Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright 2011 (c) Oracle Corp.
   3
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the
  12 * next paragraph) shall be included in all copies or substantial portions
  13 * of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 *
  23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  24 */
  25
  26/*
  27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
  28 * over the DMA pools:
  29 * - Pool collects resently freed pages for reuse (and hooks up to
  30 *   the shrinker).
  31 * - Tracks currently in use pages
  32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
  33 *   when freed).
  34 */
  35
  36#if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
  37#define pr_fmt(fmt) "[TTM] " fmt
  38
  39#include <linux/dma-mapping.h>
  40#include <linux/list.h>
  41#include <linux/seq_file.h> /* for seq_printf */
  42#include <linux/slab.h>
  43#include <linux/spinlock.h>
  44#include <linux/highmem.h>
  45#include <linux/mm_types.h>
  46#include <linux/module.h>
  47#include <linux/mm.h>
  48#include <linux/atomic.h>
  49#include <linux/device.h>
  50#include <linux/kthread.h>
  51#include <drm/ttm/ttm_bo_driver.h>
  52#include <drm/ttm/ttm_page_alloc.h>
  53#ifdef TTM_HAS_AGP
  54#include <asm/agp.h>
  55#endif
  56
  57#define NUM_PAGES_TO_ALLOC		(PAGE_SIZE/sizeof(struct page *))
  58#define SMALL_ALLOCATION		4
  59#define FREE_ALL_PAGES			(~0U)
  60/* times are in msecs */
  61#define IS_UNDEFINED			(0)
  62#define IS_WC				(1<<1)
  63#define IS_UC				(1<<2)
  64#define IS_CACHED			(1<<3)
  65#define IS_DMA32			(1<<4)
  66
  67enum pool_type {
  68	POOL_IS_UNDEFINED,
  69	POOL_IS_WC = IS_WC,
  70	POOL_IS_UC = IS_UC,
  71	POOL_IS_CACHED = IS_CACHED,
  72	POOL_IS_WC_DMA32 = IS_WC | IS_DMA32,
  73	POOL_IS_UC_DMA32 = IS_UC | IS_DMA32,
  74	POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32,
  75};
  76/*
  77 * The pool structure. There are usually six pools:
  78 *  - generic (not restricted to DMA32):
  79 *      - write combined, uncached, cached.
  80 *  - dma32 (up to 2^32 - so up 4GB):
  81 *      - write combined, uncached, cached.
  82 * for each 'struct device'. The 'cached' is for pages that are actively used.
  83 * The other ones can be shrunk by the shrinker API if neccessary.
  84 * @pools: The 'struct device->dma_pools' link.
  85 * @type: Type of the pool
  86 * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
  87 * used with irqsave/irqrestore variants because pool allocator maybe called
  88 * from delayed work.
  89 * @inuse_list: Pool of pages that are in use. The order is very important and
  90 *   it is in the order that the TTM pages that are put back are in.
  91 * @free_list: Pool of pages that are free to be used. No order requirements.
  92 * @dev: The device that is associated with these pools.
  93 * @size: Size used during DMA allocation.
  94 * @npages_free: Count of available pages for re-use.
  95 * @npages_in_use: Count of pages that are in use.
  96 * @nfrees: Stats when pool is shrinking.
  97 * @nrefills: Stats when the pool is grown.
  98 * @gfp_flags: Flags to pass for alloc_page.
  99 * @name: Name of the pool.
 100 * @dev_name: Name derieved from dev - similar to how dev_info works.
 101 *   Used during shutdown as the dev_info during release is unavailable.
 102 */
 103struct dma_pool {
 104	struct list_head pools; /* The 'struct device->dma_pools link */
 105	enum pool_type type;
 106	spinlock_t lock;
 107	struct list_head inuse_list;
 108	struct list_head free_list;
 109	struct device *dev;
 110	unsigned size;
 111	unsigned npages_free;
 112	unsigned npages_in_use;
 113	unsigned long nfrees; /* Stats when shrunk. */
 114	unsigned long nrefills; /* Stats when grown. */
 115	gfp_t gfp_flags;
 116	char name[13]; /* "cached dma32" */
 117	char dev_name[64]; /* Constructed from dev */
 118};
 119
 120/*
 121 * The accounting page keeping track of the allocated page along with
 122 * the DMA address.
 123 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
 124 * @vaddr: The virtual address of the page
 125 * @dma: The bus address of the page. If the page is not allocated
 126 *   via the DMA API, it will be -1.
