Linux Audio

Check our new training course

Loading...
v3.1
 
 
  1#include <linux/kernel.h>
  2#include <linux/sched.h>
  3#include <linux/init.h>
  4#include <linux/module.h>
  5#include <linux/timer.h>
  6#include <linux/acpi_pmtmr.h>
  7#include <linux/cpufreq.h>
  8#include <linux/delay.h>
  9#include <linux/clocksource.h>
 10#include <linux/percpu.h>
 11#include <linux/timex.h>
 
 12
 13#include <asm/hpet.h>
 14#include <asm/timer.h>
 15#include <asm/vgtod.h>
 16#include <asm/time.h>
 17#include <asm/delay.h>
 18#include <asm/hypervisor.h>
 19#include <asm/nmi.h>
 20#include <asm/x86_init.h>
 21
 22unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
 23EXPORT_SYMBOL(cpu_khz);
 24
 25unsigned int __read_mostly tsc_khz;
 26EXPORT_SYMBOL(tsc_khz);
 27
 28/*
 29 * TSC can be unstable due to cpufreq or due to unsynced TSCs
 30 */
 31static int __read_mostly tsc_unstable;
 32
 33/* native_sched_clock() is called before tsc_init(), so
 34   we must start with the TSC soft disabled to prevent
 35   erroneous rdtsc usage on !cpu_has_tsc processors */
 36static int __read_mostly tsc_disabled = -1;
 37
 38static int tsc_clocksource_reliable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 39/*
 40 * Scheduler clock - returns current time in nanosec units.
 41 */
 42u64 native_sched_clock(void)
 43{
 44	u64 this_offset;
 45
 46	/*
 47	 * Fall back to jiffies if there's no TSC available:
 48	 * ( But note that we still use it if the TSC is marked
 49	 *   unstable. We do this because unlike Time Of Day,
 50	 *   the scheduler clock tolerates small errors and it's
 51	 *   very important for it to be as fast as the platform
 52	 *   can achieve it. )
 53	 */
 54	if (unlikely(tsc_disabled)) {
 55		/* No locking but a rare wrong value is not a big deal: */
 56		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 57	}
 58
 59	/* read the Time Stamp Counter: */
 60	rdtscll(this_offset);
 61
 62	/* return the value in ns */
 63	return __cycles_2_ns(this_offset);
 64}
 65
 66/* We need to define a real function for sched_clock, to override the
 67   weak default version */
 68#ifdef CONFIG_PARAVIRT
 69unsigned long long sched_clock(void)
 70{
 71	return paravirt_sched_clock();
 72}
 73#else
 74unsigned long long
 75sched_clock(void) __attribute__((alias("native_sched_clock")));
 76#endif
 77
 
 
 
 
 
 
 78int check_tsc_unstable(void)
 79{
 80	return tsc_unstable;
 81}
 82EXPORT_SYMBOL_GPL(check_tsc_unstable);
 83
 
 
 
 
 
 
 84#ifdef CONFIG_X86_TSC
 85int __init notsc_setup(char *str)
 86{
 87	printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
 88			"cannot disable TSC completely.\n");
 89	tsc_disabled = 1;
 90	return 1;
 91}
 92#else
 93/*
 94 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 95 * in cpu/common.c
 96 */
 97int __init notsc_setup(char *str)
 98{
 99	setup_clear_cpu_cap(X86_FEATURE_TSC);
100	return 1;
101}
102#endif
103
104__setup("notsc", notsc_setup);
105
106static int no_sched_irq_time;
107
108static int __init tsc_setup(char *str)
109{
110	if (!strcmp(str, "reliable"))
111		tsc_clocksource_reliable = 1;
112	if (!strncmp(str, "noirqtime", 9))
113		no_sched_irq_time = 1;
114	return 1;
115}
116
117__setup("tsc=", tsc_setup);
118
119#define MAX_RETRIES     5
120#define SMI_TRESHOLD    50000
121
122/*
123 * Read TSC and the reference counters. Take care of SMI disturbance
124 */
125static u64 tsc_read_refs(u64 *p, int hpet)
126{
127	u64 t1, t2;
128	int i;
129
130	for (i = 0; i < MAX_RETRIES; i++) {
131		t1 = get_cycles();
132		if (hpet)
133			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
134		else
135			*p = acpi_pm_read_early();
136		t2 = get_cycles();
137		if ((t2 - t1) < SMI_TRESHOLD)
138			return t2;
139	}
140	return ULLONG_MAX;
141}
142
143/*
144 * Calculate the TSC frequency from HPET reference
145 */
146static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
147{
148	u64 tmp;
149
150	if (hpet2 < hpet1)
151		hpet2 += 0x100000000ULL;
152	hpet2 -= hpet1;
153	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
154	do_div(tmp, 1000000);
155	do_div(deltatsc, tmp);
156
157	return (unsigned long) deltatsc;
158}
159
160/*
161 * Calculate the TSC frequency from PMTimer reference
162 */
163static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
164{
165	u64 tmp;
166
167	if (!pm1 && !pm2)
168		return ULONG_MAX;
169
170	if (pm2 < pm1)
171		pm2 += (u64)ACPI_PM_OVRRUN;
172	pm2 -= pm1;
173	tmp = pm2 * 1000000000LL;
174	do_div(tmp, PMTMR_TICKS_PER_SEC);
175	do_div(deltatsc, tmp);
176
177	return (unsigned long) deltatsc;
178}
179
180#define CAL_MS		10
181#define CAL_LATCH	(CLOCK_TICK_RATE / (1000 / CAL_MS))
182#define CAL_PIT_LOOPS	1000
183
184#define CAL2_MS		50
185#define CAL2_LATCH	(CLOCK_TICK_RATE / (1000 / CAL2_MS))
186#define CAL2_PIT_LOOPS	5000
187
188
189/*
190 * Try to calibrate the TSC against the Programmable
191 * Interrupt Timer and return the frequency of the TSC
192 * in kHz.
193 *
194 * Return ULONG_MAX on failure to calibrate.
195 */
196static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
197{
198	u64 tsc, t1, t2, delta;
199	unsigned long tscmin, tscmax;
200	int pitcnt;
201
202	/* Set the Gate high, disable speaker */
203	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
204
205	/*
206	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
207	 * count mode), binary count. Set the latch register to 50ms
208	 * (LSB then MSB) to begin countdown.
209	 */
210	outb(0xb0, 0x43);
211	outb(latch & 0xff, 0x42);
212	outb(latch >> 8, 0x42);
213
214	tsc = t1 = t2 = get_cycles();
215
216	pitcnt = 0;
217	tscmax = 0;
218	tscmin = ULONG_MAX;
219	while ((inb(0x61) & 0x20) == 0) {
220		t2 = get_cycles();
221		delta = t2 - tsc;
222		tsc = t2;
223		if ((unsigned long) delta < tscmin)
224			tscmin = (unsigned int) delta;
225		if ((unsigned long) delta > tscmax)
226			tscmax = (unsigned int) delta;
227		pitcnt++;
228	}
229
230	/*
231	 * Sanity checks:
232	 *
233	 * If we were not able to read the PIT more than loopmin
234	 * times, then we have been hit by a massive SMI
235	 *
236	 * If the maximum is 10 times larger than the minimum,
237	 * then we got hit by an SMI as well.
238	 */
239	if (pitcnt < loopmin || tscmax > 10 * tscmin)
240		return ULONG_MAX;
241
242	/* Calculate the PIT value */
243	delta = t2 - t1;
244	do_div(delta, ms);
245	return delta;
246}
247
248/*
249 * This reads the current MSB of the PIT counter, and
250 * checks if we are running on sufficiently fast and
251 * non-virtualized hardware.
252 *
253 * Our expectations are:
254 *
255 *  - the PIT is running at roughly 1.19MHz
256 *
257 *  - each IO is going to take about 1us on real hardware,
258 *    but we allow it to be much faster (by a factor of 10) or
259 *    _slightly_ slower (ie we allow up to a 2us read+counter
260 *    update - anything else implies a unacceptably slow CPU
261 *    or PIT for the fast calibration to work.
262 *
263 *  - with 256 PIT ticks to read the value, we have 214us to
264 *    see the same MSB (and overhead like doing a single TSC
265 *    read per MSB value etc).
266 *
267 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
268 *    them each to take about a microsecond on real hardware.
269 *    So we expect a count value of around 100. But we'll be
270 *    generous, and accept anything over 50.
271 *
272 *  - if the PIT is stuck, and we see *many* more reads, we
273 *    return early (and the next caller of pit_expect_msb()
274 *    then consider it a failure when they don't see the
275 *    next expected value).
276 *
277 * These expectations mean that we know that we have seen the
278 * transition from one expected value to another with a fairly
279 * high accuracy, and we didn't miss any events. We can thus
280 * use the TSC value at the transitions to calculate a pretty
281 * good value for the TSC frequencty.
282 */
283static inline int pit_verify_msb(unsigned char val)
284{
285	/* Ignore LSB */
286	inb(0x42);
287	return inb(0x42) == val;
288}
289
290static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
291{
292	int count;
293	u64 tsc = 0;
294
295	for (count = 0; count < 50000; count++) {
296		if (!pit_verify_msb(val))
297			break;
 
