443	u8 data[0];
2444} __packed;
2445
2446/* Can abort will notify by complete notification with abort status. */
2447#define CAN_ABORT_STATUS	cpu_to_le32(0x1)
2448/* complete notification statuses */
2449#define ABORT_STATUS            0x2
2450
2451/*
2452 * REPLY_SCAN_CMD = 0x80 (response)
2453 */
2454struct iwl_scanreq_notification {
2455	__le32 status;		/* 1: okay, 2: cannot fulfill request */
2456} __packed;
2457
2458/*
2459 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2460 */
2461struct iwl_scanstart_notification {
2462	__le32 tsf_low;
2463	__le32 tsf_high;
2464	__le32 beacon_timer;
2465	u8 channel;
2466	u8 band;
2467	u8 reserved[2];
2468	__le32 status;
2469} __packed;
2470
2471#define  SCAN_OWNER_STATUS 0x1
2472#define  MEASURE_OWNER_STATUS 0x2
2473
2474#define IWL_PROBE_STATUS_OK		0
2475#define IWL_PROBE_STATUS_TX_FAILED	BIT(0)
2476/* error statuses combined with TX_FAILED */
2477#define IWL_PROBE_STATUS_FAIL_TTL	BIT(1)
2478#define IWL_PROBE_STATUS_FAIL_BT	BIT(2)
2479
2480#define NUMBER_OF_STATISTICS 1	/* first __le32 is good CRC */
2481/*
2482 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2483 */
2484struct iwl_scanresults_notification {
2485	u8 channel;
2486	u8 band;
2487	u8 probe_status;
2488	u8 num_probe_not_sent; /* not enough time to send */
2489	__le32 tsf_low;
2490	__le32 tsf_high;
2491	__le32 statistics[NUMBER_OF_STATISTICS];
2492} __packed;
2493
2494/*
2495 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2496 */
2497struct iwl_scancomplete_notification {
2498	u8 scanned_channels;
2499	u8 status;
2500	u8 bt_status;	/* BT On/Off status */
2501	u8 last_channel;
2502	__le32 tsf_low;
2503	__le32 tsf_high;
2504} __packed;
2505
2506
2507/******************************************************************************
2508 * (9)
2509 * IBSS/AP Commands and Notifications:
2510 *
2511 *****************************************************************************/
2512
2513enum iwl_ibss_manager {
2514	IWL_NOT_IBSS_MANAGER = 0,
2515	IWL_IBSS_MANAGER = 1,
2516};
2517
2518/*
2519 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2520 */
2521
2522struct iwlagn_beacon_notif {
2523	struct iwlagn_tx_resp beacon_notify_hdr;
2524	__le32 low_tsf;
2525	__le32 high_tsf;
2526	__le32 ibss_mgr_status;
2527} __packed;
2528
2529/*
2530 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2531 */
2532
2533struct iwl_tx_beacon_cmd {
2534	struct iwl_tx_cmd tx;
2535	__le16 tim_idx;
2536	u8 tim_size;
2537	u8 reserved1;
2538	struct ieee80211_hdr frame[0];	/* beacon frame */
2539} __packed;
2540
2541/******************************************************************************
2542 * (10)
2543 * Statistics Commands and Notifications:
2544 *
2545 *****************************************************************************/
2546
2547#define IWL_TEMP_CONVERT 260
2548
2549#define SUP_RATE_11A_MAX_NUM_CHANNELS  8
2550#define SUP_RATE_11B_MAX_NUM_CHANNELS  4
2551#define SUP_RATE_11G_MAX_NUM_CHANNELS  12
2552
2553/* Used for passing to driver number of successes and failures per rate */
2554struct rate_histogram {
2555	union {
2556		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2557		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2558		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2559	} success;
2560	union {
2561		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2562		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2563		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2564	} failed;
2565} __packed;
2566
2567/* statistics command response */
2568
2569struct statistics_dbg {
2570	__le32 burst_check;
2571	__le32 burst_count;
2572	__le32 wait_for_silence_timeout_cnt;
2573	__le32 reserved[3];
2574} __packed;
2575
2576struct statistics_rx_phy {
2577	__le32 ina_cnt;
2578	__le32 fina_cnt;
2579	__le32 plcp_err;
2580	__le32 crc32_err;
2581	__le32 overrun_err;
2582	__le32 early_overrun_err;
2583	__le32 crc32_good;
2584	__le32 false_alarm_cnt;
2585	__le32 fina_sync_err_cnt;
2586	__le32 sfd_timeout;
2587	__le32 fina_timeout;
2588	__le32 unresponded_rts;
2589	__le32 rxe_frame_limit_overrun;
2590	__le32 sent_ack_cnt;
2591	__le32 sent_cts_cnt;
2592	__le32 sent_ba_rsp_cnt;
2593	__le32 dsp_self_kill;
2594	__le32 mh_format_err;
2595	__le32 re_acq_main_rssi_sum;
2596	__le32 reserved3;
2597} __packed;
2598
2599struct statistics_rx_ht_phy {
2600	__le32 plcp_err;
2601	__le32 overrun_err;
2602	__le32 early_overrun_err;
2603	__le32 crc32_good;
2604	__le32 crc32_err;
2605	__le32 mh_format_err;
2606	__le32 agg_crc32_good;
2607	__le32 agg_mpdu_cnt;
2608	__le32 agg_cnt;
2609	__le32 unsupport_mcs;
2610} __packed;
2611
2612#define INTERFERENCE_DATA_AVAILABLE      cpu_to_le32(1)
2613
2614struct statistics_rx_non_phy {
2615	__le32 bogus_cts;	/* CTS received when not expecting CTS */
2616	__le32 bogus_ack;	/* ACK received when not expecting ACK */
2617	__le32 non_bssid_frames;	/* number of frames with BSSID that
2618					 * doesn't belong to the STA BSSID */
2619	__le32 filtered_frames;	/* count frames that were dumped in the
2620				 * filtering process */
2621	__le32 non_channel_beacons;	/* beacons with our bss id but not on
2622					 * our serving channel */
2623	__le32 channel_beacons;	/* beacons with our bss id and in our
2624				 * serving channel */
2625	__le32 num_missed_bcon;	/* number of missed beacons */
2626	__le32 adc_rx_saturation_time;	/* count in 0.8us units the time the
2627					 * ADC was in saturation */
2628	__le32 ina_detection_search_time;/* total time (in 0.8us) searched
2629					  * for INA */
2630	__le32 beacon_silence_rssi_a;	/* RSSI silence after beacon frame */
2631	__le32 beacon_silence_rssi_b;	/* RSSI silence after beacon frame */
2632	__le32 beacon_silence_rssi_c;	/* RSSI silence after beacon frame */
2633	__le32 interference_data_flag;	/* flag for interference data
2634					 * availability. 1 when data is
2635					 * available. */
2636	__le32 channel_load;		/* counts RX Enable time in uSec */
2637	__le32 dsp_false_alarms;	/* DSP false alarm (both OFDM
2638					 * and CCK) counter */
2639	__le32 beacon_rssi_a;
2640	__le32 beacon_rssi_b;
2641	__le32 beacon_rssi_c;
2642	__le32 beacon_energy_a;
2643	__le32 beacon_energy_b;
2644	__le32 beacon_energy_c;
2645} __packed;
2646
2647struct statistics_rx_non_phy_bt {
2648	struct statistics_rx_non_phy common;
2649	/* additional stats for bt */
2650	__le32 num_bt_kills;
2651	__le32 reserved[2];
2652} __packed;
2653
2654struct statistics_rx {
2655	struct statistics_rx_phy ofdm;
2656	struct statistics_rx_phy cck;