 127 */
 128struct dma_page {
 129	struct list_head page_list;
 130	void *vaddr;
 131	struct page *p;
 132	dma_addr_t dma;
 133};
 134
 135/*
 136 * Limits for the pool. They are handled without locks because only place where
 137 * they may change is in sysfs store. They won't have immediate effect anyway
 138 * so forcing serialization to access them is pointless.
 139 */
 140
 141struct ttm_pool_opts {
 142	unsigned	alloc_size;
 143	unsigned	max_size;
 144	unsigned	small;
 145};
 146
 147/*
 148 * Contains the list of all of the 'struct device' and their corresponding
 149 * DMA pools. Guarded by _mutex->lock.
 150 * @pools: The link to 'struct ttm_pool_manager->pools'
 151 * @dev: The 'struct device' associated with the 'pool'
 152 * @pool: The 'struct dma_pool' associated with the 'dev'
 153 */
 154struct device_pools {
 155	struct list_head pools;
 156	struct device *dev;
 157	struct dma_pool *pool;
 158};
 159
 160/*
 161 * struct ttm_pool_manager - Holds memory pools for fast allocation
 162 *
 163 * @lock: Lock used when adding/removing from pools
 164 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
 165 * @options: Limits for the pool.
 166 * @npools: Total amount of pools in existence.
 167 * @shrinker: The structure used by [un|]register_shrinker
 168 */
 169struct ttm_pool_manager {
 170	struct mutex		lock;
 171	struct list_head	pools;
 172	struct ttm_pool_opts	options;
 173	unsigned		npools;
 174	struct shrinker		mm_shrink;
 175	struct kobject		kobj;
 176};
 177
 178static struct ttm_pool_manager *_manager;
 179
 180static struct attribute ttm_page_pool_max = {
 181	.name = "pool_max_size",
 182	.mode = S_IRUGO | S_IWUSR
 183};
 184static struct attribute ttm_page_pool_small = {
 185	.name = "pool_small_allocation",
 186	.mode = S_IRUGO | S_IWUSR
 187};
 188static struct attribute ttm_page_pool_alloc_size = {
 189	.name = "pool_allocation_size",
 190	.mode = S_IRUGO | S_IWUSR
 191};
 192
 193static struct attribute *ttm_pool_attrs[] = {
 194	&ttm_page_pool_max,
 195	&ttm_page_pool_small,
 196	&ttm_page_pool_alloc_size,
 197	NULL
 198};
 199
 200static void ttm_pool_kobj_release(struct kobject *kobj)
 201{
 202	struct ttm_pool_manager *m =
 203		container_of(kobj, struct ttm_pool_manager, kobj);
 204	kfree(m);
 205}
 206
 207static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
 208			      const char *buffer, size_t size)
 209{
 210	struct ttm_pool_manager *m =
 211		container_of(kobj, struct ttm_pool_manager, kobj);
 212	int chars;
 213	unsigned val;
 214	chars = sscanf(buffer, "%u", &val);
 215	if (chars == 0)
 216		return size;
 217
 218	/* Convert kb to number of pages */
 219	val = val / (PAGE_SIZE >> 10);
 220
 221	if (attr == &ttm_page_pool_max)
 222		m->options.max_size = val;
 223	else if (attr == &ttm_page_pool_small)
 224		m->options.small = val;
 225	else if (attr == &ttm_page_pool_alloc_size) {
 226		if (val > NUM_PAGES_TO_ALLOC*8) {
 227			pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
 228			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
 229			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
 230			return size;
 231		} else if (val > NUM_PAGES_TO_ALLOC) {
 232			pr_warn("Setting allocation size to larger than %lu is not recommended\n",
 233				NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
 234		}
 235		m->options.alloc_size = val;
 236	}
 237
 238	return size;
 239}
 240
 241static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
 242			     char *buffer)
 243{
 244	struct ttm_pool_manager *m =
 245		container_of(kobj, struct ttm_pool_manager, kobj);
 246	unsigned val = 0;
 247
 248	if (attr == &ttm_page_pool_max)
 249		val = m->options.max_size;
 250	else if (attr == &ttm_page_pool_small)
 251		val = m->options.small;
 252	else if (attr == &ttm_page_pool_alloc_size)
 253		val = m->options.alloc_size;
 254
 255	val = val * (PAGE_SIZE >> 10);
 256
 257	return snprintf(buffer, PAGE_SIZE, "%u\n", val);
 258}