298		tsc = get_cycles();
299	}
300	*deltap = get_cycles() - tsc;
301	*tscp = tsc;
302
303	/*
304	 * We require _some_ success, but the quality control
305	 * will be based on the error terms on the TSC values.
306	 */
307	return count > 5;
308}
309
310/*
311 * How many MSB values do we want to see? We aim for
312 * a maximum error rate of 500ppm (in practice the
313 * real error is much smaller), but refuse to spend
314 * more than 25ms on it.
315 */
316#define MAX_QUICK_PIT_MS 25
317#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
318
319static unsigned long quick_pit_calibrate(void)
320{
321	int i;
322	u64 tsc, delta;
323	unsigned long d1, d2;
324
325	/* Set the Gate high, disable speaker */
326	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
327
328	/*
329	 * Counter 2, mode 0 (one-shot), binary count
330	 *
331	 * NOTE! Mode 2 decrements by two (and then the
332	 * output is flipped each time, giving the same
333	 * final output frequency as a decrement-by-one),
334	 * so mode 0 is much better when looking at the
335	 * individual counts.
336	 */
337	outb(0xb0, 0x43);
338
339	/* Start at 0xffff */
340	outb(0xff, 0x42);
341	outb(0xff, 0x42);
342
343	/*
344	 * The PIT starts counting at the next edge, so we
345	 * need to delay for a microsecond. The easiest way
346	 * to do that is to just read back the 16-bit counter
347	 * once from the PIT.
348	 */
349	pit_verify_msb(0);
350
351	if (pit_expect_msb(0xff, &tsc, &d1)) {
352		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
353			if (!pit_expect_msb(0xff-i, &delta, &d2))
354				break;
355
356			/*
357			 * Iterate until the error is less than 500 ppm
358			 */
359			delta -= tsc;
360			if (d1+d2 >= delta >> 11)
361				continue;
362
363			/*
364			 * Check the PIT one more time to verify that
365			 * all TSC reads were stable wrt the PIT.
366			 *
367			 * This also guarantees serialization of the
368			 * last cycle read ('d2') in pit_expect_msb.
369			 */
370			if (!pit_verify_msb(0xfe - i))
371				break;
372			goto success;
373		}
374	}
375	printk("Fast TSC calibration failed\n");
376	return 0;
377
378success:
379	/*
380	 * Ok, if we get here, then we've seen the
381	 * MSB of the PIT decrement 'i' times, and the
382	 * error has shrunk to less than 500 ppm.
383	 *
384	 * As a result, we can depend on there not being
385	 * any odd delays anywhere, and the TSC reads are
386	 * reliable (within the error). We also adjust the
387	 * delta to the middle of the error bars, just
388	 * because it looks nicer.
389	 *
390	 * kHz = ticks / time-in-seconds / 1000;
391	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
392	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
393	 */
394	delta += (long)(d2 - d1)/2;
395	delta *= PIT_TICK_RATE;
396	do_div(delta, i*256*1000);
397	printk("Fast TSC calibration using PIT\n");
398	return delta;
399}
400
401/**
402 * native_calibrate_tsc - calibrate the tsc on boot
403 */
404unsigned long native_calibrate_tsc(void)
405{
406	u64 tsc1, tsc2, delta, ref1, ref2;
407	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
408	unsigned long flags, latch, ms, fast_calibrate;
409	int hpet = is_hpet_enabled(), i, loopmin;
410
 
 
 
 
 
 
 
411	local_irq_save(flags);
412	fast_calibrate = quick_pit_calibrate();
413	local_irq_restore(flags);
414	if (fast_calibrate)
415		return fast_calibrate;
416
417	/*
418	 * Run 5 calibration loops to get the lowest frequency value
419	 * (the best estimate). We use two different calibration modes
420	 * here:
421	 *
422	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
423	 * load a timeout of 50ms. We read the time right after we
424	 * started the timer and wait until the PIT count down reaches
425	 * zero. In each wait loop iteration we read the TSC and check
426	 * the delta to the previous read. We keep track of the min
427	 * and max values of that delta. The delta is mostly defined
428	 * by the IO time of the PIT access, so we can detect when a
429	 * SMI/SMM disturbance happened between the two reads. If the
430	 * maximum time is significantly larger than the minimum time,
431	 * then we discard the result and have another try.
432	 *
433	 * 2) Reference counter. If available we use the HPET or the
434	 * PMTIMER as a reference to check the sanity of that value.
435	 * We use separate TSC readouts and check inside of the
436	 * reference read for a SMI/SMM disturbance. We dicard
437	 * disturbed values here as well. We do that around the PIT
438	 * calibration delay loop as we have to wait for a certain
439	 * amount of time anyway.
440	 */
441
442	/* Preset PIT loop values */
443	latch = CAL_LATCH;
444	ms = CAL_MS;
445	loopmin = CAL_PIT_LOOPS;
446
447	for (i = 0; i < 3; i++) {
448		unsigned long tsc_pit_khz;
449
450		/*
451		 * Read the start value and the reference count of
452		 * hpet/pmtimer when available. Then do the PIT
453		 * calibration, which will take at least 50ms, and
454		 * read the end value.
455		 */
456		local_irq_save(flags);
457		tsc1 = tsc_read_refs(&ref1, hpet);
458		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
459		tsc2 = tsc_read_refs(&ref2, hpet);
460		local_irq_restore(flags);
461
462		/* Pick the lowest PIT TSC calibration so far */
463		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
464
465		/* hpet or pmtimer available ? */
466		if (ref1 == ref2)
467			continue;
468
469		/* Check, whether the sampling was disturbed by an SMI */
470		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
471			continue;
472
473		tsc2 = (tsc2 - tsc1) * 1000000LL;
474		if (hpet)
475			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
476		else
477			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
478
479		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
480
481		/* Check the reference deviation */
482		delta = ((u64) tsc_pit_min) * 100;
483		do_div(delta, tsc_ref_min);
484
485		/*
486		 * If both calibration results are inside a 10% window
487		 * then we can be sure, that the calibration
488		 * succeeded. We break out of the loop right away. We
489		 * use the reference value, as it is more precise.
490		 */
491		if (delta >= 90 && delta <= 110) {
492			printk(KERN_INFO
493			       "TSC: PIT calibration matches %s. %d loops\n",
494			       hpet ? "HPET" : "PMTIMER", i + 1);
495			return tsc_ref_min;
496		}
497
498		/*
499		 * Check whether PIT failed more than once. This
500		 * happens in virtualized environments. We need to
501		 * give the virtual PC a slightly longer timeframe for
502		 * the HPET/PMTIMER to make the result precise.
503		 */
504		if (i == 1 && tsc_pit_min == ULONG_MAX) {
505			latch = CAL2_LATCH;
506			ms = CAL2_MS;
507			loopmin = CAL2_PIT_LOOPS;
508		}
509	}
510
511	/*
512	 * Now check the results.
513	 */
514	if (tsc_pit_min == ULONG_MAX) {
515		/* PIT gave no useful value */
516		printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
517
518		/* We don't have an alternative source, disable TSC */
519		if (!hpet && !ref1 && !ref2) {
520			printk("TSC: No reference (HPET/PMTIMER) available\n");
521			return 0;
522		}
523
524		/* The alternative source failed as well, disable TSC */
525		if (tsc_ref_min == ULONG_MAX) {
526			printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
527			       "failed.\n");
528			return 0;
529		}
530
531		/* Use the alternative source */
532		printk(KERN_INFO "TSC: using %s reference calibration\n",
533		       hpet ? "HPET" : "PMTIMER");
534
535		return tsc_ref_min;
536	}
537
538	/* We don't have an alternative source, use the PIT calibration value */
539	if (!hpet && !ref1 && !ref2) {
540		printk(KERN_INFO "TSC: Using PIT calibration value\n");
541		return tsc_pit_min;
542	}
543
544	/* The alternative source failed, use the PIT calibration value */
545	if (tsc_ref_min == ULONG_MAX) {
546		printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
547		       "Using PIT calibration\n");
548		return tsc_pit_min;
549	}
550
551	/*
552	 * The calibration values differ too much. In doubt, we use
553	 * the PIT value as we know that there are PMTIMERs around
554	 * running at double speed. At least we let the user know:
555	 */
556	printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
557	       hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
558	printk(KERN_INFO "TSC: Using PIT calibration value\n");
559	return tsc_pit_min;
560}
561
562int recalibrate_cpu_khz(void)
563{
564#ifndef CONFIG_SMP
565	unsigned long cpu_khz_old = cpu_khz;
566
567	if (cpu_has_tsc) {
568		tsc_khz = x86_platform.calibrate_tsc();
569		cpu_khz = tsc_khz;
570		cpu_data(0).loops_per_jiffy =
571			cpufreq_scale(cpu_data(0).loops_per_jiffy,
572					cpu_khz_old, cpu_khz);
573		return 0;
574	} else
575		return -ENODEV;
576#else
577	return -ENODEV;
578#endif
579}
580
581EXPORT_SYMBOL(recalibrate_cpu_khz);
582
583
584/* Accelerators for sched_clock()
585 * convert from cycles(64bits) => nanoseconds (64bits)
586 *  basic equation:
587 *              ns = cycles / (freq / ns_per_sec)
588 *              ns = cycles * (ns_per_sec / freq)
589 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
590 *              ns = cycles * (10^6 / cpu_khz)
591 *
592 *      Then we use scaling math (suggested by george@mvista.com) to get:
593 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
594 *              ns = cycles * cyc2ns_scale / SC
595 *
596 *      And since SC is a constant power of two, we can convert the div
597 *  into a shift.
598 *
599 *  We can use khz divisor instead of mhz to keep a better precision, since
600 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
601 *  (mathieu.desnoyers@polymtl.ca)
602 *
603 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
604 */
605
606DEFINE_PER_CPU(unsigned long, cyc2ns);
607DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
608
609static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
610{
611	unsigned long long tsc_now, ns_now, *offset;
612	unsigned long flags, *scale;
613
614	local_irq_save(flags);
615	sched_clock_idle_sleep_event();
616
617	scale = &per_cpu(cyc2ns, cpu);
618	offset = &per_cpu(cyc2ns_offset, cpu);
619
620	rdtscll(tsc_now);
621	ns_now = __cycles_2_ns(tsc_now);
622
623	if (cpu_khz) {
624		*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
625		*offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
626	}
627
628	sched_clock_idle_wakeup_event(0);
629	local_irq_restore(flags);
630}
631
632static unsigned long long cyc2ns_suspend;
633
634void save_sched_clock_state(void)
635{
636	if (!sched_clock_stable)
637		return;
638
639	cyc2ns_suspend = sched_clock();
640}
641
642/*
643 * Even on processors with invariant TSC, TSC gets reset in some the
644 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
645 * arbitrary value (still sync'd across cpu's) during resume from such sleep
646 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
647 * that sched_clock() continues from the point where it was left off during
648 * suspend.
649 */
650void restore_sched_clock_state(void)
651{
652	unsigned long long offset;
653	unsigned long flags;
654	int cpu;
655
656	if (!sched_clock_stable)
657		return;
658
659	local_irq_save(flags);
660
661	__this_cpu_write(cyc2ns_offset, 0);
 
