Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/************************************************************************
   2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
   3 * Copyright(c) 2002-2010 Exar Corp.
   4 *
   5 * This software may be used and distributed according to the terms of
   6 * the GNU General Public License (GPL), incorporated herein by reference.
   7 * Drivers based on or derived from this code fall under the GPL and must
   8 * retain the authorship, copyright and license notice.  This file is not
   9 * a complete program and may only be used when the entire operating
  10 * system is licensed under the GPL.
  11 * See the file COPYING in this distribution for more information.
  12 *
  13 * Credits:
  14 * Jeff Garzik		: For pointing out the improper error condition
  15 *			  check in the s2io_xmit routine and also some
  16 *			  issues in the Tx watch dog function. Also for
  17 *			  patiently answering all those innumerable
  18 *			  questions regaring the 2.6 porting issues.
  19 * Stephen Hemminger	: Providing proper 2.6 porting mechanism for some
  20 *			  macros available only in 2.6 Kernel.
  21 * Francois Romieu	: For pointing out all code part that were
  22 *			  deprecated and also styling related comments.
  23 * Grant Grundler	: For helping me get rid of some Architecture
  24 *			  dependent code.
  25 * Christopher Hellwig	: Some more 2.6 specific issues in the driver.
  26 *
  27 * The module loadable parameters that are supported by the driver and a brief
  28 * explanation of all the variables.
  29 *
  30 * rx_ring_num : This can be used to program the number of receive rings used
  31 * in the driver.
  32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
  33 *     This is also an array of size 8.
  34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
  35 *		values are 1, 2.
  36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
  37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
  38 * Tx descriptors that can be associated with each corresponding FIFO.
  39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
  40 *     2(MSI_X). Default value is '2(MSI_X)'
  41 * lro_max_pkts: This parameter defines maximum number of packets can be
  42 *     aggregated as a single large packet
  43 * napi: This parameter used to enable/disable NAPI (polling Rx)
  44 *     Possible values '1' for enable and '0' for disable. Default is '1'
  45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
  46 *      Possible values '1' for enable and '0' for disable. Default is '0'
  47 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
  48 *                 Possible values '1' for enable , '0' for disable.
  49 *                 Default is '2' - which means disable in promisc mode
  50 *                 and enable in non-promiscuous mode.
  51 * multiq: This parameter used to enable/disable MULTIQUEUE support.
  52 *      Possible values '1' for enable and '0' for disable. Default is '0'
  53 ************************************************************************/
  54
  55#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  56
  57#include <linux/module.h>
  58#include <linux/types.h>
  59#include <linux/errno.h>
  60#include <linux/ioport.h>
  61#include <linux/pci.h>
  62#include <linux/dma-mapping.h>
  63#include <linux/kernel.h>
  64#include <linux/netdevice.h>
  65#include <linux/etherdevice.h>
  66#include <linux/mdio.h>
  67#include <linux/skbuff.h>
  68#include <linux/init.h>
  69#include <linux/delay.h>
  70#include <linux/stddef.h>
  71#include <linux/ioctl.h>
  72#include <linux/timex.h>
  73#include <linux/ethtool.h>
  74#include <linux/workqueue.h>
  75#include <linux/if_vlan.h>
  76#include <linux/ip.h>
  77#include <linux/tcp.h>
  78#include <linux/uaccess.h>
  79#include <linux/io.h>
  80#include <linux/slab.h>
  81#include <linux/prefetch.h>
  82#include <net/tcp.h>
  83#include <net/checksum.h>
  84
  85#include <asm/div64.h>
  86#include <asm/irq.h>
  87
  88/* local include */
  89#include "s2io.h"
  90#include "s2io-regs.h"
  91
  92#define DRV_VERSION "2.0.26.28"
  93
  94/* S2io Driver name & version. */
  95static const char s2io_driver_name[] = "Neterion";
  96static const char s2io_driver_version[] = DRV_VERSION;
  97
  98static const int rxd_size[2] = {32, 48};
  99static const int rxd_count[2] = {127, 85};
 100
 101static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
 102{
 103	int ret;
 104
 105	ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
 106	       (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
 107
 108	return ret;
 109}
 110
 111/*
 112 * Cards with following subsystem_id have a link state indication
 113 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
 114 * macro below identifies these cards given the subsystem_id.
 115 */
 116#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)		\
 117	(dev_type == XFRAME_I_DEVICE) ?					\
 118	((((subid >= 0x600B) && (subid <= 0x600D)) ||			\
 119	  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
 120
 121#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
 122				      ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
 123
 124static inline int is_s2io_card_up(const struct s2io_nic *sp)
 125{
 126	return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
 127}
 128
 129/* Ethtool related variables and Macros. */
 130static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
 131	"Register test\t(offline)",
 132	"Eeprom test\t(offline)",
 133	"Link test\t(online)",
 134	"RLDRAM test\t(offline)",
 135	"BIST Test\t(offline)"
 136};
 137
 138static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
 139	{"tmac_frms"},
 140	{"tmac_data_octets"},
 141	{"tmac_drop_frms"},
 142	{"tmac_mcst_frms"},
 143	{"tmac_bcst_frms"},
 144	{"tmac_pause_ctrl_frms"},
 145	{"tmac_ttl_octets"},
 146	{"tmac_ucst_frms"},
 147	{"tmac_nucst_frms"},
 148	{"tmac_any_err_frms"},
 149	{"tmac_ttl_less_fb_octets"},
 150	{"tmac_vld_ip_octets"},
 151	{"tmac_vld_ip"},
 152	{"tmac_drop_ip"},
 153	{"tmac_icmp"},
 154	{"tmac_rst_tcp"},
 155	{"tmac_tcp"},
 156	{"tmac_udp"},
 157	{"rmac_vld_frms"},
 158	{"rmac_data_octets"},
 159	{"rmac_fcs_err_frms"},
 160	{"rmac_drop_frms"},
 161	{"rmac_vld_mcst_frms"},
 162	{"rmac_vld_bcst_frms"},
 163	{"rmac_in_rng_len_err_frms"},
 164	{"rmac_out_rng_len_err_frms"},
 165	{"rmac_long_frms"},
 166	{"rmac_pause_ctrl_frms"},
 167	{"rmac_unsup_ctrl_frms"},
 168	{"rmac_ttl_octets"},
 169	{"rmac_accepted_ucst_frms"},
 170	{"rmac_accepted_nucst_frms"},
 171	{"rmac_discarded_frms"},
 172	{"rmac_drop_events"},
 173	{"rmac_ttl_less_fb_octets"},
 174	{"rmac_ttl_frms"},
 175	{"rmac_usized_frms"},
 176	{"rmac_osized_frms"},
 177	{"rmac_frag_frms"},
 178	{"rmac_jabber_frms"},
 179	{"rmac_ttl_64_frms"},
 180	{"rmac_ttl_65_127_frms"},
 181	{"rmac_ttl_128_255_frms"},
 182	{"rmac_ttl_256_511_frms"},
 183	{"rmac_ttl_512_1023_frms"},
 184	{"rmac_ttl_1024_1518_frms"},
 185	{"rmac_ip"},
 186	{"rmac_ip_octets"},
 187	{"rmac_hdr_err_ip"},
 188	{"rmac_drop_ip"},
 189	{"rmac_icmp"},
 190	{"rmac_tcp"},
 191	{"rmac_udp"},
 192	{"rmac_err_drp_udp"},
 193	{"rmac_xgmii_err_sym"},
 194	{"rmac_frms_q0"},
 195	{"rmac_frms_q1"},
 196	{"rmac_frms_q2"},
 197	{"rmac_frms_q3"},
 198	{"rmac_frms_q4"},
 199	{"rmac_frms_q5"},
 200	{"rmac_frms_q6"},
 201	{"rmac_frms_q7"},
 202	{"rmac_full_q0"},
 203	{"rmac_full_q1"},
 204	{"rmac_full_q2"},
 205	{"rmac_full_q3"},
 206	{"rmac_full_q4"},
 207	{"rmac_full_q5"},
 208	{"rmac_full_q6"},
 209	{"rmac_full_q7"},
 210	{"rmac_pause_cnt"},
 211	{"rmac_xgmii_data_err_cnt"},
 212	{"rmac_xgmii_ctrl_err_cnt"},
 213	{"rmac_accepted_ip"},
 214	{"rmac_err_tcp"},
 215	{"rd_req_cnt"},
 216	{"new_rd_req_cnt"},
 217	{"new_rd_req_rtry_cnt"},
 218	{"rd_rtry_cnt"},
 219	{"wr_rtry_rd_ack_cnt"},
 220	{"wr_req_cnt"},
 221	{"new_wr_req_cnt"},
 222	{"new_wr_req_rtry_cnt"},
 223	{"wr_rtry_cnt"},
 224	{"wr_disc_cnt"},
 225	{"rd_rtry_wr_ack_cnt"},
 226	{"txp_wr_cnt"},
 227	{"txd_rd_cnt"},
 228	{"txd_wr_cnt"},
 229	{"rxd_rd_cnt"},
 230	{"rxd_wr_cnt"},
 231	{"txf_rd_cnt"},
 232	{"rxf_wr_cnt"}
 233};
 234
 235static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
 236	{"rmac_ttl_1519_4095_frms"},
 237	{"rmac_ttl_4096_8191_frms"},
 238	{"rmac_ttl_8192_max_frms"},
 239	{"rmac_ttl_gt_max_frms"},
 240	{"rmac_osized_alt_frms"},
 241	{"rmac_jabber_alt_frms"},
 242	{"rmac_gt_max_alt_frms"},
 243	{"rmac_vlan_frms"},
 244	{"rmac_len_discard"},
 245	{"rmac_fcs_discard"},
 246	{"rmac_pf_discard"},
 247	{"rmac_da_discard"},
 248	{"rmac_red_discard"},
 249	{"rmac_rts_discard"},
 250	{"rmac_ingm_full_discard"},
 251	{"link_fault_cnt"}
 252};
 253
 254static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
 255	{"\n DRIVER STATISTICS"},
 256	{"single_bit_ecc_errs"},
 257	{"double_bit_ecc_errs"},
 258	{"parity_err_cnt"},
 259	{"serious_err_cnt"},
 260	{"soft_reset_cnt"},
 261	{"fifo_full_cnt"},
 262	{"ring_0_full_cnt"},
 263	{"ring_1_full_cnt"},
 264	{"ring_2_full_cnt"},
 265	{"ring_3_full_cnt"},
 266	{"ring_4_full_cnt"},
 267	{"ring_5_full_cnt"},
 268	{"ring_6_full_cnt"},
 269	{"ring_7_full_cnt"},
 270	{"alarm_transceiver_temp_high"},
 271	{"alarm_transceiver_temp_low"},
 272	{"alarm_laser_bias_current_high"},
 273	{"alarm_laser_bias_current_low"},
 274	{"alarm_laser_output_power_high"},
 275	{"alarm_laser_output_power_low"},
 276	{"warn_transceiver_temp_high"},
 277	{"warn_transceiver_temp_low"},
 278	{"warn_laser_bias_current_high"},
 279	{"warn_laser_bias_current_low"},
 280	{"warn_laser_output_power_high"},
 281	{"warn_laser_output_power_low"},
 282	{"lro_aggregated_pkts"},
 283	{"lro_flush_both_count"},
 284	{"lro_out_of_sequence_pkts"},
 285	{"lro_flush_due_to_max_pkts"},
 286	{"lro_avg_aggr_pkts"},
 287	{"mem_alloc_fail_cnt"},
 288	{"pci_map_fail_cnt"},
 289	{"watchdog_timer_cnt"},
 290	{"mem_allocated"},
 291	{"mem_freed"},
 292	{"link_up_cnt"},
 293	{"link_down_cnt"},
 294	{"link_up_time"},
 295	{"link_down_time"},
 296	{"tx_tcode_buf_abort_cnt"},
 297	{"tx_tcode_desc_abort_cnt"},
 298	{"tx_tcode_parity_err_cnt"},
 299	{"tx_tcode_link_loss_cnt"},
 300	{"tx_tcode_list_proc_err_cnt"},
 301	{"rx_tcode_parity_err_cnt"},
 302	{"rx_tcode_abort_cnt"},
 303	{"rx_tcode_parity_abort_cnt"},
 304	{"rx_tcode_rda_fail_cnt"},
 305	{"rx_tcode_unkn_prot_cnt"},
 306	{"rx_tcode_fcs_err_cnt"},
 307	{"rx_tcode_buf_size_err_cnt"},
 308	{"rx_tcode_rxd_corrupt_cnt"},
 309	{"rx_tcode_unkn_err_cnt"},
 310	{"tda_err_cnt"},
 311	{"pfc_err_cnt"},
 312	{"pcc_err_cnt"},
 313	{"tti_err_cnt"},
 314	{"tpa_err_cnt"},
 315	{"sm_err_cnt"},
 316	{"lso_err_cnt"},
 317	{"mac_tmac_err_cnt"},
 318	{"mac_rmac_err_cnt"},
 319	{"xgxs_txgxs_err_cnt"},
 320	{"xgxs_rxgxs_err_cnt"},
 321	{"rc_err_cnt"},
 322	{"prc_pcix_err_cnt"},
 323	{"rpa_err_cnt"},
 324	{"rda_err_cnt"},
 325	{"rti_err_cnt"},
 326	{"mc_err_cnt"}
 327};
 328
 329#define S2IO_XENA_STAT_LEN	ARRAY_SIZE(ethtool_xena_stats_keys)
 330#define S2IO_ENHANCED_STAT_LEN	ARRAY_SIZE(ethtool_enhanced_stats_keys)
 331#define S2IO_DRIVER_STAT_LEN	ARRAY_SIZE(ethtool_driver_stats_keys)
 332
 333#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
 334#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
 335
 336#define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
 337#define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
 338
 339#define S2IO_TEST_LEN	ARRAY_SIZE(s2io_gstrings)
 340#define S2IO_STRINGS_LEN	(S2IO_TEST_LEN * ETH_GSTRING_LEN)
 341
 342#define S2IO_TIMER_CONF(timer, handle, arg, exp)	\
 343	init_timer(&timer);				\
 344	timer.function = handle;			\
 345	timer.data = (unsigned long)arg;		\
 346	mod_timer(&timer, (jiffies + exp))		\
 347
 348/* copy mac addr to def_mac_addr array */
 349static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
 350{
 351	sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
 352	sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
 353	sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
 354	sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
 355	sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
 356	sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
 357}
 358
 359/*
 360 * Constants to be programmed into the Xena's registers, to configure
 361 * the XAUI.
 362 */
 363
 364#define	END_SIGN	0x0
 365static const u64 herc_act_dtx_cfg[] = {
 366	/* Set address */
 367	0x8000051536750000ULL, 0x80000515367500E0ULL,
 368	/* Write data */
 369	0x8000051536750004ULL, 0x80000515367500E4ULL,
 370	/* Set address */
 371	0x80010515003F0000ULL, 0x80010515003F00E0ULL,
 372	/* Write data */
 373	0x80010515003F0004ULL, 0x80010515003F00E4ULL,
 374	/* Set address */
 375	0x801205150D440000ULL, 0x801205150D4400E0ULL,
 376	/* Write data */
 377	0x801205150D440004ULL, 0x801205150D4400E4ULL,
 378	/* Set address */
 379	0x80020515F2100000ULL, 0x80020515F21000E0ULL,
 380	/* Write data */
 381	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
 382	/* Done */
 383	END_SIGN
 384};
 385
 386static const u64 xena_dtx_cfg[] = {
 387	/* Set address */
 388	0x8000051500000000ULL, 0x80000515000000E0ULL,
 389	/* Write data */
 390	0x80000515D9350004ULL, 0x80000515D93500E4ULL,
 391	/* Set address */
 392	0x8001051500000000ULL, 0x80010515000000E0ULL,
 393	/* Write data */
 394	0x80010515001E0004ULL, 0x80010515001E00E4ULL,
 395	/* Set address */
 396	0x8002051500000000ULL, 0x80020515000000E0ULL,
 397	/* Write data */
 398	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
 399	END_SIGN
 400};
 401
 402/*
 403 * Constants for Fixing the MacAddress problem seen mostly on
 404 * Alpha machines.
 405 */
 406static const u64 fix_mac[] = {
 407	0x0060000000000000ULL, 0x0060600000000000ULL,
 408	0x0040600000000000ULL, 0x0000600000000000ULL,
 409	0x0020600000000000ULL, 0x0060600000000000ULL,
 410	0x0020600000000000ULL, 0x0060600000000000ULL,
 411	0x0020600000000000ULL, 0x0060600000000000ULL,
 412	0x0020600000000000ULL, 0x0060600000000000ULL,
 413	0x0020600000000000ULL, 0x0060600000000000ULL,
 414	0x0020600000000000ULL, 0x0060600000000000ULL,
 415	0x0020600000000000ULL, 0x0060600000000000ULL,
 416	0x0020600000000000ULL, 0x0060600000000000ULL,
 417	0x0020600000000000ULL, 0x0060600000000000ULL,
 418	0x0020600000000000ULL, 0x0060600000000000ULL,
 419	0x0020600000000000ULL, 0x0000600000000000ULL,
 420	0x0040600000000000ULL, 0x0060600000000000ULL,
 421	END_SIGN
 422};
 423
 424MODULE_LICENSE("GPL");
 425MODULE_VERSION(DRV_VERSION);
 426
 427
 428/* Module Loadable parameters. */
 429S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
 430S2IO_PARM_INT(rx_ring_num, 1);
 431S2IO_PARM_INT(multiq, 0);
 432S2IO_PARM_INT(rx_ring_mode, 1);
 433S2IO_PARM_INT(use_continuous_tx_intrs, 1);
 434S2IO_PARM_INT(rmac_pause_time, 0x100);
 435S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
 436S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
 437S2IO_PARM_INT(shared_splits, 0);
 438S2IO_PARM_INT(tmac_util_period, 5);
 439S2IO_PARM_INT(rmac_util_period, 5);
 440S2IO_PARM_INT(l3l4hdr_size, 128);
 441/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
 442S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
 443/* Frequency of Rx desc syncs expressed as power of 2 */
 444S2IO_PARM_INT(rxsync_frequency, 3);
 445/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
 446S2IO_PARM_INT(intr_type, 2);
 447/* Large receive offload feature */
 448
 449/* Max pkts to be aggregated by LRO at one time. If not specified,
 450 * aggregation happens until we hit max IP pkt size(64K)
 451 */
 452S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
 453S2IO_PARM_INT(indicate_max_pkts, 0);
 454
 455S2IO_PARM_INT(napi, 1);
 456S2IO_PARM_INT(ufo, 0);
 457S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
 458
 459static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
 460{DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
 461static unsigned int rx_ring_sz[MAX_RX_RINGS] =
 462{[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
 463static unsigned int rts_frm_len[MAX_RX_RINGS] =
 464{[0 ...(MAX_RX_RINGS - 1)] = 0 };
 465
 466module_param_array(tx_fifo_len, uint, NULL, 0);
 467module_param_array(rx_ring_sz, uint, NULL, 0);
 468module_param_array(rts_frm_len, uint, NULL, 0);
 469
 470/*
 471 * S2IO device table.
 472 * This table lists all the devices that this driver supports.
 473 */
 474static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
 475	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
 476	 PCI_ANY_ID, PCI_ANY_ID},
 477	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
 478	 PCI_ANY_ID, PCI_ANY_ID},
 479	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
 480	 PCI_ANY_ID, PCI_ANY_ID},
 481	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
 482	 PCI_ANY_ID, PCI_ANY_ID},
 483	{0,}
 484};
 485
 486MODULE_DEVICE_TABLE(pci, s2io_tbl);
 487
 488static const struct pci_error_handlers s2io_err_handler = {
 489	.error_detected = s2io_io_error_detected,
 490	.slot_reset = s2io_io_slot_reset,
 491	.resume = s2io_io_resume,
 492};
 493
 494static struct pci_driver s2io_driver = {
 495	.name = "S2IO",
 496	.id_table = s2io_tbl,
 497	.probe = s2io_init_nic,
 498	.remove = s2io_rem_nic,
 499	.err_handler = &s2io_err_handler,
 500};
 501
 502/* A simplifier macro used both by init and free shared_mem Fns(). */
 503#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
 504
 505/* netqueue manipulation helper functions */
 506static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
 507{
 508	if (!sp->config.multiq) {
 509		int i;
 510
 511		for (i = 0; i < sp->config.tx_fifo_num; i++)
 512			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
 513	}
 514	netif_tx_stop_all_queues(sp->dev);
 515}
 516
 517static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
 518{
 519	if (!sp->config.multiq)
 520		sp->mac_control.fifos[fifo_no].queue_state =
 521			FIFO_QUEUE_STOP;
 522
 523	netif_tx_stop_all_queues(sp->dev);
 524}
 525
 526static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
 527{
 528	if (!sp->config.multiq) {
 529		int i;
 530
 531		for (i = 0; i < sp->config.tx_fifo_num; i++)
 532			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
 533	}
 534	netif_tx_start_all_queues(sp->dev);
 535}
 536
 537static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
 538{
 539	if (!sp->config.multiq)
 540		sp->mac_control.fifos[fifo_no].queue_state =
 541			FIFO_QUEUE_START;
 542
 543	netif_tx_start_all_queues(sp->dev);
 544}
 545
 546static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
 547{
 548	if (!sp->config.multiq) {
 549		int i;
 550
 551		for (i = 0; i < sp->config.tx_fifo_num; i++)
 552			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
 553	}
 554	netif_tx_wake_all_queues(sp->dev);
 555}
 556
 557static inline void s2io_wake_tx_queue(
 558	struct fifo_info *fifo, int cnt, u8 multiq)
 559{
 560
 561	if (multiq) {
 562		if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
 563			netif_wake_subqueue(fifo->dev, fifo->fifo_no);
 564	} else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
 565		if (netif_queue_stopped(fifo->dev)) {
 566			fifo->queue_state = FIFO_QUEUE_START;
 567			netif_wake_queue(fifo->dev);
 568		}
 569	}
 570}
 571
 572/**
 573 * init_shared_mem - Allocation and Initialization of Memory
 574 * @nic: Device private variable.
 575 * Description: The function allocates all the memory areas shared
 576 * between the NIC and the driver. This includes Tx descriptors,
 577 * Rx descriptors and the statistics block.
 578 */
 579
 580static int init_shared_mem(struct s2io_nic *nic)
 581{
 582	u32 size;
 583	void *tmp_v_addr, *tmp_v_addr_next;
 584	dma_addr_t tmp_p_addr, tmp_p_addr_next;
 585	struct RxD_block *pre_rxd_blk = NULL;
 586	int i, j, blk_cnt;
 587	int lst_size, lst_per_page;
 588	struct net_device *dev = nic->dev;
 589	unsigned long tmp;
 590	struct buffAdd *ba;
 591	struct config_param *config = &nic->config;
 592	struct mac_info *mac_control = &nic->mac_control;
 593	unsigned long long mem_allocated = 0;
 594
 595	/* Allocation and initialization of TXDLs in FIFOs */
 596	size = 0;
 597	for (i = 0; i < config->tx_fifo_num; i++) {
 598		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 599
 600		size += tx_cfg->fifo_len;
 601	}
 602	if (size > MAX_AVAILABLE_TXDS) {
 603		DBG_PRINT(ERR_DBG,
 604			  "Too many TxDs requested: %d, max supported: %d\n",
 605			  size, MAX_AVAILABLE_TXDS);
 606		return -EINVAL;
 607	}
 608
 609	size = 0;
 610	for (i = 0; i < config->tx_fifo_num; i++) {
 611		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 612
 613		size = tx_cfg->fifo_len;
 614		/*
 615		 * Legal values are from 2 to 8192
 616		 */
 617		if (size < 2) {
 618			DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
 619				  "Valid lengths are 2 through 8192\n",
 620				  i, size);
 621			return -EINVAL;
 622		}
 623	}
 624
 625	lst_size = (sizeof(struct TxD) * config->max_txds);
 626	lst_per_page = PAGE_SIZE / lst_size;
 627
 628	for (i = 0; i < config->tx_fifo_num; i++) {
 629		struct fifo_info *fifo = &mac_control->fifos[i];
 630		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 631		int fifo_len = tx_cfg->fifo_len;
 632		int list_holder_size = fifo_len * sizeof(struct list_info_hold);
 633
 634		fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
 635		if (!fifo->list_info) {
 636			DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
 637			return -ENOMEM;
 638		}
 639		mem_allocated += list_holder_size;
 640	}
 641	for (i = 0; i < config->tx_fifo_num; i++) {
 642		int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
 643						lst_per_page);
 644		struct fifo_info *fifo = &mac_control->fifos[i];
 645		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 646
 647		fifo->tx_curr_put_info.offset = 0;
 648		fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
 649		fifo->tx_curr_get_info.offset = 0;
 650		fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
 651		fifo->fifo_no = i;
 652		fifo->nic = nic;
 653		fifo->max_txds = MAX_SKB_FRAGS + 2;
 654		fifo->dev = dev;
 655
 656		for (j = 0; j < page_num; j++) {
 657			int k = 0;
 658			dma_addr_t tmp_p;
 659			void *tmp_v;
 660			tmp_v = pci_alloc_consistent(nic->pdev,
 661						     PAGE_SIZE, &tmp_p);
 662			if (!tmp_v) {
 663				DBG_PRINT(INFO_DBG,
 664					  "pci_alloc_consistent failed for TxDL\n");
 665				return -ENOMEM;
 666			}
 667			/* If we got a zero DMA address(can happen on
 668			 * certain platforms like PPC), reallocate.
 669			 * Store virtual address of page we don't want,
 670			 * to be freed later.
 671			 */
 672			if (!tmp_p) {
 673				mac_control->zerodma_virt_addr = tmp_v;
 674				DBG_PRINT(INIT_DBG,
 675					  "%s: Zero DMA address for TxDL. "
 676					  "Virtual address %p\n",
 677					  dev->name, tmp_v);
 678				tmp_v = pci_alloc_consistent(nic->pdev,
 679							     PAGE_SIZE, &tmp_p);
 680				if (!tmp_v) {
 681					DBG_PRINT(INFO_DBG,
 682						  "pci_alloc_consistent failed for TxDL\n");
 683					return -ENOMEM;
 684				}
 685				mem_allocated += PAGE_SIZE;
 686			}
 687			while (k < lst_per_page) {
 688				int l = (j * lst_per_page) + k;
 689				if (l == tx_cfg->fifo_len)
 690					break;
 691				fifo->list_info[l].list_virt_addr =
 692					tmp_v + (k * lst_size);
 693				fifo->list_info[l].list_phy_addr =
 694					tmp_p + (k * lst_size);
 695				k++;
 696			}
 697		}
 698	}
 699
 700	for (i = 0; i < config->tx_fifo_num; i++) {
 701		struct fifo_info *fifo = &mac_control->fifos[i];
 702		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 703
 704		size = tx_cfg->fifo_len;
 705		fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
 706		if (!fifo->ufo_in_band_v)
 707			return -ENOMEM;
 708		mem_allocated += (size * sizeof(u64));
 709	}
 710
 711	/* Allocation and initialization of RXDs in Rings */
 712	size = 0;
 713	for (i = 0; i < config->rx_ring_num; i++) {
 714		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
 715		struct ring_info *ring = &mac_control->rings[i];
 716
 717		if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
 718			DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
 719				  "multiple of RxDs per Block\n",
 720				  dev->name, i);
 721			return FAILURE;
 722		}
 723		size += rx_cfg->num_rxd;
 724		ring->block_count = rx_cfg->num_rxd /
 725			(rxd_count[nic->rxd_mode] + 1);
 726		ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
 727	}
 728	if (nic->rxd_mode == RXD_MODE_1)
 729		size = (size * (sizeof(struct RxD1)));
 730	else
 731		size = (size * (sizeof(struct RxD3)));
 732
 733	for (i = 0; i < config->rx_ring_num; i++) {
 734		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
 735		struct ring_info *ring = &mac_control->rings[i];
 736
 737		ring->rx_curr_get_info.block_index = 0;
 738		ring->rx_curr_get_info.offset = 0;
 739		ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
 740		ring->rx_curr_put_info.block_index = 0;
 741		ring->rx_curr_put_info.offset = 0;
 742		ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
 743		ring->nic = nic;
 744		ring->ring_no = i;
 745
 746		blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
 747		/*  Allocating all the Rx blocks */
 748		for (j = 0; j < blk_cnt; j++) {
 749			struct rx_block_info *rx_blocks;
 750			int l;
 751
 752			rx_blocks = &ring->rx_blocks[j];
 753			size = SIZE_OF_BLOCK;	/* size is always page size */
 754			tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
 755							  &tmp_p_addr);
 756			if (tmp_v_addr == NULL) {
 757				/*
 758				 * In case of failure, free_shared_mem()
 759				 * is called, which should free any
 760				 * memory that was alloced till the
 761				 * failure happened.
 762				 */
 763				rx_blocks->block_virt_addr = tmp_v_addr;
 764				return -ENOMEM;
 765			}
 766			mem_allocated += size;
 767			memset(tmp_v_addr, 0, size);
 768
 769			size = sizeof(struct rxd_info) *
 770				rxd_count[nic->rxd_mode];
 771			rx_blocks->block_virt_addr = tmp_v_addr;
 772			rx_blocks->block_dma_addr = tmp_p_addr;
 773			rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
 774			if (!rx_blocks->rxds)
 775				return -ENOMEM;
 776			mem_allocated += size;
 777			for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
 778				rx_blocks->rxds[l].virt_addr =
 779					rx_blocks->block_virt_addr +
 780					(rxd_size[nic->rxd_mode] * l);
 781				rx_blocks->rxds[l].dma_addr =
 782					rx_blocks->block_dma_addr +
 783					(rxd_size[nic->rxd_mode] * l);
 784			}
 785		}
 786		/* Interlinking all Rx Blocks */
 787		for (j = 0; j < blk_cnt; j++) {
 788			int next = (j + 1) % blk_cnt;
 789			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
 790			tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
 791			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
 792			tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
 793
 794			pre_rxd_blk = tmp_v_addr;
 795			pre_rxd_blk->reserved_2_pNext_RxD_block =
 796				(unsigned long)tmp_v_addr_next;
 797			pre_rxd_blk->pNext_RxD_Blk_physical =
 798				(u64)tmp_p_addr_next;
 799		}
 800	}
 801	if (nic->rxd_mode == RXD_MODE_3B) {
 802		/*
 803		 * Allocation of Storages for buffer addresses in 2BUFF mode
 804		 * and the buffers as well.
 805		 */
 806		for (i = 0; i < config->rx_ring_num; i++) {
 807			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
 808			struct ring_info *ring = &mac_control->rings[i];
 809
 810			blk_cnt = rx_cfg->num_rxd /
 811				(rxd_count[nic->rxd_mode] + 1);
 812			size = sizeof(struct buffAdd *) * blk_cnt;
 813			ring->ba = kmalloc(size, GFP_KERNEL);
 814			if (!ring->ba)
 815				return -ENOMEM;
 816			mem_allocated += size;
 817			for (j = 0; j < blk_cnt; j++) {
 818				int k = 0;
 819
 820				size = sizeof(struct buffAdd) *
 821					(rxd_count[nic->rxd_mode] + 1);
 822				ring->ba[j] = kmalloc(size, GFP_KERNEL);
 823				if (!ring->ba[j])
 824					return -ENOMEM;
 825				mem_allocated += size;
 826				while (k != rxd_count[nic->rxd_mode]) {
 827					ba = &ring->ba[j][k];
 828					size = BUF0_LEN + ALIGN_SIZE;
 829					ba->ba_0_org = kmalloc(size, GFP_KERNEL);
 830					if (!ba->ba_0_org)
 831						return -ENOMEM;
 832					mem_allocated += size;
 833					tmp = (unsigned long)ba->ba_0_org;
 834					tmp += ALIGN_SIZE;
 835					tmp &= ~((unsigned long)ALIGN_SIZE);
 836					ba->ba_0 = (void *)tmp;
 837
 838					size = BUF1_LEN + ALIGN_SIZE;
 839					ba->ba_1_org = kmalloc(size, GFP_KERNEL);
 840					if (!ba->ba_1_org)
 841						return -ENOMEM;
 842					mem_allocated += size;
 843					tmp = (unsigned long)ba->ba_1_org;
 844					tmp += ALIGN_SIZE;
 845					tmp &= ~((unsigned long)ALIGN_SIZE);
 846					ba->ba_1 = (void *)tmp;
 847					k++;
 848				}
 849			}
 850		}
 851	}
 852
 853	/* Allocation and initialization of Statistics block */
 854	size = sizeof(struct stat_block);
 855	mac_control->stats_mem =
 856		pci_alloc_consistent(nic->pdev, size,
 857				     &mac_control->stats_mem_phy);
 858
 859	if (!mac_control->stats_mem) {
 860		/*
 861		 * In case of failure, free_shared_mem() is called, which
 862		 * should free any memory that was alloced till the
 863		 * failure happened.
 864		 */
 865		return -ENOMEM;
 866	}
 867	mem_allocated += size;
 868	mac_control->stats_mem_sz = size;
 869
 870	tmp_v_addr = mac_control->stats_mem;
 871	mac_control->stats_info = tmp_v_addr;
 872	memset(tmp_v_addr, 0, size);
 873	DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
 874		dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
 875	mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
 876	return SUCCESS;
 877}
 878
 879/**
 880 * free_shared_mem - Free the allocated Memory
 881 * @nic:  Device private variable.
 882 * Description: This function is to free all memory locations allocated by
 883 * the init_shared_mem() function and return it to the kernel.
