Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/io.h>
  18#include <linux/slab.h>
 
 
 
  19#include <asm/unaligned.h>
  20
  21#include "hw.h"
  22#include "hw-ops.h"
  23#include "rc.h"
  24#include "ar9003_mac.h"
 
 
 
 
  25
  26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  27
  28MODULE_AUTHOR("Atheros Communications");
  29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  31MODULE_LICENSE("Dual BSD/GPL");
  32
  33static int __init ath9k_init(void)
  34{
  35	return 0;
  36}
  37module_init(ath9k_init);
  38
  39static void __exit ath9k_exit(void)
  40{
  41	return;
  42}
  43module_exit(ath9k_exit);
  44
  45/* Private hardware callbacks */
  46
  47static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  48{
  49	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  50}
  51
  52static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  53{
  54	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  55}
  56
  57static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  58					struct ath9k_channel *chan)
  59{
  60	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  61}
  62
  63static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  64{
  65	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  66		return;
  67
  68	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  69}
  70
  71static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  72{
  73	/* You will not have this callback if using the old ANI */
  74	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  75		return;
  76
  77	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  78}
  79
  80/********************/
  81/* Helper Functions */
  82/********************/
  83
  84static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  85{
  86	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  87	struct ath_common *common = ath9k_hw_common(ah);
 
  88	unsigned int clockrate;
  89
  90	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  91	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  92		clockrate = 117;
  93	else if (!ah->curchan) /* should really check for CCK instead */
  94		clockrate = ATH9K_CLOCK_RATE_CCK;
  95	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  96		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  97	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  98		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  99	else
 100		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
 101
 102	if (conf_is_ht40(conf))
 103		clockrate *= 2;
 104
 105	if (ah->curchan) {
 106		if (IS_CHAN_HALF_RATE(ah->curchan))
 107			clockrate /= 2;
 108		if (IS_CHAN_QUARTER_RATE(ah->curchan))
 109			clockrate /= 4;
 110	}
 111
 112	common->clockrate = clockrate;
 113}
 114
 115static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
 116{
 117	struct ath_common *common = ath9k_hw_common(ah);
 118
 119	return usecs * common->clockrate;
 120}
 121
 122bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
 123{
 124	int i;
 125
 126	BUG_ON(timeout < AH_TIME_QUANTUM);
 127
 128	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
 129		if ((REG_READ(ah, reg) & mask) == val)
 130			return true;
 131
 132		udelay(AH_TIME_QUANTUM);
 133	}
 134
 135	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
 136		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
 137		timeout, reg, REG_READ(ah, reg), mask, val);
 138
 139	return false;
 140}
 141EXPORT_SYMBOL(ath9k_hw_wait);
 142
 143void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
 
 
 
 
 
 
 
 
 
 
 
 
 
 144			  int column, unsigned int *writecnt)
 145{
 146	int r;
 147
 148	ENABLE_REGWRITE_BUFFER(ah);
 149	for (r = 0; r < array->ia_rows; r++) {
 150		REG_WRITE(ah, INI_RA(array, r, 0),
 151			  INI_RA(array, r, column));
 152		DO_DELAY(*writecnt);
 153	}
 154	REGWRITE_BUFFER_FLUSH(ah);
 155}
 156
 157u32 ath9k_hw_reverse_bits(u32 val, u32 n)
 158{
 159	u32 retval;
 160	int i;
 161
 162	for (i = 0, retval = 0; i < n; i++) {
 163		retval = (retval << 1) | (val & 1);
 164		val >>= 1;
 165	}
 166	return retval;
 167}
 168
 169u16 ath9k_hw_computetxtime(struct ath_hw *ah,
 170			   u8 phy, int kbps,
 171			   u32 frameLen, u16 rateix,
 172			   bool shortPreamble)
 173{
 174	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
 175
 176	if (kbps == 0)
 177		return 0;
 178
 179	switch (phy) {
 180	case WLAN_RC_PHY_CCK:
 181		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
 182		if (shortPreamble)
 183			phyTime >>= 1;
 184		numBits = frameLen << 3;
 185		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
 186		break;
 187	case WLAN_RC_PHY_OFDM:
 188		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
 189			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
 190			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 191			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 192			txTime = OFDM_SIFS_TIME_QUARTER
 193				+ OFDM_PREAMBLE_TIME_QUARTER
 194				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
 195		} else if (ah->curchan &&
 196			   IS_CHAN_HALF_RATE(ah->curchan)) {
 197			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
 198			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 199			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 200			txTime = OFDM_SIFS_TIME_HALF +
 201				OFDM_PREAMBLE_TIME_HALF
 202				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
 203		} else {
 204			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
 205			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 206			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 207			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
 208				+ (numSymbols * OFDM_SYMBOL_TIME);
 209		}
 210		break;
 211	default:
 212		ath_err(ath9k_hw_common(ah),
 213			"Unknown phy %u (rate ix %u)\n", phy, rateix);
 214		txTime = 0;
 215		break;
 216	}
 217
 218	return txTime;
 219}
 220EXPORT_SYMBOL(ath9k_hw_computetxtime);
 221
 222void ath9k_hw_get_channel_centers(struct ath_hw *ah,
 223				  struct ath9k_channel *chan,
 224				  struct chan_centers *centers)
 225{
 226	int8_t extoff;
 227
 228	if (!IS_CHAN_HT40(chan)) {
 229		centers->ctl_center = centers->ext_center =
 230			centers->synth_center = chan->channel;
 231		return;
 232	}
 233
 234	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
 235	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
 236		centers->synth_center =
 237			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
 238		extoff = 1;
 239	} else {
 240		centers->synth_center =
 241			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
 242		extoff = -1;
 243	}
 244
 245	centers->ctl_center =
 246		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
 247	/* 25 MHz spacing is supported by hw but not on upper layers */
 248	centers->ext_center =
 249		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
 250}
 251
 252/******************/
 253/* Chip Revisions */
 254/******************/
 255
 256static void ath9k_hw_read_revisions(struct ath_hw *ah)
 257{
 258	u32 val;
 259
 260	switch (ah->hw_version.devid) {
 261	case AR5416_AR9100_DEVID:
 262		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
 263		break;
 264	case AR9300_DEVID_AR9330:
 265		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
 266		if (ah->get_mac_revision) {
 267			ah->hw_version.macRev = ah->get_mac_revision();
 268		} else {
 269			val = REG_READ(ah, AR_SREV);
 270			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 271		}
 272		return;
 273	case AR9300_DEVID_AR9340:
 274		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
 275		val = REG_READ(ah, AR_SREV);
 276		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 277		return;
 
 
 
 
 
 
 278	}
 279
 280	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
 281
 282	if (val == 0xFF) {
 283		val = REG_READ(ah, AR_SREV);
 284		ah->hw_version.macVersion =
 285			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
 286		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 287		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
 
 
 
 
 
 288	} else {
 289		if (!AR_SREV_9100(ah))
 290			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
 291
 292		ah->hw_version.macRev = val & AR_SREV_REVISION;
 293
 294		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
 295			ah->is_pciexpress = true;
 296	}
 297}
 298
 299/************************************/
 300/* HW Attach, Detach, Init Routines */
 301/************************************/
 302
 303static void ath9k_hw_disablepcie(struct ath_hw *ah)
 304{
 305	if (!AR_SREV_5416(ah))
 306		return;
 307
 308	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
 309	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
 310	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
 311	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
 312	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
 313	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
 314	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
 315	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
 316	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
 317
 318	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
 319}
 320
 321static void ath9k_hw_aspm_init(struct ath_hw *ah)
 322{
 323	struct ath_common *common = ath9k_hw_common(ah);
 324
 325	if (common->bus_ops->aspm_init)
 326		common->bus_ops->aspm_init(common);
 327}
 328
 329/* This should work for all families including legacy */
 330static bool ath9k_hw_chip_test(struct ath_hw *ah)
 331{
 332	struct ath_common *common = ath9k_hw_common(ah);
 333	u32 regAddr[2] = { AR_STA_ID0 };
 334	u32 regHold[2];
 335	static const u32 patternData[4] = {
 336		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
 337	};
 338	int i, j, loop_max;
 339
 340	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 341		loop_max = 2;
 342		regAddr[1] = AR_PHY_BASE + (8 << 2);
 343	} else
 344		loop_max = 1;
 345
 346	for (i = 0; i < loop_max; i++) {
 347		u32 addr = regAddr[i];
 348		u32 wrData, rdData;
 349
 350		regHold[i] = REG_READ(ah, addr);
 351		for (j = 0; j < 0x100; j++) {
 352			wrData = (j << 16) | j;
 353			REG_WRITE(ah, addr, wrData);
 354			rdData = REG_READ(ah, addr);
 355			if (rdData != wrData) {
 356				ath_err(common,
 357					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 358					addr, wrData, rdData);
 359				return false;
 360			}
 361		}
 362		for (j = 0; j < 4; j++) {
 363			wrData = patternData[j];
 364			REG_WRITE(ah, addr, wrData);
 365			rdData = REG_READ(ah, addr);
 366			if (wrData != rdData) {
 367				ath_err(common,
 368					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 369					addr, wrData, rdData);
 370				return false;
 371			}
 372		}
 373		REG_WRITE(ah, regAddr[i], regHold[i]);
 374	}
 375	udelay(100);
 376
 377	return true;
 378}
 379
 380static void ath9k_hw_init_config(struct ath_hw *ah)
 381{
 382	int i;
 383
 384	ah->config.dma_beacon_response_time = 2;
 385	ah->config.sw_beacon_response_time = 10;
 386	ah->config.additional_swba_backoff = 0;
 387	ah->config.ack_6mb = 0x0;
 388	ah->config.cwm_ignore_extcca = 0;
 389	ah->config.pcie_clock_req = 0;
 390	ah->config.pcie_waen = 0;
 391	ah->config.analog_shiftreg = 1;
 392	ah->config.enable_ani = true;
 393
 394	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
 395		ah->config.spurchans[i][0] = AR_NO_SPUR;
 396		ah->config.spurchans[i][1] = AR_NO_SPUR;
 397	}
 398
 399	/* PAPRD needs some more work to be enabled */
 400	ah->config.paprd_disable = 1;
 401
 402	ah->config.rx_intr_mitigation = true;
 403	ah->config.pcieSerDesWrite = true;
 
 
 
 
 
 
 
 404
 405	/*
 406	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
 407	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
 408	 * This means we use it for all AR5416 devices, and the few
 409	 * minor PCI AR9280 devices out there.
 410	 *
 411	 * Serialization is required because these devices do not handle
 412	 * well the case of two concurrent reads/writes due to the latency
 413	 * involved. During one read/write another read/write can be issued
 414	 * on another CPU while the previous read/write may still be working
 415	 * on our hardware, if we hit this case the hardware poops in a loop.
 416	 * We prevent this by serializing reads and writes.
 417	 *
 418	 * This issue is not present on PCI-Express devices or pre-AR5416
 419	 * devices (legacy, 802.11abg).
 420	 */
 421	if (num_possible_cpus() > 1)
 422		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 423}
 424
 425static void ath9k_hw_init_defaults(struct ath_hw *ah)
 426{
 427	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 428
 429	regulatory->country_code = CTRY_DEFAULT;
 430	regulatory->power_limit = MAX_RATE_POWER;
 431	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
 432
 433	ah->hw_version.magic = AR5416_MAGIC;
 434	ah->hw_version.subvendorid = 0;
 435
 436	ah->atim_window = 0;
 437	ah->sta_id1_defaults =
 438		AR_STA_ID1_CRPT_MIC_ENABLE |
 439		AR_STA_ID1_MCAST_KSRCH;
 440	if (AR_SREV_9100(ah))
 441		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
 442	ah->enable_32kHz_clock = DONT_USE_32KHZ;
 443	ah->slottime = 20;
 444	ah->globaltxtimeout = (u32) -1;
 445	ah->power_mode = ATH9K_PM_UNDEFINED;
 
 
 
 
 
 
 
 
 
 
 446}
 447
 448static int ath9k_hw_init_macaddr(struct ath_hw *ah)
 449{
 450	struct ath_common *common = ath9k_hw_common(ah);
 451	u32 sum;
 452	int i;
 453	u16 eeval;
 454	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
 455
 456	sum = 0;
 457	for (i = 0; i < 3; i++) {
 458		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
 459		sum += eeval;
 460		common->macaddr[2 * i] = eeval >> 8;
 461		common->macaddr[2 * i + 1] = eeval & 0xff;
 462	}
 463	if (sum == 0 || sum == 0xffff * 3)
 464		return -EADDRNOTAVAIL;
 465
 466	return 0;
 467}
 468
 469static int ath9k_hw_post_init(struct ath_hw *ah)
 470{
 471	struct ath_common *common = ath9k_hw_common(ah);
 472	int ecode;
 473
 474	if (common->bus_ops->ath_bus_type != ATH_USB) {
 475		if (!ath9k_hw_chip_test(ah))
 476			return -ENODEV;
 477	}
 478
 479	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 480		ecode = ar9002_hw_rf_claim(ah);
 481		if (ecode != 0)
 482			return ecode;
 483	}
 484
 485	ecode = ath9k_hw_eeprom_init(ah);
 486	if (ecode != 0)
 487		return ecode;
 488
 489	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
 490		"Eeprom VER: %d, REV: %d\n",
 491		ah->eep_ops->get_eeprom_ver(ah),
 492		ah->eep_ops->get_eeprom_rev(ah));
 493
 494	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
 495	if (ecode) {
 496		ath_err(ath9k_hw_common(ah),
 497			"Failed allocating banks for external radio\n");
 498		ath9k_hw_rf_free_ext_banks(ah);
 499		return ecode;
 500	}
 501
 502	if (!AR_SREV_9100(ah) && !AR_SREV_9340(ah)) {
 503		ath9k_hw_ani_setup(ah);
 504		ath9k_hw_ani_init(ah);
 
 
 
 
 
 
 
 505	}
 506
 507	return 0;
 508}
 509
 510static void ath9k_hw_attach_ops(struct ath_hw *ah)
 511{
 512	if (AR_SREV_9300_20_OR_LATER(ah))
 513		ar9003_hw_attach_ops(ah);
 514	else
 515		ar9002_hw_attach_ops(ah);
 
 516}
 517
 518/* Called for all hardware families */
 519static int __ath9k_hw_init(struct ath_hw *ah)
 520{
 521	struct ath_common *common = ath9k_hw_common(ah);
 522	int r = 0;
 523
 524	ath9k_hw_read_revisions(ah);
 525
 526	/*
 527	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
 528	 * We need to do this to avoid RMW of this register. We cannot
 529	 * read the reg when chip is asleep.
 530	 */
 531	ah->WARegVal = REG_READ(ah, AR_WA);
 532	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
 533			 AR_WA_ASPM_TIMER_BASED_DISABLE);
 534
 535	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
 536		ath_err(common, "Couldn't reset chip\n");
 537		return -EIO;
 538	}
 539
 540	ath9k_hw_init_defaults(ah);
 541	ath9k_hw_init_config(ah);
 542
 543	ath9k_hw_attach_ops(ah);
 544
 545	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
 546		ath_err(common, "Couldn't wakeup chip\n");
 547		return -EIO;
 548	}
 549
 550	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
 551		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
 552		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
 553		     !ah->is_pciexpress)) {
 554			ah->config.serialize_regmode =
 555				SER_REG_MODE_ON;
 556		} else {
 557			ah->config.serialize_regmode =
 558				SER_REG_MODE_OFF;
 559		}
 560	}
 561
 562	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
 563		ah->config.serialize_regmode);
 564
 565	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 566		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
 567	else
 568		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
 569
 570	switch (ah->hw_version.macVersion) {
 571	case AR_SREV_VERSION_5416_PCI:
 572	case AR_SREV_VERSION_5416_PCIE:
 573	case AR_SREV_VERSION_9160:
 574	case AR_SREV_VERSION_9100:
 575	case AR_SREV_VERSION_9280:
 576	case AR_SREV_VERSION_9285:
 577	case AR_SREV_VERSION_9287:
 578	case AR_SREV_VERSION_9271:
 579	case AR_SREV_VERSION_9300:
 580	case AR_SREV_VERSION_9330:
 581	case AR_SREV_VERSION_9485:
 582	case AR_SREV_VERSION_9340:
 
 
 
 
 583		break;
 584	default:
 585		ath_err(common,
 586			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
 587			ah->hw_version.macVersion, ah->hw_version.macRev);
 588		return -EOPNOTSUPP;
 589	}
 590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
 592	    AR_SREV_9330(ah))
 593		ah->is_pciexpress = false;
 594
 595	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
 596	ath9k_hw_init_cal_settings(ah);
 597
 598	ah->ani_function = ATH9K_ANI_ALL;
 599	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
 600		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
 601	if (!AR_SREV_9300_20_OR_LATER(ah))
 602		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
 603
 604	ath9k_hw_init_mode_regs(ah);
 605
 606
 607	if (ah->is_pciexpress)
 608		ath9k_hw_aspm_init(ah);
 609	else
 610		ath9k_hw_disablepcie(ah);
 611
 612	if (!AR_SREV_9300_20_OR_LATER(ah))
 613		ar9002_hw_cck_chan14_spread(ah);
 614
 615	r = ath9k_hw_post_init(ah);
 616	if (r)
 617		return r;
 618
 619	ath9k_hw_init_mode_gain_regs(ah);
 620	r = ath9k_hw_fill_cap_info(ah);
 621	if (r)
 622		return r;
 623
 624	r = ath9k_hw_init_macaddr(ah);
 625	if (r) {
 626		ath_err(common, "Failed to initialize MAC address\n");
 627		return r;
 628	}
 629
 630	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 631		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
 632	else
 633		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
 634
 635	if (AR_SREV_9330(ah))
 636		ah->bb_watchdog_timeout_ms = 85;
 637	else
 638		ah->bb_watchdog_timeout_ms = 25;
 639
 640	common->state = ATH_HW_INITIALIZED;
 641
 642	return 0;
 643}
 644
 645int ath9k_hw_init(struct ath_hw *ah)
 646{
 647	int ret;
 648	struct ath_common *common = ath9k_hw_common(ah);
 649
 650	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
 651	switch (ah->hw_version.devid) {
 652	case AR5416_DEVID_PCI:
 653	case AR5416_DEVID_PCIE:
 654	case AR5416_AR9100_DEVID:
 655	case AR9160_DEVID_PCI:
 656	case AR9280_DEVID_PCI:
 657	case AR9280_DEVID_PCIE:
 658	case AR9285_DEVID_PCIE:
 659	case AR9287_DEVID_PCI:
 660	case AR9287_DEVID_PCIE:
 661	case AR2427_DEVID_PCIE:
 662	case AR9300_DEVID_PCIE:
 663	case AR9300_DEVID_AR9485_PCIE:
 664	case AR9300_DEVID_AR9330:
 665	case AR9300_DEVID_AR9340:
 
 
 
 
 
 
 666		break;
 667	default:
 668		if (common->bus_ops->ath_bus_type == ATH_USB)
 669			break;
 670		ath_err(common, "Hardware device ID 0x%04x not supported\n",
 671			ah->hw_version.devid);
 672		return -EOPNOTSUPP;
 673	}
 674
 675	ret = __ath9k_hw_init(ah);
 676	if (ret) {
 677		ath_err(common,
 678			"Unable to initialize hardware; initialization status: %d\n",
 679			ret);
 680		return ret;
 681	}
 682
 683	return 0;
 684}
 685EXPORT_SYMBOL(ath9k_hw_init);
 686
 687static void ath9k_hw_init_qos(struct ath_hw *ah)
 688{
 689	ENABLE_REGWRITE_BUFFER(ah);
 690
 691	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
 692	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
 693
 694	REG_WRITE(ah, AR_QOS_NO_ACK,
 695		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
 696		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
 697		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
 698
 699	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
 700	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
 701	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
 702	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
 703	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
 704
 705	REGWRITE_BUFFER_FLUSH(ah);
 706}
 707
 708u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
 709{
 
 
 
 710	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 711	udelay(100);
 712	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 713
 714	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
 
 715		udelay(100);
 716
 
 
 
 
 
 
 