 
 
 
 
 
 
 
662	offset = cyc2ns_suspend - sched_clock();
663
664	for_each_possible_cpu(cpu)
665		per_cpu(cyc2ns_offset, cpu) = offset;
 
 
666
667	local_irq_restore(flags);
668}
669
670#ifdef CONFIG_CPU_FREQ
671
672/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
673 * changes.
674 *
675 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
676 * not that important because current Opteron setups do not support
677 * scaling on SMP anyroads.
678 *
679 * Should fix up last_tsc too. Currently gettimeofday in the
680 * first tick after the change will be slightly wrong.
681 */
682
683static unsigned int  ref_freq;
684static unsigned long loops_per_jiffy_ref;
685static unsigned long tsc_khz_ref;
686
687static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
688				void *data)
689{
690	struct cpufreq_freqs *freq = data;
691	unsigned long *lpj;
692
693	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
694		return 0;
695
696	lpj = &boot_cpu_data.loops_per_jiffy;
697#ifdef CONFIG_SMP
698	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
699		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
700#endif
701
702	if (!ref_freq) {
703		ref_freq = freq->old;
704		loops_per_jiffy_ref = *lpj;
705		tsc_khz_ref = tsc_khz;
706	}
707	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
708			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
709			(val == CPUFREQ_RESUMECHANGE)) {
710		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
711
712		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
713		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
714			mark_tsc_unstable("cpufreq changes");
715	}
716
717	set_cyc2ns_scale(tsc_khz, freq->cpu);
718
719	return 0;
720}
721
722static struct notifier_block time_cpufreq_notifier_block = {
723	.notifier_call  = time_cpufreq_notifier
724};
725
726static int __init cpufreq_tsc(void)
727{
728	if (!cpu_has_tsc)
729		return 0;
730	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
731		return 0;
732	cpufreq_register_notifier(&time_cpufreq_notifier_block,
733				CPUFREQ_TRANSITION_NOTIFIER);
734	return 0;
735}
736
737core_initcall(cpufreq_tsc);
738
739#endif /* CONFIG_CPU_FREQ */
740
741/* clocksource code */
742
743static struct clocksource clocksource_tsc;
744
745/*
746 * We compare the TSC to the cycle_last value in the clocksource
747 * structure to avoid a nasty time-warp. This can be observed in a
748 * very small window right after one CPU updated cycle_last under
749 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
750 * is smaller than the cycle_last reference value due to a TSC which
751 * is slighty behind. This delta is nowhere else observable, but in
752 * that case it results in a forward time jump in the range of hours
753 * due to the unsigned delta calculation of the time keeping core
754 * code, which is necessary to support wrapping clocksources like pm
755 * timer.
756 */
757static cycle_t read_tsc(struct clocksource *cs)
758{
759	cycle_t ret = (cycle_t)get_cycles();
760
761	return ret >= clocksource_tsc.cycle_last ?
762		ret : clocksource_tsc.cycle_last;
763}
764
765static void resume_tsc(struct clocksource *cs)
766{
767	clocksource_tsc.cycle_last = 0;
 