 259
 260static const struct sysfs_ops ttm_pool_sysfs_ops = {
 261	.show = &ttm_pool_show,
 262	.store = &ttm_pool_store,
 263};
 264
 265static struct kobj_type ttm_pool_kobj_type = {
 266	.release = &ttm_pool_kobj_release,
 267	.sysfs_ops = &ttm_pool_sysfs_ops,
 268	.default_attrs = ttm_pool_attrs,
 269};
 270
 271#ifndef CONFIG_X86
 272static int set_pages_array_wb(struct page **pages, int addrinarray)
 273{
 274#ifdef TTM_HAS_AGP
 275	int i;
 276
 277	for (i = 0; i < addrinarray; i++)
 278		unmap_page_from_agp(pages[i]);
 279#endif
 280	return 0;
 281}
 282
 283static int set_pages_array_wc(struct page **pages, int addrinarray)
 284{
 285#ifdef TTM_HAS_AGP
 286	int i;
 287
 288	for (i = 0; i < addrinarray; i++)
 289		map_page_into_agp(pages[i]);
 290#endif
 291	return 0;
 292}
 293
 294static int set_pages_array_uc(struct page **pages, int addrinarray)
 295{
 296#ifdef TTM_HAS_AGP
 297	int i;
 298
 299	for (i = 0; i < addrinarray; i++)
 300		map_page_into_agp(pages[i]);
 301#endif
 302	return 0;
 303}
 304#endif /* for !CONFIG_X86 */
 305
 306static int ttm_set_pages_caching(struct dma_pool *pool,
 307				 struct page **pages, unsigned cpages)
 308{
 309	int r = 0;
 310	/* Set page caching */
 311	if (pool->type & IS_UC) {
 312		r = set_pages_array_uc(pages, cpages);
 313		if (r)
 314			pr_err("%s: Failed to set %d pages to uc!\n",
 315			       pool->dev_name, cpages);
 316	}
 317	if (pool->type & IS_WC) {
 318		r = set_pages_array_wc(pages, cpages);
 319		if (r)
 320			pr_err("%s: Failed to set %d pages to wc!\n",
 321			       pool->dev_name, cpages);
 322	}
 323	return r;
 324}
 325
 326static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
 327{
 328	dma_addr_t dma = d_page->dma;
 329	dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma);
 330
 331	kfree(d_page);
 332	d_page = NULL;
 333}
 334static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
 335{
 336	struct dma_page *d_page;
 337
 338	d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
 339	if (!d_page)
 340		return NULL;
 341
 342	d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size,
 343					   &d_page->dma,
 344					   pool->gfp_flags);
 345	if (d_page->vaddr)
 346		d_page->p = virt_to_page(d_page->vaddr);
 347	else {
 348		kfree(d_page);
 349		d_page = NULL;
 350	}
 351	return d_page;
 352}
 353static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
 354{
 355	enum pool_type type = IS_UNDEFINED;
 356
 357	if (flags & TTM_PAGE_FLAG_DMA32)
 358		type |= IS_DMA32;
 359	if (cstate == tt_cached)
 360		type |= IS_CACHED;
 361	else if (cstate == tt_uncached)
 362		type |= IS_UC;
 363	else
 364		type |= IS_WC;
 365
 366	return type;
 367}
 368
 369static void ttm_pool_update_free_locked(struct dma_pool *pool,
 370					unsigned freed_pages)
 371{
 372	pool->npages_free -= freed_pages;
 373	pool->nfrees += freed_pages;
 374
 375}
 376
 377/* set memory back to wb and free the pages. */
 378static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
 379			      struct page *pages[], unsigned npages)
 380{
 381	struct dma_page *d_page, *tmp;
 382
 383	/* Don't set WB on WB page pool. */
 384	if (npages && !(pool->type & IS_CACHED) &&
 385	    set_pages_array_wb(pages, npages))
 386		pr_err("%s: Failed to set %d pages to wb!\n",
 387		       pool->dev_name, npages);
 388
 389	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
 390		list_del(&d_page->page_list);
 391		__ttm_dma_free_page(pool, d_page);
 392	}
 393}
 394
 395static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
 396{
 397	/* Don't set WB on WB page pool. */
 398	if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1))
 399		pr_err("%s: Failed to set %d pages to wb!\n",
 400		       pool->dev_name, 1);
 401
 402	list_del(&d_page->page_list);
 403	__ttm_dma_free_page(pool, d_page);
 404}
 405
 406/*
 407 * Free pages from pool.
 408 *
 409 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
 410 * number of pages in one go.