 
 717	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
 718}
 719EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
 720
 721static void ath9k_hw_init_pll(struct ath_hw *ah,
 722			      struct ath9k_channel *chan)
 723{
 724	u32 pll;
 725
 726	if (AR_SREV_9485(ah)) {
 727
 728		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
 729		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 730			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
 731		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 732			      AR_CH0_DPLL2_KD, 0x40);
 733		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 734			      AR_CH0_DPLL2_KI, 0x4);
 735
 736		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 737			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
 738		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 739			      AR_CH0_BB_DPLL1_NINI, 0x58);
 740		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 741			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
 742
 743		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 744			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
 745		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 746			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
 747		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 748			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
 749
 750		/* program BB PLL phase_shift to 0x6 */
 751		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 752			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
 753
 754		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 755			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
 756		udelay(1000);
 757	} else if (AR_SREV_9330(ah)) {
 758		u32 ddr_dpll2, pll_control2, kd;
 759
 760		if (ah->is_clk_25mhz) {
 761			ddr_dpll2 = 0x18e82f01;
 762			pll_control2 = 0xe04a3d;
 763			kd = 0x1d;
 764		} else {
 765			ddr_dpll2 = 0x19e82f01;
 766			pll_control2 = 0x886666;
 767			kd = 0x3d;
 768		}
 769
 770		/* program DDR PLL ki and kd value */
 771		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
 772
 773		/* program DDR PLL phase_shift */
 774		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
 775			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
 776
 777		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
 778		udelay(1000);
 779
 780		/* program refdiv, nint, frac to RTC register */
 781		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
 782
 783		/* program BB PLL kd and ki value */
 784		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
 785		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
 786
 787		/* program BB PLL phase_shift */
 788		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 789			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
 790	} else if (AR_SREV_9340(ah)) {
 791		u32 regval, pll2_divint, pll2_divfrac, refdiv;
 792
 793		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
 794		udelay(1000);
 795
 796		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
 797		udelay(100);
 798
 799		if (ah->is_clk_25mhz) {
 800			pll2_divint = 0x54;
 801			pll2_divfrac = 0x1eb85;
 802			refdiv = 3;
 
 
 
 
 
 
 803		} else {
 804			pll2_divint = 88;
 805			pll2_divfrac = 0;
 806			refdiv = 5;
 
 
 
 
 
 
 807		}
 808
 809		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 810		regval |= (0x1 << 16);
 
 
 
 811		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 812		udelay(100);
 813
 814		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
 815			  (pll2_divint << 18) | pll2_divfrac);
 816		udelay(100);
 817
 818		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 819		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
 820			 (0x4 << 26) | (0x18 << 19);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 822		REG_WRITE(ah, AR_PHY_PLL_MODE,
 823			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
 
 
 
 
 
 
 824		udelay(1000);
 825	}
 826
 827	pll = ath9k_hw_compute_pll_control(ah, chan);
 828
 
 829	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
 830
 831	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
 
 832		udelay(1000);
 833
 834	/* Switch the core clock for ar9271 to 117Mhz */
 835	if (AR_SREV_9271(ah)) {
 836		udelay(500);
 837		REG_WRITE(ah, 0x50040, 0x304);
 838	}
 839
 840	udelay(RTC_PLL_SETTLE_DELAY);
 841
 842	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
 843
 844	if (AR_SREV_9340(ah)) {
 845		if (ah->is_clk_25mhz) {
 846			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
 847			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
 848			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
 849		} else {
 850			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
 851			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
 852			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
 853		}
 854		udelay(100);
 855	}
 856}
 857
 858static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
 859					  enum nl80211_iftype opmode)
 860{
 861	u32 sync_default = AR_INTR_SYNC_DEFAULT;
 862	u32 imr_reg = AR_IMR_TXERR |
 863		AR_IMR_TXURN |
 864		AR_IMR_RXERR |
 865		AR_IMR_RXORN |
 866		AR_IMR_BCNMISC;
 867
 868	if (AR_SREV_9340(ah))
 869		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
 870
 871	if (AR_SREV_9300_20_OR_LATER(ah)) {
 872		imr_reg |= AR_IMR_RXOK_HP;
 873		if (ah->config.rx_intr_mitigation)
 874			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 875		else
 876			imr_reg |= AR_IMR_RXOK_LP;
 877
 878	} else {
 879		if (ah->config.rx_intr_mitigation)
 880			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 881		else
 882			imr_reg |= AR_IMR_RXOK;
 883	}
 884
 885	if (ah->config.tx_intr_mitigation)
 886		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
 887	else
 888		imr_reg |= AR_IMR_TXOK;
 889
 890	if (opmode == NL80211_IFTYPE_AP)
 891		imr_reg |= AR_IMR_MIB;
 892
 893	ENABLE_REGWRITE_BUFFER(ah);
 894
 895	REG_WRITE(ah, AR_IMR, imr_reg);
 896	ah->imrs2_reg |= AR_IMR_S2_GTT;
 897	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
 898
 899	if (!AR_SREV_9100(ah)) {
 900		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
 901		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
 902		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
 903	}
 904
 905	REGWRITE_BUFFER_FLUSH(ah);
 906
 907	if (AR_SREV_9300_20_OR_LATER(ah)) {
 908		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
 909		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
 910		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
 911		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
 912	}
 913}
 914
 915static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
 916{
 917	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
 918	val = min(val, (u32) 0xFFFF);
 919	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
 920}
 921
 922static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
 923{
 924	u32 val = ath9k_hw_mac_to_clks(ah, us);
 925	val = min(val, (u32) 0xFFFF);
 926	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
 927}
 928
 929static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
 930{
 931	u32 val = ath9k_hw_mac_to_clks(ah, us);
 932	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
 933	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
 934}
 935
 936static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
 937{
 938	u32 val = ath9k_hw_mac_to_clks(ah, us);
 939	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
 940	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
 941}
 942
 943static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
 944{
 945	if (tu > 0xFFFF) {
 946		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
 947			"bad global tx timeout %u\n", tu);
 948		ah->globaltxtimeout = (u32) -1;
 949		return false;
 950	} else {
 951		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
 952		ah->globaltxtimeout = tu;
 953		return true;
 954	}
 955}
 956
 957void ath9k_hw_init_global_settings(struct ath_hw *ah)
 958{
 959	struct ath_common *common = ath9k_hw_common(ah);
 960	struct ieee80211_conf *conf = &common->hw->conf;
 961	const struct ath9k_channel *chan = ah->curchan;
 962	int acktimeout;
 963	int slottime;
 964	int sifstime;
 965	int rx_lat = 0, tx_lat = 0, eifs = 0;
 966	u32 reg;
 967
 968	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
 969		ah->misc_mode);
 970
 971	if (!chan)
 972		return;
 973
 974	if (ah->misc_mode != 0)
 975		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
 976
 977	rx_lat = 37;
 
 
 
 978	tx_lat = 54;
 979
 
 
 
 
 
 980	if (IS_CHAN_HALF_RATE(chan)) {
 981		eifs = 175;
 982		rx_lat *= 2;
 983		tx_lat *= 2;
 984		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
 985		    tx_lat += 11;
 986
 987		slottime = 13;
 988		sifstime = 32;
 
 
 989	} else if (IS_CHAN_QUARTER_RATE(chan)) {
 990		eifs = 340;
 991		rx_lat *= 4;
 992		tx_lat *= 4;
 993		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
 994		    tx_lat += 22;
 995
 996		slottime = 21;
 997		sifstime = 64;
 
 
 998	} else {
 999		eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS);
1000		reg = REG_READ(ah, AR_USEC);
 
 
 
 
 
 
1001		rx_lat = MS(reg, AR_USEC_RX_LAT);
1002		tx_lat = MS(reg, AR_USEC_TX_LAT);
1003
1004		slottime = ah->slottime;
1005		if (IS_CHAN_5GHZ(chan))
1006			sifstime = 16;
1007		else
1008			sifstime = 10;
1009	}
1010
1011	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1012	acktimeout = slottime + sifstime + 3 * ah->coverage_class;
 
 
1013
1014	/*
1015	 * Workaround for early ACK timeouts, add an offset to match the
1016	 * initval's 64us ack timeout value.
1017	 * This was initially only meant to work around an issue with delayed
1018	 * BA frames in some implementations, but it has been found to fix ACK
1019	 * timeout issues in other cases as well.
1020	 */
1021	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
 
1022		acktimeout += 64 - sifstime - ah->slottime;
 
 
1023
1024	ath9k_hw_set_sifs_time(ah, sifstime);
1025	ath9k_hw_setslottime(ah, slottime);
1026	ath9k_hw_set_ack_timeout(ah, acktimeout);
1027	ath9k_hw_set_cts_timeout(ah, acktimeout);
1028	if (ah->globaltxtimeout != (u32) -1)
1029		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1030
1031	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1032	REG_RMW(ah, AR_USEC,
1033		(common->clockrate - 1) |
1034		SM(rx_lat, AR_USEC_RX_LAT) |
1035		SM(tx_lat, AR_USEC_TX_LAT),
1036		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1037
1038}
1039EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1040
1041void ath9k_hw_deinit(struct ath_hw *ah)
1042{
1043	struct ath_common *common = ath9k_hw_common(ah);
1044
1045	if (common->state < ATH_HW_INITIALIZED)
1046		goto free_hw;
1047
1048	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1049
1050free_hw:
1051	ath9k_hw_rf_free_ext_banks(ah);
1052}
1053EXPORT_SYMBOL(ath9k_hw_deinit);
1054
1055/*******/
1056/* INI */
1057/*******/
1058
1059u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1060{
1061	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1062
1063	if (IS_CHAN_B(chan))
1064		ctl |= CTL_11B;
1065	else if (IS_CHAN_G(chan))
1066		ctl |= CTL_11G;
1067	else
1068		ctl |= CTL_11A;
1069
1070	return ctl;
1071}
1072
1073/****************************************/
1074/* Reset and Channel Switching Routines */
1075/****************************************/
1076
1077static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1078{
1079	struct ath_common *common = ath9k_hw_common(ah);
 
1080
1081	ENABLE_REGWRITE_BUFFER(ah);
1082
1083	/*
1084	 * set AHB_MODE not to do cacheline prefetches
1085	*/
1086	if (!AR_SREV_9300_20_OR_LATER(ah))
1087		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1088
1089	/*
1090	 * let mac dma reads be in 128 byte chunks
1091	 */
1092	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1093
1094	REGWRITE_BUFFER_FLUSH(ah);
1095
1096	/*
1097	 * Restore TX Trigger Level to its pre-reset value.
1098	 * The initial value depends on whether aggregation is enabled, and is
1099	 * adjusted whenever underruns are detected.
1100	 */
1101	if (!AR_SREV_9300_20_OR_LATER(ah))
1102		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1103
1104	ENABLE_REGWRITE_BUFFER(ah);
1105
1106	/*
1107	 * let mac dma writes be in 128 byte chunks
1108	 */
1109	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1110
1111	/*
1112	 * Setup receive FIFO threshold to hold off TX activities
1113	 */
1114	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1115
1116	if (AR_SREV_9300_20_OR_LATER(ah)) {
1117		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1118		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1119
1120		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1121			ah->caps.rx_status_len);
1122	}
1123
1124	/*
1125	 * reduce the number of usable entries in PCU TXBUF to avoid
1126	 * wrap around issues.
1127	 */
1128	if (AR_SREV_9285(ah)) {
1129		/* For AR9285 the number of Fifos are reduced to half.
1130		 * So set the usable tx buf size also to half to
1131		 * avoid data/delimiter underruns
1132		 */
1133		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1134			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1135	} else if (!AR_SREV_9271(ah)) {
1136		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1137			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
 
1138	}
1139
 
 
 
1140	REGWRITE_BUFFER_FLUSH(ah);
1141
1142	if (AR_SREV_9300_20_OR_LATER(ah))
1143		ath9k_hw_reset_txstatus_ring(ah);
1144}
1145
1146static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1147{
1148	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1149	u32 set = AR_STA_ID1_KSRCH_MODE;
1150
1151	switch (opmode) {
1152	case NL80211_IFTYPE_ADHOC:
1153	case NL80211_IFTYPE_MESH_POINT:
1154		set |= AR_STA_ID1_ADHOC;
1155		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1156		break;
 
1157	case NL80211_IFTYPE_AP:
1158		set |= AR_STA_ID1_STA_AP;
1159		/* fall through */
1160	case NL80211_IFTYPE_STATION:
1161		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1162		break;
1163	default:
1164		if (!ah->is_monitoring)
1165			set = 0;
1166		break;
1167	}
1168	REG_RMW(ah, AR_STA_ID1, set, mask);
1169}
1170
1171void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1172				   u32 *coef_mantissa, u32 *coef_exponent)
1173{
1174	u32 coef_exp, coef_man;
1175
1176	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1177		if ((coef_scaled >> coef_exp) & 0x1)
1178			break;
1179
1180	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1181
1182	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1183
1184	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1185	*coef_exponent = coef_exp - 16;
1186}
1187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1188static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1189{
1190	u32 rst_flags;
1191	u32 tmpReg;
1192
1193	if (AR_SREV_9100(ah)) {
1194		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1195			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1196		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1197	}
1198
1199	ENABLE_REGWRITE_BUFFER(ah);
1200
1201	if (AR_SREV_9300_20_OR_LATER(ah)) {
1202		REG_WRITE(ah, AR_WA, ah->WARegVal);
1203		udelay(10);
1204	}
1205
1206	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1207		  AR_RTC_FORCE_WAKE_ON_INT);
1208
1209	if (AR_SREV_9100(ah)) {
1210		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1211			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1212	} else {
1213		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1214		if (tmpReg &
1215		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1216		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
 
 
 
 
1217			u32 val;
1218			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1219
1220			val = AR_RC_HOSTIF;
1221			if (!AR_SREV_9300_20_OR_LATER(ah))
1222				val |= AR_RC_AHB;
1223			REG_WRITE(ah, AR_RC, val);
1224
1225		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1226			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1227
1228		rst_flags = AR_RTC_RC_MAC_WARM;
1229		if (type == ATH9K_RESET_COLD)
1230			rst_flags |= AR_RTC_RC_MAC_COLD;
1231	}
1232
1233	if (AR_SREV_9330(ah)) {
1234		int npend = 0;
1235		int i;
1236
1237		/* AR9330 WAR:
1238		 * call external reset function to reset WMAC if:
1239		 * - doing a cold reset
1240		 * - we have pending frames in the TX queues
1241		 */
1242
1243		for (i = 0; i < AR_NUM_QCU; i++) {
1244			npend = ath9k_hw_numtxpending(ah, i);
1245			if (npend)
1246				break;
1247		}
1248
1249		if (ah->external_reset &&
1250		    (npend || type == ATH9K_RESET_COLD)) {
1251			int reset_err = 0;
1252
1253			ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1254				"reset MAC via external reset\n");
1255
1256			reset_err = ah->external_reset();
1257			if (reset_err) {
1258				ath_err(ath9k_hw_common(ah),
1259					"External reset failed, err=%d\n",
1260					reset_err);
1261				return false;
1262			}
1263
1264			REG_WRITE(ah, AR_RTC_RESET, 1);
1265		}
1266	}
1267
 
 
 
1268	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1269
1270	REGWRITE_BUFFER_FLUSH(ah);
1271
1272	udelay(50);
 
 
 
 
 
1273
1274	REG_WRITE(ah, AR_RTC_RC, 0);
1275	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1276		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1277			"RTC stuck in MAC reset\n");
1278		return false;
1279	}
1280
1281	if (!AR_SREV_9100(ah))
1282		REG_WRITE(ah, AR_RC, 0);
1283
1284	if (AR_SREV_9100(ah))
1285		udelay(50);
1286
1287	return true;
1288}
1289
1290static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1291{
1292	ENABLE_REGWRITE_BUFFER(ah);
1293
1294	if (AR_SREV_9300_20_OR_LATER(ah)) {
1295		REG_WRITE(ah, AR_WA, ah->WARegVal);
1296		udelay(10);
1297	}
1298
1299	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1300		  AR_RTC_FORCE_WAKE_ON_INT);
1301
1302	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1303		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1304
1305	REG_WRITE(ah, AR_RTC_RESET, 0);
1306
1307	REGWRITE_BUFFER_FLUSH(ah);
1308
1309	if (!AR_SREV_9300_20_OR_LATER(ah))
1310		udelay(2);
1311
1312	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1313		REG_WRITE(ah, AR_RC, 0);
1314
1315	REG_WRITE(ah, AR_RTC_RESET, 1);
1316
1317	if (!ath9k_hw_wait(ah,
1318			   AR_RTC_STATUS,
1319			   AR_RTC_STATUS_M,
1320			   AR_RTC_STATUS_ON,
1321			   AH_WAIT_TIMEOUT)) {
1322		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1323			"RTC not waking up\n");
1324		return false;
1325	}
1326
1327	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1328}
1329
1330static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1331{
 
 
1332	if (AR_SREV_9300_20_OR_LATER(ah)) {
1333		REG_WRITE(ah, AR_WA, ah->WARegVal);
1334		udelay(10);
1335	}
1336
1337	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1338		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1339
 
 
 
1340	switch (type) {
1341	case ATH9K_RESET_POWER_ON:
1342		return ath9k_hw_set_reset_power_on(ah);
 
 
 
1343	case ATH9K_RESET_WARM:
1344	case ATH9K_RESET_COLD:
1345		return ath9k_hw_set_reset(ah, type);
 
1346	default:
1347		return false;
1348	}
 
 
1349}
1350
1351static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1352				struct ath9k_channel *chan)
1353{
1354	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1355		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1356			return false;
1357	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
 
 
 
 
 
 
 
 
1358		return false;
1359
1360	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1361		return false;
1362
1363	ah->chip_fullsleep = false;
 
 
 
1364	ath9k_hw_init_pll(ah, chan);
1365	ath9k_hw_set_rfmode(ah, chan);
1366
1367	return true;
1368}
1369
1370static bool ath9k_hw_channel_change(struct ath_hw *ah,
1371				    struct ath9k_channel *chan)
1372{
1373	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1374	struct ath_common *common = ath9k_hw_common(ah);
1375	struct ieee80211_channel *channel = chan->chan;
 
 
1376	u32 qnum;
1377	int r;
1378
 
 
 
 
 
 
1379	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1380		if (ath9k_hw_numtxpending(ah, qnum)) {
1381			ath_dbg(common, ATH_DBG_QUEUE,
1382				"Transmit frames pending on queue %d\n", qnum);
1383			return false;
1384		}
1385	}
1386
1387	if (!ath9k_hw_rfbus_req(ah)) {
1388		ath_err(common, "Could not kill baseband RX\n");
1389		return false;
1390	}
1391
 
 
 
 
 
 
 
 
 
 
 
 
 
1392	ath9k_hw_set_channel_regs(ah, chan);
1393
1394	r = ath9k_hw_rf_set_freq(ah, chan);
1395	if (r) {
1396		ath_err(common, "Failed to set channel\n");
1397		return false;
1398	}
1399	ath9k_hw_set_clockrate(ah);
 
1400
1401	ah->eep_ops->set_txpower(ah, chan,
1402			     ath9k_regd_get_ctl(regulatory, chan),
1403			     channel->max_antenna_gain * 2,
1404			     channel->max_power * 2,
1405			     min((u32) MAX_RATE_POWER,
1406			     (u32) regulatory->power_limit), false);
1407
1408	ath9k_hw_rfbus_done(ah);
 
1409
1410	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1411		ath9k_hw_set_delta_slope(ah, chan);
1412
1413	ath9k_hw_spur_mitigate_freq(ah, chan);
 
 
 
 
1414
1415	return true;
1416}
1417
1418static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1419{
1420	u32 gpio_mask = ah->gpio_mask;
1421	int i;
1422
1423	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1424		if (!(gpio_mask & 1))
1425			continue;
1426
1427		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1428		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1429	}
1430}
1431
 
 
 
 
 
 
 
 
 
 
 
 
 
1432bool ath9k_hw_check_alive(struct ath_hw *ah)
1433{
1434	int count = 50;
1435	u32 reg;
 
 
 
1436
1437	if (AR_SREV_9285_12_OR_LATER(ah))
1438		return true;
1439
 
1440	do {
1441		reg = REG_READ(ah, AR_OBS_BUS_1);
 
 
1442
 
 
1443		if ((reg & 0x7E7FFFEF) == 0x00702400)
1444			continue;
1445
1446		switch (reg & 0x7E000B00) {
1447		case 0x1E000000:
1448		case 0x52000B00:
1449		case 0x18000B00:
1450			continue;
1451		default:
1452			return true;
1453		}
1454	} while (count-- > 0);
1455
1456	return false;
1457}
1458EXPORT_SYMBOL(ath9k_hw_check_alive);
1459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1461		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1462{
1463	struct ath_common *common = ath9k_hw_common(ah);
 
1464	u32 saveLedState;
1465	struct ath9k_channel *curchan = ah->curchan;
1466	u32 saveDefAntenna;
1467	u32 macStaId1;
1468	u64 tsf = 0;
1469	int i, r;
 
 
 
1470
1471	ah->txchainmask = common->tx_chainmask;
1472	ah->rxchainmask = common->rx_chainmask;
 
 
 