768}
769
770static struct clocksource clocksource_tsc = {
771	.name                   = "tsc",
772	.rating                 = 300,
773	.read                   = read_tsc,
774	.resume			= resume_tsc,
775	.mask                   = CLOCKSOURCE_MASK(64),
776	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
777				  CLOCK_SOURCE_MUST_VERIFY,
778#ifdef CONFIG_X86_64
779	.archdata               = { .vclock_mode = VCLOCK_TSC },
780#endif
781};
782
783void mark_tsc_unstable(char *reason)
784{
785	if (!tsc_unstable) {
786		tsc_unstable = 1;
787		sched_clock_stable = 0;
788		disable_sched_clock_irqtime();
789		printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
790		/* Change only the rating, when not registered */
791		if (clocksource_tsc.mult)
792			clocksource_mark_unstable(&clocksource_tsc);
793		else {
794			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
795			clocksource_tsc.rating = 0;
796		}
797	}
798}
799
800EXPORT_SYMBOL_GPL(mark_tsc_unstable);
801
802static void __init check_system_tsc_reliable(void)
803{
804#ifdef CONFIG_MGEODE_LX
805	/* RTSC counts during suspend */
806#define RTSC_SUSP 0x100
807	unsigned long res_low, res_high;
808
809	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
810	/* Geode_LX - the OLPC CPU has a very reliable TSC */
811	if (res_low & RTSC_SUSP)
812		tsc_clocksource_reliable = 1;
813#endif
814	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
815		tsc_clocksource_reliable = 1;
816}
817
818/*
819 * Make an educated guess if the TSC is trustworthy and synchronized
820 * over all CPUs.
821 */
822__cpuinit int unsynchronized_tsc(void)
823{
824	if (!cpu_has_tsc || tsc_unstable)
825		return 1;
826
827#ifdef CONFIG_SMP
828	if (apic_is_clustered_box())
829		return 1;
830#endif
831
832	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
833		return 0;
834
835	if (tsc_clocksource_reliable)
836		return 0;
837	/*
838	 * Intel systems are normally all synchronized.
839	 * Exceptions must mark TSC as unstable:
840	 */
841	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
842		/* assume multi socket systems are not synchronized: */
843		if (num_possible_cpus() > 1)
844			return 1;
845	}
846
847	return 0;
848}
849
850
851static void tsc_refine_calibration_work(struct work_struct *work);
852static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
853/**
854 * tsc_refine_calibration_work - Further refine tsc freq calibration
855 * @work - ignored.
856 *
857 * This functions uses delayed work over a period of a
858 * second to further refine the TSC freq value. Since this is
859 * timer based, instead of loop based, we don't block the boot
860 * process while this longer calibration is done.
861 *
862 * If there are any calibration anomalies (too many SMIs, etc),
863 * or the refined calibration is off by 1% of the fast early
864 * calibration, we throw out the new calibration and use the
865 * early calibration.
866 */
867static void tsc_refine_calibration_work(struct work_struct *work)
868{
869	static u64 tsc_start = -1, ref_start;
870	static int hpet;
871	u64 tsc_stop, ref_stop, delta;
872	unsigned long freq;
873
874	/* Don't bother refining TSC on unstable systems */
875	if (check_tsc_unstable())
876		goto out;
877
878	/*
879	 * Since the work is started early in boot, we may be
880	 * delayed the first time we expire. So set the workqueue
881	 * again once we know timers are working.
882	 */
883	if (tsc_start == -1) {
884		/*
885		 * Only set hpet once, to avoid mixing hardware
886		 * if the hpet becomes enabled later.
887		 */
888		hpet = is_hpet_enabled();
889		schedule_delayed_work(&tsc_irqwork, HZ);
890		tsc_start = tsc_read_refs(&ref_start, hpet);
891		return;
892	}
893
894	tsc_stop = tsc_read_refs(&ref_stop, hpet);
895
896	/* hpet or pmtimer available ? */
897	if (ref_start == ref_stop)
898		goto out;
899
900	/* Check, whether the sampling was disturbed by an SMI */
901	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
902		goto out;
903
904	delta = tsc_stop - tsc_start;
905	delta *= 1000000LL;
906	if (hpet)
907		freq = calc_hpet_ref(delta, ref_start, ref_stop);
908	else
909		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
910
911	/* Make sure we're within 1% */
912	if (abs(tsc_khz - freq) > tsc_khz/100)
913		goto out;
914
915	tsc_khz = freq;
916	printk(KERN_INFO "Refined TSC clocksource calibration: "
917		"%lu.%03lu MHz.\n", (unsigned long)tsc_khz / 1000,
918					(unsigned long)tsc_khz % 1000);
919
920out:
921	clocksource_register_khz(&clocksource_tsc, tsc_khz);
922}
923
924
925static int __init init_tsc_clocksource(void)
926{
927	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
928		return 0;
929
930	if (tsc_clocksource_reliable)
931		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
932	/* lower the rating if we already know its unstable: */
933	if (check_tsc_unstable()) {
934		clocksource_tsc.rating = 0;
935		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
936	}
 
 
 
 
 
 
 
 
 
 
 
 
 
937	schedule_delayed_work(&tsc_irqwork, 0);
938	return 0;
939}
940/*
941 * We use device_initcall here, to ensure we run after the hpet
942 * is fully initialized, which may occur at fs_initcall time.
943 */
944device_initcall(init_tsc_clocksource);
945
946void __init tsc_init(void)
947{
948	u64 lpj;
949	int cpu;
950
951	x86_init.timers.tsc_pre_init();
952
953	if (!cpu_has_tsc)
954		return;
955
956	tsc_khz = x86_platform.calibrate_tsc();
957	cpu_khz = tsc_khz;
958
959	if (!tsc_khz) {
960		mark_tsc_unstable("could not calculate TSC khz");
961		return;
962	}
963
964	printk("Detected %lu.%03lu MHz processor.\n",
965			(unsigned long)cpu_khz / 1000,
966			(unsigned long)cpu_khz % 1000);
967
968	/*
969	 * Secondary CPUs do not run through tsc_init(), so set up
970	 * all the scale factors for all CPUs, assuming the same
971	 * speed as the bootup CPU. (cpufreq notifiers will fix this
972	 * up if their speed diverges)
973	 */
974	for_each_possible_cpu(cpu)
 
975		set_cyc2ns_scale(cpu_khz, cpu);
 
976
977	if (tsc_disabled > 0)
978		return;
979
980	/* now allow native_sched_clock() to use rdtsc */
 
981	tsc_disabled = 0;
 
