Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * User-space Probes (UProbes) for x86
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2008-2011
 19 * Authors:
 20 *	Srikar Dronamraju
 21 *	Jim Keniston
 22 */
 23#include <linux/kernel.h>
 24#include <linux/sched.h>
 25#include <linux/ptrace.h>
 26#include <linux/uprobes.h>
 27#include <linux/uaccess.h>
 28
 29#include <linux/kdebug.h>
 30#include <asm/processor.h>
 31#include <asm/insn.h>
 32
 33/* Post-execution fixups. */
 34
 35/* No fixup needed */
 36#define UPROBE_FIX_NONE		0x0
 37
 38/* Adjust IP back to vicinity of actual insn */
 39#define UPROBE_FIX_IP		0x1
 40
 41/* Adjust the return address of a call insn */
 42#define UPROBE_FIX_CALL	0x2
 43
 44/* Instruction will modify TF, don't change it */
 45#define UPROBE_FIX_SETF	0x4
 46
 47#define UPROBE_FIX_RIP_AX	0x8000
 48#define UPROBE_FIX_RIP_CX	0x4000
 49
 50#define	UPROBE_TRAP_NR		UINT_MAX
 51
 52/* Adaptations for mhiramat x86 decoder v14. */
 53#define OPCODE1(insn)		((insn)->opcode.bytes[0])
 54#define OPCODE2(insn)		((insn)->opcode.bytes[1])
 55#define OPCODE3(insn)		((insn)->opcode.bytes[2])
 56#define MODRM_REG(insn)		X86_MODRM_REG(insn->modrm.value)
 57
 58#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
 59	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
 60	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
 61	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
 62	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
 63	 << (row % 32))
 64
 65/*
 66 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
 67 * to keep gcc from statically optimizing it out, as variable_test_bit makes
 68 * some versions of gcc to think only *(unsigned long*) is used.
 69 */
 70static volatile u32 good_insns_32[256 / 32] = {
 71	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 72	/*      ----------------------------------------------         */
 73	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
 74	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
 75	W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
 76	W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
 77	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 78	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 79	W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 80	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 81	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 82	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 83	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 84	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 85	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 86	W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 87	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
 88	W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 89	/*      ----------------------------------------------         */
 90	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 91};
 92
 93/* Using this for both 64-bit and 32-bit apps */
 94static volatile u32 good_2byte_insns[256 / 32] = {
 95	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 96	/*      ----------------------------------------------         */
 97	W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
 98	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
 99	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
100	W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
101	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
102	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
103	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
104	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
105	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
106	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
107	W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
108	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
109	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
110	W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
111	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
112	W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)   /* f0 */
113	/*      ----------------------------------------------         */
114	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
115};
116
117#ifdef CONFIG_X86_64
118/* Good-instruction tables for 64-bit apps */
119static volatile u32 good_insns_64[256 / 32] = {
120	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
121	/*      ----------------------------------------------         */
122	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
123	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
124	W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
125	W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
126	W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
127	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
128	W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
129	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
130	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
131	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
132	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
133	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
134	W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
135	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
136	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
137	W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
138	/*      ----------------------------------------------         */
139	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
140};
141#endif
142#undef W
143
144/*
145 * opcodes we'll probably never support:
146 *
147 *  6c-6d, e4-e5, ec-ed - in
148 *  6e-6f, e6-e7, ee-ef - out
149 *  cc, cd - int3, int
150 *  cf - iret
151 *  d6 - illegal instruction
152 *  f1 - int1/icebp
153 *  f4 - hlt
154 *  fa, fb - cli, sti
155 *  0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
156 *
157 * invalid opcodes in 64-bit mode:
158 *
159 *  06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
160 *  63 - we support this opcode in x86_64 but not in i386.
161 *
162 * opcodes we may need to refine support for:
163 *
164 *  0f - 2-byte instructions: For many of these instructions, the validity
165 *  depends on the prefix and/or the reg field.  On such instructions, we
166 *  just consider the opcode combination valid if it corresponds to any
167 *  valid instruction.
168 *
169 *  8f - Group 1 - only reg = 0 is OK
170 *  c6-c7 - Group 11 - only reg = 0 is OK
171 *  d9-df - fpu insns with some illegal encodings
172 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
173 *  certain floating-point instructions, such as addsd.