1473
1474	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1475		return -EIO;
1476
1477	if (curchan && !ah->chip_fullsleep)
1478		ath9k_hw_getnf(ah, curchan);
1479
1480	ah->caldata = caldata;
1481	if (caldata &&
1482	    (chan->channel != caldata->channel ||
1483	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1484	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1485		/* Operating channel changed, reset channel calibration data */
1486		memset(caldata, 0, sizeof(*caldata));
1487		ath9k_init_nfcal_hist_buffer(ah, chan);
 
 
1488	}
 
1489
1490	if (bChannelChange &&
1491	    (ah->chip_fullsleep != true) &&
1492	    (ah->curchan != NULL) &&
1493	    (chan->channel != ah->curchan->channel) &&
1494	    ((chan->channelFlags & CHANNEL_ALL) ==
1495	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1496	    (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1497
1498		if (ath9k_hw_channel_change(ah, chan)) {
1499			ath9k_hw_loadnf(ah, ah->curchan);
1500			ath9k_hw_start_nfcal(ah, true);
1501			if (AR_SREV_9271(ah))
1502				ar9002_hw_load_ani_reg(ah, chan);
1503			return 0;
1504		}
1505	}
1506
 
 
 
1507	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1508	if (saveDefAntenna == 0)
1509		saveDefAntenna = 1;
1510
1511	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1512
1513	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1514	if (AR_SREV_9100(ah) ||
1515	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1516		tsf = ath9k_hw_gettsf64(ah);
1517
1518	saveLedState = REG_READ(ah, AR_CFG_LED) &
1519		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1520		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1521
1522	ath9k_hw_mark_phy_inactive(ah);
1523
1524	ah->paprd_table_write_done = false;
1525
1526	/* Only required on the first reset */
1527	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1528		REG_WRITE(ah,
1529			  AR9271_RESET_POWER_DOWN_CONTROL,
1530			  AR9271_RADIO_RF_RST);
1531		udelay(50);
1532	}
1533
1534	if (!ath9k_hw_chip_reset(ah, chan)) {
1535		ath_err(common, "Chip reset failed\n");
1536		return -EINVAL;
1537	}
1538
1539	/* Only required on the first reset */
1540	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1541		ah->htc_reset_init = false;
1542		REG_WRITE(ah,
1543			  AR9271_RESET_POWER_DOWN_CONTROL,
1544			  AR9271_GATE_MAC_CTL);
1545		udelay(50);
1546	}
1547
1548	/* Restore TSF */
1549	if (tsf)
1550		ath9k_hw_settsf64(ah, tsf);
 
1551
1552	if (AR_SREV_9280_20_OR_LATER(ah))
1553		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1554
1555	if (!AR_SREV_9300_20_OR_LATER(ah))
1556		ar9002_hw_enable_async_fifo(ah);
1557
1558	r = ath9k_hw_process_ini(ah, chan);
1559	if (r)
1560		return r;
1561
 
 
 
 
 
1562	/*
1563	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1564	 * right after the chip reset. When that happens, write a new
1565	 * value after the initvals have been applied, with an offset
1566	 * based on measured time difference
1567	 */
1568	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1569		tsf += 1500;
1570		ath9k_hw_settsf64(ah, tsf);
1571	}
1572
1573	/* Setup MFP options for CCMP */
1574	if (AR_SREV_9280_20_OR_LATER(ah)) {
1575		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1576		 * frames when constructing CCMP AAD. */
1577		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1578			      0xc7ff);
1579		ah->sw_mgmt_crypto = false;
1580	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1581		/* Disable hardware crypto for management frames */
1582		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1583			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1584		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1585			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1586		ah->sw_mgmt_crypto = true;
1587	} else
1588		ah->sw_mgmt_crypto = true;
1589
1590	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1591		ath9k_hw_set_delta_slope(ah, chan);
1592
 
1593	ath9k_hw_spur_mitigate_freq(ah, chan);
1594	ah->eep_ops->set_board_values(ah, chan);
1595
1596	ENABLE_REGWRITE_BUFFER(ah);
1597
1598	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1599	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1600		  | macStaId1
1601		  | AR_STA_ID1_RTS_USE_DEF
1602		  | (ah->config.
1603		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1604		  | ah->sta_id1_defaults);
1605	ath_hw_setbssidmask(common);
1606	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1607	ath9k_hw_write_associd(ah);
1608	REG_WRITE(ah, AR_ISR, ~0);
1609	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1610
1611	REGWRITE_BUFFER_FLUSH(ah);
1612
1613	ath9k_hw_set_operating_mode(ah, ah->opmode);
1614
1615	r = ath9k_hw_rf_set_freq(ah, chan);
1616	if (r)
1617		return r;
1618
1619	ath9k_hw_set_clockrate(ah);
1620
1621	ENABLE_REGWRITE_BUFFER(ah);
1622
1623	for (i = 0; i < AR_NUM_DCU; i++)
1624		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1625
1626	REGWRITE_BUFFER_FLUSH(ah);
1627
1628	ah->intr_txqs = 0;
1629	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1630		ath9k_hw_resettxqueue(ah, i);
1631
1632	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1633	ath9k_hw_ani_cache_ini_regs(ah);
1634	ath9k_hw_init_qos(ah);
1635
1636	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1637		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1638
1639	ath9k_hw_init_global_settings(ah);
1640
1641	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1642		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1643			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1644		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1645			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1646		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1647			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1648	}
1649
1650	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1651
1652	ath9k_hw_set_dma(ah);
1653
1654	REG_WRITE(ah, AR_OBS, 8);
 
1655
1656	if (ah->config.rx_intr_mitigation) {
1657		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1658		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1659	}
1660
1661	if (ah->config.tx_intr_mitigation) {
1662		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1663		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1664	}
1665
1666	ath9k_hw_init_bb(ah, chan);
1667
 
 
 
 
1668	if (!ath9k_hw_init_cal(ah, chan))
1669		return -EIO;
1670
 
 
 
1671	ENABLE_REGWRITE_BUFFER(ah);
1672
1673	ath9k_hw_restore_chainmask(ah);
1674	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1675
1676	REGWRITE_BUFFER_FLUSH(ah);
1677
1678	/*
1679	 * For big endian systems turn on swapping for descriptors
1680	 */
1681	if (AR_SREV_9100(ah)) {
1682		u32 mask;
1683		mask = REG_READ(ah, AR_CFG);
1684		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1685			ath_dbg(common, ATH_DBG_RESET,
1686				"CFG Byte Swap Set 0x%x\n", mask);
1687		} else {
1688			mask =
1689				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1690			REG_WRITE(ah, AR_CFG, mask);
1691			ath_dbg(common, ATH_DBG_RESET,
1692				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1693		}
1694	} else {
1695		if (common->bus_ops->ath_bus_type == ATH_USB) {
1696			/* Configure AR9271 target WLAN */
1697			if (AR_SREV_9271(ah))
1698				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1699			else
1700				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1701		}
1702#ifdef __BIG_ENDIAN
1703		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1704			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1705		else
1706			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1707#endif
1708	}
1709
1710	if (ah->btcoex_hw.enabled)
1711		ath9k_hw_btcoex_enable(ah);
1712
1713	if (AR_SREV_9300_20_OR_LATER(ah)) {
 
 
 
 
 
 
1714		ar9003_hw_bb_watchdog_config(ah);
1715
 
1716		ar9003_hw_disable_phy_restart(ah);
1717	}
1718
1719	ath9k_hw_apply_gpio_override(ah);
1720
 
 
 
1721	return 0;
1722}
1723EXPORT_SYMBOL(ath9k_hw_reset);
1724
1725/******************************/
1726/* Power Management (Chipset) */
1727/******************************/
1728
1729/*
1730 * Notify Power Mgt is disabled in self-generated frames.
1731 * If requested, force chip to sleep.
1732 */
1733static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1734{
1735	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1736	if (setChip) {
1737		/*
1738		 * Clear the RTC force wake bit to allow the
1739		 * mac to go to sleep.
1740		 */
1741		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1742			    AR_RTC_FORCE_WAKE_EN);
1743		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1744			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1745
1746		/* Shutdown chip. Active low */
1747		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1748			REG_CLR_BIT(ah, (AR_RTC_RESET),
1749				    AR_RTC_RESET_EN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1750	}
1751
1752	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1753	if (AR_SREV_9300_20_OR_LATER(ah))
1754		REG_WRITE(ah, AR_WA,
1755			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1756}
1757
1758/*
1759 * Notify Power Management is enabled in self-generating
1760 * frames. If request, set power mode of chip to
1761 * auto/normal.  Duration in units of 128us (1/8 TU).
1762 */
1763static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1764{
 
 
1765	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1766	if (setChip) {
1767		struct ath9k_hw_capabilities *pCap = &ah->caps;
1768
1769		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1770			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1771			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1772				  AR_RTC_FORCE_WAKE_ON_INT);
1773		} else {
1774			/*
1775			 * Clear the RTC force wake bit to allow the
1776			 * mac to go to sleep.
1777			 */
1778			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1779				    AR_RTC_FORCE_WAKE_EN);
1780		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781	}
1782
1783	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1784	if (AR_SREV_9300_20_OR_LATER(ah))
1785		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1786}
1787
1788static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1789{
1790	u32 val;
1791	int i;
1792
1793	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1794	if (AR_SREV_9300_20_OR_LATER(ah)) {
1795		REG_WRITE(ah, AR_WA, ah->WARegVal);
1796		udelay(10);
1797	}
1798
1799	if (setChip) {
1800		if ((REG_READ(ah, AR_RTC_STATUS) &
1801		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1802			if (ath9k_hw_set_reset_reg(ah,
1803					   ATH9K_RESET_POWER_ON) != true) {
1804				return false;
1805			}
1806			if (!AR_SREV_9300_20_OR_LATER(ah))
1807				ath9k_hw_init_pll(ah, NULL);
1808		}
1809		if (AR_SREV_9100(ah))
1810			REG_SET_BIT(ah, AR_RTC_RESET,
1811				    AR_RTC_RESET_EN);
 
 
 
1812
1813		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1814			    AR_RTC_FORCE_WAKE_EN);
 
 
 
1815		udelay(50);
1816
1817		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1818			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1819			if (val == AR_RTC_STATUS_ON)
1820				break;
1821			udelay(50);
1822			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1823				    AR_RTC_FORCE_WAKE_EN);
1824		}
1825		if (i == 0) {
1826			ath_err(ath9k_hw_common(ah),
1827				"Failed to wakeup in %uus\n",
1828				POWER_UP_TIME / 20);
1829			return false;
1830		}
1831	}
 
 
 
 
 
 
 
 
 
1832
1833	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1834
1835	return true;
1836}
1837
1838bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1839{
1840	struct ath_common *common = ath9k_hw_common(ah);
1841	int status = true, setChip = true;
1842	static const char *modes[] = {
1843		"AWAKE",
1844		"FULL-SLEEP",
1845		"NETWORK SLEEP",
1846		"UNDEFINED"
1847	};
1848
1849	if (ah->power_mode == mode)
1850		return status;
1851
1852	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1853		modes[ah->power_mode], modes[mode]);
1854
1855	switch (mode) {
1856	case ATH9K_PM_AWAKE:
1857		status = ath9k_hw_set_power_awake(ah, setChip);
1858		break;
1859	case ATH9K_PM_FULL_SLEEP:
1860		ath9k_set_power_sleep(ah, setChip);
 
 
 
1861		ah->chip_fullsleep = true;
1862		break;
1863	case ATH9K_PM_NETWORK_SLEEP:
1864		ath9k_set_power_network_sleep(ah, setChip);
1865		break;
1866	default:
1867		ath_err(common, "Unknown power mode %u\n", mode);
1868		return false;
1869	}
1870	ah->power_mode = mode;
1871
1872	/*
1873	 * XXX: If this warning never comes up after a while then
1874	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1875	 * ath9k_hw_setpower() return type void.
1876	 */
1877
1878	if (!(ah->ah_flags & AH_UNPLUGGED))
1879		ATH_DBG_WARN_ON_ONCE(!status);
1880
1881	return status;
1882}
1883EXPORT_SYMBOL(ath9k_hw_setpower);
1884
1885/*******************/
1886/* Beacon Handling */
1887/*******************/
1888
1889void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1890{
1891	int flags = 0;
1892
1893	ENABLE_REGWRITE_BUFFER(ah);
1894
1895	switch (ah->opmode) {
1896	case NL80211_IFTYPE_ADHOC:
1897	case NL80211_IFTYPE_MESH_POINT:
1898		REG_SET_BIT(ah, AR_TXCFG,
1899			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1900		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
1901			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
1902		flags |= AR_NDP_TIMER_EN;
1903	case NL80211_IFTYPE_AP:
1904		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
1905		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
1906			  TU_TO_USEC(ah->config.dma_beacon_response_time));
1907		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
1908			  TU_TO_USEC(ah->config.sw_beacon_response_time));
1909		flags |=
1910			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1911		break;
1912	default:
1913		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1914			"%s: unsupported opmode: %d\n",
1915			__func__, ah->opmode);
1916		return;
1917		break;
1918	}
1919
1920	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
1921	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
1922	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
1923	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
1924
1925	REGWRITE_BUFFER_FLUSH(ah);
1926
1927	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1928}
1929EXPORT_SYMBOL(ath9k_hw_beaconinit);
1930
1931void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1932				    const struct ath9k_beacon_state *bs)
1933{
1934	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1935	struct ath9k_hw_capabilities *pCap = &ah->caps;
1936	struct ath_common *common = ath9k_hw_common(ah);
1937
1938	ENABLE_REGWRITE_BUFFER(ah);
1939
1940	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1941
1942	REG_WRITE(ah, AR_BEACON_PERIOD,
1943		  TU_TO_USEC(bs->bs_intval));
1944	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1945		  TU_TO_USEC(bs->bs_intval));
1946
1947	REGWRITE_BUFFER_FLUSH(ah);
1948
1949	REG_RMW_FIELD(ah, AR_RSSI_THR,
1950		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1951
1952	beaconintval = bs->bs_intval;
1953
1954	if (bs->bs_sleepduration > beaconintval)
1955		beaconintval = bs->bs_sleepduration;
1956
1957	dtimperiod = bs->bs_dtimperiod;
1958	if (bs->bs_sleepduration > dtimperiod)
1959		dtimperiod = bs->bs_sleepduration;
1960
1961	if (beaconintval == dtimperiod)
1962		nextTbtt = bs->bs_nextdtim;
1963	else
1964		nextTbtt = bs->bs_nexttbtt;
1965
1966	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1967	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1968	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1969	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1970
1971	ENABLE_REGWRITE_BUFFER(ah);
1972
1973	REG_WRITE(ah, AR_NEXT_DTIM,
1974		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1975	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1976
1977	REG_WRITE(ah, AR_SLEEP1,
1978		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1979		  | AR_SLEEP1_ASSUME_DTIM);
1980
1981	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1982		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1983	else
1984		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1985
1986	REG_WRITE(ah, AR_SLEEP2,
1987		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1988
1989	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1990	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1991
1992	REGWRITE_BUFFER_FLUSH(ah);
1993
1994	REG_SET_BIT(ah, AR_TIMER_MODE,
1995		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1996		    AR_DTIM_TIMER_EN);
1997
1998	/* TSF Out of Range Threshold */
1999	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2000}
2001EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2002
2003/*******************/
2004/* HW Capabilities */
2005/*******************/
2006
2007static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2008{
2009	eeprom_chainmask &= chip_chainmask;
2010	if (eeprom_chainmask)
2011		return eeprom_chainmask;
2012	else
2013		return chip_chainmask;
2014}
2015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2016int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2017{
2018	struct ath9k_hw_capabilities *pCap = &ah->caps;
2019	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2020	struct ath_common *common = ath9k_hw_common(ah);
2021	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2022	unsigned int chip_chainmask;
2023
2024	u16 eeval;
2025	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2026
2027	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2028	regulatory->current_rd = eeval;
2029
2030	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2031	if (AR_SREV_9285_12_OR_LATER(ah))
2032		eeval |= AR9285_RDEXT_DEFAULT;
2033	regulatory->current_rd_ext = eeval;
2034
2035	if (ah->opmode != NL80211_IFTYPE_AP &&
2036	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2037		if (regulatory->current_rd == 0x64 ||
2038		    regulatory->current_rd == 0x65)
2039			regulatory->current_rd += 5;
2040		else if (regulatory->current_rd == 0x41)
2041			regulatory->current_rd = 0x43;
2042		ath_dbg(common, ATH_DBG_REGULATORY,
2043			"regdomain mapped to 0x%x\n", regulatory->current_rd);
2044	}
2045
2046	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2047	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2048		ath_err(common,
2049			"no band has been marked as supported in EEPROM\n");
2050		return -EINVAL;
2051	}
2052
2053	if (eeval & AR5416_OPFLAGS_11A)
2054		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2055
2056	if (eeval & AR5416_OPFLAGS_11G)
2057		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2058
2059	if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
 
 
 
2060		chip_chainmask = 1;
 
 
2061	else if (!AR_SREV_9280_20_OR_LATER(ah))
2062		chip_chainmask = 7;
2063	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2064		chip_chainmask = 3;
2065	else
2066		chip_chainmask = 7;
2067
2068	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2069	/*
2070	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2071	 * the EEPROM.
2072	 */
2073	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2074	    !(eeval & AR5416_OPFLAGS_11A) &&
2075	    !(AR_SREV_9271(ah)))
2076		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2077		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2078	else if (AR_SREV_9100(ah))
2079		pCap->rx_chainmask = 0x7;
2080	else
2081		/* Use rx_chainmask from EEPROM. */
2082		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2083
2084	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2085	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
 
 
2086
2087	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2088
2089	/* enable key search for every frame in an aggregate */
2090	if (AR_SREV_9300_20_OR_LATER(ah))
2091		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2092
2093	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2094
2095	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2096		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2097	else
2098		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2099
2100	if (AR_SREV_9271(ah))
2101		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2102	else if (AR_DEVID_7010(ah))
2103		pCap->num_gpio_pins = AR7010_NUM_GPIO;
 
 
 
 
2104	else if (AR_SREV_9285_12_OR_LATER(ah))
2105		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2106	else if (AR_SREV_9280_20_OR_LATER(ah))
2107		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2108	else
2109		pCap->num_gpio_pins = AR_NUM_GPIO;
2110
2111	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2112		pCap->hw_caps |= ATH9K_HW_CAP_CST;
2113		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2114	} else {
2115		pCap->rts_aggr_limit = (8 * 1024);
2116	}
2117
2118#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2119	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2120	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2121		ah->rfkill_gpio =
2122			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2123		ah->rfkill_polarity =
2124			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2125
2126		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2127	}
2128#endif
2129	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2130		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2131	else
2132		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2133
2134	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2135		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2136	else
2137		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2138
2139	if (common->btcoex_enabled) {
2140		if (AR_SREV_9300_20_OR_LATER(ah)) {
2141			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2142			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
2143			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
2144			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
2145		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
2146			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
2147			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
2148
2149			if (AR_SREV_9285(ah)) {
2150				btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2151				btcoex_hw->btpriority_gpio =
2152						ATH_BTPRIORITY_GPIO_9285;
2153			} else {
2154				btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2155			}
2156		}
2157	} else {
2158		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2159	}
2160
2161	if (AR_SREV_9300_20_OR_LATER(ah)) {
2162		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2163		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2164			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2165
2166		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2167		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2168		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2169		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2170		pCap->txs_len = sizeof(struct ar9003_txs);
2171		if (!ah->config.paprd_disable &&
2172		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2173			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2174	} else {
2175		pCap->tx_desc_len = sizeof(struct ath_desc);
2176		if (AR_SREV_9280_20(ah))
2177			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2178	}
2179
2180	if (AR_SREV_9300_20_OR_LATER(ah))
2181		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2182
2183	if (AR_SREV_9300_20_OR_LATER(ah))
2184		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2185
2186	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2187		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2188
2189	if (AR_SREV_9285(ah))
2190		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2191			ant_div_ctl1 =
2192				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2193			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2194				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
 
 
2195		}
 
 
2196	if (AR_SREV_9300_20_OR_LATER(ah)) {
2197		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2198			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2199	}
2200
2201
2202	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2203		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2204		/*
2205		 * enable the diversity-combining algorithm only when
2206		 * both enable_lna_div and enable_fast_div are set
2207		 *		Table for Diversity
2208		 * ant_div_alt_lnaconf		bit 0-1
2209		 * ant_div_main_lnaconf		bit 2-3
2210		 * ant_div_alt_gaintb		bit 4
2211		 * ant_div_main_gaintb		bit 5
2212		 * enable_ant_div_lnadiv	bit 6
2213		 * enable_ant_fast_div		bit 7
2214		 */
2215		if ((ant_div_ctl1 >> 0x6) == 0x3)
2216			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
 