 411 *
 412 * @pool: to free the pages from
 413 * @nr_free: If set to true will free all pages in pool
 414 **/
 415static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free)
 416{
 417	unsigned long irq_flags;
 418	struct dma_page *dma_p, *tmp;
 419	struct page **pages_to_free;
 420	struct list_head d_pages;
 421	unsigned freed_pages = 0,
 422		 npages_to_free = nr_free;
 423
 424	if (NUM_PAGES_TO_ALLOC < nr_free)
 425		npages_to_free = NUM_PAGES_TO_ALLOC;
 426#if 0
 427	if (nr_free > 1) {
 428		pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
 429			 pool->dev_name, pool->name, current->pid,
 430			 npages_to_free, nr_free);
 431	}
 432#endif
 433	pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
 434			GFP_KERNEL);
 435
 436	if (!pages_to_free) {
 437		pr_err("%s: Failed to allocate memory for pool free operation\n",
 438		       pool->dev_name);
 439		return 0;
 440	}
 441	INIT_LIST_HEAD(&d_pages);
 442restart:
 443	spin_lock_irqsave(&pool->lock, irq_flags);
 444
 445	/* We picking the oldest ones off the list */
 446	list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
 447					 page_list) {
 448		if (freed_pages >= npages_to_free)
 449			break;
 450
 451		/* Move the dma_page from one list to another. */
 452		list_move(&dma_p->page_list, &d_pages);
 453
 454		pages_to_free[freed_pages++] = dma_p->p;
 455		/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
 456		if (freed_pages >= NUM_PAGES_TO_ALLOC) {
 457
 458			ttm_pool_update_free_locked(pool, freed_pages);
 459			/**
 460			 * Because changing page caching is costly
 461			 * we unlock the pool to prevent stalling.
 462			 */
 463			spin_unlock_irqrestore(&pool->lock, irq_flags);
 464
 465			ttm_dma_pages_put(pool, &d_pages, pages_to_free,
 466					  freed_pages);
 467
 468			INIT_LIST_HEAD(&d_pages);
 469
 470			if (likely(nr_free != FREE_ALL_PAGES))
 471				nr_free -= freed_pages;
 472
 473			if (NUM_PAGES_TO_ALLOC >= nr_free)
 474				npages_to_free = nr_free;
 475			else
 476				npages_to_free = NUM_PAGES_TO_ALLOC;
 477
 478			freed_pages = 0;
 479
 480			/* free all so restart the processing */
 481			if (nr_free)
 482				goto restart;
 483
 484			/* Not allowed to fall through or break because
 485			 * following context is inside spinlock while we are
 486			 * outside here.
 487			 */
 488			goto out;
 489
 490		}
 491	}
 492
 493	/* remove range of pages from the pool */
 494	if (freed_pages) {
 495		ttm_pool_update_free_locked(pool, freed_pages);
 496		nr_free -= freed_pages;
 497	}
 498
 499	spin_unlock_irqrestore(&pool->lock, irq_flags);
 500
 501	if (freed_pages)
 502		ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
 503out:
 504	kfree(pages_to_free);
 505	return nr_free;
 506}
 507
 508static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
 509{
 510	struct device_pools *p;
 511	struct dma_pool *pool;
 512
 513	if (!dev)
 514		return;
 515
 516	mutex_lock(&_manager->lock);
 517	list_for_each_entry_reverse(p, &_manager->pools, pools) {
 518		if (p->dev != dev)
 519			continue;
 520		pool = p->pool;
 521		if (pool->type != type)
 522			continue;
 523
 524		list_del(&p->pools);
 525		kfree(p);
 526		_manager->npools--;
 527		break;
 528	}
 529	list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
 530		if (pool->type != type)
 531			continue;
 532		/* Takes a spinlock.. */
 533		ttm_dma_page_pool_free(pool, FREE_ALL_PAGES);
 534		WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
 535		/* This code path is called after _all_ references to the
 536		 * struct device has been dropped - so nobody should be
 537		 * touching it. In case somebody is trying to _add_ we are
 538		 * guarded by the mutex. */
 539		list_del(&pool->pools);
 540		kfree(pool);
 541		break;
 542	}
 543	mutex_unlock(&_manager->lock);
 544}
 545
 546/*
 547 * On free-ing of the 'struct device' this deconstructor is run.
 548 * Albeit the pool might have already been freed earlier.