174 *
175 *  fe - Group 4 - only reg = 0 or 1 is OK
176 *  ff - Group 5 - only reg = 0-6 is OK
177 *
178 * others -- Do we need to support these?
179 *
180 *  0f - (floating-point?) prefetch instructions
181 *  07, 17, 1f - pop es, pop ss, pop ds
182 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
183 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
184 *  67 - addr16 prefix
185 *  ce - into
186 *  f0 - lock prefix
187 */
188
189/*
190 * TODO:
191 * - Where necessary, examine the modrm byte and allow only valid instructions
192 * in the different Groups and fpu instructions.
193 */
194
195static bool is_prefix_bad(struct insn *insn)
196{
197	int i;
198
199	for (i = 0; i < insn->prefixes.nbytes; i++) {
200		switch (insn->prefixes.bytes[i]) {
201		case 0x26:	/* INAT_PFX_ES   */
202		case 0x2E:	/* INAT_PFX_CS   */
203		case 0x36:	/* INAT_PFX_DS   */
204		case 0x3E:	/* INAT_PFX_SS   */
205		case 0xF0:	/* INAT_PFX_LOCK */
206			return true;
207		}
208	}
209	return false;
210}
211
212static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn)
213{
214	insn_init(insn, auprobe->insn, false);
215
216	/* Skip good instruction prefixes; reject "bad" ones. */
217	insn_get_opcode(insn);
218	if (is_prefix_bad(insn))
219		return -ENOTSUPP;
220
221	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32))
222		return 0;
223
224	if (insn->opcode.nbytes == 2) {
225		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
226			return 0;
227	}
228
229	return -ENOTSUPP;
230}
231
232/*
233 * Figure out which fixups arch_uprobe_post_xol() will need to perform, and
234 * annotate arch_uprobe->fixups accordingly.  To start with,
235 * arch_uprobe->fixups is either zero or it reflects rip-related fixups.
236 */
237static void prepare_fixups(struct arch_uprobe *auprobe, struct insn *insn)
238{
239	bool fix_ip = true, fix_call = false;	/* defaults */
240	int reg;
241
242	insn_get_opcode(insn);	/* should be a nop */
243
244	switch (OPCODE1(insn)) {
245	case 0x9d:
246		/* popf */
247		auprobe->fixups |= UPROBE_FIX_SETF;
248		break;
249	case 0xc3:		/* ret/lret */
250	case 0xcb:
251	case 0xc2:
252	case 0xca:
253		/* ip is correct */
254		fix_ip = false;
255		break;
256	case 0xe8:		/* call relative - Fix return addr */
257		fix_call = true;
258		break;
259	case 0x9a:		/* call absolute - Fix return addr, not ip */
260		fix_call = true;
261		fix_ip = false;
262		break;
263	case 0xff:
264		insn_get_modrm(insn);
265		reg = MODRM_REG(insn);
266		if (reg == 2 || reg == 3) {
267			/* call or lcall, indirect */
268			/* Fix return addr; ip is correct. */
269			fix_call = true;
270			fix_ip = false;
271		} else if (reg == 4 || reg == 5) {
272			/* jmp or ljmp, indirect */
273			/* ip is correct. */
274			fix_ip = false;
275		}
276		break;
277	case 0xea:		/* jmp absolute -- ip is correct */
278		fix_ip = false;
279		break;
280	default:
281		break;
282	}
283	if (fix_ip)
284		auprobe->fixups |= UPROBE_FIX_IP;
285	if (fix_call)
286		auprobe->fixups |= UPROBE_FIX_CALL;
287}
288
289#ifdef CONFIG_X86_64
290/*
291 * If arch_uprobe->insn doesn't use rip-relative addressing, return
292 * immediately.  Otherwise, rewrite the instruction so that it accesses
293 * its memory operand indirectly through a scratch register.  Set
294 * arch_uprobe->fixups and arch_uprobe->rip_rela_target_address
295 * accordingly.  (The contents of the scratch register will be saved
296 * before we single-step the modified instruction, and restored
297 * afterward.)
298 *
299 * We do this because a rip-relative instruction can access only a
300 * relatively small area (+/- 2 GB from the instruction), and the XOL
301 * area typically lies beyond that area.  At least for instructions
302 * that store to memory, we can't execute the original instruction
303 * and "fix things up" later, because the misdirected store could be
304 * disastrous.