 
2217	}
2218
2219	if (AR_SREV_9485_10(ah)) {
2220		pCap->pcie_lcr_extsync_en = true;
2221		pCap->pcie_lcr_offset = 0x80;
2222	}
2223
2224	tx_chainmask = pCap->tx_chainmask;
2225	rx_chainmask = pCap->rx_chainmask;
2226	while (tx_chainmask || rx_chainmask) {
2227		if (tx_chainmask & BIT(0))
2228			pCap->max_txchains++;
2229		if (rx_chainmask & BIT(0))
2230			pCap->max_rxchains++;
2231
2232		tx_chainmask >>= 1;
2233		rx_chainmask >>= 1;
2234	}
2235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2236	return 0;
2237}
2238
2239/****************************/
2240/* GPIO / RFKILL / Antennae */
2241/****************************/
2242
2243static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2244					 u32 gpio, u32 type)
2245{
2246	int addr;
2247	u32 gpio_shift, tmp;
2248
2249	if (gpio > 11)
2250		addr = AR_GPIO_OUTPUT_MUX3;
2251	else if (gpio > 5)
2252		addr = AR_GPIO_OUTPUT_MUX2;
2253	else
2254		addr = AR_GPIO_OUTPUT_MUX1;
2255
2256	gpio_shift = (gpio % 6) * 5;
2257
2258	if (AR_SREV_9280_20_OR_LATER(ah)
2259	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2260		REG_RMW(ah, addr, (type << gpio_shift),
2261			(0x1f << gpio_shift));
2262	} else {
2263		tmp = REG_READ(ah, addr);
2264		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2265		tmp &= ~(0x1f << gpio_shift);
2266		tmp |= (type << gpio_shift);
2267		REG_WRITE(ah, addr, tmp);
2268	}
2269}
2270
2271void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2272{
2273	u32 gpio_shift;
2274
2275	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2276
2277	if (AR_DEVID_7010(ah)) {
2278		gpio_shift = gpio;
2279		REG_RMW(ah, AR7010_GPIO_OE,
2280			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2281			(AR7010_GPIO_OE_MASK << gpio_shift));
2282		return;
2283	}
2284
2285	gpio_shift = gpio << 1;
2286	REG_RMW(ah,
2287		AR_GPIO_OE_OUT,
2288		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2289		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2290}
2291EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2292
2293u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2294{
2295#define MS_REG_READ(x, y) \
2296	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2297
2298	if (gpio >= ah->caps.num_gpio_pins)
2299		return 0xffffffff;
2300
2301	if (AR_DEVID_7010(ah)) {
2302		u32 val;
2303		val = REG_READ(ah, AR7010_GPIO_IN);
2304		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2305	} else if (AR_SREV_9300_20_OR_LATER(ah))
2306		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2307			AR_GPIO_BIT(gpio)) != 0;
2308	else if (AR_SREV_9271(ah))
2309		return MS_REG_READ(AR9271, gpio) != 0;
2310	else if (AR_SREV_9287_11_OR_LATER(ah))
2311		return MS_REG_READ(AR9287, gpio) != 0;
2312	else if (AR_SREV_9285_12_OR_LATER(ah))
2313		return MS_REG_READ(AR9285, gpio) != 0;
2314	else if (AR_SREV_9280_20_OR_LATER(ah))
2315		return MS_REG_READ(AR928X, gpio) != 0;
2316	else
2317		return MS_REG_READ(AR, gpio) != 0;
2318}
2319EXPORT_SYMBOL(ath9k_hw_gpio_get);
2320
2321void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2322			 u32 ah_signal_type)
2323{
2324	u32 gpio_shift;
2325
2326	if (AR_DEVID_7010(ah)) {
2327		gpio_shift = gpio;
2328		REG_RMW(ah, AR7010_GPIO_OE,
2329			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2330			(AR7010_GPIO_OE_MASK << gpio_shift));
2331		return;
2332	}
2333
2334	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2335	gpio_shift = 2 * gpio;
2336	REG_RMW(ah,
2337		AR_GPIO_OE_OUT,
2338		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2339		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2340}
2341EXPORT_SYMBOL(ath9k_hw_cfg_output);
2342
2343void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2344{
2345	if (AR_DEVID_7010(ah)) {
2346		val = val ? 0 : 1;
2347		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2348			AR_GPIO_BIT(gpio));
2349		return;
2350	}
2351
2352	if (AR_SREV_9271(ah))
2353		val = ~val;
2354
2355	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2356		AR_GPIO_BIT(gpio));
2357}
2358EXPORT_SYMBOL(ath9k_hw_set_gpio);
2359
2360u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2361{
2362	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2363}
2364EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2365
2366void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2367{
2368	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2369}
2370EXPORT_SYMBOL(ath9k_hw_setantenna);
2371
2372/*********************/
2373/* General Operation */
2374/*********************/
2375
2376u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2377{
2378	u32 bits = REG_READ(ah, AR_RX_FILTER);
2379	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2380
2381	if (phybits & AR_PHY_ERR_RADAR)
2382		bits |= ATH9K_RX_FILTER_PHYRADAR;
2383	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2384		bits |= ATH9K_RX_FILTER_PHYERR;
2385
2386	return bits;
2387}
2388EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2389
2390void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2391{
2392	u32 phybits;
2393
2394	ENABLE_REGWRITE_BUFFER(ah);
2395
 
 
 
2396	REG_WRITE(ah, AR_RX_FILTER, bits);
2397
2398	phybits = 0;
2399	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2400		phybits |= AR_PHY_ERR_RADAR;
2401	if (bits & ATH9K_RX_FILTER_PHYERR)
2402		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2403	REG_WRITE(ah, AR_PHY_ERR, phybits);
2404
2405	if (phybits)
2406		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2407	else
2408		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2409
2410	REGWRITE_BUFFER_FLUSH(ah);
2411}
2412EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2413
2414bool ath9k_hw_phy_disable(struct ath_hw *ah)
2415{
 
 
 
2416	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2417		return false;
2418
2419	ath9k_hw_init_pll(ah, NULL);
 
2420	return true;
2421}
2422EXPORT_SYMBOL(ath9k_hw_phy_disable);
2423
2424bool ath9k_hw_disable(struct ath_hw *ah)
2425{
2426	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2427		return false;
2428
2429	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2430		return false;
2431
2432	ath9k_hw_init_pll(ah, NULL);
2433	return true;
2434}
2435EXPORT_SYMBOL(ath9k_hw_disable);
2436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2437void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2438{
2439	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2440	struct ath9k_channel *chan = ah->curchan;
2441	struct ieee80211_channel *channel = chan->chan;
2442
2443	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
 
 
2444
2445	ah->eep_ops->set_txpower(ah, chan,
2446				 ath9k_regd_get_ctl(regulatory, chan),
2447				 channel->max_antenna_gain * 2,
2448				 channel->max_power * 2,
2449				 min((u32) MAX_RATE_POWER,
2450				 (u32) regulatory->power_limit), test);
2451}
2452EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2453
2454void ath9k_hw_setopmode(struct ath_hw *ah)
2455{
2456	ath9k_hw_set_operating_mode(ah, ah->opmode);
2457}
2458EXPORT_SYMBOL(ath9k_hw_setopmode);
2459
2460void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2461{
2462	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2463	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2464}
2465EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2466
2467void ath9k_hw_write_associd(struct ath_hw *ah)
2468{
2469	struct ath_common *common = ath9k_hw_common(ah);
2470
2471	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2472	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2473		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2474}
2475EXPORT_SYMBOL(ath9k_hw_write_associd);
2476
2477#define ATH9K_MAX_TSF_READ 10
2478
2479u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2480{
2481	u32 tsf_lower, tsf_upper1, tsf_upper2;
2482	int i;
2483
2484	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2485	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2486		tsf_lower = REG_READ(ah, AR_TSF_L32);
2487		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2488		if (tsf_upper2 == tsf_upper1)
2489			break;
2490		tsf_upper1 = tsf_upper2;
2491	}
2492
2493	WARN_ON( i == ATH9K_MAX_TSF_READ );
2494
2495	return (((u64)tsf_upper1 << 32) | tsf_lower);
2496}
2497EXPORT_SYMBOL(ath9k_hw_gettsf64);
2498
2499void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2500{
2501	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2502	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2503}
2504EXPORT_SYMBOL(ath9k_hw_settsf64);
2505
2506void ath9k_hw_reset_tsf(struct ath_hw *ah)
2507{
2508	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2509			   AH_TSF_WRITE_TIMEOUT))
2510		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2511			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2512
2513	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2514}
2515EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2516
2517void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2518{
2519	if (setting)
2520		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2521	else
2522		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2523}
2524EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2525
2526void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2527{
2528	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2529	u32 macmode;
2530
2531	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2532		macmode = AR_2040_JOINED_RX_CLEAR;
2533	else
2534		macmode = 0;
2535
2536	REG_WRITE(ah, AR_2040_MODE, macmode);
2537}
2538
2539/* HW Generic timers configuration */
2540
2541static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2542{
2543	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2544	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2545	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2546	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2547	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2548	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2549	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2550	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2551	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2552	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2553				AR_NDP2_TIMER_MODE, 0x0002},
2554	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2555				AR_NDP2_TIMER_MODE, 0x0004},
2556	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2557				AR_NDP2_TIMER_MODE, 0x0008},
2558	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2559				AR_NDP2_TIMER_MODE, 0x0010},
2560	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2561				AR_NDP2_TIMER_MODE, 0x0020},
2562	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2563				AR_NDP2_TIMER_MODE, 0x0040},
2564	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2565				AR_NDP2_TIMER_MODE, 0x0080}
2566};
2567
2568/* HW generic timer primitives */
2569
2570/* compute and clear index of rightmost 1 */
2571static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2572{
2573	u32 b;
2574
2575	b = *mask;
2576	b &= (0-b);
2577	*mask &= ~b;
2578	b *= debruijn32;
2579	b >>= 27;
2580
2581	return timer_table->gen_timer_index[b];
2582}
2583
2584u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2585{
2586	return REG_READ(ah, AR_TSF_L32);
2587}
2588EXPORT_SYMBOL(ath9k_hw_gettsf32);
2589
2590struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2591					  void (*trigger)(void *),
2592					  void (*overflow)(void *),
2593					  void *arg,
2594					  u8 timer_index)
2595{
2596	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2597	struct ath_gen_timer *timer;
2598
2599	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
 
 
2600
2601	if (timer == NULL) {
2602		ath_err(ath9k_hw_common(ah),
2603			"Failed to allocate memory for hw timer[%d]\n",
2604			timer_index);
2605		return NULL;
2606	}
2607
2608	/* allocate a hardware generic timer slot */
2609	timer_table->timers[timer_index] = timer;
2610	timer->index = timer_index;
2611	timer->trigger = trigger;
2612	timer->overflow = overflow;
2613	timer->arg = arg;
2614
2615	return timer;
2616}
2617EXPORT_SYMBOL(ath_gen_timer_alloc);
2618
2619void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2620			      struct ath_gen_timer *timer,
2621			      u32 trig_timeout,
2622			      u32 timer_period)
2623{
2624	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2625	u32 tsf, timer_next;
2626
2627	BUG_ON(!timer_period);
2628
2629	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2630
2631	tsf = ath9k_hw_gettsf32(ah);
2632
2633	timer_next = tsf + trig_timeout;
2634
2635	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2636		"current tsf %x period %x timer_next %x\n",
2637		tsf, timer_period, timer_next);
2638
2639	/*
2640	 * Program generic timer registers
2641	 */
2642	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2643		 timer_next);
2644	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2645		  timer_period);
2646	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2647		    gen_tmr_configuration[timer->index].mode_mask);
2648
2649	/* Enable both trigger and thresh interrupt masks */
2650	REG_SET_BIT(ah, AR_IMR_S5,
2651		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2652		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2653}
2654EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2655
2656void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2657{
2658	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2659
2660	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2661		(timer->index >= ATH_MAX_GEN_TIMER)) {
2662		return;
2663	}
2664
2665	/* Clear generic timer enable bits. */
2666	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2667			gen_tmr_configuration[timer->index].mode_mask);
2668
 
 
 
 
 
 
 
 
 
 
2669	/* Disable both trigger and thresh interrupt masks */
2670	REG_CLR_BIT(ah, AR_IMR_S5,
2671		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2672		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2673
2674	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
 
 
 
 
 
2675}
2676EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2677
2678void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2679{
2680	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2681
2682	/* free the hardware generic timer slot */
2683	timer_table->timers[timer->index] = NULL;
2684	kfree(timer);
2685}
2686EXPORT_SYMBOL(ath_gen_timer_free);
2687
2688/*
2689 * Generic Timer Interrupts handling
2690 */
2691void ath_gen_timer_isr(struct ath_hw *ah)
2692{
2693	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2694	struct ath_gen_timer *timer;
2695	struct ath_common *common = ath9k_hw_common(ah);
2696	u32 trigger_mask, thresh_mask, index;
2697
2698	/* get hardware generic timer interrupt status */
2699	trigger_mask = ah->intr_gen_timer_trigger;
2700	thresh_mask = ah->intr_gen_timer_thresh;
2701	trigger_mask &= timer_table->timer_mask.val;
2702	thresh_mask &= timer_table->timer_mask.val;
2703
2704	trigger_mask &= ~thresh_mask;
2705
2706	while (thresh_mask) {
2707		index = rightmost_index(timer_table, &thresh_mask);
2708		timer = timer_table->timers[index];
2709		BUG_ON(!timer);
2710		ath_dbg(common, ATH_DBG_HWTIMER,
2711			"TSF overflow for Gen timer %d\n", index);
 
 
 
2712		timer->overflow(timer->arg);
2713	}
2714
2715	while (trigger_mask) {
2716		index = rightmost_index(timer_table, &trigger_mask);
2717		timer = timer_table->timers[index];
2718		BUG_ON(!timer);
2719		ath_dbg(common, ATH_DBG_HWTIMER,
2720			"Gen timer[%d] trigger\n", index);
 
2721		timer->trigger(timer->arg);
2722	}
2723}
2724EXPORT_SYMBOL(ath_gen_timer_isr);
2725
2726/********/
2727/* HTC  */
2728/********/
2729
2730void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2731{
2732	ah->htc_reset_init = true;
2733}
2734EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2735
2736static struct {
2737	u32 version;
2738	const char * name;
2739} ath_mac_bb_names[] = {
2740	/* Devices with external radios */
2741	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2742	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2743	{ AR_SREV_VERSION_9100,		"9100" },
2744	{ AR_SREV_VERSION_9160,		"9160" },
2745	/* Single-chip solutions */
2746	{ AR_SREV_VERSION_9280,		"9280" },
2747	{ AR_SREV_VERSION_9285,		"9285" },
2748	{ AR_SREV_VERSION_9287,         "9287" },
2749	{ AR_SREV_VERSION_9271,         "9271" },
2750	{ AR_SREV_VERSION_9300,         "9300" },
2751	{ AR_SREV_VERSION_9330,         "9330" },
 
2752	{ AR_SREV_VERSION_9485,         "9485" },
 
 
 
 
2753};
2754
2755/* For devices with external radios */
2756static struct {
2757	u16 version;
2758	const char * name;
2759} ath_rf_names[] = {
2760	{ 0,				"5133" },
2761	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2762	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2763	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2764	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2765};
2766
2767/*
2768 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2769 */
2770static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2771{
2772	int i;
2773
2774	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2775		if (ath_mac_bb_names[i].version == mac_bb_version) {
2776			return ath_mac_bb_names[i].name;
2777		}
2778	}
2779
2780	return "????";
2781}
2782
2783/*
2784 * Return the RF name. "????" is returned if the RF is unknown.
2785 * Used for devices with external radios.
2786 */
2787static const char *ath9k_hw_rf_name(u16 rf_version)
2788{
2789	int i;
2790
2791	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2792		if (ath_rf_names[i].version == rf_version) {
2793			return ath_rf_names[i].name;
2794		}
2795	}
2796
2797	return "????";
2798}
2799
2800void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2801{
2802	int used;
2803
2804	/* chipsets >= AR9280 are single-chip */
2805	if (AR_SREV_9280_20_OR_LATER(ah)) {
2806		used = snprintf(hw_name, len,
2807			       "Atheros AR%s Rev:%x",
2808			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2809			       ah->hw_version.macRev);
2810	}
2811	else {
2812		used = snprintf(hw_name, len,
2813			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2814			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2815			       ah->hw_version.macRev,
2816			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2817						AR_RADIO_SREV_MAJOR)),
2818			       ah->hw_version.phyRev);
2819	}
2820
2821	hw_name[used] = '\0';
2822}
2823EXPORT_SYMBOL(ath9k_hw_name);
v3.15
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/io.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/time.h>
  21#include <linux/bitops.h>
  22#include <asm/unaligned.h>
  23
  24#include "hw.h"
  25#include "hw-ops.h"
 
  26#include "ar9003_mac.h"
  27#include "ar9003_mci.h"
  28#include "ar9003_phy.h"
  29#include "debug.h"
  30#include "ath9k.h"
  31
  32static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  33
  34MODULE_AUTHOR("Atheros Communications");
  35MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  36MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  37MODULE_LICENSE("Dual BSD/GPL");
  38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  40{
 
  41	struct ath_common *common = ath9k_hw_common(ah);
  42	struct ath9k_channel *chan = ah->curchan;
  43	unsigned int clockrate;
  44
  45	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  46	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  47		clockrate = 117;
  48	else if (!chan) /* should really check for CCK instead */
  49		clockrate = ATH9K_CLOCK_RATE_CCK;
  50	else if (IS_CHAN_2GHZ(chan))
  51		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  52	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  53		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  54	else
  55		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  56
  57	if (chan) {
  58		if (IS_CHAN_HT40(chan))
  59			clockrate *= 2;
  60		if (IS_CHAN_HALF_RATE(chan))
 
  61			clockrate /= 2;
  62		if (IS_CHAN_QUARTER_RATE(chan))
  63			clockrate /= 4;
  64	}
  65
  66	common->clockrate = clockrate;
  67}
  68
  69static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  70{
  71	struct ath_common *common = ath9k_hw_common(ah);
  72
  73	return usecs * common->clockrate;
  74}
  75
  76bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  77{
  78	int i;
  79
  80	BUG_ON(timeout < AH_TIME_QUANTUM);
  81
  82	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  83		if ((REG_READ(ah, reg) & mask) == val)
  84			return true;
  85
  86		udelay(AH_TIME_QUANTUM);
  87	}
  88
  89	ath_dbg(ath9k_hw_common(ah), ANY,
  90		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  91		timeout, reg, REG_READ(ah, reg), mask, val);
  92
  93	return false;
  94}
  95EXPORT_SYMBOL(ath9k_hw_wait);
  96
  97void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  98			  int hw_delay)
  99{
 100	hw_delay /= 10;
 101
 102	if (IS_CHAN_HALF_RATE(chan))
 103		hw_delay *= 2;
 104	else if (IS_CHAN_QUARTER_RATE(chan))
 105		hw_delay *= 4;
 106
 107	udelay(hw_delay + BASE_ACTIVATE_DELAY);
 108}
 109
 110void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
 111			  int column, unsigned int *writecnt)
 112{
 113	int r;
 114
 115	ENABLE_REGWRITE_BUFFER(ah);
 116	for (r = 0; r < array->ia_rows; r++) {
 117		REG_WRITE(ah, INI_RA(array, r, 0),
 118			  INI_RA(array, r, column));
 119		DO_DELAY(*writecnt);
 120	}
 121	REGWRITE_BUFFER_FLUSH(ah);
 122}
 123
 124u32 ath9k_hw_reverse_bits(u32 val, u32 n)
 125{
 126	u32 retval;
 127	int i;
 128
 129	for (i = 0, retval = 0; i < n; i++) {
 130		retval = (retval << 1) | (val & 1);
 131		val >>= 1;
 132	}
 133	return retval;
 134}
 135
 136u16 ath9k_hw_computetxtime(struct ath_hw *ah,
 137			   u8 phy, int kbps,
 138			   u32 frameLen, u16 rateix,
 139			   bool shortPreamble)
 140{
 141	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
 142
 143	if (kbps == 0)
 144		return 0;
 145
 146	switch (phy) {
 147	case WLAN_RC_PHY_CCK:
 148		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
 149		if (shortPreamble)
 150			phyTime >>= 1;
 151		numBits = frameLen << 3;
 152		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
 153		break;
 154	case WLAN_RC_PHY_OFDM:
 155		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
 156			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
 157			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 158			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 159			txTime = OFDM_SIFS_TIME_QUARTER
 160				+ OFDM_PREAMBLE_TIME_QUARTER
 161				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
 162		} else if (ah->curchan &&
 163			   IS_CHAN_HALF_RATE(ah->curchan)) {
 164			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
 165			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 166			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 167			txTime = OFDM_SIFS_TIME_HALF +
 168				OFDM_PREAMBLE_TIME_HALF
 169				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
 170		} else {
 171			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
 172			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 173			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 174			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
 175				+ (numSymbols * OFDM_SYMBOL_TIME);
 176		}
 177		break;
 178	default:
 179		ath_err(ath9k_hw_common(ah),
 180			"Unknown phy %u (rate ix %u)\n", phy, rateix);
 181		txTime = 0;
 182		break;
 183	}
 184
 185	return txTime;
 186}
 187EXPORT_SYMBOL(ath9k_hw_computetxtime);
 188
 189void ath9k_hw_get_channel_centers(struct ath_hw *ah,
 190				  struct ath9k_channel *chan,
 191				  struct chan_centers *centers)
 192{
 193	int8_t extoff;
 194
 195	if (!IS_CHAN_HT40(chan)) {
 196		centers->ctl_center = centers->ext_center =
 197			centers->synth_center = chan->channel;
 198		return;
 199	}
 200
 201	if (IS_CHAN_HT40PLUS(chan)) {
 