2657	struct statistics_rx_non_phy general;
2658	struct statistics_rx_ht_phy ofdm_ht;
2659} __packed;
2660
2661struct statistics_rx_bt {
2662	struct statistics_rx_phy ofdm;
2663	struct statistics_rx_phy cck;
2664	struct statistics_rx_non_phy_bt general;
2665	struct statistics_rx_ht_phy ofdm_ht;
2666} __packed;
2667
2668/**
2669 * struct statistics_tx_power - current tx power
2670 *
2671 * @ant_a: current tx power on chain a in 1/2 dB step
2672 * @ant_b: current tx power on chain b in 1/2 dB step
2673 * @ant_c: current tx power on chain c in 1/2 dB step
2674 */
2675struct statistics_tx_power {
2676	u8 ant_a;
2677	u8 ant_b;
2678	u8 ant_c;
2679	u8 reserved;
2680} __packed;
2681
2682struct statistics_tx_non_phy_agg {
2683	__le32 ba_timeout;
2684	__le32 ba_reschedule_frames;
2685	__le32 scd_query_agg_frame_cnt;
2686	__le32 scd_query_no_agg;
2687	__le32 scd_query_agg;
2688	__le32 scd_query_mismatch;
2689	__le32 frame_not_ready;
2690	__le32 underrun;
2691	__le32 bt_prio_kill;
2692	__le32 rx_ba_rsp_cnt;
2693} __packed;
2694
2695struct statistics_tx {
2696	__le32 preamble_cnt;
2697	__le32 rx_detected_cnt;
2698	__le32 bt_prio_defer_cnt;
2699	__le32 bt_prio_kill_cnt;
2700	__le32 few_bytes_cnt;
2701	__le32 cts_timeout;
2702	__le32 ack_timeout;
2703	__le32 expected_ack_cnt;
2704	__le32 actual_ack_cnt;
2705	__le32 dump_msdu_cnt;
2706	__le32 burst_abort_next_frame_mismatch_cnt;
2707	__le32 burst_abort_missing_next_frame_cnt;
2708	__le32 cts_timeout_collision;
2709	__le32 ack_or_ba_timeout_collision;
2710	struct statistics_tx_non_phy_agg agg;
2711	/*
2712	 * "tx_power" are optional parameters provided by uCode,
2713	 * 6000 series is the only device provide the information,
2714	 * Those are reserved fields for all the other devices
2715	 */
2716	struct statistics_tx_power tx_power;
2717	__le32 reserved1;
2718} __packed;
2719
2720
2721struct statistics_div {
2722	__le32 tx_on_a;
2723	__le32 tx_on_b;
2724	__le32 exec_time;
2725	__le32 probe_time;
2726	__le32 reserved1;
2727	__le32 reserved2;
2728} __packed;
2729
2730struct statistics_general_common {
2731	__le32 temperature;   /* radio temperature */
2732	__le32 temperature_m; /* for 5000 and up, this is radio voltage */
2733	struct statistics_dbg dbg;
2734	__le32 sleep_time;
2735	__le32 slots_out;
2736	__le32 slots_idle;
2737	__le32 ttl_timestamp;
2738	struct statistics_div div;
2739	__le32 rx_enable_counter;
2740	/*
2741	 * num_of_sos_states:
2742	 *  count the number of times we have to re-tune
2743	 *  in order to get out of bad PHY status
2744	 */
2745	__le32 num_of_sos_states;
2746} __packed;
2747
2748struct statistics_bt_activity {
2749	/* Tx statistics */
2750	__le32 hi_priority_tx_req_cnt;
2751	__le32 hi_priority_tx_denied_cnt;
2752	__le32 lo_priority_tx_req_cnt;
2753	__le32 lo_priority_tx_denied_cnt;
2754	/* Rx statistics */
2755	__le32 hi_priority_rx_req_cnt;
2756	__le32 hi_priority_rx_denied_cnt;
2757	__le32 lo_priority_rx_req_cnt;
2758	__le32 lo_priority_rx_denied_cnt;
2759} __packed;
2760
2761struct statistics_general {
2762	struct statistics_general_common common;
2763	__le32 reserved2;
2764	__le32 reserved3;
2765} __packed;
2766
2767struct statistics_general_bt {
2768	struct statistics_general_common common;
2769	struct statistics_bt_activity activity;
2770	__le32 reserved2;
2771	__le32 reserved3;
2772} __packed;
2773
2774#define UCODE_STATISTICS_CLEAR_MSK		(0x1 << 0)
2775#define UCODE_STATISTICS_FREQUENCY_MSK		(0x1 << 1)
2776#define UCODE_STATISTICS_NARROW_BAND_MSK	(0x1 << 2)
2777
2778/*
2779 * REPLY_STATISTICS_CMD = 0x9c,
2780 * all devices identical.
2781 *
2782 * This command triggers an immediate response containing uCode statistics.
2783 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2784 *
2785 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2786 * internal copy of the statistics (counters) after issuing the response.
2787 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2788 *
2789 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2790 * STATISTICS_NOTIFICATIONs after received beacons (see below).  This flag
2791 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2792 */
2793#define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1)	/* see above */
2794#define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2795struct iwl_statistics_cmd {
2796	__le32 configuration_flags;	/* IWL_STATS_CONF_* */
2797} __packed;
2798
2799/*
2800 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2801 *
2802 * By default, uCode issues this notification after receiving a beacon
2803 * while associated.  To disable this behavior, set DISABLE_NOTIF flag in the
2804 * REPLY_STATISTICS_CMD 0x9c, above.
2805 *
2806 * Statistics counters continue to increment beacon after beacon, but are
2807 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2808 * 0x9c with CLEAR_STATS bit set (see above).
2809 *
2810 * uCode also issues this notification during scans.  uCode clears statistics
2811 * appropriately so that each notification contains statistics for only the
2812 * one channel that has just been scanned.
2813 */
2814#define STATISTICS_REPLY_FLG_BAND_24G_MSK         cpu_to_le32(0x2)
2815#define STATISTICS_REPLY_FLG_HT40_MODE_MSK        cpu_to_le32(0x8)
2816
2817struct iwl_notif_statistics {
2818	__le32 flag;
2819	struct statistics_rx rx;
2820	struct statistics_tx tx;
2821	struct statistics_general general;
2822} __packed;
2823
2824struct iwl_bt_notif_statistics {
2825	__le32 flag;
2826	struct statistics_rx_bt rx;
2827	struct statistics_tx tx;
2828	struct statistics_general_bt general;
2829} __packed;
2830
2831/*
2832 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2833 *
2834 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2835 * in regardless of how many missed beacons, which mean when driver receive the
2836 * notification, inside the command, it can find all the beacons information
2837 * which include number of total missed beacons, number of consecutive missed
2838 * beacons, number of beacons received and number of beacons expected to
2839 * receive.
2840 *
2841 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2842 * in order to bring the radio/PHY back to working state; which has no relation
2843 * to when driver will perform sensitivity calibration.
2844 *
2845 * Driver should set it own missed_beacon_threshold to decide when to perform
2846 * sensitivity calibration based on number of consecutive missed beacons in
2847 * order to improve overall performance, especially in noisy environment.
