Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
   2/*
   3	Written 1998-2001 by Donald Becker.
   4
   5	Current Maintainer: Roger Luethi <rl@hellgate.ch>
   6
   7	This software may be used and distributed according to the terms of
   8	the GNU General Public License (GPL), incorporated herein by reference.
   9	Drivers based on or derived from this code fall under the GPL and must
  10	retain the authorship, copyright and license notice.  This file is not
  11	a complete program and may only be used when the entire operating
  12	system is licensed under the GPL.
  13
  14	This driver is designed for the VIA VT86C100A Rhine-I.
  15	It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
  16	and management NIC 6105M).
  17
  18	The author may be reached as becker@scyld.com, or C/O
  19	Scyld Computing Corporation
  20	410 Severn Ave., Suite 210
  21	Annapolis MD 21403
  22
  23
  24	This driver contains some changes from the original Donald Becker
  25	version. He may or may not be interested in bug reports on this
  26	code. You can find his versions at:
  27	http://www.scyld.com/network/via-rhine.html
  28	[link no longer provides useful info -jgarzik]
  29
  30*/
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#define DRV_NAME	"via-rhine"
  35#define DRV_VERSION	"1.5.1"
  36#define DRV_RELDATE	"2010-10-09"
  37
  38#include <linux/types.h>
  39
  40/* A few user-configurable values.
  41   These may be modified when a driver module is loaded. */
  42static int debug = 0;
  43#define RHINE_MSG_DEFAULT \
  44        (0x0000)
  45
  46/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  47   Setting to > 1518 effectively disables this feature. */
  48#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
  49	defined(CONFIG_SPARC) || defined(__ia64__) ||		   \
  50	defined(__sh__) || defined(__mips__)
  51static int rx_copybreak = 1518;
  52#else
  53static int rx_copybreak;
  54#endif
  55
  56/* Work-around for broken BIOSes: they are unable to get the chip back out of
  57   power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
  58static bool avoid_D3;
  59
  60/*
  61 * In case you are looking for 'options[]' or 'full_duplex[]', they
  62 * are gone. Use ethtool(8) instead.
  63 */
  64
  65/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
  66   The Rhine has a 64 element 8390-like hash table. */
  67static const int multicast_filter_limit = 32;
  68
  69
  70/* Operational parameters that are set at compile time. */
  71
  72/* Keep the ring sizes a power of two for compile efficiency.
  73   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
  74   Making the Tx ring too large decreases the effectiveness of channel
  75   bonding and packet priority.
  76   There are no ill effects from too-large receive rings. */
  77#define TX_RING_SIZE	16
  78#define TX_QUEUE_LEN	10	/* Limit ring entries actually used. */
  79#define RX_RING_SIZE	64
  80
  81/* Operational parameters that usually are not changed. */
  82
  83/* Time in jiffies before concluding the transmitter is hung. */
  84#define TX_TIMEOUT	(2*HZ)
  85
  86#define PKT_BUF_SZ	1536	/* Size of each temporary Rx buffer.*/
  87
  88#include <linux/module.h>
  89#include <linux/moduleparam.h>
  90#include <linux/kernel.h>
  91#include <linux/string.h>
  92#include <linux/timer.h>
  93#include <linux/errno.h>
  94#include <linux/ioport.h>
  95#include <linux/interrupt.h>
  96#include <linux/pci.h>
  97#include <linux/dma-mapping.h>
  98#include <linux/netdevice.h>
  99#include <linux/etherdevice.h>
 100#include <linux/skbuff.h>
 101#include <linux/init.h>
 102#include <linux/delay.h>
 103#include <linux/mii.h>
 104#include <linux/ethtool.h>
 105#include <linux/crc32.h>
 106#include <linux/if_vlan.h>
 107#include <linux/bitops.h>
 108#include <linux/workqueue.h>
 109#include <asm/processor.h>	/* Processor type for cache alignment. */
 110#include <asm/io.h>
 111#include <asm/irq.h>
 112#include <asm/uaccess.h>
 113#include <linux/dmi.h>
 114
 115/* These identify the driver base version and may not be removed. */
 116static const char version[] =
 117	"v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";
 118
 119/* This driver was written to use PCI memory space. Some early versions
 120   of the Rhine may only work correctly with I/O space accesses. */
 121#ifdef CONFIG_VIA_RHINE_MMIO
 122#define USE_MMIO
 123#else
 124#endif
 125
 126MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 127MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
 128MODULE_LICENSE("GPL");
 129
 130module_param(debug, int, 0);
 131module_param(rx_copybreak, int, 0);
 132module_param(avoid_D3, bool, 0);
 133MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
 134MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
 135MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
 136
 137#define MCAM_SIZE	32
 138#define VCAM_SIZE	32
 139
 140/*
 141		Theory of Operation
 142
 143I. Board Compatibility
 144
 145This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
 146controller.
 147
 148II. Board-specific settings
 149
 150Boards with this chip are functional only in a bus-master PCI slot.
 151
 152Many operational settings are loaded from the EEPROM to the Config word at
 153offset 0x78. For most of these settings, this driver assumes that they are
 154correct.
 155If this driver is compiled to use PCI memory space operations the EEPROM
 156must be configured to enable memory ops.
 157
 158III. Driver operation
 159
 160IIIa. Ring buffers
 161
 162This driver uses two statically allocated fixed-size descriptor lists
 163formed into rings by a branch from the final descriptor to the beginning of
 164the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
 165
 166IIIb/c. Transmit/Receive Structure
 167
 168This driver attempts to use a zero-copy receive and transmit scheme.
 169
 170Alas, all data buffers are required to start on a 32 bit boundary, so
 171the driver must often copy transmit packets into bounce buffers.
 172
 173The driver allocates full frame size skbuffs for the Rx ring buffers at
 174open() time and passes the skb->data field to the chip as receive data
 175buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
 176a fresh skbuff is allocated and the frame is copied to the new skbuff.
 177When the incoming frame is larger, the skbuff is passed directly up the
 178protocol stack. Buffers consumed this way are replaced by newly allocated
 179skbuffs in the last phase of rhine_rx().
 180
 181The RX_COPYBREAK value is chosen to trade-off the memory wasted by
 182using a full-sized skbuff for small frames vs. the copying costs of larger
 183frames. New boards are typically used in generously configured machines
 184and the underfilled buffers have negligible impact compared to the benefit of
 185a single allocation size, so the default value of zero results in never
 186copying packets. When copying is done, the cost is usually mitigated by using
 187a combined copy/checksum routine. Copying also preloads the cache, which is
 188most useful with small frames.
 189
 190Since the VIA chips are only able to transfer data to buffers on 32 bit
 191boundaries, the IP header at offset 14 in an ethernet frame isn't
 192longword aligned for further processing. Copying these unaligned buffers
 193has the beneficial effect of 16-byte aligning the IP header.
 194
 195IIId. Synchronization
 196
 197The driver runs as two independent, single-threaded flows of control. One
 198is the send-packet routine, which enforces single-threaded use by the
 199netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
 200which is single threaded by the hardware and interrupt handling software.
 201
 202The send packet thread has partial control over the Tx ring. It locks the
 203netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
 204the ring is not available it stops the transmit queue by
 205calling netif_stop_queue.
 206
 207The interrupt handler has exclusive control over the Rx ring and records stats
 208from the Tx ring. After reaping the stats, it marks the Tx queue entry as
 209empty by incrementing the dirty_tx mark. If at least half of the entries in
 210the Rx ring are available the transmit queue is woken up if it was stopped.
 211
 212IV. Notes
 213
 214IVb. References
 215
 216Preliminary VT86C100A manual from http://www.via.com.tw/
 217http://www.scyld.com/expert/100mbps.html
 218http://www.scyld.com/expert/NWay.html
 219ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
 220ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
 221
 222
 223IVc. Errata
 224
 225The VT86C100A manual is not reliable information.
 226The 3043 chip does not handle unaligned transmit or receive buffers, resulting
 227in significant performance degradation for bounce buffer copies on transmit
 228and unaligned IP headers on receive.
 229The chip does not pad to minimum transmit length.
 230
 231*/
 232
 233
 234/* This table drives the PCI probe routines. It's mostly boilerplate in all
 235   of the drivers, and will likely be provided by some future kernel.
 236   Note the matching code -- the first table entry matchs all 56** cards but
 237   second only the 1234 card.