 549 */
 550static void ttm_dma_pool_release(struct device *dev, void *res)
 551{
 552	struct dma_pool *pool = *(struct dma_pool **)res;
 553
 554	if (pool)
 555		ttm_dma_free_pool(dev, pool->type);
 556}
 557
 558static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
 559{
 560	return *(struct dma_pool **)res == match_data;
 561}
 562
 563static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
 564					  enum pool_type type)
 565{
 566	char *n[] = {"wc", "uc", "cached", " dma32", "unknown",};
 567	enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED};
 568	struct device_pools *sec_pool = NULL;
 569	struct dma_pool *pool = NULL, **ptr;
 570	unsigned i;
 571	int ret = -ENODEV;
 572	char *p;
 573
 574	if (!dev)
 575		return NULL;
 576
 577	ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
 578	if (!ptr)
 579		return NULL;
 580
 581	ret = -ENOMEM;
 582
 583	pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
 584			    dev_to_node(dev));
 585	if (!pool)
 586		goto err_mem;
 587
 588	sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
 589				dev_to_node(dev));
 590	if (!sec_pool)
 591		goto err_mem;
 592
 593	INIT_LIST_HEAD(&sec_pool->pools);
 594	sec_pool->dev = dev;
 595	sec_pool->pool =  pool;
 596
 597	INIT_LIST_HEAD(&pool->free_list);
 598	INIT_LIST_HEAD(&pool->inuse_list);
 599	INIT_LIST_HEAD(&pool->pools);
 600	spin_lock_init(&pool->lock);
 601	pool->dev = dev;
 602	pool->npages_free = pool->npages_in_use = 0;
 603	pool->nfrees = 0;
 604	pool->gfp_flags = flags;
 605	pool->size = PAGE_SIZE;
 606	pool->type = type;
 607	pool->nrefills = 0;
 608	p = pool->name;
 609	for (i = 0; i < 5; i++) {
 610		if (type & t[i]) {
 611			p += snprintf(p, sizeof(pool->name) - (p - pool->name),
 612				      "%s", n[i]);
 613		}
 614	}
 615	*p = 0;
 616	/* We copy the name for pr_ calls b/c when dma_pool_destroy is called
 617	 * - the kobj->name has already been deallocated.*/
 618	snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
 619		 dev_driver_string(dev), dev_name(dev));
 620	mutex_lock(&_manager->lock);
 621	/* You can get the dma_pool from either the global: */
 622	list_add(&sec_pool->pools, &_manager->pools);
 623	_manager->npools++;
 624	/* or from 'struct device': */
 625	list_add(&pool->pools, &dev->dma_pools);
 626	mutex_unlock(&_manager->lock);
 627
 628	*ptr = pool;
 629	devres_add(dev, ptr);
 630
 631	return pool;
 632err_mem:
 633	devres_free(ptr);
 634	kfree(sec_pool);
 635	kfree(pool);
 636	return ERR_PTR(ret);
 637}
 638
 639static struct dma_pool *ttm_dma_find_pool(struct device *dev,
 640					  enum pool_type type)
 641{
 642	struct dma_pool *pool, *tmp, *found = NULL;
 643
 644	if (type == IS_UNDEFINED)
 645		return found;
 646
 647	/* NB: We iterate on the 'struct dev' which has no spinlock, but
 648	 * it does have a kref which we have taken. The kref is taken during
 649	 * graphic driver loading - in the drm_pci_init it calls either
 650	 * pci_dev_get or pci_register_driver which both end up taking a kref
 651	 * on 'struct device'.
 652	 *
 653	 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
 654	 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
 655	 * thing is at that point of time there are no pages associated with the
 656	 * driver so this function will not be called.
 657	 */
 658	list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
 659		if (pool->type != type)
 660			continue;
 661		found = pool;
 662		break;
 663	}
 664	return found;
 665}
 666
 667/*
 668 * Free pages the pages that failed to change the caching state. If there
 669 * are pages that have changed their caching state already put them to the
 670 * pool.
 671 */
 672static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
 673						 struct list_head *d_pages,
 674						 struct page **failed_pages,
 675						 unsigned cpages)
 676{
 677	struct dma_page *d_page, *tmp;
 678	struct page *p;
 679	unsigned i = 0;
 680
 681	p = failed_pages[0];
 682	if (!p)
 683		return;
 684	/* Find the failed page. */
 685	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
 686		if (d_page->p != p)
 687			continue;
 688		/* .. and then progress over the full list. */
 689		list_del(&d_page->page_list);
 690		__ttm_dma_free_page(pool, d_page);
 691		if (++i < cpages)
 692			p = failed_pages[i];
 693		else
 694			break;
 695	}
 696
 697}
 698
 699/*
 700 * Allocate 'count' pages, and put 'need' number of them on the
 701 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
 702 * The full list of pages should also be on 'd_pages'.
 703 * We return zero for success, and negative numbers as errors.