305 *
306 * Some useful facts about rip-relative instructions:
307 *
308 *  - There's always a modrm byte.
309 *  - There's never a SIB byte.
310 *  - The displacement is always 4 bytes.
311 */
312static void
313handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
314{
315	u8 *cursor;
316	u8 reg;
317
318	if (mm->context.ia32_compat)
319		return;
320
321	auprobe->rip_rela_target_address = 0x0;
322	if (!insn_rip_relative(insn))
323		return;
324
325	/*
326	 * insn_rip_relative() would have decoded rex_prefix, modrm.
327	 * Clear REX.b bit (extension of MODRM.rm field):
328	 * we want to encode rax/rcx, not r8/r9.
329	 */
330	if (insn->rex_prefix.nbytes) {
331		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
332		*cursor &= 0xfe;	/* Clearing REX.B bit */
333	}
334
335	/*
336	 * Point cursor at the modrm byte.  The next 4 bytes are the
337	 * displacement.  Beyond the displacement, for some instructions,
338	 * is the immediate operand.
339	 */
340	cursor = auprobe->insn + insn_offset_modrm(insn);
341	insn_get_length(insn);
342
343	/*
344	 * Convert from rip-relative addressing to indirect addressing
345	 * via a scratch register.  Change the r/m field from 0x5 (%rip)
346	 * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
347	 */
348	reg = MODRM_REG(insn);
349	if (reg == 0) {
350		/*
351		 * The register operand (if any) is either the A register
352		 * (%rax, %eax, etc.) or (if the 0x4 bit is set in the
353		 * REX prefix) %r8.  In any case, we know the C register
354		 * is NOT the register operand, so we use %rcx (register
355		 * #1) for the scratch register.
356		 */
357		auprobe->fixups = UPROBE_FIX_RIP_CX;
358		/* Change modrm from 00 000 101 to 00 000 001. */
359		*cursor = 0x1;
360	} else {
361		/* Use %rax (register #0) for the scratch register. */
362		auprobe->fixups = UPROBE_FIX_RIP_AX;
363		/* Change modrm from 00 xxx 101 to 00 xxx 000 */
364		*cursor = (reg << 3);
365	}
366
367	/* Target address = address of next instruction + (signed) offset */
368	auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value;
369
370	/* Displacement field is gone; slide immediate field (if any) over. */
371	if (insn->immediate.nbytes) {
372		cursor++;
373		memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
374	}
375	return;
376}
377
378static int validate_insn_64bits(struct arch_uprobe *auprobe, struct insn *insn)
379{
380	insn_init(insn, auprobe->insn, true);
381
382	/* Skip good instruction prefixes; reject "bad" ones. */
383	insn_get_opcode(insn);
384	if (is_prefix_bad(insn))
385		return -ENOTSUPP;
386
387	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64))
388		return 0;
389
390	if (insn->opcode.nbytes == 2) {
391		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
392			return 0;
393	}
394	return -ENOTSUPP;
395}
396
397static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
398{
399	if (mm->context.ia32_compat)
400		return validate_insn_32bits(auprobe, insn);
401	return validate_insn_64bits(auprobe, insn);
402}
403#else /* 32-bit: */
404static void handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
405{
406	/* No RIP-relative addressing on 32-bit */
407}
408
409static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm,  struct insn *insn)
410{
411	return validate_insn_32bits(auprobe, insn);
412}
413#endif /* CONFIG_X86_64 */
414
415/**
416 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
417 * @mm: the probed address space.
418 * @arch_uprobe: the probepoint information.
419 * @addr: virtual address at which to install the probepoint
420 * Return 0 on success or a -ve number on error.
421 */
422int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
423{
424	int ret;
425	struct insn insn;
426
427	auprobe->fixups = 0;
428	ret = validate_insn_bits(auprobe, mm, &insn);
429	if (ret != 0)
430		return ret;
431
432	handle_riprel_insn(auprobe, mm, &insn);
433	prepare_fixups(auprobe, &insn);
434
435	return 0;
436}
437
438#ifdef CONFIG_X86_64
439/*
440 * If we're emulating a rip-relative instruction, save the contents
441 * of the scratch register and store the target address in that register.