 202		centers->synth_center =
 203			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
 204		extoff = 1;
 205	} else {
 206		centers->synth_center =
 207			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
 208		extoff = -1;
 209	}
 210
 211	centers->ctl_center =
 212		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
 213	/* 25 MHz spacing is supported by hw but not on upper layers */
 214	centers->ext_center =
 215		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
 216}
 217
 218/******************/
 219/* Chip Revisions */
 220/******************/
 221
 222static void ath9k_hw_read_revisions(struct ath_hw *ah)
 223{
 224	u32 val;
 225
 226	switch (ah->hw_version.devid) {
 227	case AR5416_AR9100_DEVID:
 228		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
 229		break;
 230	case AR9300_DEVID_AR9330:
 231		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
 232		if (ah->get_mac_revision) {
 233			ah->hw_version.macRev = ah->get_mac_revision();
 234		} else {
 235			val = REG_READ(ah, AR_SREV);
 236			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 237		}
 238		return;
 239	case AR9300_DEVID_AR9340:
 240		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
 241		val = REG_READ(ah, AR_SREV);
 242		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 243		return;
 244	case AR9300_DEVID_QCA955X:
 245		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
 246		return;
 247	case AR9300_DEVID_AR953X:
 248		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
 249		return;
 250	}
 251
 252	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
 253
 254	if (val == 0xFF) {
 255		val = REG_READ(ah, AR_SREV);
 256		ah->hw_version.macVersion =
 257			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
 258		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 259
 260		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 261			ah->is_pciexpress = true;
 262		else
 263			ah->is_pciexpress = (val &
 264					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
 265	} else {
 266		if (!AR_SREV_9100(ah))
 267			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
 268
 269		ah->hw_version.macRev = val & AR_SREV_REVISION;
 270
 271		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
 272			ah->is_pciexpress = true;
 273	}
 274}
 275
 276/************************************/
 277/* HW Attach, Detach, Init Routines */
 278/************************************/
 279
 280static void ath9k_hw_disablepcie(struct ath_hw *ah)
 281{
 282	if (!AR_SREV_5416(ah))
 283		return;
 284
 285	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
 286	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
 287	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
 288	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
 289	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
 290	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
 291	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
 292	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
 293	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
 294
 295	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
 296}
 297
 
 
 
 
 
 
 
 
 298/* This should work for all families including legacy */
 299static bool ath9k_hw_chip_test(struct ath_hw *ah)
 300{
 301	struct ath_common *common = ath9k_hw_common(ah);
 302	u32 regAddr[2] = { AR_STA_ID0 };
 303	u32 regHold[2];
 304	static const u32 patternData[4] = {
 305		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
 306	};
 307	int i, j, loop_max;
 308
 309	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 310		loop_max = 2;
 311		regAddr[1] = AR_PHY_BASE + (8 << 2);
 312	} else
 313		loop_max = 1;
 314
 315	for (i = 0; i < loop_max; i++) {
 316		u32 addr = regAddr[i];
 317		u32 wrData, rdData;
 318
 319		regHold[i] = REG_READ(ah, addr);
 320		for (j = 0; j < 0x100; j++) {
 321			wrData = (j << 16) | j;
 322			REG_WRITE(ah, addr, wrData);
 323			rdData = REG_READ(ah, addr);
 324			if (rdData != wrData) {
 325				ath_err(common,
 326					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 327					addr, wrData, rdData);
 328				return false;
 329			}
 330		}
 331		for (j = 0; j < 4; j++) {
 332			wrData = patternData[j];
 333			REG_WRITE(ah, addr, wrData);
 334			rdData = REG_READ(ah, addr);
 335			if (wrData != rdData) {
 336				ath_err(common,
 337					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 338					addr, wrData, rdData);
 339				return false;
 340			}
 341		}
 342		REG_WRITE(ah, regAddr[i], regHold[i]);
 343	}
 344	udelay(100);
 345
 346	return true;
 347}
 348
 349static void ath9k_hw_init_config(struct ath_hw *ah)
 350{
 351	struct ath_common *common = ath9k_hw_common(ah);
 352
 353	ah->config.dma_beacon_response_time = 1;
 354	ah->config.sw_beacon_response_time = 6;
 
 
 355	ah->config.cwm_ignore_extcca = 0;
 
 
 356	ah->config.analog_shiftreg = 1;
 
 
 
 
 
 
 
 
 
 357
 358	ah->config.rx_intr_mitigation = true;
 359
 360	if (AR_SREV_9300_20_OR_LATER(ah)) {
 361		ah->config.rimt_last = 500;
 362		ah->config.rimt_first = 2000;
 363	} else {
 364		ah->config.rimt_last = 250;
 365		ah->config.rimt_first = 700;
 366	}
 367
 368	/*
 369	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
 370	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
 371	 * This means we use it for all AR5416 devices, and the few
 372	 * minor PCI AR9280 devices out there.
 373	 *
 374	 * Serialization is required because these devices do not handle
 375	 * well the case of two concurrent reads/writes due to the latency
 376	 * involved. During one read/write another read/write can be issued
 377	 * on another CPU while the previous read/write may still be working
 378	 * on our hardware, if we hit this case the hardware poops in a loop.
 379	 * We prevent this by serializing reads and writes.
 380	 *
 381	 * This issue is not present on PCI-Express devices or pre-AR5416
 382	 * devices (legacy, 802.11abg).
 383	 */
 384	if (num_possible_cpus() > 1)
 385		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
 386
 387	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
 388		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
 389		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
 390		     !ah->is_pciexpress)) {
 391			ah->config.serialize_regmode = SER_REG_MODE_ON;
 392		} else {
 393			ah->config.serialize_regmode = SER_REG_MODE_OFF;
 394		}
 395	}
 396
 397	ath_dbg(common, RESET, "serialize_regmode is %d\n",
 398		ah->config.serialize_regmode);
 399
 400	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 401		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
 402	else
 403		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
 404}
 405
 406static void ath9k_hw_init_defaults(struct ath_hw *ah)
 407{
 408	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 409
 410	regulatory->country_code = CTRY_DEFAULT;
 411	regulatory->power_limit = MAX_RATE_POWER;
 
 412
 413	ah->hw_version.magic = AR5416_MAGIC;
 414	ah->hw_version.subvendorid = 0;
 415
 416	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
 417			       AR_STA_ID1_MCAST_KSRCH;
 
 
 418	if (AR_SREV_9100(ah))
 419		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
 420
 421	ah->slottime = ATH9K_SLOT_TIME_9;
 422	ah->globaltxtimeout = (u32) -1;
 423	ah->power_mode = ATH9K_PM_UNDEFINED;
 424	ah->htc_reset_init = true;
 425
 426	ah->ani_function = ATH9K_ANI_ALL;
 427	if (!AR_SREV_9300_20_OR_LATER(ah))
 428		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
 429
 430	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 431		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
 432	else
 433		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
 434}
 435
 436static int ath9k_hw_init_macaddr(struct ath_hw *ah)
 437{
 438	struct ath_common *common = ath9k_hw_common(ah);
 439	u32 sum;
 440	int i;
 441	u16 eeval;
 442	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
 443
 444	sum = 0;
 445	for (i = 0; i < 3; i++) {
 446		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
 447		sum += eeval;
 448		common->macaddr[2 * i] = eeval >> 8;
 449		common->macaddr[2 * i + 1] = eeval & 0xff;
 450	}
 451	if (sum == 0 || sum == 0xffff * 3)
 452		return -EADDRNOTAVAIL;
 453
 454	return 0;
 455}
 456
 457static int ath9k_hw_post_init(struct ath_hw *ah)
 458{
 459	struct ath_common *common = ath9k_hw_common(ah);
 460	int ecode;
 461
 462	if (common->bus_ops->ath_bus_type != ATH_USB) {
 463		if (!ath9k_hw_chip_test(ah))
 464			return -ENODEV;
 465	}
 466
 467	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 468		ecode = ar9002_hw_rf_claim(ah);
 469		if (ecode != 0)
 470			return ecode;
 471	}
 472
 473	ecode = ath9k_hw_eeprom_init(ah);
 474	if (ecode != 0)
 475		return ecode;
 476
 477	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
 
 478		ah->eep_ops->get_eeprom_ver(ah),
 479		ah->eep_ops->get_eeprom_rev(ah));
 480
 481	ath9k_hw_ani_init(ah);
 
 
 
 
 
 
 482
 483	/*
 484	 * EEPROM needs to be initialized before we do this.
 485	 * This is required for regulatory compliance.
 486	 */
 487	if (AR_SREV_9300_20_OR_LATER(ah)) {
 488		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
 489		if ((regdmn & 0xF0) == CTL_FCC) {
 490			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
 491			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
 492		}
 493	}
 494
 495	return 0;
 496}
 497
 498static int ath9k_hw_attach_ops(struct ath_hw *ah)
 499{
 500	if (!AR_SREV_9300_20_OR_LATER(ah))
 501		return ar9002_hw_attach_ops(ah);
 502
 503	ar9003_hw_attach_ops(ah);
 504	return 0;
 505}
 506
 507/* Called for all hardware families */
 508static int __ath9k_hw_init(struct ath_hw *ah)
 509{
 510	struct ath_common *common = ath9k_hw_common(ah);
 511	int r = 0;
 512
 513	ath9k_hw_read_revisions(ah);
 514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515	switch (ah->hw_version.macVersion) {
 516	case AR_SREV_VERSION_5416_PCI:
 517	case AR_SREV_VERSION_5416_PCIE:
 518	case AR_SREV_VERSION_9160:
 519	case AR_SREV_VERSION_9100:
 520	case AR_SREV_VERSION_9280:
 521	case AR_SREV_VERSION_9285:
 522	case AR_SREV_VERSION_9287:
 523	case AR_SREV_VERSION_9271:
 524	case AR_SREV_VERSION_9300:
 525	case AR_SREV_VERSION_9330:
 526	case AR_SREV_VERSION_9485:
 527	case AR_SREV_VERSION_9340:
 528	case AR_SREV_VERSION_9462:
 529	case AR_SREV_VERSION_9550:
 530	case AR_SREV_VERSION_9565:
 531	case AR_SREV_VERSION_9531:
 532		break;
 533	default:
 534		ath_err(common,
 535			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
 536			ah->hw_version.macVersion, ah->hw_version.macRev);
 537		return -EOPNOTSUPP;
 538	}
 539
 540	/*
 541	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
 542	 * We need to do this to avoid RMW of this register. We cannot
 543	 * read the reg when chip is asleep.
 544	 */
 545	if (AR_SREV_9300_20_OR_LATER(ah)) {
 546		ah->WARegVal = REG_READ(ah, AR_WA);
 547		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
 548				 AR_WA_ASPM_TIMER_BASED_DISABLE);
 549	}
 550
 551	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
 552		ath_err(common, "Couldn't reset chip\n");
 553		return -EIO;
 554	}
 555
 556	if (AR_SREV_9565(ah)) {
 557		ah->WARegVal |= AR_WA_BIT22;
 558		REG_WRITE(ah, AR_WA, ah->WARegVal);
 559	}
 560
 561	ath9k_hw_init_defaults(ah);
 562	ath9k_hw_init_config(ah);
 563
 564	r = ath9k_hw_attach_ops(ah);
 565	if (r)
 566		return r;
 567
 568	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
 569		ath_err(common, "Couldn't wakeup chip\n");
 570		return -EIO;
 571	}
 572
 573	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
 574	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
 575		ah->is_pciexpress = false;
 576
 577	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
 578	ath9k_hw_init_cal_settings(ah);
 579
 580	if (!ah->is_pciexpress)
 
 
 
 
 
 
 
 
 
 
 
 581		ath9k_hw_disablepcie(ah);
 582
 
 
 
 583	r = ath9k_hw_post_init(ah);
 584	if (r)
 585		return r;
 586
 587	ath9k_hw_init_mode_gain_regs(ah);
 588	r = ath9k_hw_fill_cap_info(ah);
 589	if (r)
 590		return r;
 591
 592	r = ath9k_hw_init_macaddr(ah);
 593	if (r) {
 594		ath_err(common, "Failed to initialize MAC address\n");
 595		return r;
 596	}
 597
 598	ath9k_hw_init_hang_checks(ah);
 
 
 
 
 
 
 
 
 599
 600	common->state = ATH_HW_INITIALIZED;
 601
 602	return 0;
 603}
 604
 605int ath9k_hw_init(struct ath_hw *ah)
 606{
 607	int ret;
 608	struct ath_common *common = ath9k_hw_common(ah);
 609
 610	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
 611	switch (ah->hw_version.devid) {
 612	case AR5416_DEVID_PCI:
 613	case AR5416_DEVID_PCIE:
 614	case AR5416_AR9100_DEVID:
 615	case AR9160_DEVID_PCI:
 616	case AR9280_DEVID_PCI:
 617	case AR9280_DEVID_PCIE:
 618	case AR9285_DEVID_PCIE:
 619	case AR9287_DEVID_PCI:
 620	case AR9287_DEVID_PCIE:
 621	case AR2427_DEVID_PCIE:
 622	case AR9300_DEVID_PCIE:
 623	case AR9300_DEVID_AR9485_PCIE:
 624	case AR9300_DEVID_AR9330:
 625	case AR9300_DEVID_AR9340:
 626	case AR9300_DEVID_QCA955X:
 627	case AR9300_DEVID_AR9580:
 628	case AR9300_DEVID_AR9462:
 629	case AR9485_DEVID_AR1111:
 630	case AR9300_DEVID_AR9565:
 631	case AR9300_DEVID_AR953X:
 632		break;
 633	default:
 634		if (common->bus_ops->ath_bus_type == ATH_USB)
 635			break;
 636		ath_err(common, "Hardware device ID 0x%04x not supported\n",
 637			ah->hw_version.devid);
 638		return -EOPNOTSUPP;
 639	}
 640
 641	ret = __ath9k_hw_init(ah);
 642	if (ret) {
 643		ath_err(common,
 644			"Unable to initialize hardware; initialization status: %d\n",
 645			ret);
 646		return ret;
 647	}
 648
 649	return 0;
 650}
 651EXPORT_SYMBOL(ath9k_hw_init);
 652
 653static void ath9k_hw_init_qos(struct ath_hw *ah)
 654{
 655	ENABLE_REGWRITE_BUFFER(ah);
 656
 657	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
 658	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
 659
 660	REG_WRITE(ah, AR_QOS_NO_ACK,
 661		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
 662		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
 663		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
 664
 665	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
 666	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
 667	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
 668	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
 669	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
 670
 671	REGWRITE_BUFFER_FLUSH(ah);
 672}
 673
 674u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
 675{
 676	struct ath_common *common = ath9k_hw_common(ah);
 677	int i = 0;
 678
 679	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 680	udelay(100);
 681	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 682
 683	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
 684
 685		udelay(100);
 686
 687		if (WARN_ON_ONCE(i >= 100)) {
 688			ath_err(common, "PLL4 meaurement not done\n");
 689			break;
 690		}
 691
 692		i++;
 693	}
 694
 695	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
 696}
 697EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
 698
 699static void ath9k_hw_init_pll(struct ath_hw *ah,
 700			      struct ath9k_channel *chan)
 701{
 702	u32 pll;
 703
 704	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
 
 705		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
 706		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 707			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
 708		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 709			      AR_CH0_DPLL2_KD, 0x40);
 710		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 711			      AR_CH0_DPLL2_KI, 0x4);
 712
 713		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 714			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
 715		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 716			      AR_CH0_BB_DPLL1_NINI, 0x58);
 717		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 718			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
 719
 720		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 721			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
 722		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 723			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
 724		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 725			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
 726
 727		/* program BB PLL phase_shift to 0x6 */
 728		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 729			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
 730
 731		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 732			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
 733		udelay(1000);
 734	} else if (AR_SREV_9330(ah)) {
 735		u32 ddr_dpll2, pll_control2, kd;
 736
 737		if (ah->is_clk_25mhz) {
 738			ddr_dpll2 = 0x18e82f01;
 739			pll_control2 = 0xe04a3d;
 740			kd = 0x1d;
 741		} else {
 742			ddr_dpll2 = 0x19e82f01;
 743			pll_control2 = 0x886666;
 744			kd = 0x3d;
 745		}
 746
 747		/* program DDR PLL ki and kd value */
 748		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
 749
 750		/* program DDR PLL phase_shift */
 751		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
 752			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
 753
 754		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
 755		udelay(1000);
 756
 757		/* program refdiv, nint, frac to RTC register */
 758		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
 759
 760		/* program BB PLL kd and ki value */
 761		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
 762		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
 763
 764		/* program BB PLL phase_shift */
 765		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 766			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
 767	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah)) {
 768		u32 regval, pll2_divint, pll2_divfrac, refdiv;
 769
 770		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
 771		udelay(1000);
 772
 773		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
 774		udelay(100);
 775
 776		if (ah->is_clk_25mhz) {
 777			if (AR_SREV_9531(ah)) {
 778				pll2_divint = 0x1c;
 779				pll2_divfrac = 0xa3d2;
 780				refdiv = 1;
 781			} else {
 782				pll2_divint = 0x54;
 783				pll2_divfrac = 0x1eb85;
 784				refdiv = 3;
 785			}
 786		} else {
 787			if (AR_SREV_9340(ah)) {
 788				pll2_divint = 88;
 789				pll2_divfrac = 0;
 790				refdiv = 5;
 791			} else {
 792				pll2_divint = 0x11;
 793				pll2_divfrac = 0x26666;
 794				refdiv = 1;
 795			}
 796		}
 797
 798		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 799		if (AR_SREV_9531(ah))
 800			regval |= (0x1 << 22);
 801		else
 802			regval |= (0x1 << 16);
 803		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 804		udelay(100);
 805
 806		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
 807			  (pll2_divint << 18) | pll2_divfrac);
 808		udelay(100);
 809
 810		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 811		if (AR_SREV_9340(ah))
 812			regval = (regval & 0x80071fff) |
 813				(0x1 << 30) |
 814				(0x1 << 13) |
 815				(0x4 << 26) |
 816				(0x18 << 19);
 817		else if (AR_SREV_9531(ah))
 818			regval = (regval & 0x01c00fff) |
 819				(0x1 << 31) |
 820				(0x2 << 29) |
 821				(0xa << 25) |
 822				(0x1 << 19) |
 823				(0x6 << 12);
 824		else
 825			regval = (regval & 0x80071fff) |
 826				(0x3 << 30) |
 827				(0x1 << 13) |
 828				(0x4 << 26) |
 829				(0x60 << 19);
 830		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 831
 832		if (AR_SREV_9531(ah))
 833			REG_WRITE(ah, AR_PHY_PLL_MODE,
 834				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
 835		else
 836			REG_WRITE(ah, AR_PHY_PLL_MODE,
 837				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
 838
 839		udelay(1000);
 840	}
 841
 842	pll = ath9k_hw_compute_pll_control(ah, chan);
 843	if (AR_SREV_9565(ah))
 844		pll |= 0x40000;
 845	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
 846
 847	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
 848	    AR_SREV_9550(ah))
 849		udelay(1000);
 850
 851	/* Switch the core clock for ar9271 to 117Mhz */
 852	if (AR_SREV_9271(ah)) {
 853		udelay(500);
 854		REG_WRITE(ah, 0x50040, 0x304);
 855	}
 856
 857	udelay(RTC_PLL_SETTLE_DELAY);
 858
 859	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
 860
 861	if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
 862		if (ah->is_clk_25mhz) {
 863			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
 864			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
 865			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
 866		} else {
 867			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
 868			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
 869			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
 870		}
 871		udelay(100);
 872	}
 873}
 874
 875static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
 876					  enum nl80211_iftype opmode)
 877{
 878	u32 sync_default = AR_INTR_SYNC_DEFAULT;
 879	u32 imr_reg = AR_IMR_TXERR |
 880		AR_IMR_TXURN |
 881		AR_IMR_RXERR |
 882		AR_IMR_RXORN |
 883		AR_IMR_BCNMISC;
 884
 885	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah))
 886		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
 887
 888	if (AR_SREV_9300_20_OR_LATER(ah)) {
 889		imr_reg |= AR_IMR_RXOK_HP;
 890		if (ah->config.rx_intr_mitigation)
 891			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 892		else
 893			imr_reg |= AR_IMR_RXOK_LP;
 894
 895	} else {
 896		if (ah->config.rx_intr_mitigation)
 897			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 898		else
 899			imr_reg |= AR_IMR_RXOK;
 900	}
 901
 902	if (ah->config.tx_intr_mitigation)
 903		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
 904	else
 905		imr_reg |= AR_IMR_TXOK;
 906
 