 884 */
 885
 886static void free_shared_mem(struct s2io_nic *nic)
 887{
 888	int i, j, blk_cnt, size;
 889	void *tmp_v_addr;
 890	dma_addr_t tmp_p_addr;
 891	int lst_size, lst_per_page;
 892	struct net_device *dev;
 893	int page_num = 0;
 894	struct config_param *config;
 895	struct mac_info *mac_control;
 896	struct stat_block *stats;
 897	struct swStat *swstats;
 898
 899	if (!nic)
 900		return;
 901
 902	dev = nic->dev;
 903
 904	config = &nic->config;
 905	mac_control = &nic->mac_control;
 906	stats = mac_control->stats_info;
 907	swstats = &stats->sw_stat;
 908
 909	lst_size = sizeof(struct TxD) * config->max_txds;
 910	lst_per_page = PAGE_SIZE / lst_size;
 911
 912	for (i = 0; i < config->tx_fifo_num; i++) {
 913		struct fifo_info *fifo = &mac_control->fifos[i];
 914		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 915
 916		page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
 917		for (j = 0; j < page_num; j++) {
 918			int mem_blks = (j * lst_per_page);
 919			struct list_info_hold *fli;
 920
 921			if (!fifo->list_info)
 922				return;
 923
 924			fli = &fifo->list_info[mem_blks];
 925			if (!fli->list_virt_addr)
 926				break;
 927			pci_free_consistent(nic->pdev, PAGE_SIZE,
 928					    fli->list_virt_addr,
 929					    fli->list_phy_addr);
 930			swstats->mem_freed += PAGE_SIZE;
 931		}
 932		/* If we got a zero DMA address during allocation,
 933		 * free the page now
 934		 */
 935		if (mac_control->zerodma_virt_addr) {
 936			pci_free_consistent(nic->pdev, PAGE_SIZE,
 937					    mac_control->zerodma_virt_addr,
 938					    (dma_addr_t)0);
 939			DBG_PRINT(INIT_DBG,
 940				  "%s: Freeing TxDL with zero DMA address. "
 941				  "Virtual address %p\n",
 942				  dev->name, mac_control->zerodma_virt_addr);
 943			swstats->mem_freed += PAGE_SIZE;
 944		}
 945		kfree(fifo->list_info);
 946		swstats->mem_freed += tx_cfg->fifo_len *
 947			sizeof(struct list_info_hold);
 948	}
 949
 950	size = SIZE_OF_BLOCK;
 951	for (i = 0; i < config->rx_ring_num; i++) {
 952		struct ring_info *ring = &mac_control->rings[i];
 953
 954		blk_cnt = ring->block_count;
 955		for (j = 0; j < blk_cnt; j++) {
 956			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
 957			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
 958			if (tmp_v_addr == NULL)
 959				break;
 960			pci_free_consistent(nic->pdev, size,
 961					    tmp_v_addr, tmp_p_addr);
 962			swstats->mem_freed += size;
 963			kfree(ring->rx_blocks[j].rxds);
 964			swstats->mem_freed += sizeof(struct rxd_info) *
 965				rxd_count[nic->rxd_mode];
 966		}
 967	}
 968
 969	if (nic->rxd_mode == RXD_MODE_3B) {
 970		/* Freeing buffer storage addresses in 2BUFF mode. */
 971		for (i = 0; i < config->rx_ring_num; i++) {
 972			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
 973			struct ring_info *ring = &mac_control->rings[i];
 974
 975			blk_cnt = rx_cfg->num_rxd /
 976				(rxd_count[nic->rxd_mode] + 1);
 977			for (j = 0; j < blk_cnt; j++) {
 978				int k = 0;
 979				if (!ring->ba[j])
 980					continue;
 981				while (k != rxd_count[nic->rxd_mode]) {
 982					struct buffAdd *ba = &ring->ba[j][k];
 983					kfree(ba->ba_0_org);
 984					swstats->mem_freed +=
 985						BUF0_LEN + ALIGN_SIZE;
 986					kfree(ba->ba_1_org);
 987					swstats->mem_freed +=
 988						BUF1_LEN + ALIGN_SIZE;
 989					k++;
 990				}
 991				kfree(ring->ba[j]);
 992				swstats->mem_freed += sizeof(struct buffAdd) *
 993					(rxd_count[nic->rxd_mode] + 1);
 994			}
 995			kfree(ring->ba);
 996			swstats->mem_freed += sizeof(struct buffAdd *) *
 997				blk_cnt;
 998		}
 999	}
1000
1001	for (i = 0; i < nic->config.tx_fifo_num; i++) {
1002		struct fifo_info *fifo = &mac_control->fifos[i];
1003		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1004
1005		if (fifo->ufo_in_band_v) {
1006			swstats->mem_freed += tx_cfg->fifo_len *
1007				sizeof(u64);
1008			kfree(fifo->ufo_in_band_v);
1009		}
1010	}
1011
1012	if (mac_control->stats_mem) {
1013		swstats->mem_freed += mac_control->stats_mem_sz;
1014		pci_free_consistent(nic->pdev,
1015				    mac_control->stats_mem_sz,
1016				    mac_control->stats_mem,
1017				    mac_control->stats_mem_phy);
1018	}
1019}
1020
1021/**
1022 * s2io_verify_pci_mode -
1023 */
1024
1025static int s2io_verify_pci_mode(struct s2io_nic *nic)
1026{
1027	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1028	register u64 val64 = 0;
1029	int     mode;
1030
1031	val64 = readq(&bar0->pci_mode);
1032	mode = (u8)GET_PCI_MODE(val64);
1033
1034	if (val64 & PCI_MODE_UNKNOWN_MODE)
1035		return -1;      /* Unknown PCI mode */
1036	return mode;
1037}
1038
1039#define NEC_VENID   0x1033
1040#define NEC_DEVID   0x0125
1041static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1042{
1043	struct pci_dev *tdev = NULL;
1044	for_each_pci_dev(tdev) {
1045		if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1046			if (tdev->bus == s2io_pdev->bus->parent) {
1047				pci_dev_put(tdev);
1048				return 1;
1049			}
1050		}
1051	}
1052	return 0;
1053}
1054
1055static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1056/**
1057 * s2io_print_pci_mode -
1058 */
1059static int s2io_print_pci_mode(struct s2io_nic *nic)
1060{
1061	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1062	register u64 val64 = 0;
1063	int	mode;
1064	struct config_param *config = &nic->config;
1065	const char *pcimode;
1066
1067	val64 = readq(&bar0->pci_mode);
1068	mode = (u8)GET_PCI_MODE(val64);
1069
1070	if (val64 & PCI_MODE_UNKNOWN_MODE)
1071		return -1;	/* Unknown PCI mode */
1072
1073	config->bus_speed = bus_speed[mode];
1074
1075	if (s2io_on_nec_bridge(nic->pdev)) {
1076		DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1077			  nic->dev->name);
1078		return mode;
1079	}
1080
1081	switch (mode) {
1082	case PCI_MODE_PCI_33:
1083		pcimode = "33MHz PCI bus";
1084		break;
1085	case PCI_MODE_PCI_66:
1086		pcimode = "66MHz PCI bus";
1087		break;
1088	case PCI_MODE_PCIX_M1_66:
1089		pcimode = "66MHz PCIX(M1) bus";
1090		break;
1091	case PCI_MODE_PCIX_M1_100:
1092		pcimode = "100MHz PCIX(M1) bus";
1093		break;
1094	case PCI_MODE_PCIX_M1_133:
1095		pcimode = "133MHz PCIX(M1) bus";
1096		break;
1097	case PCI_MODE_PCIX_M2_66:
1098		pcimode = "133MHz PCIX(M2) bus";
1099		break;
1100	case PCI_MODE_PCIX_M2_100:
1101		pcimode = "200MHz PCIX(M2) bus";
1102		break;
1103	case PCI_MODE_PCIX_M2_133:
1104		pcimode = "266MHz PCIX(M2) bus";
1105		break;
1106	default:
1107		pcimode = "unsupported bus!";
1108		mode = -1;
1109	}
1110
1111	DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1112		  nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1113
1114	return mode;
1115}
1116
1117/**
1118 *  init_tti - Initialization transmit traffic interrupt scheme
1119 *  @nic: device private variable
1120 *  @link: link status (UP/DOWN) used to enable/disable continuous
1121 *  transmit interrupts
1122 *  Description: The function configures transmit traffic interrupts
1123 *  Return Value:  SUCCESS on success and
1124 *  '-1' on failure
1125 */
1126
1127static int init_tti(struct s2io_nic *nic, int link)
1128{
1129	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1130	register u64 val64 = 0;
1131	int i;
1132	struct config_param *config = &nic->config;
1133
1134	for (i = 0; i < config->tx_fifo_num; i++) {
1135		/*
1136		 * TTI Initialization. Default Tx timer gets us about
1137		 * 250 interrupts per sec. Continuous interrupts are enabled
1138		 * by default.
1139		 */
1140		if (nic->device_type == XFRAME_II_DEVICE) {
1141			int count = (nic->config.bus_speed * 125)/2;
1142			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1143		} else
1144			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1145
1146		val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1147			TTI_DATA1_MEM_TX_URNG_B(0x10) |
1148			TTI_DATA1_MEM_TX_URNG_C(0x30) |
1149			TTI_DATA1_MEM_TX_TIMER_AC_EN;
1150		if (i == 0)
1151			if (use_continuous_tx_intrs && (link == LINK_UP))
1152				val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1153		writeq(val64, &bar0->tti_data1_mem);
1154
1155		if (nic->config.intr_type == MSI_X) {
1156			val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1157				TTI_DATA2_MEM_TX_UFC_B(0x100) |
1158				TTI_DATA2_MEM_TX_UFC_C(0x200) |
1159				TTI_DATA2_MEM_TX_UFC_D(0x300);
1160		} else {
1161			if ((nic->config.tx_steering_type ==
1162			     TX_DEFAULT_STEERING) &&
1163			    (config->tx_fifo_num > 1) &&
1164			    (i >= nic->udp_fifo_idx) &&
1165			    (i < (nic->udp_fifo_idx +
1166				  nic->total_udp_fifos)))
1167				val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1168					TTI_DATA2_MEM_TX_UFC_B(0x80) |
1169					TTI_DATA2_MEM_TX_UFC_C(0x100) |
1170					TTI_DATA2_MEM_TX_UFC_D(0x120);
1171			else
1172				val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1173					TTI_DATA2_MEM_TX_UFC_B(0x20) |
1174					TTI_DATA2_MEM_TX_UFC_C(0x40) |
1175					TTI_DATA2_MEM_TX_UFC_D(0x80);
1176		}
1177
1178		writeq(val64, &bar0->tti_data2_mem);
1179
1180		val64 = TTI_CMD_MEM_WE |
1181			TTI_CMD_MEM_STROBE_NEW_CMD |
1182			TTI_CMD_MEM_OFFSET(i);
1183		writeq(val64, &bar0->tti_command_mem);
1184
1185		if (wait_for_cmd_complete(&bar0->tti_command_mem,
1186					  TTI_CMD_MEM_STROBE_NEW_CMD,
1187					  S2IO_BIT_RESET) != SUCCESS)
1188			return FAILURE;
1189	}
1190
1191	return SUCCESS;
1192}
1193
1194/**
1195 *  init_nic - Initialization of hardware
1196 *  @nic: device private variable
1197 *  Description: The function sequentially configures every block
1198 *  of the H/W from their reset values.
1199 *  Return Value:  SUCCESS on success and
1200 *  '-1' on failure (endian settings incorrect).
1201 */
1202
1203static int init_nic(struct s2io_nic *nic)
1204{
1205	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1206	struct net_device *dev = nic->dev;
1207	register u64 val64 = 0;
1208	void __iomem *add;
1209	u32 time;
1210	int i, j;
1211	int dtx_cnt = 0;
1212	unsigned long long mem_share;
1213	int mem_size;
1214	struct config_param *config = &nic->config;
1215	struct mac_info *mac_control = &nic->mac_control;
1216
1217	/* to set the swapper controle on the card */
1218	if (s2io_set_swapper(nic)) {
1219		DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1220		return -EIO;
1221	}
1222
1223	/*
1224	 * Herc requires EOI to be removed from reset before XGXS, so..
1225	 */
1226	if (nic->device_type & XFRAME_II_DEVICE) {
1227		val64 = 0xA500000000ULL;
1228		writeq(val64, &bar0->sw_reset);
1229		msleep(500);
1230		val64 = readq(&bar0->sw_reset);
1231	}
1232
1233	/* Remove XGXS from reset state */
1234	val64 = 0;
1235	writeq(val64, &bar0->sw_reset);
1236	msleep(500);
1237	val64 = readq(&bar0->sw_reset);
1238
1239	/* Ensure that it's safe to access registers by checking
1240	 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1241	 */
1242	if (nic->device_type == XFRAME_II_DEVICE) {
1243		for (i = 0; i < 50; i++) {
1244			val64 = readq(&bar0->adapter_status);
1245			if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1246				break;
1247			msleep(10);
1248		}
1249		if (i == 50)
1250			return -ENODEV;
1251	}
1252
1253	/*  Enable Receiving broadcasts */
1254	add = &bar0->mac_cfg;
1255	val64 = readq(&bar0->mac_cfg);
1256	val64 |= MAC_RMAC_BCAST_ENABLE;
1257	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1258	writel((u32)val64, add);
1259	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1260	writel((u32) (val64 >> 32), (add + 4));
1261
1262	/* Read registers in all blocks */
1263	val64 = readq(&bar0->mac_int_mask);
1264	val64 = readq(&bar0->mc_int_mask);
1265	val64 = readq(&bar0->xgxs_int_mask);
1266
1267	/*  Set MTU */
1268	val64 = dev->mtu;
1269	writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1270
1271	if (nic->device_type & XFRAME_II_DEVICE) {
1272		while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1273			SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1274					  &bar0->dtx_control, UF);
1275			if (dtx_cnt & 0x1)
1276				msleep(1); /* Necessary!! */
1277			dtx_cnt++;
1278		}
1279	} else {
1280		while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1281			SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1282					  &bar0->dtx_control, UF);
1283			val64 = readq(&bar0->dtx_control);
1284			dtx_cnt++;
1285		}
1286	}
1287
1288	/*  Tx DMA Initialization */
1289	val64 = 0;
1290	writeq(val64, &bar0->tx_fifo_partition_0);
1291	writeq(val64, &bar0->tx_fifo_partition_1);
1292	writeq(val64, &bar0->tx_fifo_partition_2);
1293	writeq(val64, &bar0->tx_fifo_partition_3);
1294
1295	for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1296		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1297
1298		val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1299			vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1300
1301		if (i == (config->tx_fifo_num - 1)) {
1302			if (i % 2 == 0)
1303				i++;
1304		}
1305
1306		switch (i) {
1307		case 1:
1308			writeq(val64, &bar0->tx_fifo_partition_0);
1309			val64 = 0;
1310			j = 0;
1311			break;
1312		case 3:
1313			writeq(val64, &bar0->tx_fifo_partition_1);
1314			val64 = 0;
1315			j = 0;
1316			break;
1317		case 5:
1318			writeq(val64, &bar0->tx_fifo_partition_2);
1319			val64 = 0;
1320			j = 0;
1321			break;
1322		case 7:
1323			writeq(val64, &bar0->tx_fifo_partition_3);
1324			val64 = 0;
1325			j = 0;
1326			break;
1327		default:
1328			j++;
1329			break;
1330		}
1331	}
1332
1333	/*
1334	 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1335	 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1336	 */
1337	if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1338		writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1339
1340	val64 = readq(&bar0->tx_fifo_partition_0);
1341	DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1342		  &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1343
1344	/*
1345	 * Initialization of Tx_PA_CONFIG register to ignore packet
1346	 * integrity checking.
1347	 */
1348	val64 = readq(&bar0->tx_pa_cfg);
1349	val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1350		TX_PA_CFG_IGNORE_SNAP_OUI |
1351		TX_PA_CFG_IGNORE_LLC_CTRL |
1352		TX_PA_CFG_IGNORE_L2_ERR;
1353	writeq(val64, &bar0->tx_pa_cfg);
1354
1355	/* Rx DMA intialization. */
1356	val64 = 0;
1357	for (i = 0; i < config->rx_ring_num; i++) {
1358		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1359
1360		val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1361	}
1362	writeq(val64, &bar0->rx_queue_priority);
1363
1364	/*
1365	 * Allocating equal share of memory to all the
1366	 * configured Rings.
1367	 */
1368	val64 = 0;
1369	if (nic->device_type & XFRAME_II_DEVICE)
1370		mem_size = 32;
1371	else
1372		mem_size = 64;
1373
1374	for (i = 0; i < config->rx_ring_num; i++) {
1375		switch (i) {
1376		case 0:
1377			mem_share = (mem_size / config->rx_ring_num +
1378				     mem_size % config->rx_ring_num);
1379			val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1380			continue;
1381		case 1:
1382			mem_share = (mem_size / config->rx_ring_num);
1383			val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1384			continue;
1385		case 2:
1386			mem_share = (mem_size / config->rx_ring_num);
1387			val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1388			continue;
1389		case 3:
1390			mem_share = (mem_size / config->rx_ring_num);
1391			val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1392			continue;
1393		case 4:
1394			mem_share = (mem_size / config->rx_ring_num);
1395			val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1396			continue;
1397		case 5:
1398			mem_share = (mem_size / config->rx_ring_num);
1399			val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1400			continue;
1401		case 6:
1402			mem_share = (mem_size / config->rx_ring_num);
1403			val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1404			continue;
1405		case 7:
1406			mem_share = (mem_size / config->rx_ring_num);
1407			val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1408			continue;
1409		}
1410	}
1411	writeq(val64, &bar0->rx_queue_cfg);
1412
1413	/*
1414	 * Filling Tx round robin registers
1415	 * as per the number of FIFOs for equal scheduling priority
1416	 */
1417	switch (config->tx_fifo_num) {
1418	case 1:
1419		val64 = 0x0;
1420		writeq(val64, &bar0->tx_w_round_robin_0);
1421		writeq(val64, &bar0->tx_w_round_robin_1);
1422		writeq(val64, &bar0->tx_w_round_robin_2);
1423		writeq(val64, &bar0->tx_w_round_robin_3);
1424		writeq(val64, &bar0->tx_w_round_robin_4);
1425		break;
1426	case 2:
1427		val64 = 0x0001000100010001ULL;
1428		writeq(val64, &bar0->tx_w_round_robin_0);
1429		writeq(val64, &bar0->tx_w_round_robin_1);
1430		writeq(val64, &bar0->tx_w_round_robin_2);
1431		writeq(val64, &bar0->tx_w_round_robin_3);
1432		val64 = 0x0001000100000000ULL;
1433		writeq(val64, &bar0->tx_w_round_robin_4);
1434		break;
1435	case 3:
1436		val64 = 0x0001020001020001ULL;
1437		writeq(val64, &bar0->tx_w_round_robin_0);
1438		val64 = 0x0200010200010200ULL;
1439		writeq(val64, &bar0->tx_w_round_robin_1);
1440		val64 = 0x0102000102000102ULL;
1441		writeq(val64, &bar0->tx_w_round_robin_2);
1442		val64 = 0x0001020001020001ULL;
1443		writeq(val64, &bar0->tx_w_round_robin_3);
1444		val64 = 0x0200010200000000ULL;
1445		writeq(val64, &bar0->tx_w_round_robin_4);
1446		break;
1447	case 4:
1448		val64 = 0x0001020300010203ULL;
1449		writeq(val64, &bar0->tx_w_round_robin_0);
1450		writeq(val64, &bar0->tx_w_round_robin_1);
1451		writeq(val64, &bar0->tx_w_round_robin_2);
1452		writeq(val64, &bar0->tx_w_round_robin_3);
1453		val64 = 0x0001020300000000ULL;
1454		writeq(val64, &bar0->tx_w_round_robin_4);
1455		break;
1456	case 5:
1457		val64 = 0x0001020304000102ULL;
1458		writeq(val64, &bar0->tx_w_round_robin_0);
1459		val64 = 0x0304000102030400ULL;
1460		writeq(val64, &bar0->tx_w_round_robin_1);
1461		val64 = 0x0102030400010203ULL;
1462		writeq(val64, &bar0->tx_w_round_robin_2);
1463		val64 = 0x0400010203040001ULL;
1464		writeq(val64, &bar0->tx_w_round_robin_3);
1465		val64 = 0x0203040000000000ULL;
1466		writeq(val64, &bar0->tx_w_round_robin_4);
1467		break;
1468	case 6:
1469		val64 = 0x0001020304050001ULL;
1470		writeq(val64, &bar0->tx_w_round_robin_0);
1471		val64 = 0x0203040500010203ULL;
1472		writeq(val64, &bar0->tx_w_round_robin_1);
1473		val64 = 0x0405000102030405ULL;
1474		writeq(val64, &bar0->tx_w_round_robin_2);
1475		val64 = 0x0001020304050001ULL;
1476		writeq(val64, &bar0->tx_w_round_robin_3);
1477		val64 = 0x0203040500000000ULL;
1478		writeq(val64, &bar0->tx_w_round_robin_4);
1479		break;
1480	case 7:
1481		val64 = 0x0001020304050600ULL;
1482		writeq(val64, &bar0->tx_w_round_robin_0);
1483		val64 = 0x0102030405060001ULL;
1484		writeq(val64, &bar0->tx_w_round_robin_1);
1485		val64 = 0x0203040506000102ULL;
1486		writeq(val64, &bar0->tx_w_round_robin_2);
1487		val64 = 0x0304050600010203ULL;
1488		writeq(val64, &bar0->tx_w_round_robin_3);
1489		val64 = 0x0405060000000000ULL;
1490		writeq(val64, &bar0->tx_w_round_robin_4);
1491		break;
1492	case 8:
1493		val64 = 0x0001020304050607ULL;
1494		writeq(val64, &bar0->tx_w_round_robin_0);
1495		writeq(val64, &bar0->tx_w_round_robin_1);
1496		writeq(val64, &bar0->tx_w_round_robin_2);
1497		writeq(val64, &bar0->tx_w_round_robin_3);
1498		val64 = 0x0001020300000000ULL;
1499		writeq(val64, &bar0->tx_w_round_robin_4);
1500		break;
1501	}
1502
1503	/* Enable all configured Tx FIFO partitions */
1504	val64 = readq(&bar0->tx_fifo_partition_0);
1505	val64 |= (TX_FIFO_PARTITION_EN);
1506	writeq(val64, &bar0->tx_fifo_partition_0);
1507
1508	/* Filling the Rx round robin registers as per the
1509	 * number of Rings and steering based on QoS with
1510	 * equal priority.
1511	 */
1512	switch (config->rx_ring_num) {
1513	case 1:
1514		val64 = 0x0;
1515		writeq(val64, &bar0->rx_w_round_robin_0);
1516		writeq(val64, &bar0->rx_w_round_robin_1);
1517		writeq(val64, &bar0->rx_w_round_robin_2);
1518		writeq(val64, &bar0->rx_w_round_robin_3);
1519		writeq(val64, &bar0->rx_w_round_robin_4);
1520
1521		val64 = 0x8080808080808080ULL;
1522		writeq(val64, &bar0->rts_qos_steering);
1523		break;
1524	case 2:
1525		val64 = 0x0001000100010001ULL;
1526		writeq(val64, &bar0->rx_w_round_robin_0);
1527		writeq(val64, &bar0->rx_w_round_robin_1);
1528		writeq(val64, &bar0->rx_w_round_robin_2);
1529		writeq(val64, &bar0->rx_w_round_robin_3);
1530		val64 = 0x0001000100000000ULL;
1531		writeq(val64, &bar0->rx_w_round_robin_4);
1532
1533		val64 = 0x8080808040404040ULL;
1534		writeq(val64, &bar0->rts_qos_steering);
1535		break;
1536	case 3:
1537		val64 = 0x0001020001020001ULL;
1538		writeq(val64, &bar0->rx_w_round_robin_0);
1539		val64 = 0x0200010200010200ULL;
1540		writeq(val64, &bar0->rx_w_round_robin_1);
1541		val64 = 0x0102000102000102ULL;
1542		writeq(val64, &bar0->rx_w_round_robin_2);
1543		val64 = 0x0001020001020001ULL;
1544		writeq(val64, &bar0->rx_w_round_robin_3);
1545		val64 = 0x0200010200000000ULL;
1546		writeq(val64, &bar0->rx_w_round_robin_4);
1547
1548		val64 = 0x8080804040402020ULL;
1549		writeq(val64, &bar0->rts_qos_steering);
1550		break;
1551	case 4:
1552		val64 = 0x0001020300010203ULL;
1553		writeq(val64, &bar0->rx_w_round_robin_0);
1554		writeq(val64, &bar0->rx_w_round_robin_1);
1555		writeq(val64, &bar0->rx_w_round_robin_2);
1556		writeq(val64, &bar0->rx_w_round_robin_3);
1557		val64 = 0x0001020300000000ULL;
1558		writeq(val64, &bar0->rx_w_round_robin_4);
1559
1560		val64 = 0x8080404020201010ULL;
1561		writeq(val64, &bar0->rts_qos_steering);
1562		break;
1563	case 5:
1564		val64 = 0x0001020304000102ULL;
1565		writeq(val64, &bar0->rx_w_round_robin_0);
1566		val64 = 0x0304000102030400ULL;
1567		writeq(val64, &bar0->rx_w_round_robin_1);
1568		val64 = 0x0102030400010203ULL;
1569		writeq(val64, &bar0->rx_w_round_robin_2);
1570		val64 = 0x0400010203040001ULL;
1571		writeq(val64, &bar0->rx_w_round_robin_3);
1572		val64 = 0x0203040000000000ULL;
1573		writeq(val64, &bar0->rx_w_round_robin_4);
1574
1575		val64 = 0x8080404020201008ULL;
1576		writeq(val64, &bar0->rts_qos_steering);
1577		break;
1578	case 6:
1579		val64 = 0x0001020304050001ULL;
1580		writeq(val64, &bar0->rx_w_round_robin_0);
1581		val64 = 0x0203040500010203ULL;
1582		writeq(val64, &bar0->rx_w_round_robin_1);
1583		val64 = 0x0405000102030405ULL;
1584		writeq(val64, &bar0->rx_w_round_robin_2);
1585		val64 = 0x0001020304050001ULL;
1586		writeq(val64, &bar0->rx_w_round_robin_3);
1587		val64 = 0x0203040500000000ULL;
1588		writeq(val64, &bar0->rx_w_round_robin_4);
1589
1590		val64 = 0x8080404020100804ULL;
1591		writeq(val64, &bar0->rts_qos_steering);
1592		break;
1593	case 7:
1594		val64 = 0x0001020304050600ULL;
1595		writeq(val64, &bar0->rx_w_round_robin_0);
1596		val64 = 0x0102030405060001ULL;
1597		writeq(val64, &bar0->rx_w_round_robin_1);
1598		val64 = 0x0203040506000102ULL;
1599		writeq(val64, &bar0->rx_w_round_robin_2);
1600		val64 = 0x0304050600010203ULL;
1601		writeq(val64, &bar0->rx_w_round_robin_3);
1602		val64 = 0x0405060000000000ULL;
1603		writeq(val64, &bar0->rx_w_round_robin_4);
1604
1605		val64 = 0x8080402010080402ULL;
1606		writeq(val64, &bar0->rts_qos_steering);
1607		break;
1608	case 8:
1609		val64 = 0x0001020304050607ULL;
1610		writeq(val64, &bar0->rx_w_round_robin_0);
1611		writeq(val64, &bar0->rx_w_round_robin_1);
1612		writeq(val64, &bar0->rx_w_round_robin_2);
1613		writeq(val64, &bar0->rx_w_round_robin_3);
1614		val64 = 0x0001020300000000ULL;
1615		writeq(val64, &bar0->rx_w_round_robin_4);
1616
1617		val64 = 0x8040201008040201ULL;
1618		writeq(val64, &bar0->rts_qos_steering);
1619		break;
1620	}
1621
1622	/* UDP Fix */
1623	val64 = 0;
1624	for (i = 0; i < 8; i++)
1625		writeq(val64, &bar0->rts_frm_len_n[i]);
1626
1627	/* Set the default rts frame length for the rings configured */
1628	val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1629	for (i = 0 ; i < config->rx_ring_num ; i++)
1630		writeq(val64, &bar0->rts_frm_len_n[i]);
1631
1632	/* Set the frame length for the configured rings
1633	 * desired by the user
1634	 */
1635	for (i = 0; i < config->rx_ring_num; i++) {
1636		/* If rts_frm_len[i] == 0 then it is assumed that user not
1637		 * specified frame length steering.
1638		 * If the user provides the frame length then program
1639		 * the rts_frm_len register for those values or else
1640		 * leave it as it is.
1641		 */
1642		if (rts_frm_len[i] != 0) {
1643			writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1644			       &bar0->rts_frm_len_n[i]);
1645		}
1646	}
1647
1648	/* Disable differentiated services steering logic */
1649	for (i = 0; i < 64; i++) {
1650		if (rts_ds_steer(nic, i, 0) == FAILURE) {
1651			DBG_PRINT(ERR_DBG,
1652				  "%s: rts_ds_steer failed on codepoint %d\n",
1653				  dev->name, i);
1654			return -ENODEV;
1655		}
1656	}
1657
1658	/* Program statistics memory */
1659	writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1660
1661	if (nic->device_type == XFRAME_II_DEVICE) {
1662		val64 = STAT_BC(0x320);
1663		writeq(val64, &bar0->stat_byte_cnt);
1664	}
1665
1666	/*
1667	 * Initializing the sampling rate for the device to calculate the
1668	 * bandwidth utilization.
1669	 */
1670	val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1671		MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1672	writeq(val64, &bar0->mac_link_util);
1673
1674	/*
1675	 * Initializing the Transmit and Receive Traffic Interrupt
1676	 * Scheme.
1677	 */
1678
1679	/* Initialize TTI */
1680	if (SUCCESS != init_tti(nic, nic->last_link_state))
1681		return -ENODEV;
1682
1683	/* RTI Initialization */
1684	if (nic->device_type == XFRAME_II_DEVICE) {
1685		/*
1686		 * Programmed to generate Apprx 500 Intrs per
1687		 * second
1688		 */
1689		int count = (nic->config.bus_speed * 125)/4;
1690		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1691	} else
1692		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1693	val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1694		RTI_DATA1_MEM_RX_URNG_B(0x10) |
1695		RTI_DATA1_MEM_RX_URNG_C(0x30) |
1696		RTI_DATA1_MEM_RX_TIMER_AC_EN;
1697
1698	writeq(val64, &bar0->rti_data1_mem);
1699
1700	val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1701		RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1702	if (nic->config.intr_type == MSI_X)
1703		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1704			  RTI_DATA2_MEM_RX_UFC_D(0x40));
1705	else
1706		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1707			  RTI_DATA2_MEM_RX_UFC_D(0x80));
1708	writeq(val64, &bar0->rti_data2_mem);
1709
1710	for (i = 0; i < config->rx_ring_num; i++) {
1711		val64 = RTI_CMD_MEM_WE |
1712			RTI_CMD_MEM_STROBE_NEW_CMD |
1713			RTI_CMD_MEM_OFFSET(i);
1714		writeq(val64, &bar0->rti_command_mem);
1715
1716		/*
1717		 * Once the operation completes, the Strobe bit of the
1718		 * command register will be reset. We poll for this
1719		 * particular condition. We wait for a maximum of 500ms
1720		 * for the operation to complete, if it's not complete
1721		 * by then we return error.
1722		 */
1723		time = 0;
1724		while (true) {
1725			val64 = readq(&bar0->rti_command_mem);
1726			if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1727				break;
1728
1729			if (time > 10) {
1730				DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1731					  dev->name);
1732				return -ENODEV;
1733			}
1734			time++;
1735			msleep(50);
1736		}
1737	}
1738
1739	/*
1740	 * Initializing proper values as Pause threshold into all
1741	 * the 8 Queues on Rx side.
1742	 */
1743	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1744	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1745
1746	/* Disable RMAC PAD STRIPPING */
1747	add = &bar0->mac_cfg;
1748	val64 = readq(&bar0->mac_cfg);
1749	val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1750	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1751	writel((u32) (val64), add);
1752	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1753	writel((u32) (val64 >> 32), (add + 4));
1754	val64 = readq(&bar0->mac_cfg);
1755
1756	/* Enable FCS stripping by adapter */
1757	add = &bar0->mac_cfg;
1758	val64 = readq(&bar0->mac_cfg);
1759	val64 |= MAC_CFG_RMAC_STRIP_FCS;
1760	if (nic->device_type == XFRAME_II_DEVICE)
1761		writeq(val64, &bar0->mac_cfg);
1762	else {
1763		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1764		writel((u32) (val64), add);
1765		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1766		writel((u32) (val64 >> 32), (add + 4));
1767	}
1768
1769	/*
1770	 * Set the time value to be inserted in the pause frame
1771	 * generated by xena.
1772	 */
1773	val64 = readq(&bar0->rmac_pause_cfg);
1774	val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1775	val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1776	writeq(val64, &bar0->rmac_pause_cfg);
1777
1778	/*
1779	 * Set the Threshold Limit for Generating the pause frame
1780	 * If the amount of data in any Queue exceeds ratio of
1781	 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1782	 * pause frame is generated
1783	 */
1784	val64 = 0;
1785	for (i = 0; i < 4; i++) {
1786		val64 |= (((u64)0xFF00 |
1787			   nic->mac_control.mc_pause_threshold_q0q3)
1788			  << (i * 2 * 8));
1789	}
1790	writeq(val64, &bar0->mc_pause_thresh_q0q3);
1791
1792	val64 = 0;
1793	for (i = 0; i < 4; i++) {
1794		val64 |= (((u64)0xFF00 |
1795			   nic->mac_control.mc_pause_threshold_q4q7)
1796			  << (i * 2 * 8));
1797	}
1798	writeq(val64, &bar0->mc_pause_thresh_q4q7);
1799
1800	/*
1801	 * TxDMA will stop Read request if the number of read split has
1802	 * exceeded the limit pointed by shared_splits
1803	 */
1804	val64 = readq(&bar0->pic_control);
1805	val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1806	writeq(val64, &bar0->pic_control);
1807
1808	if (nic->config.bus_speed == 266) {
1809		writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1810		writeq(0x0, &bar0->read_retry_delay);
1811		writeq(0x0, &bar0->write_retry_delay);
1812	}
1813
1814	/*
1815	 * Programming the Herc to split every write transaction
1816	 * that does not start on an ADB to reduce disconnects.
1817	 */
1818	if (nic->device_type == XFRAME_II_DEVICE) {
1819		val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1820			MISC_LINK_STABILITY_PRD(3);
1821		writeq(val64, &bar0->misc_control);
1822		val64 = readq(&bar0->pic_control2);
1823		val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1824		writeq(val64, &bar0->pic_control2);
1825	}
1826	if (strstr(nic->product_name, "CX4")) {
1827		val64 = TMAC_AVG_IPG(0x17);
1828		writeq(val64, &bar0->tmac_avg_ipg);
1829	}
1830
1831	return SUCCESS;
1832}
1833#define LINK_UP_DOWN_INTERRUPT		1
1834#define MAC_RMAC_ERR_TIMER		2
1835
1836static int s2io_link_fault_indication(struct s2io_nic *nic)
1837{
1838	if (nic->device_type == XFRAME_II_DEVICE)
1839		return LINK_UP_DOWN_INTERRUPT;
1840	else
1841		return MAC_RMAC_ERR_TIMER;
1842}
1843
1844/**
1845 *  do_s2io_write_bits -  update alarm bits in alarm register
1846 *  @value: alarm bits
1847 *  @flag: interrupt status
1848 *  @addr: address value
1849 *  Description: update alarm bits in alarm register
1850 *  Return Value:
1851 *  NONE.
1852 */
1853static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1854{
1855	u64 temp64;
1856
1857	temp64 = readq(addr);
1858
1859	if (flag == ENABLE_INTRS)
1860		temp64 &= ~((u64)value);
1861	else
1862		temp64 |= ((u64)value);
1863	writeq(temp64, addr);
1864}
1865
1866static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1867{
1868	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1869	register u64 gen_int_mask = 0;
1870	u64 interruptible;
1871
1872	writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1873	if (mask & TX_DMA_INTR) {
1874		gen_int_mask |= TXDMA_INT_M;
1875
1876		do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1877				   TXDMA_PCC_INT | TXDMA_TTI_INT |
1878				   TXDMA_LSO_INT | TXDMA_TPA_INT |
1879				   TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1880
1881		do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1882				   PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1883				   PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1884				   &bar0->pfc_err_mask);
1885
1886		do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1887				   TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1888				   TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1889
1890		do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1891				   PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1892				   PCC_N_SERR | PCC_6_COF_OV_ERR |
1893				   PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1894				   PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1895				   PCC_TXB_ECC_SG_ERR,
1896				   flag, &bar0->pcc_err_mask);
1897
1898		do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1899				   TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1900
1901		do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1902				   LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1903				   LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1904				   flag, &bar0->lso_err_mask);
1905
1906		do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1907				   flag, &bar0->tpa_err_mask);
1908
1909		do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1910	}
1911
1912	if (mask & TX_MAC_INTR) {
1913		gen_int_mask |= TXMAC_INT_M;
1914		do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1915				   &bar0->mac_int_mask);
1916		do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1917				   TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1918				   TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1919				   flag, &bar0->mac_tmac_err_mask);
1920	}
1921
1922	if (mask & TX_XGXS_INTR) {
1923		gen_int_mask |= TXXGXS_INT_M;
1924		do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1925				   &bar0->xgxs_int_mask);
1926		do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1927				   TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1928				   flag, &bar0->xgxs_txgxs_err_mask);
1929	}
1930
1931	if (mask & RX_DMA_INTR) {
1932		gen_int_mask |= RXDMA_INT_M;
1933		do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1934				   RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1935				   flag, &bar0->rxdma_int_mask);
1936		do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1937				   RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1938				   RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1939				   RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1940		do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1941				   PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1942				   PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1943				   &bar0->prc_pcix_err_mask);
1944		do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1945				   RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1946				   &bar0->rpa_err_mask);
1947		do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1948				   RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1949				   RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1950				   RDA_FRM_ECC_SG_ERR |
1951				   RDA_MISC_ERR|RDA_PCIX_ERR,
1952				   flag, &bar0->rda_err_mask);
1953		do_s2io_write_bits(RTI_SM_ERR_ALARM |
1954				   RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1955				   flag, &bar0->rti_err_mask);
1956	}
1957
1958	if (mask & RX_MAC_INTR) {
1959		gen_int_mask |= RXMAC_INT_M;
1960		do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1961				   &bar0->mac_int_mask);
1962		interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1963				 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1964				 RMAC_DOUBLE_ECC_ERR);
1965		if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1966			interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1967		do_s2io_write_bits(interruptible,
1968				   flag, &bar0->mac_rmac_err_mask);
1969	}
1970
1971	if (mask & RX_XGXS_INTR) {
1972		gen_int_mask |= RXXGXS_INT_M;
1973		do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1974				   &bar0->xgxs_int_mask);
1975		do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1976				   &bar0->xgxs_rxgxs_err_mask);
1977	}
1978
1979	if (mask & MC_INTR) {
1980		gen_int_mask |= MC_INT_M;
1981		do_s2io_write_bits(MC_INT_MASK_MC_INT,
1982				   flag, &bar0->mc_int_mask);
1983		do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1984				   MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1985				   &bar0->mc_err_mask);
1986	}
1987	nic->general_int_mask = gen_int_mask;
1988
1989	/* Remove this line when alarm interrupts are enabled */
1990	nic->general_int_mask = 0;
1991}
1992
1993/**
1994 *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1995 *  @nic: device private variable,
1996 *  @mask: A mask indicating which Intr block must be modified and,
1997 *  @flag: A flag indicating whether to enable or disable the Intrs.