 704 */
 705static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
 706					struct list_head *d_pages,
 707					unsigned count)
 708{
 709	struct page **caching_array;
 710	struct dma_page *dma_p;
 711	struct page *p;
 712	int r = 0;
 713	unsigned i, cpages;
 714	unsigned max_cpages = min(count,
 715			(unsigned)(PAGE_SIZE/sizeof(struct page *)));
 716
 717	/* allocate array for page caching change */
 718	caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
 719
 720	if (!caching_array) {
 721		pr_err("%s: Unable to allocate table for new pages\n",
 722		       pool->dev_name);
 723		return -ENOMEM;
 724	}
 725
 726	if (count > 1) {
 727		pr_debug("%s: (%s:%d) Getting %d pages\n",
 728			 pool->dev_name, pool->name, current->pid, count);
 729	}
 730
 731	for (i = 0, cpages = 0; i < count; ++i) {
 732		dma_p = __ttm_dma_alloc_page(pool);
 733		if (!dma_p) {
 734			pr_err("%s: Unable to get page %u\n",
 735			       pool->dev_name, i);
 736
 737			/* store already allocated pages in the pool after
 738			 * setting the caching state */
 739			if (cpages) {
 740				r = ttm_set_pages_caching(pool, caching_array,
 741							  cpages);
 742				if (r)
 743					ttm_dma_handle_caching_state_failure(
 744						pool, d_pages, caching_array,
 745						cpages);
 746			}
 747			r = -ENOMEM;
 748			goto out;
 749		}
 750		p = dma_p->p;
 751#ifdef CONFIG_HIGHMEM
 752		/* gfp flags of highmem page should never be dma32 so we
 753		 * we should be fine in such case
 754		 */
 755		if (!PageHighMem(p))
 756#endif
 757		{
 758			caching_array[cpages++] = p;
 759			if (cpages == max_cpages) {
 760				/* Note: Cannot hold the spinlock */
 761				r = ttm_set_pages_caching(pool, caching_array,
 762						 cpages);
 763				if (r) {
 764					ttm_dma_handle_caching_state_failure(
 765						pool, d_pages, caching_array,
 766						cpages);
 767					goto out;
 768				}
 769				cpages = 0;
 770			}
 771		}
 772		list_add(&dma_p->page_list, d_pages);
 773	}
 774
 775	if (cpages) {
 776		r = ttm_set_pages_caching(pool, caching_array, cpages);
 777		if (r)
 778			ttm_dma_handle_caching_state_failure(pool, d_pages,
 779					caching_array, cpages);
 780	}
 781out:
 782	kfree(caching_array);
 783	return r;
 784}
 785
 786/*
 787 * @return count of pages still required to fulfill the request.
 788 */
 789static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
 790					 unsigned long *irq_flags)
 791{
 792	unsigned count = _manager->options.small;
 793	int r = pool->npages_free;
 794
 795	if (count > pool->npages_free) {
 796		struct list_head d_pages;
 797
 798		INIT_LIST_HEAD(&d_pages);
 799
 800		spin_unlock_irqrestore(&pool->lock, *irq_flags);
 801
 802		/* Returns how many more are neccessary to fulfill the
 803		 * request. */
 804		r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
 805
 806		spin_lock_irqsave(&pool->lock, *irq_flags);
 807		if (!r) {
 808			/* Add the fresh to the end.. */
 809			list_splice(&d_pages, &pool->free_list);
 810			++pool->nrefills;
 811			pool->npages_free += count;
 812			r = count;
 813		} else {
 814			struct dma_page *d_page;
 815			unsigned cpages = 0;
 816
 817			pr_err("%s: Failed to fill %s pool (r:%d)!\n",
 818			       pool->dev_name, pool->name, r);
 819
 820			list_for_each_entry(d_page, &d_pages, page_list) {
 821				cpages++;
 822			}
 823			list_splice_tail(&d_pages, &pool->free_list);
 824			pool->npages_free += cpages;
 825			r = cpages;
 826		}
 827	}
 828	return r;
 829}
 830
 831/*
 832 * @return count of pages still required to fulfill the request.
 833 * The populate list is actually a stack (not that is matters as TTM
 834 * allocates one page at a time.