442 */
443static void
444pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
445				struct arch_uprobe_task *autask)
446{
447	if (auprobe->fixups & UPROBE_FIX_RIP_AX) {
448		autask->saved_scratch_register = regs->ax;
449		regs->ax = current->utask->vaddr;
450		regs->ax += auprobe->rip_rela_target_address;
451	} else if (auprobe->fixups & UPROBE_FIX_RIP_CX) {
452		autask->saved_scratch_register = regs->cx;
453		regs->cx = current->utask->vaddr;
454		regs->cx += auprobe->rip_rela_target_address;
455	}
456}
457#else
458static void
459pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
460				struct arch_uprobe_task *autask)
461{
462	/* No RIP-relative addressing on 32-bit */
463}
464#endif
465
466/*
467 * arch_uprobe_pre_xol - prepare to execute out of line.
468 * @auprobe: the probepoint information.
469 * @regs: reflects the saved user state of current task.
470 */
471int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
472{
473	struct arch_uprobe_task *autask;
474
475	autask = &current->utask->autask;
476	autask->saved_trap_nr = current->thread.trap_nr;
477	current->thread.trap_nr = UPROBE_TRAP_NR;
478	regs->ip = current->utask->xol_vaddr;
479	pre_xol_rip_insn(auprobe, regs, autask);
480
481	autask->saved_tf = !!(regs->flags & X86_EFLAGS_TF);
482	regs->flags |= X86_EFLAGS_TF;
483	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
484		set_task_blockstep(current, false);
485
486	return 0;
487}
488
489/*
490 * This function is called by arch_uprobe_post_xol() to adjust the return
491 * address pushed by a call instruction executed out of line.
492 */
493static int adjust_ret_addr(unsigned long sp, long correction)
494{
495	int rasize, ncopied;
496	long ra = 0;
497
498	if (is_ia32_task())
499		rasize = 4;
500	else
501		rasize = 8;
502
503	ncopied = copy_from_user(&ra, (void __user *)sp, rasize);
504	if (unlikely(ncopied))
505		return -EFAULT;
506
507	ra += correction;
508	ncopied = copy_to_user((void __user *)sp, &ra, rasize);
509	if (unlikely(ncopied))
510		return -EFAULT;
511
512	return 0;
513}
514
515#ifdef CONFIG_X86_64
516static bool is_riprel_insn(struct arch_uprobe *auprobe)
517{
518	return ((auprobe->fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) != 0);
519}
520
521static void
522handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
523{
524	if (is_riprel_insn(auprobe)) {
525		struct arch_uprobe_task *autask;
526
527		autask = &current->utask->autask;
528		if (auprobe->fixups & UPROBE_FIX_RIP_AX)
529			regs->ax = autask->saved_scratch_register;
530		else
531			regs->cx = autask->saved_scratch_register;
532
533		/*
534		 * The original instruction includes a displacement, and so
535		 * is 4 bytes longer than what we've just single-stepped.
536		 * Fall through to handle stuff like "jmpq *...(%rip)" and
537		 * "callq *...(%rip)".
538		 */
539		if (correction)
540			*correction += 4;
541	}
542}
543#else
544static void
545handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
546{
547	/* No RIP-relative addressing on 32-bit */
548}
549#endif
550
551/*
552 * If xol insn itself traps and generates a signal(Say,
553 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
554 * instruction jumps back to its own address. It is assumed that anything
555 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
556 *
557 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
558 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
559 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
560 */
561bool arch_uprobe_xol_was_trapped(struct task_struct *t)
562{
563	if (t->thread.trap_nr != UPROBE_TRAP_NR)
564		return true;
565
566	return false;
567}
568
569/*
570 * Called after single-stepping. To avoid the SMP problems that can
571 * occur when we temporarily put back the original opcode to
572 * single-step, we single-stepped a copy of the instruction.
573 *
574 * This function prepares to resume execution after the single-step.
575 * We have to fix things up as follows:
576 *
577 * Typically, the new ip is relative to the copied instruction.  We need
578 * to make it relative to the original instruction (FIX_IP).  Exceptions
579 * are return instructions and absolute or indirect jump or call instructions.