 238*/
 239
 240enum rhine_revs {
 241	VT86C100A	= 0x00,
 242	VTunknown0	= 0x20,
 243	VT6102		= 0x40,
 244	VT8231		= 0x50,	/* Integrated MAC */
 245	VT8233		= 0x60,	/* Integrated MAC */
 246	VT8235		= 0x74,	/* Integrated MAC */
 247	VT8237		= 0x78,	/* Integrated MAC */
 248	VTunknown1	= 0x7C,
 249	VT6105		= 0x80,
 250	VT6105_B0	= 0x83,
 251	VT6105L		= 0x8A,
 252	VT6107		= 0x8C,
 253	VTunknown2	= 0x8E,
 254	VT6105M		= 0x90,	/* Management adapter */
 255};
 256
 257enum rhine_quirks {
 258	rqWOL		= 0x0001,	/* Wake-On-LAN support */
 259	rqForceReset	= 0x0002,
 260	rq6patterns	= 0x0040,	/* 6 instead of 4 patterns for WOL */
 261	rqStatusWBRace	= 0x0080,	/* Tx Status Writeback Error possible */
 262	rqRhineI	= 0x0100,	/* See comment below */
 263};
 264/*
 265 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
 266 * MMIO as well as for the collision counter and the Tx FIFO underflow
 267 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
 268 */
 269
 270/* Beware of PCI posted writes */
 271#define IOSYNC	do { ioread8(ioaddr + StationAddr); } while (0)
 272
 273static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
 274	{ 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, },	/* VT86C100A */
 275	{ 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6102 */
 276	{ 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, },	/* 6105{,L,LOM} */
 277	{ 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6105M */
 278	{ }	/* terminate list */
 279};
 280MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
 281
 282
 283/* Offsets to the device registers. */
 284enum register_offsets {
 285	StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
 286	ChipCmd1=0x09, TQWake=0x0A,
 287	IntrStatus=0x0C, IntrEnable=0x0E,
 288	MulticastFilter0=0x10, MulticastFilter1=0x14,
 289	RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
 290	MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
 291	MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
 292	ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
 293	RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
 294	StickyHW=0x83, IntrStatus2=0x84,
 295	CamMask=0x88, CamCon=0x92, CamAddr=0x93,
 296	WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
 297	WOLcrClr1=0xA6, WOLcgClr=0xA7,
 298	PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
 299};
 300
 301/* Bits in ConfigD */
 302enum backoff_bits {
 303	BackOptional=0x01, BackModify=0x02,
 304	BackCaptureEffect=0x04, BackRandom=0x08
 305};
 306
 307/* Bits in the TxConfig (TCR) register */
 308enum tcr_bits {
 309	TCR_PQEN=0x01,
 310	TCR_LB0=0x02,		/* loopback[0] */
 311	TCR_LB1=0x04,		/* loopback[1] */
 312	TCR_OFSET=0x08,
 313	TCR_RTGOPT=0x10,
 314	TCR_RTFT0=0x20,
 315	TCR_RTFT1=0x40,
 316	TCR_RTSF=0x80,
 317};
 318
 319/* Bits in the CamCon (CAMC) register */
 320enum camcon_bits {
 321	CAMC_CAMEN=0x01,
 322	CAMC_VCAMSL=0x02,
 323	CAMC_CAMWR=0x04,
 324	CAMC_CAMRD=0x08,
 325};
 326
 327/* Bits in the PCIBusConfig1 (BCR1) register */
 328enum bcr1_bits {
 329	BCR1_POT0=0x01,
 330	BCR1_POT1=0x02,
 331	BCR1_POT2=0x04,
 332	BCR1_CTFT0=0x08,
 333	BCR1_CTFT1=0x10,
 334	BCR1_CTSF=0x20,
 335	BCR1_TXQNOBK=0x40,	/* for VT6105 */
 336	BCR1_VIDFR=0x80,	/* for VT6105 */
 337	BCR1_MED0=0x40,		/* for VT6102 */
 338	BCR1_MED1=0x80,		/* for VT6102 */
 339};
 340
 341#ifdef USE_MMIO
 342/* Registers we check that mmio and reg are the same. */
 343static const int mmio_verify_registers[] = {
 344	RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
 345	0
 346};
 347#endif
 348
 349/* Bits in the interrupt status/mask registers. */
 350enum intr_status_bits {
 351	IntrRxDone	= 0x0001,
 352	IntrTxDone	= 0x0002,
 353	IntrRxErr	= 0x0004,
 354	IntrTxError	= 0x0008,
 355	IntrRxEmpty	= 0x0020,
 356	IntrPCIErr	= 0x0040,
 357	IntrStatsMax	= 0x0080,
 358	IntrRxEarly	= 0x0100,
 359	IntrTxUnderrun	= 0x0210,
 360	IntrRxOverflow	= 0x0400,
 361	IntrRxDropped	= 0x0800,
 362	IntrRxNoBuf	= 0x1000,
 363	IntrTxAborted	= 0x2000,
 364	IntrLinkChange	= 0x4000,
 365	IntrRxWakeUp	= 0x8000,
 366	IntrTxDescRace		= 0x080000,	/* mapped from IntrStatus2 */
 367	IntrNormalSummary	= IntrRxDone | IntrTxDone,
 368	IntrTxErrSummary	= IntrTxDescRace | IntrTxAborted | IntrTxError |
 369				  IntrTxUnderrun,
 370};
 371
 372/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
 373enum wol_bits {
 374	WOLucast	= 0x10,
 375	WOLmagic	= 0x20,
 376	WOLbmcast	= 0x30,
 377	WOLlnkon	= 0x40,
 378	WOLlnkoff	= 0x80,
 379};
 380
 381/* The Rx and Tx buffer descriptors. */
 382struct rx_desc {
 383	__le32 rx_status;
 384	__le32 desc_length; /* Chain flag, Buffer/frame length */
 385	__le32 addr;
 386	__le32 next_desc;
 387};
 388struct tx_desc {
 389	__le32 tx_status;
 390	__le32 desc_length; /* Chain flag, Tx Config, Frame length */
 391	__le32 addr;
 392	__le32 next_desc;
 393};
 394
 395/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
 396#define TXDESC		0x00e08000
 397
 398enum rx_status_bits {
 399	RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
 400};
 401
 402/* Bits in *_desc.*_status */
 403enum desc_status_bits {
 404	DescOwn=0x80000000
 405};
 406
 407/* Bits in *_desc.*_length */
 408enum desc_length_bits {
 409	DescTag=0x00010000
 410};
 411
 412/* Bits in ChipCmd. */
 413enum chip_cmd_bits {
 414	CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
 415	CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
 416	Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
 417	Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
 418};
 419
 420struct rhine_stats {
 421	u64		packets;
 422	u64		bytes;
 423	struct u64_stats_sync syncp;
 424};
 425
 426struct rhine_private {
 427	/* Bit mask for configured VLAN ids */
 428	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
 429
 430	/* Descriptor rings */
 431	struct rx_desc *rx_ring;
 432	struct tx_desc *tx_ring;
 433	dma_addr_t rx_ring_dma;
 434	dma_addr_t tx_ring_dma;
 435
 436	/* The addresses of receive-in-place skbuffs. */
 437	struct sk_buff *rx_skbuff[RX_RING_SIZE];
 438	dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
 439
 440	/* The saved address of a sent-in-place packet/buffer, for later free(). */
 441	struct sk_buff *tx_skbuff[TX_RING_SIZE];
 442	dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
 443
 444	/* Tx bounce buffers (Rhine-I only) */
 445	unsigned char *tx_buf[TX_RING_SIZE];
 446	unsigned char *tx_bufs;
 447	dma_addr_t tx_bufs_dma;
 448
 449	struct pci_dev *pdev;
 450	long pioaddr;
 451	struct net_device *dev;
 452	struct napi_struct napi;
 453	spinlock_t lock;
 454	struct mutex task_lock;
 455	bool task_enable;
 456	struct work_struct slow_event_task;
 457	struct work_struct reset_task;
 458
 459	u32 msg_enable;
 460
 461	/* Frequently used values: keep some adjacent for cache effect. */
 462	u32 quirks;
 463	struct rx_desc *rx_head_desc;
 464	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
 465	unsigned int cur_tx, dirty_tx;
 466	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
 467	struct rhine_stats rx_stats;
 468	struct rhine_stats tx_stats;
 469	u8 wolopts;
 470
 471	u8 tx_thresh, rx_thresh;
 472
 473	struct mii_if_info mii_if;
 474	void __iomem *base;
 475};
 476
 477#define BYTE_REG_BITS_ON(x, p)      do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
 478#define WORD_REG_BITS_ON(x, p)      do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
 479#define DWORD_REG_BITS_ON(x, p)     do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
 480
 481#define BYTE_REG_BITS_IS_ON(x, p)   (ioread8((p)) & (x))
 482#define WORD_REG_BITS_IS_ON(x, p)   (ioread16((p)) & (x))
 483#define DWORD_REG_BITS_IS_ON(x, p)  (ioread32((p)) & (x))
 484
 485#define BYTE_REG_BITS_OFF(x, p)     do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
 486#define WORD_REG_BITS_OFF(x, p)     do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
 487#define DWORD_REG_BITS_OFF(x, p)    do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
 488
 489#define BYTE_REG_BITS_SET(x, m, p)   do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
 490#define WORD_REG_BITS_SET(x, m, p)   do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
 491#define DWORD_REG_BITS_SET(x, m, p)  do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
 492
 493
 494static int  mdio_read(struct net_device *dev, int phy_id, int location);
 495static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
 496static int  rhine_open(struct net_device *dev);
 497static void rhine_reset_task(struct work_struct *work);
 498static void rhine_slow_event_task(struct work_struct *work);
 499static void rhine_tx_timeout(struct net_device *dev);
 500static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
 501				  struct net_device *dev);
 502static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
 503static void rhine_tx(struct net_device *dev);
 504static int rhine_rx(struct net_device *dev, int limit);
 505static void rhine_set_rx_mode(struct net_device *dev);
 506static struct rtnl_link_stats64 *rhine_get_stats64(struct net_device *dev,
 507	       struct rtnl_link_stats64 *stats);
 508static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 509static const struct ethtool_ops netdev_ethtool_ops;
 510static int  rhine_close(struct net_device *dev);
 511static int rhine_vlan_rx_add_vid(struct net_device *dev,
 512				 __be16 proto, u16 vid);
 513static int rhine_vlan_rx_kill_vid(struct net_device *dev,
 514				  __be16 proto, u16 vid);
 515static void rhine_restart_tx(struct net_device *dev);
 516
 517static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
 518{
 519	void __iomem *ioaddr = rp->base;
 520	int i;
 521
 522	for (i = 0; i < 1024; i++) {
 523		bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
 524
 525		if (low ^ has_mask_bits)
 526			break;
 527		udelay(10);
 528	}
 529	if (i > 64) {
 530		netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
 531			  "count: %04d\n", low ? "low" : "high", reg, mask, i);
 532	}
 533}
 534
 535static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
 536{
 537	rhine_wait_bit(rp, reg, mask, false);
 538}
 539
 540static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
 541{
 542	rhine_wait_bit(rp, reg, mask, true);
 543}
 544
 545static u32 rhine_get_events(struct rhine_private *rp)
 546{
 547	void __iomem *ioaddr = rp->base;
 548	u32 intr_status;
 549
 550	intr_status = ioread16(ioaddr + IntrStatus);
 551	/* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
 552	if (rp->quirks & rqStatusWBRace)
 553		intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
 554	return intr_status;
 555}
 556
 557static void rhine_ack_events(struct rhine_private *rp, u32 mask)
 558{
 559	void __iomem *ioaddr = rp->base;
 560
 561	if (rp->quirks & rqStatusWBRace)
 562		iowrite8(mask >> 16, ioaddr + IntrStatus2);
 563	iowrite16(mask, ioaddr + IntrStatus);
 564	mmiowb();
 565}
 566
 567/*
 568 * Get power related registers into sane state.
 569 * Notify user about past WOL event.