982
983	if (!no_sched_irq_time)
984		enable_sched_clock_irqtime();
985
986	lpj = ((u64)tsc_khz * 1000);
987	do_div(lpj, HZ);
988	lpj_fine = lpj;
989
990	use_tsc_delay();
991
992	if (unsynchronized_tsc())
993		mark_tsc_unstable("TSCs unsynchronized");
994
995	check_system_tsc_reliable();
996}
997
v3.15
   1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   2
   3#include <linux/kernel.h>
   4#include <linux/sched.h>
   5#include <linux/init.h>
   6#include <linux/module.h>
   7#include <linux/timer.h>
   8#include <linux/acpi_pmtmr.h>
   9#include <linux/cpufreq.h>
  10#include <linux/delay.h>
  11#include <linux/clocksource.h>
  12#include <linux/percpu.h>
  13#include <linux/timex.h>
  14#include <linux/static_key.h>
  15
  16#include <asm/hpet.h>
  17#include <asm/timer.h>
  18#include <asm/vgtod.h>
  19#include <asm/time.h>
  20#include <asm/delay.h>
  21#include <asm/hypervisor.h>
  22#include <asm/nmi.h>
  23#include <asm/x86_init.h>
  24
  25unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
  26EXPORT_SYMBOL(cpu_khz);
  27
  28unsigned int __read_mostly tsc_khz;
  29EXPORT_SYMBOL(tsc_khz);
  30
  31/*
  32 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  33 */
  34static int __read_mostly tsc_unstable;
  35
  36/* native_sched_clock() is called before tsc_init(), so
  37   we must start with the TSC soft disabled to prevent
  38   erroneous rdtsc usage on !cpu_has_tsc processors */
  39static int __read_mostly tsc_disabled = -1;
  40
  41static struct static_key __use_tsc = STATIC_KEY_INIT;
  42
  43int tsc_clocksource_reliable;
  44
  45/*
  46 * Use a ring-buffer like data structure, where a writer advances the head by
  47 * writing a new data entry and a reader advances the tail when it observes a
  48 * new entry.
  49 *
  50 * Writers are made to wait on readers until there's space to write a new
  51 * entry.
  52 *
  53 * This means that we can always use an {offset, mul} pair to compute a ns
  54 * value that is 'roughly' in the right direction, even if we're writing a new
  55 * {offset, mul} pair during the clock read.
  56 *
  57 * The down-side is that we can no longer guarantee strict monotonicity anymore
  58 * (assuming the TSC was that to begin with), because while we compute the
  59 * intersection point of the two clock slopes and make sure the time is
  60 * continuous at the point of switching; we can no longer guarantee a reader is
  61 * strictly before or after the switch point.
  62 *
  63 * It does mean a reader no longer needs to disable IRQs in order to avoid
  64 * CPU-Freq updates messing with his times, and similarly an NMI reader will
  65 * no longer run the risk of hitting half-written state.
  66 */
  67
  68struct cyc2ns {
  69	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
  70	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
  71	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
  72}; /* exactly fits one cacheline */
  73
  74static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  75
  76struct cyc2ns_data *cyc2ns_read_begin(void)
  77{
  78	struct cyc2ns_data *head;
  79
  80	preempt_disable();
  81
  82	head = this_cpu_read(cyc2ns.head);
  83	/*
  84	 * Ensure we observe the entry when we observe the pointer to it.
  85	 * matches the wmb from cyc2ns_write_end().
  86	 */
  87	smp_read_barrier_depends();
  88	head->__count++;
  89	barrier();
  90
  91	return head;
  92}
  93
  94void cyc2ns_read_end(struct cyc2ns_data *head)
  95{
  96	barrier();
  97	/*
  98	 * If we're the outer most nested read; update the tail pointer
  99	 * when we're done. This notifies possible pending writers
 100	 * that we've observed the head pointer and that the other
 101	 * entry is now free.
 102	 */
 103	if (!--head->__count) {
 104		/*
 105		 * x86-TSO does not reorder writes with older reads;
 106		 * therefore once this write becomes visible to another
 107		 * cpu, we must be finished reading the cyc2ns_data.
 108		 *
 109		 * matches with cyc2ns_write_begin().
 110		 */
 111		this_cpu_write(cyc2ns.tail, head);
 112	}
 113	preempt_enable();
 114}
 115
 116/*
 117 * Begin writing a new @data entry for @cpu.
 118 *
 119 * Assumes some sort of write side lock; currently 'provided' by the assumption
 120 * that cpufreq will call its notifiers sequentially.
 121 */
 122static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
 123{
 124	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 125	struct cyc2ns_data *data = c2n->data;
 126
 127	if (data == c2n->head)
 128		data++;
 129
 130	/* XXX send an IPI to @cpu in order to guarantee a read? */
 131
 132	/*
 133	 * When we observe the tail write from cyc2ns_read_end(),
 134	 * the cpu must be done with that entry and its safe
 135	 * to start writing to it.
 136	 */
 137	while (c2n->tail == data)
 138		cpu_relax();
 139
 140	return data;
 141}
 142
 143static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
 144{
 145	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 146
 147	/*
 148	 * Ensure the @data writes are visible before we publish the
 149	 * entry. Matches the data-depencency in cyc2ns_read_begin().
 150	 */
 151	smp_wmb();
 152
 153	ACCESS_ONCE(c2n->head) = data;
 154}
 155
 156/*
 157 * Accelerators for sched_clock()
 158 * convert from cycles(64bits) => nanoseconds (64bits)
 159 *  basic equation:
 160 *              ns = cycles / (freq / ns_per_sec)
 161 *              ns = cycles * (ns_per_sec / freq)
 162 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 163 *              ns = cycles * (10^6 / cpu_khz)
 164 *
 165 *      Then we use scaling math (suggested by george@mvista.com) to get:
 166 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 167 *              ns = cycles * cyc2ns_scale / SC
 168 *
 169 *      And since SC is a constant power of two, we can convert the div
 170 *  into a shift.
 171 *
 172 *  We can use khz divisor instead of mhz to keep a better precision, since
 173 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
 174 *  (mathieu.desnoyers@polymtl.ca)
 175 *
 176 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 177 */
 178
 179#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
 180
 181static void cyc2ns_data_init(struct cyc2ns_data *data)
 182{
 183	data->cyc2ns_mul = 0;
 184	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
 185	data->cyc2ns_offset = 0;
 186	data->__count = 0;
 187}
 188
 189static void cyc2ns_init(int cpu)
 190{
 191	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 192
 193	cyc2ns_data_init(&c2n->data[0]);
 194	cyc2ns_data_init(&c2n->data[1]);
 195
 196	c2n->head = c2n->data;
 197	c2n->tail = c2n->data;
 198}
 199
 200static inline unsigned long long cycles_2_ns(unsigned long long cyc)
 201{
 202	struct cyc2ns_data *data, *tail;
 203	unsigned long long ns;
 204
 205	/*
 206	 * See cyc2ns_read_*() for details; replicated in order to avoid
 207	 * an extra few instructions that came with the abstraction.
 208	 * Notable, it allows us to only do the __count and tail update
 209	 * dance when its actually needed.
 210	 */
 211
 212	preempt_disable_notrace();
 213	data = this_cpu_read(cyc2ns.head);
 214	tail = this_cpu_read(cyc2ns.tail);
 215
 216	if (likely(data == tail)) {
 217		ns = data->cyc2ns_offset;
 218		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
 219	} else {
 220		data->__count++;
 221
 222		barrier();
 223
 224		ns = data->cyc2ns_offset;
 225		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
 226
 227		barrier();
 228
 229		if (!--data->__count)
 230			this_cpu_write(cyc2ns.tail, data);
 231	}
 232	preempt_enable_notrace();
 233
 234	return ns;
 235}
 236
 237/* XXX surely we already have this someplace in the kernel?! */
 238#define DIV_ROUND(n, d) (((n) + ((d) / 2)) / (d))
 239
 240static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
 241{
 242	unsigned long long tsc_now, ns_now;
 243	struct cyc2ns_data *data;
 244	unsigned long flags;
 245
 246	local_irq_save(flags);
 247	sched_clock_idle_sleep_event();
 248
 249	if (!cpu_khz)
 250		goto done;
 251
 252	data = cyc2ns_write_begin(cpu);
 253
 254	rdtscll(tsc_now);
 255	ns_now = cycles_2_ns(tsc_now);
 256
 257	/*
 258	 * Compute a new multiplier as per the above comment and ensure our
 259	 * time function is continuous; see the comment near struct
 260	 * cyc2ns_data.
 261	 */
 262	data->cyc2ns_mul = DIV_ROUND(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR, cpu_khz);
 263	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
 264	data->cyc2ns_offset = ns_now -
 265		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
 266
 267	cyc2ns_write_end(cpu, data);
 268
 269done:
 270	sched_clock_idle_wakeup_event(0);
 271	local_irq_restore(flags);
 272}
 273/*
 274 * Scheduler clock - returns current time in nanosec units.
 275 */
 276u64 native_sched_clock(void)
 277{
 278	u64 tsc_now;
 279
 280	/*
 281	 * Fall back to jiffies if there's no TSC available:
 282	 * ( But note that we still use it if the TSC is marked
 283	 *   unstable. We do this because unlike Time Of Day,
 284	 *   the scheduler clock tolerates small errors and it's
 285	 *   very important for it to be as fast as the platform
 286	 *   can achieve it. )
 287	 */
 288	if (!static_key_false(&__use_tsc)) {
 289		/* No locking but a rare wrong value is not a big deal: */
 290		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 291	}
 292
 293	/* read the Time Stamp Counter: */
 294	rdtscll(tsc_now);
 295
 296	/* return the value in ns */
 297	return cycles_2_ns(tsc_now);
 298}
 299
 300/* We need to define a real function for sched_clock, to override the
 301   weak default version */
 302#ifdef CONFIG_PARAVIRT
 303unsigned long long sched_clock(void)
 304{
 305	return paravirt_sched_clock();
 306}
 307#else
 308unsigned long long
 309sched_clock(void) __attribute__((alias("native_sched_clock")));
 310#endif
 311
 312unsigned long long native_read_tsc(void)
 313{
 314	return __native_read_tsc();
 315}
 316EXPORT_SYMBOL(native_read_tsc);
 317
 318int check_tsc_unstable(void)
 319{
 320	return tsc_unstable;
 321}
 322EXPORT_SYMBOL_GPL(check_tsc_unstable);
 323
 324int check_tsc_disabled(void)
 325{
 326	return tsc_disabled;
 327}
 328EXPORT_SYMBOL_GPL(check_tsc_disabled);
 329
 330#ifdef CONFIG_X86_TSC
 331int __init notsc_setup(char *str)
 332{
 333	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
 