 
 
 907	ENABLE_REGWRITE_BUFFER(ah);
 908
 909	REG_WRITE(ah, AR_IMR, imr_reg);
 910	ah->imrs2_reg |= AR_IMR_S2_GTT;
 911	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
 912
 913	if (!AR_SREV_9100(ah)) {
 914		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
 915		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
 916		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
 917	}
 918
 919	REGWRITE_BUFFER_FLUSH(ah);
 920
 921	if (AR_SREV_9300_20_OR_LATER(ah)) {
 922		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
 923		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
 924		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
 925		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
 926	}
 927}
 928
 929static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
 930{
 931	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
 932	val = min(val, (u32) 0xFFFF);
 933	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
 934}
 935
 936static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
 937{
 938	u32 val = ath9k_hw_mac_to_clks(ah, us);
 939	val = min(val, (u32) 0xFFFF);
 940	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
 941}
 942
 943static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
 944{
 945	u32 val = ath9k_hw_mac_to_clks(ah, us);
 946	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
 947	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
 948}
 949
 950static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
 951{
 952	u32 val = ath9k_hw_mac_to_clks(ah, us);
 953	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
 954	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
 955}
 956
 957static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
 958{
 959	if (tu > 0xFFFF) {
 960		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
 961			tu);
 962		ah->globaltxtimeout = (u32) -1;
 963		return false;
 964	} else {
 965		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
 966		ah->globaltxtimeout = tu;
 967		return true;
 968	}
 969}
 970
 971void ath9k_hw_init_global_settings(struct ath_hw *ah)
 972{
 973	struct ath_common *common = ath9k_hw_common(ah);
 
 974	const struct ath9k_channel *chan = ah->curchan;
 975	int acktimeout, ctstimeout, ack_offset = 0;
 976	int slottime;
 977	int sifstime;
 978	int rx_lat = 0, tx_lat = 0, eifs = 0;
 979	u32 reg;
 980
 981	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
 982		ah->misc_mode);
 983
 984	if (!chan)
 985		return;
 986
 987	if (ah->misc_mode != 0)
 988		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
 989
 990	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
 991		rx_lat = 41;
 992	else
 993		rx_lat = 37;
 994	tx_lat = 54;
 995
 996	if (IS_CHAN_5GHZ(chan))
 997		sifstime = 16;
 998	else
 999		sifstime = 10;
1000
1001	if (IS_CHAN_HALF_RATE(chan)) {
1002		eifs = 175;
1003		rx_lat *= 2;
1004		tx_lat *= 2;
1005		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1006		    tx_lat += 11;
1007
 
1008		sifstime = 32;
1009		ack_offset = 16;
1010		slottime = 13;
1011	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1012		eifs = 340;
1013		rx_lat = (rx_lat * 4) - 1;
1014		tx_lat *= 4;
1015		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1016		    tx_lat += 22;
1017
 
1018		sifstime = 64;
1019		ack_offset = 32;
1020		slottime = 21;
1021	} else {
1022		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1023			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1024			reg = AR_USEC_ASYNC_FIFO;
1025		} else {
1026			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1027				common->clockrate;
1028			reg = REG_READ(ah, AR_USEC);
1029		}
1030		rx_lat = MS(reg, AR_USEC_RX_LAT);
1031		tx_lat = MS(reg, AR_USEC_TX_LAT);
1032
1033		slottime = ah->slottime;
 
 
 
 
1034	}
1035
1036	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1037	slottime += 3 * ah->coverage_class;
1038	acktimeout = slottime + sifstime + ack_offset;
1039	ctstimeout = acktimeout;
1040
1041	/*
1042	 * Workaround for early ACK timeouts, add an offset to match the
1043	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1044	 * This was initially only meant to work around an issue with delayed
1045	 * BA frames in some implementations, but it has been found to fix ACK
1046	 * timeout issues in other cases as well.
1047	 */
1048	if (IS_CHAN_2GHZ(chan) &&
1049	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1050		acktimeout += 64 - sifstime - ah->slottime;
1051		ctstimeout += 48 - sifstime - ah->slottime;
1052	}
1053
1054	ath9k_hw_set_sifs_time(ah, sifstime);
1055	ath9k_hw_setslottime(ah, slottime);
1056	ath9k_hw_set_ack_timeout(ah, acktimeout);
1057	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1058	if (ah->globaltxtimeout != (u32) -1)
1059		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1060
1061	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1062	REG_RMW(ah, AR_USEC,
1063		(common->clockrate - 1) |
1064		SM(rx_lat, AR_USEC_RX_LAT) |
1065		SM(tx_lat, AR_USEC_TX_LAT),
1066		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1067
1068}
1069EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1070
1071void ath9k_hw_deinit(struct ath_hw *ah)
1072{
1073	struct ath_common *common = ath9k_hw_common(ah);
1074
1075	if (common->state < ATH_HW_INITIALIZED)
1076		return;
1077
1078	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
 
 
 
1079}
1080EXPORT_SYMBOL(ath9k_hw_deinit);
1081
1082/*******/
1083/* INI */
1084/*******/
1085
1086u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1087{
1088	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1089
1090	if (IS_CHAN_2GHZ(chan))
 
 
1091		ctl |= CTL_11G;
1092	else
1093		ctl |= CTL_11A;
1094
1095	return ctl;
1096}
1097
1098/****************************************/
1099/* Reset and Channel Switching Routines */
1100/****************************************/
1101
1102static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1103{
1104	struct ath_common *common = ath9k_hw_common(ah);
1105	int txbuf_size;
1106
1107	ENABLE_REGWRITE_BUFFER(ah);
1108
1109	/*
1110	 * set AHB_MODE not to do cacheline prefetches
1111	*/
1112	if (!AR_SREV_9300_20_OR_LATER(ah))
1113		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1114
1115	/*
1116	 * let mac dma reads be in 128 byte chunks
1117	 */
1118	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1119
1120	REGWRITE_BUFFER_FLUSH(ah);
1121
1122	/*
1123	 * Restore TX Trigger Level to its pre-reset value.
1124	 * The initial value depends on whether aggregation is enabled, and is
1125	 * adjusted whenever underruns are detected.
1126	 */
1127	if (!AR_SREV_9300_20_OR_LATER(ah))
1128		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1129
1130	ENABLE_REGWRITE_BUFFER(ah);
1131
1132	/*
1133	 * let mac dma writes be in 128 byte chunks
1134	 */
1135	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1136
1137	/*
1138	 * Setup receive FIFO threshold to hold off TX activities
1139	 */
1140	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1141
1142	if (AR_SREV_9300_20_OR_LATER(ah)) {
1143		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1144		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1145
1146		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1147			ah->caps.rx_status_len);
1148	}
1149
1150	/*
1151	 * reduce the number of usable entries in PCU TXBUF to avoid
1152	 * wrap around issues.
1153	 */
1154	if (AR_SREV_9285(ah)) {
1155		/* For AR9285 the number of Fifos are reduced to half.
1156		 * So set the usable tx buf size also to half to
1157		 * avoid data/delimiter underruns
1158		 */
1159		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1160	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1161		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1162		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1163	} else {
1164		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1165	}
1166
1167	if (!AR_SREV_9271(ah))
1168		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1169
1170	REGWRITE_BUFFER_FLUSH(ah);
1171
1172	if (AR_SREV_9300_20_OR_LATER(ah))
1173		ath9k_hw_reset_txstatus_ring(ah);
1174}
1175
1176static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1177{
1178	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1179	u32 set = AR_STA_ID1_KSRCH_MODE;
1180
1181	switch (opmode) {
1182	case NL80211_IFTYPE_ADHOC:
 
1183		set |= AR_STA_ID1_ADHOC;
1184		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1185		break;
1186	case NL80211_IFTYPE_MESH_POINT:
1187	case NL80211_IFTYPE_AP:
1188		set |= AR_STA_ID1_STA_AP;
1189		/* fall through */
1190	case NL80211_IFTYPE_STATION:
1191		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1192		break;
1193	default:
1194		if (!ah->is_monitoring)
1195			set = 0;
1196		break;
1197	}
1198	REG_RMW(ah, AR_STA_ID1, set, mask);
1199}
1200
1201void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1202				   u32 *coef_mantissa, u32 *coef_exponent)
1203{
1204	u32 coef_exp, coef_man;
1205
1206	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1207		if ((coef_scaled >> coef_exp) & 0x1)
1208			break;
1209
1210	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1211
1212	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1213
1214	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1215	*coef_exponent = coef_exp - 16;
1216}
1217
1218/* AR9330 WAR:
1219 * call external reset function to reset WMAC if:
1220 * - doing a cold reset
1221 * - we have pending frames in the TX queues.
1222 */
1223static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1224{
1225	int i, npend = 0;
1226
1227	for (i = 0; i < AR_NUM_QCU; i++) {
1228		npend = ath9k_hw_numtxpending(ah, i);
1229		if (npend)
1230			break;
1231	}
1232
1233	if (ah->external_reset &&
1234	    (npend || type == ATH9K_RESET_COLD)) {
1235		int reset_err = 0;
1236
1237		ath_dbg(ath9k_hw_common(ah), RESET,
1238			"reset MAC via external reset\n");
1239
1240		reset_err = ah->external_reset();
1241		if (reset_err) {
1242			ath_err(ath9k_hw_common(ah),
1243				"External reset failed, err=%d\n",
1244				reset_err);
1245			return false;
1246		}
1247
1248		REG_WRITE(ah, AR_RTC_RESET, 1);
1249	}
1250
1251	return true;
1252}
1253
1254static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1255{
1256	u32 rst_flags;
1257	u32 tmpReg;
1258
1259	if (AR_SREV_9100(ah)) {
1260		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1261			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1262		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1263	}
1264
1265	ENABLE_REGWRITE_BUFFER(ah);
1266
1267	if (AR_SREV_9300_20_OR_LATER(ah)) {
1268		REG_WRITE(ah, AR_WA, ah->WARegVal);
1269		udelay(10);
1270	}
1271
1272	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1273		  AR_RTC_FORCE_WAKE_ON_INT);
1274
1275	if (AR_SREV_9100(ah)) {
1276		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1277			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1278	} else {
1279		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1280		if (AR_SREV_9340(ah))
1281			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1282		else
1283			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1284				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1285
1286		if (tmpReg) {
1287			u32 val;
1288			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1289
1290			val = AR_RC_HOSTIF;
1291			if (!AR_SREV_9300_20_OR_LATER(ah))
1292				val |= AR_RC_AHB;
1293			REG_WRITE(ah, AR_RC, val);
1294
1295		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1296			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1297
1298		rst_flags = AR_RTC_RC_MAC_WARM;
1299		if (type == ATH9K_RESET_COLD)
1300			rst_flags |= AR_RTC_RC_MAC_COLD;
1301	}
1302
1303	if (AR_SREV_9330(ah)) {
1304		if (!ath9k_hw_ar9330_reset_war(ah, type))
1305			return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306	}
1307
1308	if (ath9k_hw_mci_is_enabled(ah))
1309		ar9003_mci_check_gpm_offset(ah);
1310
1311	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1312
1313	REGWRITE_BUFFER_FLUSH(ah);
1314
1315	if (AR_SREV_9300_20_OR_LATER(ah))
1316		udelay(50);
1317	else if (AR_SREV_9100(ah))
1318		mdelay(10);
1319	else
1320		udelay(100);
1321
1322	REG_WRITE(ah, AR_RTC_RC, 0);
1323	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1324		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
 
1325		return false;
1326	}
1327
1328	if (!AR_SREV_9100(ah))
1329		REG_WRITE(ah, AR_RC, 0);
1330
1331	if (AR_SREV_9100(ah))
1332		udelay(50);
1333
1334	return true;
1335}
1336
1337static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1338{
1339	ENABLE_REGWRITE_BUFFER(ah);
1340
1341	if (AR_SREV_9300_20_OR_LATER(ah)) {
1342		REG_WRITE(ah, AR_WA, ah->WARegVal);
1343		udelay(10);
1344	}
1345
1346	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1347		  AR_RTC_FORCE_WAKE_ON_INT);
1348
1349	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1350		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1351
1352	REG_WRITE(ah, AR_RTC_RESET, 0);
1353
1354	REGWRITE_BUFFER_FLUSH(ah);
1355
1356	udelay(2);
 
1357
1358	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1359		REG_WRITE(ah, AR_RC, 0);
1360
1361	REG_WRITE(ah, AR_RTC_RESET, 1);
1362
1363	if (!ath9k_hw_wait(ah,
1364			   AR_RTC_STATUS,
1365			   AR_RTC_STATUS_M,
1366			   AR_RTC_STATUS_ON,
1367			   AH_WAIT_TIMEOUT)) {
1368		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
 
1369		return false;
1370	}
1371
1372	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1373}
1374
1375static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1376{
1377	bool ret = false;
1378
1379	if (AR_SREV_9300_20_OR_LATER(ah)) {
1380		REG_WRITE(ah, AR_WA, ah->WARegVal);
1381		udelay(10);
1382	}
1383
1384	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1385		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1386
1387	if (!ah->reset_power_on)
1388		type = ATH9K_RESET_POWER_ON;
1389
1390	switch (type) {
1391	case ATH9K_RESET_POWER_ON:
1392		ret = ath9k_hw_set_reset_power_on(ah);
1393		if (ret)
1394			ah->reset_power_on = true;
1395		break;
1396	case ATH9K_RESET_WARM:
1397	case ATH9K_RESET_COLD:
1398		ret = ath9k_hw_set_reset(ah, type);
1399		break;
1400	default:
1401		break;
1402	}
1403
1404	return ret;
1405}
1406
1407static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1408				struct ath9k_channel *chan)
1409{
1410	int reset_type = ATH9K_RESET_WARM;
1411
1412	if (AR_SREV_9280(ah)) {
1413		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1414			reset_type = ATH9K_RESET_POWER_ON;
1415		else
1416			reset_type = ATH9K_RESET_COLD;
1417	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1418		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1419		reset_type = ATH9K_RESET_COLD;
1420
1421	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1422		return false;
1423
1424	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1425		return false;
1426
1427	ah->chip_fullsleep = false;
1428
1429	if (AR_SREV_9330(ah))
1430		ar9003_hw_internal_regulator_apply(ah);
1431	ath9k_hw_init_pll(ah, chan);
 
1432
1433	return true;
1434}
1435
1436static bool ath9k_hw_channel_change(struct ath_hw *ah,
1437				    struct ath9k_channel *chan)
1438{
 
1439	struct ath_common *common = ath9k_hw_common(ah);
1440	struct ath9k_hw_capabilities *pCap = &ah->caps;
1441	bool band_switch = false, mode_diff = false;
1442	u8 ini_reloaded = 0;
1443	u32 qnum;
1444	int r;
1445
1446	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1447		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1448		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1449		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1450	}
1451
1452	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1453		if (ath9k_hw_numtxpending(ah, qnum)) {
1454			ath_dbg(common, QUEUE,
1455				"Transmit frames pending on queue %d\n", qnum);
1456			return false;
1457		}
1458	}
1459
1460	if (!ath9k_hw_rfbus_req(ah)) {
1461		ath_err(common, "Could not kill baseband RX\n");
1462		return false;
1463	}
1464
1465	if (band_switch || mode_diff) {
1466		ath9k_hw_mark_phy_inactive(ah);
1467		udelay(5);
1468
1469		if (band_switch)
1470			ath9k_hw_init_pll(ah, chan);
1471
1472		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1473			ath_err(common, "Failed to do fast channel change\n");
1474			return false;
1475		}
1476	}
1477
1478	ath9k_hw_set_channel_regs(ah, chan);
1479
1480	r = ath9k_hw_rf_set_freq(ah, chan);
1481	if (r) {
1482		ath_err(common, "Failed to set channel\n");
1483		return false;
1484	}
1485	ath9k_hw_set_clockrate(ah);
1486	ath9k_hw_apply_txpower(ah, chan, false);
1487
1488	ath9k_hw_set_delta_slope(ah, chan);
1489	ath9k_hw_spur_mitigate_freq(ah, chan);
 
 
 
 
1490
1491	if (band_switch || ini_reloaded)
1492		ah->eep_ops->set_board_values(ah, chan);
1493
1494	ath9k_hw_init_bb(ah, chan);
1495	ath9k_hw_rfbus_done(ah);
1496
1497	if (band_switch || ini_reloaded) {
1498		ah->ah_flags |= AH_FASTCC;
1499		ath9k_hw_init_cal(ah, chan);
1500		ah->ah_flags &= ~AH_FASTCC;
1501	}
1502
1503	return true;
1504}
1505
1506static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1507{
1508	u32 gpio_mask = ah->gpio_mask;
1509	int i;
1510
1511	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1512		if (!(gpio_mask & 1))
1513			continue;
1514
1515		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1516		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1517	}
1518}
1519
1520void ath9k_hw_check_nav(struct ath_hw *ah)
1521{
1522	struct ath_common *common = ath9k_hw_common(ah);
1523	u32 val;
1524
1525	val = REG_READ(ah, AR_NAV);
1526	if (val != 0xdeadbeef && val > 0x7fff) {
1527		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1528		REG_WRITE(ah, AR_NAV, 0);
1529	}
1530}
1531EXPORT_SYMBOL(ath9k_hw_check_nav);
1532
1533bool ath9k_hw_check_alive(struct ath_hw *ah)
1534{
1535	int count = 50;
1536	u32 reg, last_val;
1537
1538	if (AR_SREV_9300(ah))
1539		return !ath9k_hw_detect_mac_hang(ah);
1540
1541	if (AR_SREV_9285_12_OR_LATER(ah))
1542		return true;
1543
1544	last_val = REG_READ(ah, AR_OBS_BUS_1);
1545	do {
1546		reg = REG_READ(ah, AR_OBS_BUS_1);
1547		if (reg != last_val)
1548			return true;
1549
1550		udelay(1);
1551		last_val = reg;
1552		if ((reg & 0x7E7FFFEF) == 0x00702400)
1553			continue;
1554
1555		switch (reg & 0x7E000B00) {
1556		case 0x1E000000:
1557		case 0x52000B00:
1558		case 0x18000B00:
1559			continue;
1560		default:
1561			return true;
1562		}
1563	} while (count-- > 0);
1564
1565	return false;
1566}
1567EXPORT_SYMBOL(ath9k_hw_check_alive);
1568
1569static void ath9k_hw_init_mfp(struct ath_hw *ah)
1570{
1571	/* Setup MFP options for CCMP */
1572	if (AR_SREV_9280_20_OR_LATER(ah)) {
1573		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1574		 * frames when constructing CCMP AAD. */
1575		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1576			      0xc7ff);
1577		ah->sw_mgmt_crypto = false;
1578	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1579		/* Disable hardware crypto for management frames */
1580		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1581			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1582		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1583			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1584		ah->sw_mgmt_crypto = true;
1585	} else {
1586		ah->sw_mgmt_crypto = true;
1587	}
1588}
1589
1590static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1591				  u32 macStaId1, u32 saveDefAntenna)
1592{
1593	struct ath_common *common = ath9k_hw_common(ah);
1594
1595	ENABLE_REGWRITE_BUFFER(ah);
1596
1597	REG_RMW(ah, AR_STA_ID1, macStaId1
1598		  | AR_STA_ID1_RTS_USE_DEF
1599		  | ah->sta_id1_defaults,
1600		  ~AR_STA_ID1_SADH_MASK);
1601	ath_hw_setbssidmask(common);
1602	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1603	ath9k_hw_write_associd(ah);
1604	REG_WRITE(ah, AR_ISR, ~0);
1605	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1606
1607	REGWRITE_BUFFER_FLUSH(ah);
1608
1609	ath9k_hw_set_operating_mode(ah, ah->opmode);
1610}
1611
1612static void ath9k_hw_init_queues(struct ath_hw *ah)
1613{
1614	int i;
1615
1616	ENABLE_REGWRITE_BUFFER(ah);
1617
1618	for (i = 0; i < AR_NUM_DCU; i++)
1619		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1620
1621	REGWRITE_BUFFER_FLUSH(ah);
1622
1623	ah->intr_txqs = 0;
1624	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1625		ath9k_hw_resettxqueue(ah, i);
1626}
1627
1628/*
1629 * For big endian systems turn on swapping for descriptors
1630 */
1631static void ath9k_hw_init_desc(struct ath_hw *ah)
1632{
1633	struct ath_common *common = ath9k_hw_common(ah);
1634
1635	if (AR_SREV_9100(ah)) {
1636		u32 mask;
1637		mask = REG_READ(ah, AR_CFG);
1638		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1639			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1640				mask);
1641		} else {
1642			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1643			REG_WRITE(ah, AR_CFG, mask);
1644			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1645				REG_READ(ah, AR_CFG));
1646		}
1647	} else {
1648		if (common->bus_ops->ath_bus_type == ATH_USB) {
1649			/* Configure AR9271 target WLAN */
1650			if (AR_SREV_9271(ah))
1651				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1652			else
1653				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1654		}
1655#ifdef __BIG_ENDIAN
1656		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1657			 AR_SREV_9550(ah) || AR_SREV_9531(ah))
1658			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1659		else
1660			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1661#endif
1662	}
1663}
1664
1665/*
1666 * Fast channel change:
1667 * (Change synthesizer based on channel freq without resetting chip)
1668 */
1669static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1670{
1671	struct ath_common *common = ath9k_hw_common(ah);
1672	struct ath9k_hw_capabilities *pCap = &ah->caps;
1673	int ret;
1674
1675	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1676		goto fail;
1677
1678	if (ah->chip_fullsleep)
1679		goto fail;
1680
1681	if (!ah->curchan)
1682		goto fail;
1683
1684	if (chan->channel == ah->curchan->channel)
1685		goto fail;
1686
1687	if ((ah->curchan->channelFlags | chan->channelFlags) &
1688	    (CHANNEL_HALF | CHANNEL_QUARTER))
1689		goto fail;
1690
1691	/*
1692	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1693	 */
1694	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1695	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1696		goto fail;
1697
1698	if (!ath9k_hw_check_alive(ah))
1699		goto fail;
1700
1701	/*
1702	 * For AR9462, make sure that calibration data for
1703	 * re-using are present.
1704	 */
1705	if (AR_SREV_9462(ah) && (ah->caldata &&
1706				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1707				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1708				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1709		goto fail;
1710
1711	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1712		ah->curchan->channel, chan->channel);
1713
1714	ret = ath9k_hw_channel_change(ah, chan);
1715	if (!ret)
1716		goto fail;
1717
1718	if (ath9k_hw_mci_is_enabled(ah))
1719		ar9003_mci_2g5g_switch(ah, false);
1720
1721	ath9k_hw_loadnf(ah, ah->curchan);
1722	ath9k_hw_start_nfcal(ah, true);
1723
1724	if (AR_SREV_9271(ah))
1725		ar9002_hw_load_ani_reg(ah, chan);
1726
1727	return 0;
1728fail:
1729	return -EINVAL;
1730}
1731
1732int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1733		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1734{
1735	struct ath_common *common = ath9k_hw_common(ah);
1736	struct timespec ts;
1737	u32 saveLedState;
 