 570 */
 571static void rhine_power_init(struct net_device *dev)
 572{
 573	struct rhine_private *rp = netdev_priv(dev);
 574	void __iomem *ioaddr = rp->base;
 575	u16 wolstat;
 576
 577	if (rp->quirks & rqWOL) {
 578		/* Make sure chip is in power state D0 */
 579		iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
 580
 581		/* Disable "force PME-enable" */
 582		iowrite8(0x80, ioaddr + WOLcgClr);
 583
 584		/* Clear power-event config bits (WOL) */
 585		iowrite8(0xFF, ioaddr + WOLcrClr);
 586		/* More recent cards can manage two additional patterns */
 587		if (rp->quirks & rq6patterns)
 588			iowrite8(0x03, ioaddr + WOLcrClr1);
 589
 590		/* Save power-event status bits */
 591		wolstat = ioread8(ioaddr + PwrcsrSet);
 592		if (rp->quirks & rq6patterns)
 593			wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
 594
 595		/* Clear power-event status bits */
 596		iowrite8(0xFF, ioaddr + PwrcsrClr);
 597		if (rp->quirks & rq6patterns)
 598			iowrite8(0x03, ioaddr + PwrcsrClr1);
 599
 600		if (wolstat) {
 601			char *reason;
 602			switch (wolstat) {
 603			case WOLmagic:
 604				reason = "Magic packet";
 605				break;
 606			case WOLlnkon:
 607				reason = "Link went up";
 608				break;
 609			case WOLlnkoff:
 610				reason = "Link went down";
 611				break;
 612			case WOLucast:
 613				reason = "Unicast packet";
 614				break;
 615			case WOLbmcast:
 616				reason = "Multicast/broadcast packet";
 617				break;
 618			default:
 619				reason = "Unknown";
 620			}
 621			netdev_info(dev, "Woke system up. Reason: %s\n",
 622				    reason);
 623		}
 624	}
 625}
 626
 627static void rhine_chip_reset(struct net_device *dev)
 628{
 629	struct rhine_private *rp = netdev_priv(dev);
 630	void __iomem *ioaddr = rp->base;
 631	u8 cmd1;
 632
 633	iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
 634	IOSYNC;
 635
 636	if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
 637		netdev_info(dev, "Reset not complete yet. Trying harder.\n");
 638
 639		/* Force reset */
 640		if (rp->quirks & rqForceReset)
 641			iowrite8(0x40, ioaddr + MiscCmd);
 642
 643		/* Reset can take somewhat longer (rare) */
 644		rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
 645	}
 646
 647	cmd1 = ioread8(ioaddr + ChipCmd1);
 648	netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
 649		   "failed" : "succeeded");
 650}
 651
 652#ifdef USE_MMIO
 653static void enable_mmio(long pioaddr, u32 quirks)
 654{
 655	int n;
 656	if (quirks & rqRhineI) {
 657		/* More recent docs say that this bit is reserved ... */
 658		n = inb(pioaddr + ConfigA) | 0x20;
 659		outb(n, pioaddr + ConfigA);
 660	} else {
 661		n = inb(pioaddr + ConfigD) | 0x80;
 662		outb(n, pioaddr + ConfigD);
 663	}
 664}
 665#endif
 666
 667/*
 668 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
 669 * (plus 0x6C for Rhine-I/II)
 670 */
 671static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
 672{
 673	struct rhine_private *rp = netdev_priv(dev);
 674	void __iomem *ioaddr = rp->base;
 675	int i;
 676
 677	outb(0x20, pioaddr + MACRegEEcsr);
 678	for (i = 0; i < 1024; i++) {
 679		if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
 680			break;
 681	}
 682	if (i > 512)
 683		pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
 684
 685#ifdef USE_MMIO
 686	/*
 687	 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
 688	 * MMIO. If reloading EEPROM was done first this could be avoided, but
 689	 * it is not known if that still works with the "win98-reboot" problem.
 690	 */
 691	enable_mmio(pioaddr, rp->quirks);
 692#endif
 693
 694	/* Turn off EEPROM-controlled wake-up (magic packet) */
 695	if (rp->quirks & rqWOL)
 696		iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
 697
 698}
 699
 700#ifdef CONFIG_NET_POLL_CONTROLLER
 701static void rhine_poll(struct net_device *dev)
 702{
 703	struct rhine_private *rp = netdev_priv(dev);
 704	const int irq = rp->pdev->irq;
 705
 706	disable_irq(irq);
 707	rhine_interrupt(irq, dev);
 708	enable_irq(irq);
 709}
 710#endif
 711
 712static void rhine_kick_tx_threshold(struct rhine_private *rp)
 713{
 714	if (rp->tx_thresh < 0xe0) {
 715		void __iomem *ioaddr = rp->base;
 716
 717		rp->tx_thresh += 0x20;
 718		BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
 719	}
 720}
 721
 722static void rhine_tx_err(struct rhine_private *rp, u32 status)
 723{
 724	struct net_device *dev = rp->dev;
 725
 726	if (status & IntrTxAborted) {
 727		netif_info(rp, tx_err, dev,
 728			   "Abort %08x, frame dropped\n", status);
 729	}
 730
 731	if (status & IntrTxUnderrun) {
 732		rhine_kick_tx_threshold(rp);
 733		netif_info(rp, tx_err ,dev, "Transmitter underrun, "
 734			   "Tx threshold now %02x\n", rp->tx_thresh);
 735	}
 736
 737	if (status & IntrTxDescRace)
 738		netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
 739
 740	if ((status & IntrTxError) &&
 741	    (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
 742		rhine_kick_tx_threshold(rp);
 743		netif_info(rp, tx_err, dev, "Unspecified error. "
 744			   "Tx threshold now %02x\n", rp->tx_thresh);
 745	}
 746
 747	rhine_restart_tx(dev);
 748}
 749
 750static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
 751{
 752	void __iomem *ioaddr = rp->base;
 753	struct net_device_stats *stats = &rp->dev->stats;
 754
 755	stats->rx_crc_errors    += ioread16(ioaddr + RxCRCErrs);
 756	stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
 757
 758	/*
 759	 * Clears the "tally counters" for CRC errors and missed frames(?).
 760	 * It has been reported that some chips need a write of 0 to clear
 761	 * these, for others the counters are set to 1 when written to and
 762	 * instead cleared when read. So we clear them both ways ...
 763	 */
 764	iowrite32(0, ioaddr + RxMissed);
 765	ioread16(ioaddr + RxCRCErrs);
 766	ioread16(ioaddr + RxMissed);
 767}
 768
 769#define RHINE_EVENT_NAPI_RX	(IntrRxDone | \
 770				 IntrRxErr | \
 771				 IntrRxEmpty | \
 772				 IntrRxOverflow	| \
 773				 IntrRxDropped | \
 774				 IntrRxNoBuf | \
 775				 IntrRxWakeUp)
 776
 777#define RHINE_EVENT_NAPI_TX_ERR	(IntrTxError | \
 778				 IntrTxAborted | \
 779				 IntrTxUnderrun | \
 780				 IntrTxDescRace)
 781#define RHINE_EVENT_NAPI_TX	(IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
 782
 783#define RHINE_EVENT_NAPI	(RHINE_EVENT_NAPI_RX | \
 784				 RHINE_EVENT_NAPI_TX | \
 785				 IntrStatsMax)
 786#define RHINE_EVENT_SLOW	(IntrPCIErr | IntrLinkChange)
 787#define RHINE_EVENT		(RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
 788
 789static int rhine_napipoll(struct napi_struct *napi, int budget)
 790{
 791	struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
 792	struct net_device *dev = rp->dev;
 793	void __iomem *ioaddr = rp->base;
 794	u16 enable_mask = RHINE_EVENT & 0xffff;
 795	int work_done = 0;
 796	u32 status;
 797
 798	status = rhine_get_events(rp);
 799	rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
 800
 801	if (status & RHINE_EVENT_NAPI_RX)
 802		work_done += rhine_rx(dev, budget);
 803
 804	if (status & RHINE_EVENT_NAPI_TX) {
 805		if (status & RHINE_EVENT_NAPI_TX_ERR) {
 806			/* Avoid scavenging before Tx engine turned off */
 807			rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
 808			if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
 809				netif_warn(rp, tx_err, dev, "Tx still on\n");
 810		}
 811
 812		rhine_tx(dev);
 813
 814		if (status & RHINE_EVENT_NAPI_TX_ERR)
 815			rhine_tx_err(rp, status);
 816	}
 817
 818	if (status & IntrStatsMax) {
 819		spin_lock(&rp->lock);
 820		rhine_update_rx_crc_and_missed_errord(rp);
 821		spin_unlock(&rp->lock);
 822	}
 823
 824	if (status & RHINE_EVENT_SLOW) {
 825		enable_mask &= ~RHINE_EVENT_SLOW;
 826		schedule_work(&rp->slow_event_task);
 827	}
 828
 829	if (work_done < budget) {
 830		napi_complete(napi);
 831		iowrite16(enable_mask, ioaddr + IntrEnable);
 832		mmiowb();
 833	}
 834	return work_done;
 835}
 836
 837static void rhine_hw_init(struct net_device *dev, long pioaddr)
 838{
 839	struct rhine_private *rp = netdev_priv(dev);
 840
 841	/* Reset the chip to erase previous misconfiguration. */
 842	rhine_chip_reset(dev);
 843
 844	/* Rhine-I needs extra time to recuperate before EEPROM reload */
 845	if (rp->quirks & rqRhineI)
 846		msleep(5);
 847
 848	/* Reload EEPROM controlled bytes cleared by soft reset */
 849	rhine_reload_eeprom(pioaddr, dev);
 850}
 851
 852static const struct net_device_ops rhine_netdev_ops = {
 853	.ndo_open		 = rhine_open,
 854	.ndo_stop		 = rhine_close,
 855	.ndo_start_xmit		 = rhine_start_tx,
 856	.ndo_get_stats64	 = rhine_get_stats64,
 857	.ndo_set_rx_mode	 = rhine_set_rx_mode,
 858	.ndo_change_mtu		 = eth_change_mtu,
 859	.ndo_validate_addr	 = eth_validate_addr,
 860	.ndo_set_mac_address 	 = eth_mac_addr,
 861	.ndo_do_ioctl		 = netdev_ioctl,
 862	.ndo_tx_timeout 	 = rhine_tx_timeout,
 863	.ndo_vlan_rx_add_vid	 = rhine_vlan_rx_add_vid,
 864	.ndo_vlan_rx_kill_vid	 = rhine_vlan_rx_kill_vid,
 865#ifdef CONFIG_NET_POLL_CONTROLLER
 866	.ndo_poll_controller	 = rhine_poll,
 867#endif
 868};
 869
 870static int rhine_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
 871{
 872	struct net_device *dev;
 873	struct rhine_private *rp;
 874	int i, rc;
 875	u32 quirks;
 876	long pioaddr;
 877	long memaddr;
 878	void __iomem *ioaddr;
 879	int io_size, phy_id;
 880	const char *name;
 881#ifdef USE_MMIO
 882	int bar = 1;
 883#else
 884	int bar = 0;
 885#endif
 886
 887/* when built into the kernel, we only print version if device is found */
 888#ifndef MODULE