2848 *
2849 */
2850
2851#define IWL_MISSED_BEACON_THRESHOLD_MIN	(1)
2852#define IWL_MISSED_BEACON_THRESHOLD_DEF	(5)
2853#define IWL_MISSED_BEACON_THRESHOLD_MAX	IWL_MISSED_BEACON_THRESHOLD_DEF
2854
2855struct iwl_missed_beacon_notif {
2856	__le32 consecutive_missed_beacons;
2857	__le32 total_missed_becons;
2858	__le32 num_expected_beacons;
2859	__le32 num_recvd_beacons;
2860} __packed;
2861
2862
2863/******************************************************************************
2864 * (11)
2865 * Rx Calibration Commands:
2866 *
2867 * With the uCode used for open source drivers, most Tx calibration (except
2868 * for Tx Power) and most Rx calibration is done by uCode during the
2869 * "initialize" phase of uCode boot.  Driver must calibrate only:
2870 *
2871 * 1)  Tx power (depends on temperature), described elsewhere
2872 * 2)  Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2873 * 3)  Receiver sensitivity (to optimize signal detection)
2874 *
2875 *****************************************************************************/
2876
2877/**
2878 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2879 *
2880 * This command sets up the Rx signal detector for a sensitivity level that
2881 * is high enough to lock onto all signals within the associated network,
2882 * but low enough to ignore signals that are below a certain threshold, so as
2883 * not to have too many "false alarms".  False alarms are signals that the
2884 * Rx DSP tries to lock onto, but then discards after determining that they
2885 * are noise.
2886 *
2887 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2888 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2889 * time listening, not transmitting).  Driver must adjust sensitivity so that
2890 * the ratio of actual false alarms to actual Rx time falls within this range.
2891 *
2892 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2893 * received beacon.  These provide information to the driver to analyze the
2894 * sensitivity.  Don't analyze statistics that come in from scanning, or any
2895 * other non-associated-network source.  Pertinent statistics include:
2896 *
2897 * From "general" statistics (struct statistics_rx_non_phy):
2898 *
2899 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2900 *   Measure of energy of desired signal.  Used for establishing a level
2901 *   below which the device does not detect signals.
2902 *
2903 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2904 *   Measure of background noise in silent period after beacon.
2905 *
2906 * channel_load
2907 *   uSecs of actual Rx time during beacon period (varies according to
2908 *   how much time was spent transmitting).
2909 *
2910 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2911 *
2912 * false_alarm_cnt
2913 *   Signal locks abandoned early (before phy-level header).
2914 *
2915 * plcp_err
2916 *   Signal locks abandoned late (during phy-level header).
2917 *
2918 * NOTE:  Both false_alarm_cnt and plcp_err increment monotonically from
2919 *        beacon to beacon, i.e. each value is an accumulation of all errors
2920 *        before and including the latest beacon.  Values will wrap around to 0
2921 *        after counting up to 2^32 - 1.  Driver must differentiate vs.
2922 *        previous beacon's values to determine # false alarms in the current
2923 *        beacon period.
2924 *
2925 * Total number of false alarms = false_alarms + plcp_errs
2926 *
2927 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2928 * (notice that the start points for OFDM are at or close to settings for
2929 * maximum sensitivity):
2930 *
2931 *                                             START  /  MIN  /  MAX
2932 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          90   /   85  /  120
2933 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX     170   /  170  /  210
2934 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX         105   /  105  /  140
2935 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX     220   /  220  /  270
2936 *
2937 *   If actual rate of OFDM false alarms (+ plcp_errors) is too high
2938 *   (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2939 *   by *adding* 1 to all 4 of the table entries above, up to the max for
2940 *   each entry.  Conversely, if false alarm rate is too low (less than 5
2941 *   for each 204.8 msecs listening), *subtract* 1 from each entry to
2942 *   increase sensitivity.
2943 *
2944 * For CCK sensitivity, keep track of the following:
2945 *
2946 *   1).  20-beacon history of maximum background noise, indicated by
2947 *        (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2948 *        3 receivers.  For any given beacon, the "silence reference" is
2949 *        the maximum of last 60 samples (20 beacons * 3 receivers).
2950 *
2951 *   2).  10-beacon history of strongest signal level, as indicated
2952 *        by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2953 *        i.e. the strength of the signal through the best receiver at the
2954 *        moment.  These measurements are "upside down", with lower values
2955 *        for stronger signals, so max energy will be *minimum* value.
2956 *
2957 *        Then for any given beacon, the driver must determine the *weakest*
2958 *        of the strongest signals; this is the minimum level that needs to be
2959 *        successfully detected, when using the best receiver at the moment.
2960 *        "Max cck energy" is the maximum (higher value means lower energy!)
2961 *        of the last 10 minima.  Once this is determined, driver must add
2962 *        a little margin by adding "6" to it.
2963 *
2964 *   3).  Number of consecutive beacon periods with too few false alarms.
2965 *        Reset this to 0 at the first beacon period that falls within the
2966 *        "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2967 *
2968 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2969 * (notice that the start points for CCK are at maximum sensitivity):
2970 *
2971 *                                             START  /  MIN  /  MAX
2972 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX         125   /  125  /  200
2973 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX     200   /  200  /  400
2974 *   HD_MIN_ENERGY_CCK_DET_INDEX                100   /    0  /  100
2975 *
2976 *   If actual rate of CCK false alarms (+ plcp_errors) is too high
2977 *   (greater than 50 for each 204.8 msecs listening), method for reducing
2978 *   sensitivity is:
2979 *
2980 *   1)  *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2981 *       up to max 400.
2982 *
2983 *   2)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2984 *       sensitivity has been reduced a significant amount; bring it up to
2985 *       a moderate 161.  Otherwise, *add* 3, up to max 200.
2986 *
2987 *   3)  a)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2988 *       sensitivity has been reduced only a moderate or small amount;
2989 *       *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2990 *       down to min 0.  Otherwise (if gain has been significantly reduced),
2991 *       don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2992 *
2993 *       b)  Save a snapshot of the "silence reference".
2994 *
2995 *   If actual rate of CCK false alarms (+ plcp_errors) is too low
2996 *   (less than 5 for each 204.8 msecs listening), method for increasing
2997 *   sensitivity is used only if:
2998 *
2999 *   1a)  Previous beacon did not have too many false alarms
3000 *   1b)  AND difference between previous "silence reference" and current
3001 *        "silence reference" (prev - current) is 2 or more,
3002 *   OR 2)  100 or more consecutive beacon periods have had rate of
3003 *          less than 5 false alarms per 204.8 milliseconds rx time.
3004 *
3005 *   Method for increasing sensitivity:
3006 *
3007 *   1)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
3008 *       down to min 125.
3009 *
3010 *   2)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
3011 *       down to min 200.
3012 *
3013 *   3)  *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
3014 *
3015 *   If actual rate of CCK false alarms (+ plcp_errors) is within good range
3016 *   (between 5 and 50 for each 204.8 msecs listening):
3017 *
3018 *   1)  Save a snapshot of the silence reference.
3019 *
3020 *   2)  If previous beacon had too many CCK false alarms (+ plcp_errors),
3021 *       give some extra margin to energy threshold by *subtracting* 8
3022 *       from value in HD_MIN_ENERGY_CCK_DET_INDEX.
3023 *
3024 *   For all cases (too few, too many, good range), make sure that the CCK
3025 *   detection threshold (energy) is below the energy level for robust
3026 *   detection over the past 10 beacon periods, the "Max cck energy".