580 *
581 * If the single-stepped instruction was a call, the return address that
582 * is atop the stack is the address following the copied instruction.  We
583 * need to make it the address following the original instruction (FIX_CALL).
584 *
585 * If the original instruction was a rip-relative instruction such as
586 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
587 * instruction using a scratch register -- e.g., "movl %edx,(%rax)".
588 * We need to restore the contents of the scratch register and adjust
589 * the ip, keeping in mind that the instruction we executed is 4 bytes
590 * shorter than the original instruction (since we squeezed out the offset
591 * field).  (FIX_RIP_AX or FIX_RIP_CX)
592 */
593int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
594{
595	struct uprobe_task *utask;
596	long correction;
597	int result = 0;
598
599	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
600
601	utask = current->utask;
602	current->thread.trap_nr = utask->autask.saved_trap_nr;
603	correction = (long)(utask->vaddr - utask->xol_vaddr);
604	handle_riprel_post_xol(auprobe, regs, &correction);
605	if (auprobe->fixups & UPROBE_FIX_IP)
606		regs->ip += correction;
607
608	if (auprobe->fixups & UPROBE_FIX_CALL)
609		result = adjust_ret_addr(regs->sp, correction);
610
611	/*
612	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
613	 * so we can get an extra SIGTRAP if we do not clear TF. We need
614	 * to examine the opcode to make it right.
615	 */
616	if (utask->autask.saved_tf)
617		send_sig(SIGTRAP, current, 0);
618	else if (!(auprobe->fixups & UPROBE_FIX_SETF))
619		regs->flags &= ~X86_EFLAGS_TF;
620
621	return result;
622}
623
624/* callback routine for handling exceptions. */
625int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
626{
627	struct die_args *args = data;
628	struct pt_regs *regs = args->regs;
629	int ret = NOTIFY_DONE;
630
631	/* We are only interested in userspace traps */
632	if (regs && !user_mode_vm(regs))
633		return NOTIFY_DONE;
634
635	switch (val) {
636	case DIE_INT3:
637		if (uprobe_pre_sstep_notifier(regs))
638			ret = NOTIFY_STOP;
639
640		break;
641
642	case DIE_DEBUG:
643		if (uprobe_post_sstep_notifier(regs))
644			ret = NOTIFY_STOP;
645
646	default:
647		break;
648	}
649
650	return ret;
651}
652
653/*
654 * This function gets called when XOL instruction either gets trapped or
655 * the thread has a fatal signal, so reset the instruction pointer to its
656 * probed address.
657 */
658void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
659{
660	struct uprobe_task *utask = current->utask;
661
662	current->thread.trap_nr = utask->autask.saved_trap_nr;
663	handle_riprel_post_xol(auprobe, regs, NULL);
664	instruction_pointer_set(regs, utask->vaddr);
665
666	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
667	if (!utask->autask.saved_tf)
668		regs->flags &= ~X86_EFLAGS_TF;
669}
670
671/*
672 * Skip these instructions as per the currently known x86 ISA.
673 * rep=0x66*; nop=0x90
674 */
675static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
676{
677	int i;
678
679	for (i = 0; i < MAX_UINSN_BYTES; i++) {
680		if (auprobe->insn[i] == 0x66)
681			continue;
682
683		if (auprobe->insn[i] == 0x90) {
684			regs->ip += i + 1;
685			return true;
686		}
687
688		break;
689	}
690	return false;
691}
692
693bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
694{
695	bool ret = __skip_sstep(auprobe, regs);
696	if (ret && (regs->flags & X86_EFLAGS_TF))
697		send_sig(SIGTRAP, current, 0);
698	return ret;
699}
700
701unsigned long
702arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
703{
704	int rasize, ncopied;
705	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
706
707	rasize = is_ia32_task() ? 4 : 8;
708	ncopied = copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize);
709	if (unlikely(ncopied))
710		return -1;
711
712	/* check whether address has been already hijacked */
713	if (orig_ret_vaddr == trampoline_vaddr)
714		return orig_ret_vaddr;
715
716	ncopied = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
717	if (likely(!ncopied))
718		return orig_ret_vaddr;
719
720	if (ncopied != rasize) {
721		pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
722			"%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
723
724		force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
725	}
726
727	return -1;
728}