 889	pr_info_once("%s\n", version);
 890#endif
 891
 892	io_size = 256;
 893	phy_id = 0;
 894	quirks = 0;
 895	name = "Rhine";
 896	if (pdev->revision < VTunknown0) {
 897		quirks = rqRhineI;
 898		io_size = 128;
 899	}
 900	else if (pdev->revision >= VT6102) {
 901		quirks = rqWOL | rqForceReset;
 902		if (pdev->revision < VT6105) {
 903			name = "Rhine II";
 904			quirks |= rqStatusWBRace;	/* Rhine-II exclusive */
 905		}
 906		else {
 907			phy_id = 1;	/* Integrated PHY, phy_id fixed to 1 */
 908			if (pdev->revision >= VT6105_B0)
 909				quirks |= rq6patterns;
 910			if (pdev->revision < VT6105M)
 911				name = "Rhine III";
 912			else
 913				name = "Rhine III (Management Adapter)";
 914		}
 915	}
 916
 917	rc = pci_enable_device(pdev);
 918	if (rc)
 919		goto err_out;
 920
 921	/* this should always be supported */
 922	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
 923	if (rc) {
 924		dev_err(&pdev->dev,
 925			"32-bit PCI DMA addresses not supported by the card!?\n");
 926		goto err_out_pci_disable;
 927	}
 928
 929	/* sanity check */
 930	if ((pci_resource_len(pdev, 0) < io_size) ||
 931	    (pci_resource_len(pdev, 1) < io_size)) {
 932		rc = -EIO;
 933		dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n");
 934		goto err_out_pci_disable;
 935	}
 936
 937	pioaddr = pci_resource_start(pdev, 0);
 938	memaddr = pci_resource_start(pdev, 1);
 939
 940	pci_set_master(pdev);
 941
 942	dev = alloc_etherdev(sizeof(struct rhine_private));
 943	if (!dev) {
 944		rc = -ENOMEM;
 945		goto err_out_pci_disable;
 946	}
 947	SET_NETDEV_DEV(dev, &pdev->dev);
 948
 949	rp = netdev_priv(dev);
 950	rp->dev = dev;
 951	rp->quirks = quirks;
 952	rp->pioaddr = pioaddr;
 953	rp->pdev = pdev;
 954	rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
 955
 956	rc = pci_request_regions(pdev, DRV_NAME);
 957	if (rc)
 958		goto err_out_free_netdev;
 959
 960	ioaddr = pci_iomap(pdev, bar, io_size);
 961	if (!ioaddr) {
 962		rc = -EIO;
 963		dev_err(&pdev->dev,
 964			"ioremap failed for device %s, region 0x%X @ 0x%lX\n",
 965			pci_name(pdev), io_size, memaddr);
 966		goto err_out_free_res;
 967	}
 968
 969#ifdef USE_MMIO
 970	enable_mmio(pioaddr, quirks);
 971
 972	/* Check that selected MMIO registers match the PIO ones */
 973	i = 0;
 974	while (mmio_verify_registers[i]) {
 975		int reg = mmio_verify_registers[i++];
 976		unsigned char a = inb(pioaddr+reg);
 977		unsigned char b = readb(ioaddr+reg);
 978		if (a != b) {
 979			rc = -EIO;
 980			dev_err(&pdev->dev,
 981				"MMIO do not match PIO [%02x] (%02x != %02x)\n",
 982				reg, a, b);
 983			goto err_out_unmap;
 984		}
 985	}
 986#endif /* USE_MMIO */
 987
 988	rp->base = ioaddr;
 989
 990	u64_stats_init(&rp->tx_stats.syncp);
 991	u64_stats_init(&rp->rx_stats.syncp);
 992
 993	/* Get chip registers into a sane state */
 994	rhine_power_init(dev);
 995	rhine_hw_init(dev, pioaddr);
 996
 997	for (i = 0; i < 6; i++)
 998		dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
 999
1000	if (!is_valid_ether_addr(dev->dev_addr)) {
1001		/* Report it and use a random ethernet address instead */
1002		netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
1003		eth_hw_addr_random(dev);
1004		netdev_info(dev, "Using random MAC address: %pM\n",
1005			    dev->dev_addr);
1006	}
1007
1008	/* For Rhine-I/II, phy_id is loaded from EEPROM */
1009	if (!phy_id)
1010		phy_id = ioread8(ioaddr + 0x6C);
1011
1012	spin_lock_init(&rp->lock);
1013	mutex_init(&rp->task_lock);
1014	INIT_WORK(&rp->reset_task, rhine_reset_task);
1015	INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
1016
1017	rp->mii_if.dev = dev;
1018	rp->mii_if.mdio_read = mdio_read;
1019	rp->mii_if.mdio_write = mdio_write;
1020	rp->mii_if.phy_id_mask = 0x1f;
1021	rp->mii_if.reg_num_mask = 0x1f;
1022
1023	/* The chip-specific entries in the device structure. */
1024	dev->netdev_ops = &rhine_netdev_ops;
1025	dev->ethtool_ops = &netdev_ethtool_ops;
1026	dev->watchdog_timeo = TX_TIMEOUT;
1027
1028	netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
1029
1030	if (rp->quirks & rqRhineI)
1031		dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
1032
1033	if (pdev->revision >= VT6105M)
1034		dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1035				 NETIF_F_HW_VLAN_CTAG_RX |
1036				 NETIF_F_HW_VLAN_CTAG_FILTER;
1037
1038	/* dev->name not defined before register_netdev()! */
1039	rc = register_netdev(dev);
1040	if (rc)
1041		goto err_out_unmap;
1042
1043	netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
1044		    name,
1045#ifdef USE_MMIO
1046		    memaddr,
1047#else
1048		    (long)ioaddr,
1049#endif
1050		    dev->dev_addr, pdev->irq);
1051
1052	pci_set_drvdata(pdev, dev);
1053
1054	{
1055		u16 mii_cmd;
1056		int mii_status = mdio_read(dev, phy_id, 1);
1057		mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1058		mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1059		if (mii_status != 0xffff && mii_status != 0x0000) {
1060			rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
1061			netdev_info(dev,
1062				    "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1063				    phy_id,
1064				    mii_status, rp->mii_if.advertising,
1065				    mdio_read(dev, phy_id, 5));
1066
1067			/* set IFF_RUNNING */
1068			if (mii_status & BMSR_LSTATUS)
1069				netif_carrier_on(dev);
1070			else
1071				netif_carrier_off(dev);
1072
1073		}
1074	}
1075	rp->mii_if.phy_id = phy_id;
1076	if (avoid_D3)
1077		netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1078
1079	return 0;
1080
1081err_out_unmap:
1082	pci_iounmap(pdev, ioaddr);
1083err_out_free_res:
1084	pci_release_regions(pdev);
1085err_out_free_netdev:
1086	free_netdev(dev);
1087err_out_pci_disable:
1088	pci_disable_device(pdev);
1089err_out:
1090	return rc;
1091}
1092
1093static int alloc_ring(struct net_device* dev)
1094{
1095	struct rhine_private *rp = netdev_priv(dev);
1096	void *ring;
1097	dma_addr_t ring_dma;
1098
1099	ring = pci_alloc_consistent(rp->pdev,
1100				    RX_RING_SIZE * sizeof(struct rx_desc) +
1101				    TX_RING_SIZE * sizeof(struct tx_desc),
1102				    &ring_dma);
1103	if (!ring) {
1104		netdev_err(dev, "Could not allocate DMA memory\n");
1105		return -ENOMEM;
1106	}
1107	if (rp->quirks & rqRhineI) {
1108		rp->tx_bufs = pci_alloc_consistent(rp->pdev,
1109						   PKT_BUF_SZ * TX_RING_SIZE,
1110						   &rp->tx_bufs_dma);
1111		if (rp->tx_bufs == NULL) {
1112			pci_free_consistent(rp->pdev,
1113				    RX_RING_SIZE * sizeof(struct rx_desc) +
1114				    TX_RING_SIZE * sizeof(struct tx_desc),
1115				    ring, ring_dma);
1116			return -ENOMEM;
1117		}
1118	}
1119
1120	rp->rx_ring = ring;
1121	rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1122	rp->rx_ring_dma = ring_dma;
1123	rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1124
1125	return 0;
1126}
1127
1128static void free_ring(struct net_device* dev)
1129{
1130	struct rhine_private *rp = netdev_priv(dev);
1131
1132	pci_free_consistent(rp->pdev,
1133			    RX_RING_SIZE * sizeof(struct rx_desc) +
1134			    TX_RING_SIZE * sizeof(struct tx_desc),
1135			    rp->rx_ring, rp->rx_ring_dma);
1136	rp->tx_ring = NULL;
1137
1138	if (rp->tx_bufs)
1139		pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
1140				    rp->tx_bufs, rp->tx_bufs_dma);
1141
1142	rp->tx_bufs = NULL;
1143
1144}
1145
1146static void alloc_rbufs(struct net_device *dev)
1147{
1148	struct rhine_private *rp = netdev_priv(dev);
1149	dma_addr_t next;
1150	int i;
1151
1152	rp->dirty_rx = rp->cur_rx = 0;
1153
1154	rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1155	rp->rx_head_desc = &rp->rx_ring[0];
1156	next = rp->rx_ring_dma;
1157
1158	/* Init the ring entries */
1159	for (i = 0; i < RX_RING_SIZE; i++) {
1160		rp->rx_ring[i].rx_status = 0;
1161		rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1162		next += sizeof(struct rx_desc);
1163		rp->rx_ring[i].next_desc = cpu_to_le32(next);
1164		rp->rx_skbuff[i] = NULL;
1165	}
1166	/* Mark the last entry as wrapping the ring. */
1167	rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1168
1169	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1170	for (i = 0; i < RX_RING_SIZE; i++) {
1171		struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1172		rp->rx_skbuff[i] = skb;
1173		if (skb == NULL)
1174			break;
1175
1176		rp->rx_skbuff_dma[i] =
1177			pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1178				       PCI_DMA_FROMDEVICE);
1179		if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[i])) {
1180			rp->rx_skbuff_dma[i] = 0;
1181			dev_kfree_skb(skb);
1182			break;
1183		}
1184		rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
1185		rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1186	}
1187	rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1188}
1189
1190static void free_rbufs(struct net_device* dev)
1191{
1192	struct rhine_private *rp = netdev_priv(dev);
1193	int i;
1194
1195	/* Free all the skbuffs in the Rx queue. */
1196	for (i = 0; i < RX_RING_SIZE; i++) {
1197		rp->rx_ring[i].rx_status = 0;
1198		rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1199		if (rp->rx_skbuff[i]) {
1200			pci_unmap_single(rp->pdev,
1201					 rp->rx_skbuff_dma[i],
1202					 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1203			dev_kfree_skb(rp->rx_skbuff[i]);
1204		}
1205		rp->rx_skbuff[i] = NULL;
1206	}
1207}
1208
1209static void alloc_tbufs(struct net_device* dev)
1210{
1211	struct rhine_private *rp = netdev_priv(dev);
1212	dma_addr_t next;
1213	int i;
1214
1215	rp->dirty_tx = rp->cur_tx = 0;
1216	next = rp->tx_ring_dma;