1998 *  Description: This function will either disable or enable the interrupts
1999 *  depending on the flag argument. The mask argument can be used to
2000 *  enable/disable any Intr block.
2001 *  Return Value: NONE.
2002 */
2003
2004static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2005{
2006	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2007	register u64 temp64 = 0, intr_mask = 0;
2008
2009	intr_mask = nic->general_int_mask;
2010
2011	/*  Top level interrupt classification */
2012	/*  PIC Interrupts */
2013	if (mask & TX_PIC_INTR) {
2014		/*  Enable PIC Intrs in the general intr mask register */
2015		intr_mask |= TXPIC_INT_M;
2016		if (flag == ENABLE_INTRS) {
2017			/*
2018			 * If Hercules adapter enable GPIO otherwise
2019			 * disable all PCIX, Flash, MDIO, IIC and GPIO
2020			 * interrupts for now.
2021			 * TODO
2022			 */
2023			if (s2io_link_fault_indication(nic) ==
2024			    LINK_UP_DOWN_INTERRUPT) {
2025				do_s2io_write_bits(PIC_INT_GPIO, flag,
2026						   &bar0->pic_int_mask);
2027				do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2028						   &bar0->gpio_int_mask);
2029			} else
2030				writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2031		} else if (flag == DISABLE_INTRS) {
2032			/*
2033			 * Disable PIC Intrs in the general
2034			 * intr mask register
2035			 */
2036			writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2037		}
2038	}
2039
2040	/*  Tx traffic interrupts */
2041	if (mask & TX_TRAFFIC_INTR) {
2042		intr_mask |= TXTRAFFIC_INT_M;
2043		if (flag == ENABLE_INTRS) {
2044			/*
2045			 * Enable all the Tx side interrupts
2046			 * writing 0 Enables all 64 TX interrupt levels
2047			 */
2048			writeq(0x0, &bar0->tx_traffic_mask);
2049		} else if (flag == DISABLE_INTRS) {
2050			/*
2051			 * Disable Tx Traffic Intrs in the general intr mask
2052			 * register.
2053			 */
2054			writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2055		}
2056	}
2057
2058	/*  Rx traffic interrupts */
2059	if (mask & RX_TRAFFIC_INTR) {
2060		intr_mask |= RXTRAFFIC_INT_M;
2061		if (flag == ENABLE_INTRS) {
2062			/* writing 0 Enables all 8 RX interrupt levels */
2063			writeq(0x0, &bar0->rx_traffic_mask);
2064		} else if (flag == DISABLE_INTRS) {
2065			/*
2066			 * Disable Rx Traffic Intrs in the general intr mask
2067			 * register.
2068			 */
2069			writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2070		}
2071	}
2072
2073	temp64 = readq(&bar0->general_int_mask);
2074	if (flag == ENABLE_INTRS)
2075		temp64 &= ~((u64)intr_mask);
2076	else
2077		temp64 = DISABLE_ALL_INTRS;
2078	writeq(temp64, &bar0->general_int_mask);
2079
2080	nic->general_int_mask = readq(&bar0->general_int_mask);
2081}
2082
2083/**
2084 *  verify_pcc_quiescent- Checks for PCC quiescent state
2085 *  Return: 1 If PCC is quiescence
2086 *          0 If PCC is not quiescence
2087 */
2088static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2089{
2090	int ret = 0, herc;
2091	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2092	u64 val64 = readq(&bar0->adapter_status);
2093
2094	herc = (sp->device_type == XFRAME_II_DEVICE);
2095
2096	if (flag == false) {
2097		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2098			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2099				ret = 1;
2100		} else {
2101			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2102				ret = 1;
2103		}
2104	} else {
2105		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2106			if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2107			     ADAPTER_STATUS_RMAC_PCC_IDLE))
2108				ret = 1;
2109		} else {
2110			if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2111			     ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2112				ret = 1;
2113		}
2114	}
2115
2116	return ret;
2117}
2118/**
2119 *  verify_xena_quiescence - Checks whether the H/W is ready
2120 *  Description: Returns whether the H/W is ready to go or not. Depending
2121 *  on whether adapter enable bit was written or not the comparison
2122 *  differs and the calling function passes the input argument flag to
2123 *  indicate this.
2124 *  Return: 1 If xena is quiescence
2125 *          0 If Xena is not quiescence
2126 */
2127
2128static int verify_xena_quiescence(struct s2io_nic *sp)
2129{
2130	int  mode;
2131	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2132	u64 val64 = readq(&bar0->adapter_status);
2133	mode = s2io_verify_pci_mode(sp);
2134
2135	if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2136		DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2137		return 0;
2138	}
2139	if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2140		DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2141		return 0;
2142	}
2143	if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2144		DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2145		return 0;
2146	}
2147	if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2148		DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2149		return 0;
2150	}
2151	if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2152		DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2153		return 0;
2154	}
2155	if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2156		DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2157		return 0;
2158	}
2159	if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2160		DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2161		return 0;
2162	}
2163	if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2164		DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2165		return 0;
2166	}
2167
2168	/*
2169	 * In PCI 33 mode, the P_PLL is not used, and therefore,
2170	 * the the P_PLL_LOCK bit in the adapter_status register will
2171	 * not be asserted.
2172	 */
2173	if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2174	    sp->device_type == XFRAME_II_DEVICE &&
2175	    mode != PCI_MODE_PCI_33) {
2176		DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2177		return 0;
2178	}
2179	if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2180	      ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2181		DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2182		return 0;
2183	}
2184	return 1;
2185}
2186
2187/**
2188 * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2189 * @sp: Pointer to device specifc structure
2190 * Description :
2191 * New procedure to clear mac address reading  problems on Alpha platforms
2192 *
2193 */
2194
2195static void fix_mac_address(struct s2io_nic *sp)
2196{
2197	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2198	int i = 0;
2199
2200	while (fix_mac[i] != END_SIGN) {
2201		writeq(fix_mac[i++], &bar0->gpio_control);
2202		udelay(10);
2203		(void) readq(&bar0->gpio_control);
2204	}
2205}
2206
2207/**
2208 *  start_nic - Turns the device on
2209 *  @nic : device private variable.
2210 *  Description:
2211 *  This function actually turns the device on. Before this  function is
2212 *  called,all Registers are configured from their reset states
2213 *  and shared memory is allocated but the NIC is still quiescent. On
2214 *  calling this function, the device interrupts are cleared and the NIC is
2215 *  literally switched on by writing into the adapter control register.
2216 *  Return Value:
2217 *  SUCCESS on success and -1 on failure.
2218 */
2219
2220static int start_nic(struct s2io_nic *nic)
2221{
2222	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2223	struct net_device *dev = nic->dev;
2224	register u64 val64 = 0;
2225	u16 subid, i;
2226	struct config_param *config = &nic->config;
2227	struct mac_info *mac_control = &nic->mac_control;
2228
2229	/*  PRC Initialization and configuration */
2230	for (i = 0; i < config->rx_ring_num; i++) {
2231		struct ring_info *ring = &mac_control->rings[i];
2232
2233		writeq((u64)ring->rx_blocks[0].block_dma_addr,
2234		       &bar0->prc_rxd0_n[i]);
2235
2236		val64 = readq(&bar0->prc_ctrl_n[i]);
2237		if (nic->rxd_mode == RXD_MODE_1)
2238			val64 |= PRC_CTRL_RC_ENABLED;
2239		else
2240			val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2241		if (nic->device_type == XFRAME_II_DEVICE)
2242			val64 |= PRC_CTRL_GROUP_READS;
2243		val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2244		val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2245		writeq(val64, &bar0->prc_ctrl_n[i]);
2246	}
2247
2248	if (nic->rxd_mode == RXD_MODE_3B) {
2249		/* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2250		val64 = readq(&bar0->rx_pa_cfg);
2251		val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2252		writeq(val64, &bar0->rx_pa_cfg);
2253	}
2254
2255	if (vlan_tag_strip == 0) {
2256		val64 = readq(&bar0->rx_pa_cfg);
2257		val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2258		writeq(val64, &bar0->rx_pa_cfg);
2259		nic->vlan_strip_flag = 0;
2260	}
2261
2262	/*
2263	 * Enabling MC-RLDRAM. After enabling the device, we timeout
2264	 * for around 100ms, which is approximately the time required
2265	 * for the device to be ready for operation.
2266	 */
2267	val64 = readq(&bar0->mc_rldram_mrs);
2268	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2269	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2270	val64 = readq(&bar0->mc_rldram_mrs);
2271
2272	msleep(100);	/* Delay by around 100 ms. */
2273
2274	/* Enabling ECC Protection. */
2275	val64 = readq(&bar0->adapter_control);
2276	val64 &= ~ADAPTER_ECC_EN;
2277	writeq(val64, &bar0->adapter_control);
2278
2279	/*
2280	 * Verify if the device is ready to be enabled, if so enable
2281	 * it.
2282	 */
2283	val64 = readq(&bar0->adapter_status);
2284	if (!verify_xena_quiescence(nic)) {
2285		DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2286			  "Adapter status reads: 0x%llx\n",
2287			  dev->name, (unsigned long long)val64);
2288		return FAILURE;
2289	}
2290
2291	/*
2292	 * With some switches, link might be already up at this point.
2293	 * Because of this weird behavior, when we enable laser,
2294	 * we may not get link. We need to handle this. We cannot
2295	 * figure out which switch is misbehaving. So we are forced to
2296	 * make a global change.
2297	 */
2298
2299	/* Enabling Laser. */
2300	val64 = readq(&bar0->adapter_control);
2301	val64 |= ADAPTER_EOI_TX_ON;
2302	writeq(val64, &bar0->adapter_control);
2303
2304	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2305		/*
2306		 * Dont see link state interrupts initially on some switches,
2307		 * so directly scheduling the link state task here.
2308		 */
2309		schedule_work(&nic->set_link_task);
2310	}
2311	/* SXE-002: Initialize link and activity LED */
2312	subid = nic->pdev->subsystem_device;
2313	if (((subid & 0xFF) >= 0x07) &&
2314	    (nic->device_type == XFRAME_I_DEVICE)) {
2315		val64 = readq(&bar0->gpio_control);
2316		val64 |= 0x0000800000000000ULL;
2317		writeq(val64, &bar0->gpio_control);
2318		val64 = 0x0411040400000000ULL;
2319		writeq(val64, (void __iomem *)bar0 + 0x2700);
2320	}
2321
2322	return SUCCESS;
2323}
2324/**
2325 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2326 */
2327static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2328					struct TxD *txdlp, int get_off)
2329{
2330	struct s2io_nic *nic = fifo_data->nic;
2331	struct sk_buff *skb;
2332	struct TxD *txds;
2333	u16 j, frg_cnt;
2334
2335	txds = txdlp;
2336	if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2337		pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2338				 sizeof(u64), PCI_DMA_TODEVICE);
2339		txds++;
2340	}
2341
2342	skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2343	if (!skb) {
2344		memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2345		return NULL;
2346	}
2347	pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2348			 skb_headlen(skb), PCI_DMA_TODEVICE);
2349	frg_cnt = skb_shinfo(skb)->nr_frags;
2350	if (frg_cnt) {
2351		txds++;
2352		for (j = 0; j < frg_cnt; j++, txds++) {
2353			const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2354			if (!txds->Buffer_Pointer)
2355				break;
2356			pci_unmap_page(nic->pdev,
2357				       (dma_addr_t)txds->Buffer_Pointer,
2358				       skb_frag_size(frag), PCI_DMA_TODEVICE);
2359		}
2360	}
2361	memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2362	return skb;
2363}
2364
2365/**
2366 *  free_tx_buffers - Free all queued Tx buffers
2367 *  @nic : device private variable.
2368 *  Description:
2369 *  Free all queued Tx buffers.
2370 *  Return Value: void
2371 */
2372
2373static void free_tx_buffers(struct s2io_nic *nic)
2374{
2375	struct net_device *dev = nic->dev;
2376	struct sk_buff *skb;
2377	struct TxD *txdp;
2378	int i, j;
2379	int cnt = 0;
2380	struct config_param *config = &nic->config;
2381	struct mac_info *mac_control = &nic->mac_control;
2382	struct stat_block *stats = mac_control->stats_info;
2383	struct swStat *swstats = &stats->sw_stat;
2384
2385	for (i = 0; i < config->tx_fifo_num; i++) {
2386		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2387		struct fifo_info *fifo = &mac_control->fifos[i];
2388		unsigned long flags;
2389
2390		spin_lock_irqsave(&fifo->tx_lock, flags);
2391		for (j = 0; j < tx_cfg->fifo_len; j++) {
2392			txdp = fifo->list_info[j].list_virt_addr;
2393			skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2394			if (skb) {
2395				swstats->mem_freed += skb->truesize;
2396				dev_kfree_skb(skb);
2397				cnt++;
2398			}
2399		}
2400		DBG_PRINT(INTR_DBG,
2401			  "%s: forcibly freeing %d skbs on FIFO%d\n",
2402			  dev->name, cnt, i);
2403		fifo->tx_curr_get_info.offset = 0;
2404		fifo->tx_curr_put_info.offset = 0;
2405		spin_unlock_irqrestore(&fifo->tx_lock, flags);
2406	}
2407}
2408
2409/**
2410 *   stop_nic -  To stop the nic
2411 *   @nic ; device private variable.
2412 *   Description:
2413 *   This function does exactly the opposite of what the start_nic()
2414 *   function does. This function is called to stop the device.
2415 *   Return Value:
2416 *   void.
2417 */
2418
2419static void stop_nic(struct s2io_nic *nic)
2420{
2421	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2422	register u64 val64 = 0;
2423	u16 interruptible;
2424
2425	/*  Disable all interrupts */
2426	en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2427	interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2428	interruptible |= TX_PIC_INTR;
2429	en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2430
2431	/* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2432	val64 = readq(&bar0->adapter_control);
2433	val64 &= ~(ADAPTER_CNTL_EN);
2434	writeq(val64, &bar0->adapter_control);
2435}
2436
2437/**
2438 *  fill_rx_buffers - Allocates the Rx side skbs
2439 *  @ring_info: per ring structure
2440 *  @from_card_up: If this is true, we will map the buffer to get
2441 *     the dma address for buf0 and buf1 to give it to the card.
2442 *     Else we will sync the already mapped buffer to give it to the card.
2443 *  Description:
2444 *  The function allocates Rx side skbs and puts the physical
2445 *  address of these buffers into the RxD buffer pointers, so that the NIC
2446 *  can DMA the received frame into these locations.
2447 *  The NIC supports 3 receive modes, viz
2448 *  1. single buffer,
2449 *  2. three buffer and
2450 *  3. Five buffer modes.
2451 *  Each mode defines how many fragments the received frame will be split
2452 *  up into by the NIC. The frame is split into L3 header, L4 Header,
2453 *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2454 *  is split into 3 fragments. As of now only single buffer mode is
2455 *  supported.
2456 *   Return Value:
2457 *  SUCCESS on success or an appropriate -ve value on failure.
2458 */
2459static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2460			   int from_card_up)
2461{
2462	struct sk_buff *skb;
2463	struct RxD_t *rxdp;
2464	int off, size, block_no, block_no1;
2465	u32 alloc_tab = 0;
2466	u32 alloc_cnt;
2467	u64 tmp;
2468	struct buffAdd *ba;
2469	struct RxD_t *first_rxdp = NULL;
2470	u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2471	int rxd_index = 0;
2472	struct RxD1 *rxdp1;
2473	struct RxD3 *rxdp3;
2474	struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2475
2476	alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2477
2478	block_no1 = ring->rx_curr_get_info.block_index;
2479	while (alloc_tab < alloc_cnt) {
2480		block_no = ring->rx_curr_put_info.block_index;
2481
2482		off = ring->rx_curr_put_info.offset;
2483
2484		rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2485
2486		rxd_index = off + 1;
2487		if (block_no)
2488			rxd_index += (block_no * ring->rxd_count);
2489
2490		if ((block_no == block_no1) &&
2491		    (off == ring->rx_curr_get_info.offset) &&
2492		    (rxdp->Host_Control)) {
2493			DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2494				  ring->dev->name);
2495			goto end;
2496		}
2497		if (off && (off == ring->rxd_count)) {
2498			ring->rx_curr_put_info.block_index++;
2499			if (ring->rx_curr_put_info.block_index ==
2500			    ring->block_count)
2501				ring->rx_curr_put_info.block_index = 0;
2502			block_no = ring->rx_curr_put_info.block_index;
2503			off = 0;
2504			ring->rx_curr_put_info.offset = off;
2505			rxdp = ring->rx_blocks[block_no].block_virt_addr;
2506			DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2507				  ring->dev->name, rxdp);
2508
2509		}
2510
2511		if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2512		    ((ring->rxd_mode == RXD_MODE_3B) &&
2513		     (rxdp->Control_2 & s2BIT(0)))) {
2514			ring->rx_curr_put_info.offset = off;
2515			goto end;
2516		}
2517		/* calculate size of skb based on ring mode */
2518		size = ring->mtu +
2519			HEADER_ETHERNET_II_802_3_SIZE +
2520			HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2521		if (ring->rxd_mode == RXD_MODE_1)
2522			size += NET_IP_ALIGN;
2523		else
2524			size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2525
2526		/* allocate skb */
2527		skb = netdev_alloc_skb(nic->dev, size);
2528		if (!skb) {
2529			DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2530				  ring->dev->name);
2531			if (first_rxdp) {
2532				wmb();
2533				first_rxdp->Control_1 |= RXD_OWN_XENA;
2534			}
2535			swstats->mem_alloc_fail_cnt++;
2536
2537			return -ENOMEM ;
2538		}
2539		swstats->mem_allocated += skb->truesize;
2540
2541		if (ring->rxd_mode == RXD_MODE_1) {
2542			/* 1 buffer mode - normal operation mode */
2543			rxdp1 = (struct RxD1 *)rxdp;
2544			memset(rxdp, 0, sizeof(struct RxD1));
2545			skb_reserve(skb, NET_IP_ALIGN);
2546			rxdp1->Buffer0_ptr =
2547				pci_map_single(ring->pdev, skb->data,
2548					       size - NET_IP_ALIGN,
2549					       PCI_DMA_FROMDEVICE);
2550			if (pci_dma_mapping_error(nic->pdev,
2551						  rxdp1->Buffer0_ptr))
2552				goto pci_map_failed;
2553
2554			rxdp->Control_2 =
2555				SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2556			rxdp->Host_Control = (unsigned long)skb;
2557		} else if (ring->rxd_mode == RXD_MODE_3B) {
2558			/*
2559			 * 2 buffer mode -
2560			 * 2 buffer mode provides 128
2561			 * byte aligned receive buffers.
2562			 */
2563
2564			rxdp3 = (struct RxD3 *)rxdp;
2565			/* save buffer pointers to avoid frequent dma mapping */
2566			Buffer0_ptr = rxdp3->Buffer0_ptr;
2567			Buffer1_ptr = rxdp3->Buffer1_ptr;
2568			memset(rxdp, 0, sizeof(struct RxD3));
2569			/* restore the buffer pointers for dma sync*/
2570			rxdp3->Buffer0_ptr = Buffer0_ptr;
2571			rxdp3->Buffer1_ptr = Buffer1_ptr;
2572
2573			ba = &ring->ba[block_no][off];
2574			skb_reserve(skb, BUF0_LEN);
2575			tmp = (u64)(unsigned long)skb->data;
2576			tmp += ALIGN_SIZE;
2577			tmp &= ~ALIGN_SIZE;
2578			skb->data = (void *) (unsigned long)tmp;
2579			skb_reset_tail_pointer(skb);
2580
2581			if (from_card_up) {
2582				rxdp3->Buffer0_ptr =
2583					pci_map_single(ring->pdev, ba->ba_0,
2584						       BUF0_LEN,
2585						       PCI_DMA_FROMDEVICE);
2586				if (pci_dma_mapping_error(nic->pdev,
2587							  rxdp3->Buffer0_ptr))
2588					goto pci_map_failed;
2589			} else
2590				pci_dma_sync_single_for_device(ring->pdev,
2591							       (dma_addr_t)rxdp3->Buffer0_ptr,
2592							       BUF0_LEN,
2593							       PCI_DMA_FROMDEVICE);
2594
2595			rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2596			if (ring->rxd_mode == RXD_MODE_3B) {
2597				/* Two buffer mode */
2598
2599				/*
2600				 * Buffer2 will have L3/L4 header plus
2601				 * L4 payload
2602				 */
2603				rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2604								    skb->data,
2605								    ring->mtu + 4,
2606								    PCI_DMA_FROMDEVICE);
2607
2608				if (pci_dma_mapping_error(nic->pdev,
2609							  rxdp3->Buffer2_ptr))
2610					goto pci_map_failed;
2611
2612				if (from_card_up) {
2613					rxdp3->Buffer1_ptr =
2614						pci_map_single(ring->pdev,
2615							       ba->ba_1,
2616							       BUF1_LEN,
2617							       PCI_DMA_FROMDEVICE);
2618
2619					if (pci_dma_mapping_error(nic->pdev,
2620								  rxdp3->Buffer1_ptr)) {
2621						pci_unmap_single(ring->pdev,
2622								 (dma_addr_t)(unsigned long)
2623								 skb->data,
2624								 ring->mtu + 4,
2625								 PCI_DMA_FROMDEVICE);
2626						goto pci_map_failed;
2627					}
2628				}
2629				rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2630				rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2631					(ring->mtu + 4);
2632			}
2633			rxdp->Control_2 |= s2BIT(0);
2634			rxdp->Host_Control = (unsigned long) (skb);
2635		}
2636		if (alloc_tab & ((1 << rxsync_frequency) - 1))
2637			rxdp->Control_1 |= RXD_OWN_XENA;
2638		off++;
2639		if (off == (ring->rxd_count + 1))
2640			off = 0;
2641		ring->rx_curr_put_info.offset = off;
2642
2643		rxdp->Control_2 |= SET_RXD_MARKER;
2644		if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2645			if (first_rxdp) {
2646				wmb();
2647				first_rxdp->Control_1 |= RXD_OWN_XENA;
2648			}
2649			first_rxdp = rxdp;
2650		}
2651		ring->rx_bufs_left += 1;
2652		alloc_tab++;
2653	}
2654
2655end:
2656	/* Transfer ownership of first descriptor to adapter just before
2657	 * exiting. Before that, use memory barrier so that ownership
2658	 * and other fields are seen by adapter correctly.
2659	 */
2660	if (first_rxdp) {
2661		wmb();
2662		first_rxdp->Control_1 |= RXD_OWN_XENA;
2663	}
2664
2665	return SUCCESS;
2666
2667pci_map_failed:
2668	swstats->pci_map_fail_cnt++;
2669	swstats->mem_freed += skb->truesize;
2670	dev_kfree_skb_irq(skb);
2671	return -ENOMEM;
2672}
2673
2674static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2675{
2676	struct net_device *dev = sp->dev;
2677	int j;
2678	struct sk_buff *skb;
2679	struct RxD_t *rxdp;
2680	struct RxD1 *rxdp1;
2681	struct RxD3 *rxdp3;
2682	struct mac_info *mac_control = &sp->mac_control;
2683	struct stat_block *stats = mac_control->stats_info;
2684	struct swStat *swstats = &stats->sw_stat;
2685
2686	for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2687		rxdp = mac_control->rings[ring_no].
2688			rx_blocks[blk].rxds[j].virt_addr;
2689		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2690		if (!skb)
2691			continue;
2692		if (sp->rxd_mode == RXD_MODE_1) {
2693			rxdp1 = (struct RxD1 *)rxdp;
2694			pci_unmap_single(sp->pdev,
2695					 (dma_addr_t)rxdp1->Buffer0_ptr,
2696					 dev->mtu +
2697					 HEADER_ETHERNET_II_802_3_SIZE +
2698					 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2699					 PCI_DMA_FROMDEVICE);
2700			memset(rxdp, 0, sizeof(struct RxD1));
2701		} else if (sp->rxd_mode == RXD_MODE_3B) {
2702			rxdp3 = (struct RxD3 *)rxdp;
2703			pci_unmap_single(sp->pdev,
2704					 (dma_addr_t)rxdp3->Buffer0_ptr,
2705					 BUF0_LEN,
2706					 PCI_DMA_FROMDEVICE);
2707			pci_unmap_single(sp->pdev,
2708					 (dma_addr_t)rxdp3->Buffer1_ptr,
2709					 BUF1_LEN,
2710					 PCI_DMA_FROMDEVICE);
2711			pci_unmap_single(sp->pdev,
2712					 (dma_addr_t)rxdp3->Buffer2_ptr,
2713					 dev->mtu + 4,
2714					 PCI_DMA_FROMDEVICE);
2715			memset(rxdp, 0, sizeof(struct RxD3));
2716		}
2717		swstats->mem_freed += skb->truesize;
2718		dev_kfree_skb(skb);
2719		mac_control->rings[ring_no].rx_bufs_left -= 1;
2720	}
2721}
2722
2723/**
2724 *  free_rx_buffers - Frees all Rx buffers
2725 *  @sp: device private variable.
2726 *  Description:
2727 *  This function will free all Rx buffers allocated by host.
2728 *  Return Value:
2729 *  NONE.
2730 */
2731
2732static void free_rx_buffers(struct s2io_nic *sp)
2733{
2734	struct net_device *dev = sp->dev;
2735	int i, blk = 0, buf_cnt = 0;
2736	struct config_param *config = &sp->config;
2737	struct mac_info *mac_control = &sp->mac_control;
2738
2739	for (i = 0; i < config->rx_ring_num; i++) {
2740		struct ring_info *ring = &mac_control->rings[i];
2741
2742		for (blk = 0; blk < rx_ring_sz[i]; blk++)
2743			free_rxd_blk(sp, i, blk);
2744
2745		ring->rx_curr_put_info.block_index = 0;
2746		ring->rx_curr_get_info.block_index = 0;
2747		ring->rx_curr_put_info.offset = 0;
2748		ring->rx_curr_get_info.offset = 0;
2749		ring->rx_bufs_left = 0;
2750		DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2751			  dev->name, buf_cnt, i);
2752	}
2753}
2754
2755static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2756{
2757	if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2758		DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2759			  ring->dev->name);
2760	}
2761	return 0;
2762}
2763
2764/**
2765 * s2io_poll - Rx interrupt handler for NAPI support
2766 * @napi : pointer to the napi structure.
2767 * @budget : The number of packets that were budgeted to be processed
2768 * during  one pass through the 'Poll" function.
2769 * Description:
2770 * Comes into picture only if NAPI support has been incorporated. It does
2771 * the same thing that rx_intr_handler does, but not in a interrupt context
2772 * also It will process only a given number of packets.
2773 * Return value:
2774 * 0 on success and 1 if there are No Rx packets to be processed.
2775 */
2776
2777static int s2io_poll_msix(struct napi_struct *napi, int budget)
2778{
2779	struct ring_info *ring = container_of(napi, struct ring_info, napi);
2780	struct net_device *dev = ring->dev;
2781	int pkts_processed = 0;
2782	u8 __iomem *addr = NULL;
2783	u8 val8 = 0;
2784	struct s2io_nic *nic = netdev_priv(dev);
2785	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2786	int budget_org = budget;
2787
2788	if (unlikely(!is_s2io_card_up(nic)))
2789		return 0;
2790
2791	pkts_processed = rx_intr_handler(ring, budget);
2792	s2io_chk_rx_buffers(nic, ring);
2793
2794	if (pkts_processed < budget_org) {
2795		napi_complete(napi);
2796		/*Re Enable MSI-Rx Vector*/
2797		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2798		addr += 7 - ring->ring_no;
2799		val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2800		writeb(val8, addr);
2801		val8 = readb(addr);
2802	}
2803	return pkts_processed;
2804}
2805
2806static int s2io_poll_inta(struct napi_struct *napi, int budget)
2807{
2808	struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2809	int pkts_processed = 0;
2810	int ring_pkts_processed, i;
2811	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2812	int budget_org = budget;
2813	struct config_param *config = &nic->config;
2814	struct mac_info *mac_control = &nic->mac_control;
2815
2816	if (unlikely(!is_s2io_card_up(nic)))
2817		return 0;
2818
2819	for (i = 0; i < config->rx_ring_num; i++) {
2820		struct ring_info *ring = &mac_control->rings[i];
2821		ring_pkts_processed = rx_intr_handler(ring, budget);
2822		s2io_chk_rx_buffers(nic, ring);
2823		pkts_processed += ring_pkts_processed;
2824		budget -= ring_pkts_processed;
2825		if (budget <= 0)
2826			break;
2827	}
2828	if (pkts_processed < budget_org) {
2829		napi_complete(napi);
2830		/* Re enable the Rx interrupts for the ring */
2831		writeq(0, &bar0->rx_traffic_mask);
2832		readl(&bar0->rx_traffic_mask);
2833	}
2834	return pkts_processed;
2835}
2836
2837#ifdef CONFIG_NET_POLL_CONTROLLER
2838/**
2839 * s2io_netpoll - netpoll event handler entry point
2840 * @dev : pointer to the device structure.
2841 * Description:
2842 * 	This function will be called by upper layer to check for events on the
2843 * interface in situations where interrupts are disabled. It is used for
2844 * specific in-kernel networking tasks, such as remote consoles and kernel
2845 * debugging over the network (example netdump in RedHat).
2846 */
2847static void s2io_netpoll(struct net_device *dev)
2848{
2849	struct s2io_nic *nic = netdev_priv(dev);
2850	const int irq = nic->pdev->irq;
2851	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2852	u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2853	int i;
2854	struct config_param *config = &nic->config;
2855	struct mac_info *mac_control = &nic->mac_control;
2856
2857	if (pci_channel_offline(nic->pdev))
2858		return;
2859
2860	disable_irq(irq);
2861
2862	writeq(val64, &bar0->rx_traffic_int);
2863	writeq(val64, &bar0->tx_traffic_int);
2864
2865	/* we need to free up the transmitted skbufs or else netpoll will
2866	 * run out of skbs and will fail and eventually netpoll application such
2867	 * as netdump will fail.
2868	 */
2869	for (i = 0; i < config->tx_fifo_num; i++)
2870		tx_intr_handler(&mac_control->fifos[i]);
2871
2872	/* check for received packet and indicate up to network */
2873	for (i = 0; i < config->rx_ring_num; i++) {
2874		struct ring_info *ring = &mac_control->rings[i];
2875
2876		rx_intr_handler(ring, 0);
2877	}
2878
2879	for (i = 0; i < config->rx_ring_num; i++) {
2880		struct ring_info *ring = &mac_control->rings[i];
2881
2882		if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2883			DBG_PRINT(INFO_DBG,
2884				  "%s: Out of memory in Rx Netpoll!!\n",
2885				  dev->name);
2886			break;
2887		}
2888	}
2889	enable_irq(irq);
2890}
2891#endif
2892
2893/**
2894 *  rx_intr_handler - Rx interrupt handler
2895 *  @ring_info: per ring structure.
2896 *  @budget: budget for napi processing.
2897 *  Description:
2898 *  If the interrupt is because of a received frame or if the
2899 *  receive ring contains fresh as yet un-processed frames,this function is
2900 *  called. It picks out the RxD at which place the last Rx processing had
2901 *  stopped and sends the skb to the OSM's Rx handler and then increments
2902 *  the offset.
2903 *  Return Value:
2904 *  No. of napi packets processed.
2905 */
2906static int rx_intr_handler(struct ring_info *ring_data, int budget)
2907{
2908	int get_block, put_block;
2909	struct rx_curr_get_info get_info, put_info;
2910	struct RxD_t *rxdp;
2911	struct sk_buff *skb;
2912	int pkt_cnt = 0, napi_pkts = 0;
2913	int i;
2914	struct RxD1 *rxdp1;
2915	struct RxD3 *rxdp3;
2916
2917	if (budget <= 0)
2918		return napi_pkts;
2919
2920	get_info = ring_data->rx_curr_get_info;
2921	get_block = get_info.block_index;
2922	memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2923	put_block = put_info.block_index;
2924	rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2925
2926	while (RXD_IS_UP2DT(rxdp)) {
2927		/*
2928		 * If your are next to put index then it's
2929		 * FIFO full condition
2930		 */
2931		if ((get_block == put_block) &&
2932		    (get_info.offset + 1) == put_info.offset) {
2933			DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2934				  ring_data->dev->name);
2935			break;
2936		}
2937		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2938		if (skb == NULL) {
2939			DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2940				  ring_data->dev->name);
2941			return 0;
2942		}
2943		if (ring_data->rxd_mode == RXD_MODE_1) {
2944			rxdp1 = (struct RxD1 *)rxdp;
2945			pci_unmap_single(ring_data->pdev, (dma_addr_t)
2946					 rxdp1->Buffer0_ptr,
2947					 ring_data->mtu +
2948					 HEADER_ETHERNET_II_802_3_SIZE +
2949					 HEADER_802_2_SIZE +
2950					 HEADER_SNAP_SIZE,
2951					 PCI_DMA_FROMDEVICE);
2952		} else if (ring_data->rxd_mode == RXD_MODE_3B) {
2953			rxdp3 = (struct RxD3 *)rxdp;
2954			pci_dma_sync_single_for_cpu(ring_data->pdev,
2955						    (dma_addr_t)rxdp3->Buffer0_ptr,
2956						    BUF0_LEN,
2957						    PCI_DMA_FROMDEVICE);
2958			pci_unmap_single(ring_data->pdev,
2959					 (dma_addr_t)rxdp3->Buffer2_ptr,
2960					 ring_data->mtu + 4,
2961					 PCI_DMA_FROMDEVICE);
2962		}
2963		prefetch(skb->data);
2964		rx_osm_handler(ring_data, rxdp);
2965		get_info.offset++;
2966		ring_data->rx_curr_get_info.offset = get_info.offset;
2967		rxdp = ring_data->rx_blocks[get_block].
2968			rxds[get_info.offset].virt_addr;
2969		if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2970			get_info.offset = 0;
2971			ring_data->rx_curr_get_info.offset = get_info.offset;
2972			get_block++;
2973			if (get_block == ring_data->block_count)
2974				get_block = 0;
2975			ring_data->rx_curr_get_info.block_index = get_block;
2976			rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2977		}
2978
2979		if (ring_data->nic->config.napi) {
2980			budget--;
2981			napi_pkts++;
2982			if (!budget)
2983				break;
2984		}
2985		pkt_cnt++;
2986		if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2987			break;
2988	}
2989	if (ring_data->lro) {
2990		/* Clear all LRO sessions before exiting */
2991		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2992			struct lro *lro = &ring_data->lro0_n[i];
2993			if (lro->in_use) {
2994				update_L3L4_header(ring_data->nic, lro);
2995				queue_rx_frame(lro->parent, lro->vlan_tag);
2996				clear_lro_session(lro);
2997			}
2998		}
2999	}
3000	return napi_pkts;
3001}
3002
3003/**
3004 *  tx_intr_handler - Transmit interrupt handler
3005 *  @nic : device private variable
3006 *  Description:
3007 *  If an interrupt was raised to indicate DMA complete of the
3008 *  Tx packet, this function is called. It identifies the last TxD
3009 *  whose buffer was freed and frees all skbs whose data have already
3010 *  DMA'ed into the NICs internal memory.