3027 *   Lower values mean higher energy; this means making sure that the value
3028 *   in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
3029 *
3030 */
3031
3032/*
3033 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
3034 */
3035#define HD_TABLE_SIZE  (11)	/* number of entries */
3036#define HD_MIN_ENERGY_CCK_DET_INDEX                 (0)	/* table indexes */
3037#define HD_MIN_ENERGY_OFDM_DET_INDEX                (1)
3038#define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          (2)
3039#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX      (3)
3040#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX      (4)
3041#define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX          (5)
3042#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX      (6)
3043#define HD_BARKER_CORR_TH_ADD_MIN_INDEX             (7)
3044#define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX         (8)
3045#define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX          (9)
3046#define HD_OFDM_ENERGY_TH_IN_INDEX                  (10)
3047
3048/*
3049 * Additional table entries in enhance SENSITIVITY_CMD
3050 */
3051#define HD_INA_NON_SQUARE_DET_OFDM_INDEX		(11)
3052#define HD_INA_NON_SQUARE_DET_CCK_INDEX			(12)
3053#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX		(13)
3054#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX		(14)
3055#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(15)
3056#define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX		(16)
3057#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX		(17)
3058#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX		(18)
3059#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(19)
3060#define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX		(20)
3061#define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX		(21)
3062#define HD_RESERVED					(22)
3063
3064/* number of entries for enhanced tbl */
3065#define ENHANCE_HD_TABLE_SIZE  (23)
3066
3067/* number of additional entries for enhanced tbl */
3068#define ENHANCE_HD_TABLE_ENTRIES  (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3069
3070#define HD_INA_NON_SQUARE_DET_OFDM_DATA			cpu_to_le16(0)
3071#define HD_INA_NON_SQUARE_DET_CCK_DATA			cpu_to_le16(0)
3072#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA		cpu_to_le16(0)
3073#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA		cpu_to_le16(668)
3074#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA	cpu_to_le16(4)
3075#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA		cpu_to_le16(486)
3076#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA		cpu_to_le16(37)
3077#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA		cpu_to_le16(853)
3078#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA	cpu_to_le16(4)
3079#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA		cpu_to_le16(476)
3080#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA		cpu_to_le16(99)
3081
3082
3083/* Control field in struct iwl_sensitivity_cmd */
3084#define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE	cpu_to_le16(0)
3085#define SENSITIVITY_CMD_CONTROL_WORK_TABLE	cpu_to_le16(1)
3086
3087/**
3088 * struct iwl_sensitivity_cmd
3089 * @control:  (1) updates working table, (0) updates default table
3090 * @table:  energy threshold values, use HD_* as index into table
3091 *
3092 * Always use "1" in "control" to update uCode's working table and DSP.
3093 */
3094struct iwl_sensitivity_cmd {
3095	__le16 control;			/* always use "1" */
3096	__le16 table[HD_TABLE_SIZE];	/* use HD_* as index */
3097} __packed;
3098
3099/*
3100 *
3101 */
3102struct iwl_enhance_sensitivity_cmd {
3103	__le16 control;			/* always use "1" */
3104	__le16 enhance_table[ENHANCE_HD_TABLE_SIZE];	/* use HD_* as index */
3105} __packed;
3106
3107
3108/**
3109 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3110 *
3111 * This command sets the relative gains of agn device's 3 radio receiver chains.
3112 *
3113 * After the first association, driver should accumulate signal and noise
3114 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3115 * beacons from the associated network (don't collect statistics that come
3116 * in from scanning, or any other non-network source).
3117 *
3118 * DISCONNECTED ANTENNA:
3119 *
3120 * Driver should determine which antennas are actually connected, by comparing
3121 * average beacon signal levels for the 3 Rx chains.  Accumulate (add) the
3122 * following values over 20 beacons, one accumulator for each of the chains
3123 * a/b/c, from struct statistics_rx_non_phy:
3124 *
3125 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3126 *
3127 * Find the strongest signal from among a/b/c.  Compare the other two to the
3128 * strongest.  If any signal is more than 15 dB (times 20, unless you
3129 * divide the accumulated values by 20) below the strongest, the driver
3130 * considers that antenna to be disconnected, and should not try to use that
3131 * antenna/chain for Rx or Tx.  If both A and B seem to be disconnected,
3132 * driver should declare the stronger one as connected, and attempt to use it
3133 * (A and B are the only 2 Tx chains!).
3134 *
3135 *
3136 * RX BALANCE:
3137 *
3138 * Driver should balance the 3 receivers (but just the ones that are connected
3139 * to antennas, see above) for gain, by comparing the average signal levels
3140 * detected during the silence after each beacon (background noise).
3141 * Accumulate (add) the following values over 20 beacons, one accumulator for
3142 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3143 *
3144 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3145 *
3146 * Find the weakest background noise level from among a/b/c.  This Rx chain
3147 * will be the reference, with 0 gain adjustment.  Attenuate other channels by
3148 * finding noise difference:
3149 *
3150 * (accum_noise[i] - accum_noise[reference]) / 30
3151 *
3152 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3153 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3154 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3155 * and set bit 2 to indicate "reduce gain".  The value for the reference
3156 * (weakest) chain should be "0".
3157 *
3158 * diff_gain_[abc] bit fields:
3159 *   2: (1) reduce gain, (0) increase gain
3160 * 1-0: amount of gain, units of 1.5 dB
3161 */
3162
3163/* Phy calibration command for series */
3164/* The default calibrate table size if not specified by firmware */
3165#define IWL_DEFAULT_STANDARD_PHY_CALIBRATE_TBL_SIZE	18
3166enum {
3167	IWL_PHY_CALIBRATE_DC_CMD		= 8,
3168	IWL_PHY_CALIBRATE_LO_CMD		= 9,
3169	IWL_PHY_CALIBRATE_TX_IQ_CMD		= 11,
3170	IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD	= 15,
3171	IWL_PHY_CALIBRATE_BASE_BAND_CMD		= 16,
3172	IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD	= 17,
3173	IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD	= 18,
3174	IWL_MAX_STANDARD_PHY_CALIBRATE_TBL_SIZE	= 19,
3175};
3176
3177#define IWL_MAX_PHY_CALIBRATE_TBL_SIZE		(253)
3178
3179/* This enum defines the bitmap of various calibrations to enable in both
3180 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3181 */
3182enum iwl_ucode_calib_cfg {
3183	IWL_CALIB_CFG_RX_BB_IDX			= BIT(0),
3184	IWL_CALIB_CFG_DC_IDX			= BIT(1),
3185	IWL_CALIB_CFG_LO_IDX			= BIT(2),
3186	IWL_CALIB_CFG_TX_IQ_IDX			= BIT(3),
3187	IWL_CALIB_CFG_RX_IQ_IDX			= BIT(4),
3188	IWL_CALIB_CFG_NOISE_IDX			= BIT(5),
3189	IWL_CALIB_CFG_CRYSTAL_IDX		= BIT(6),
3190	IWL_CALIB_CFG_TEMPERATURE_IDX		= BIT(7),
3191	IWL_CALIB_CFG_PAPD_IDX			= BIT(8),
3192	IWL_CALIB_CFG_SENSITIVITY_IDX		= BIT(9),
3193	IWL_CALIB_CFG_TX_PWR_IDX		= BIT(10),
3194};
3195
3196#define IWL_CALIB_INIT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3197					IWL_CALIB_CFG_DC_IDX |		\
3198					IWL_CALIB_CFG_LO_IDX |		\
3199					IWL_CALIB_CFG_TX_IQ_IDX |	\
3200					IWL_CALIB_CFG_RX_IQ_IDX |	\
3201					IWL_CALIB_CFG_NOISE_IDX |	\
3202					IWL_CALIB_CFG_CRYSTAL_IDX |	\
3203					IWL_CALIB_CFG_TEMPERATURE_IDX |	\
3204					IWL_CALIB_CFG_PAPD_IDX |	\
3205					IWL_CALIB_CFG_SENSITIVITY_IDX |	\
3206					IWL_CALIB_CFG_TX_PWR_IDX)
3207
3208#define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK	cpu_to_le32(BIT(0))
3209
3210struct iwl_calib_cfg_elmnt_s {
3211	__le32 is_enable;
3212	__le32 start;
3213	__le32 send_res;
3214	__le32 apply_res;
3215	__le32 reserved;
3216} __packed;
3217
3218struct iwl_calib_cfg_status_s {
3219	struct iwl_calib_cfg_elmnt_s once;
3220	struct iwl_calib_cfg_elmnt_s perd;
3221	__le32 flags;
3222} __packed;
3223
3224struct iwl_calib_cfg_cmd {
3225	struct iwl_calib_cfg_status_s ucd_calib_cfg;
3226	struct iwl_calib_cfg_status_s drv_calib_cfg;
3227	__le32 reserved1;
3228} __packed;
3229
3230struct iwl_calib_hdr {
3231	u8 op_code;
3232	u8 first_group;
3233	u8 groups_num;
3234	u8 data_valid;
3235} __packed;
3236
3237struct iwl_calib_cmd {
3238	struct iwl_calib_hdr hdr;
3239	u8 data[0];
3240} __packed;
3241
3242struct iwl_calib_xtal_freq_cmd {
3243	struct iwl_calib_hdr hdr;
3244	u8 cap_pin1;
3245	u8 cap_pin2;
3246	u8 pad[2];
3247} __packed;
3248
3249#define DEFAULT_RADIO_SENSOR_OFFSET    cpu_to_le16(2700)
3250struct iwl_calib_temperature_offset_cmd {
3251	struct iwl_calib_hdr hdr;
3252	__le16 radio_sensor_offset;
3253	__le16 reserved;
3254} __packed;
3255
3256/* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3257struct iwl_calib_chain_noise_reset_cmd {
3258	struct iwl_calib_hdr hdr;
3259	u8 data[0];
3260};
3261
3262/* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3263struct iwl_calib_chain_noise_gain_cmd {
3264	struct iwl_calib_hdr hdr;
3265	u8 delta_gain_1;
3266	u8 delta_gain_2;
3267	u8 pad[2];
3268} __packed;
3269
3270/******************************************************************************
3271 * (12)
3272 * Miscellaneous Commands:
3273 *
3274 *****************************************************************************/
3275
3276/*
3277 * LEDs Command & Response
3278 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3279 *
3280 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3281 * this command turns it on or off, or sets up a periodic blinking cycle.