1217	for (i = 0; i < TX_RING_SIZE; i++) {
1218		rp->tx_skbuff[i] = NULL;
1219		rp->tx_ring[i].tx_status = 0;
1220		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1221		next += sizeof(struct tx_desc);
1222		rp->tx_ring[i].next_desc = cpu_to_le32(next);
1223		if (rp->quirks & rqRhineI)
1224			rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1225	}
1226	rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1227
1228}
1229
1230static void free_tbufs(struct net_device* dev)
1231{
1232	struct rhine_private *rp = netdev_priv(dev);
1233	int i;
1234
1235	for (i = 0; i < TX_RING_SIZE; i++) {
1236		rp->tx_ring[i].tx_status = 0;
1237		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1238		rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1239		if (rp->tx_skbuff[i]) {
1240			if (rp->tx_skbuff_dma[i]) {
1241				pci_unmap_single(rp->pdev,
1242						 rp->tx_skbuff_dma[i],
1243						 rp->tx_skbuff[i]->len,
1244						 PCI_DMA_TODEVICE);
1245			}
1246			dev_kfree_skb(rp->tx_skbuff[i]);
1247		}
1248		rp->tx_skbuff[i] = NULL;
1249		rp->tx_buf[i] = NULL;
1250	}
1251}
1252
1253static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1254{
1255	struct rhine_private *rp = netdev_priv(dev);
1256	void __iomem *ioaddr = rp->base;
1257
1258	mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1259
1260	if (rp->mii_if.full_duplex)
1261	    iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1262		   ioaddr + ChipCmd1);
1263	else
1264	    iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1265		   ioaddr + ChipCmd1);
1266
1267	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1268		   rp->mii_if.force_media, netif_carrier_ok(dev));
1269}
1270
1271/* Called after status of force_media possibly changed */
1272static void rhine_set_carrier(struct mii_if_info *mii)
1273{
1274	struct net_device *dev = mii->dev;
1275	struct rhine_private *rp = netdev_priv(dev);
1276
1277	if (mii->force_media) {
1278		/* autoneg is off: Link is always assumed to be up */
1279		if (!netif_carrier_ok(dev))
1280			netif_carrier_on(dev);
1281	} else	/* Let MMI library update carrier status */
1282		rhine_check_media(dev, 0);
1283
1284	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1285		   mii->force_media, netif_carrier_ok(dev));
1286}
1287
1288/**
1289 * rhine_set_cam - set CAM multicast filters
1290 * @ioaddr: register block of this Rhine
1291 * @idx: multicast CAM index [0..MCAM_SIZE-1]
1292 * @addr: multicast address (6 bytes)
1293 *
1294 * Load addresses into multicast filters.
1295 */
1296static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1297{
1298	int i;
1299
1300	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1301	wmb();
1302
1303	/* Paranoid -- idx out of range should never happen */
1304	idx &= (MCAM_SIZE - 1);
1305
1306	iowrite8((u8) idx, ioaddr + CamAddr);
1307
1308	for (i = 0; i < 6; i++, addr++)
1309		iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1310	udelay(10);
1311	wmb();
1312
1313	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1314	udelay(10);
1315
1316	iowrite8(0, ioaddr + CamCon);
1317}
1318
1319/**
1320 * rhine_set_vlan_cam - set CAM VLAN filters
1321 * @ioaddr: register block of this Rhine
1322 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1323 * @addr: VLAN ID (2 bytes)
1324 *
1325 * Load addresses into VLAN filters.
1326 */
1327static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1328{
1329	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1330	wmb();
1331
1332	/* Paranoid -- idx out of range should never happen */
1333	idx &= (VCAM_SIZE - 1);
1334
1335	iowrite8((u8) idx, ioaddr + CamAddr);
1336
1337	iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1338	udelay(10);
1339	wmb();
1340
1341	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1342	udelay(10);
1343
1344	iowrite8(0, ioaddr + CamCon);
1345}
1346
1347/**
1348 * rhine_set_cam_mask - set multicast CAM mask
1349 * @ioaddr: register block of this Rhine
1350 * @mask: multicast CAM mask
1351 *
1352 * Mask sets multicast filters active/inactive.
1353 */
1354static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1355{
1356	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1357	wmb();
1358
1359	/* write mask */
1360	iowrite32(mask, ioaddr + CamMask);
1361
1362	/* disable CAMEN */
1363	iowrite8(0, ioaddr + CamCon);
1364}
1365
1366/**
1367 * rhine_set_vlan_cam_mask - set VLAN CAM mask
1368 * @ioaddr: register block of this Rhine
1369 * @mask: VLAN CAM mask
1370 *
1371 * Mask sets VLAN filters active/inactive.
1372 */
1373static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1374{
1375	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1376	wmb();
1377
1378	/* write mask */
1379	iowrite32(mask, ioaddr + CamMask);
1380
1381	/* disable CAMEN */
1382	iowrite8(0, ioaddr + CamCon);
1383}
1384
1385/**
1386 * rhine_init_cam_filter - initialize CAM filters
1387 * @dev: network device
1388 *
1389 * Initialize (disable) hardware VLAN and multicast support on this
1390 * Rhine.
1391 */
1392static void rhine_init_cam_filter(struct net_device *dev)
1393{
1394	struct rhine_private *rp = netdev_priv(dev);
1395	void __iomem *ioaddr = rp->base;
1396
1397	/* Disable all CAMs */
1398	rhine_set_vlan_cam_mask(ioaddr, 0);
1399	rhine_set_cam_mask(ioaddr, 0);
1400
1401	/* disable hardware VLAN support */
1402	BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1403	BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1404}
1405
1406/**
1407 * rhine_update_vcam - update VLAN CAM filters
1408 * @rp: rhine_private data of this Rhine
1409 *
1410 * Update VLAN CAM filters to match configuration change.
1411 */
1412static void rhine_update_vcam(struct net_device *dev)
1413{
1414	struct rhine_private *rp = netdev_priv(dev);
1415	void __iomem *ioaddr = rp->base;
1416	u16 vid;
1417	u32 vCAMmask = 0;	/* 32 vCAMs (6105M and better) */
1418	unsigned int i = 0;
1419
1420	for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1421		rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1422		vCAMmask |= 1 << i;
1423		if (++i >= VCAM_SIZE)
1424			break;
1425	}
1426	rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1427}
1428
1429static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1430{
1431	struct rhine_private *rp = netdev_priv(dev);
1432
1433	spin_lock_bh(&rp->lock);
1434	set_bit(vid, rp->active_vlans);
1435	rhine_update_vcam(dev);
1436	spin_unlock_bh(&rp->lock);
1437	return 0;
1438}
1439
1440static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
1441{
1442	struct rhine_private *rp = netdev_priv(dev);
1443
1444	spin_lock_bh(&rp->lock);
1445	clear_bit(vid, rp->active_vlans);
1446	rhine_update_vcam(dev);
1447	spin_unlock_bh(&rp->lock);
1448	return 0;
1449}
1450
1451static void init_registers(struct net_device *dev)
1452{
1453	struct rhine_private *rp = netdev_priv(dev);
1454	void __iomem *ioaddr = rp->base;
1455	int i;
1456
1457	for (i = 0; i < 6; i++)
1458		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1459
1460	/* Initialize other registers. */
1461	iowrite16(0x0006, ioaddr + PCIBusConfig);	/* Tune configuration??? */
1462	/* Configure initial FIFO thresholds. */
1463	iowrite8(0x20, ioaddr + TxConfig);
1464	rp->tx_thresh = 0x20;
1465	rp->rx_thresh = 0x60;		/* Written in rhine_set_rx_mode(). */
1466
1467	iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1468	iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1469
1470	rhine_set_rx_mode(dev);
1471
1472	if (rp->pdev->revision >= VT6105M)
1473		rhine_init_cam_filter(dev);
1474
1475	napi_enable(&rp->napi);
1476
1477	iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1478
1479	iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1480	       ioaddr + ChipCmd);
1481	rhine_check_media(dev, 1);
1482}
1483
1484/* Enable MII link status auto-polling (required for IntrLinkChange) */
1485static void rhine_enable_linkmon(struct rhine_private *rp)
1486{
1487	void __iomem *ioaddr = rp->base;
1488
1489	iowrite8(0, ioaddr + MIICmd);
1490	iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1491	iowrite8(0x80, ioaddr + MIICmd);
1492
1493	rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1494
1495	iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1496}
1497
1498/* Disable MII link status auto-polling (required for MDIO access) */
1499static void rhine_disable_linkmon(struct rhine_private *rp)
1500{
1501	void __iomem *ioaddr = rp->base;
1502
1503	iowrite8(0, ioaddr + MIICmd);
1504
1505	if (rp->quirks & rqRhineI) {
1506		iowrite8(0x01, ioaddr + MIIRegAddr);	// MII_BMSR
1507
1508		/* Can be called from ISR. Evil. */
1509		mdelay(1);
1510
1511		/* 0x80 must be set immediately before turning it off */
1512		iowrite8(0x80, ioaddr + MIICmd);
1513
1514		rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1515
1516		/* Heh. Now clear 0x80 again. */
1517		iowrite8(0, ioaddr + MIICmd);
1518	}
1519	else
1520		rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1521}
1522
1523/* Read and write over the MII Management Data I/O (MDIO) interface. */
1524
1525static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1526{
1527	struct rhine_private *rp = netdev_priv(dev);
1528	void __iomem *ioaddr = rp->base;
1529	int result;
1530
1531	rhine_disable_linkmon(rp);
1532
1533	/* rhine_disable_linkmon already cleared MIICmd */
1534	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1535	iowrite8(regnum, ioaddr + MIIRegAddr);
1536	iowrite8(0x40, ioaddr + MIICmd);		/* Trigger read */
1537	rhine_wait_bit_low(rp, MIICmd, 0x40);
1538	result = ioread16(ioaddr + MIIData);
1539
1540	rhine_enable_linkmon(rp);