3011 *  Return Value:
3012 *  NONE
3013 */
3014
3015static void tx_intr_handler(struct fifo_info *fifo_data)
3016{
3017	struct s2io_nic *nic = fifo_data->nic;
3018	struct tx_curr_get_info get_info, put_info;
3019	struct sk_buff *skb = NULL;
3020	struct TxD *txdlp;
3021	int pkt_cnt = 0;
3022	unsigned long flags = 0;
3023	u8 err_mask;
3024	struct stat_block *stats = nic->mac_control.stats_info;
3025	struct swStat *swstats = &stats->sw_stat;
3026
3027	if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3028		return;
3029
3030	get_info = fifo_data->tx_curr_get_info;
3031	memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3032	txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3033	while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3034	       (get_info.offset != put_info.offset) &&
3035	       (txdlp->Host_Control)) {
3036		/* Check for TxD errors */
3037		if (txdlp->Control_1 & TXD_T_CODE) {
3038			unsigned long long err;
3039			err = txdlp->Control_1 & TXD_T_CODE;
3040			if (err & 0x1) {
3041				swstats->parity_err_cnt++;
3042			}
3043
3044			/* update t_code statistics */
3045			err_mask = err >> 48;
3046			switch (err_mask) {
3047			case 2:
3048				swstats->tx_buf_abort_cnt++;
3049				break;
3050
3051			case 3:
3052				swstats->tx_desc_abort_cnt++;
3053				break;
3054
3055			case 7:
3056				swstats->tx_parity_err_cnt++;
3057				break;
3058
3059			case 10:
3060				swstats->tx_link_loss_cnt++;
3061				break;
3062
3063			case 15:
3064				swstats->tx_list_proc_err_cnt++;
3065				break;
3066			}
3067		}
3068
3069		skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3070		if (skb == NULL) {
3071			spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3072			DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3073				  __func__);
3074			return;
3075		}
3076		pkt_cnt++;
3077
3078		/* Updating the statistics block */
3079		swstats->mem_freed += skb->truesize;
3080		dev_kfree_skb_irq(skb);
3081
3082		get_info.offset++;
3083		if (get_info.offset == get_info.fifo_len + 1)
3084			get_info.offset = 0;
3085		txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3086		fifo_data->tx_curr_get_info.offset = get_info.offset;
3087	}
3088
3089	s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3090
3091	spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3092}
3093
3094/**
3095 *  s2io_mdio_write - Function to write in to MDIO registers
3096 *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3097 *  @addr     : address value
3098 *  @value    : data value
3099 *  @dev      : pointer to net_device structure
3100 *  Description:
3101 *  This function is used to write values to the MDIO registers
3102 *  NONE
3103 */
3104static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3105			    struct net_device *dev)
3106{
3107	u64 val64;
3108	struct s2io_nic *sp = netdev_priv(dev);
3109	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3110
3111	/* address transaction */
3112	val64 = MDIO_MMD_INDX_ADDR(addr) |
3113		MDIO_MMD_DEV_ADDR(mmd_type) |
3114		MDIO_MMS_PRT_ADDR(0x0);
3115	writeq(val64, &bar0->mdio_control);
3116	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3117	writeq(val64, &bar0->mdio_control);
3118	udelay(100);
3119
3120	/* Data transaction */
3121	val64 = MDIO_MMD_INDX_ADDR(addr) |
3122		MDIO_MMD_DEV_ADDR(mmd_type) |
3123		MDIO_MMS_PRT_ADDR(0x0) |
3124		MDIO_MDIO_DATA(value) |
3125		MDIO_OP(MDIO_OP_WRITE_TRANS);
3126	writeq(val64, &bar0->mdio_control);
3127	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3128	writeq(val64, &bar0->mdio_control);
3129	udelay(100);
3130
3131	val64 = MDIO_MMD_INDX_ADDR(addr) |
3132		MDIO_MMD_DEV_ADDR(mmd_type) |
3133		MDIO_MMS_PRT_ADDR(0x0) |
3134		MDIO_OP(MDIO_OP_READ_TRANS);
3135	writeq(val64, &bar0->mdio_control);
3136	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3137	writeq(val64, &bar0->mdio_control);
3138	udelay(100);
3139}
3140
3141/**
3142 *  s2io_mdio_read - Function to write in to MDIO registers
3143 *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3144 *  @addr     : address value
3145 *  @dev      : pointer to net_device structure
3146 *  Description:
3147 *  This function is used to read values to the MDIO registers
3148 *  NONE
3149 */
3150static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3151{
3152	u64 val64 = 0x0;
3153	u64 rval64 = 0x0;
3154	struct s2io_nic *sp = netdev_priv(dev);
3155	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3156
3157	/* address transaction */
3158	val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3159			 | MDIO_MMD_DEV_ADDR(mmd_type)
3160			 | MDIO_MMS_PRT_ADDR(0x0));
3161	writeq(val64, &bar0->mdio_control);
3162	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3163	writeq(val64, &bar0->mdio_control);
3164	udelay(100);
3165
3166	/* Data transaction */
3167	val64 = MDIO_MMD_INDX_ADDR(addr) |
3168		MDIO_MMD_DEV_ADDR(mmd_type) |
3169		MDIO_MMS_PRT_ADDR(0x0) |
3170		MDIO_OP(MDIO_OP_READ_TRANS);
3171	writeq(val64, &bar0->mdio_control);
3172	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3173	writeq(val64, &bar0->mdio_control);
3174	udelay(100);
3175
3176	/* Read the value from regs */
3177	rval64 = readq(&bar0->mdio_control);
3178	rval64 = rval64 & 0xFFFF0000;
3179	rval64 = rval64 >> 16;
3180	return rval64;
3181}
3182
3183/**
3184 *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3185 *  @counter      : counter value to be updated
3186 *  @flag         : flag to indicate the status
3187 *  @type         : counter type
3188 *  Description:
3189 *  This function is to check the status of the xpak counters value
3190 *  NONE
3191 */
3192
3193static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3194				  u16 flag, u16 type)
3195{
3196	u64 mask = 0x3;
3197	u64 val64;
3198	int i;
3199	for (i = 0; i < index; i++)
3200		mask = mask << 0x2;
3201
3202	if (flag > 0) {
3203		*counter = *counter + 1;
3204		val64 = *regs_stat & mask;
3205		val64 = val64 >> (index * 0x2);
3206		val64 = val64 + 1;
3207		if (val64 == 3) {
3208			switch (type) {
3209			case 1:
3210				DBG_PRINT(ERR_DBG,
3211					  "Take Xframe NIC out of service.\n");
3212				DBG_PRINT(ERR_DBG,
3213"Excessive temperatures may result in premature transceiver failure.\n");
3214				break;
3215			case 2:
3216				DBG_PRINT(ERR_DBG,
3217					  "Take Xframe NIC out of service.\n");
3218				DBG_PRINT(ERR_DBG,
3219"Excessive bias currents may indicate imminent laser diode failure.\n");
3220				break;
3221			case 3:
3222				DBG_PRINT(ERR_DBG,
3223					  "Take Xframe NIC out of service.\n");
3224				DBG_PRINT(ERR_DBG,
3225"Excessive laser output power may saturate far-end receiver.\n");
3226				break;
3227			default:
3228				DBG_PRINT(ERR_DBG,
3229					  "Incorrect XPAK Alarm type\n");
3230			}
3231			val64 = 0x0;
3232		}
3233		val64 = val64 << (index * 0x2);
3234		*regs_stat = (*regs_stat & (~mask)) | (val64);
3235
3236	} else {
3237		*regs_stat = *regs_stat & (~mask);
3238	}
3239}
3240
3241/**
3242 *  s2io_updt_xpak_counter - Function to update the xpak counters
3243 *  @dev         : pointer to net_device struct
3244 *  Description:
3245 *  This function is to upate the status of the xpak counters value
3246 *  NONE
3247 */
3248static void s2io_updt_xpak_counter(struct net_device *dev)
3249{
3250	u16 flag  = 0x0;
3251	u16 type  = 0x0;
3252	u16 val16 = 0x0;
3253	u64 val64 = 0x0;
3254	u64 addr  = 0x0;
3255
3256	struct s2io_nic *sp = netdev_priv(dev);
3257	struct stat_block *stats = sp->mac_control.stats_info;
3258	struct xpakStat *xstats = &stats->xpak_stat;
3259
3260	/* Check the communication with the MDIO slave */
3261	addr = MDIO_CTRL1;
3262	val64 = 0x0;
3263	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3264	if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3265		DBG_PRINT(ERR_DBG,
3266			  "ERR: MDIO slave access failed - Returned %llx\n",
3267			  (unsigned long long)val64);
3268		return;
3269	}
3270
3271	/* Check for the expected value of control reg 1 */
3272	if (val64 != MDIO_CTRL1_SPEED10G) {
3273		DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3274			  "Returned: %llx- Expected: 0x%x\n",
3275			  (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3276		return;
3277	}
3278
3279	/* Loading the DOM register to MDIO register */
3280	addr = 0xA100;
3281	s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3282	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3283
3284	/* Reading the Alarm flags */
3285	addr = 0xA070;
3286	val64 = 0x0;
3287	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3288
3289	flag = CHECKBIT(val64, 0x7);
3290	type = 1;
3291	s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3292			      &xstats->xpak_regs_stat,
3293			      0x0, flag, type);
3294
3295	if (CHECKBIT(val64, 0x6))
3296		xstats->alarm_transceiver_temp_low++;
3297
3298	flag = CHECKBIT(val64, 0x3);
3299	type = 2;
3300	s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3301			      &xstats->xpak_regs_stat,
3302			      0x2, flag, type);
3303
3304	if (CHECKBIT(val64, 0x2))
3305		xstats->alarm_laser_bias_current_low++;
3306
3307	flag = CHECKBIT(val64, 0x1);
3308	type = 3;
3309	s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3310			      &xstats->xpak_regs_stat,
3311			      0x4, flag, type);
3312
3313	if (CHECKBIT(val64, 0x0))
3314		xstats->alarm_laser_output_power_low++;
3315
3316	/* Reading the Warning flags */
3317	addr = 0xA074;
3318	val64 = 0x0;
3319	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3320
3321	if (CHECKBIT(val64, 0x7))
3322		xstats->warn_transceiver_temp_high++;
3323
3324	if (CHECKBIT(val64, 0x6))
3325		xstats->warn_transceiver_temp_low++;
3326
3327	if (CHECKBIT(val64, 0x3))
3328		xstats->warn_laser_bias_current_high++;
3329
3330	if (CHECKBIT(val64, 0x2))
3331		xstats->warn_laser_bias_current_low++;
3332
3333	if (CHECKBIT(val64, 0x1))
3334		xstats->warn_laser_output_power_high++;
3335
3336	if (CHECKBIT(val64, 0x0))
3337		xstats->warn_laser_output_power_low++;
3338}
3339
3340/**
3341 *  wait_for_cmd_complete - waits for a command to complete.
3342 *  @sp : private member of the device structure, which is a pointer to the
3343 *  s2io_nic structure.
3344 *  Description: Function that waits for a command to Write into RMAC
3345 *  ADDR DATA registers to be completed and returns either success or
3346 *  error depending on whether the command was complete or not.
3347 *  Return value:
3348 *   SUCCESS on success and FAILURE on failure.
3349 */
3350
3351static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3352				 int bit_state)
3353{
3354	int ret = FAILURE, cnt = 0, delay = 1;
3355	u64 val64;
3356
3357	if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3358		return FAILURE;
3359
3360	do {
3361		val64 = readq(addr);
3362		if (bit_state == S2IO_BIT_RESET) {
3363			if (!(val64 & busy_bit)) {
3364				ret = SUCCESS;
3365				break;
3366			}
3367		} else {
3368			if (val64 & busy_bit) {
3369				ret = SUCCESS;
3370				break;
3371			}
3372		}
3373
3374		if (in_interrupt())
3375			mdelay(delay);
3376		else
3377			msleep(delay);
3378
3379		if (++cnt >= 10)
3380			delay = 50;
3381	} while (cnt < 20);
3382	return ret;
3383}
3384/**
3385 * check_pci_device_id - Checks if the device id is supported
3386 * @id : device id
3387 * Description: Function to check if the pci device id is supported by driver.
3388 * Return value: Actual device id if supported else PCI_ANY_ID
3389 */
3390static u16 check_pci_device_id(u16 id)
3391{
3392	switch (id) {
3393	case PCI_DEVICE_ID_HERC_WIN:
3394	case PCI_DEVICE_ID_HERC_UNI:
3395		return XFRAME_II_DEVICE;
3396	case PCI_DEVICE_ID_S2IO_UNI:
3397	case PCI_DEVICE_ID_S2IO_WIN:
3398		return XFRAME_I_DEVICE;
3399	default:
3400		return PCI_ANY_ID;
3401	}
3402}
3403
3404/**
3405 *  s2io_reset - Resets the card.
3406 *  @sp : private member of the device structure.
3407 *  Description: Function to Reset the card. This function then also
3408 *  restores the previously saved PCI configuration space registers as
3409 *  the card reset also resets the configuration space.
3410 *  Return value:
3411 *  void.
3412 */
3413
3414static void s2io_reset(struct s2io_nic *sp)
3415{
3416	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3417	u64 val64;
3418	u16 subid, pci_cmd;
3419	int i;
3420	u16 val16;
3421	unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3422	unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3423	struct stat_block *stats;
3424	struct swStat *swstats;
3425
3426	DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3427		  __func__, pci_name(sp->pdev));
3428
3429	/* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3430	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3431
3432	val64 = SW_RESET_ALL;
3433	writeq(val64, &bar0->sw_reset);
3434	if (strstr(sp->product_name, "CX4"))
3435		msleep(750);
3436	msleep(250);
3437	for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3438
3439		/* Restore the PCI state saved during initialization. */
3440		pci_restore_state(sp->pdev);
3441		pci_save_state(sp->pdev);
3442		pci_read_config_word(sp->pdev, 0x2, &val16);
3443		if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3444			break;
3445		msleep(200);
3446	}
3447
3448	if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3449		DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3450
3451	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3452
3453	s2io_init_pci(sp);
3454
3455	/* Set swapper to enable I/O register access */
3456	s2io_set_swapper(sp);
3457
3458	/* restore mac_addr entries */
3459	do_s2io_restore_unicast_mc(sp);
3460
3461	/* Restore the MSIX table entries from local variables */
3462	restore_xmsi_data(sp);
3463
3464	/* Clear certain PCI/PCI-X fields after reset */
3465	if (sp->device_type == XFRAME_II_DEVICE) {
3466		/* Clear "detected parity error" bit */
3467		pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3468
3469		/* Clearing PCIX Ecc status register */
3470		pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3471
3472		/* Clearing PCI_STATUS error reflected here */
3473		writeq(s2BIT(62), &bar0->txpic_int_reg);
3474	}
3475
3476	/* Reset device statistics maintained by OS */
3477	memset(&sp->stats, 0, sizeof(struct net_device_stats));
3478
3479	stats = sp->mac_control.stats_info;
3480	swstats = &stats->sw_stat;
3481
3482	/* save link up/down time/cnt, reset/memory/watchdog cnt */
3483	up_cnt = swstats->link_up_cnt;
3484	down_cnt = swstats->link_down_cnt;
3485	up_time = swstats->link_up_time;
3486	down_time = swstats->link_down_time;
3487	reset_cnt = swstats->soft_reset_cnt;
3488	mem_alloc_cnt = swstats->mem_allocated;
3489	mem_free_cnt = swstats->mem_freed;
3490	watchdog_cnt = swstats->watchdog_timer_cnt;
3491
3492	memset(stats, 0, sizeof(struct stat_block));
3493
3494	/* restore link up/down time/cnt, reset/memory/watchdog cnt */
3495	swstats->link_up_cnt = up_cnt;
3496	swstats->link_down_cnt = down_cnt;
3497	swstats->link_up_time = up_time;
3498	swstats->link_down_time = down_time;
3499	swstats->soft_reset_cnt = reset_cnt;
3500	swstats->mem_allocated = mem_alloc_cnt;
3501	swstats->mem_freed = mem_free_cnt;
3502	swstats->watchdog_timer_cnt = watchdog_cnt;
3503
3504	/* SXE-002: Configure link and activity LED to turn it off */
3505	subid = sp->pdev->subsystem_device;
3506	if (((subid & 0xFF) >= 0x07) &&
3507	    (sp->device_type == XFRAME_I_DEVICE)) {
3508		val64 = readq(&bar0->gpio_control);
3509		val64 |= 0x0000800000000000ULL;
3510		writeq(val64, &bar0->gpio_control);
3511		val64 = 0x0411040400000000ULL;
3512		writeq(val64, (void __iomem *)bar0 + 0x2700);
3513	}
3514
3515	/*
3516	 * Clear spurious ECC interrupts that would have occurred on
3517	 * XFRAME II cards after reset.
3518	 */
3519	if (sp->device_type == XFRAME_II_DEVICE) {
3520		val64 = readq(&bar0->pcc_err_reg);
3521		writeq(val64, &bar0->pcc_err_reg);
3522	}
3523
3524	sp->device_enabled_once = false;
3525}
3526
3527/**
3528 *  s2io_set_swapper - to set the swapper controle on the card
3529 *  @sp : private member of the device structure,
3530 *  pointer to the s2io_nic structure.
3531 *  Description: Function to set the swapper control on the card
3532 *  correctly depending on the 'endianness' of the system.
3533 *  Return value:
3534 *  SUCCESS on success and FAILURE on failure.
3535 */
3536
3537static int s2io_set_swapper(struct s2io_nic *sp)
3538{
3539	struct net_device *dev = sp->dev;
3540	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3541	u64 val64, valt, valr;
3542
3543	/*
3544	 * Set proper endian settings and verify the same by reading
3545	 * the PIF Feed-back register.
3546	 */
3547
3548	val64 = readq(&bar0->pif_rd_swapper_fb);
3549	if (val64 != 0x0123456789ABCDEFULL) {
3550		int i = 0;
3551		static const u64 value[] = {
3552			0xC30000C3C30000C3ULL,	/* FE=1, SE=1 */
3553			0x8100008181000081ULL,	/* FE=1, SE=0 */
3554			0x4200004242000042ULL,	/* FE=0, SE=1 */
3555			0			/* FE=0, SE=0 */
3556		};
3557
3558		while (i < 4) {
3559			writeq(value[i], &bar0->swapper_ctrl);
3560			val64 = readq(&bar0->pif_rd_swapper_fb);
3561			if (val64 == 0x0123456789ABCDEFULL)
3562				break;
3563			i++;
3564		}
3565		if (i == 4) {
3566			DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3567				  "feedback read %llx\n",
3568				  dev->name, (unsigned long long)val64);
3569			return FAILURE;
3570		}
3571		valr = value[i];
3572	} else {
3573		valr = readq(&bar0->swapper_ctrl);
3574	}
3575
3576	valt = 0x0123456789ABCDEFULL;
3577	writeq(valt, &bar0->xmsi_address);
3578	val64 = readq(&bar0->xmsi_address);
3579
3580	if (val64 != valt) {
3581		int i = 0;
3582		static const u64 value[] = {
3583			0x00C3C30000C3C300ULL,	/* FE=1, SE=1 */
3584			0x0081810000818100ULL,	/* FE=1, SE=0 */
3585			0x0042420000424200ULL,	/* FE=0, SE=1 */
3586			0			/* FE=0, SE=0 */
3587		};
3588
3589		while (i < 4) {
3590			writeq((value[i] | valr), &bar0->swapper_ctrl);
3591			writeq(valt, &bar0->xmsi_address);
3592			val64 = readq(&bar0->xmsi_address);
3593			if (val64 == valt)
3594				break;
3595			i++;
3596		}
3597		if (i == 4) {
3598			unsigned long long x = val64;
3599			DBG_PRINT(ERR_DBG,
3600				  "Write failed, Xmsi_addr reads:0x%llx\n", x);
3601			return FAILURE;
3602		}
3603	}
3604	val64 = readq(&bar0->swapper_ctrl);
3605	val64 &= 0xFFFF000000000000ULL;
3606
3607#ifdef __BIG_ENDIAN
3608	/*
3609	 * The device by default set to a big endian format, so a
3610	 * big endian driver need not set anything.
3611	 */
3612	val64 |= (SWAPPER_CTRL_TXP_FE |
3613		  SWAPPER_CTRL_TXP_SE |
3614		  SWAPPER_CTRL_TXD_R_FE |
3615		  SWAPPER_CTRL_TXD_W_FE |
3616		  SWAPPER_CTRL_TXF_R_FE |
3617		  SWAPPER_CTRL_RXD_R_FE |
3618		  SWAPPER_CTRL_RXD_W_FE |
3619		  SWAPPER_CTRL_RXF_W_FE |
3620		  SWAPPER_CTRL_XMSI_FE |
3621		  SWAPPER_CTRL_STATS_FE |
3622		  SWAPPER_CTRL_STATS_SE);
3623	if (sp->config.intr_type == INTA)
3624		val64 |= SWAPPER_CTRL_XMSI_SE;
3625	writeq(val64, &bar0->swapper_ctrl);
3626#else
3627	/*
3628	 * Initially we enable all bits to make it accessible by the
3629	 * driver, then we selectively enable only those bits that
3630	 * we want to set.
3631	 */
3632	val64 |= (SWAPPER_CTRL_TXP_FE |
3633		  SWAPPER_CTRL_TXP_SE |
3634		  SWAPPER_CTRL_TXD_R_FE |
3635		  SWAPPER_CTRL_TXD_R_SE |
3636		  SWAPPER_CTRL_TXD_W_FE |
3637		  SWAPPER_CTRL_TXD_W_SE |
3638		  SWAPPER_CTRL_TXF_R_FE |
3639		  SWAPPER_CTRL_RXD_R_FE |
3640		  SWAPPER_CTRL_RXD_R_SE |
3641		  SWAPPER_CTRL_RXD_W_FE |
3642		  SWAPPER_CTRL_RXD_W_SE |
3643		  SWAPPER_CTRL_RXF_W_FE |
3644		  SWAPPER_CTRL_XMSI_FE |
3645		  SWAPPER_CTRL_STATS_FE |
3646		  SWAPPER_CTRL_STATS_SE);
3647	if (sp->config.intr_type == INTA)
3648		val64 |= SWAPPER_CTRL_XMSI_SE;
3649	writeq(val64, &bar0->swapper_ctrl);
3650#endif
3651	val64 = readq(&bar0->swapper_ctrl);
3652
3653	/*
3654	 * Verifying if endian settings are accurate by reading a
3655	 * feedback register.
3656	 */
3657	val64 = readq(&bar0->pif_rd_swapper_fb);
3658	if (val64 != 0x0123456789ABCDEFULL) {
3659		/* Endian settings are incorrect, calls for another dekko. */
3660		DBG_PRINT(ERR_DBG,
3661			  "%s: Endian settings are wrong, feedback read %llx\n",
3662			  dev->name, (unsigned long long)val64);
3663		return FAILURE;
3664	}
3665
3666	return SUCCESS;
3667}
3668
3669static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3670{
3671	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3672	u64 val64;
3673	int ret = 0, cnt = 0;
3674
3675	do {
3676		val64 = readq(&bar0->xmsi_access);
3677		if (!(val64 & s2BIT(15)))
3678			break;
3679		mdelay(1);
3680		cnt++;
3681	} while (cnt < 5);
3682	if (cnt == 5) {
3683		DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3684		ret = 1;
3685	}
3686
3687	return ret;
3688}
3689
3690static void restore_xmsi_data(struct s2io_nic *nic)
3691{
3692	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3693	u64 val64;
3694	int i, msix_index;
3695
3696	if (nic->device_type == XFRAME_I_DEVICE)
3697		return;
3698
3699	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3700		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3701		writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3702		writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3703		val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3704		writeq(val64, &bar0->xmsi_access);
3705		if (wait_for_msix_trans(nic, msix_index)) {
3706			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3707				  __func__, msix_index);
3708			continue;
3709		}
3710	}
3711}
3712
3713static void store_xmsi_data(struct s2io_nic *nic)
3714{
3715	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3716	u64 val64, addr, data;
3717	int i, msix_index;
3718
3719	if (nic->device_type == XFRAME_I_DEVICE)
3720		return;
3721
3722	/* Store and display */
3723	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3724		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3725		val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3726		writeq(val64, &bar0->xmsi_access);
3727		if (wait_for_msix_trans(nic, msix_index)) {
3728			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3729				  __func__, msix_index);
3730			continue;
3731		}
3732		addr = readq(&bar0->xmsi_address);
3733		data = readq(&bar0->xmsi_data);
3734		if (addr && data) {
3735			nic->msix_info[i].addr = addr;
3736			nic->msix_info[i].data = data;
3737		}
3738	}
3739}
3740
3741static int s2io_enable_msi_x(struct s2io_nic *nic)
3742{
3743	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3744	u64 rx_mat;
3745	u16 msi_control; /* Temp variable */
3746	int ret, i, j, msix_indx = 1;
3747	int size;
3748	struct stat_block *stats = nic->mac_control.stats_info;
3749	struct swStat *swstats = &stats->sw_stat;
3750
3751	size = nic->num_entries * sizeof(struct msix_entry);
3752	nic->entries = kzalloc(size, GFP_KERNEL);
3753	if (!nic->entries) {
3754		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3755			  __func__);
3756		swstats->mem_alloc_fail_cnt++;
3757		return -ENOMEM;
3758	}
3759	swstats->mem_allocated += size;
3760
3761	size = nic->num_entries * sizeof(struct s2io_msix_entry);
3762	nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3763	if (!nic->s2io_entries) {
3764		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3765			  __func__);
3766		swstats->mem_alloc_fail_cnt++;
3767		kfree(nic->entries);
3768		swstats->mem_freed
3769			+= (nic->num_entries * sizeof(struct msix_entry));
3770		return -ENOMEM;
3771	}
3772	swstats->mem_allocated += size;
3773
3774	nic->entries[0].entry = 0;
3775	nic->s2io_entries[0].entry = 0;
3776	nic->s2io_entries[0].in_use = MSIX_FLG;
3777	nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3778	nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3779
3780	for (i = 1; i < nic->num_entries; i++) {
3781		nic->entries[i].entry = ((i - 1) * 8) + 1;
3782		nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3783		nic->s2io_entries[i].arg = NULL;
3784		nic->s2io_entries[i].in_use = 0;
3785	}
3786
3787	rx_mat = readq(&bar0->rx_mat);
3788	for (j = 0; j < nic->config.rx_ring_num; j++) {
3789		rx_mat |= RX_MAT_SET(j, msix_indx);
3790		nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3791		nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3792		nic->s2io_entries[j+1].in_use = MSIX_FLG;
3793		msix_indx += 8;
3794	}
3795	writeq(rx_mat, &bar0->rx_mat);
3796	readq(&bar0->rx_mat);
3797
3798	ret = pci_enable_msix_range(nic->pdev, nic->entries,
3799				    nic->num_entries, nic->num_entries);
3800	/* We fail init if error or we get less vectors than min required */
3801	if (ret < 0) {
3802		DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3803		kfree(nic->entries);
3804		swstats->mem_freed += nic->num_entries *
3805			sizeof(struct msix_entry);
3806		kfree(nic->s2io_entries);
3807		swstats->mem_freed += nic->num_entries *
3808			sizeof(struct s2io_msix_entry);
3809		nic->entries = NULL;
3810		nic->s2io_entries = NULL;
3811		return -ENOMEM;
3812	}
3813
3814	/*
3815	 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3816	 * in the herc NIC. (Temp change, needs to be removed later)
3817	 */
3818	pci_read_config_word(nic->pdev, 0x42, &msi_control);
3819	msi_control |= 0x1; /* Enable MSI */
3820	pci_write_config_word(nic->pdev, 0x42, msi_control);
3821
3822	return 0;
3823}
3824
3825/* Handle software interrupt used during MSI(X) test */
3826static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3827{
3828	struct s2io_nic *sp = dev_id;
3829
3830	sp->msi_detected = 1;
3831	wake_up(&sp->msi_wait);
3832
3833	return IRQ_HANDLED;
3834}
3835
3836/* Test interrupt path by forcing a a software IRQ */
3837static int s2io_test_msi(struct s2io_nic *sp)
3838{
3839	struct pci_dev *pdev = sp->pdev;
3840	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3841	int err;
3842	u64 val64, saved64;
3843
3844	err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3845			  sp->name, sp);
3846	if (err) {
3847		DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3848			  sp->dev->name, pci_name(pdev), pdev->irq);
3849		return err;
3850	}
3851
3852	init_waitqueue_head(&sp->msi_wait);
3853	sp->msi_detected = 0;
3854
3855	saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3856	val64 |= SCHED_INT_CTRL_ONE_SHOT;
3857	val64 |= SCHED_INT_CTRL_TIMER_EN;
3858	val64 |= SCHED_INT_CTRL_INT2MSI(1);
3859	writeq(val64, &bar0->scheduled_int_ctrl);
3860
3861	wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3862
3863	if (!sp->msi_detected) {
3864		/* MSI(X) test failed, go back to INTx mode */
3865		DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3866			  "using MSI(X) during test\n",
3867			  sp->dev->name, pci_name(pdev));
3868
3869		err = -EOPNOTSUPP;
3870	}
3871
3872	free_irq(sp->entries[1].vector, sp);
3873
3874	writeq(saved64, &bar0->scheduled_int_ctrl);
3875
3876	return err;
3877}
3878
3879static void remove_msix_isr(struct s2io_nic *sp)
3880{
3881	int i;
3882	u16 msi_control;
3883
3884	for (i = 0; i < sp->num_entries; i++) {
3885		if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3886			int vector = sp->entries[i].vector;
3887			void *arg = sp->s2io_entries[i].arg;
3888			free_irq(vector, arg);
3889		}
3890	}
3891
3892	kfree(sp->entries);
3893	kfree(sp->s2io_entries);
3894	sp->entries = NULL;
3895	sp->s2io_entries = NULL;
3896
3897	pci_read_config_word(sp->pdev, 0x42, &msi_control);
3898	msi_control &= 0xFFFE; /* Disable MSI */
3899	pci_write_config_word(sp->pdev, 0x42, msi_control);
3900
3901	pci_disable_msix(sp->pdev);
3902}
3903
3904static void remove_inta_isr(struct s2io_nic *sp)
3905{
3906	free_irq(sp->pdev->irq, sp->dev);
3907}
3908
3909/* ********************************************************* *
3910 * Functions defined below concern the OS part of the driver *
3911 * ********************************************************* */
3912
3913/**
3914 *  s2io_open - open entry point of the driver
3915 *  @dev : pointer to the device structure.
3916 *  Description:
3917 *  This function is the open entry point of the driver. It mainly calls a
3918 *  function to allocate Rx buffers and inserts them into the buffer
3919 *  descriptors and then enables the Rx part of the NIC.
3920 *  Return value:
3921 *  0 on success and an appropriate (-)ve integer as defined in errno.h
3922 *   file on failure.
3923 */
3924
3925static int s2io_open(struct net_device *dev)
3926{
3927	struct s2io_nic *sp = netdev_priv(dev);
3928	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3929	int err = 0;
3930
3931	/*
3932	 * Make sure you have link off by default every time
3933	 * Nic is initialized
3934	 */
3935	netif_carrier_off(dev);
3936	sp->last_link_state = 0;
3937
3938	/* Initialize H/W and enable interrupts */
3939	err = s2io_card_up(sp);
3940	if (err) {
3941		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3942			  dev->name);
3943		goto hw_init_failed;
3944	}
3945
3946	if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3947		DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3948		s2io_card_down(sp);
3949		err = -ENODEV;
3950		goto hw_init_failed;
3951	}
3952	s2io_start_all_tx_queue(sp);
3953	return 0;
3954
3955hw_init_failed:
3956	if (sp->config.intr_type == MSI_X) {
3957		if (sp->entries) {
3958			kfree(sp->entries);
3959			swstats->mem_freed += sp->num_entries *
3960				sizeof(struct msix_entry);
3961		}
3962		if (sp->s2io_entries) {
3963			kfree(sp->s2io_entries);
3964			swstats->mem_freed += sp->num_entries *
3965				sizeof(struct s2io_msix_entry);
3966		}
3967	}
3968	return err;
3969}
3970
3971/**
3972 *  s2io_close -close entry point of the driver
3973 *  @dev : device pointer.
3974 *  Description:
3975 *  This is the stop entry point of the driver. It needs to undo exactly
3976 *  whatever was done by the open entry point,thus it's usually referred to
3977 *  as the close function.Among other things this function mainly stops the
3978 *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3979 *  Return value:
3980 *  0 on success and an appropriate (-)ve integer as defined in errno.h
3981 *  file on failure.
3982 */
3983
3984static int s2io_close(struct net_device *dev)
3985{
3986	struct s2io_nic *sp = netdev_priv(dev);
3987	struct config_param *config = &sp->config;
3988	u64 tmp64;
3989	int offset;
3990
3991	/* Return if the device is already closed               *
3992	 *  Can happen when s2io_card_up failed in change_mtu    *
3993	 */
3994	if (!is_s2io_card_up(sp))
3995		return 0;
3996
3997	s2io_stop_all_tx_queue(sp);
3998	/* delete all populated mac entries */
3999	for (offset = 1; offset < config->max_mc_addr; offset++) {
4000		tmp64 = do_s2io_read_unicast_mc(sp, offset);
4001		if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4002			do_s2io_delete_unicast_mc(sp, tmp64);
4003	}
4004
4005	s2io_card_down(sp);
4006
4007	return 0;
4008}
4009
4010/**
4011 *  s2io_xmit - Tx entry point of te driver
4012 *  @skb : the socket buffer containing the Tx data.
4013 *  @dev : device pointer.
4014 *  Description :
4015 *  This function is the Tx entry point of the driver. S2IO NIC supports
4016 *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4017 *  NOTE: when device can't queue the pkt,just the trans_start variable will
4018 *  not be upadted.
4019 *  Return value:
4020 *  0 on success & 1 on failure.