 835 */
 836static int ttm_dma_pool_get_pages(struct dma_pool *pool,
 837				  struct ttm_dma_tt *ttm_dma,
 838				  unsigned index)
 839{
 840	struct dma_page *d_page;
 841	struct ttm_tt *ttm = &ttm_dma->ttm;
 842	unsigned long irq_flags;
 843	int count, r = -ENOMEM;
 844
 845	spin_lock_irqsave(&pool->lock, irq_flags);
 846	count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
 847	if (count) {
 848		d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
 849		ttm->pages[index] = d_page->p;
 850		ttm_dma->dma_address[index] = d_page->dma;
 851		list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
 852		r = 0;
 853		pool->npages_in_use += 1;
 854		pool->npages_free -= 1;
 855	}
 856	spin_unlock_irqrestore(&pool->lock, irq_flags);
 857	return r;
 858}
 859
 860/*
 861 * On success pages list will hold count number of correctly
 862 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
 863 */
 864int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
 865{
 866	struct ttm_tt *ttm = &ttm_dma->ttm;
 867	struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
 868	struct dma_pool *pool;
 869	enum pool_type type;
 870	unsigned i;
 871	gfp_t gfp_flags;
 872	int ret;
 873
 874	if (ttm->state != tt_unpopulated)
 875		return 0;
 876
 877	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
 878	if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
 879		gfp_flags = GFP_USER | GFP_DMA32;
 880	else
 881		gfp_flags = GFP_HIGHUSER;
 882	if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
 883		gfp_flags |= __GFP_ZERO;
 884
 885	pool = ttm_dma_find_pool(dev, type);
 886	if (!pool) {
 887		pool = ttm_dma_pool_init(dev, gfp_flags, type);
 888		if (IS_ERR_OR_NULL(pool)) {
 889			return -ENOMEM;
 890		}
 891	}
 892
 893	INIT_LIST_HEAD(&ttm_dma->pages_list);
 894	for (i = 0; i < ttm->num_pages; ++i) {
 895		ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
 896		if (ret != 0) {
 897			ttm_dma_unpopulate(ttm_dma, dev);
 898			return -ENOMEM;
 899		}
 900
 901		ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
 902						false, false);
 903		if (unlikely(ret != 0)) {
 904			ttm_dma_unpopulate(ttm_dma, dev);
 905			return -ENOMEM;
 906		}
 907	}
 908
 909	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
 910		ret = ttm_tt_swapin(ttm);
 911		if (unlikely(ret != 0)) {
 912			ttm_dma_unpopulate(ttm_dma, dev);
 913			return ret;
 914		}
 915	}
 916
 917	ttm->state = tt_unbound;
 918	return 0;
 919}
 920EXPORT_SYMBOL_GPL(ttm_dma_populate);
 921
 922/* Put all pages in pages list to correct pool to wait for reuse */
 923void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
 924{
 925	struct ttm_tt *ttm = &ttm_dma->ttm;
 926	struct dma_pool *pool;
 927	struct dma_page *d_page, *next;
 928	enum pool_type type;
 929	bool is_cached = false;
 930	unsigned count = 0, i, npages = 0;
 931	unsigned long irq_flags;
 932
 933	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
 934	pool = ttm_dma_find_pool(dev, type);
 935	if (!pool)
 936		return;
 937
 938	is_cached = (ttm_dma_find_pool(pool->dev,
 939		     ttm_to_type(ttm->page_flags, tt_cached)) == pool);
 940
 941	/* make sure pages array match list and count number of pages */
 942	list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
 943		ttm->pages[count] = d_page->p;
 944		count++;
 945	}
 946
 947	spin_lock_irqsave(&pool->lock, irq_flags);
 948	pool->npages_in_use -= count;
 949	if (is_cached) {
 950		pool->nfrees += count;
 951	} else {
 952		pool->npages_free += count;
 953		list_splice(&ttm_dma->pages_list, &pool->free_list);
 954		npages = count;
 955		if (pool->npages_free > _manager->options.max_size) {
 956			npages = pool->npages_free - _manager->options.max_size;
 957			/* free at least NUM_PAGES_TO_ALLOC number of pages
 958			 * to reduce calls to set_memory_wb */
 959			if (npages < NUM_PAGES_TO_ALLOC)
 960				npages = NUM_PAGES_TO_ALLOC;
 961		}
 962	}
 963	spin_unlock_irqrestore(&pool->lock, irq_flags);
 964
 965	if (is_cached) {
 966		list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
 967			ttm_mem_global_free_page(ttm->glob->mem_glob,
 968						 d_page->p);
 969			ttm_dma_page_put(pool, d_page);
 970		}
 971	} else {
 972		for (i = 0; i < count; i++) {
 973			ttm_mem_global_free_page(ttm->glob->mem_glob,
 974						 ttm->pages[i]);
 975		}
 976	}
 977
 978	INIT_LIST_HEAD(&ttm_dma->pages_list);
 979	for (i = 0; i < ttm->num_pages; i++) {
 980		ttm->pages[i] = NULL;
 981		ttm_dma->dma_address[i] = 0;
 982	}
 983
 984	/* shrink pool if necessary (only on !is_cached pools)*/
 985	if (npages)
 986		ttm_dma_page_pool_free(pool, npages);
 987	ttm->state = tt_unpopulated;
 988}
 989EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
 990
 991/**
 992 * Callback for mm to request pool to reduce number of page held.