3282 */
3283struct iwl_led_cmd {
3284	__le32 interval;	/* "interval" in uSec */
3285	u8 id;			/* 1: Activity, 2: Link, 3: Tech */
3286	u8 off;			/* # intervals off while blinking;
3287				 * "0", with >0 "on" value, turns LED on */
3288	u8 on;			/* # intervals on while blinking;
3289				 * "0", regardless of "off", turns LED off */
3290	u8 reserved;
3291} __packed;
3292
3293/*
3294 * station priority table entries
3295 * also used as potential "events" value for both
3296 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3297 */
3298
3299/*
3300 * COEX events entry flag masks
3301 * RP - Requested Priority
3302 * WP - Win Medium Priority: priority assigned when the contention has been won
3303 */
3304#define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG        (0x1)
3305#define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG        (0x2)
3306#define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG  (0x4)
3307
3308#define COEX_CU_UNASSOC_IDLE_RP               4
3309#define COEX_CU_UNASSOC_MANUAL_SCAN_RP        4
3310#define COEX_CU_UNASSOC_AUTO_SCAN_RP          4
3311#define COEX_CU_CALIBRATION_RP                4
3312#define COEX_CU_PERIODIC_CALIBRATION_RP       4
3313#define COEX_CU_CONNECTION_ESTAB_RP           4
3314#define COEX_CU_ASSOCIATED_IDLE_RP            4
3315#define COEX_CU_ASSOC_MANUAL_SCAN_RP          4
3316#define COEX_CU_ASSOC_AUTO_SCAN_RP            4
3317#define COEX_CU_ASSOC_ACTIVE_LEVEL_RP         4
3318#define COEX_CU_RF_ON_RP                      6
3319#define COEX_CU_RF_OFF_RP                     4
3320#define COEX_CU_STAND_ALONE_DEBUG_RP          6
3321#define COEX_CU_IPAN_ASSOC_LEVEL_RP           4
3322#define COEX_CU_RSRVD1_RP                     4
3323#define COEX_CU_RSRVD2_RP                     4
3324
3325#define COEX_CU_UNASSOC_IDLE_WP               3
3326#define COEX_CU_UNASSOC_MANUAL_SCAN_WP        3
3327#define COEX_CU_UNASSOC_AUTO_SCAN_WP          3
3328#define COEX_CU_CALIBRATION_WP                3
3329#define COEX_CU_PERIODIC_CALIBRATION_WP       3
3330#define COEX_CU_CONNECTION_ESTAB_WP           3
3331#define COEX_CU_ASSOCIATED_IDLE_WP            3
3332#define COEX_CU_ASSOC_MANUAL_SCAN_WP          3
3333#define COEX_CU_ASSOC_AUTO_SCAN_WP            3
3334#define COEX_CU_ASSOC_ACTIVE_LEVEL_WP         3
3335#define COEX_CU_RF_ON_WP                      3
3336#define COEX_CU_RF_OFF_WP                     3
3337#define COEX_CU_STAND_ALONE_DEBUG_WP          6
3338#define COEX_CU_IPAN_ASSOC_LEVEL_WP           3
3339#define COEX_CU_RSRVD1_WP                     3
3340#define COEX_CU_RSRVD2_WP                     3
3341
3342#define COEX_UNASSOC_IDLE_FLAGS                     0
3343#define COEX_UNASSOC_MANUAL_SCAN_FLAGS		\
3344	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3345	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3346#define COEX_UNASSOC_AUTO_SCAN_FLAGS		\
3347	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3348	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3349#define COEX_CALIBRATION_FLAGS			\
3350	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3351	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3352#define COEX_PERIODIC_CALIBRATION_FLAGS             0
3353/*
3354 * COEX_CONNECTION_ESTAB:
3355 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3356 */
3357#define COEX_CONNECTION_ESTAB_FLAGS		\
3358	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3359	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3360	COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3361#define COEX_ASSOCIATED_IDLE_FLAGS                  0
3362#define COEX_ASSOC_MANUAL_SCAN_FLAGS		\
3363	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3364	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3365#define COEX_ASSOC_AUTO_SCAN_FLAGS		\
3366	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3367	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3368#define COEX_ASSOC_ACTIVE_LEVEL_FLAGS               0
3369#define COEX_RF_ON_FLAGS                            0
3370#define COEX_RF_OFF_FLAGS                           0
3371#define COEX_STAND_ALONE_DEBUG_FLAGS		\
3372	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3373	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3374#define COEX_IPAN_ASSOC_LEVEL_FLAGS		\
3375	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3376	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3377	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3378#define COEX_RSRVD1_FLAGS                           0
3379#define COEX_RSRVD2_FLAGS                           0
3380/*
3381 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3382 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3383 */
3384#define COEX_CU_RF_ON_FLAGS			\
3385	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3386	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3387	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3388
3389
3390enum {
3391	/* un-association part */
3392	COEX_UNASSOC_IDLE		= 0,
3393	COEX_UNASSOC_MANUAL_SCAN	= 1,
3394	COEX_UNASSOC_AUTO_SCAN		= 2,
3395	/* calibration */
3396	COEX_CALIBRATION		= 3,
3397	COEX_PERIODIC_CALIBRATION	= 4,
3398	/* connection */
3399	COEX_CONNECTION_ESTAB		= 5,
3400	/* association part */
3401	COEX_ASSOCIATED_IDLE		= 6,
3402	COEX_ASSOC_MANUAL_SCAN		= 7,
3403	COEX_ASSOC_AUTO_SCAN		= 8,
3404	COEX_ASSOC_ACTIVE_LEVEL		= 9,
3405	/* RF ON/OFF */
3406	COEX_RF_ON			= 10,
3407	COEX_RF_OFF			= 11,
3408	COEX_STAND_ALONE_DEBUG		= 12,
3409	/* IPAN */
3410	COEX_IPAN_ASSOC_LEVEL		= 13,
3411	/* reserved */
3412	COEX_RSRVD1			= 14,
3413	COEX_RSRVD2			= 15,
3414	COEX_NUM_OF_EVENTS		= 16
3415};
3416
3417/*
3418 * Coexistence WIFI/WIMAX  Command
3419 * COEX_PRIORITY_TABLE_CMD = 0x5a
3420 *
3421 */
3422struct iwl_wimax_coex_event_entry {
3423	u8 request_prio;
3424	u8 win_medium_prio;
3425	u8 reserved;
3426	u8 flags;
3427} __packed;
3428
3429/* COEX flag masks */
3430
3431/* Station table is valid */
3432#define COEX_FLAGS_STA_TABLE_VALID_MSK      (0x1)
3433/* UnMask wake up src at unassociated sleep */
3434#define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK    (0x4)
3435/* UnMask wake up src at associated sleep */
3436#define COEX_FLAGS_ASSOC_WA_UNMASK_MSK      (0x8)
3437/* Enable CoEx feature. */
3438#define COEX_FLAGS_COEX_ENABLE_MSK          (0x80)
3439
3440struct iwl_wimax_coex_cmd {
3441	u8 flags;
3442	u8 reserved[3];
3443	struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3444} __packed;
3445
3446/*
3447 * Coexistence MEDIUM NOTIFICATION
3448 * COEX_MEDIUM_NOTIFICATION = 0x5b
3449 *
3450 * notification from uCode to host to indicate medium changes
3451 *
3452 */
3453/*
3454 * status field
3455 * bit 0 - 2: medium status
3456 * bit 3: medium change indication
3457 * bit 4 - 31: reserved
3458 */
3459/* status option values, (0 - 2 bits) */
3460#define COEX_MEDIUM_BUSY	(0x0) /* radio belongs to WiMAX */
3461#define COEX_MEDIUM_ACTIVE	(0x1) /* radio belongs to WiFi */
3462#define COEX_MEDIUM_PRE_RELEASE	(0x2) /* received radio release */