4021 */
4022
4023static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4024{
4025	struct s2io_nic *sp = netdev_priv(dev);
4026	u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4027	register u64 val64;
4028	struct TxD *txdp;
4029	struct TxFIFO_element __iomem *tx_fifo;
4030	unsigned long flags = 0;
4031	u16 vlan_tag = 0;
4032	struct fifo_info *fifo = NULL;
4033	int do_spin_lock = 1;
4034	int offload_type;
4035	int enable_per_list_interrupt = 0;
4036	struct config_param *config = &sp->config;
4037	struct mac_info *mac_control = &sp->mac_control;
4038	struct stat_block *stats = mac_control->stats_info;
4039	struct swStat *swstats = &stats->sw_stat;
4040
4041	DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4042
4043	if (unlikely(skb->len <= 0)) {
4044		DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4045		dev_kfree_skb_any(skb);
4046		return NETDEV_TX_OK;
4047	}
4048
4049	if (!is_s2io_card_up(sp)) {
4050		DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4051			  dev->name);
4052		dev_kfree_skb_any(skb);
4053		return NETDEV_TX_OK;
4054	}
4055
4056	queue = 0;
4057	if (vlan_tx_tag_present(skb))
4058		vlan_tag = vlan_tx_tag_get(skb);
4059	if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4060		if (skb->protocol == htons(ETH_P_IP)) {
4061			struct iphdr *ip;
4062			struct tcphdr *th;
4063			ip = ip_hdr(skb);
4064
4065			if (!ip_is_fragment(ip)) {
4066				th = (struct tcphdr *)(((unsigned char *)ip) +
4067						       ip->ihl*4);
4068
4069				if (ip->protocol == IPPROTO_TCP) {
4070					queue_len = sp->total_tcp_fifos;
4071					queue = (ntohs(th->source) +
4072						 ntohs(th->dest)) &
4073						sp->fifo_selector[queue_len - 1];
4074					if (queue >= queue_len)
4075						queue = queue_len - 1;
4076				} else if (ip->protocol == IPPROTO_UDP) {
4077					queue_len = sp->total_udp_fifos;
4078					queue = (ntohs(th->source) +
4079						 ntohs(th->dest)) &
4080						sp->fifo_selector[queue_len - 1];
4081					if (queue >= queue_len)
4082						queue = queue_len - 1;
4083					queue += sp->udp_fifo_idx;
4084					if (skb->len > 1024)
4085						enable_per_list_interrupt = 1;
4086					do_spin_lock = 0;
4087				}
4088			}
4089		}
4090	} else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4091		/* get fifo number based on skb->priority value */
4092		queue = config->fifo_mapping
4093			[skb->priority & (MAX_TX_FIFOS - 1)];
4094	fifo = &mac_control->fifos[queue];
4095
4096	if (do_spin_lock)
4097		spin_lock_irqsave(&fifo->tx_lock, flags);
4098	else {
4099		if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4100			return NETDEV_TX_LOCKED;
4101	}
4102
4103	if (sp->config.multiq) {
4104		if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4105			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4106			return NETDEV_TX_BUSY;
4107		}
4108	} else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4109		if (netif_queue_stopped(dev)) {
4110			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4111			return NETDEV_TX_BUSY;
4112		}
4113	}
4114
4115	put_off = (u16)fifo->tx_curr_put_info.offset;
4116	get_off = (u16)fifo->tx_curr_get_info.offset;
4117	txdp = fifo->list_info[put_off].list_virt_addr;
4118
4119	queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4120	/* Avoid "put" pointer going beyond "get" pointer */
4121	if (txdp->Host_Control ||
4122	    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4123		DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4124		s2io_stop_tx_queue(sp, fifo->fifo_no);
4125		dev_kfree_skb_any(skb);
4126		spin_unlock_irqrestore(&fifo->tx_lock, flags);
4127		return NETDEV_TX_OK;
4128	}
4129
4130	offload_type = s2io_offload_type(skb);
4131	if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4132		txdp->Control_1 |= TXD_TCP_LSO_EN;
4133		txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4134	}
4135	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4136		txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4137				    TXD_TX_CKO_TCP_EN |
4138				    TXD_TX_CKO_UDP_EN);
4139	}
4140	txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4141	txdp->Control_1 |= TXD_LIST_OWN_XENA;
4142	txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4143	if (enable_per_list_interrupt)
4144		if (put_off & (queue_len >> 5))
4145			txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4146	if (vlan_tag) {
4147		txdp->Control_2 |= TXD_VLAN_ENABLE;
4148		txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4149	}
4150
4151	frg_len = skb_headlen(skb);
4152	if (offload_type == SKB_GSO_UDP) {
4153		int ufo_size;
4154
4155		ufo_size = s2io_udp_mss(skb);
4156		ufo_size &= ~7;
4157		txdp->Control_1 |= TXD_UFO_EN;
4158		txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4159		txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4160#ifdef __BIG_ENDIAN
4161		/* both variants do cpu_to_be64(be32_to_cpu(...)) */
4162		fifo->ufo_in_band_v[put_off] =
4163			(__force u64)skb_shinfo(skb)->ip6_frag_id;
4164#else
4165		fifo->ufo_in_band_v[put_off] =
4166			(__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4167#endif
4168		txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4169		txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4170						      fifo->ufo_in_band_v,
4171						      sizeof(u64),
4172						      PCI_DMA_TODEVICE);
4173		if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4174			goto pci_map_failed;
4175		txdp++;
4176	}
4177
4178	txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4179					      frg_len, PCI_DMA_TODEVICE);
4180	if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4181		goto pci_map_failed;
4182
4183	txdp->Host_Control = (unsigned long)skb;
4184	txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4185	if (offload_type == SKB_GSO_UDP)
4186		txdp->Control_1 |= TXD_UFO_EN;
4187
4188	frg_cnt = skb_shinfo(skb)->nr_frags;
4189	/* For fragmented SKB. */
4190	for (i = 0; i < frg_cnt; i++) {
4191		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4192		/* A '0' length fragment will be ignored */
4193		if (!skb_frag_size(frag))
4194			continue;
4195		txdp++;
4196		txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4197							     frag, 0,
4198							     skb_frag_size(frag),
4199							     DMA_TO_DEVICE);
4200		txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4201		if (offload_type == SKB_GSO_UDP)
4202			txdp->Control_1 |= TXD_UFO_EN;
4203	}
4204	txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4205
4206	if (offload_type == SKB_GSO_UDP)
4207		frg_cnt++; /* as Txd0 was used for inband header */
4208
4209	tx_fifo = mac_control->tx_FIFO_start[queue];
4210	val64 = fifo->list_info[put_off].list_phy_addr;
4211	writeq(val64, &tx_fifo->TxDL_Pointer);
4212
4213	val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4214		 TX_FIFO_LAST_LIST);
4215	if (offload_type)
4216		val64 |= TX_FIFO_SPECIAL_FUNC;
4217
4218	writeq(val64, &tx_fifo->List_Control);
4219
4220	mmiowb();
4221
4222	put_off++;
4223	if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4224		put_off = 0;
4225	fifo->tx_curr_put_info.offset = put_off;
4226
4227	/* Avoid "put" pointer going beyond "get" pointer */
4228	if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4229		swstats->fifo_full_cnt++;
4230		DBG_PRINT(TX_DBG,
4231			  "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4232			  put_off, get_off);
4233		s2io_stop_tx_queue(sp, fifo->fifo_no);
4234	}
4235	swstats->mem_allocated += skb->truesize;
4236	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4237
4238	if (sp->config.intr_type == MSI_X)
4239		tx_intr_handler(fifo);
4240
4241	return NETDEV_TX_OK;
4242
4243pci_map_failed:
4244	swstats->pci_map_fail_cnt++;
4245	s2io_stop_tx_queue(sp, fifo->fifo_no);
4246	swstats->mem_freed += skb->truesize;
4247	dev_kfree_skb_any(skb);
4248	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4249	return NETDEV_TX_OK;
4250}
4251
4252static void
4253s2io_alarm_handle(unsigned long data)
4254{
4255	struct s2io_nic *sp = (struct s2io_nic *)data;
4256	struct net_device *dev = sp->dev;
4257
4258	s2io_handle_errors(dev);
4259	mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4260}
4261
4262static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4263{
4264	struct ring_info *ring = (struct ring_info *)dev_id;
4265	struct s2io_nic *sp = ring->nic;
4266	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4267
4268	if (unlikely(!is_s2io_card_up(sp)))
4269		return IRQ_HANDLED;
4270
4271	if (sp->config.napi) {
4272		u8 __iomem *addr = NULL;
4273		u8 val8 = 0;
4274
4275		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4276		addr += (7 - ring->ring_no);
4277		val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4278		writeb(val8, addr);
4279		val8 = readb(addr);
4280		napi_schedule(&ring->napi);
4281	} else {
4282		rx_intr_handler(ring, 0);
4283		s2io_chk_rx_buffers(sp, ring);
4284	}
4285
4286	return IRQ_HANDLED;
4287}
4288
4289static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4290{
4291	int i;
4292	struct fifo_info *fifos = (struct fifo_info *)dev_id;
4293	struct s2io_nic *sp = fifos->nic;
4294	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4295	struct config_param *config  = &sp->config;
4296	u64 reason;
4297
4298	if (unlikely(!is_s2io_card_up(sp)))
4299		return IRQ_NONE;
4300
4301	reason = readq(&bar0->general_int_status);
4302	if (unlikely(reason == S2IO_MINUS_ONE))
4303		/* Nothing much can be done. Get out */
4304		return IRQ_HANDLED;
4305
4306	if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4307		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4308
4309		if (reason & GEN_INTR_TXPIC)
4310			s2io_txpic_intr_handle(sp);
4311
4312		if (reason & GEN_INTR_TXTRAFFIC)
4313			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4314
4315		for (i = 0; i < config->tx_fifo_num; i++)
4316			tx_intr_handler(&fifos[i]);
4317
4318		writeq(sp->general_int_mask, &bar0->general_int_mask);
4319		readl(&bar0->general_int_status);
4320		return IRQ_HANDLED;
4321	}
4322	/* The interrupt was not raised by us */
4323	return IRQ_NONE;
4324}
4325
4326static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4327{
4328	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4329	u64 val64;
4330
4331	val64 = readq(&bar0->pic_int_status);
4332	if (val64 & PIC_INT_GPIO) {
4333		val64 = readq(&bar0->gpio_int_reg);
4334		if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4335		    (val64 & GPIO_INT_REG_LINK_UP)) {
4336			/*
4337			 * This is unstable state so clear both up/down
4338			 * interrupt and adapter to re-evaluate the link state.
4339			 */
4340			val64 |= GPIO_INT_REG_LINK_DOWN;
4341			val64 |= GPIO_INT_REG_LINK_UP;
4342			writeq(val64, &bar0->gpio_int_reg);
4343			val64 = readq(&bar0->gpio_int_mask);
4344			val64 &= ~(GPIO_INT_MASK_LINK_UP |
4345				   GPIO_INT_MASK_LINK_DOWN);
4346			writeq(val64, &bar0->gpio_int_mask);
4347		} else if (val64 & GPIO_INT_REG_LINK_UP) {
4348			val64 = readq(&bar0->adapter_status);
4349			/* Enable Adapter */
4350			val64 = readq(&bar0->adapter_control);
4351			val64 |= ADAPTER_CNTL_EN;
4352			writeq(val64, &bar0->adapter_control);
4353			val64 |= ADAPTER_LED_ON;
4354			writeq(val64, &bar0->adapter_control);
4355			if (!sp->device_enabled_once)
4356				sp->device_enabled_once = 1;
4357
4358			s2io_link(sp, LINK_UP);
4359			/*
4360			 * unmask link down interrupt and mask link-up
4361			 * intr
4362			 */
4363			val64 = readq(&bar0->gpio_int_mask);
4364			val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4365			val64 |= GPIO_INT_MASK_LINK_UP;
4366			writeq(val64, &bar0->gpio_int_mask);
4367
4368		} else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4369			val64 = readq(&bar0->adapter_status);
4370			s2io_link(sp, LINK_DOWN);
4371			/* Link is down so unmaks link up interrupt */
4372			val64 = readq(&bar0->gpio_int_mask);
4373			val64 &= ~GPIO_INT_MASK_LINK_UP;
4374			val64 |= GPIO_INT_MASK_LINK_DOWN;
4375			writeq(val64, &bar0->gpio_int_mask);
4376
4377			/* turn off LED */
4378			val64 = readq(&bar0->adapter_control);
4379			val64 = val64 & (~ADAPTER_LED_ON);
4380			writeq(val64, &bar0->adapter_control);
4381		}
4382	}
4383	val64 = readq(&bar0->gpio_int_mask);
4384}
4385
4386/**
4387 *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4388 *  @value: alarm bits
4389 *  @addr: address value
4390 *  @cnt: counter variable
4391 *  Description: Check for alarm and increment the counter
4392 *  Return Value:
4393 *  1 - if alarm bit set
4394 *  0 - if alarm bit is not set
4395 */
4396static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4397				 unsigned long long *cnt)
4398{
4399	u64 val64;
4400	val64 = readq(addr);
4401	if (val64 & value) {
4402		writeq(val64, addr);
4403		(*cnt)++;
4404		return 1;
4405	}
4406	return 0;
4407
4408}
4409
4410/**
4411 *  s2io_handle_errors - Xframe error indication handler
4412 *  @nic: device private variable
4413 *  Description: Handle alarms such as loss of link, single or
4414 *  double ECC errors, critical and serious errors.
4415 *  Return Value:
4416 *  NONE
4417 */
4418static void s2io_handle_errors(void *dev_id)
4419{
4420	struct net_device *dev = (struct net_device *)dev_id;
4421	struct s2io_nic *sp = netdev_priv(dev);
4422	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4423	u64 temp64 = 0, val64 = 0;
4424	int i = 0;
4425
4426	struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4427	struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4428
4429	if (!is_s2io_card_up(sp))
4430		return;
4431
4432	if (pci_channel_offline(sp->pdev))
4433		return;
4434
4435	memset(&sw_stat->ring_full_cnt, 0,
4436	       sizeof(sw_stat->ring_full_cnt));
4437
4438	/* Handling the XPAK counters update */
4439	if (stats->xpak_timer_count < 72000) {
4440		/* waiting for an hour */
4441		stats->xpak_timer_count++;
4442	} else {
4443		s2io_updt_xpak_counter(dev);
4444		/* reset the count to zero */
4445		stats->xpak_timer_count = 0;
4446	}
4447
4448	/* Handling link status change error Intr */
4449	if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4450		val64 = readq(&bar0->mac_rmac_err_reg);
4451		writeq(val64, &bar0->mac_rmac_err_reg);
4452		if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4453			schedule_work(&sp->set_link_task);
4454	}
4455
4456	/* In case of a serious error, the device will be Reset. */
4457	if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4458				  &sw_stat->serious_err_cnt))
4459		goto reset;
4460
4461	/* Check for data parity error */
4462	if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4463				  &sw_stat->parity_err_cnt))
4464		goto reset;
4465
4466	/* Check for ring full counter */
4467	if (sp->device_type == XFRAME_II_DEVICE) {
4468		val64 = readq(&bar0->ring_bump_counter1);
4469		for (i = 0; i < 4; i++) {
4470			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4471			temp64 >>= 64 - ((i+1)*16);
4472			sw_stat->ring_full_cnt[i] += temp64;
4473		}
4474
4475		val64 = readq(&bar0->ring_bump_counter2);
4476		for (i = 0; i < 4; i++) {
4477			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4478			temp64 >>= 64 - ((i+1)*16);
4479			sw_stat->ring_full_cnt[i+4] += temp64;
4480		}
4481	}
4482
4483	val64 = readq(&bar0->txdma_int_status);
4484	/*check for pfc_err*/
4485	if (val64 & TXDMA_PFC_INT) {
4486		if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4487					  PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4488					  PFC_PCIX_ERR,
4489					  &bar0->pfc_err_reg,
4490					  &sw_stat->pfc_err_cnt))
4491			goto reset;
4492		do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4493				      &bar0->pfc_err_reg,
4494				      &sw_stat->pfc_err_cnt);
4495	}
4496
4497	/*check for tda_err*/
4498	if (val64 & TXDMA_TDA_INT) {
4499		if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4500					  TDA_SM0_ERR_ALARM |
4501					  TDA_SM1_ERR_ALARM,
4502					  &bar0->tda_err_reg,
4503					  &sw_stat->tda_err_cnt))
4504			goto reset;
4505		do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4506				      &bar0->tda_err_reg,
4507				      &sw_stat->tda_err_cnt);
4508	}
4509	/*check for pcc_err*/
4510	if (val64 & TXDMA_PCC_INT) {
4511		if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4512					  PCC_N_SERR | PCC_6_COF_OV_ERR |
4513					  PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4514					  PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4515					  PCC_TXB_ECC_DB_ERR,
4516					  &bar0->pcc_err_reg,
4517					  &sw_stat->pcc_err_cnt))
4518			goto reset;
4519		do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4520				      &bar0->pcc_err_reg,
4521				      &sw_stat->pcc_err_cnt);
4522	}
4523
4524	/*check for tti_err*/
4525	if (val64 & TXDMA_TTI_INT) {
4526		if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4527					  &bar0->tti_err_reg,
4528					  &sw_stat->tti_err_cnt))
4529			goto reset;
4530		do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4531				      &bar0->tti_err_reg,
4532				      &sw_stat->tti_err_cnt);
4533	}
4534
4535	/*check for lso_err*/
4536	if (val64 & TXDMA_LSO_INT) {
4537		if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4538					  LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4539					  &bar0->lso_err_reg,
4540					  &sw_stat->lso_err_cnt))
4541			goto reset;
4542		do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4543				      &bar0->lso_err_reg,
4544				      &sw_stat->lso_err_cnt);
4545	}
4546
4547	/*check for tpa_err*/
4548	if (val64 & TXDMA_TPA_INT) {
4549		if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4550					  &bar0->tpa_err_reg,
4551					  &sw_stat->tpa_err_cnt))
4552			goto reset;
4553		do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4554				      &bar0->tpa_err_reg,
4555				      &sw_stat->tpa_err_cnt);
4556	}
4557
4558	/*check for sm_err*/
4559	if (val64 & TXDMA_SM_INT) {
4560		if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4561					  &bar0->sm_err_reg,
4562					  &sw_stat->sm_err_cnt))
4563			goto reset;
4564	}
4565
4566	val64 = readq(&bar0->mac_int_status);
4567	if (val64 & MAC_INT_STATUS_TMAC_INT) {
4568		if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4569					  &bar0->mac_tmac_err_reg,
4570					  &sw_stat->mac_tmac_err_cnt))
4571			goto reset;
4572		do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4573				      TMAC_DESC_ECC_SG_ERR |
4574				      TMAC_DESC_ECC_DB_ERR,
4575				      &bar0->mac_tmac_err_reg,
4576				      &sw_stat->mac_tmac_err_cnt);
4577	}
4578
4579	val64 = readq(&bar0->xgxs_int_status);
4580	if (val64 & XGXS_INT_STATUS_TXGXS) {
4581		if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4582					  &bar0->xgxs_txgxs_err_reg,
4583					  &sw_stat->xgxs_txgxs_err_cnt))
4584			goto reset;
4585		do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4586				      &bar0->xgxs_txgxs_err_reg,
4587				      &sw_stat->xgxs_txgxs_err_cnt);
4588	}
4589
4590	val64 = readq(&bar0->rxdma_int_status);
4591	if (val64 & RXDMA_INT_RC_INT_M) {
4592		if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4593					  RC_FTC_ECC_DB_ERR |
4594					  RC_PRCn_SM_ERR_ALARM |
4595					  RC_FTC_SM_ERR_ALARM,
4596					  &bar0->rc_err_reg,
4597					  &sw_stat->rc_err_cnt))
4598			goto reset;
4599		do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4600				      RC_FTC_ECC_SG_ERR |
4601				      RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4602				      &sw_stat->rc_err_cnt);
4603		if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4604					  PRC_PCI_AB_WR_Rn |
4605					  PRC_PCI_AB_F_WR_Rn,
4606					  &bar0->prc_pcix_err_reg,
4607					  &sw_stat->prc_pcix_err_cnt))
4608			goto reset;
4609		do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4610				      PRC_PCI_DP_WR_Rn |
4611				      PRC_PCI_DP_F_WR_Rn,
4612				      &bar0->prc_pcix_err_reg,
4613				      &sw_stat->prc_pcix_err_cnt);
4614	}
4615
4616	if (val64 & RXDMA_INT_RPA_INT_M) {
4617		if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4618					  &bar0->rpa_err_reg,
4619					  &sw_stat->rpa_err_cnt))
4620			goto reset;
4621		do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4622				      &bar0->rpa_err_reg,
4623				      &sw_stat->rpa_err_cnt);
4624	}
4625
4626	if (val64 & RXDMA_INT_RDA_INT_M) {
4627		if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4628					  RDA_FRM_ECC_DB_N_AERR |
4629					  RDA_SM1_ERR_ALARM |
4630					  RDA_SM0_ERR_ALARM |
4631					  RDA_RXD_ECC_DB_SERR,
4632					  &bar0->rda_err_reg,
4633					  &sw_stat->rda_err_cnt))
4634			goto reset;
4635		do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4636				      RDA_FRM_ECC_SG_ERR |
4637				      RDA_MISC_ERR |
4638				      RDA_PCIX_ERR,
4639				      &bar0->rda_err_reg,
4640				      &sw_stat->rda_err_cnt);
4641	}
4642
4643	if (val64 & RXDMA_INT_RTI_INT_M) {
4644		if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4645					  &bar0->rti_err_reg,
4646					  &sw_stat->rti_err_cnt))
4647			goto reset;
4648		do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4649				      &bar0->rti_err_reg,
4650				      &sw_stat->rti_err_cnt);
4651	}
4652
4653	val64 = readq(&bar0->mac_int_status);
4654	if (val64 & MAC_INT_STATUS_RMAC_INT) {
4655		if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4656					  &bar0->mac_rmac_err_reg,
4657					  &sw_stat->mac_rmac_err_cnt))
4658			goto reset;
4659		do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4660				      RMAC_SINGLE_ECC_ERR |
4661				      RMAC_DOUBLE_ECC_ERR,
4662				      &bar0->mac_rmac_err_reg,
4663				      &sw_stat->mac_rmac_err_cnt);
4664	}
4665
4666	val64 = readq(&bar0->xgxs_int_status);
4667	if (val64 & XGXS_INT_STATUS_RXGXS) {
4668		if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4669					  &bar0->xgxs_rxgxs_err_reg,
4670					  &sw_stat->xgxs_rxgxs_err_cnt))
4671			goto reset;
4672	}
4673
4674	val64 = readq(&bar0->mc_int_status);
4675	if (val64 & MC_INT_STATUS_MC_INT) {
4676		if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4677					  &bar0->mc_err_reg,
4678					  &sw_stat->mc_err_cnt))
4679			goto reset;
4680
4681		/* Handling Ecc errors */
4682		if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4683			writeq(val64, &bar0->mc_err_reg);
4684			if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4685				sw_stat->double_ecc_errs++;
4686				if (sp->device_type != XFRAME_II_DEVICE) {
4687					/*
4688					 * Reset XframeI only if critical error
4689					 */
4690					if (val64 &
4691					    (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4692					     MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4693						goto reset;
4694				}
4695			} else
4696				sw_stat->single_ecc_errs++;
4697		}
4698	}
4699	return;
4700
4701reset:
4702	s2io_stop_all_tx_queue(sp);
4703	schedule_work(&sp->rst_timer_task);
4704	sw_stat->soft_reset_cnt++;
4705}
4706
4707/**
4708 *  s2io_isr - ISR handler of the device .
4709 *  @irq: the irq of the device.
4710 *  @dev_id: a void pointer to the dev structure of the NIC.
4711 *  Description:  This function is the ISR handler of the device. It
4712 *  identifies the reason for the interrupt and calls the relevant
4713 *  service routines. As a contongency measure, this ISR allocates the
4714 *  recv buffers, if their numbers are below the panic value which is
4715 *  presently set to 25% of the original number of rcv buffers allocated.
4716 *  Return value:
4717 *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4718 *   IRQ_NONE: will be returned if interrupt is not from our device
4719 */
4720static irqreturn_t s2io_isr(int irq, void *dev_id)
4721{
4722	struct net_device *dev = (struct net_device *)dev_id;
4723	struct s2io_nic *sp = netdev_priv(dev);
4724	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4725	int i;
4726	u64 reason = 0;
4727	struct mac_info *mac_control;
4728	struct config_param *config;
4729
4730	/* Pretend we handled any irq's from a disconnected card */
4731	if (pci_channel_offline(sp->pdev))
4732		return IRQ_NONE;
4733
4734	if (!is_s2io_card_up(sp))
4735		return IRQ_NONE;
4736
4737	config = &sp->config;
4738	mac_control = &sp->mac_control;
4739
4740	/*
4741	 * Identify the cause for interrupt and call the appropriate
4742	 * interrupt handler. Causes for the interrupt could be;
4743	 * 1. Rx of packet.
4744	 * 2. Tx complete.
4745	 * 3. Link down.
4746	 */
4747	reason = readq(&bar0->general_int_status);
4748
4749	if (unlikely(reason == S2IO_MINUS_ONE))
4750		return IRQ_HANDLED;	/* Nothing much can be done. Get out */
4751
4752	if (reason &
4753	    (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4754		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4755
4756		if (config->napi) {
4757			if (reason & GEN_INTR_RXTRAFFIC) {
4758				napi_schedule(&sp->napi);
4759				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4760				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4761				readl(&bar0->rx_traffic_int);
4762			}
4763		} else {
4764			/*
4765			 * rx_traffic_int reg is an R1 register, writing all 1's
4766			 * will ensure that the actual interrupt causing bit
4767			 * get's cleared and hence a read can be avoided.
4768			 */
4769			if (reason & GEN_INTR_RXTRAFFIC)
4770				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4771
4772			for (i = 0; i < config->rx_ring_num; i++) {
4773				struct ring_info *ring = &mac_control->rings[i];
4774
4775				rx_intr_handler(ring, 0);
4776			}
4777		}
4778
4779		/*
4780		 * tx_traffic_int reg is an R1 register, writing all 1's
4781		 * will ensure that the actual interrupt causing bit get's
4782		 * cleared and hence a read can be avoided.
4783		 */
4784		if (reason & GEN_INTR_TXTRAFFIC)
4785			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4786
4787		for (i = 0; i < config->tx_fifo_num; i++)
4788			tx_intr_handler(&mac_control->fifos[i]);
4789
4790		if (reason & GEN_INTR_TXPIC)
4791			s2io_txpic_intr_handle(sp);
4792
4793		/*
4794		 * Reallocate the buffers from the interrupt handler itself.
4795		 */
4796		if (!config->napi) {
4797			for (i = 0; i < config->rx_ring_num; i++) {
4798				struct ring_info *ring = &mac_control->rings[i];
4799
4800				s2io_chk_rx_buffers(sp, ring);
4801			}
4802		}
4803		writeq(sp->general_int_mask, &bar0->general_int_mask);
4804		readl(&bar0->general_int_status);
4805
4806		return IRQ_HANDLED;
4807
4808	} else if (!reason) {
4809		/* The interrupt was not raised by us */
4810		return IRQ_NONE;
4811	}
4812
4813	return IRQ_HANDLED;
4814}
4815
4816/**
4817 * s2io_updt_stats -
4818 */
4819static void s2io_updt_stats(struct s2io_nic *sp)
4820{
4821	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4822	u64 val64;
4823	int cnt = 0;
4824
4825	if (is_s2io_card_up(sp)) {
4826		/* Apprx 30us on a 133 MHz bus */
4827		val64 = SET_UPDT_CLICKS(10) |
4828			STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4829		writeq(val64, &bar0->stat_cfg);
4830		do {
4831			udelay(100);
4832			val64 = readq(&bar0->stat_cfg);
4833			if (!(val64 & s2BIT(0)))
4834				break;
4835			cnt++;
4836			if (cnt == 5)
4837				break; /* Updt failed */
4838		} while (1);
4839	}
4840}
4841
4842/**
4843 *  s2io_get_stats - Updates the device statistics structure.
4844 *  @dev : pointer to the device structure.
4845 *  Description:
4846 *  This function updates the device statistics structure in the s2io_nic
4847 *  structure and returns a pointer to the same.
4848 *  Return value:
4849 *  pointer to the updated net_device_stats structure.
4850 */
4851static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4852{
4853	struct s2io_nic *sp = netdev_priv(dev);
4854	struct mac_info *mac_control = &sp->mac_control;
4855	struct stat_block *stats = mac_control->stats_info;
4856	u64 delta;
4857
4858	/* Configure Stats for immediate updt */
4859	s2io_updt_stats(sp);
4860
4861	/* A device reset will cause the on-adapter statistics to be zero'ed.
4862	 * This can be done while running by changing the MTU.  To prevent the
4863	 * system from having the stats zero'ed, the driver keeps a copy of the
4864	 * last update to the system (which is also zero'ed on reset).  This
4865	 * enables the driver to accurately know the delta between the last
4866	 * update and the current update.
4867	 */
4868	delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4869		le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4870	sp->stats.rx_packets += delta;
4871	dev->stats.rx_packets += delta;
4872
4873	delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4874		le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4875	sp->stats.tx_packets += delta;
4876	dev->stats.tx_packets += delta;
4877
4878	delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4879		le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4880	sp->stats.rx_bytes += delta;
4881	dev->stats.rx_bytes += delta;
4882
4883	delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4884		le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4885	sp->stats.tx_bytes += delta;
4886	dev->stats.tx_bytes += delta;
4887
4888	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4889	sp->stats.rx_errors += delta;
4890	dev->stats.rx_errors += delta;
4891
4892	delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4893		le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4894	sp->stats.tx_errors += delta;
4895	dev->stats.tx_errors += delta;
4896
4897	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4898	sp->stats.rx_dropped += delta;
4899	dev->stats.rx_dropped += delta;
4900
4901	delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4902	sp->stats.tx_dropped += delta;
4903	dev->stats.tx_dropped += delta;
4904
4905	/* The adapter MAC interprets pause frames as multicast packets, but
4906	 * does not pass them up.  This erroneously increases the multicast
4907	 * packet count and needs to be deducted when the multicast frame count
4908	 * is queried.
4909	 */
4910	delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4911		le32_to_cpu(stats->rmac_vld_mcst_frms);
4912	delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4913	delta -= sp->stats.multicast;
4914	sp->stats.multicast += delta;
4915	dev->stats.multicast += delta;
4916
4917	delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4918		le32_to_cpu(stats->rmac_usized_frms)) +
4919		le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4920	sp->stats.rx_length_errors += delta;
4921	dev->stats.rx_length_errors += delta;
4922
4923	delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4924	sp->stats.rx_crc_errors += delta;
4925	dev->stats.rx_crc_errors += delta;
4926
4927	return &dev->stats;
4928}
4929
4930/**
4931 *  s2io_set_multicast - entry point for multicast address enable/disable.
4932 *  @dev : pointer to the device structure
4933 *  Description:
4934 *  This function is a driver entry point which gets called by the kernel
4935 *  whenever multicast addresses must be enabled/disabled. This also gets
4936 *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4937 *  determine, if multicast address must be enabled or if promiscuous mode
4938 *  is to be disabled etc.
4939 *  Return value:
4940 *  void.
4941 */
4942
4943static void s2io_set_multicast(struct net_device *dev)
4944{
4945	int i, j, prev_cnt;
4946	struct netdev_hw_addr *ha;
4947	struct s2io_nic *sp = netdev_priv(dev);
4948	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4949	u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4950		0xfeffffffffffULL;
4951	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4952	void __iomem *add;
4953	struct config_param *config = &sp->config;
4954
4955	if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4956		/*  Enable all Multicast addresses */
4957		writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4958		       &bar0->rmac_addr_data0_mem);
4959		writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4960		       &bar0->rmac_addr_data1_mem);
4961		val64 = RMAC_ADDR_CMD_MEM_WE |
4962			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4963			RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4964		writeq(val64, &bar0->rmac_addr_cmd_mem);
4965		/* Wait till command completes */
4966		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4967				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4968				      S2IO_BIT_RESET);
4969
4970		sp->m_cast_flg = 1;
4971		sp->all_multi_pos = config->max_mc_addr - 1;
4972	} else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4973		/*  Disable all Multicast addresses */
4974		writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4975		       &bar0->rmac_addr_data0_mem);
4976		writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4977		       &bar0->rmac_addr_data1_mem);
4978		val64 = RMAC_ADDR_CMD_MEM_WE |
4979			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4980			RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4981		writeq(val64, &bar0->rmac_addr_cmd_mem);
4982		/* Wait till command completes */
4983		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4984				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4985				      S2IO_BIT_RESET);
4986
4987		sp->m_cast_flg = 0;
4988		sp->all_multi_pos = 0;
4989	}
4990
4991	if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4992		/*  Put the NIC into promiscuous mode */
4993		add = &bar0->mac_cfg;
4994		val64 = readq(&bar0->mac_cfg);
4995		val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4996
4997		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4998		writel((u32)val64, add);
4999		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5000		writel((u32) (val64 >> 32), (add + 4));
5001
5002		if (vlan_tag_strip != 1) {
5003			val64 = readq(&bar0->rx_pa_cfg);
5004			val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5005			writeq(val64, &bar0->rx_pa_cfg);
5006			sp->vlan_strip_flag = 0;
5007		}
5008
5009		val64 = readq(&bar0->mac_cfg);
5010		sp->promisc_flg = 1;
5011		DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5012			  dev->name);
5013	} else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5014		/*  Remove the NIC from promiscuous mode */
5015		add = &bar0->mac_cfg;
5016		val64 = readq(&bar0->mac_cfg);
5017		val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5018
5019		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5020		writel((u32)val64, add);
5021		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5022		writel((u32) (val64 >> 32), (add + 4));
5023
5024		if (vlan_tag_strip != 0) {
5025			val64 = readq(&bar0->rx_pa_cfg);
5026			val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5027			writeq(val64, &bar0->rx_pa_cfg);
5028			sp->vlan_strip_flag = 1;
5029		}
5030
5031		val64 = readq(&bar0->mac_cfg);
5032		sp->promisc_flg = 0;
5033		DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5034	}
5035
5036	/*  Update individual M_CAST address list */
5037	if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5038		if (netdev_mc_count(dev) >
5039		    (config->max_mc_addr - config->max_mac_addr)) {
5040			DBG_PRINT(ERR_DBG,
5041				  "%s: No more Rx filters can be added - "
5042				  "please enable ALL_MULTI instead\n",
5043				  dev->name);
5044			return;
5045		}
5046
5047		prev_cnt = sp->mc_addr_count;
5048		sp->mc_addr_count = netdev_mc_count(dev);
5049
5050		/* Clear out the previous list of Mc in the H/W. */
5051		for (i = 0; i < prev_cnt; i++) {
5052			writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5053			       &bar0->rmac_addr_data0_mem);
5054			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5055			       &bar0->rmac_addr_data1_mem);
5056			val64 = RMAC_ADDR_CMD_MEM_WE |
5057				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5058				RMAC_ADDR_CMD_MEM_OFFSET
5059				(config->mc_start_offset + i);
5060			writeq(val64, &bar0->rmac_addr_cmd_mem);
5061
5062			/* Wait for command completes */
5063			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5064						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5065						  S2IO_BIT_RESET)) {
5066				DBG_PRINT(ERR_DBG,
5067					  "%s: Adding Multicasts failed\n",
5068					  dev->name);
5069				return;
5070			}
5071		}
5072
5073		/* Create the new Rx filter list and update the same in H/W. */
5074		i = 0;
5075		netdev_for_each_mc_addr(ha, dev) {
5076			mac_addr = 0;
5077			for (j = 0; j < ETH_ALEN; j++) {
5078				mac_addr |= ha->addr[j];
5079				mac_addr <<= 8;
5080			}
5081			mac_addr >>= 8;
5082			writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5083			       &bar0->rmac_addr_data0_mem);
5084			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5085			       &bar0->rmac_addr_data1_mem);
5086			val64 = RMAC_ADDR_CMD_MEM_WE |
5087				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5088				RMAC_ADDR_CMD_MEM_OFFSET
5089				(i + config->mc_start_offset);
5090			writeq(val64, &bar0->rmac_addr_cmd_mem);
5091
5092			/* Wait for command completes */
5093			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5094						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5095						  S2IO_BIT_RESET)) {
5096				DBG_PRINT(ERR_DBG,
5097					  "%s: Adding Multicasts failed\n",
5098					  dev->name);
5099				return;
5100			}
5101			i++;
5102		}
5103	}
5104}
5105
5106/* read from CAM unicast & multicast addresses and store it in
5107 * def_mac_addr structure
5108 */
5109static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5110{
5111	int offset;
5112	u64 mac_addr = 0x0;
5113	struct config_param *config = &sp->config;
5114
5115	/* store unicast & multicast mac addresses */
5116	for (offset = 0; offset < config->max_mc_addr; offset++) {
5117		mac_addr = do_s2io_read_unicast_mc(sp, offset);
5118		/* if read fails disable the entry */
5119		if (mac_addr == FAILURE)
5120			mac_addr = S2IO_DISABLE_MAC_ENTRY;
5121		do_s2io_copy_mac_addr(sp, offset, mac_addr);
5122	}
5123}
5124
5125/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5126static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5127{
5128	int offset;
5129	struct config_param *config = &sp->config;
5130	/* restore unicast mac address */
5131	for (offset = 0; offset < config->max_mac_addr; offset++)
5132		do_s2io_prog_unicast(sp->dev,
5133				     sp->def_mac_addr[offset].mac_addr);
5134
5135	/* restore multicast mac address */
5136	for (offset = config->mc_start_offset;
5137	     offset < config->max_mc_addr; offset++)
5138		do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5139}
5140
5141/* add a multicast MAC address to CAM */
5142static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5143{
5144	int i;
5145	u64 mac_addr = 0;
5146	struct config_param *config = &sp->config;
5147
5148	for (i = 0; i < ETH_ALEN; i++) {
5149		mac_addr <<= 8;
5150		mac_addr |= addr[i];
5151	}
5152	if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5153		return SUCCESS;
5154
5155	/* check if the multicast mac already preset in CAM */
5156	for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5157		u64 tmp64;
5158		tmp64 = do_s2io_read_unicast_mc(sp, i);
5159		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5160			break;
5161
5162		if (tmp64 == mac_addr)
5163			return SUCCESS;
5164	}
5165	if (i == config->max_mc_addr) {
5166		DBG_PRINT(ERR_DBG,
5167			  "CAM full no space left for multicast MAC\n");
5168		return FAILURE;
5169	}
5170	/* Update the internal structure with this new mac address */
5171	do_s2io_copy_mac_addr(sp, i, mac_addr);
5172
5173	return do_s2io_add_mac(sp, mac_addr, i);
5174}
5175
5176/* add MAC address to CAM */
5177static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5178{
5179	u64 val64;
5180	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5181
5182	writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5183	       &bar0->rmac_addr_data0_mem);
5184
5185	val64 =	RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5186		RMAC_ADDR_CMD_MEM_OFFSET(off);
5187	writeq(val64, &bar0->rmac_addr_cmd_mem);
5188
5189	/* Wait till command completes */
5190	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5191				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5192				  S2IO_BIT_RESET)) {
5193		DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5194		return FAILURE;
5195	}
5196	return SUCCESS;
5197}
5198/* deletes a specified unicast/multicast mac entry from CAM */
5199static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5200{
5201	int offset;
5202	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5203	struct config_param *config = &sp->config;
5204
5205	for (offset = 1;
5206	     offset < config->max_mc_addr; offset++) {
5207		tmp64 = do_s2io_read_unicast_mc(sp, offset);
5208		if (tmp64 == addr) {
5209			/* disable the entry by writing  0xffffffffffffULL */
5210			if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5211				return FAILURE;
5212			/* store the new mac list from CAM */
5213			do_s2io_store_unicast_mc(sp);
5214			return SUCCESS;
5215		}
5216	}
5217	DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5218		  (unsigned long long)addr);
5219	return FAILURE;
5220}
5221
5222/* read mac entries from CAM */
5223static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5224{
5225	u64 tmp64 = 0xffffffffffff0000ULL, val64;
5226	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5227
5228	/* read mac addr */
5229	val64 =	RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5230		RMAC_ADDR_CMD_MEM_OFFSET(offset);
5231	writeq(val64, &bar0->rmac_addr_cmd_mem);
5232
5233	/* Wait till command completes */
5234	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5235				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5236				  S2IO_BIT_RESET)) {
5237		DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5238		return FAILURE;
5239	}
5240	tmp64 = readq(&bar0->rmac_addr_data0_mem);
5241
5242	return tmp64 >> 16;
5243}
5244
5245/**
5246 * s2io_set_mac_addr - driver entry point
5247 */
5248
5249static int s2io_set_mac_addr(struct net_device *dev, void *p)
5250{
5251	struct sockaddr *addr = p;
5252
5253	if (!is_valid_ether_addr(addr->sa_data))
5254		return -EADDRNOTAVAIL;
5255
5256	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5257
5258	/* store the MAC address in CAM */
5259	return do_s2io_prog_unicast(dev, dev->dev_addr);
5260}
5261/**
5262 *  do_s2io_prog_unicast - Programs the Xframe mac address
5263 *  @dev : pointer to the device structure.