 993 *
 994 * XXX: (dchinner) Deadlock warning!
 995 *
 996 * ttm_dma_page_pool_free() does GFP_KERNEL memory allocation, and so attention
 997 * needs to be paid to sc->gfp_mask to determine if this can be done or not.
 998 * GFP_KERNEL memory allocation in a GFP_ATOMIC reclaim context woul dbe really
 999 * bad.
1000 *
1001 * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1002 * shrinkers
1003 */
1004static unsigned long
1005ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1006{
1007	static atomic_t start_pool = ATOMIC_INIT(0);
1008	unsigned idx = 0;
1009	unsigned pool_offset = atomic_add_return(1, &start_pool);
1010	unsigned shrink_pages = sc->nr_to_scan;
1011	struct device_pools *p;
1012	unsigned long freed = 0;
1013
1014	if (list_empty(&_manager->pools))
1015		return SHRINK_STOP;
1016
1017	mutex_lock(&_manager->lock);
1018	pool_offset = pool_offset % _manager->npools;
1019	list_for_each_entry(p, &_manager->pools, pools) {
1020		unsigned nr_free;
1021
1022		if (!p->dev)
1023			continue;
1024		if (shrink_pages == 0)
1025			break;
1026		/* Do it in round-robin fashion. */
1027		if (++idx < pool_offset)
1028			continue;
1029		nr_free = shrink_pages;
1030		shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free);
1031		freed += nr_free - shrink_pages;
1032
1033		pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1034			 p->pool->dev_name, p->pool->name, current->pid,
1035			 nr_free, shrink_pages);
1036	}
1037	mutex_unlock(&_manager->lock);
1038	return freed;
1039}
1040
1041static unsigned long
1042ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1043{
1044	struct device_pools *p;
1045	unsigned long count = 0;
1046
1047	mutex_lock(&_manager->lock);
1048	list_for_each_entry(p, &_manager->pools, pools)
1049		count += p->pool->npages_free;
1050	mutex_unlock(&_manager->lock);
1051	return count;
1052}
1053
1054static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1055{
1056	manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1057	manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1058	manager->mm_shrink.seeks = 1;
1059	register_shrinker(&manager->mm_shrink);
1060}
1061
1062static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1063{
1064	unregister_shrinker(&manager->mm_shrink);
1065}
1066
1067int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1068{
1069	int ret = -ENOMEM;
1070
1071	WARN_ON(_manager);
1072
1073	pr_info("Initializing DMA pool allocator\n");
1074
1075	_manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1076	if (!_manager)
1077		goto err;
1078
1079	mutex_init(&_manager->lock);
1080	INIT_LIST_HEAD(&_manager->pools);
1081
1082	_manager->options.max_size = max_pages;
1083	_manager->options.small = SMALL_ALLOCATION;
1084	_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1085
1086	/* This takes care of auto-freeing the _manager */
1087	ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1088				   &glob->kobj, "dma_pool");
1089	if (unlikely(ret != 0)) {
1090		kobject_put(&_manager->kobj);
1091		goto err;
1092	}
1093	ttm_dma_pool_mm_shrink_init(_manager);
1094	return 0;
1095err:
1096	return ret;
1097}
1098
1099void ttm_dma_page_alloc_fini(void)
1100{
1101	struct device_pools *p, *t;
1102
1103	pr_info("Finalizing DMA pool allocator\n");
1104	ttm_dma_pool_mm_shrink_fini(_manager);
1105
1106	list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1107		dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1108			current->pid);
1109		WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1110			ttm_dma_pool_match, p->pool));
1111		ttm_dma_free_pool(p->dev, p->pool->type);
1112	}
1113	kobject_put(&_manager->kobj);
1114	_manager = NULL;
1115}
1116
1117int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1118{
1119	struct device_pools *p;
1120	struct dma_pool *pool = NULL;
1121	char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
1122		     "name", "virt", "busaddr"};
1123
1124	if (!_manager) {
1125		seq_printf(m, "No pool allocator running.\n");
1126		return 0;
1127	}
1128	seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
1129		   h[0], h[1], h[2], h[3], h[4], h[5]);
1130	mutex_lock(&_manager->lock);
1131	list_for_each_entry(p, &_manager->pools, pools) {
1132		struct device *dev = p->dev;
1133		if (!dev)
1134			continue;
1135		pool = p->pool;
1136		seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1137				pool->name, pool->nrefills,
1138				pool->nfrees, pool->npages_in_use,
1139				pool->npages_free,
1140				pool->dev_name);
1141	}
1142	mutex_unlock(&_manager->lock);
1143	return 0;
1144}
1145EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1146
1147#endif