1541	return result;
1542}
1543
1544static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1545{
1546	struct rhine_private *rp = netdev_priv(dev);
1547	void __iomem *ioaddr = rp->base;
1548
1549	rhine_disable_linkmon(rp);
1550
1551	/* rhine_disable_linkmon already cleared MIICmd */
1552	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1553	iowrite8(regnum, ioaddr + MIIRegAddr);
1554	iowrite16(value, ioaddr + MIIData);
1555	iowrite8(0x20, ioaddr + MIICmd);		/* Trigger write */
1556	rhine_wait_bit_low(rp, MIICmd, 0x20);
1557
1558	rhine_enable_linkmon(rp);
1559}
1560
1561static void rhine_task_disable(struct rhine_private *rp)
1562{
1563	mutex_lock(&rp->task_lock);
1564	rp->task_enable = false;
1565	mutex_unlock(&rp->task_lock);
1566
1567	cancel_work_sync(&rp->slow_event_task);
1568	cancel_work_sync(&rp->reset_task);
1569}
1570
1571static void rhine_task_enable(struct rhine_private *rp)
1572{
1573	mutex_lock(&rp->task_lock);
1574	rp->task_enable = true;
1575	mutex_unlock(&rp->task_lock);
1576}
1577
1578static int rhine_open(struct net_device *dev)
1579{
1580	struct rhine_private *rp = netdev_priv(dev);
1581	void __iomem *ioaddr = rp->base;
1582	int rc;
1583
1584	rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
1585			dev);
1586	if (rc)
1587		return rc;
1588
1589	netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->pdev->irq);
1590
1591	rc = alloc_ring(dev);
1592	if (rc) {
1593		free_irq(rp->pdev->irq, dev);
1594		return rc;
1595	}
1596	alloc_rbufs(dev);
1597	alloc_tbufs(dev);
1598	rhine_chip_reset(dev);
1599	rhine_task_enable(rp);
1600	init_registers(dev);
1601
1602	netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1603		  __func__, ioread16(ioaddr + ChipCmd),
1604		  mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1605
1606	netif_start_queue(dev);
1607
1608	return 0;
1609}
1610
1611static void rhine_reset_task(struct work_struct *work)
1612{
1613	struct rhine_private *rp = container_of(work, struct rhine_private,
1614						reset_task);
1615	struct net_device *dev = rp->dev;
1616
1617	mutex_lock(&rp->task_lock);
1618
1619	if (!rp->task_enable)
1620		goto out_unlock;
1621
1622	napi_disable(&rp->napi);
1623	netif_tx_disable(dev);
1624	spin_lock_bh(&rp->lock);
1625
1626	/* clear all descriptors */
1627	free_tbufs(dev);
1628	free_rbufs(dev);
1629	alloc_tbufs(dev);
1630	alloc_rbufs(dev);
1631
1632	/* Reinitialize the hardware. */
1633	rhine_chip_reset(dev);
1634	init_registers(dev);
1635
1636	spin_unlock_bh(&rp->lock);
1637
1638	dev->trans_start = jiffies; /* prevent tx timeout */
1639	dev->stats.tx_errors++;
1640	netif_wake_queue(dev);
1641
1642out_unlock:
1643	mutex_unlock(&rp->task_lock);
1644}
1645
1646static void rhine_tx_timeout(struct net_device *dev)
1647{
1648	struct rhine_private *rp = netdev_priv(dev);
1649	void __iomem *ioaddr = rp->base;
1650
1651	netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1652		    ioread16(ioaddr + IntrStatus),
1653		    mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1654
1655	schedule_work(&rp->reset_task);
1656}
1657
1658static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1659				  struct net_device *dev)
1660{
1661	struct rhine_private *rp = netdev_priv(dev);
1662	void __iomem *ioaddr = rp->base;
1663	unsigned entry;
1664
1665	/* Caution: the write order is important here, set the field
1666	   with the "ownership" bits last. */
1667
1668	/* Calculate the next Tx descriptor entry. */
1669	entry = rp->cur_tx % TX_RING_SIZE;
1670
1671	if (skb_padto(skb, ETH_ZLEN))
1672		return NETDEV_TX_OK;
1673
1674	rp->tx_skbuff[entry] = skb;
1675
1676	if ((rp->quirks & rqRhineI) &&
1677	    (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1678		/* Must use alignment buffer. */
1679		if (skb->len > PKT_BUF_SZ) {
1680			/* packet too long, drop it */
1681			dev_kfree_skb_any(skb);
1682			rp->tx_skbuff[entry] = NULL;
1683			dev->stats.tx_dropped++;
1684			return NETDEV_TX_OK;
1685		}
1686
1687		/* Padding is not copied and so must be redone. */
1688		skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1689		if (skb->len < ETH_ZLEN)
1690			memset(rp->tx_buf[entry] + skb->len, 0,
1691			       ETH_ZLEN - skb->len);
1692		rp->tx_skbuff_dma[entry] = 0;
1693		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1694						      (rp->tx_buf[entry] -
1695						       rp->tx_bufs));
1696	} else {
1697		rp->tx_skbuff_dma[entry] =
1698			pci_map_single(rp->pdev, skb->data, skb->len,
1699				       PCI_DMA_TODEVICE);
1700		if (dma_mapping_error(&rp->pdev->dev, rp->tx_skbuff_dma[entry])) {
1701			dev_kfree_skb_any(skb);
1702			rp->tx_skbuff_dma[entry] = 0;
1703			dev->stats.tx_dropped++;
1704			return NETDEV_TX_OK;
1705		}
1706		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1707	}
1708
1709	rp->tx_ring[entry].desc_length =
1710		cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1711
1712	if (unlikely(vlan_tx_tag_present(skb))) {
1713		u16 vid_pcp = vlan_tx_tag_get(skb);
1714
1715		/* drop CFI/DEI bit, register needs VID and PCP */
1716		vid_pcp = (vid_pcp & VLAN_VID_MASK) |
1717			  ((vid_pcp & VLAN_PRIO_MASK) >> 1);
1718		rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16);
1719		/* request tagging */
1720		rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1721	}
1722	else
1723		rp->tx_ring[entry].tx_status = 0;
1724
1725	/* lock eth irq */
1726	wmb();
1727	rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1728	wmb();
1729
1730	rp->cur_tx++;
1731
1732	/* Non-x86 Todo: explicitly flush cache lines here. */
1733
1734	if (vlan_tx_tag_present(skb))
1735		/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1736		BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1737
1738	/* Wake the potentially-idle transmit channel */
1739	iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1740	       ioaddr + ChipCmd1);
1741	IOSYNC;
1742
1743	if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1744		netif_stop_queue(dev);
1745
1746	netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1747		  rp->cur_tx - 1, entry);
1748
1749	return NETDEV_TX_OK;
1750}
1751
1752static void rhine_irq_disable(struct rhine_private *rp)
1753{
1754	iowrite16(0x0000, rp->base + IntrEnable);
1755	mmiowb();
1756}
1757
1758/* The interrupt handler does all of the Rx thread work and cleans up
1759   after the Tx thread. */
1760static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1761{
1762	struct net_device *dev = dev_instance;
1763	struct rhine_private *rp = netdev_priv(dev);
1764	u32 status;
1765	int handled = 0;
1766
1767	status = rhine_get_events(rp);
1768
1769	netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
1770
1771	if (status & RHINE_EVENT) {
1772		handled = 1;
1773
1774		rhine_irq_disable(rp);
1775		napi_schedule(&rp->napi);
1776	}
1777
1778	if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
1779		netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1780			  status);
1781	}
1782
1783	return IRQ_RETVAL(handled);
1784}
1785
1786/* This routine is logically part of the interrupt handler, but isolated
1787   for clarity. */
1788static void rhine_tx(struct net_device *dev)
1789{
1790	struct rhine_private *rp = netdev_priv(dev);
1791	int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1792
1793	/* find and cleanup dirty tx descriptors */
1794	while (rp->dirty_tx != rp->cur_tx) {
1795		txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1796		netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1797			  entry, txstatus);
1798		if (txstatus & DescOwn)
1799			break;
1800		if (txstatus & 0x8000) {
1801			netif_dbg(rp, tx_done, dev,
1802				  "Transmit error, Tx status %08x\n", txstatus);
1803			dev->stats.tx_errors++;
1804			if (txstatus & 0x0400)
1805				dev->stats.tx_carrier_errors++;
1806			if (txstatus & 0x0200)
1807				dev->stats.tx_window_errors++;
1808			if (txstatus & 0x0100)
1809				dev->stats.tx_aborted_errors++;
1810			if (txstatus & 0x0080)
1811				dev->stats.tx_heartbeat_errors++;
1812			if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1813			    (txstatus & 0x0800) || (txstatus & 0x1000)) {
1814				dev->stats.tx_fifo_errors++;
1815				rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1816				break; /* Keep the skb - we try again */
1817			}
1818			/* Transmitter restarted in 'abnormal' handler. */
1819		} else {
1820			if (rp->quirks & rqRhineI)
1821				dev->stats.collisions += (txstatus >> 3) & 0x0F;
1822			else
1823				dev->stats.collisions += txstatus & 0x0F;
1824			netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1825				  (txstatus >> 3) & 0xF, txstatus & 0xF);
1826
1827			u64_stats_update_begin(&rp->tx_stats.syncp);
1828			rp->tx_stats.bytes += rp->tx_skbuff[entry]->len;
1829			rp->tx_stats.packets++;
1830			u64_stats_update_end(&rp->tx_stats.syncp);
1831		}
1832		/* Free the original skb. */
1833		if (rp->tx_skbuff_dma[entry]) {
1834			pci_unmap_single(rp->pdev,
1835					 rp->tx_skbuff_dma[entry],
1836					 rp->tx_skbuff[entry]->len,
1837					 PCI_DMA_TODEVICE);
1838		}
1839		dev_consume_skb_any(rp->tx_skbuff[entry]);
1840		rp->tx_skbuff[entry] = NULL;
1841		entry = (++rp->dirty_tx) % TX_RING_SIZE;
1842	}
1843	if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1844		netif_wake_queue(dev);
1845}
1846
1847/**
1848 * rhine_get_vlan_tci - extract TCI from Rx data buffer
1849 * @skb: pointer to sk_buff
1850 * @data_size: used data area of the buffer including CRC
1851 *
1852 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
1853 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
1854 * aligned following the CRC.