3463#define COEX_MEDIUM_MSK		(0x7)
3464
3465/* send notification status (1 bit) */
3466#define COEX_MEDIUM_CHANGED	(0x8)
3467#define COEX_MEDIUM_CHANGED_MSK	(0x8)
3468#define COEX_MEDIUM_SHIFT	(3)
3469
3470struct iwl_coex_medium_notification {
3471	__le32 status;
3472	__le32 events;
3473} __packed;
3474
3475/*
3476 * Coexistence EVENT  Command
3477 * COEX_EVENT_CMD = 0x5c
3478 *
3479 * send from host to uCode for coex event request.
3480 */
3481/* flags options */
3482#define COEX_EVENT_REQUEST_MSK	(0x1)
3483
3484struct iwl_coex_event_cmd {
3485	u8 flags;
3486	u8 event;
3487	__le16 reserved;
3488} __packed;
3489
3490struct iwl_coex_event_resp {
3491	__le32 status;
3492} __packed;
3493
3494
3495/******************************************************************************
3496 * Bluetooth Coexistence commands
3497 *
3498 *****************************************************************************/
3499
3500/*
3501 * BT Status notification
3502 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3503 */
3504enum iwl_bt_coex_profile_traffic_load {
3505	IWL_BT_COEX_TRAFFIC_LOAD_NONE = 	0,
3506	IWL_BT_COEX_TRAFFIC_LOAD_LOW =		1,
3507	IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 	2,
3508	IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS =	3,
3509/*
3510 * There are no more even though below is a u8, the
3511 * indication from the BT device only has two bits.
3512 */
3513};
3514
3515#define BT_SESSION_ACTIVITY_1_UART_MSG		0x1
3516#define BT_SESSION_ACTIVITY_2_UART_MSG		0x2
3517
3518/* BT UART message - Share Part (BT -> WiFi) */
3519#define BT_UART_MSG_FRAME1MSGTYPE_POS		(0)
3520#define BT_UART_MSG_FRAME1MSGTYPE_MSK		\
3521		(0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3522#define BT_UART_MSG_FRAME1SSN_POS		(3)
3523#define BT_UART_MSG_FRAME1SSN_MSK		\
3524		(0x3 << BT_UART_MSG_FRAME1SSN_POS)
3525#define BT_UART_MSG_FRAME1UPDATEREQ_POS		(5)
3526#define BT_UART_MSG_FRAME1UPDATEREQ_MSK		\
3527		(0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3528#define BT_UART_MSG_FRAME1RESERVED_POS		(6)
3529#define BT_UART_MSG_FRAME1RESERVED_MSK		\
3530		(0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3531
3532#define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS	(0)
3533#define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK	\
3534		(0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3535#define BT_UART_MSG_FRAME2TRAFFICLOAD_POS	(2)
3536#define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK	\
3537		(0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3538#define BT_UART_MSG_FRAME2CHLSEQN_POS		(4)
3539#define BT_UART_MSG_FRAME2CHLSEQN_MSK		\
3540		(0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3541#define BT_UART_MSG_FRAME2INBAND_POS		(5)
3542#define BT_UART_MSG_FRAME2INBAND_MSK		\
3543		(0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3544#define BT_UART_MSG_FRAME2RESERVED_POS		(6)
3545#define BT_UART_MSG_FRAME2RESERVED_MSK		\
3546		(0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3547
3548#define BT_UART_MSG_FRAME3SCOESCO_POS		(0)
3549#define BT_UART_MSG_FRAME3SCOESCO_MSK		\
3550		(0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3551#define BT_UART_MSG_FRAME3SNIFF_POS		(1)
3552#define BT_UART_MSG_FRAME3SNIFF_MSK		\
3553		(0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3554#define BT_UART_MSG_FRAME3A2DP_POS		(2)
3555#define BT_UART_MSG_FRAME3A2DP_MSK		\
3556		(0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3557#define BT_UART_MSG_FRAME3ACL_POS		(3)
3558#define BT_UART_MSG_FRAME3ACL_MSK		\
3559		(0x1 << BT_UART_MSG_FRAME3ACL_POS)
3560#define BT_UART_MSG_FRAME3MASTER_POS		(4)
3561#define BT_UART_MSG_FRAME3MASTER_MSK		\
3562		(0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3563#define BT_UART_MSG_FRAME3OBEX_POS		(5)
3564#define BT_UART_MSG_FRAME3OBEX_MSK		\
3565		(0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3566#define BT_UART_MSG_FRAME3RESERVED_POS		(6)
3567#define BT_UART_MSG_FRAME3RESERVED_MSK		\
3568		(0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3569
3570#define BT_UART_MSG_FRAME4IDLEDURATION_POS	(0)
3571#define BT_UART_MSG_FRAME4IDLEDURATION_MSK	\
3572		(0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3573#define BT_UART_MSG_FRAME4RESERVED_POS		(6)
3574#define BT_UART_MSG_FRAME4RESERVED_MSK		\
3575		(0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3576
3577#define BT_UART_MSG_FRAME5TXACTIVITY_POS	(0)
3578#define BT_UART_MSG_FRAME5TXACTIVITY_MSK	\
3579		(0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3580#define BT_UART_MSG_FRAME5RXACTIVITY_POS	(2)
3581#define BT_UART_MSG_FRAME5RXACTIVITY_MSK	\
3582		(0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3583#define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS	(4)
3584#define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK	\
3585		(0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3586#define BT_UART_MSG_FRAME5RESERVED_POS		(6)
3587#define BT_UART_MSG_FRAME5RESERVED_MSK		\
3588		(0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3589
3590#define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS	(0)
3591#define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK	\
3592		(0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3593#define BT_UART_MSG_FRAME6DISCOVERABLE_POS	(5)
3594#define BT_UART_MSG_FRAME6DISCOVERABLE_MSK	\
3595		(0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3596#define BT_UART_MSG_FRAME6RESERVED_POS		(6)
3597#define BT_UART_MSG_FRAME6RESERVED_MSK		\
3598		(0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3599
3600#define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS	(0)
3601#define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK	\
3602		(0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3603#define BT_UART_MSG_FRAME7PAGE_POS		(3)
3604#define BT_UART_MSG_FRAME7PAGE_MSK		\
3605		(0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3606#define BT_UART_MSG_FRAME7INQUIRY_POS		(4)
3607#define BT_UART_MSG_FRAME7INQUIRY_MSK		\
3608		(0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3609#define BT_UART_MSG_FRAME7CONNECTABLE_POS	(5)
3610#define BT_UART_MSG_FRAME7CONNECTABLE_MSK	\
3611		(0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3612#define BT_UART_MSG_FRAME7RESERVED_POS		(6)
3613#define BT_UART_MSG_FRAME7RESERVED_MSK		\
3614		(0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3615
3616/* BT Session Activity 2 UART message (BT -> WiFi) */
3617#define BT_UART_MSG_2_FRAME1RESERVED1_POS	(5)
3618#define BT_UART_MSG_2_FRAME1RESERVED1_MSK	\
3619		(0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3620#define BT_UART_MSG_2_FRAME1RESERVED2_POS	(6)
3621#define BT_UART_MSG_2_FRAME1RESERVED2_MSK	\
3622		(0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3623
3624#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS	(0)
3625#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK	\
3626		(0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3627#define BT_UART_MSG_2_FRAME2RESERVED_POS	(6)
3628#define BT_UART_MSG_2_FRAME2RESERVED_MSK	\