1738	u32 saveDefAntenna;
1739	u32 macStaId1;
1740	u64 tsf = 0;
1741	s64 usec = 0;
1742	int r;
1743	bool start_mci_reset = false;
1744	bool save_fullsleep = ah->chip_fullsleep;
1745
1746	if (ath9k_hw_mci_is_enabled(ah)) {
1747		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1748		if (start_mci_reset)
1749			return 0;
1750	}
1751
1752	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1753		return -EIO;
1754
1755	if (ah->curchan && !ah->chip_fullsleep)
1756		ath9k_hw_getnf(ah, ah->curchan);
1757
1758	ah->caldata = caldata;
1759	if (caldata && (chan->channel != caldata->channel ||
1760			chan->channelFlags != caldata->channelFlags)) {
 
 
1761		/* Operating channel changed, reset channel calibration data */
1762		memset(caldata, 0, sizeof(*caldata));
1763		ath9k_init_nfcal_hist_buffer(ah, chan);
1764	} else if (caldata) {
1765		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1766	}
1767	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1768
1769	if (fastcc) {
1770		r = ath9k_hw_do_fastcc(ah, chan);
1771		if (!r)
1772			return r;
 
 
 
 
 
 
 
 
 
 
 
1773	}
1774
1775	if (ath9k_hw_mci_is_enabled(ah))
1776		ar9003_mci_stop_bt(ah, save_fullsleep);
1777
1778	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1779	if (saveDefAntenna == 0)
1780		saveDefAntenna = 1;
1781
1782	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1783
1784	/* Save TSF before chip reset, a cold reset clears it */
1785	tsf = ath9k_hw_gettsf64(ah);
1786	getrawmonotonic(&ts);
1787	usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000;
1788
1789	saveLedState = REG_READ(ah, AR_CFG_LED) &
1790		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1791		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1792
1793	ath9k_hw_mark_phy_inactive(ah);
1794
1795	ah->paprd_table_write_done = false;
1796
1797	/* Only required on the first reset */
1798	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1799		REG_WRITE(ah,
1800			  AR9271_RESET_POWER_DOWN_CONTROL,
1801			  AR9271_RADIO_RF_RST);
1802		udelay(50);
1803	}
1804
1805	if (!ath9k_hw_chip_reset(ah, chan)) {
1806		ath_err(common, "Chip reset failed\n");
1807		return -EINVAL;
1808	}
1809
1810	/* Only required on the first reset */
1811	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1812		ah->htc_reset_init = false;
1813		REG_WRITE(ah,
1814			  AR9271_RESET_POWER_DOWN_CONTROL,
1815			  AR9271_GATE_MAC_CTL);
1816		udelay(50);
1817	}
1818
1819	/* Restore TSF */
1820	getrawmonotonic(&ts);
1821	usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000 - usec;
1822	ath9k_hw_settsf64(ah, tsf + usec);
1823
1824	if (AR_SREV_9280_20_OR_LATER(ah))
1825		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1826
1827	if (!AR_SREV_9300_20_OR_LATER(ah))
1828		ar9002_hw_enable_async_fifo(ah);
1829
1830	r = ath9k_hw_process_ini(ah, chan);
1831	if (r)
1832		return r;
1833
1834	ath9k_hw_set_rfmode(ah, chan);
1835
1836	if (ath9k_hw_mci_is_enabled(ah))
1837		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1838
1839	/*
1840	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1841	 * right after the chip reset. When that happens, write a new
1842	 * value after the initvals have been applied, with an offset
1843	 * based on measured time difference
1844	 */
1845	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1846		tsf += 1500;
1847		ath9k_hw_settsf64(ah, tsf);
1848	}
1849
1850	ath9k_hw_init_mfp(ah);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1851
1852	ath9k_hw_set_delta_slope(ah, chan);
1853	ath9k_hw_spur_mitigate_freq(ah, chan);
1854	ah->eep_ops->set_board_values(ah, chan);
1855
1856	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857
1858	r = ath9k_hw_rf_set_freq(ah, chan);
1859	if (r)
1860		return r;
1861
1862	ath9k_hw_set_clockrate(ah);
1863
1864	ath9k_hw_init_queues(ah);
 
 
 
 
 
 
 
 
 
 
1865	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1866	ath9k_hw_ani_cache_ini_regs(ah);
1867	ath9k_hw_init_qos(ah);
1868
1869	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1870		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1871
1872	ath9k_hw_init_global_settings(ah);
1873
1874	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1875		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1876			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1877		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1878			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1879		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1880			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1881	}
1882
1883	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1884
1885	ath9k_hw_set_dma(ah);
1886
1887	if (!ath9k_hw_mci_is_enabled(ah))
1888		REG_WRITE(ah, AR_OBS, 8);
1889
1890	if (ah->config.rx_intr_mitigation) {
1891		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1892		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1893	}
1894
1895	if (ah->config.tx_intr_mitigation) {
1896		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1897		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1898	}
1899
1900	ath9k_hw_init_bb(ah, chan);
1901
1902	if (caldata) {
1903		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1904		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1905	}
1906	if (!ath9k_hw_init_cal(ah, chan))
1907		return -EIO;
1908
1909	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1910		return -EIO;
1911
1912	ENABLE_REGWRITE_BUFFER(ah);
1913
1914	ath9k_hw_restore_chainmask(ah);
1915	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1916
1917	REGWRITE_BUFFER_FLUSH(ah);
1918
1919	ath9k_hw_init_desc(ah);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1920
1921	if (ath9k_hw_btcoex_is_enabled(ah))
1922		ath9k_hw_btcoex_enable(ah);
1923
1924	if (ath9k_hw_mci_is_enabled(ah))
1925		ar9003_mci_check_bt(ah);
1926
1927	ath9k_hw_loadnf(ah, chan);
1928	ath9k_hw_start_nfcal(ah, true);
1929
1930	if (AR_SREV_9300_20_OR_LATER(ah))
1931		ar9003_hw_bb_watchdog_config(ah);
1932
1933	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
1934		ar9003_hw_disable_phy_restart(ah);
 
1935
1936	ath9k_hw_apply_gpio_override(ah);
1937
1938	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
1939		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
1940
1941	return 0;
1942}
1943EXPORT_SYMBOL(ath9k_hw_reset);
1944
1945/******************************/
1946/* Power Management (Chipset) */
1947/******************************/
1948
1949/*
1950 * Notify Power Mgt is disabled in self-generated frames.
1951 * If requested, force chip to sleep.
1952 */
1953static void ath9k_set_power_sleep(struct ath_hw *ah)
1954{
1955	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
 
 
 
 
 
 
 
 
 
1956
1957	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
1958		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
1959		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
1960		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
1961		/* xxx Required for WLAN only case ? */
1962		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1963		udelay(100);
1964	}
1965
1966	/*
1967	 * Clear the RTC force wake bit to allow the
1968	 * mac to go to sleep.
1969	 */
1970	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1971
1972	if (ath9k_hw_mci_is_enabled(ah))
1973		udelay(100);
1974
1975	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1976		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1977
1978	/* Shutdown chip. Active low */
1979	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
1980		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
1981		udelay(2);
1982	}
1983
1984	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1985	if (AR_SREV_9300_20_OR_LATER(ah))
1986		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
 
1987}
1988
1989/*
1990 * Notify Power Management is enabled in self-generating
1991 * frames. If request, set power mode of chip to
1992 * auto/normal.  Duration in units of 128us (1/8 TU).
1993 */
1994static void ath9k_set_power_network_sleep(struct ath_hw *ah)
1995{
1996	struct ath9k_hw_capabilities *pCap = &ah->caps;
1997
1998	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
 
 
1999
2000	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2001		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2002		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2003			  AR_RTC_FORCE_WAKE_ON_INT);
2004	} else {
2005
2006		/* When chip goes into network sleep, it could be waken
2007		 * up by MCI_INT interrupt caused by BT's HW messages
2008		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2009		 * rate (~100us). This will cause chip to leave and
2010		 * re-enter network sleep mode frequently, which in
2011		 * consequence will have WLAN MCI HW to generate lots of
2012		 * SYS_WAKING and SYS_SLEEPING messages which will make
2013		 * BT CPU to busy to process.
2014		 */
2015		if (ath9k_hw_mci_is_enabled(ah))
2016			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2017				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2018		/*
2019		 * Clear the RTC force wake bit to allow the
2020		 * mac to go to sleep.
2021		 */
2022		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2023
2024		if (ath9k_hw_mci_is_enabled(ah))
2025			udelay(30);
2026	}
2027
2028	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2029	if (AR_SREV_9300_20_OR_LATER(ah))
2030		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2031}
2032
2033static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2034{
2035	u32 val;
2036	int i;
2037
2038	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2039	if (AR_SREV_9300_20_OR_LATER(ah)) {
2040		REG_WRITE(ah, AR_WA, ah->WARegVal);
2041		udelay(10);
2042	}
2043
2044	if ((REG_READ(ah, AR_RTC_STATUS) &
2045	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2046		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2047			return false;
 
 
 
 
 
2048		}
2049		if (!AR_SREV_9300_20_OR_LATER(ah))
2050			ath9k_hw_init_pll(ah, NULL);
2051	}
2052	if (AR_SREV_9100(ah))
2053		REG_SET_BIT(ah, AR_RTC_RESET,
2054			    AR_RTC_RESET_EN);
2055
2056	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2057		    AR_RTC_FORCE_WAKE_EN);
2058	if (AR_SREV_9100(ah))
2059		mdelay(10);
2060	else
2061		udelay(50);
2062
2063	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2064		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2065		if (val == AR_RTC_STATUS_ON)
2066			break;
2067		udelay(50);
2068		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2069			    AR_RTC_FORCE_WAKE_EN);
 
 
 
 
 
 
 
2070	}
2071	if (i == 0) {
2072		ath_err(ath9k_hw_common(ah),
2073			"Failed to wakeup in %uus\n",
2074			POWER_UP_TIME / 20);
2075		return false;
2076	}
2077
2078	if (ath9k_hw_mci_is_enabled(ah))
2079		ar9003_mci_set_power_awake(ah);
2080
2081	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2082
2083	return true;
2084}
2085
2086bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2087{
2088	struct ath_common *common = ath9k_hw_common(ah);
2089	int status = true;
2090	static const char *modes[] = {
2091		"AWAKE",
2092		"FULL-SLEEP",
2093		"NETWORK SLEEP",
2094		"UNDEFINED"
2095	};
2096
2097	if (ah->power_mode == mode)
2098		return status;
2099
2100	ath_dbg(common, RESET, "%s -> %s\n",
2101		modes[ah->power_mode], modes[mode]);
2102
2103	switch (mode) {
2104	case ATH9K_PM_AWAKE:
2105		status = ath9k_hw_set_power_awake(ah);
2106		break;
2107	case ATH9K_PM_FULL_SLEEP:
2108		if (ath9k_hw_mci_is_enabled(ah))
2109			ar9003_mci_set_full_sleep(ah);
2110
2111		ath9k_set_power_sleep(ah);
2112		ah->chip_fullsleep = true;
2113		break;
2114	case ATH9K_PM_NETWORK_SLEEP:
2115		ath9k_set_power_network_sleep(ah);
2116		break;
2117	default:
2118		ath_err(common, "Unknown power mode %u\n", mode);
2119		return false;
2120	}
2121	ah->power_mode = mode;
2122
2123	/*
2124	 * XXX: If this warning never comes up after a while then
2125	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2126	 * ath9k_hw_setpower() return type void.
2127	 */
2128
2129	if (!(ah->ah_flags & AH_UNPLUGGED))
2130		ATH_DBG_WARN_ON_ONCE(!status);
2131
2132	return status;
2133}
2134EXPORT_SYMBOL(ath9k_hw_setpower);
2135
2136/*******************/
2137/* Beacon Handling */
2138/*******************/
2139
2140void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2141{
2142	int flags = 0;
2143
2144	ENABLE_REGWRITE_BUFFER(ah);
2145
2146	switch (ah->opmode) {
2147	case NL80211_IFTYPE_ADHOC:
 
2148		REG_SET_BIT(ah, AR_TXCFG,
2149			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2150	case NL80211_IFTYPE_MESH_POINT:
 
 
2151	case NL80211_IFTYPE_AP:
2152		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2153		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2154			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2155		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2156			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2157		flags |=
2158			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2159		break;
2160	default:
2161		ath_dbg(ath9k_hw_common(ah), BEACON,
2162			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
 
2163		return;
2164		break;
2165	}
2166
2167	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2168	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2169	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
 
2170
2171	REGWRITE_BUFFER_FLUSH(ah);
2172
2173	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2174}
2175EXPORT_SYMBOL(ath9k_hw_beaconinit);
2176
2177void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2178				    const struct ath9k_beacon_state *bs)
2179{
2180	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2181	struct ath9k_hw_capabilities *pCap = &ah->caps;
2182	struct ath_common *common = ath9k_hw_common(ah);
2183
2184	ENABLE_REGWRITE_BUFFER(ah);
2185
2186	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2187	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2188	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
 
 
 
2189
2190	REGWRITE_BUFFER_FLUSH(ah);
2191
2192	REG_RMW_FIELD(ah, AR_RSSI_THR,
2193		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2194
2195	beaconintval = bs->bs_intval;
2196
2197	if (bs->bs_sleepduration > beaconintval)
2198		beaconintval = bs->bs_sleepduration;
2199
2200	dtimperiod = bs->bs_dtimperiod;
2201	if (bs->bs_sleepduration > dtimperiod)
2202		dtimperiod = bs->bs_sleepduration;
2203
2204	if (beaconintval == dtimperiod)
2205		nextTbtt = bs->bs_nextdtim;
2206	else
2207		nextTbtt = bs->bs_nexttbtt;
2208
2209	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2210	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2211	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2212	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2213
2214	ENABLE_REGWRITE_BUFFER(ah);
2215
2216	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2217	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
 
2218
2219	REG_WRITE(ah, AR_SLEEP1,
2220		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2221		  | AR_SLEEP1_ASSUME_DTIM);
2222
2223	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2224		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2225	else
2226		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2227
2228	REG_WRITE(ah, AR_SLEEP2,
2229		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2230
2231	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2232	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2233
2234	REGWRITE_BUFFER_FLUSH(ah);
2235
2236	REG_SET_BIT(ah, AR_TIMER_MODE,
2237		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2238		    AR_DTIM_TIMER_EN);
2239
2240	/* TSF Out of Range Threshold */
2241	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2242}
2243EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2244
2245/*******************/
2246/* HW Capabilities */
2247/*******************/
2248
2249static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2250{
2251	eeprom_chainmask &= chip_chainmask;
2252	if (eeprom_chainmask)
2253		return eeprom_chainmask;
2254	else
2255		return chip_chainmask;
2256}
2257
2258/**
2259 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2260 * @ah: the atheros hardware data structure
2261 *
2262 * We enable DFS support upstream on chipsets which have passed a series
2263 * of tests. The testing requirements are going to be documented. Desired
2264 * test requirements are documented at:
2265 *
2266 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2267 *
2268 * Once a new chipset gets properly tested an individual commit can be used
2269 * to document the testing for DFS for that chipset.
2270 */
2271static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2272{
2273
2274	switch (ah->hw_version.macVersion) {
2275	/* for temporary testing DFS with 9280 */
2276	case AR_SREV_VERSION_9280:
2277	/* AR9580 will likely be our first target to get testing on */
2278	case AR_SREV_VERSION_9580:
2279		return true;
2280	default:
2281		return false;
2282	}
2283}
2284
2285int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2286{
2287	struct ath9k_hw_capabilities *pCap = &ah->caps;
2288	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2289	struct ath_common *common = ath9k_hw_common(ah);
 
2290	unsigned int chip_chainmask;
2291
2292	u16 eeval;
2293	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2294
2295	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2296	regulatory->current_rd = eeval;
2297
 
 
 
 
 
2298	if (ah->opmode != NL80211_IFTYPE_AP &&
2299	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2300		if (regulatory->current_rd == 0x64 ||
2301		    regulatory->current_rd == 0x65)
2302			regulatory->current_rd += 5;
2303		else if (regulatory->current_rd == 0x41)
2304			regulatory->current_rd = 0x43;
2305		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2306			regulatory->current_rd);
2307	}
2308
2309	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2310	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2311		ath_err(common,
2312			"no band has been marked as supported in EEPROM\n");
2313		return -EINVAL;
2314	}
2315
2316	if (eeval & AR5416_OPFLAGS_11A)
2317		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2318
2319	if (eeval & AR5416_OPFLAGS_11G)
2320		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2321
2322	if (AR_SREV_9485(ah) ||
2323	    AR_SREV_9285(ah) ||
2324	    AR_SREV_9330(ah) ||
2325	    AR_SREV_9565(ah))
2326		chip_chainmask = 1;
2327	else if (AR_SREV_9462(ah))
2328		chip_chainmask = 3;
2329	else if (!AR_SREV_9280_20_OR_LATER(ah))
2330		chip_chainmask = 7;
2331	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2332		chip_chainmask = 3;
2333	else
2334		chip_chainmask = 7;
2335
2336	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2337	/*
2338	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2339	 * the EEPROM.
2340	 */
2341	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2342	    !(eeval & AR5416_OPFLAGS_11A) &&
2343	    !(AR_SREV_9271(ah)))
2344		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2345		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2346	else if (AR_SREV_9100(ah))
2347		pCap->rx_chainmask = 0x7;
2348	else
2349		/* Use rx_chainmask from EEPROM. */
2350		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2351
2352	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2353	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2354	ah->txchainmask = pCap->tx_chainmask;
2355	ah->rxchainmask = pCap->rx_chainmask;
2356
2357	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2358
2359	/* enable key search for every frame in an aggregate */
2360	if (AR_SREV_9300_20_OR_LATER(ah))
2361		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2362
2363	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2364
2365	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2366		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2367	else
2368		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2369
2370	if (AR_SREV_9271(ah))
2371		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2372	else if (AR_DEVID_7010(ah))
2373		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2374	else if (AR_SREV_9300_20_OR_LATER(ah))
2375		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2376	else if (AR_SREV_9287_11_OR_LATER(ah))
2377		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2378	else if (AR_SREV_9285_12_OR_LATER(ah))
2379		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2380	else if (AR_SREV_9280_20_OR_LATER(ah))
2381		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2382	else
2383		pCap->num_gpio_pins = AR_NUM_GPIO;
2384
2385	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
 