1855 */
1856static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
1857{
1858	u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
1859	return be16_to_cpup((__be16 *)trailer);
1860}
1861
1862/* Process up to limit frames from receive ring */
1863static int rhine_rx(struct net_device *dev, int limit)
1864{
1865	struct rhine_private *rp = netdev_priv(dev);
1866	int count;
1867	int entry = rp->cur_rx % RX_RING_SIZE;
1868
1869	netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
1870		  entry, le32_to_cpu(rp->rx_head_desc->rx_status));
1871
1872	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1873	for (count = 0; count < limit; ++count) {
1874		struct rx_desc *desc = rp->rx_head_desc;
1875		u32 desc_status = le32_to_cpu(desc->rx_status);
1876		u32 desc_length = le32_to_cpu(desc->desc_length);
1877		int data_size = desc_status >> 16;
1878
1879		if (desc_status & DescOwn)
1880			break;
1881
1882		netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
1883			  desc_status);
1884
1885		if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1886			if ((desc_status & RxWholePkt) != RxWholePkt) {
1887				netdev_warn(dev,
1888	"Oversized Ethernet frame spanned multiple buffers, "
1889	"entry %#x length %d status %08x!\n",
1890					    entry, data_size,
1891					    desc_status);
1892				netdev_warn(dev,
1893					    "Oversized Ethernet frame %p vs %p\n",
1894					    rp->rx_head_desc,
1895					    &rp->rx_ring[entry]);
1896				dev->stats.rx_length_errors++;
1897			} else if (desc_status & RxErr) {
1898				/* There was a error. */
1899				netif_dbg(rp, rx_err, dev,
1900					  "%s() Rx error %08x\n", __func__,
1901					  desc_status);
1902				dev->stats.rx_errors++;
1903				if (desc_status & 0x0030)
1904					dev->stats.rx_length_errors++;
1905				if (desc_status & 0x0048)
1906					dev->stats.rx_fifo_errors++;
1907				if (desc_status & 0x0004)
1908					dev->stats.rx_frame_errors++;
1909				if (desc_status & 0x0002) {
1910					/* this can also be updated outside the interrupt handler */
1911					spin_lock(&rp->lock);
1912					dev->stats.rx_crc_errors++;
1913					spin_unlock(&rp->lock);
1914				}
1915			}
1916		} else {
1917			struct sk_buff *skb = NULL;
1918			/* Length should omit the CRC */
1919			int pkt_len = data_size - 4;
1920			u16 vlan_tci = 0;
1921
1922			/* Check if the packet is long enough to accept without
1923			   copying to a minimally-sized skbuff. */
1924			if (pkt_len < rx_copybreak)
1925				skb = netdev_alloc_skb_ip_align(dev, pkt_len);
1926			if (skb) {
1927				pci_dma_sync_single_for_cpu(rp->pdev,
1928							    rp->rx_skbuff_dma[entry],
1929							    rp->rx_buf_sz,
1930							    PCI_DMA_FROMDEVICE);
1931
1932				skb_copy_to_linear_data(skb,
1933						 rp->rx_skbuff[entry]->data,
1934						 pkt_len);
1935				skb_put(skb, pkt_len);
1936				pci_dma_sync_single_for_device(rp->pdev,
1937							       rp->rx_skbuff_dma[entry],
1938							       rp->rx_buf_sz,
1939							       PCI_DMA_FROMDEVICE);
1940			} else {
1941				skb = rp->rx_skbuff[entry];
1942				if (skb == NULL) {
1943					netdev_err(dev, "Inconsistent Rx descriptor chain\n");
1944					break;
1945				}
1946				rp->rx_skbuff[entry] = NULL;
1947				skb_put(skb, pkt_len);
1948				pci_unmap_single(rp->pdev,
1949						 rp->rx_skbuff_dma[entry],
1950						 rp->rx_buf_sz,
1951						 PCI_DMA_FROMDEVICE);
1952			}
1953
1954			if (unlikely(desc_length & DescTag))
1955				vlan_tci = rhine_get_vlan_tci(skb, data_size);
1956
1957			skb->protocol = eth_type_trans(skb, dev);
1958
1959			if (unlikely(desc_length & DescTag))
1960				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
1961			netif_receive_skb(skb);
1962
1963			u64_stats_update_begin(&rp->rx_stats.syncp);
1964			rp->rx_stats.bytes += pkt_len;
1965			rp->rx_stats.packets++;
1966			u64_stats_update_end(&rp->rx_stats.syncp);
1967		}
1968		entry = (++rp->cur_rx) % RX_RING_SIZE;
1969		rp->rx_head_desc = &rp->rx_ring[entry];
1970	}
1971
1972	/* Refill the Rx ring buffers. */
1973	for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1974		struct sk_buff *skb;
1975		entry = rp->dirty_rx % RX_RING_SIZE;
1976		if (rp->rx_skbuff[entry] == NULL) {
1977			skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1978			rp->rx_skbuff[entry] = skb;
1979			if (skb == NULL)
1980				break;	/* Better luck next round. */
1981			rp->rx_skbuff_dma[entry] =
1982				pci_map_single(rp->pdev, skb->data,
1983					       rp->rx_buf_sz,
1984					       PCI_DMA_FROMDEVICE);
1985			if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[entry])) {
1986				dev_kfree_skb(skb);
1987				rp->rx_skbuff_dma[entry] = 0;
1988				break;
1989			}
1990			rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1991		}
1992		rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1993	}
1994
1995	return count;
1996}
1997
1998static void rhine_restart_tx(struct net_device *dev) {
1999	struct rhine_private *rp = netdev_priv(dev);
2000	void __iomem *ioaddr = rp->base;
2001	int entry = rp->dirty_tx % TX_RING_SIZE;
2002	u32 intr_status;
2003
2004	/*
2005	 * If new errors occurred, we need to sort them out before doing Tx.
2006	 * In that case the ISR will be back here RSN anyway.
2007	 */
2008	intr_status = rhine_get_events(rp);
2009
2010	if ((intr_status & IntrTxErrSummary) == 0) {
2011
2012		/* We know better than the chip where it should continue. */
2013		iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
2014		       ioaddr + TxRingPtr);
2015
2016		iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
2017		       ioaddr + ChipCmd);
2018
2019		if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
2020			/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
2021			BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
2022
2023		iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
2024		       ioaddr + ChipCmd1);
2025		IOSYNC;
2026	}
2027	else {
2028		/* This should never happen */
2029		netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
2030			   intr_status);
2031	}
2032
2033}
2034
2035static void rhine_slow_event_task(struct work_struct *work)
2036{
2037	struct rhine_private *rp =
2038		container_of(work, struct rhine_private, slow_event_task);
2039	struct net_device *dev = rp->dev;
2040	u32 intr_status;
2041
2042	mutex_lock(&rp->task_lock);
2043
2044	if (!rp->task_enable)
2045		goto out_unlock;
2046
2047	intr_status = rhine_get_events(rp);
2048	rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
2049
2050	if (intr_status & IntrLinkChange)
2051		rhine_check_media(dev, 0);
2052
2053	if (intr_status & IntrPCIErr)
2054		netif_warn(rp, hw, dev, "PCI error\n");
2055
2056	iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
2057
2058out_unlock:
2059	mutex_unlock(&rp->task_lock);
2060}
2061
2062static struct rtnl_link_stats64 *
2063rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
2064{
2065	struct rhine_private *rp = netdev_priv(dev);
2066	unsigned int start;
2067
2068	spin_lock_bh(&rp->lock);
2069	rhine_update_rx_crc_and_missed_errord(rp);
2070	spin_unlock_bh(&rp->lock);
2071
2072	netdev_stats_to_stats64(stats, &dev->stats);
2073
2074	do {
2075		start = u64_stats_fetch_begin_irq(&rp->rx_stats.syncp);
2076		stats->rx_packets = rp->rx_stats.packets;
2077		stats->rx_bytes = rp->rx_stats.bytes;
2078	} while (u64_stats_fetch_retry_irq(&rp->rx_stats.syncp, start));
2079
2080	do {
2081		start = u64_stats_fetch_begin_irq(&rp->tx_stats.syncp);
2082		stats->tx_packets = rp->tx_stats.packets;
2083		stats->tx_bytes = rp->tx_stats.bytes;
2084	} while (u64_stats_fetch_retry_irq(&rp->tx_stats.syncp, start));
2085
2086	return stats;
2087}
2088
2089static void rhine_set_rx_mode(struct net_device *dev)
2090{
2091	struct rhine_private *rp = netdev_priv(dev);
2092	void __iomem *ioaddr = rp->base;
2093	u32 mc_filter[2];	/* Multicast hash filter */
2094	u8 rx_mode = 0x0C;	/* Note: 0x02=accept runt, 0x01=accept errs */
2095	struct netdev_hw_addr *ha;
2096
2097	if (dev->flags & IFF_PROMISC) {		/* Set promiscuous. */
2098		rx_mode = 0x1C;
2099		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2100		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2101	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2102		   (dev->flags & IFF_ALLMULTI)) {
2103		/* Too many to match, or accept all multicasts. */
2104		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2105		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2106	} else if (rp->pdev->revision >= VT6105M) {
2107		int i = 0;
2108		u32 mCAMmask = 0;	/* 32 mCAMs (6105M and better) */
2109		netdev_for_each_mc_addr(ha, dev) {
2110			if (i == MCAM_SIZE)
2111				break;
2112			rhine_set_cam(ioaddr, i, ha->addr);
2113			mCAMmask |= 1 << i;
2114			i++;
2115		}
2116		rhine_set_cam_mask(ioaddr, mCAMmask);
2117	} else {
2118		memset(mc_filter, 0, sizeof(mc_filter));
2119		netdev_for_each_mc_addr(ha, dev) {
2120			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
2121
2122			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2123		}