 334	tsc_disabled = 1;
 335	return 1;
 336}
 337#else
 338/*
 339 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 340 * in cpu/common.c
 341 */
 342int __init notsc_setup(char *str)
 343{
 344	setup_clear_cpu_cap(X86_FEATURE_TSC);
 345	return 1;
 346}
 347#endif
 348
 349__setup("notsc", notsc_setup);
 350
 351static int no_sched_irq_time;
 352
 353static int __init tsc_setup(char *str)
 354{
 355	if (!strcmp(str, "reliable"))
 356		tsc_clocksource_reliable = 1;
 357	if (!strncmp(str, "noirqtime", 9))
 358		no_sched_irq_time = 1;
 359	return 1;
 360}
 361
 362__setup("tsc=", tsc_setup);
 363
 364#define MAX_RETRIES     5
 365#define SMI_TRESHOLD    50000
 366
 367/*
 368 * Read TSC and the reference counters. Take care of SMI disturbance
 369 */
 370static u64 tsc_read_refs(u64 *p, int hpet)
 371{
 372	u64 t1, t2;
 373	int i;
 374
 375	for (i = 0; i < MAX_RETRIES; i++) {
 376		t1 = get_cycles();
 377		if (hpet)
 378			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 379		else
 380			*p = acpi_pm_read_early();
 381		t2 = get_cycles();
 382		if ((t2 - t1) < SMI_TRESHOLD)
 383			return t2;
 384	}
 385	return ULLONG_MAX;
 386}
 387
 388/*
 389 * Calculate the TSC frequency from HPET reference
 390 */
 391static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 392{
 393	u64 tmp;
 394
 395	if (hpet2 < hpet1)
 396		hpet2 += 0x100000000ULL;
 397	hpet2 -= hpet1;
 398	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 399	do_div(tmp, 1000000);
 400	do_div(deltatsc, tmp);
 401
 402	return (unsigned long) deltatsc;
 403}
 404
 405/*
 406 * Calculate the TSC frequency from PMTimer reference
 407 */
 408static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 409{
 410	u64 tmp;
 411
 412	if (!pm1 && !pm2)
 413		return ULONG_MAX;
 414
 415	if (pm2 < pm1)
 416		pm2 += (u64)ACPI_PM_OVRRUN;
 417	pm2 -= pm1;
 418	tmp = pm2 * 1000000000LL;
 419	do_div(tmp, PMTMR_TICKS_PER_SEC);
 420	do_div(deltatsc, tmp);
 421
 422	return (unsigned long) deltatsc;
 423}
 424
 425#define CAL_MS		10
 426#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
 427#define CAL_PIT_LOOPS	1000
 428
 429#define CAL2_MS		50
 430#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
 431#define CAL2_PIT_LOOPS	5000
 432
 433
 434/*
 435 * Try to calibrate the TSC against the Programmable
 436 * Interrupt Timer and return the frequency of the TSC
 437 * in kHz.
 438 *
 439 * Return ULONG_MAX on failure to calibrate.
 440 */
 441static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 442{
 443	u64 tsc, t1, t2, delta;
 444	unsigned long tscmin, tscmax;
 445	int pitcnt;
 446
 447	/* Set the Gate high, disable speaker */
 448	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 449
 450	/*
 451	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
 452	 * count mode), binary count. Set the latch register to 50ms
 453	 * (LSB then MSB) to begin countdown.
 454	 */
 455	outb(0xb0, 0x43);
 456	outb(latch & 0xff, 0x42);
 457	outb(latch >> 8, 0x42);
 458
 459	tsc = t1 = t2 = get_cycles();
 460
 461	pitcnt = 0;
 462	tscmax = 0;
 463	tscmin = ULONG_MAX;
 464	while ((inb(0x61) & 0x20) == 0) {
 465		t2 = get_cycles();
 466		delta = t2 - tsc;
 467		tsc = t2;
 468		if ((unsigned long) delta < tscmin)
 469			tscmin = (unsigned int) delta;
 470		if ((unsigned long) delta > tscmax)
 471			tscmax = (unsigned int) delta;
 472		pitcnt++;
 473	}
 474
 475	/*
 476	 * Sanity checks:
 477	 *
 478	 * If we were not able to read the PIT more than loopmin
 479	 * times, then we have been hit by a massive SMI
 480	 *
 481	 * If the maximum is 10 times larger than the minimum,
 482	 * then we got hit by an SMI as well.
 483	 */
 484	if (pitcnt < loopmin || tscmax > 10 * tscmin)
 485		return ULONG_MAX;
 486
 487	/* Calculate the PIT value */
 488	delta = t2 - t1;
 489	do_div(delta, ms);
 490	return delta;
 491}
 492
 493/*
 494 * This reads the current MSB of the PIT counter, and
 495 * checks if we are running on sufficiently fast and
 496 * non-virtualized hardware.
 497 *
 498 * Our expectations are:
 499 *
 500 *  - the PIT is running at roughly 1.19MHz
 501 *
 502 *  - each IO is going to take about 1us on real hardware,
 503 *    but we allow it to be much faster (by a factor of 10) or
 504 *    _slightly_ slower (ie we allow up to a 2us read+counter
 505 *    update - anything else implies a unacceptably slow CPU
 506 *    or PIT for the fast calibration to work.
 507 *
 508 *  - with 256 PIT ticks to read the value, we have 214us to
 509 *    see the same MSB (and overhead like doing a single TSC
 510 *    read per MSB value etc).
 511 *
 512 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 513 *    them each to take about a microsecond on real hardware.
 514 *    So we expect a count value of around 100. But we'll be
 515 *    generous, and accept anything over 50.
 516 *
 517 *  - if the PIT is stuck, and we see *many* more reads, we
 518 *    return early (and the next caller of pit_expect_msb()
 519 *    then consider it a failure when they don't see the
 520 *    next expected value).
 521 *
 522 * These expectations mean that we know that we have seen the
 523 * transition from one expected value to another with a fairly
 524 * high accuracy, and we didn't miss any events. We can thus
 525 * use the TSC value at the transitions to calculate a pretty
 526 * good value for the TSC frequencty.
 527 */
 528static inline int pit_verify_msb(unsigned char val)
 529{
 530	/* Ignore LSB */
 531	inb(0x42);
 532	return inb(0x42) == val;
 533}
 534
 535static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 536{
 537	int count;
 538	u64 tsc = 0, prev_tsc = 0;
 539
 540	for (count = 0; count < 50000; count++) {
 541		if (!pit_verify_msb(val))
 542			break;
 543		prev_tsc = tsc;
 544		tsc = get_cycles();
 545	}
 546	*deltap = get_cycles() - prev_tsc;
 547	*tscp = tsc;
 548
 549	/*
 550	 * We require _some_ success, but the quality control
 551	 * will be based on the error terms on the TSC values.
 552	 */
 553	return count > 5;
 554}
 555
 556/*
 557 * How many MSB values do we want to see? We aim for
 558 * a maximum error rate of 500ppm (in practice the
 559 * real error is much smaller), but refuse to spend
 560 * more than 50ms on it.
 561 */
 562#define MAX_QUICK_PIT_MS 50
 563#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 564
 565static unsigned long quick_pit_calibrate(void)
 566{
 567	int i;
 568	u64 tsc, delta;
 569	unsigned long d1, d2;
 570
 571	/* Set the Gate high, disable speaker */
 572	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 573
 574	/*
 575	 * Counter 2, mode 0 (one-shot), binary count
 576	 *
 577	 * NOTE! Mode 2 decrements by two (and then the
 578	 * output is flipped each time, giving the same
 579	 * final output frequency as a decrement-by-one),
 580	 * so mode 0 is much better when looking at the
 581	 * individual counts.
 582	 */
 583	outb(0xb0, 0x43);
 584
 585	/* Start at 0xffff */
 586	outb(0xff, 0x42);
 587	outb(0xff, 0x42);
 588
 589	/*
 590	 * The PIT starts counting at the next edge, so we
 591	 * need to delay for a microsecond. The easiest way
 592	 * to do that is to just read back the 16-bit counter
 593	 * once from the PIT.
 594	 */
 595	pit_verify_msb(0);
 596
 597	if (pit_expect_msb(0xff, &tsc, &d1)) {
 598		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 599			if (!pit_expect_msb(0xff-i, &delta, &d2))
 600				break;
 601
 602			/*
 603			 * Iterate until the error is less than 500 ppm
 604			 */
 605			delta -= tsc;
 606			if (d1+d2 >= delta >> 11)
 607				continue;
 608
 609			/*
 610			 * Check the PIT one more time to verify that
 611			 * all TSC reads were stable wrt the PIT.
 612			 *
 613			 * This also guarantees serialization of the
 614			 * last cycle read ('d2') in pit_expect_msb.
 615			 */
 616			if (!pit_verify_msb(0xfe - i))
 617				break;
 618			goto success;
 619		}
 620	}
 621	pr_err("Fast TSC calibration failed\n");
 622	return 0;
 623
 624success:
 625	/*
 626	 * Ok, if we get here, then we've seen the
 627	 * MSB of the PIT decrement 'i' times, and the
 628	 * error has shrunk to less than 500 ppm.
 629	 *
 630	 * As a result, we can depend on there not being
 631	 * any odd delays anywhere, and the TSC reads are
 632	 * reliable (within the error).
 
 
 633	 *
 634	 * kHz = ticks / time-in-seconds / 1000;
 635	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 636	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 637	 */
 