2386		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2387	else
2388		pCap->rts_aggr_limit = (8 * 1024);
 
2389
2390#ifdef CONFIG_ATH9K_RFKILL
2391	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2392	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2393		ah->rfkill_gpio =
2394			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2395		ah->rfkill_polarity =
2396			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2397
2398		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2399	}
2400#endif
2401	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2402		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2403	else
2404		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2405
2406	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2407		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2408	else
2409		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411	if (AR_SREV_9300_20_OR_LATER(ah)) {
2412		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2413		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2414			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2415
2416		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2417		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2418		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2419		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2420		pCap->txs_len = sizeof(struct ar9003_txs);
 
 
 
2421	} else {
2422		pCap->tx_desc_len = sizeof(struct ath_desc);
2423		if (AR_SREV_9280_20(ah))
2424			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2425	}
2426
2427	if (AR_SREV_9300_20_OR_LATER(ah))
2428		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2429
2430	if (AR_SREV_9300_20_OR_LATER(ah))
2431		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2432
2433	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2434		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2435
2436	if (AR_SREV_9285(ah)) {
2437		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2438			ant_div_ctl1 =
2439				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2440			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2441				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2442				ath_info(common, "Enable LNA combining\n");
2443			}
2444		}
2445	}
2446
2447	if (AR_SREV_9300_20_OR_LATER(ah)) {
2448		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2449			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2450	}
2451
2452	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
 
2453		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2454		if ((ant_div_ctl1 >> 0x6) == 0x3) {
 
 
 
 
 
 
 
 
 
 
 
2455			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2456			ath_info(common, "Enable LNA combining\n");
2457		}
2458	}
2459
2460	if (ath9k_hw_dfs_tested(ah))
2461		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
 
 
2462
2463	tx_chainmask = pCap->tx_chainmask;
2464	rx_chainmask = pCap->rx_chainmask;
2465	while (tx_chainmask || rx_chainmask) {
2466		if (tx_chainmask & BIT(0))
2467			pCap->max_txchains++;
2468		if (rx_chainmask & BIT(0))
2469			pCap->max_rxchains++;
2470
2471		tx_chainmask >>= 1;
2472		rx_chainmask >>= 1;
2473	}
2474
2475	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2476		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2477			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2478
2479		if (AR_SREV_9462_20_OR_LATER(ah))
2480			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2481	}
2482
2483	if (AR_SREV_9462(ah))
2484		pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
2485
2486	if (AR_SREV_9300_20_OR_LATER(ah) &&
2487	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2488			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2489
2490	return 0;
2491}
2492
2493/****************************/
2494/* GPIO / RFKILL / Antennae */
2495/****************************/
2496
2497static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2498					 u32 gpio, u32 type)
2499{
2500	int addr;
2501	u32 gpio_shift, tmp;
2502
2503	if (gpio > 11)
2504		addr = AR_GPIO_OUTPUT_MUX3;
2505	else if (gpio > 5)
2506		addr = AR_GPIO_OUTPUT_MUX2;
2507	else
2508		addr = AR_GPIO_OUTPUT_MUX1;
2509
2510	gpio_shift = (gpio % 6) * 5;
2511
2512	if (AR_SREV_9280_20_OR_LATER(ah)
2513	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2514		REG_RMW(ah, addr, (type << gpio_shift),
2515			(0x1f << gpio_shift));
2516	} else {
2517		tmp = REG_READ(ah, addr);
2518		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2519		tmp &= ~(0x1f << gpio_shift);
2520		tmp |= (type << gpio_shift);
2521		REG_WRITE(ah, addr, tmp);
2522	}
2523}
2524
2525void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2526{
2527	u32 gpio_shift;
2528
2529	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2530
2531	if (AR_DEVID_7010(ah)) {
2532		gpio_shift = gpio;
2533		REG_RMW(ah, AR7010_GPIO_OE,
2534			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2535			(AR7010_GPIO_OE_MASK << gpio_shift));
2536		return;
2537	}
2538
2539	gpio_shift = gpio << 1;
2540	REG_RMW(ah,
2541		AR_GPIO_OE_OUT,
2542		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2543		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2544}
2545EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2546
2547u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2548{
2549#define MS_REG_READ(x, y) \
2550	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2551
2552	if (gpio >= ah->caps.num_gpio_pins)
2553		return 0xffffffff;
2554
2555	if (AR_DEVID_7010(ah)) {
2556		u32 val;
2557		val = REG_READ(ah, AR7010_GPIO_IN);
2558		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2559	} else if (AR_SREV_9300_20_OR_LATER(ah))
2560		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2561			AR_GPIO_BIT(gpio)) != 0;
2562	else if (AR_SREV_9271(ah))
2563		return MS_REG_READ(AR9271, gpio) != 0;
2564	else if (AR_SREV_9287_11_OR_LATER(ah))
2565		return MS_REG_READ(AR9287, gpio) != 0;
2566	else if (AR_SREV_9285_12_OR_LATER(ah))
2567		return MS_REG_READ(AR9285, gpio) != 0;
2568	else if (AR_SREV_9280_20_OR_LATER(ah))
2569		return MS_REG_READ(AR928X, gpio) != 0;
2570	else
2571		return MS_REG_READ(AR, gpio) != 0;
2572}
2573EXPORT_SYMBOL(ath9k_hw_gpio_get);
2574
2575void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2576			 u32 ah_signal_type)
2577{
2578	u32 gpio_shift;
2579
2580	if (AR_DEVID_7010(ah)) {
2581		gpio_shift = gpio;
2582		REG_RMW(ah, AR7010_GPIO_OE,
2583			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2584			(AR7010_GPIO_OE_MASK << gpio_shift));
2585		return;
2586	}
2587
2588	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2589	gpio_shift = 2 * gpio;
2590	REG_RMW(ah,
2591		AR_GPIO_OE_OUT,
2592		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2593		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2594}
2595EXPORT_SYMBOL(ath9k_hw_cfg_output);
2596
2597void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2598{
2599	if (AR_DEVID_7010(ah)) {
2600		val = val ? 0 : 1;
2601		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2602			AR_GPIO_BIT(gpio));
2603		return;
2604	}
2605
2606	if (AR_SREV_9271(ah))
2607		val = ~val;
2608
2609	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2610		AR_GPIO_BIT(gpio));
2611}
2612EXPORT_SYMBOL(ath9k_hw_set_gpio);
2613
 
 
 
 
 
 
2614void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2615{
2616	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2617}
2618EXPORT_SYMBOL(ath9k_hw_setantenna);
2619
2620/*********************/
2621/* General Operation */
2622/*********************/
2623
2624u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2625{
2626	u32 bits = REG_READ(ah, AR_RX_FILTER);
2627	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2628
2629	if (phybits & AR_PHY_ERR_RADAR)
2630		bits |= ATH9K_RX_FILTER_PHYRADAR;
2631	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2632		bits |= ATH9K_RX_FILTER_PHYERR;
2633
2634	return bits;
2635}
2636EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2637
2638void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2639{
2640	u32 phybits;
2641
2642	ENABLE_REGWRITE_BUFFER(ah);
2643
2644	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2645		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2646
2647	REG_WRITE(ah, AR_RX_FILTER, bits);
2648
2649	phybits = 0;
2650	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2651		phybits |= AR_PHY_ERR_RADAR;
2652	if (bits & ATH9K_RX_FILTER_PHYERR)
2653		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2654	REG_WRITE(ah, AR_PHY_ERR, phybits);
2655
2656	if (phybits)
2657		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2658	else
2659		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2660
2661	REGWRITE_BUFFER_FLUSH(ah);
2662}
2663EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2664
2665bool ath9k_hw_phy_disable(struct ath_hw *ah)
2666{
2667	if (ath9k_hw_mci_is_enabled(ah))
2668		ar9003_mci_bt_gain_ctrl(ah);
2669
2670	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2671		return false;
2672
2673	ath9k_hw_init_pll(ah, NULL);
2674	ah->htc_reset_init = true;
2675	return true;
2676}
2677EXPORT_SYMBOL(ath9k_hw_phy_disable);
2678
2679bool ath9k_hw_disable(struct ath_hw *ah)
2680{
2681	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2682		return false;
2683
2684	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2685		return false;
2686
2687	ath9k_hw_init_pll(ah, NULL);
2688	return true;
2689}
2690EXPORT_SYMBOL(ath9k_hw_disable);
2691
2692static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2693{
2694	enum eeprom_param gain_param;
2695
2696	if (IS_CHAN_2GHZ(chan))
2697		gain_param = EEP_ANTENNA_GAIN_2G;
2698	else
2699		gain_param = EEP_ANTENNA_GAIN_5G;
2700
2701	return ah->eep_ops->get_eeprom(ah, gain_param);
2702}
2703
2704void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2705			    bool test)
2706{
2707	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2708	struct ieee80211_channel *channel;
2709	int chan_pwr, new_pwr, max_gain;
2710	int ant_gain, ant_reduction = 0;
2711
2712	if (!chan)
2713		return;
2714
2715	channel = chan->chan;
2716	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2717	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2718	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2719
2720	ant_gain = get_antenna_gain(ah, chan);
2721	if (ant_gain > max_gain)
2722		ant_reduction = ant_gain - max_gain;
2723
2724	ah->eep_ops->set_txpower(ah, chan,
2725				 ath9k_regd_get_ctl(reg, chan),
2726				 ant_reduction, new_pwr, test);
2727}
2728
2729void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2730{
2731	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2732	struct ath9k_channel *chan = ah->curchan;
2733	struct ieee80211_channel *channel = chan->chan;
2734
2735	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2736	if (test)
2737		channel->max_power = MAX_RATE_POWER / 2;
2738
2739	ath9k_hw_apply_txpower(ah, chan, test);
2740
2741	if (test)
2742		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
 
 
2743}
2744EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2745
2746void ath9k_hw_setopmode(struct ath_hw *ah)
2747{
2748	ath9k_hw_set_operating_mode(ah, ah->opmode);
2749}
2750EXPORT_SYMBOL(ath9k_hw_setopmode);
2751
2752void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2753{
2754	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2755	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2756}
2757EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2758
2759void ath9k_hw_write_associd(struct ath_hw *ah)
2760{
2761	struct ath_common *common = ath9k_hw_common(ah);
2762
2763	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2764	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2765		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2766}
2767EXPORT_SYMBOL(ath9k_hw_write_associd);
2768
2769#define ATH9K_MAX_TSF_READ 10
2770
2771u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2772{
2773	u32 tsf_lower, tsf_upper1, tsf_upper2;
2774	int i;
2775
2776	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2777	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2778		tsf_lower = REG_READ(ah, AR_TSF_L32);
2779		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2780		if (tsf_upper2 == tsf_upper1)
2781			break;
2782		tsf_upper1 = tsf_upper2;
2783	}
2784
2785	WARN_ON( i == ATH9K_MAX_TSF_READ );
2786
2787	return (((u64)tsf_upper1 << 32) | tsf_lower);
2788}
2789EXPORT_SYMBOL(ath9k_hw_gettsf64);
2790
2791void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2792{
2793	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2794	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2795}
2796EXPORT_SYMBOL(ath9k_hw_settsf64);
2797
2798void ath9k_hw_reset_tsf(struct ath_hw *ah)
2799{
2800	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2801			   AH_TSF_WRITE_TIMEOUT))
2802		ath_dbg(ath9k_hw_common(ah), RESET,
2803			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2804
2805	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2806}
2807EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2808
2809void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2810{
2811	if (set)
2812		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2813	else
2814		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2815}
2816EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2817
2818void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2819{
 
2820	u32 macmode;
2821
2822	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2823		macmode = AR_2040_JOINED_RX_CLEAR;
2824	else
2825		macmode = 0;
2826
2827	REG_WRITE(ah, AR_2040_MODE, macmode);
2828}
2829
2830/* HW Generic timers configuration */
2831
2832static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2833{
2834	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2835	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2836	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2837	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2838	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2839	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2840	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2841	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2842	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2843	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2844				AR_NDP2_TIMER_MODE, 0x0002},
2845	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2846				AR_NDP2_TIMER_MODE, 0x0004},
2847	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2848				AR_NDP2_TIMER_MODE, 0x0008},
2849	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2850				AR_NDP2_TIMER_MODE, 0x0010},
2851	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2852				AR_NDP2_TIMER_MODE, 0x0020},
2853	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2854				AR_NDP2_TIMER_MODE, 0x0040},
2855	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2856				AR_NDP2_TIMER_MODE, 0x0080}
2857};
2858
2859/* HW generic timer primitives */
2860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2861u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2862{
2863	return REG_READ(ah, AR_TSF_L32);
2864}
2865EXPORT_SYMBOL(ath9k_hw_gettsf32);
2866
2867struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2868					  void (*trigger)(void *),
2869					  void (*overflow)(void *),
2870					  void *arg,
2871					  u8 timer_index)
2872{
2873	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2874	struct ath_gen_timer *timer;
2875
2876	if ((timer_index < AR_FIRST_NDP_TIMER) ||
2877		(timer_index >= ATH_MAX_GEN_TIMER))
2878		return NULL;
2879
2880	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2881	if (timer == NULL)
 
 
2882		return NULL;
 
2883
2884	/* allocate a hardware generic timer slot */
2885	timer_table->timers[timer_index] = timer;
2886	timer->index = timer_index;
2887	timer->trigger = trigger;
2888	timer->overflow = overflow;
2889	timer->arg = arg;
2890
2891	return timer;
2892}
2893EXPORT_SYMBOL(ath_gen_timer_alloc);
2894
2895void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2896			      struct ath_gen_timer *timer,
2897			      u32 timer_next,
2898			      u32 timer_period)
2899{
2900	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2901	u32 mask = 0;
2902
2903	timer_table->timer_mask |= BIT(timer->index);
 
 
 
 
 
 
 
 
 
 
2904
2905	/*
2906	 * Program generic timer registers
2907	 */
2908	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2909		 timer_next);
2910	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2911		  timer_period);
2912	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2913		    gen_tmr_configuration[timer->index].mode_mask);
2914
2915	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2916		/*
2917		 * Starting from AR9462, each generic timer can select which tsf
2918		 * to use. But we still follow the old rule, 0 - 7 use tsf and
2919		 * 8 - 15  use tsf2.
2920		 */
2921		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2922			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2923				       (1 << timer->index));
2924		else
2925			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2926				       (1 << timer->index));
2927	}
2928
2929	if (timer->trigger)
2930		mask |= SM(AR_GENTMR_BIT(timer->index),
2931			   AR_IMR_S5_GENTIMER_TRIG);
2932	if (timer->overflow)
2933		mask |= SM(AR_GENTMR_BIT(timer->index),
2934			   AR_IMR_S5_GENTIMER_THRESH);
2935
2936	REG_SET_BIT(ah, AR_IMR_S5, mask);
2937
2938	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
2939		ah->imask |= ATH9K_INT_GENTIMER;
2940		ath9k_hw_set_interrupts(ah);
2941	}
2942}
2943EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2944
2945void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2946{
2947	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2948
 
 
 
 
 
2949	/* Clear generic timer enable bits. */
2950	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2951			gen_tmr_configuration[timer->index].mode_mask);
2952
2953	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2954		/*
2955		 * Need to switch back to TSF if it was using TSF2.
2956		 */
2957		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
2958			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2959				    (1 << timer->index));
2960		}
2961	}
2962
2963	/* Disable both trigger and thresh interrupt masks */
2964	REG_CLR_BIT(ah, AR_IMR_S5,
2965		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2966		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2967
2968	timer_table->timer_mask &= ~BIT(timer->index);
2969
2970	if (timer_table->timer_mask == 0) {
2971		ah->imask &= ~ATH9K_INT_GENTIMER;
2972		ath9k_hw_set_interrupts(ah);
2973	}
2974}
2975EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2976
2977void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2978{
2979	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2980
2981	/* free the hardware generic timer slot */
2982	timer_table->timers[timer->index] = NULL;
2983	kfree(timer);
2984}
2985EXPORT_SYMBOL(ath_gen_timer_free);
2986
2987/*
2988 * Generic Timer Interrupts handling
2989 */
2990void ath_gen_timer_isr(struct ath_hw *ah)
2991{
2992	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2993	struct ath_gen_timer *timer;
2994	unsigned long trigger_mask, thresh_mask;
2995	unsigned int index;
2996
2997	/* get hardware generic timer interrupt status */
2998	trigger_mask = ah->intr_gen_timer_trigger;
2999	thresh_mask = ah->intr_gen_timer_thresh;
3000	trigger_mask &= timer_table->timer_mask;
3001	thresh_mask &= timer_table->timer_mask;
3002
3003	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
 
 
 
3004		timer = timer_table->timers[index];
3005		if (!timer)
3006		    continue;
3007		if (!timer->overflow)
3008		    continue;
3009
3010		trigger_mask &= ~BIT(index);
3011		timer->overflow(timer->arg);
3012	}
3013
3014	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
 
3015		timer = timer_table->timers[index];
3016		if (!timer)
3017		    continue;
3018		if (!timer->trigger)
3019		    continue;
3020		timer->trigger(timer->arg);
3021	}
3022}
3023EXPORT_SYMBOL(ath_gen_timer_isr);
3024
3025/********/
3026/* HTC  */
3027/********/
3028
 
 
 
 
 
 
3029static struct {
3030	u32 version;
3031	const char * name;
3032} ath_mac_bb_names[] = {
3033	/* Devices with external radios */
3034	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3035	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3036	{ AR_SREV_VERSION_9100,		"9100" },
3037	{ AR_SREV_VERSION_9160,		"9160" },
3038	/* Single-chip solutions */
3039	{ AR_SREV_VERSION_9280,		"9280" },
3040	{ AR_SREV_VERSION_9285,		"9285" },
3041	{ AR_SREV_VERSION_9287,         "9287" },
3042	{ AR_SREV_VERSION_9271,         "9271" },
3043	{ AR_SREV_VERSION_9300,         "9300" },
3044	{ AR_SREV_VERSION_9330,         "9330" },
3045	{ AR_SREV_VERSION_9340,		"9340" },
3046	{ AR_SREV_VERSION_9485,         "9485" },
3047	{ AR_SREV_VERSION_9462,         "9462" },
3048	{ AR_SREV_VERSION_9550,         "9550" },
3049	{ AR_SREV_VERSION_9565,         "9565" },
3050	{ AR_SREV_VERSION_9531,         "9531" },
3051};
3052
3053/* For devices with external radios */
3054static struct {
3055	u16 version;
3056	const char * name;
3057} ath_rf_names[] = {
3058	{ 0,				"5133" },
3059	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3060	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3061	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3062	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3063};
3064
3065/*
3066 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3067 */
3068static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3069{
3070	int i;
3071
3072	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3073		if (ath_mac_bb_names[i].version == mac_bb_version) {
3074			return ath_mac_bb_names[i].name;
3075		}
3076	}
3077
3078	return "????";
3079}
3080
3081/*
3082 * Return the RF name. "????" is returned if the RF is unknown.
3083 * Used for devices with external radios.
3084 */
3085static const char *ath9k_hw_rf_name(u16 rf_version)
3086{
3087	int i;
3088
3089	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3090		if (ath_rf_names[i].version == rf_version) {
3091			return ath_rf_names[i].name;
3092		}
3093	}
3094
3095	return "????";
3096}
3097
3098void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3099{
3100	int used;
3101
3102	/* chipsets >= AR9280 are single-chip */
3103	if (AR_SREV_9280_20_OR_LATER(ah)) {
3104		used = scnprintf(hw_name, len,
3105				 "Atheros AR%s Rev:%x",
3106				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3107				 ah->hw_version.macRev);
3108	}
3109	else {
3110		used = scnprintf(hw_name, len,
3111				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3112				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3113				 ah->hw_version.macRev,
3114				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3115						  & AR_RADIO_SREV_MAJOR)),
3116				 ah->hw_version.phyRev);
3117	}
3118
3119	hw_name[used] = '\0';
3120}
3121EXPORT_SYMBOL(ath9k_hw_name);