5264 *  @addr: a uchar pointer to the new mac address which is to be set.
5265 *  Description : This procedure will program the Xframe to receive
5266 *  frames with new Mac Address
5267 *  Return value: SUCCESS on success and an appropriate (-)ve integer
5268 *  as defined in errno.h file on failure.
5269 */
5270
5271static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5272{
5273	struct s2io_nic *sp = netdev_priv(dev);
5274	register u64 mac_addr = 0, perm_addr = 0;
5275	int i;
5276	u64 tmp64;
5277	struct config_param *config = &sp->config;
5278
5279	/*
5280	 * Set the new MAC address as the new unicast filter and reflect this
5281	 * change on the device address registered with the OS. It will be
5282	 * at offset 0.
5283	 */
5284	for (i = 0; i < ETH_ALEN; i++) {
5285		mac_addr <<= 8;
5286		mac_addr |= addr[i];
5287		perm_addr <<= 8;
5288		perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5289	}
5290
5291	/* check if the dev_addr is different than perm_addr */
5292	if (mac_addr == perm_addr)
5293		return SUCCESS;
5294
5295	/* check if the mac already preset in CAM */
5296	for (i = 1; i < config->max_mac_addr; i++) {
5297		tmp64 = do_s2io_read_unicast_mc(sp, i);
5298		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5299			break;
5300
5301		if (tmp64 == mac_addr) {
5302			DBG_PRINT(INFO_DBG,
5303				  "MAC addr:0x%llx already present in CAM\n",
5304				  (unsigned long long)mac_addr);
5305			return SUCCESS;
5306		}
5307	}
5308	if (i == config->max_mac_addr) {
5309		DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5310		return FAILURE;
5311	}
5312	/* Update the internal structure with this new mac address */
5313	do_s2io_copy_mac_addr(sp, i, mac_addr);
5314
5315	return do_s2io_add_mac(sp, mac_addr, i);
5316}
5317
5318/**
5319 * s2io_ethtool_sset - Sets different link parameters.
5320 * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5321 * @info: pointer to the structure with parameters given by ethtool to set
5322 * link information.
5323 * Description:
5324 * The function sets different link parameters provided by the user onto
5325 * the NIC.
5326 * Return value:
5327 * 0 on success.
5328 */
5329
5330static int s2io_ethtool_sset(struct net_device *dev,
5331			     struct ethtool_cmd *info)
5332{
5333	struct s2io_nic *sp = netdev_priv(dev);
5334	if ((info->autoneg == AUTONEG_ENABLE) ||
5335	    (ethtool_cmd_speed(info) != SPEED_10000) ||
5336	    (info->duplex != DUPLEX_FULL))
5337		return -EINVAL;
5338	else {
5339		s2io_close(sp->dev);
5340		s2io_open(sp->dev);
5341	}
5342
5343	return 0;
5344}
5345
5346/**
5347 * s2io_ethtol_gset - Return link specific information.
5348 * @sp : private member of the device structure, pointer to the
5349 *      s2io_nic structure.
5350 * @info : pointer to the structure with parameters given by ethtool
5351 * to return link information.
5352 * Description:
5353 * Returns link specific information like speed, duplex etc.. to ethtool.
5354 * Return value :
5355 * return 0 on success.
5356 */
5357
5358static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5359{
5360	struct s2io_nic *sp = netdev_priv(dev);
5361	info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5362	info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5363	info->port = PORT_FIBRE;
5364
5365	/* info->transceiver */
5366	info->transceiver = XCVR_EXTERNAL;
5367
5368	if (netif_carrier_ok(sp->dev)) {
5369		ethtool_cmd_speed_set(info, SPEED_10000);
5370		info->duplex = DUPLEX_FULL;
5371	} else {
5372		ethtool_cmd_speed_set(info, -1);
5373		info->duplex = -1;
5374	}
5375
5376	info->autoneg = AUTONEG_DISABLE;
5377	return 0;
5378}
5379
5380/**
5381 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5382 * @sp : private member of the device structure, which is a pointer to the
5383 * s2io_nic structure.
5384 * @info : pointer to the structure with parameters given by ethtool to
5385 * return driver information.
5386 * Description:
5387 * Returns driver specefic information like name, version etc.. to ethtool.
5388 * Return value:
5389 *  void
5390 */
5391
5392static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5393				  struct ethtool_drvinfo *info)
5394{
5395	struct s2io_nic *sp = netdev_priv(dev);
5396
5397	strlcpy(info->driver, s2io_driver_name, sizeof(info->driver));
5398	strlcpy(info->version, s2io_driver_version, sizeof(info->version));
5399	strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5400	info->regdump_len = XENA_REG_SPACE;
5401	info->eedump_len = XENA_EEPROM_SPACE;
5402}
5403
5404/**
5405 *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5406 *  @sp: private member of the device structure, which is a pointer to the
5407 *  s2io_nic structure.
5408 *  @regs : pointer to the structure with parameters given by ethtool for
5409 *  dumping the registers.
5410 *  @reg_space: The input argumnet into which all the registers are dumped.
5411 *  Description:
5412 *  Dumps the entire register space of xFrame NIC into the user given
5413 *  buffer area.
5414 * Return value :
5415 * void .
5416 */
5417
5418static void s2io_ethtool_gregs(struct net_device *dev,
5419			       struct ethtool_regs *regs, void *space)
5420{
5421	int i;
5422	u64 reg;
5423	u8 *reg_space = (u8 *)space;
5424	struct s2io_nic *sp = netdev_priv(dev);
5425
5426	regs->len = XENA_REG_SPACE;
5427	regs->version = sp->pdev->subsystem_device;
5428
5429	for (i = 0; i < regs->len; i += 8) {
5430		reg = readq(sp->bar0 + i);
5431		memcpy((reg_space + i), &reg, 8);
5432	}
5433}
5434
5435/*
5436 *  s2io_set_led - control NIC led
5437 */
5438static void s2io_set_led(struct s2io_nic *sp, bool on)
5439{
5440	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5441	u16 subid = sp->pdev->subsystem_device;
5442	u64 val64;
5443
5444	if ((sp->device_type == XFRAME_II_DEVICE) ||
5445	    ((subid & 0xFF) >= 0x07)) {
5446		val64 = readq(&bar0->gpio_control);
5447		if (on)
5448			val64 |= GPIO_CTRL_GPIO_0;
5449		else
5450			val64 &= ~GPIO_CTRL_GPIO_0;
5451
5452		writeq(val64, &bar0->gpio_control);
5453	} else {
5454		val64 = readq(&bar0->adapter_control);
5455		if (on)
5456			val64 |= ADAPTER_LED_ON;
5457		else
5458			val64 &= ~ADAPTER_LED_ON;
5459
5460		writeq(val64, &bar0->adapter_control);
5461	}
5462
5463}
5464
5465/**
5466 * s2io_ethtool_set_led - To physically identify the nic on the system.
5467 * @dev : network device
5468 * @state: led setting
5469 *
5470 * Description: Used to physically identify the NIC on the system.
5471 * The Link LED will blink for a time specified by the user for
5472 * identification.
5473 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5474 * identification is possible only if it's link is up.
5475 */
5476
5477static int s2io_ethtool_set_led(struct net_device *dev,
5478				enum ethtool_phys_id_state state)
5479{
5480	struct s2io_nic *sp = netdev_priv(dev);
5481	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5482	u16 subid = sp->pdev->subsystem_device;
5483
5484	if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5485		u64 val64 = readq(&bar0->adapter_control);
5486		if (!(val64 & ADAPTER_CNTL_EN)) {
5487			pr_err("Adapter Link down, cannot blink LED\n");
5488			return -EAGAIN;
5489		}
5490	}
5491
5492	switch (state) {
5493	case ETHTOOL_ID_ACTIVE:
5494		sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5495		return 1;	/* cycle on/off once per second */
5496
5497	case ETHTOOL_ID_ON:
5498		s2io_set_led(sp, true);
5499		break;
5500
5501	case ETHTOOL_ID_OFF:
5502		s2io_set_led(sp, false);
5503		break;
5504
5505	case ETHTOOL_ID_INACTIVE:
5506		if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5507			writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5508	}
5509
5510	return 0;
5511}
5512
5513static void s2io_ethtool_gringparam(struct net_device *dev,
5514				    struct ethtool_ringparam *ering)
5515{
5516	struct s2io_nic *sp = netdev_priv(dev);
5517	int i, tx_desc_count = 0, rx_desc_count = 0;
5518
5519	if (sp->rxd_mode == RXD_MODE_1) {
5520		ering->rx_max_pending = MAX_RX_DESC_1;
5521		ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5522	} else {
5523		ering->rx_max_pending = MAX_RX_DESC_2;
5524		ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5525	}
5526
5527	ering->tx_max_pending = MAX_TX_DESC;
5528
5529	for (i = 0; i < sp->config.rx_ring_num; i++)
5530		rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5531	ering->rx_pending = rx_desc_count;
5532	ering->rx_jumbo_pending = rx_desc_count;
5533
5534	for (i = 0; i < sp->config.tx_fifo_num; i++)
5535		tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5536	ering->tx_pending = tx_desc_count;
5537	DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5538}
5539
5540/**
5541 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5542 * @sp : private member of the device structure, which is a pointer to the
5543 *	s2io_nic structure.
5544 * @ep : pointer to the structure with pause parameters given by ethtool.
5545 * Description:
5546 * Returns the Pause frame generation and reception capability of the NIC.
5547 * Return value:
5548 *  void
5549 */
5550static void s2io_ethtool_getpause_data(struct net_device *dev,
5551				       struct ethtool_pauseparam *ep)
5552{
5553	u64 val64;
5554	struct s2io_nic *sp = netdev_priv(dev);
5555	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5556
5557	val64 = readq(&bar0->rmac_pause_cfg);
5558	if (val64 & RMAC_PAUSE_GEN_ENABLE)
5559		ep->tx_pause = true;
5560	if (val64 & RMAC_PAUSE_RX_ENABLE)
5561		ep->rx_pause = true;
5562	ep->autoneg = false;
5563}
5564
5565/**
5566 * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5567 * @sp : private member of the device structure, which is a pointer to the
5568 *      s2io_nic structure.
5569 * @ep : pointer to the structure with pause parameters given by ethtool.
5570 * Description:
5571 * It can be used to set or reset Pause frame generation or reception
5572 * support of the NIC.
5573 * Return value:
5574 * int, returns 0 on Success
5575 */
5576
5577static int s2io_ethtool_setpause_data(struct net_device *dev,
5578				      struct ethtool_pauseparam *ep)
5579{
5580	u64 val64;
5581	struct s2io_nic *sp = netdev_priv(dev);
5582	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5583
5584	val64 = readq(&bar0->rmac_pause_cfg);
5585	if (ep->tx_pause)
5586		val64 |= RMAC_PAUSE_GEN_ENABLE;
5587	else
5588		val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5589	if (ep->rx_pause)
5590		val64 |= RMAC_PAUSE_RX_ENABLE;
5591	else
5592		val64 &= ~RMAC_PAUSE_RX_ENABLE;
5593	writeq(val64, &bar0->rmac_pause_cfg);
5594	return 0;
5595}
5596
5597/**
5598 * read_eeprom - reads 4 bytes of data from user given offset.
5599 * @sp : private member of the device structure, which is a pointer to the
5600 *      s2io_nic structure.
5601 * @off : offset at which the data must be written
5602 * @data : Its an output parameter where the data read at the given
5603 *	offset is stored.
5604 * Description:
5605 * Will read 4 bytes of data from the user given offset and return the
5606 * read data.
5607 * NOTE: Will allow to read only part of the EEPROM visible through the
5608 *   I2C bus.
5609 * Return value:
5610 *  -1 on failure and 0 on success.
5611 */
5612
5613#define S2IO_DEV_ID		5
5614static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5615{
5616	int ret = -1;
5617	u32 exit_cnt = 0;
5618	u64 val64;
5619	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5620
5621	if (sp->device_type == XFRAME_I_DEVICE) {
5622		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5623			I2C_CONTROL_ADDR(off) |
5624			I2C_CONTROL_BYTE_CNT(0x3) |
5625			I2C_CONTROL_READ |
5626			I2C_CONTROL_CNTL_START;
5627		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5628
5629		while (exit_cnt < 5) {
5630			val64 = readq(&bar0->i2c_control);
5631			if (I2C_CONTROL_CNTL_END(val64)) {
5632				*data = I2C_CONTROL_GET_DATA(val64);
5633				ret = 0;
5634				break;
5635			}
5636			msleep(50);
5637			exit_cnt++;
5638		}
5639	}
5640
5641	if (sp->device_type == XFRAME_II_DEVICE) {
5642		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5643			SPI_CONTROL_BYTECNT(0x3) |
5644			SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5645		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5646		val64 |= SPI_CONTROL_REQ;
5647		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5648		while (exit_cnt < 5) {
5649			val64 = readq(&bar0->spi_control);
5650			if (val64 & SPI_CONTROL_NACK) {
5651				ret = 1;
5652				break;
5653			} else if (val64 & SPI_CONTROL_DONE) {
5654				*data = readq(&bar0->spi_data);
5655				*data &= 0xffffff;
5656				ret = 0;
5657				break;
5658			}
5659			msleep(50);
5660			exit_cnt++;
5661		}
5662	}
5663	return ret;
5664}
5665
5666/**
5667 *  write_eeprom - actually writes the relevant part of the data value.
5668 *  @sp : private member of the device structure, which is a pointer to the
5669 *       s2io_nic structure.
5670 *  @off : offset at which the data must be written
5671 *  @data : The data that is to be written
5672 *  @cnt : Number of bytes of the data that are actually to be written into
5673 *  the Eeprom. (max of 3)
5674 * Description:
5675 *  Actually writes the relevant part of the data value into the Eeprom
5676 *  through the I2C bus.
5677 * Return value:
5678 *  0 on success, -1 on failure.
5679 */
5680
5681static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5682{
5683	int exit_cnt = 0, ret = -1;
5684	u64 val64;
5685	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5686
5687	if (sp->device_type == XFRAME_I_DEVICE) {
5688		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5689			I2C_CONTROL_ADDR(off) |
5690			I2C_CONTROL_BYTE_CNT(cnt) |
5691			I2C_CONTROL_SET_DATA((u32)data) |
5692			I2C_CONTROL_CNTL_START;
5693		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5694
5695		while (exit_cnt < 5) {
5696			val64 = readq(&bar0->i2c_control);
5697			if (I2C_CONTROL_CNTL_END(val64)) {
5698				if (!(val64 & I2C_CONTROL_NACK))
5699					ret = 0;
5700				break;
5701			}
5702			msleep(50);
5703			exit_cnt++;
5704		}
5705	}
5706
5707	if (sp->device_type == XFRAME_II_DEVICE) {
5708		int write_cnt = (cnt == 8) ? 0 : cnt;
5709		writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5710
5711		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5712			SPI_CONTROL_BYTECNT(write_cnt) |
5713			SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5714		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5715		val64 |= SPI_CONTROL_REQ;
5716		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5717		while (exit_cnt < 5) {
5718			val64 = readq(&bar0->spi_control);
5719			if (val64 & SPI_CONTROL_NACK) {
5720				ret = 1;
5721				break;
5722			} else if (val64 & SPI_CONTROL_DONE) {
5723				ret = 0;
5724				break;
5725			}
5726			msleep(50);
5727			exit_cnt++;
5728		}
5729	}
5730	return ret;
5731}
5732static void s2io_vpd_read(struct s2io_nic *nic)
5733{
5734	u8 *vpd_data;
5735	u8 data;
5736	int i = 0, cnt, len, fail = 0;
5737	int vpd_addr = 0x80;
5738	struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5739
5740	if (nic->device_type == XFRAME_II_DEVICE) {
5741		strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5742		vpd_addr = 0x80;
5743	} else {
5744		strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5745		vpd_addr = 0x50;
5746	}
5747	strcpy(nic->serial_num, "NOT AVAILABLE");
5748
5749	vpd_data = kmalloc(256, GFP_KERNEL);
5750	if (!vpd_data) {
5751		swstats->mem_alloc_fail_cnt++;
5752		return;
5753	}
5754	swstats->mem_allocated += 256;
5755
5756	for (i = 0; i < 256; i += 4) {
5757		pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5758		pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5759		pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5760		for (cnt = 0; cnt < 5; cnt++) {
5761			msleep(2);
5762			pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5763			if (data == 0x80)
5764				break;
5765		}
5766		if (cnt >= 5) {
5767			DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5768			fail = 1;
5769			break;
5770		}
5771		pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5772				      (u32 *)&vpd_data[i]);
5773	}
5774
5775	if (!fail) {
5776		/* read serial number of adapter */
5777		for (cnt = 0; cnt < 252; cnt++) {
5778			if ((vpd_data[cnt] == 'S') &&
5779			    (vpd_data[cnt+1] == 'N')) {
5780				len = vpd_data[cnt+2];
5781				if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5782					memcpy(nic->serial_num,
5783					       &vpd_data[cnt + 3],
5784					       len);
5785					memset(nic->serial_num+len,
5786					       0,
5787					       VPD_STRING_LEN-len);
5788					break;
5789				}
5790			}
5791		}
5792	}
5793
5794	if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5795		len = vpd_data[1];
5796		memcpy(nic->product_name, &vpd_data[3], len);
5797		nic->product_name[len] = 0;
5798	}
5799	kfree(vpd_data);
5800	swstats->mem_freed += 256;
5801}
5802
5803/**
5804 *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5805 *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5806 *  @eeprom : pointer to the user level structure provided by ethtool,
5807 *  containing all relevant information.
5808 *  @data_buf : user defined value to be written into Eeprom.
5809 *  Description: Reads the values stored in the Eeprom at given offset
5810 *  for a given length. Stores these values int the input argument data
5811 *  buffer 'data_buf' and returns these to the caller (ethtool.)
5812 *  Return value:
5813 *  int  0 on success
5814 */
5815
5816static int s2io_ethtool_geeprom(struct net_device *dev,
5817				struct ethtool_eeprom *eeprom, u8 * data_buf)
5818{
5819	u32 i, valid;
5820	u64 data;
5821	struct s2io_nic *sp = netdev_priv(dev);
5822
5823	eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5824
5825	if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5826		eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5827
5828	for (i = 0; i < eeprom->len; i += 4) {
5829		if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5830			DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5831			return -EFAULT;
5832		}
5833		valid = INV(data);
5834		memcpy((data_buf + i), &valid, 4);
5835	}
5836	return 0;
5837}
5838
5839/**
5840 *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5841 *  @sp : private member of the device structure, which is a pointer to the
5842 *  s2io_nic structure.
5843 *  @eeprom : pointer to the user level structure provided by ethtool,
5844 *  containing all relevant information.
5845 *  @data_buf ; user defined value to be written into Eeprom.
5846 *  Description:
5847 *  Tries to write the user provided value in the Eeprom, at the offset
5848 *  given by the user.
5849 *  Return value:
5850 *  0 on success, -EFAULT on failure.
5851 */
5852
5853static int s2io_ethtool_seeprom(struct net_device *dev,
5854				struct ethtool_eeprom *eeprom,
5855				u8 *data_buf)
5856{
5857	int len = eeprom->len, cnt = 0;
5858	u64 valid = 0, data;
5859	struct s2io_nic *sp = netdev_priv(dev);
5860
5861	if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5862		DBG_PRINT(ERR_DBG,
5863			  "ETHTOOL_WRITE_EEPROM Err: "
5864			  "Magic value is wrong, it is 0x%x should be 0x%x\n",
5865			  (sp->pdev->vendor | (sp->pdev->device << 16)),
5866			  eeprom->magic);
5867		return -EFAULT;
5868	}
5869
5870	while (len) {
5871		data = (u32)data_buf[cnt] & 0x000000FF;
5872		if (data)
5873			valid = (u32)(data << 24);
5874		else
5875			valid = data;
5876
5877		if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5878			DBG_PRINT(ERR_DBG,
5879				  "ETHTOOL_WRITE_EEPROM Err: "
5880				  "Cannot write into the specified offset\n");
5881			return -EFAULT;
5882		}
5883		cnt++;
5884		len--;
5885	}
5886
5887	return 0;
5888}
5889
5890/**
5891 * s2io_register_test - reads and writes into all clock domains.
5892 * @sp : private member of the device structure, which is a pointer to the
5893 * s2io_nic structure.
5894 * @data : variable that returns the result of each of the test conducted b
5895 * by the driver.
5896 * Description:
5897 * Read and write into all clock domains. The NIC has 3 clock domains,
5898 * see that registers in all the three regions are accessible.
5899 * Return value:
5900 * 0 on success.
5901 */
5902
5903static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5904{
5905	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5906	u64 val64 = 0, exp_val;
5907	int fail = 0;
5908
5909	val64 = readq(&bar0->pif_rd_swapper_fb);
5910	if (val64 != 0x123456789abcdefULL) {
5911		fail = 1;
5912		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5913	}
5914
5915	val64 = readq(&bar0->rmac_pause_cfg);
5916	if (val64 != 0xc000ffff00000000ULL) {
5917		fail = 1;
5918		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5919	}
5920
5921	val64 = readq(&bar0->rx_queue_cfg);
5922	if (sp->device_type == XFRAME_II_DEVICE)
5923		exp_val = 0x0404040404040404ULL;
5924	else
5925		exp_val = 0x0808080808080808ULL;
5926	if (val64 != exp_val) {
5927		fail = 1;
5928		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5929	}
5930
5931	val64 = readq(&bar0->xgxs_efifo_cfg);
5932	if (val64 != 0x000000001923141EULL) {
5933		fail = 1;
5934		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5935	}
5936
5937	val64 = 0x5A5A5A5A5A5A5A5AULL;
5938	writeq(val64, &bar0->xmsi_data);
5939	val64 = readq(&bar0->xmsi_data);
5940	if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5941		fail = 1;
5942		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5943	}
5944
5945	val64 = 0xA5A5A5A5A5A5A5A5ULL;
5946	writeq(val64, &bar0->xmsi_data);
5947	val64 = readq(&bar0->xmsi_data);
5948	if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5949		fail = 1;
5950		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5951	}
5952
5953	*data = fail;
5954	return fail;
5955}
5956
5957/**
5958 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5959 * @sp : private member of the device structure, which is a pointer to the
5960 * s2io_nic structure.
5961 * @data:variable that returns the result of each of the test conducted by
5962 * the driver.
5963 * Description:
5964 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5965 * register.
5966 * Return value:
5967 * 0 on success.
5968 */
5969
5970static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5971{
5972	int fail = 0;
5973	u64 ret_data, org_4F0, org_7F0;
5974	u8 saved_4F0 = 0, saved_7F0 = 0;
5975	struct net_device *dev = sp->dev;
5976
5977	/* Test Write Error at offset 0 */
5978	/* Note that SPI interface allows write access to all areas
5979	 * of EEPROM. Hence doing all negative testing only for Xframe I.
5980	 */
5981	if (sp->device_type == XFRAME_I_DEVICE)
5982		if (!write_eeprom(sp, 0, 0, 3))
5983			fail = 1;
5984
5985	/* Save current values at offsets 0x4F0 and 0x7F0 */
5986	if (!read_eeprom(sp, 0x4F0, &org_4F0))
5987		saved_4F0 = 1;
5988	if (!read_eeprom(sp, 0x7F0, &org_7F0))
5989		saved_7F0 = 1;
5990
5991	/* Test Write at offset 4f0 */
5992	if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5993		fail = 1;
5994	if (read_eeprom(sp, 0x4F0, &ret_data))
5995		fail = 1;
5996
5997	if (ret_data != 0x012345) {
5998		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5999			  "Data written %llx Data read %llx\n",
6000			  dev->name, (unsigned long long)0x12345,
6001			  (unsigned long long)ret_data);
6002		fail = 1;
6003	}
6004
6005	/* Reset the EEPROM data go FFFF */
6006	write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6007
6008	/* Test Write Request Error at offset 0x7c */
6009	if (sp->device_type == XFRAME_I_DEVICE)
6010		if (!write_eeprom(sp, 0x07C, 0, 3))
6011			fail = 1;
6012
6013	/* Test Write Request at offset 0x7f0 */
6014	if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6015		fail = 1;
6016	if (read_eeprom(sp, 0x7F0, &ret_data))
6017		fail = 1;
6018
6019	if (ret_data != 0x012345) {
6020		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6021			  "Data written %llx Data read %llx\n",
6022			  dev->name, (unsigned long long)0x12345,
6023			  (unsigned long long)ret_data);
6024		fail = 1;
6025	}
6026
6027	/* Reset the EEPROM data go FFFF */
6028	write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6029
6030	if (sp->device_type == XFRAME_I_DEVICE) {
6031		/* Test Write Error at offset 0x80 */
6032		if (!write_eeprom(sp, 0x080, 0, 3))
6033			fail = 1;
6034
6035		/* Test Write Error at offset 0xfc */
6036		if (!write_eeprom(sp, 0x0FC, 0, 3))
6037			fail = 1;
6038
6039		/* Test Write Error at offset 0x100 */
6040		if (!write_eeprom(sp, 0x100, 0, 3))
6041			fail = 1;
6042
6043		/* Test Write Error at offset 4ec */
6044		if (!write_eeprom(sp, 0x4EC, 0, 3))
6045			fail = 1;
6046	}
6047
6048	/* Restore values at offsets 0x4F0 and 0x7F0 */
6049	if (saved_4F0)
6050		write_eeprom(sp, 0x4F0, org_4F0, 3);
6051	if (saved_7F0)
6052		write_eeprom(sp, 0x7F0, org_7F0, 3);
6053
6054	*data = fail;
6055	return fail;
6056}
6057
6058/**
6059 * s2io_bist_test - invokes the MemBist test of the card .
6060 * @sp : private member of the device structure, which is a pointer to the
6061 * s2io_nic structure.
6062 * @data:variable that returns the result of each of the test conducted by
6063 * the driver.
6064 * Description:
6065 * This invokes the MemBist test of the card. We give around
6066 * 2 secs time for the Test to complete. If it's still not complete
6067 * within this peiod, we consider that the test failed.
6068 * Return value:
6069 * 0 on success and -1 on failure.
6070 */
6071
6072static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6073{
6074	u8 bist = 0;
6075	int cnt = 0, ret = -1;
6076
6077	pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6078	bist |= PCI_BIST_START;
6079	pci_write_config_word(sp->pdev, PCI_BIST, bist);
6080
6081	while (cnt < 20) {
6082		pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6083		if (!(bist & PCI_BIST_START)) {
6084			*data = (bist & PCI_BIST_CODE_MASK);
6085			ret = 0;
6086			break;
6087		}
6088		msleep(100);
6089		cnt++;
6090	}
6091
6092	return ret;
6093}
6094
6095/**
6096 * s2io_link_test - verifies the link state of the nic
6097 * @sp ; private member of the device structure, which is a pointer to the
6098 * s2io_nic structure.
6099 * @data: variable that returns the result of each of the test conducted by
6100 * the driver.
6101 * Description:
6102 * The function verifies the link state of the NIC and updates the input
6103 * argument 'data' appropriately.
6104 * Return value:
6105 * 0 on success.
6106 */
6107
6108static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6109{
6110	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6111	u64 val64;
6112
6113	val64 = readq(&bar0->adapter_status);
6114	if (!(LINK_IS_UP(val64)))
6115		*data = 1;
6116	else
6117		*data = 0;
6118
6119	return *data;
6120}
6121
6122/**
6123 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6124 * @sp: private member of the device structure, which is a pointer to the
6125 * s2io_nic structure.
6126 * @data: variable that returns the result of each of the test
6127 * conducted by the driver.
6128 * Description:
6129 *  This is one of the offline test that tests the read and write
6130 *  access to the RldRam chip on the NIC.
6131 * Return value:
6132 *  0 on success.
6133 */
6134
6135static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6136{
6137	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6138	u64 val64;
6139	int cnt, iteration = 0, test_fail = 0;
6140
6141	val64 = readq(&bar0->adapter_control);
6142	val64 &= ~ADAPTER_ECC_EN;
6143	writeq(val64, &bar0->adapter_control);
6144
6145	val64 = readq(&bar0->mc_rldram_test_ctrl);
6146	val64 |= MC_RLDRAM_TEST_MODE;
6147	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6148
6149	val64 = readq(&bar0->mc_rldram_mrs);
6150	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6151	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6152
6153	val64 |= MC_RLDRAM_MRS_ENABLE;
6154	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6155
6156	while (iteration < 2) {
6157		val64 = 0x55555555aaaa0000ULL;
6158		if (iteration == 1)
6159			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6160		writeq(val64, &bar0->mc_rldram_test_d0);
6161
6162		val64 = 0xaaaa5a5555550000ULL;
6163		if (iteration == 1)
6164			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6165		writeq(val64, &bar0->mc_rldram_test_d1);
6166
6167		val64 = 0x55aaaaaaaa5a0000ULL;
6168		if (iteration == 1)
6169			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6170		writeq(val64, &bar0->mc_rldram_test_d2);
6171
6172		val64 = (u64) (0x0000003ffffe0100ULL);
6173		writeq(val64, &bar0->mc_rldram_test_add);
6174
6175		val64 = MC_RLDRAM_TEST_MODE |
6176			MC_RLDRAM_TEST_WRITE |
6177			MC_RLDRAM_TEST_GO;
6178		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6179
6180		for (cnt = 0; cnt < 5; cnt++) {
6181			val64 = readq(&bar0->mc_rldram_test_ctrl);
6182			if (val64 & MC_RLDRAM_TEST_DONE)
6183				break;
6184			msleep(200);
6185		}
6186
6187		if (cnt == 5)
6188			break;
6189
6190		val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6191		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6192
6193		for (cnt = 0; cnt < 5; cnt++) {
6194			val64 = readq(&bar0->mc_rldram_test_ctrl);
6195			if (val64 & MC_RLDRAM_TEST_DONE)
6196				break;
6197			msleep(500);
6198		}
6199
6200		if (cnt == 5)
6201			break;
6202
6203		val64 = readq(&bar0->mc_rldram_test_ctrl);
6204		if (!(val64 & MC_RLDRAM_TEST_PASS))
6205			test_fail = 1;
6206
6207		iteration++;
6208	}
6209
6210	*data = test_fail;
6211
6212	/* Bring the adapter out of test mode */
6213	SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6214
6215	return test_fail;
6216}
6217
6218/**
6219 *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6220 *  @sp : private member of the device structure, which is a pointer to the
6221 *  s2io_nic structure.
6222 *  @ethtest : pointer to a ethtool command specific structure that will be
6223 *  returned to the user.
6224 *  @data : variable that returns the result of each of the test
6225 * conducted by the driver.
6226 * Description:
6227 *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6228 *  the health of the card.