 638	delta *= PIT_TICK_RATE;
 639	do_div(delta, i*256*1000);
 640	pr_info("Fast TSC calibration using PIT\n");
 641	return delta;
 642}
 643
 644/**
 645 * native_calibrate_tsc - calibrate the tsc on boot
 646 */
 647unsigned long native_calibrate_tsc(void)
 648{
 649	u64 tsc1, tsc2, delta, ref1, ref2;
 650	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 651	unsigned long flags, latch, ms, fast_calibrate;
 652	int hpet = is_hpet_enabled(), i, loopmin;
 653
 654	/* Calibrate TSC using MSR for Intel Atom SoCs */
 655	local_irq_save(flags);
 656	fast_calibrate = try_msr_calibrate_tsc();
 657	local_irq_restore(flags);
 658	if (fast_calibrate)
 659		return fast_calibrate;
 660
 661	local_irq_save(flags);
 662	fast_calibrate = quick_pit_calibrate();
 663	local_irq_restore(flags);
 664	if (fast_calibrate)
 665		return fast_calibrate;
 666
 667	/*
 668	 * Run 5 calibration loops to get the lowest frequency value
 669	 * (the best estimate). We use two different calibration modes
 670	 * here:
 671	 *
 672	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 673	 * load a timeout of 50ms. We read the time right after we
 674	 * started the timer and wait until the PIT count down reaches
 675	 * zero. In each wait loop iteration we read the TSC and check
 676	 * the delta to the previous read. We keep track of the min
 677	 * and max values of that delta. The delta is mostly defined
 678	 * by the IO time of the PIT access, so we can detect when a
 679	 * SMI/SMM disturbance happened between the two reads. If the
 680	 * maximum time is significantly larger than the minimum time,
 681	 * then we discard the result and have another try.
 682	 *
 683	 * 2) Reference counter. If available we use the HPET or the
 684	 * PMTIMER as a reference to check the sanity of that value.
 685	 * We use separate TSC readouts and check inside of the
 686	 * reference read for a SMI/SMM disturbance. We dicard
 687	 * disturbed values here as well. We do that around the PIT
 688	 * calibration delay loop as we have to wait for a certain
 689	 * amount of time anyway.
 690	 */
 691
 692	/* Preset PIT loop values */
 693	latch = CAL_LATCH;
 694	ms = CAL_MS;
 695	loopmin = CAL_PIT_LOOPS;
 696
 697	for (i = 0; i < 3; i++) {
 698		unsigned long tsc_pit_khz;
 699
 700		/*
 701		 * Read the start value and the reference count of
 702		 * hpet/pmtimer when available. Then do the PIT
 703		 * calibration, which will take at least 50ms, and
 704		 * read the end value.
 705		 */
 706		local_irq_save(flags);
 707		tsc1 = tsc_read_refs(&ref1, hpet);
 708		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 709		tsc2 = tsc_read_refs(&ref2, hpet);
 710		local_irq_restore(flags);
 711
 712		/* Pick the lowest PIT TSC calibration so far */
 713		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 714
 715		/* hpet or pmtimer available ? */
 716		if (ref1 == ref2)
 717			continue;
 718
 719		/* Check, whether the sampling was disturbed by an SMI */
 720		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 721			continue;
 722
 723		tsc2 = (tsc2 - tsc1) * 1000000LL;
 724		if (hpet)
 725			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 726		else
 727			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 728
 729		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 730
 731		/* Check the reference deviation */
 732		delta = ((u64) tsc_pit_min) * 100;
 733		do_div(delta, tsc_ref_min);
 734
 735		/*
 736		 * If both calibration results are inside a 10% window
 737		 * then we can be sure, that the calibration
 738		 * succeeded. We break out of the loop right away. We
 739		 * use the reference value, as it is more precise.
 740		 */
 741		if (delta >= 90 && delta <= 110) {
 742			pr_info("PIT calibration matches %s. %d loops\n",
 743				hpet ? "HPET" : "PMTIMER", i + 1);
 
 744			return tsc_ref_min;
 745		}
 746
 747		/*
 748		 * Check whether PIT failed more than once. This
 749		 * happens in virtualized environments. We need to
 750		 * give the virtual PC a slightly longer timeframe for
 751		 * the HPET/PMTIMER to make the result precise.
 752		 */
 753		if (i == 1 && tsc_pit_min == ULONG_MAX) {
 754			latch = CAL2_LATCH;
 755			ms = CAL2_MS;
 756			loopmin = CAL2_PIT_LOOPS;
 757		}
 758	}
 759
 760	/*
 761	 * Now check the results.
 762	 */
 763	if (tsc_pit_min == ULONG_MAX) {
 764		/* PIT gave no useful value */
 765		pr_warn("Unable to calibrate against PIT\n");
 766
 767		/* We don't have an alternative source, disable TSC */
 768		if (!hpet && !ref1 && !ref2) {
 769			pr_notice("No reference (HPET/PMTIMER) available\n");
 770			return 0;
 771		}
 772
 773		/* The alternative source failed as well, disable TSC */
 774		if (tsc_ref_min == ULONG_MAX) {
 775			pr_warn("HPET/PMTIMER calibration failed\n");
 
 776			return 0;
 777		}
 778
 779		/* Use the alternative source */
 780		pr_info("using %s reference calibration\n",
 781			hpet ? "HPET" : "PMTIMER");
 782
 783		return tsc_ref_min;
 784	}
 785
 786	/* We don't have an alternative source, use the PIT calibration value */
 787	if (!hpet && !ref1 && !ref2) {
 788		pr_info("Using PIT calibration value\n");
 789		return tsc_pit_min;
 790	}
 791
 792	/* The alternative source failed, use the PIT calibration value */
 793	if (tsc_ref_min == ULONG_MAX) {
 794		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 
 795		return tsc_pit_min;
 796	}
 797
 798	/*
 799	 * The calibration values differ too much. In doubt, we use
 800	 * the PIT value as we know that there are PMTIMERs around
 801	 * running at double speed. At least we let the user know:
 802	 */
 803	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 804		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 805	pr_info("Using PIT calibration value\n");
 806	return tsc_pit_min;
 807}
 808
 809int recalibrate_cpu_khz(void)
 810{
 811#ifndef CONFIG_SMP
 812	unsigned long cpu_khz_old = cpu_khz;
 813
 814	if (cpu_has_tsc) {
 815		tsc_khz = x86_platform.calibrate_tsc();
 816		cpu_khz = tsc_khz;
 817		cpu_data(0).loops_per_jiffy =
 818			cpufreq_scale(cpu_data(0).loops_per_jiffy,
 819					cpu_khz_old, cpu_khz);
 820		return 0;
 821	} else
 822		return -ENODEV;
 823#else
 824	return -ENODEV;
 825#endif
 826}
 827
 828EXPORT_SYMBOL(recalibrate_cpu_khz);
 829
 830
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831static unsigned long long cyc2ns_suspend;
 832
 833void tsc_save_sched_clock_state(void)
 834{
 835	if (!sched_clock_stable())
 836		return;
 837
 838	cyc2ns_suspend = sched_clock();
 839}
 840
 841/*
 842 * Even on processors with invariant TSC, TSC gets reset in some the
 843 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 844 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 845 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 846 * that sched_clock() continues from the point where it was left off during
 847 * suspend.
 848 */
 849void tsc_restore_sched_clock_state(void)
 850{
 851	unsigned long long offset;
 852	unsigned long flags;
 853	int cpu;
 854
 855	if (!sched_clock_stable())
 856		return;
 857
 858	local_irq_save(flags);
 859
 860	/*
 861	 * We're comming out of suspend, there's no concurrency yet; don't
 862	 * bother being nice about the RCU stuff, just write to both
 863	 * data fields.
 864	 */
 865
 866	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 867	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 868
 869	offset = cyc2ns_suspend - sched_clock();
 870
 871	for_each_possible_cpu(cpu) {
 872		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 873		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 874	}
 875
 876	local_irq_restore(flags);
 877}
 878
 879#ifdef CONFIG_CPU_FREQ
 880
 881/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 882 * changes.
 883 *
 884 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 885 * not that important because current Opteron setups do not support
 886 * scaling on SMP anyroads.
 887 *
 888 * Should fix up last_tsc too. Currently gettimeofday in the
 889 * first tick after the change will be slightly wrong.
 890 */
 891
 892static unsigned int  ref_freq;
 893static unsigned long loops_per_jiffy_ref;
 894static unsigned long tsc_khz_ref;
 895
 896static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 897				void *data)
 898{
 899	struct cpufreq_freqs *freq = data;
 900	unsigned long *lpj;
 901
 902	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
 903		return 0;
 904
 905	lpj = &boot_cpu_data.loops_per_jiffy;
 906#ifdef CONFIG_SMP
 907	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 908		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
 909#endif
 910
 911	if (!ref_freq) {
 912		ref_freq = freq->old;
 913		loops_per_jiffy_ref = *lpj;
 914		tsc_khz_ref = tsc_khz;
 915	}
 916	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 917			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
 
 918		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
 919
 920		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
 921		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 922			mark_tsc_unstable("cpufreq changes");
 923	}
 924
 925	set_cyc2ns_scale(tsc_khz, freq->cpu);
 926
 927	return 0;
 928}
 929
 930static struct notifier_block time_cpufreq_notifier_block = {
 931	.notifier_call  = time_cpufreq_notifier
 932};
 933
 934static int __init cpufreq_tsc(void)
 935{
 936	if (!cpu_has_tsc)
 937		return 0;
 938	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 939		return 0;
 940	cpufreq_register_notifier(&time_cpufreq_notifier_block,
 941				CPUFREQ_TRANSITION_NOTIFIER);
 942	return 0;
 943}
 944
 945core_initcall(cpufreq_tsc);
 946
 947#endif /* CONFIG_CPU_FREQ */
 948
 949/* clocksource code */
 950
 951static struct clocksource clocksource_tsc;
 952
 953/*
 954 * We compare the TSC to the cycle_last value in the clocksource
 955 * structure to avoid a nasty time-warp. This can be observed in a
 956 * very small window right after one CPU updated cycle_last under
 957 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 958 * is smaller than the cycle_last reference value due to a TSC which
 959 * is slighty behind. This delta is nowhere else observable, but in
 960 * that case it results in a forward time jump in the range of hours
 961 * due to the unsigned delta calculation of the time keeping core
 962 * code, which is necessary to support wrapping clocksources like pm
 963 * timer.
 964 */
 965static cycle_t read_tsc(struct clocksource *cs)
 966{
 967	cycle_t ret = (cycle_t)get_cycles();
 968
 969	return ret >= clocksource_tsc.cycle_last ?
 970		ret : clocksource_tsc.cycle_last;
 971}
 972
 973static void resume_tsc(struct clocksource *cs)
 974{
 975	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
 976		clocksource_tsc.cycle_last = 0;
 977}
 978
 979static struct clocksource clocksource_tsc = {
 980	.name                   = "tsc",
 981	.rating                 = 300,
 982	.read                   = read_tsc,
 983	.resume			= resume_tsc,
 984	.mask                   = CLOCKSOURCE_MASK(64),
 985	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
 986				  CLOCK_SOURCE_MUST_VERIFY,
 