2124		iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2125		iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
2126	}
2127	/* enable/disable VLAN receive filtering */
2128	if (rp->pdev->revision >= VT6105M) {
2129		if (dev->flags & IFF_PROMISC)
2130			BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2131		else
2132			BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2133	}
2134	BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
2135}
2136
2137static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2138{
2139	struct rhine_private *rp = netdev_priv(dev);
2140
2141	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2142	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2143	strlcpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info));
2144}
2145
2146static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2147{
2148	struct rhine_private *rp = netdev_priv(dev);
2149	int rc;
2150
2151	mutex_lock(&rp->task_lock);
2152	rc = mii_ethtool_gset(&rp->mii_if, cmd);
2153	mutex_unlock(&rp->task_lock);
2154
2155	return rc;
2156}
2157
2158static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2159{
2160	struct rhine_private *rp = netdev_priv(dev);
2161	int rc;
2162
2163	mutex_lock(&rp->task_lock);
2164	rc = mii_ethtool_sset(&rp->mii_if, cmd);
2165	rhine_set_carrier(&rp->mii_if);
2166	mutex_unlock(&rp->task_lock);
2167
2168	return rc;
2169}
2170
2171static int netdev_nway_reset(struct net_device *dev)
2172{
2173	struct rhine_private *rp = netdev_priv(dev);
2174
2175	return mii_nway_restart(&rp->mii_if);
2176}
2177
2178static u32 netdev_get_link(struct net_device *dev)
2179{
2180	struct rhine_private *rp = netdev_priv(dev);
2181
2182	return mii_link_ok(&rp->mii_if);
2183}
2184
2185static u32 netdev_get_msglevel(struct net_device *dev)
2186{
2187	struct rhine_private *rp = netdev_priv(dev);
2188
2189	return rp->msg_enable;
2190}
2191
2192static void netdev_set_msglevel(struct net_device *dev, u32 value)
2193{
2194	struct rhine_private *rp = netdev_priv(dev);
2195
2196	rp->msg_enable = value;
2197}
2198
2199static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2200{
2201	struct rhine_private *rp = netdev_priv(dev);
2202
2203	if (!(rp->quirks & rqWOL))
2204		return;
2205
2206	spin_lock_irq(&rp->lock);
2207	wol->supported = WAKE_PHY | WAKE_MAGIC |
2208			 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
2209	wol->wolopts = rp->wolopts;
2210	spin_unlock_irq(&rp->lock);
2211}
2212
2213static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2214{
2215	struct rhine_private *rp = netdev_priv(dev);
2216	u32 support = WAKE_PHY | WAKE_MAGIC |
2217		      WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
2218
2219	if (!(rp->quirks & rqWOL))
2220		return -EINVAL;
2221
2222	if (wol->wolopts & ~support)
2223		return -EINVAL;
2224
2225	spin_lock_irq(&rp->lock);
2226	rp->wolopts = wol->wolopts;
2227	spin_unlock_irq(&rp->lock);
2228
2229	return 0;
2230}
2231
2232static const struct ethtool_ops netdev_ethtool_ops = {
2233	.get_drvinfo		= netdev_get_drvinfo,
2234	.get_settings		= netdev_get_settings,
2235	.set_settings		= netdev_set_settings,
2236	.nway_reset		= netdev_nway_reset,
2237	.get_link		= netdev_get_link,
2238	.get_msglevel		= netdev_get_msglevel,
2239	.set_msglevel		= netdev_set_msglevel,
2240	.get_wol		= rhine_get_wol,
2241	.set_wol		= rhine_set_wol,
2242};
2243
2244static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2245{
2246	struct rhine_private *rp = netdev_priv(dev);
2247	int rc;
2248
2249	if (!netif_running(dev))
2250		return -EINVAL;
2251
2252	mutex_lock(&rp->task_lock);
2253	rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
2254	rhine_set_carrier(&rp->mii_if);
2255	mutex_unlock(&rp->task_lock);
2256
2257	return rc;
2258}
2259
2260static int rhine_close(struct net_device *dev)
2261{
2262	struct rhine_private *rp = netdev_priv(dev);
2263	void __iomem *ioaddr = rp->base;
2264
2265	rhine_task_disable(rp);
2266	napi_disable(&rp->napi);
2267	netif_stop_queue(dev);
2268
2269	netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2270		  ioread16(ioaddr + ChipCmd));
2271
2272	/* Switch to loopback mode to avoid hardware races. */
2273	iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2274
2275	rhine_irq_disable(rp);
2276
2277	/* Stop the chip's Tx and Rx processes. */
2278	iowrite16(CmdStop, ioaddr + ChipCmd);
2279
2280	free_irq(rp->pdev->irq, dev);
2281	free_rbufs(dev);
2282	free_tbufs(dev);
2283	free_ring(dev);
2284
2285	return 0;
2286}
2287
2288
2289static void rhine_remove_one(struct pci_dev *pdev)
2290{
2291	struct net_device *dev = pci_get_drvdata(pdev);
2292	struct rhine_private *rp = netdev_priv(dev);
2293
2294	unregister_netdev(dev);
2295
2296	pci_iounmap(pdev, rp->base);
2297	pci_release_regions(pdev);
2298
2299	free_netdev(dev);
2300	pci_disable_device(pdev);
2301}
2302
2303static void rhine_shutdown (struct pci_dev *pdev)
2304{
2305	struct net_device *dev = pci_get_drvdata(pdev);
2306	struct rhine_private *rp = netdev_priv(dev);
2307	void __iomem *ioaddr = rp->base;
2308
2309	if (!(rp->quirks & rqWOL))
2310		return; /* Nothing to do for non-WOL adapters */
2311
2312	rhine_power_init(dev);
2313
2314	/* Make sure we use pattern 0, 1 and not 4, 5 */
2315	if (rp->quirks & rq6patterns)
2316		iowrite8(0x04, ioaddr + WOLcgClr);
2317
2318	spin_lock(&rp->lock);
2319
2320	if (rp->wolopts & WAKE_MAGIC) {
2321		iowrite8(WOLmagic, ioaddr + WOLcrSet);
2322		/*
2323		 * Turn EEPROM-controlled wake-up back on -- some hardware may
2324		 * not cooperate otherwise.
2325		 */
2326		iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2327	}
2328
2329	if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2330		iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2331
2332	if (rp->wolopts & WAKE_PHY)
2333		iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2334
2335	if (rp->wolopts & WAKE_UCAST)
2336		iowrite8(WOLucast, ioaddr + WOLcrSet);
2337
2338	if (rp->wolopts) {
2339		/* Enable legacy WOL (for old motherboards) */
2340		iowrite8(0x01, ioaddr + PwcfgSet);
2341		iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2342	}
2343
2344	spin_unlock(&rp->lock);
2345
2346	if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
2347		iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
2348
2349		pci_wake_from_d3(pdev, true);
2350		pci_set_power_state(pdev, PCI_D3hot);
2351	}
2352}
2353
2354#ifdef CONFIG_PM_SLEEP
2355static int rhine_suspend(struct device *device)
2356{
2357	struct pci_dev *pdev = to_pci_dev(device);
2358	struct net_device *dev = pci_get_drvdata(pdev);
2359	struct rhine_private *rp = netdev_priv(dev);
2360
2361	if (!netif_running(dev))
2362		return 0;
2363
2364	rhine_task_disable(rp);
2365	rhine_irq_disable(rp);
2366	napi_disable(&rp->napi);
2367
2368	netif_device_detach(dev);
2369
2370	rhine_shutdown(pdev);
2371
2372	return 0;
2373}
2374
2375static int rhine_resume(struct device *device)
2376{
2377	struct pci_dev *pdev = to_pci_dev(device);
2378	struct net_device *dev = pci_get_drvdata(pdev);
2379	struct rhine_private *rp = netdev_priv(dev);
2380
2381	if (!netif_running(dev))
2382		return 0;
2383
2384#ifdef USE_MMIO
2385	enable_mmio(rp->pioaddr, rp->quirks);
2386#endif
2387	rhine_power_init(dev);
2388	free_tbufs(dev);
2389	free_rbufs(dev);
2390	alloc_tbufs(dev);
2391	alloc_rbufs(dev);
2392	rhine_task_enable(rp);
2393	spin_lock_bh(&rp->lock);
2394	init_registers(dev);
2395	spin_unlock_bh(&rp->lock);
2396
2397	netif_device_attach(dev);
2398
2399	return 0;
2400}
2401
2402static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2403#define RHINE_PM_OPS	(&rhine_pm_ops)
2404
2405#else
2406
2407#define RHINE_PM_OPS	NULL
2408
2409#endif /* !CONFIG_PM_SLEEP */
2410
2411static struct pci_driver rhine_driver = {
2412	.name		= DRV_NAME,
2413	.id_table	= rhine_pci_tbl,
2414	.probe		= rhine_init_one,
2415	.remove		= rhine_remove_one,
2416	.shutdown	= rhine_shutdown,
2417	.driver.pm	= RHINE_PM_OPS,
2418};
2419
2420static struct dmi_system_id rhine_dmi_table[] __initdata = {
2421	{
2422		.ident = "EPIA-M",
2423		.matches = {
2424			DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2425			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2426		},
2427	},
2428	{
2429		.ident = "KV7",
2430		.matches = {
2431			DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2432			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2433		},
2434	},
2435	{ NULL }
2436};
2437
2438static int __init rhine_init(void)
2439{
2440/* when a module, this is printed whether or not devices are found in probe */
2441#ifdef MODULE
2442	pr_info("%s\n", version);
2443#endif
2444	if (dmi_check_system(rhine_dmi_table)) {
2445		/* these BIOSes fail at PXE boot if chip is in D3 */
2446		avoid_D3 = true;
2447		pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
2448	}
2449	else if (avoid_D3)
2450		pr_info("avoid_D3 set\n");
2451
2452	return pci_register_driver(&rhine_driver);
2453}
2454
2455
2456static void __exit rhine_cleanup(void)
2457{
2458	pci_unregister_driver(&rhine_driver);
2459}
2460
2461
2462module_init(rhine_init);
2463module_exit(rhine_cleanup);