6229 * Return value:
6230 *  void
6231 */
6232
6233static void s2io_ethtool_test(struct net_device *dev,
6234			      struct ethtool_test *ethtest,
6235			      uint64_t *data)
6236{
6237	struct s2io_nic *sp = netdev_priv(dev);
6238	int orig_state = netif_running(sp->dev);
6239
6240	if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6241		/* Offline Tests. */
6242		if (orig_state)
6243			s2io_close(sp->dev);
6244
6245		if (s2io_register_test(sp, &data[0]))
6246			ethtest->flags |= ETH_TEST_FL_FAILED;
6247
6248		s2io_reset(sp);
6249
6250		if (s2io_rldram_test(sp, &data[3]))
6251			ethtest->flags |= ETH_TEST_FL_FAILED;
6252
6253		s2io_reset(sp);
6254
6255		if (s2io_eeprom_test(sp, &data[1]))
6256			ethtest->flags |= ETH_TEST_FL_FAILED;
6257
6258		if (s2io_bist_test(sp, &data[4]))
6259			ethtest->flags |= ETH_TEST_FL_FAILED;
6260
6261		if (orig_state)
6262			s2io_open(sp->dev);
6263
6264		data[2] = 0;
6265	} else {
6266		/* Online Tests. */
6267		if (!orig_state) {
6268			DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6269				  dev->name);
6270			data[0] = -1;
6271			data[1] = -1;
6272			data[2] = -1;
6273			data[3] = -1;
6274			data[4] = -1;
6275		}
6276
6277		if (s2io_link_test(sp, &data[2]))
6278			ethtest->flags |= ETH_TEST_FL_FAILED;
6279
6280		data[0] = 0;
6281		data[1] = 0;
6282		data[3] = 0;
6283		data[4] = 0;
6284	}
6285}
6286
6287static void s2io_get_ethtool_stats(struct net_device *dev,
6288				   struct ethtool_stats *estats,
6289				   u64 *tmp_stats)
6290{
6291	int i = 0, k;
6292	struct s2io_nic *sp = netdev_priv(dev);
6293	struct stat_block *stats = sp->mac_control.stats_info;
6294	struct swStat *swstats = &stats->sw_stat;
6295	struct xpakStat *xstats = &stats->xpak_stat;
6296
6297	s2io_updt_stats(sp);
6298	tmp_stats[i++] =
6299		(u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6300		le32_to_cpu(stats->tmac_frms);
6301	tmp_stats[i++] =
6302		(u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6303		le32_to_cpu(stats->tmac_data_octets);
6304	tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6305	tmp_stats[i++] =
6306		(u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6307		le32_to_cpu(stats->tmac_mcst_frms);
6308	tmp_stats[i++] =
6309		(u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6310		le32_to_cpu(stats->tmac_bcst_frms);
6311	tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6312	tmp_stats[i++] =
6313		(u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6314		le32_to_cpu(stats->tmac_ttl_octets);
6315	tmp_stats[i++] =
6316		(u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6317		le32_to_cpu(stats->tmac_ucst_frms);
6318	tmp_stats[i++] =
6319		(u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6320		le32_to_cpu(stats->tmac_nucst_frms);
6321	tmp_stats[i++] =
6322		(u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6323		le32_to_cpu(stats->tmac_any_err_frms);
6324	tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6325	tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6326	tmp_stats[i++] =
6327		(u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6328		le32_to_cpu(stats->tmac_vld_ip);
6329	tmp_stats[i++] =
6330		(u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6331		le32_to_cpu(stats->tmac_drop_ip);
6332	tmp_stats[i++] =
6333		(u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6334		le32_to_cpu(stats->tmac_icmp);
6335	tmp_stats[i++] =
6336		(u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6337		le32_to_cpu(stats->tmac_rst_tcp);
6338	tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6339	tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6340		le32_to_cpu(stats->tmac_udp);
6341	tmp_stats[i++] =
6342		(u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6343		le32_to_cpu(stats->rmac_vld_frms);
6344	tmp_stats[i++] =
6345		(u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6346		le32_to_cpu(stats->rmac_data_octets);
6347	tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6348	tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6349	tmp_stats[i++] =
6350		(u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6351		le32_to_cpu(stats->rmac_vld_mcst_frms);
6352	tmp_stats[i++] =
6353		(u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6354		le32_to_cpu(stats->rmac_vld_bcst_frms);
6355	tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6356	tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6357	tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6358	tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6359	tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6360	tmp_stats[i++] =
6361		(u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6362		le32_to_cpu(stats->rmac_ttl_octets);
6363	tmp_stats[i++] =
6364		(u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6365		| le32_to_cpu(stats->rmac_accepted_ucst_frms);
6366	tmp_stats[i++] =
6367		(u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6368		<< 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6369	tmp_stats[i++] =
6370		(u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6371		le32_to_cpu(stats->rmac_discarded_frms);
6372	tmp_stats[i++] =
6373		(u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6374		<< 32 | le32_to_cpu(stats->rmac_drop_events);
6375	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6376	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6377	tmp_stats[i++] =
6378		(u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6379		le32_to_cpu(stats->rmac_usized_frms);
6380	tmp_stats[i++] =
6381		(u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6382		le32_to_cpu(stats->rmac_osized_frms);
6383	tmp_stats[i++] =
6384		(u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6385		le32_to_cpu(stats->rmac_frag_frms);
6386	tmp_stats[i++] =
6387		(u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6388		le32_to_cpu(stats->rmac_jabber_frms);
6389	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6390	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6391	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6392	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6393	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6394	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6395	tmp_stats[i++] =
6396		(u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6397		le32_to_cpu(stats->rmac_ip);
6398	tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6399	tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6400	tmp_stats[i++] =
6401		(u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6402		le32_to_cpu(stats->rmac_drop_ip);
6403	tmp_stats[i++] =
6404		(u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6405		le32_to_cpu(stats->rmac_icmp);
6406	tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6407	tmp_stats[i++] =
6408		(u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6409		le32_to_cpu(stats->rmac_udp);
6410	tmp_stats[i++] =
6411		(u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6412		le32_to_cpu(stats->rmac_err_drp_udp);
6413	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6414	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6415	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6416	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6417	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6418	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6419	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6420	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6421	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6422	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6423	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6424	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6425	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6426	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6427	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6428	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6429	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6430	tmp_stats[i++] =
6431		(u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6432		le32_to_cpu(stats->rmac_pause_cnt);
6433	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6434	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6435	tmp_stats[i++] =
6436		(u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6437		le32_to_cpu(stats->rmac_accepted_ip);
6438	tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6439	tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6440	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6441	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6442	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6443	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6444	tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6445	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6446	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6447	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6448	tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6449	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6450	tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6451	tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6452	tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6453	tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6454	tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6455	tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6456	tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6457
6458	/* Enhanced statistics exist only for Hercules */
6459	if (sp->device_type == XFRAME_II_DEVICE) {
6460		tmp_stats[i++] =
6461			le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6462		tmp_stats[i++] =
6463			le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6464		tmp_stats[i++] =
6465			le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6466		tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6467		tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6468		tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6469		tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6470		tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6471		tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6472		tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6473		tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6474		tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6475		tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6476		tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6477		tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6478		tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6479	}
6480
6481	tmp_stats[i++] = 0;
6482	tmp_stats[i++] = swstats->single_ecc_errs;
6483	tmp_stats[i++] = swstats->double_ecc_errs;
6484	tmp_stats[i++] = swstats->parity_err_cnt;
6485	tmp_stats[i++] = swstats->serious_err_cnt;
6486	tmp_stats[i++] = swstats->soft_reset_cnt;
6487	tmp_stats[i++] = swstats->fifo_full_cnt;
6488	for (k = 0; k < MAX_RX_RINGS; k++)
6489		tmp_stats[i++] = swstats->ring_full_cnt[k];
6490	tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6491	tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6492	tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6493	tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6494	tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6495	tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6496	tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6497	tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6498	tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6499	tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6500	tmp_stats[i++] = xstats->warn_laser_output_power_high;
6501	tmp_stats[i++] = xstats->warn_laser_output_power_low;
6502	tmp_stats[i++] = swstats->clubbed_frms_cnt;
6503	tmp_stats[i++] = swstats->sending_both;
6504	tmp_stats[i++] = swstats->outof_sequence_pkts;
6505	tmp_stats[i++] = swstats->flush_max_pkts;
6506	if (swstats->num_aggregations) {
6507		u64 tmp = swstats->sum_avg_pkts_aggregated;
6508		int count = 0;
6509		/*
6510		 * Since 64-bit divide does not work on all platforms,
6511		 * do repeated subtraction.
6512		 */
6513		while (tmp >= swstats->num_aggregations) {
6514			tmp -= swstats->num_aggregations;
6515			count++;
6516		}
6517		tmp_stats[i++] = count;
6518	} else
6519		tmp_stats[i++] = 0;
6520	tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6521	tmp_stats[i++] = swstats->pci_map_fail_cnt;
6522	tmp_stats[i++] = swstats->watchdog_timer_cnt;
6523	tmp_stats[i++] = swstats->mem_allocated;
6524	tmp_stats[i++] = swstats->mem_freed;
6525	tmp_stats[i++] = swstats->link_up_cnt;
6526	tmp_stats[i++] = swstats->link_down_cnt;
6527	tmp_stats[i++] = swstats->link_up_time;
6528	tmp_stats[i++] = swstats->link_down_time;
6529
6530	tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6531	tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6532	tmp_stats[i++] = swstats->tx_parity_err_cnt;
6533	tmp_stats[i++] = swstats->tx_link_loss_cnt;
6534	tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6535
6536	tmp_stats[i++] = swstats->rx_parity_err_cnt;
6537	tmp_stats[i++] = swstats->rx_abort_cnt;
6538	tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6539	tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6540	tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6541	tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6542	tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6543	tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6544	tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6545	tmp_stats[i++] = swstats->tda_err_cnt;
6546	tmp_stats[i++] = swstats->pfc_err_cnt;
6547	tmp_stats[i++] = swstats->pcc_err_cnt;
6548	tmp_stats[i++] = swstats->tti_err_cnt;
6549	tmp_stats[i++] = swstats->tpa_err_cnt;
6550	tmp_stats[i++] = swstats->sm_err_cnt;
6551	tmp_stats[i++] = swstats->lso_err_cnt;
6552	tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6553	tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6554	tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6555	tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6556	tmp_stats[i++] = swstats->rc_err_cnt;
6557	tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6558	tmp_stats[i++] = swstats->rpa_err_cnt;
6559	tmp_stats[i++] = swstats->rda_err_cnt;
6560	tmp_stats[i++] = swstats->rti_err_cnt;
6561	tmp_stats[i++] = swstats->mc_err_cnt;
6562}
6563
6564static int s2io_ethtool_get_regs_len(struct net_device *dev)
6565{
6566	return XENA_REG_SPACE;
6567}
6568
6569
6570static int s2io_get_eeprom_len(struct net_device *dev)
6571{
6572	return XENA_EEPROM_SPACE;
6573}
6574
6575static int s2io_get_sset_count(struct net_device *dev, int sset)
6576{
6577	struct s2io_nic *sp = netdev_priv(dev);
6578
6579	switch (sset) {
6580	case ETH_SS_TEST:
6581		return S2IO_TEST_LEN;
6582	case ETH_SS_STATS:
6583		switch (sp->device_type) {
6584		case XFRAME_I_DEVICE:
6585			return XFRAME_I_STAT_LEN;
6586		case XFRAME_II_DEVICE:
6587			return XFRAME_II_STAT_LEN;
6588		default:
6589			return 0;
6590		}
6591	default:
6592		return -EOPNOTSUPP;
6593	}
6594}
6595
6596static void s2io_ethtool_get_strings(struct net_device *dev,
6597				     u32 stringset, u8 *data)
6598{
6599	int stat_size = 0;
6600	struct s2io_nic *sp = netdev_priv(dev);
6601
6602	switch (stringset) {
6603	case ETH_SS_TEST:
6604		memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6605		break;
6606	case ETH_SS_STATS:
6607		stat_size = sizeof(ethtool_xena_stats_keys);
6608		memcpy(data, &ethtool_xena_stats_keys, stat_size);
6609		if (sp->device_type == XFRAME_II_DEVICE) {
6610			memcpy(data + stat_size,
6611			       &ethtool_enhanced_stats_keys,
6612			       sizeof(ethtool_enhanced_stats_keys));
6613			stat_size += sizeof(ethtool_enhanced_stats_keys);
6614		}
6615
6616		memcpy(data + stat_size, &ethtool_driver_stats_keys,
6617		       sizeof(ethtool_driver_stats_keys));
6618	}
6619}
6620
6621static int s2io_set_features(struct net_device *dev, netdev_features_t features)
6622{
6623	struct s2io_nic *sp = netdev_priv(dev);
6624	netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
6625
6626	if (changed && netif_running(dev)) {
6627		int rc;
6628
6629		s2io_stop_all_tx_queue(sp);
6630		s2io_card_down(sp);
6631		dev->features = features;
6632		rc = s2io_card_up(sp);
6633		if (rc)
6634			s2io_reset(sp);
6635		else
6636			s2io_start_all_tx_queue(sp);
6637
6638		return rc ? rc : 1;
6639	}
6640
6641	return 0;
6642}
6643
6644static const struct ethtool_ops netdev_ethtool_ops = {
6645	.get_settings = s2io_ethtool_gset,
6646	.set_settings = s2io_ethtool_sset,
6647	.get_drvinfo = s2io_ethtool_gdrvinfo,
6648	.get_regs_len = s2io_ethtool_get_regs_len,
6649	.get_regs = s2io_ethtool_gregs,
6650	.get_link = ethtool_op_get_link,
6651	.get_eeprom_len = s2io_get_eeprom_len,
6652	.get_eeprom = s2io_ethtool_geeprom,
6653	.set_eeprom = s2io_ethtool_seeprom,
6654	.get_ringparam = s2io_ethtool_gringparam,
6655	.get_pauseparam = s2io_ethtool_getpause_data,
6656	.set_pauseparam = s2io_ethtool_setpause_data,
6657	.self_test = s2io_ethtool_test,
6658	.get_strings = s2io_ethtool_get_strings,
6659	.set_phys_id = s2io_ethtool_set_led,
6660	.get_ethtool_stats = s2io_get_ethtool_stats,
6661	.get_sset_count = s2io_get_sset_count,
6662};
6663
6664/**
6665 *  s2io_ioctl - Entry point for the Ioctl
6666 *  @dev :  Device pointer.
6667 *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6668 *  a proprietary structure used to pass information to the driver.
6669 *  @cmd :  This is used to distinguish between the different commands that
6670 *  can be passed to the IOCTL functions.
6671 *  Description:
6672 *  Currently there are no special functionality supported in IOCTL, hence
6673 *  function always return EOPNOTSUPPORTED
6674 */
6675
6676static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6677{
6678	return -EOPNOTSUPP;
6679}
6680
6681/**
6682 *  s2io_change_mtu - entry point to change MTU size for the device.
6683 *   @dev : device pointer.
6684 *   @new_mtu : the new MTU size for the device.
6685 *   Description: A driver entry point to change MTU size for the device.
6686 *   Before changing the MTU the device must be stopped.
6687 *  Return value:
6688 *   0 on success and an appropriate (-)ve integer as defined in errno.h
6689 *   file on failure.
6690 */
6691
6692static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6693{
6694	struct s2io_nic *sp = netdev_priv(dev);
6695	int ret = 0;
6696
6697	if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6698		DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6699		return -EPERM;
6700	}
6701
6702	dev->mtu = new_mtu;
6703	if (netif_running(dev)) {
6704		s2io_stop_all_tx_queue(sp);
6705		s2io_card_down(sp);
6706		ret = s2io_card_up(sp);
6707		if (ret) {
6708			DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6709				  __func__);
6710			return ret;
6711		}
6712		s2io_wake_all_tx_queue(sp);
6713	} else { /* Device is down */
6714		struct XENA_dev_config __iomem *bar0 = sp->bar0;
6715		u64 val64 = new_mtu;
6716
6717		writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6718	}
6719
6720	return ret;
6721}
6722
6723/**
6724 * s2io_set_link - Set the LInk status
6725 * @data: long pointer to device private structue
6726 * Description: Sets the link status for the adapter
6727 */
6728
6729static void s2io_set_link(struct work_struct *work)
6730{
6731	struct s2io_nic *nic = container_of(work, struct s2io_nic,
6732					    set_link_task);
6733	struct net_device *dev = nic->dev;
6734	struct XENA_dev_config __iomem *bar0 = nic->bar0;
6735	register u64 val64;
6736	u16 subid;
6737
6738	rtnl_lock();
6739
6740	if (!netif_running(dev))
6741		goto out_unlock;
6742
6743	if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6744		/* The card is being reset, no point doing anything */
6745		goto out_unlock;
6746	}
6747
6748	subid = nic->pdev->subsystem_device;
6749	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6750		/*
6751		 * Allow a small delay for the NICs self initiated
6752		 * cleanup to complete.
6753		 */
6754		msleep(100);
6755	}
6756
6757	val64 = readq(&bar0->adapter_status);
6758	if (LINK_IS_UP(val64)) {
6759		if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6760			if (verify_xena_quiescence(nic)) {
6761				val64 = readq(&bar0->adapter_control);
6762				val64 |= ADAPTER_CNTL_EN;
6763				writeq(val64, &bar0->adapter_control);
6764				if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6765					    nic->device_type, subid)) {
6766					val64 = readq(&bar0->gpio_control);
6767					val64 |= GPIO_CTRL_GPIO_0;
6768					writeq(val64, &bar0->gpio_control);
6769					val64 = readq(&bar0->gpio_control);
6770				} else {
6771					val64 |= ADAPTER_LED_ON;
6772					writeq(val64, &bar0->adapter_control);
6773				}
6774				nic->device_enabled_once = true;
6775			} else {
6776				DBG_PRINT(ERR_DBG,
6777					  "%s: Error: device is not Quiescent\n",
6778					  dev->name);
6779				s2io_stop_all_tx_queue(nic);
6780			}
6781		}
6782		val64 = readq(&bar0->adapter_control);
6783		val64 |= ADAPTER_LED_ON;
6784		writeq(val64, &bar0->adapter_control);
6785		s2io_link(nic, LINK_UP);
6786	} else {
6787		if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6788						      subid)) {
6789			val64 = readq(&bar0->gpio_control);
6790			val64 &= ~GPIO_CTRL_GPIO_0;
6791			writeq(val64, &bar0->gpio_control);
6792			val64 = readq(&bar0->gpio_control);
6793		}
6794		/* turn off LED */
6795		val64 = readq(&bar0->adapter_control);
6796		val64 = val64 & (~ADAPTER_LED_ON);
6797		writeq(val64, &bar0->adapter_control);
6798		s2io_link(nic, LINK_DOWN);
6799	}
6800	clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6801
6802out_unlock:
6803	rtnl_unlock();
6804}
6805
6806static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6807				  struct buffAdd *ba,
6808				  struct sk_buff **skb, u64 *temp0, u64 *temp1,
6809				  u64 *temp2, int size)
6810{
6811	struct net_device *dev = sp->dev;
6812	struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6813
6814	if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6815		struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6816		/* allocate skb */
6817		if (*skb) {
6818			DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6819			/*
6820			 * As Rx frame are not going to be processed,
6821			 * using same mapped address for the Rxd
6822			 * buffer pointer
6823			 */
6824			rxdp1->Buffer0_ptr = *temp0;
6825		} else {
6826			*skb = netdev_alloc_skb(dev, size);
6827			if (!(*skb)) {
6828				DBG_PRINT(INFO_DBG,
6829					  "%s: Out of memory to allocate %s\n",
6830					  dev->name, "1 buf mode SKBs");
6831				stats->mem_alloc_fail_cnt++;
6832				return -ENOMEM ;
6833			}
6834			stats->mem_allocated += (*skb)->truesize;
6835			/* storing the mapped addr in a temp variable
6836			 * such it will be used for next rxd whose
6837			 * Host Control is NULL
6838			 */
6839			rxdp1->Buffer0_ptr = *temp0 =
6840				pci_map_single(sp->pdev, (*skb)->data,
6841					       size - NET_IP_ALIGN,
6842					       PCI_DMA_FROMDEVICE);
6843			if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6844				goto memalloc_failed;
6845			rxdp->Host_Control = (unsigned long) (*skb);
6846		}
6847	} else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6848		struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6849		/* Two buffer Mode */
6850		if (*skb) {
6851			rxdp3->Buffer2_ptr = *temp2;
6852			rxdp3->Buffer0_ptr = *temp0;
6853			rxdp3->Buffer1_ptr = *temp1;
6854		} else {
6855			*skb = netdev_alloc_skb(dev, size);
6856			if (!(*skb)) {
6857				DBG_PRINT(INFO_DBG,
6858					  "%s: Out of memory to allocate %s\n",
6859					  dev->name,
6860					  "2 buf mode SKBs");
6861				stats->mem_alloc_fail_cnt++;
6862				return -ENOMEM;
6863			}
6864			stats->mem_allocated += (*skb)->truesize;
6865			rxdp3->Buffer2_ptr = *temp2 =
6866				pci_map_single(sp->pdev, (*skb)->data,
6867					       dev->mtu + 4,
6868					       PCI_DMA_FROMDEVICE);
6869			if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6870				goto memalloc_failed;
6871			rxdp3->Buffer0_ptr = *temp0 =
6872				pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6873					       PCI_DMA_FROMDEVICE);
6874			if (pci_dma_mapping_error(sp->pdev,
6875						  rxdp3->Buffer0_ptr)) {
6876				pci_unmap_single(sp->pdev,
6877						 (dma_addr_t)rxdp3->Buffer2_ptr,
6878						 dev->mtu + 4,
6879						 PCI_DMA_FROMDEVICE);
6880				goto memalloc_failed;
6881			}
6882			rxdp->Host_Control = (unsigned long) (*skb);
6883
6884			/* Buffer-1 will be dummy buffer not used */
6885			rxdp3->Buffer1_ptr = *temp1 =
6886				pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6887					       PCI_DMA_FROMDEVICE);
6888			if (pci_dma_mapping_error(sp->pdev,
6889						  rxdp3->Buffer1_ptr)) {
6890				pci_unmap_single(sp->pdev,
6891						 (dma_addr_t)rxdp3->Buffer0_ptr,
6892						 BUF0_LEN, PCI_DMA_FROMDEVICE);
6893				pci_unmap_single(sp->pdev,
6894						 (dma_addr_t)rxdp3->Buffer2_ptr,
6895						 dev->mtu + 4,
6896						 PCI_DMA_FROMDEVICE);
6897				goto memalloc_failed;
6898			}
6899		}
6900	}
6901	return 0;
6902
6903memalloc_failed:
6904	stats->pci_map_fail_cnt++;
6905	stats->mem_freed += (*skb)->truesize;
6906	dev_kfree_skb(*skb);
6907	return -ENOMEM;
6908}
6909
6910static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6911				int size)
6912{
6913	struct net_device *dev = sp->dev;
6914	if (sp->rxd_mode == RXD_MODE_1) {
6915		rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6916	} else if (sp->rxd_mode == RXD_MODE_3B) {
6917		rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6918		rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6919		rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6920	}
6921}
6922
6923static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6924{
6925	int i, j, k, blk_cnt = 0, size;
6926	struct config_param *config = &sp->config;
6927	struct mac_info *mac_control = &sp->mac_control;
6928	struct net_device *dev = sp->dev;
6929	struct RxD_t *rxdp = NULL;
6930	struct sk_buff *skb = NULL;
6931	struct buffAdd *ba = NULL;
6932	u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6933
6934	/* Calculate the size based on ring mode */
6935	size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6936		HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6937	if (sp->rxd_mode == RXD_MODE_1)
6938		size += NET_IP_ALIGN;
6939	else if (sp->rxd_mode == RXD_MODE_3B)
6940		size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6941
6942	for (i = 0; i < config->rx_ring_num; i++) {
6943		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6944		struct ring_info *ring = &mac_control->rings[i];
6945
6946		blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6947
6948		for (j = 0; j < blk_cnt; j++) {
6949			for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6950				rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6951				if (sp->rxd_mode == RXD_MODE_3B)
6952					ba = &ring->ba[j][k];
6953				if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6954							   &temp0_64,
6955							   &temp1_64,
6956							   &temp2_64,
6957							   size) == -ENOMEM) {
6958					return 0;
6959				}
6960
6961				set_rxd_buffer_size(sp, rxdp, size);
6962				wmb();
6963				/* flip the Ownership bit to Hardware */
6964				rxdp->Control_1 |= RXD_OWN_XENA;
6965			}
6966		}
6967	}
6968	return 0;
6969
6970}
6971
6972static int s2io_add_isr(struct s2io_nic *sp)
6973{
6974	int ret = 0;
6975	struct net_device *dev = sp->dev;
6976	int err = 0;
6977
6978	if (sp->config.intr_type == MSI_X)
6979		ret = s2io_enable_msi_x(sp);
6980	if (ret) {
6981		DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6982		sp->config.intr_type = INTA;
6983	}
6984
6985	/*
6986	 * Store the values of the MSIX table in
6987	 * the struct s2io_nic structure
6988	 */
6989	store_xmsi_data(sp);
6990
6991	/* After proper initialization of H/W, register ISR */
6992	if (sp->config.intr_type == MSI_X) {
6993		int i, msix_rx_cnt = 0;
6994
6995		for (i = 0; i < sp->num_entries; i++) {
6996			if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6997				if (sp->s2io_entries[i].type ==
6998				    MSIX_RING_TYPE) {
6999					sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7000						dev->name, i);
7001					err = request_irq(sp->entries[i].vector,
7002							  s2io_msix_ring_handle,
7003							  0,
7004							  sp->desc[i],
7005							  sp->s2io_entries[i].arg);
7006				} else if (sp->s2io_entries[i].type ==
7007					   MSIX_ALARM_TYPE) {
7008					sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7009						dev->name, i);
7010					err = request_irq(sp->entries[i].vector,
7011							  s2io_msix_fifo_handle,
7012							  0,
7013							  sp->desc[i],
7014							  sp->s2io_entries[i].arg);
7015
7016				}
7017				/* if either data or addr is zero print it. */
7018				if (!(sp->msix_info[i].addr &&
7019				      sp->msix_info[i].data)) {
7020					DBG_PRINT(ERR_DBG,
7021						  "%s @Addr:0x%llx Data:0x%llx\n",
7022						  sp->desc[i],
7023						  (unsigned long long)
7024						  sp->msix_info[i].addr,
7025						  (unsigned long long)
7026						  ntohl(sp->msix_info[i].data));
7027				} else
7028					msix_rx_cnt++;
7029				if (err) {
7030					remove_msix_isr(sp);
7031
7032					DBG_PRINT(ERR_DBG,
7033						  "%s:MSI-X-%d registration "
7034						  "failed\n", dev->name, i);
7035
7036					DBG_PRINT(ERR_DBG,
7037						  "%s: Defaulting to INTA\n",
7038						  dev->name);
7039					sp->config.intr_type = INTA;
7040					break;
7041				}
7042				sp->s2io_entries[i].in_use =
7043					MSIX_REGISTERED_SUCCESS;
7044			}
7045		}
7046		if (!err) {
7047			pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7048			DBG_PRINT(INFO_DBG,
7049				  "MSI-X-TX entries enabled through alarm vector\n");
7050		}
7051	}
7052	if (sp->config.intr_type == INTA) {
7053		err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
7054				  sp->name, dev);
7055		if (err) {
7056			DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7057				  dev->name);
7058			return -1;
7059		}
7060	}
7061	return 0;
7062}
7063
7064static void s2io_rem_isr(struct s2io_nic *sp)
7065{
7066	if (sp->config.intr_type == MSI_X)
7067		remove_msix_isr(sp);
7068	else
7069		remove_inta_isr(sp);
7070}
7071
7072static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7073{
7074	int cnt = 0;
7075	struct XENA_dev_config __iomem *bar0 = sp->bar0;
7076	register u64 val64 = 0;
7077	struct config_param *config;
7078	config = &sp->config;
7079
7080	if (!is_s2io_card_up(sp))
7081		return;
7082
7083	del_timer_sync(&sp->alarm_timer);
7084	/* If s2io_set_link task is executing, wait till it completes. */
7085	while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7086		msleep(50);
7087	clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7088
7089	/* Disable napi */
7090	if (sp->config.napi) {
7091		int off = 0;
7092		if (config->intr_type ==  MSI_X) {
7093			for (; off < sp->config.rx_ring_num; off++)
7094				napi_disable(&sp->mac_control.rings[off].napi);
7095		}
7096		else
7097			napi_disable(&sp->napi);
7098	}
7099
7100	/* disable Tx and Rx traffic on the NIC */
7101	if (do_io)
7102		stop_nic(sp);
7103
7104	s2io_rem_isr(sp);
7105
7106	/* stop the tx queue, indicate link down */
7107	s2io_link(sp, LINK_DOWN);
7108
7109	/* Check if the device is Quiescent and then Reset the NIC */
7110	while (do_io) {
7111		/* As per the HW requirement we need to replenish the
7112		 * receive buffer to avoid the ring bump. Since there is
7113		 * no intention of processing the Rx frame at this pointwe are
7114		 * just setting the ownership bit of rxd in Each Rx
7115		 * ring to HW and set the appropriate buffer size
7116		 * based on the ring mode
7117		 */
7118		rxd_owner_bit_reset(sp);
7119
7120		val64 = readq(&bar0->adapter_status);
7121		if (verify_xena_quiescence(sp)) {
7122			if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7123				break;
7124		}
7125
7126		msleep(50);
7127		cnt++;
7128		if (cnt == 10) {
7129			DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7130				  "adapter status reads 0x%llx\n",
7131				  (unsigned long long)val64);
7132			break;
7133		}
7134	}
7135	if (do_io)
7136		s2io_reset(sp);
7137
7138	/* Free all Tx buffers */
7139	free_tx_buffers(sp);
7140
7141	/* Free all Rx buffers */
7142	free_rx_buffers(sp);
7143
7144	clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7145}
7146
7147static void s2io_card_down(struct s2io_nic *sp)
7148{
7149	do_s2io_card_down(sp, 1);
7150}
7151
7152static int s2io_card_up(struct s2io_nic *sp)
7153{
7154	int i, ret = 0;
7155	struct config_param *config;
7156	struct mac_info *mac_control;
7157	struct net_device *dev = sp->dev;
7158	u16 interruptible;
7159
7160	/* Initialize the H/W I/O registers */
7161	ret = init_nic(sp);
7162	if (ret != 0) {
7163		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7164			  dev->name);
7165		if (ret != -EIO)
7166			s2io_reset(sp);
7167		return ret;
7168	}
7169
7170	/*
7171	 * Initializing the Rx buffers. For now we are considering only 1
7172	 * Rx ring and initializing buffers into 30 Rx blocks
7173	 */
7174	config = &sp->config;
7175	mac_control = &sp->mac_control;
7176
7177	for (i = 0; i < config->rx_ring_num; i++) {
7178		struct ring_info *ring = &mac_control->rings[i];
7179
7180		ring->mtu = dev->mtu;
7181		ring->lro = !!(dev->features & NETIF_F_LRO);
7182		ret = fill_rx_buffers(sp, ring, 1);
7183		if (ret) {
7184			DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7185				  dev->name);
7186			s2io_reset(sp);
7187			free_rx_buffers(sp);
7188			return -ENOMEM;
7189		}
7190		DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7191			  ring->rx_bufs_left);
7192	}
7193
7194	/* Initialise napi */
7195	if (config->napi) {
7196		if (config->intr_type ==  MSI_X) {
7197			for (i = 0; i < sp->config.rx_ring_num; i++)
7198				napi_enable(&sp->mac_control.rings[i].napi);
7199		} else {
7200			napi_enable(&sp->napi);
7201		}
7202	}
7203
7204	/* Maintain the state prior to the open */
7205	if (sp->promisc_flg)
7206		sp->promisc_flg = 0;
7207	if (sp->m_cast_flg) {
7208		sp->m_cast_flg = 0;
7209		sp->all_multi_pos = 0;
7210	}
7211
7212	/* Setting its receive mode */
7213	s2io_set_multicast(dev);
7214
7215	if (dev->features & NETIF_F_LRO) {
7216		/* Initialize max aggregatable pkts per session based on MTU */
7217		sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7218		/* Check if we can use (if specified) user provided value */
7219		if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7220			sp->lro_max_aggr_per_sess = lro_max_pkts;
7221	}
7222
7223	/* Enable Rx Traffic and interrupts on the NIC */
7224	if (start_nic(sp)) {
7225		DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7226		s2io_reset(sp);
7227		free_rx_buffers(sp);
7228		return -ENODEV;
7229	}
7230
7231	/* Add interrupt service routine */
7232	if (s2io_add_isr(sp) != 0) {
7233		if (sp->config.intr_type == MSI_X)
7234			s2io_rem_isr(sp);
7235		s2io_reset(sp);
7236		free_rx_buffers(sp);
7237		return -ENODEV;
7238	}
7239
7240	S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7241
7242	set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7243
7244	/*  Enable select interrupts */
7245	en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7246	if (sp->config.intr_type != INTA) {
7247		interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7248		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7249	} else {
7250		interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7251		interruptible |= TX_PIC_INTR;
7252		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7253	}
7254
7255	return 0;
7256}
7257
7258/**
7259 * s2io_restart_nic - Resets the NIC.
7260 * @data : long pointer to the device private structure
7261 * Description:
7262 * This function is scheduled to be run by the s2io_tx_watchdog
7263 * function after 0.5 secs to reset the NIC. The idea is to reduce
7264 * the run time of the watch dog routine which is run holding a
7265 * spin lock.
7266 */
7267
7268static void s2io_restart_nic(struct work_struct *work)
7269{
7270	struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7271	struct net_device *dev = sp->dev;
7272
7273	rtnl_lock();
7274
7275	if (!netif_running(dev))
7276		goto out_unlock;
7277
7278	s2io_card_down(sp);
7279	if (s2io_card_up(sp)) {
7280		DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7281	}
7282	s2io_wake_all_tx_queue(sp);
7283	DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7284out_unlock:
7285	rtnl_unlock();
7286}
7287
7288/**
7289 *  s2io_tx_watchdog - Watchdog for transmit side.
7290 *  @dev : Pointer to net device structure
7291 *  Description:
7292 *  This function is triggered if the Tx Queue is stopped
7293 *  for a pre-defined amount of time when the Interface is still up.
7294 *  If the Interface is jammed in such a situation, the hardware is
7295 *  reset (by s2io_close) and restarted again (by s2io_open) to
7296 *  overcome any problem that might have been caused in the hardware.
7297 *  Return value:
7298 *  void
7299 */
7300
7301static void s2io_tx_watchdog(struct net_device *dev)
7302{
7303	struct s2io_nic *sp = netdev_priv(dev);
7304	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7305
7306	if (netif_carrier_ok(dev)) {
7307		swstats->watchdog_timer_cnt++;
7308		schedule_work(&sp->rst_timer_task);
7309		swstats->soft_reset_cnt++;
7310	}
7311}
7312
7313/**
7314 *   rx_osm_handler - To perform some OS related operations on SKB.
7315 *   @sp: private member of the device structure,pointer to s2io_nic structure.
7316 *   @skb : the socket buffer pointer.
7317 *   @len : length of the packet
7318 *   @cksum : FCS checksum of the frame.
7319 *   @ring_no : the ring from which this RxD was extracted.
7320 *   Description:
7321 *   This function is called by the Rx interrupt serivce routine to perform
7322 *   some OS related operations on the SKB before passing it to the upper
7323 *   layers. It mainly checks if the checksum is OK, if so adds it to the
7324 *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7325 *   to the upper layer. If the checksum is wrong, it increments the Rx
7326 *   packet error count, frees the SKB and returns error.
7327 *   Return value:
7328 *   SUCCESS on success and -1 on failure.
7329 */
7330static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7331{
7332	struct s2io_nic *sp = ring_data->nic;
7333	struct net_device *dev = ring_data->dev;
7334	struct sk_buff *skb = (struct sk_buff *)
7335		((unsigned long)rxdp->Host_Control);
7336	int ring_no = ring_data->ring_no;
7337	u16 l3_csum, l4_csum;
7338	unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7339	struct lro *uninitialized_var(lro);
7340	u8 err_mask;
7341	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7342
7343	skb->dev = dev;
7344
7345	if (err) {
7346		/* Check for parity error */
7347		if (err & 0x1)
7348			swstats->parity_err_cnt++;
7349
7350		err_mask = err >> 48;
7351		switch (err_mask) {
7352		case 1:
7353			swstats->rx_parity_err_cnt++;
7354			break;
7355
7356		case 2:
7357			swstats->rx_abort_cnt++;
7358			break;
7359
7360		case 3:
7361			swstats->rx_parity_abort_cnt++;
7362			break;
7363
7364		case 4:
7365			swstats->rx_rda_fail_cnt++;
7366			break;
7367
7368		case 5:
7369			swstats->rx_unkn_prot_cnt++;
7370			break;
7371
7372		case 6:
7373			swstats->rx_fcs_err_cnt++;
7374			break;
7375
7376		case 7:
7377			swstats->rx_buf_size_err_cnt++;
7378			break;
7379
7380		case 8:
7381			swstats->rx_rxd_corrupt_cnt++;
7382			break;
7383
7384		case 15:
7385			swstats->rx_unkn_err_cnt++;
7386			break;
7387		}
7388		/*
7389		 * Drop the packet if bad transfer code. Exception being
7390		 * 0x5, which could be due to unsupported IPv6 extension header.
7391		 * In this case, we let stack handle the packet.
7392		 * Note that in this case, since checksum will be incorrect,
7393		 * stack will validate the same.
7394		 */
7395		if (err_mask != 0x5) {
7396			DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7397				  dev->name, err_mask);
7398			dev->stats.rx_crc_errors++;
7399			swstats->mem_freed
7400				+= skb->truesize;
7401			dev_kfree_skb(skb);
7402			ring_data->rx_bufs_left -= 1;
7403			rxdp->Host_Control = 0;
7404			return 0;
7405		}
7406	}
7407
7408	rxdp->Host_Control = 0;
7409	if (sp->rxd_mode == RXD_MODE_1) {
7410		int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7411
7412		skb_put(skb, len);
7413	} else if (sp->rxd_mode == RXD_MODE_3B) {
7414		int get_block = ring_data->rx_curr_get_info.block_index;
7415		int get_off = ring_data->rx_curr_get_info.offset;
7416		int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7417		int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7418		unsigned char *buff = skb_push(skb, buf0_len);
7419
7420		struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7421		memcpy(buff, ba->ba_0, buf0_len);
7422		skb_put(skb, buf2_len);
7423	}
7424
7425	if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7426	    ((!ring_data->lro) ||
7427	     (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7428	    (dev->features & NETIF_F_RXCSUM)) {
7429		l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7430		l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7431		if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7432			/*
7433			 * NIC verifies if the Checksum of the received
7434			 * frame is Ok or not and accordingly returns
7435			 * a flag in the RxD.
7436			 */
7437			skb->ip_summed = CHECKSUM_UNNECESSARY;
7438			if (ring_data->lro) {
7439				u32 tcp_len = 0;
7440				u8 *tcp;
7441				int ret = 0;
7442
7443				ret = s2io_club_tcp_session(ring_data,
7444							    skb->data, &tcp,
7445							    &tcp_len, &lro,
7446							    rxdp, sp);
7447				switch (ret) {
7448				case 3: /* Begin anew */
7449					lro->parent = skb;
7450					goto aggregate;
7451				case 1: /* Aggregate */
7452					lro_append_pkt(sp, lro, skb, tcp_len);
7453					goto aggregate;
7454				case 4: /* Flush session */
7455					lro_append_pkt(sp, lro, skb, tcp_len);
7456					queue_rx_frame(lro->parent,
7457						       lro->vlan_tag);
7458					clear_lro_session(lro);
7459					swstats->flush_max_pkts++;
7460					goto aggregate;
7461				case 2: /* Flush both */
7462					lro->parent->data_len = lro->frags_len;
7463					swstats->sending_both++;
7464					queue_rx_frame(lro->parent,
7465						       lro->vlan_tag);
7466					clear_lro_session(lro);
7467					goto send_up;
7468				case 0: /* sessions exceeded */
7469				case -1: /* non-TCP or not L2 aggregatable */
7470				case 5: /*
7471					 * First pkt in session not
7472					 * L3/L4 aggregatable
7473					 */
7474					break;
7475				default:
7476					DBG_PRINT(ERR_DBG,
7477						  "%s: Samadhana!!\n",
7478						  __func__);
7479					BUG();
7480				}
7481			}
7482		} else {
7483			/*
7484			 * Packet with erroneous checksum, let the
7485			 * upper layers deal with it.