 987	.archdata               = { .vclock_mode = VCLOCK_TSC },
 
 988};
 989
 990void mark_tsc_unstable(char *reason)
 991{
 992	if (!tsc_unstable) {
 993		tsc_unstable = 1;
 994		clear_sched_clock_stable();
 995		disable_sched_clock_irqtime();
 996		pr_info("Marking TSC unstable due to %s\n", reason);
 997		/* Change only the rating, when not registered */
 998		if (clocksource_tsc.mult)
 999			clocksource_mark_unstable(&clocksource_tsc);
1000		else {
1001			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1002			clocksource_tsc.rating = 0;
1003		}
1004	}
1005}
1006
1007EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1008
1009static void __init check_system_tsc_reliable(void)
1010{
1011#ifdef CONFIG_MGEODE_LX
1012	/* RTSC counts during suspend */
1013#define RTSC_SUSP 0x100
1014	unsigned long res_low, res_high;
1015
1016	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1017	/* Geode_LX - the OLPC CPU has a very reliable TSC */
1018	if (res_low & RTSC_SUSP)
1019		tsc_clocksource_reliable = 1;
1020#endif
1021	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1022		tsc_clocksource_reliable = 1;
1023}
1024
1025/*
1026 * Make an educated guess if the TSC is trustworthy and synchronized
1027 * over all CPUs.
1028 */
1029int unsynchronized_tsc(void)
1030{
1031	if (!cpu_has_tsc || tsc_unstable)
1032		return 1;
1033
1034#ifdef CONFIG_SMP
1035	if (apic_is_clustered_box())
1036		return 1;
1037#endif
1038
1039	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1040		return 0;
1041
1042	if (tsc_clocksource_reliable)
1043		return 0;
1044	/*
1045	 * Intel systems are normally all synchronized.
1046	 * Exceptions must mark TSC as unstable:
1047	 */
1048	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1049		/* assume multi socket systems are not synchronized: */
1050		if (num_possible_cpus() > 1)
1051			return 1;
1052	}
1053
1054	return 0;
1055}
1056
1057
1058static void tsc_refine_calibration_work(struct work_struct *work);
1059static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1060/**
1061 * tsc_refine_calibration_work - Further refine tsc freq calibration
1062 * @work - ignored.
1063 *
1064 * This functions uses delayed work over a period of a
1065 * second to further refine the TSC freq value. Since this is
1066 * timer based, instead of loop based, we don't block the boot
1067 * process while this longer calibration is done.
1068 *
1069 * If there are any calibration anomalies (too many SMIs, etc),
1070 * or the refined calibration is off by 1% of the fast early
1071 * calibration, we throw out the new calibration and use the
1072 * early calibration.
1073 */
1074static void tsc_refine_calibration_work(struct work_struct *work)
1075{
1076	static u64 tsc_start = -1, ref_start;
1077	static int hpet;
1078	u64 tsc_stop, ref_stop, delta;
1079	unsigned long freq;
1080
1081	/* Don't bother refining TSC on unstable systems */
1082	if (check_tsc_unstable())
1083		goto out;
1084
1085	/*
1086	 * Since the work is started early in boot, we may be
1087	 * delayed the first time we expire. So set the workqueue
1088	 * again once we know timers are working.
1089	 */
1090	if (tsc_start == -1) {
1091		/*
1092		 * Only set hpet once, to avoid mixing hardware
1093		 * if the hpet becomes enabled later.
1094		 */
1095		hpet = is_hpet_enabled();
1096		schedule_delayed_work(&tsc_irqwork, HZ);
1097		tsc_start = tsc_read_refs(&ref_start, hpet);
1098		return;
1099	}
1100
1101	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1102
1103	/* hpet or pmtimer available ? */
1104	if (ref_start == ref_stop)
1105		goto out;
1106
1107	/* Check, whether the sampling was disturbed by an SMI */
1108	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1109		goto out;
1110
1111	delta = tsc_stop - tsc_start;
1112	delta *= 1000000LL;
1113	if (hpet)
1114		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1115	else
1116		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1117
1118	/* Make sure we're within 1% */
1119	if (abs(tsc_khz - freq) > tsc_khz/100)
1120		goto out;
1121
1122	tsc_khz = freq;
1123	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1124		(unsigned long)tsc_khz / 1000,
1125		(unsigned long)tsc_khz % 1000);
1126
1127out:
1128	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1129}
1130
1131
1132static int __init init_tsc_clocksource(void)
1133{
1134	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
1135		return 0;
1136
1137	if (tsc_clocksource_reliable)
1138		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1139	/* lower the rating if we already know its unstable: */
1140	if (check_tsc_unstable()) {
1141		clocksource_tsc.rating = 0;
1142		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1143	}
1144
1145	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1146		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1147
1148	/*
1149	 * Trust the results of the earlier calibration on systems
1150	 * exporting a reliable TSC.
1151	 */
1152	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1153		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1154		return 0;
1155	}
1156
1157	schedule_delayed_work(&tsc_irqwork, 0);
1158	return 0;
1159}
1160/*
1161 * We use device_initcall here, to ensure we run after the hpet
1162 * is fully initialized, which may occur at fs_initcall time.
1163 */
1164device_initcall(init_tsc_clocksource);
1165
1166void __init tsc_init(void)
1167{
1168	u64 lpj;
1169	int cpu;
1170
1171	x86_init.timers.tsc_pre_init();
1172
1173	if (!cpu_has_tsc)
1174		return;
1175
1176	tsc_khz = x86_platform.calibrate_tsc();
1177	cpu_khz = tsc_khz;
1178
1179	if (!tsc_khz) {
1180		mark_tsc_unstable("could not calculate TSC khz");
1181		return;
1182	}
1183
1184	pr_info("Detected %lu.%03lu MHz processor\n",
1185		(unsigned long)cpu_khz / 1000,
1186		(unsigned long)cpu_khz % 1000);
1187
1188	/*
1189	 * Secondary CPUs do not run through tsc_init(), so set up
1190	 * all the scale factors for all CPUs, assuming the same
1191	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1192	 * up if their speed diverges)
1193	 */
1194	for_each_possible_cpu(cpu) {
1195		cyc2ns_init(cpu);
1196		set_cyc2ns_scale(cpu_khz, cpu);
1197	}
1198
1199	if (tsc_disabled > 0)
1200		return;
1201
1202	/* now allow native_sched_clock() to use rdtsc */
1203
1204	tsc_disabled = 0;
1205	static_key_slow_inc(&__use_tsc);
1206
1207	if (!no_sched_irq_time)
1208		enable_sched_clock_irqtime();
1209
1210	lpj = ((u64)tsc_khz * 1000);
1211	do_div(lpj, HZ);
1212	lpj_fine = lpj;
1213
1214	use_tsc_delay();
1215
1216	if (unsynchronized_tsc())
1217		mark_tsc_unstable("TSCs unsynchronized");
1218
1219	check_system_tsc_reliable();
1220}
1221
1222#ifdef CONFIG_SMP
1223/*
1224 * If we have a constant TSC and are using the TSC for the delay loop,
1225 * we can skip clock calibration if another cpu in the same socket has already
1226 * been calibrated. This assumes that CONSTANT_TSC applies to all
1227 * cpus in the socket - this should be a safe assumption.
1228 */
1229unsigned long calibrate_delay_is_known(void)
1230{
1231	int i, cpu = smp_processor_id();
1232
1233	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1234		return 0;
1235
1236	for_each_online_cpu(i)
1237		if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1238			return cpu_data(i).loops_per_jiffy;
1239	return 0;
1240}
1241#endif