3629		(0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3630
3631#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS	(0)
3632#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK	\
3633		(0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3634#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS	(4)
3635#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK	\
3636		(0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3637#define BT_UART_MSG_2_FRAME3LEMASTER_POS	(5)
3638#define BT_UART_MSG_2_FRAME3LEMASTER_MSK	\
3639		(0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3640#define BT_UART_MSG_2_FRAME3RESERVED_POS	(6)
3641#define BT_UART_MSG_2_FRAME3RESERVED_MSK	\
3642		(0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3643
3644#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS	(0)
3645#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK	\
3646		(0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3647#define BT_UART_MSG_2_FRAME4NUMLECONN_POS	(4)
3648#define BT_UART_MSG_2_FRAME4NUMLECONN_MSK	\
3649		(0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3650#define BT_UART_MSG_2_FRAME4RESERVED_POS	(6)
3651#define BT_UART_MSG_2_FRAME4RESERVED_MSK	\
3652		(0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3653
3654#define BT_UART_MSG_2_FRAME5BTMINRSSI_POS	(0)
3655#define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK	\
3656		(0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3657#define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS	(4)
3658#define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK	\
3659		(0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3660#define BT_UART_MSG_2_FRAME5LEADVERMODE_POS	(5)
3661#define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK	\
3662		(0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3663#define BT_UART_MSG_2_FRAME5RESERVED_POS	(6)
3664#define BT_UART_MSG_2_FRAME5RESERVED_MSK	\
3665		(0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3666
3667#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS	(0)
3668#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK	\
3669		(0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3670#define BT_UART_MSG_2_FRAME6RFU_POS		(5)
3671#define BT_UART_MSG_2_FRAME6RFU_MSK		\
3672		(0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3673#define BT_UART_MSG_2_FRAME6RESERVED_POS	(6)
3674#define BT_UART_MSG_2_FRAME6RESERVED_MSK	\
3675		(0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3676
3677#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS	(0)
3678#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK	\
3679		(0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3680#define BT_UART_MSG_2_FRAME7LEPROFILE1_POS	(3)
3681#define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK	\
3682		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3683#define BT_UART_MSG_2_FRAME7LEPROFILE2_POS	(4)
3684#define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK	\
3685		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3686#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS	(5)
3687#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK	\
3688		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3689#define BT_UART_MSG_2_FRAME7RESERVED_POS	(6)
3690#define BT_UART_MSG_2_FRAME7RESERVED_MSK	\
3691		(0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3692
3693
3694struct iwl_bt_uart_msg {
3695	u8 header;
3696	u8 frame1;
3697	u8 frame2;
3698	u8 frame3;
3699	u8 frame4;
3700	u8 frame5;
3701	u8 frame6;
3702	u8 frame7;
3703} __attribute__((packed));
3704
3705struct iwl_bt_coex_profile_notif {
3706	struct iwl_bt_uart_msg last_bt_uart_msg;
3707	u8 bt_status; /* 0 - off, 1 - on */
3708	u8 bt_traffic_load; /* 0 .. 3? */
3709	u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3710	u8 reserved;
3711} __attribute__((packed));
3712
3713#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS	0
3714#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK	0x1
3715#define IWL_BT_COEX_PRIO_TBL_PRIO_POS		1
3716#define IWL_BT_COEX_PRIO_TBL_PRIO_MASK		0x0e
3717#define IWL_BT_COEX_PRIO_TBL_RESERVED_POS	4
3718#define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK	0xf0
3719#define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT		1
3720
3721/*
3722 * BT Coexistence Priority table
3723 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3724 */
3725enum bt_coex_prio_table_events {
3726	BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3727	BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3728	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3729	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3730	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3731	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3732	BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3733	BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3734	BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3735	BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3736	BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3737	BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3738	BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3739	BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3740	BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3741	BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3742	/* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3743	BT_COEX_PRIO_TBL_EVT_MAX,
3744};
3745
3746enum bt_coex_prio_table_priorities {
3747	BT_COEX_PRIO_TBL_DISABLED = 0,
3748	BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3749	BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3750	BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3751	BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3752	BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3753	BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3754	BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3755	BT_COEX_PRIO_TBL_MAX,
3756};
3757
3758struct iwl_bt_coex_prio_table_cmd {
3759	u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3760} __attribute__((packed));
3761
3762#define IWL_BT_COEX_ENV_CLOSE	0
3763#define IWL_BT_COEX_ENV_OPEN	1
3764/*
3765 * BT Protection Envelope
3766 * REPLY_BT_COEX_PROT_ENV = 0xcd
3767 */
3768struct iwl_bt_coex_prot_env_cmd {
3769	u8 action; /* 0 = closed, 1 = open */
3770	u8 type; /* 0 .. 15 */
3771	u8 reserved[2];
3772} __attribute__((packed));
3773
3774/*
3775 * REPLY_WOWLAN_PATTERNS
3776 */
3777#define IWLAGN_WOWLAN_MIN_PATTERN_LEN	16
3778#define IWLAGN_WOWLAN_MAX_PATTERN_LEN	128
3779
3780struct iwlagn_wowlan_pattern {
3781	u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3782	u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3783	u8 mask_size;
3784	u8 pattern_size;
3785	__le16 reserved;
3786} __packed;
3787
3788#define IWLAGN_WOWLAN_MAX_PATTERNS	20
3789
3790struct iwlagn_wowlan_patterns_cmd {
3791	__le32 n_patterns;
3792	struct iwlagn_wowlan_pattern patterns[];
3793} __packed;
3794
3795/*