7486			 */
7487			skb_checksum_none_assert(skb);
7488		}
7489	} else
7490		skb_checksum_none_assert(skb);
7491
7492	swstats->mem_freed += skb->truesize;
7493send_up:
7494	skb_record_rx_queue(skb, ring_no);
7495	queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7496aggregate:
7497	sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7498	return SUCCESS;
7499}
7500
7501/**
7502 *  s2io_link - stops/starts the Tx queue.
7503 *  @sp : private member of the device structure, which is a pointer to the
7504 *  s2io_nic structure.
7505 *  @link : inidicates whether link is UP/DOWN.
7506 *  Description:
7507 *  This function stops/starts the Tx queue depending on whether the link
7508 *  status of the NIC is is down or up. This is called by the Alarm
7509 *  interrupt handler whenever a link change interrupt comes up.
7510 *  Return value:
7511 *  void.
7512 */
7513
7514static void s2io_link(struct s2io_nic *sp, int link)
7515{
7516	struct net_device *dev = sp->dev;
7517	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7518
7519	if (link != sp->last_link_state) {
7520		init_tti(sp, link);
7521		if (link == LINK_DOWN) {
7522			DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7523			s2io_stop_all_tx_queue(sp);
7524			netif_carrier_off(dev);
7525			if (swstats->link_up_cnt)
7526				swstats->link_up_time =
7527					jiffies - sp->start_time;
7528			swstats->link_down_cnt++;
7529		} else {
7530			DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7531			if (swstats->link_down_cnt)
7532				swstats->link_down_time =
7533					jiffies - sp->start_time;
7534			swstats->link_up_cnt++;
7535			netif_carrier_on(dev);
7536			s2io_wake_all_tx_queue(sp);
7537		}
7538	}
7539	sp->last_link_state = link;
7540	sp->start_time = jiffies;
7541}
7542
7543/**
7544 *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7545 *  @sp : private member of the device structure, which is a pointer to the
7546 *  s2io_nic structure.
7547 *  Description:
7548 *  This function initializes a few of the PCI and PCI-X configuration registers
7549 *  with recommended values.
7550 *  Return value:
7551 *  void
7552 */
7553
7554static void s2io_init_pci(struct s2io_nic *sp)
7555{
7556	u16 pci_cmd = 0, pcix_cmd = 0;
7557
7558	/* Enable Data Parity Error Recovery in PCI-X command register. */
7559	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7560			     &(pcix_cmd));
7561	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7562			      (pcix_cmd | 1));
7563	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7564			     &(pcix_cmd));
7565
7566	/* Set the PErr Response bit in PCI command register. */
7567	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7568	pci_write_config_word(sp->pdev, PCI_COMMAND,
7569			      (pci_cmd | PCI_COMMAND_PARITY));
7570	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7571}
7572
7573static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7574			    u8 *dev_multiq)
7575{
7576	int i;
7577
7578	if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7579		DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7580			  "(%d) not supported\n", tx_fifo_num);
7581
7582		if (tx_fifo_num < 1)
7583			tx_fifo_num = 1;
7584		else
7585			tx_fifo_num = MAX_TX_FIFOS;
7586
7587		DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7588	}
7589
7590	if (multiq)
7591		*dev_multiq = multiq;
7592
7593	if (tx_steering_type && (1 == tx_fifo_num)) {
7594		if (tx_steering_type != TX_DEFAULT_STEERING)
7595			DBG_PRINT(ERR_DBG,
7596				  "Tx steering is not supported with "
7597				  "one fifo. Disabling Tx steering.\n");
7598		tx_steering_type = NO_STEERING;
7599	}
7600
7601	if ((tx_steering_type < NO_STEERING) ||
7602	    (tx_steering_type > TX_DEFAULT_STEERING)) {
7603		DBG_PRINT(ERR_DBG,
7604			  "Requested transmit steering not supported\n");
7605		DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7606		tx_steering_type = NO_STEERING;
7607	}
7608
7609	if (rx_ring_num > MAX_RX_RINGS) {
7610		DBG_PRINT(ERR_DBG,
7611			  "Requested number of rx rings not supported\n");
7612		DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7613			  MAX_RX_RINGS);
7614		rx_ring_num = MAX_RX_RINGS;
7615	}
7616
7617	if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7618		DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7619			  "Defaulting to INTA\n");
7620		*dev_intr_type = INTA;
7621	}
7622
7623	if ((*dev_intr_type == MSI_X) &&
7624	    ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7625	     (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7626		DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7627			  "Defaulting to INTA\n");
7628		*dev_intr_type = INTA;
7629	}
7630
7631	if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7632		DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7633		DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7634		rx_ring_mode = 1;
7635	}
7636
7637	for (i = 0; i < MAX_RX_RINGS; i++)
7638		if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7639			DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7640				  "supported\nDefaulting to %d\n",
7641				  MAX_RX_BLOCKS_PER_RING);
7642			rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7643		}
7644
7645	return SUCCESS;
7646}
7647
7648/**
7649 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7650 * or Traffic class respectively.
7651 * @nic: device private variable
7652 * Description: The function configures the receive steering to
7653 * desired receive ring.
7654 * Return Value:  SUCCESS on success and
7655 * '-1' on failure (endian settings incorrect).
7656 */
7657static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7658{
7659	struct XENA_dev_config __iomem *bar0 = nic->bar0;
7660	register u64 val64 = 0;
7661
7662	if (ds_codepoint > 63)
7663		return FAILURE;
7664
7665	val64 = RTS_DS_MEM_DATA(ring);
7666	writeq(val64, &bar0->rts_ds_mem_data);
7667
7668	val64 = RTS_DS_MEM_CTRL_WE |
7669		RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7670		RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7671
7672	writeq(val64, &bar0->rts_ds_mem_ctrl);
7673
7674	return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7675				     RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7676				     S2IO_BIT_RESET);
7677}
7678
7679static const struct net_device_ops s2io_netdev_ops = {
7680	.ndo_open	        = s2io_open,
7681	.ndo_stop	        = s2io_close,
7682	.ndo_get_stats	        = s2io_get_stats,
7683	.ndo_start_xmit    	= s2io_xmit,
7684	.ndo_validate_addr	= eth_validate_addr,
7685	.ndo_set_rx_mode	= s2io_set_multicast,
7686	.ndo_do_ioctl	   	= s2io_ioctl,
7687	.ndo_set_mac_address    = s2io_set_mac_addr,
7688	.ndo_change_mtu	   	= s2io_change_mtu,
7689	.ndo_set_features	= s2io_set_features,
7690	.ndo_tx_timeout	   	= s2io_tx_watchdog,
7691#ifdef CONFIG_NET_POLL_CONTROLLER
7692	.ndo_poll_controller    = s2io_netpoll,
7693#endif
7694};
7695
7696/**
7697 *  s2io_init_nic - Initialization of the adapter .
7698 *  @pdev : structure containing the PCI related information of the device.
7699 *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7700 *  Description:
7701 *  The function initializes an adapter identified by the pci_dec structure.
7702 *  All OS related initialization including memory and device structure and
7703 *  initlaization of the device private variable is done. Also the swapper
7704 *  control register is initialized to enable read and write into the I/O
7705 *  registers of the device.
7706 *  Return value:
7707 *  returns 0 on success and negative on failure.
7708 */
7709
7710static int
7711s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7712{
7713	struct s2io_nic *sp;
7714	struct net_device *dev;
7715	int i, j, ret;
7716	int dma_flag = false;
7717	u32 mac_up, mac_down;
7718	u64 val64 = 0, tmp64 = 0;
7719	struct XENA_dev_config __iomem *bar0 = NULL;
7720	u16 subid;
7721	struct config_param *config;
7722	struct mac_info *mac_control;
7723	int mode;
7724	u8 dev_intr_type = intr_type;
7725	u8 dev_multiq = 0;
7726
7727	ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7728	if (ret)
7729		return ret;
7730
7731	ret = pci_enable_device(pdev);
7732	if (ret) {
7733		DBG_PRINT(ERR_DBG,
7734			  "%s: pci_enable_device failed\n", __func__);
7735		return ret;
7736	}
7737
7738	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7739		DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7740		dma_flag = true;
7741		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7742			DBG_PRINT(ERR_DBG,
7743				  "Unable to obtain 64bit DMA "
7744				  "for consistent allocations\n");
7745			pci_disable_device(pdev);
7746			return -ENOMEM;
7747		}
7748	} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7749		DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7750	} else {
7751		pci_disable_device(pdev);
7752		return -ENOMEM;
7753	}
7754	ret = pci_request_regions(pdev, s2io_driver_name);
7755	if (ret) {
7756		DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7757			  __func__, ret);
7758		pci_disable_device(pdev);
7759		return -ENODEV;
7760	}
7761	if (dev_multiq)
7762		dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7763	else
7764		dev = alloc_etherdev(sizeof(struct s2io_nic));
7765	if (dev == NULL) {
7766		pci_disable_device(pdev);
7767		pci_release_regions(pdev);
7768		return -ENODEV;
7769	}
7770
7771	pci_set_master(pdev);
7772	pci_set_drvdata(pdev, dev);
7773	SET_NETDEV_DEV(dev, &pdev->dev);
7774
7775	/*  Private member variable initialized to s2io NIC structure */
7776	sp = netdev_priv(dev);
7777	sp->dev = dev;
7778	sp->pdev = pdev;
7779	sp->high_dma_flag = dma_flag;
7780	sp->device_enabled_once = false;
7781	if (rx_ring_mode == 1)
7782		sp->rxd_mode = RXD_MODE_1;
7783	if (rx_ring_mode == 2)
7784		sp->rxd_mode = RXD_MODE_3B;
7785
7786	sp->config.intr_type = dev_intr_type;
7787
7788	if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7789	    (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7790		sp->device_type = XFRAME_II_DEVICE;
7791	else
7792		sp->device_type = XFRAME_I_DEVICE;
7793
7794
7795	/* Initialize some PCI/PCI-X fields of the NIC. */
7796	s2io_init_pci(sp);
7797
7798	/*
7799	 * Setting the device configuration parameters.
7800	 * Most of these parameters can be specified by the user during
7801	 * module insertion as they are module loadable parameters. If
7802	 * these parameters are not not specified during load time, they
7803	 * are initialized with default values.
7804	 */
7805	config = &sp->config;
7806	mac_control = &sp->mac_control;
7807
7808	config->napi = napi;
7809	config->tx_steering_type = tx_steering_type;
7810
7811	/* Tx side parameters. */
7812	if (config->tx_steering_type == TX_PRIORITY_STEERING)
7813		config->tx_fifo_num = MAX_TX_FIFOS;
7814	else
7815		config->tx_fifo_num = tx_fifo_num;
7816
7817	/* Initialize the fifos used for tx steering */
7818	if (config->tx_fifo_num < 5) {
7819		if (config->tx_fifo_num  == 1)
7820			sp->total_tcp_fifos = 1;
7821		else
7822			sp->total_tcp_fifos = config->tx_fifo_num - 1;
7823		sp->udp_fifo_idx = config->tx_fifo_num - 1;
7824		sp->total_udp_fifos = 1;
7825		sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7826	} else {
7827		sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7828				       FIFO_OTHER_MAX_NUM);
7829		sp->udp_fifo_idx = sp->total_tcp_fifos;
7830		sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7831		sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7832	}
7833
7834	config->multiq = dev_multiq;
7835	for (i = 0; i < config->tx_fifo_num; i++) {
7836		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7837
7838		tx_cfg->fifo_len = tx_fifo_len[i];
7839		tx_cfg->fifo_priority = i;
7840	}
7841
7842	/* mapping the QoS priority to the configured fifos */
7843	for (i = 0; i < MAX_TX_FIFOS; i++)
7844		config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7845
7846	/* map the hashing selector table to the configured fifos */
7847	for (i = 0; i < config->tx_fifo_num; i++)
7848		sp->fifo_selector[i] = fifo_selector[i];
7849
7850
7851	config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7852	for (i = 0; i < config->tx_fifo_num; i++) {
7853		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7854
7855		tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7856		if (tx_cfg->fifo_len < 65) {
7857			config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7858			break;
7859		}
7860	}
7861	/* + 2 because one Txd for skb->data and one Txd for UFO */
7862	config->max_txds = MAX_SKB_FRAGS + 2;
7863
7864	/* Rx side parameters. */
7865	config->rx_ring_num = rx_ring_num;
7866	for (i = 0; i < config->rx_ring_num; i++) {
7867		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7868		struct ring_info *ring = &mac_control->rings[i];
7869
7870		rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7871		rx_cfg->ring_priority = i;
7872		ring->rx_bufs_left = 0;
7873		ring->rxd_mode = sp->rxd_mode;
7874		ring->rxd_count = rxd_count[sp->rxd_mode];
7875		ring->pdev = sp->pdev;
7876		ring->dev = sp->dev;
7877	}
7878
7879	for (i = 0; i < rx_ring_num; i++) {
7880		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7881
7882		rx_cfg->ring_org = RING_ORG_BUFF1;
7883		rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7884	}
7885
7886	/*  Setting Mac Control parameters */
7887	mac_control->rmac_pause_time = rmac_pause_time;
7888	mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7889	mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7890
7891
7892	/*  initialize the shared memory used by the NIC and the host */
7893	if (init_shared_mem(sp)) {
7894		DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7895		ret = -ENOMEM;
7896		goto mem_alloc_failed;
7897	}
7898
7899	sp->bar0 = pci_ioremap_bar(pdev, 0);
7900	if (!sp->bar0) {
7901		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7902			  dev->name);
7903		ret = -ENOMEM;
7904		goto bar0_remap_failed;
7905	}
7906
7907	sp->bar1 = pci_ioremap_bar(pdev, 2);
7908	if (!sp->bar1) {
7909		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7910			  dev->name);
7911		ret = -ENOMEM;
7912		goto bar1_remap_failed;
7913	}
7914
7915	/* Initializing the BAR1 address as the start of the FIFO pointer. */
7916	for (j = 0; j < MAX_TX_FIFOS; j++) {
7917		mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7918	}
7919
7920	/*  Driver entry points */
7921	dev->netdev_ops = &s2io_netdev_ops;
7922	SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7923	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7924		NETIF_F_TSO | NETIF_F_TSO6 |
7925		NETIF_F_RXCSUM | NETIF_F_LRO;
7926	dev->features |= dev->hw_features |
7927		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
7928	if (sp->device_type & XFRAME_II_DEVICE) {
7929		dev->hw_features |= NETIF_F_UFO;
7930		if (ufo)
7931			dev->features |= NETIF_F_UFO;
7932	}
7933	if (sp->high_dma_flag == true)
7934		dev->features |= NETIF_F_HIGHDMA;
7935	dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7936	INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7937	INIT_WORK(&sp->set_link_task, s2io_set_link);
7938
7939	pci_save_state(sp->pdev);
7940
7941	/* Setting swapper control on the NIC, for proper reset operation */
7942	if (s2io_set_swapper(sp)) {
7943		DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7944			  dev->name);
7945		ret = -EAGAIN;
7946		goto set_swap_failed;
7947	}
7948
7949	/* Verify if the Herc works on the slot its placed into */
7950	if (sp->device_type & XFRAME_II_DEVICE) {
7951		mode = s2io_verify_pci_mode(sp);
7952		if (mode < 0) {
7953			DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7954				  __func__);
7955			ret = -EBADSLT;
7956			goto set_swap_failed;
7957		}
7958	}
7959
7960	if (sp->config.intr_type == MSI_X) {
7961		sp->num_entries = config->rx_ring_num + 1;
7962		ret = s2io_enable_msi_x(sp);
7963
7964		if (!ret) {
7965			ret = s2io_test_msi(sp);
7966			/* rollback MSI-X, will re-enable during add_isr() */
7967			remove_msix_isr(sp);
7968		}
7969		if (ret) {
7970
7971			DBG_PRINT(ERR_DBG,
7972				  "MSI-X requested but failed to enable\n");
7973			sp->config.intr_type = INTA;
7974		}
7975	}
7976
7977	if (config->intr_type ==  MSI_X) {
7978		for (i = 0; i < config->rx_ring_num ; i++) {
7979			struct ring_info *ring = &mac_control->rings[i];
7980
7981			netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
7982		}
7983	} else {
7984		netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
7985	}
7986
7987	/* Not needed for Herc */
7988	if (sp->device_type & XFRAME_I_DEVICE) {
7989		/*
7990		 * Fix for all "FFs" MAC address problems observed on
7991		 * Alpha platforms
7992		 */
7993		fix_mac_address(sp);
7994		s2io_reset(sp);
7995	}
7996
7997	/*
7998	 * MAC address initialization.
7999	 * For now only one mac address will be read and used.
8000	 */
8001	bar0 = sp->bar0;
8002	val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8003		RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8004	writeq(val64, &bar0->rmac_addr_cmd_mem);
8005	wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8006			      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8007			      S2IO_BIT_RESET);
8008	tmp64 = readq(&bar0->rmac_addr_data0_mem);
8009	mac_down = (u32)tmp64;
8010	mac_up = (u32) (tmp64 >> 32);
8011
8012	sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8013	sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8014	sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8015	sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8016	sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8017	sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8018
8019	/*  Set the factory defined MAC address initially   */
8020	dev->addr_len = ETH_ALEN;
8021	memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8022
8023	/* initialize number of multicast & unicast MAC entries variables */
8024	if (sp->device_type == XFRAME_I_DEVICE) {
8025		config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8026		config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8027		config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8028	} else if (sp->device_type == XFRAME_II_DEVICE) {
8029		config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8030		config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8031		config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8032	}
8033
8034	/* store mac addresses from CAM to s2io_nic structure */
8035	do_s2io_store_unicast_mc(sp);
8036
8037	/* Configure MSIX vector for number of rings configured plus one */
8038	if ((sp->device_type == XFRAME_II_DEVICE) &&
8039	    (config->intr_type == MSI_X))
8040		sp->num_entries = config->rx_ring_num + 1;
8041
8042	/* Store the values of the MSIX table in the s2io_nic structure */
8043	store_xmsi_data(sp);
8044	/* reset Nic and bring it to known state */
8045	s2io_reset(sp);
8046
8047	/*
8048	 * Initialize link state flags
8049	 * and the card state parameter
8050	 */
8051	sp->state = 0;
8052
8053	/* Initialize spinlocks */
8054	for (i = 0; i < sp->config.tx_fifo_num; i++) {
8055		struct fifo_info *fifo = &mac_control->fifos[i];
8056
8057		spin_lock_init(&fifo->tx_lock);
8058	}
8059
8060	/*
8061	 * SXE-002: Configure link and activity LED to init state
8062	 * on driver load.
8063	 */
8064	subid = sp->pdev->subsystem_device;
8065	if ((subid & 0xFF) >= 0x07) {
8066		val64 = readq(&bar0->gpio_control);
8067		val64 |= 0x0000800000000000ULL;
8068		writeq(val64, &bar0->gpio_control);
8069		val64 = 0x0411040400000000ULL;
8070		writeq(val64, (void __iomem *)bar0 + 0x2700);
8071		val64 = readq(&bar0->gpio_control);
8072	}
8073
8074	sp->rx_csum = 1;	/* Rx chksum verify enabled by default */
8075
8076	if (register_netdev(dev)) {
8077		DBG_PRINT(ERR_DBG, "Device registration failed\n");
8078		ret = -ENODEV;
8079		goto register_failed;
8080	}
8081	s2io_vpd_read(sp);
8082	DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8083	DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8084		  sp->product_name, pdev->revision);
8085	DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8086		  s2io_driver_version);
8087	DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8088	DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8089	if (sp->device_type & XFRAME_II_DEVICE) {
8090		mode = s2io_print_pci_mode(sp);
8091		if (mode < 0) {
8092			ret = -EBADSLT;
8093			unregister_netdev(dev);
8094			goto set_swap_failed;
8095		}
8096	}
8097	switch (sp->rxd_mode) {
8098	case RXD_MODE_1:
8099		DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8100			  dev->name);
8101		break;
8102	case RXD_MODE_3B:
8103		DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8104			  dev->name);
8105		break;
8106	}
8107
8108	switch (sp->config.napi) {
8109	case 0:
8110		DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8111		break;
8112	case 1:
8113		DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8114		break;
8115	}
8116
8117	DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8118		  sp->config.tx_fifo_num);
8119
8120	DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8121		  sp->config.rx_ring_num);
8122
8123	switch (sp->config.intr_type) {
8124	case INTA:
8125		DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8126		break;
8127	case MSI_X:
8128		DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8129		break;
8130	}
8131	if (sp->config.multiq) {
8132		for (i = 0; i < sp->config.tx_fifo_num; i++) {
8133			struct fifo_info *fifo = &mac_control->fifos[i];
8134
8135			fifo->multiq = config->multiq;
8136		}
8137		DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8138			  dev->name);
8139	} else
8140		DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8141			  dev->name);
8142
8143	switch (sp->config.tx_steering_type) {
8144	case NO_STEERING:
8145		DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8146			  dev->name);
8147		break;
8148	case TX_PRIORITY_STEERING:
8149		DBG_PRINT(ERR_DBG,
8150			  "%s: Priority steering enabled for transmit\n",
8151			  dev->name);
8152		break;
8153	case TX_DEFAULT_STEERING:
8154		DBG_PRINT(ERR_DBG,
8155			  "%s: Default steering enabled for transmit\n",
8156			  dev->name);
8157	}
8158
8159	DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8160		  dev->name);
8161	if (ufo)
8162		DBG_PRINT(ERR_DBG,
8163			  "%s: UDP Fragmentation Offload(UFO) enabled\n",
8164			  dev->name);
8165	/* Initialize device name */
8166	sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8167
8168	if (vlan_tag_strip)
8169		sp->vlan_strip_flag = 1;
8170	else
8171		sp->vlan_strip_flag = 0;
8172
8173	/*
8174	 * Make Link state as off at this point, when the Link change
8175	 * interrupt comes the state will be automatically changed to
8176	 * the right state.
8177	 */
8178	netif_carrier_off(dev);
8179
8180	return 0;
8181
8182register_failed:
8183set_swap_failed:
8184	iounmap(sp->bar1);
8185bar1_remap_failed:
8186	iounmap(sp->bar0);
8187bar0_remap_failed:
8188mem_alloc_failed:
8189	free_shared_mem(sp);
8190	pci_disable_device(pdev);
8191	pci_release_regions(pdev);
8192	free_netdev(dev);
8193
8194	return ret;
8195}
8196
8197/**
8198 * s2io_rem_nic - Free the PCI device
8199 * @pdev: structure containing the PCI related information of the device.
8200 * Description: This function is called by the Pci subsystem to release a
8201 * PCI device and free up all resource held up by the device. This could
8202 * be in response to a Hot plug event or when the driver is to be removed
8203 * from memory.
8204 */
8205
8206static void s2io_rem_nic(struct pci_dev *pdev)
8207{
8208	struct net_device *dev = pci_get_drvdata(pdev);
8209	struct s2io_nic *sp;
8210
8211	if (dev == NULL) {
8212		DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8213		return;
8214	}
8215
8216	sp = netdev_priv(dev);
8217
8218	cancel_work_sync(&sp->rst_timer_task);
8219	cancel_work_sync(&sp->set_link_task);
8220
8221	unregister_netdev(dev);
8222
8223	free_shared_mem(sp);
8224	iounmap(sp->bar0);
8225	iounmap(sp->bar1);
8226	pci_release_regions(pdev);
8227	free_netdev(dev);
8228	pci_disable_device(pdev);
8229}
8230
8231/**
8232 * s2io_starter - Entry point for the driver
8233 * Description: This function is the entry point for the driver. It verifies
8234 * the module loadable parameters and initializes PCI configuration space.
8235 */
8236
8237static int __init s2io_starter(void)
8238{
8239	return pci_register_driver(&s2io_driver);
8240}
8241
8242/**
8243 * s2io_closer - Cleanup routine for the driver
8244 * Description: This function is the cleanup routine for the driver. It
8245 * unregisters the driver.
8246 */
8247
8248static __exit void s2io_closer(void)
8249{
8250	pci_unregister_driver(&s2io_driver);
8251	DBG_PRINT(INIT_DBG, "cleanup done\n");
8252}
8253
8254module_init(s2io_starter);
8255module_exit(s2io_closer);
8256
8257static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8258				struct tcphdr **tcp, struct RxD_t *rxdp,
8259				struct s2io_nic *sp)
8260{
8261	int ip_off;
8262	u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8263
8264	if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8265		DBG_PRINT(INIT_DBG,
8266			  "%s: Non-TCP frames not supported for LRO\n",
8267			  __func__);
8268		return -1;
8269	}
8270
8271	/* Checking for DIX type or DIX type with VLAN */
8272	if ((l2_type == 0) || (l2_type == 4)) {
8273		ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8274		/*
8275		 * If vlan stripping is disabled and the frame is VLAN tagged,
8276		 * shift the offset by the VLAN header size bytes.
8277		 */
8278		if ((!sp->vlan_strip_flag) &&
8279		    (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8280			ip_off += HEADER_VLAN_SIZE;
8281	} else {
8282		/* LLC, SNAP etc are considered non-mergeable */
8283		return -1;
8284	}
8285
8286	*ip = (struct iphdr *)(buffer + ip_off);
8287	ip_len = (u8)((*ip)->ihl);
8288	ip_len <<= 2;
8289	*tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8290
8291	return 0;
8292}
8293
8294static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8295				  struct tcphdr *tcp)
8296{
8297	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8298	if ((lro->iph->saddr != ip->saddr) ||
8299	    (lro->iph->daddr != ip->daddr) ||
8300	    (lro->tcph->source != tcp->source) ||
8301	    (lro->tcph->dest != tcp->dest))
8302		return -1;
8303	return 0;
8304}
8305
8306static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8307{
8308	return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8309}
8310
8311static void initiate_new_session(struct lro *lro, u8 *l2h,
8312				 struct iphdr *ip, struct tcphdr *tcp,
8313				 u32 tcp_pyld_len, u16 vlan_tag)
8314{
8315	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8316	lro->l2h = l2h;
8317	lro->iph = ip;
8318	lro->tcph = tcp;
8319	lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8320	lro->tcp_ack = tcp->ack_seq;
8321	lro->sg_num = 1;
8322	lro->total_len = ntohs(ip->tot_len);
8323	lro->frags_len = 0;
8324	lro->vlan_tag = vlan_tag;
8325	/*
8326	 * Check if we saw TCP timestamp.
8327	 * Other consistency checks have already been done.
8328	 */
8329	if (tcp->doff == 8) {
8330		__be32 *ptr;
8331		ptr = (__be32 *)(tcp+1);
8332		lro->saw_ts = 1;
8333		lro->cur_tsval = ntohl(*(ptr+1));
8334		lro->cur_tsecr = *(ptr+2);
8335	}
8336	lro->in_use = 1;
8337}
8338
8339static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8340{
8341	struct iphdr *ip = lro->iph;
8342	struct tcphdr *tcp = lro->tcph;
8343	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8344
8345	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8346
8347	/* Update L3 header */
8348	csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
8349	ip->tot_len = htons(lro->total_len);
8350
8351	/* Update L4 header */
8352	tcp->ack_seq = lro->tcp_ack;
8353	tcp->window = lro->window;
8354
8355	/* Update tsecr field if this session has timestamps enabled */
8356	if (lro->saw_ts) {
8357		__be32 *ptr = (__be32 *)(tcp + 1);
8358		*(ptr+2) = lro->cur_tsecr;
8359	}
8360
8361	/* Update counters required for calculation of
8362	 * average no. of packets aggregated.
8363	 */
8364	swstats->sum_avg_pkts_aggregated += lro->sg_num;
8365	swstats->num_aggregations++;
8366}
8367
8368static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8369			     struct tcphdr *tcp, u32 l4_pyld)
8370{
8371	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8372	lro->total_len += l4_pyld;
8373	lro->frags_len += l4_pyld;
8374	lro->tcp_next_seq += l4_pyld;
8375	lro->sg_num++;
8376
8377	/* Update ack seq no. and window ad(from this pkt) in LRO object */
8378	lro->tcp_ack = tcp->ack_seq;
8379	lro->window = tcp->window;
8380
8381	if (lro->saw_ts) {
8382		__be32 *ptr;
8383		/* Update tsecr and tsval from this packet */
8384		ptr = (__be32 *)(tcp+1);
8385		lro->cur_tsval = ntohl(*(ptr+1));
8386		lro->cur_tsecr = *(ptr + 2);
8387	}
8388}
8389
8390static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8391				    struct tcphdr *tcp, u32 tcp_pyld_len)
8392{
8393	u8 *ptr;
8394
8395	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8396
8397	if (!tcp_pyld_len) {
8398		/* Runt frame or a pure ack */
8399		return -1;
8400	}
8401
8402	if (ip->ihl != 5) /* IP has options */
8403		return -1;
8404
8405	/* If we see CE codepoint in IP header, packet is not mergeable */
8406	if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8407		return -1;
8408
8409	/* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8410	if (tcp->urg || tcp->psh || tcp->rst ||
8411	    tcp->syn || tcp->fin ||
8412	    tcp->ece || tcp->cwr || !tcp->ack) {
8413		/*
8414		 * Currently recognize only the ack control word and
8415		 * any other control field being set would result in
8416		 * flushing the LRO session
8417		 */
8418		return -1;
8419	}
8420
8421	/*
8422	 * Allow only one TCP timestamp option. Don't aggregate if
8423	 * any other options are detected.
8424	 */
8425	if (tcp->doff != 5 && tcp->doff != 8)
8426		return -1;
8427
8428	if (tcp->doff == 8) {
8429		ptr = (u8 *)(tcp + 1);
8430		while (*ptr == TCPOPT_NOP)
8431			ptr++;
8432		if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8433			return -1;
8434
8435		/* Ensure timestamp value increases monotonically */
8436		if (l_lro)
8437			if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8438				return -1;
8439
8440		/* timestamp echo reply should be non-zero */
8441		if (*((__be32 *)(ptr+6)) == 0)
8442			return -1;
8443	}
8444
8445	return 0;
8446}
8447
8448static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8449				 u8 **tcp, u32 *tcp_len, struct lro **lro,
8450				 struct RxD_t *rxdp, struct s2io_nic *sp)
8451{
8452	struct iphdr *ip;
8453	struct tcphdr *tcph;
8454	int ret = 0, i;
8455	u16 vlan_tag = 0;
8456	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8457
8458	ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8459				   rxdp, sp);
8460	if (ret)
8461		return ret;
8462
8463	DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8464
8465	vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8466	tcph = (struct tcphdr *)*tcp;
8467	*tcp_len = get_l4_pyld_length(ip, tcph);
8468	for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8469		struct lro *l_lro = &ring_data->lro0_n[i];
8470		if (l_lro->in_use) {
8471			if (check_for_socket_match(l_lro, ip, tcph))
8472				continue;
8473			/* Sock pair matched */
8474			*lro = l_lro;
8475
8476			if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8477				DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8478					  "expected 0x%x, actual 0x%x\n",
8479					  __func__,
8480					  (*lro)->tcp_next_seq,
8481					  ntohl(tcph->seq));
8482
8483				swstats->outof_sequence_pkts++;
8484				ret = 2;
8485				break;
8486			}
8487
8488			if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8489						      *tcp_len))
8490				ret = 1; /* Aggregate */
8491			else
8492				ret = 2; /* Flush both */
8493			break;
8494		}
8495	}
8496
8497	if (ret == 0) {
8498		/* Before searching for available LRO objects,
8499		 * check if the pkt is L3/L4 aggregatable. If not
8500		 * don't create new LRO session. Just send this
8501		 * packet up.
8502		 */
8503		if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8504			return 5;
8505
8506		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8507			struct lro *l_lro = &ring_data->lro0_n[i];
8508			if (!(l_lro->in_use)) {
8509				*lro = l_lro;
8510				ret = 3; /* Begin anew */
8511				break;
8512			}
8513		}
8514	}
8515
8516	if (ret == 0) { /* sessions exceeded */
8517		DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8518			  __func__);
8519		*lro = NULL;
8520		return ret;
8521	}
8522
8523	switch (ret) {
8524	case 3:
8525		initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8526				     vlan_tag);
8527		break;
8528	case 2:
8529		update_L3L4_header(sp, *lro);
8530		break;
8531	case 1:
8532		aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8533		if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8534			update_L3L4_header(sp, *lro);
8535			ret = 4; /* Flush the LRO */
8536		}
8537		break;
8538	default:
8539		DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8540		break;
8541	}
8542
8543	return ret;
8544}
8545
8546static void clear_lro_session(struct lro *lro)
8547{
8548	static u16 lro_struct_size = sizeof(struct lro);
8549
8550	memset(lro, 0, lro_struct_size);
8551}
8552
8553static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8554{
8555	struct net_device *dev = skb->dev;
8556	struct s2io_nic *sp = netdev_priv(dev);
8557
8558	skb->protocol = eth_type_trans(skb, dev);
8559	if (vlan_tag && sp->vlan_strip_flag)
8560		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
8561	if (sp->config.napi)
8562		netif_receive_skb(skb);
8563	else
8564		netif_rx(skb);
8565}
8566
8567static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8568			   struct sk_buff *skb, u32 tcp_len)
8569{
8570	struct sk_buff *first = lro->parent;
8571	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8572
8573	first->len += tcp_len;
8574	first->data_len = lro->frags_len;
8575	skb_pull(skb, (skb->len - tcp_len));
8576	if (skb_shinfo(first)->frag_list)
8577		lro->last_frag->next = skb;
8578	else
8579		skb_shinfo(first)->frag_list = skb;
8580	first->truesize += skb->truesize;
8581	lro->last_frag = skb;
8582	swstats->clubbed_frms_cnt++;
8583}
8584
8585/**
8586 * s2io_io_error_detected - called when PCI error is detected
8587 * @pdev: Pointer to PCI device
8588 * @state: The current pci connection state
8589 *
8590 * This function is called after a PCI bus error affecting
8591 * this device has been detected.
8592 */
8593static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8594					       pci_channel_state_t state)
8595{
8596	struct net_device *netdev = pci_get_drvdata(pdev);
8597	struct s2io_nic *sp = netdev_priv(netdev);
8598
8599	netif_device_detach(netdev);
8600
8601	if (state == pci_channel_io_perm_failure)
8602		return PCI_ERS_RESULT_DISCONNECT;
8603
8604	if (netif_running(netdev)) {
8605		/* Bring down the card, while avoiding PCI I/O */
8606		do_s2io_card_down(sp, 0);
8607	}
8608	pci_disable_device(pdev);
8609
8610	return PCI_ERS_RESULT_NEED_RESET;
8611}
8612
8613/**
8614 * s2io_io_slot_reset - called after the pci bus has been reset.
8615 * @pdev: Pointer to PCI device
8616 *
8617 * Restart the card from scratch, as if from a cold-boot.
8618 * At this point, the card has exprienced a hard reset,
8619 * followed by fixups by BIOS, and has its config space
8620 * set up identically to what it was at cold boot.
8621 */
8622static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8623{
8624	struct net_device *netdev = pci_get_drvdata(pdev);
8625	struct s2io_nic *sp = netdev_priv(netdev);
8626
8627	if (pci_enable_device(pdev)) {
8628		pr_err("Cannot re-enable PCI device after reset.\n");
8629		return PCI_ERS_RESULT_DISCONNECT;
8630	}
8631
8632	pci_set_master(pdev);
8633	s2io_reset(sp);
8634
8635	return PCI_ERS_RESULT_RECOVERED;
8636}
8637
8638/**
8639 * s2io_io_resume - called when traffic can start flowing again.
8640 * @pdev: Pointer to PCI device
8641 *
8642 * This callback is called when the error recovery driver tells
8643 * us that its OK to resume normal operation.
8644 */
8645static void s2io_io_resume(struct pci_dev *pdev)
8646{
8647	struct net_device *netdev = pci_get_drvdata(pdev);
8648	struct s2io_nic *sp = netdev_priv(netdev);
8649
8650	if (netif_running(netdev)) {
8651		if (s2io_card_up(sp)) {
8652			pr_err("Can't bring device back up after reset.\n");
8653			return;
8654		}
8655
8656		if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8657			s2io_card_down(sp);
8658			pr_err("Can't restore mac addr after reset.\n");
8659			return;
8660		}
8661	}
8662
8663	netif_device_attach(netdev);
8664	netif_tx_wake_all_queues(netdev);
8665}