3796 * REPLY_WOWLAN_WAKEUP_FILTER
3797 */
3798enum iwlagn_wowlan_wakeup_filters {
3799	IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET	= BIT(0),
3800	IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH	= BIT(1),
3801	IWLAGN_WOWLAN_WAKEUP_BEACON_MISS	= BIT(2),
3802	IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE	= BIT(3),
3803	IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL	= BIT(4),
3804	IWLAGN_WOWLAN_WAKEUP_RFKILL		= BIT(5),
3805	IWLAGN_WOWLAN_WAKEUP_UCODE_ERROR	= BIT(6),
3806	IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ	= BIT(7),
3807	IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE	= BIT(8),
3808	IWLAGN_WOWLAN_WAKEUP_ALWAYS		= BIT(9),
3809	IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT	= BIT(10),
3810};
3811
3812struct iwlagn_wowlan_wakeup_filter_cmd {
3813	__le32 enabled;
3814	__le16 non_qos_seq;
3815	u8 min_sleep_seconds;
3816	u8 reserved;
3817	__le16 qos_seq[8];
3818};
3819
3820/*
3821 * REPLY_WOWLAN_TSC_RSC_PARAMS
3822 */
3823#define IWLAGN_NUM_RSC	16
3824
3825struct tkip_sc {
3826	__le16 iv16;
3827	__le16 pad;
3828	__le32 iv32;
3829} __packed;
3830
3831struct iwlagn_tkip_rsc_tsc {
3832	struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3833	struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3834	struct tkip_sc tsc;
3835} __packed;
3836
3837struct aes_sc {
3838	__le64 pn;
3839} __packed;
3840
3841struct iwlagn_aes_rsc_tsc {
3842	struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3843	struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3844	struct aes_sc tsc;
3845} __packed;
3846
3847union iwlagn_all_tsc_rsc {
3848	struct iwlagn_tkip_rsc_tsc tkip;
3849	struct iwlagn_aes_rsc_tsc aes;
3850};
3851
3852struct iwlagn_wowlan_rsc_tsc_params_cmd {
3853	union iwlagn_all_tsc_rsc all_tsc_rsc;
3854} __packed;
3855
3856/*
3857 * REPLY_WOWLAN_TKIP_PARAMS
3858 */
3859#define IWLAGN_MIC_KEY_SIZE	8
3860#define IWLAGN_P1K_SIZE		5
3861struct iwlagn_mic_keys {
3862	u8 tx[IWLAGN_MIC_KEY_SIZE];
3863	u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3864	u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3865} __packed;
3866
3867struct iwlagn_p1k_cache {
3868	__le16 p1k[IWLAGN_P1K_SIZE];
3869} __packed;
3870
3871#define IWLAGN_NUM_RX_P1K_CACHE	2
3872
3873struct iwlagn_wowlan_tkip_params_cmd {
3874	struct iwlagn_mic_keys mic_keys;
3875	struct iwlagn_p1k_cache tx;
3876	struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3877	struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3878} __packed;
3879
3880/*
3881 * REPLY_WOWLAN_KEK_KCK_MATERIAL
3882 */
3883
3884#define IWLAGN_KCK_MAX_SIZE	32
3885#define IWLAGN_KEK_MAX_SIZE	32
3886
3887struct iwlagn_wowlan_kek_kck_material_cmd {
3888	u8	kck[IWLAGN_KCK_MAX_SIZE];
3889	u8	kek[IWLAGN_KEK_MAX_SIZE];
3890	__le16	kck_len;
3891	__le16	kek_len;
3892	__le64	replay_ctr;
3893} __packed;
3894
3895/******************************************************************************
3896 * (13)
3897 * Union of all expected notifications/responses:
3898 *
3899 *****************************************************************************/
3900
3901struct iwl_rx_packet {
3902	/*
3903	 * The first 4 bytes of the RX frame header contain both the RX frame
3904	 * size and some flags.
3905	 * Bit fields:
3906	 * 31:    flag flush RB request
3907	 * 30:    flag ignore TC (terminal counter) request
3908	 * 29:    flag fast IRQ request
3909	 * 28-14: Reserved
3910	 * 13-00: RX frame size
3911	 */
3912	__le32 len_n_flags;
3913	struct iwl_cmd_header hdr;
3914	union {
3915		struct iwl_alive_resp alive_frame;
3916		struct iwl_spectrum_notification spectrum_notif;
3917		struct iwl_csa_notification csa_notif;
3918		struct iwl_error_resp err_resp;
3919		struct iwl_card_state_notif card_state_notif;
3920		struct iwl_add_sta_resp add_sta;
3921		struct iwl_rem_sta_resp rem_sta;
3922		struct iwl_sleep_notification sleep_notif;
3923		struct iwl_spectrum_resp spectrum;
3924		struct iwl_notif_statistics stats;
3925		struct iwl_bt_notif_statistics stats_bt;
3926		struct iwl_compressed_ba_resp compressed_ba;
3927		struct iwl_missed_beacon_notif missed_beacon;
3928		struct iwl_coex_medium_notification coex_medium_notif;
3929		struct iwl_coex_event_resp coex_event;
3930		struct iwl_bt_coex_profile_notif bt_coex_profile_notif;
3931		__le32 status;
3932		u8 raw[0];
3933	} u;
3934} __packed;
3935
3936int iwl_agn_check_rxon_cmd(struct iwl_priv *priv);
3937
3938/*
3939 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3940 */
3941
3942/*
3943 * Minimum slot time in TU
3944 */
3945#define IWL_MIN_SLOT_TIME	20
3946
3947/**
3948 * struct iwl_wipan_slot
3949 * @width: Time in TU
3950 * @type:
3951 *   0 - BSS
3952 *   1 - PAN
3953 */
3954struct iwl_wipan_slot {
3955	__le16 width;
3956	u8 type;
3957	u8 reserved;
3958} __packed;
3959
3960#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS		BIT(1)	/* reserved */
3961#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET	BIT(2)	/* reserved */
3962#define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE		BIT(3)	/* reserved */
3963#define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF	BIT(4)
3964#define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE		BIT(5)
3965
3966/**
3967 * struct iwl_wipan_params_cmd
3968 * @flags:
3969 *   bit0: reserved
3970 *   bit1: CP leave channel with CTS
3971 *   bit2: CP leave channel qith Quiet
3972 *   bit3: slotted mode
3973 *     1 - work in slotted mode
3974 *     0 - work in non slotted mode
3975 *   bit4: filter beacon notification
3976 *   bit5: full tx slotted mode. if this flag is set,
3977 *         uCode will perform leaving channel methods in context switch
3978 *         also when working in same channel mode
3979 * @num_slots: 1 - 10
3980 */
3981struct iwl_wipan_params_cmd {
3982	__le16 flags;
3983	u8 reserved;
3984	u8 num_slots;
3985	struct iwl_wipan_slot slots[10];
3986} __packed;
3987
3988/*
3989 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3990 *
3991 * TODO: Figure out what this is used for,
3992 *	 it can only switch between 2.4 GHz
3993 *	 channels!!
3994 */
3995
3996struct iwl_wipan_p2p_channel_switch_cmd {
3997	__le16 channel;
3998	__le16 reserved;
3999};
4000
4001/*
4002 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
4003 *
4004 * This is used by the device to notify us of the
4005 * NoA schedule it determined so we can forward it
4006 * to userspace for inclusion in probe responses.
4007 *
4008 * In beacons, the NoA schedule is simply appended
4009 * to the frame we give the device.
4010 */
4011
4012struct iwl_wipan_noa_descriptor {
4013	u8 count;
4014	__le32 duration;
4015	__le32 interval;
4016	__le32 starttime;
4017} __packed;
4018
4019struct iwl_wipan_noa_attribute {
4020	u8 id;
4021	__le16 length;
4022	u8 index;
4023	u8 ct_window;
4024	struct iwl_wipan_noa_descriptor descr0, descr1;
4025	u8 reserved;
4026} __packed;
4027
4028struct iwl_wipan_noa_notification {
4029	u32 noa_active;
4030	struct iwl_wipan_noa_attribute noa_attribute;
4031} __packed;
4032
4033#endif				/* __iwl_commands_h__ */