Linux Audio

Check our new training course

Loading...
v3.1
 
 
  1#include <linux/errno.h>
  2#include <linux/kernel.h>
  3#include <linux/mm.h>
  4#include <linux/smp.h>
  5#include <linux/prctl.h>
  6#include <linux/slab.h>
  7#include <linux/sched.h>
  8#include <linux/module.h>
  9#include <linux/pm.h>
 10#include <linux/clockchips.h>
 11#include <linux/random.h>
 12#include <linux/user-return-notifier.h>
 13#include <linux/dmi.h>
 14#include <linux/utsname.h>
 
 
 
 15#include <trace/events/power.h>
 16#include <linux/hw_breakpoint.h>
 17#include <asm/cpu.h>
 18#include <asm/system.h>
 19#include <asm/apic.h>
 20#include <asm/syscalls.h>
 21#include <asm/idle.h>
 22#include <asm/uaccess.h>
 23#include <asm/i387.h>
 
 24#include <asm/debugreg.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25
 26struct kmem_cache *task_xstate_cachep;
 27EXPORT_SYMBOL_GPL(task_xstate_cachep);
 28
 
 
 
 
 29int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 30{
 31	int ret;
 32
 33	*dst = *src;
 34	if (fpu_allocated(&src->thread.fpu)) {
 35		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
 36		ret = fpu_alloc(&dst->thread.fpu);
 37		if (ret)
 38			return ret;
 39		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
 40	}
 41	return 0;
 42}
 43
 44void free_thread_xstate(struct task_struct *tsk)
 45{
 46	fpu_free(&tsk->thread.fpu);
 47}
 48
 49void free_thread_info(struct thread_info *ti)
 50{
 51	free_thread_xstate(ti->task);
 52	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
 53}
 54
 55void arch_task_cache_init(void)
 56{
 57        task_xstate_cachep =
 58        	kmem_cache_create("task_xstate", xstate_size,
 59				  __alignof__(union thread_xstate),
 60				  SLAB_PANIC | SLAB_NOTRACK, NULL);
 61}
 62
 63/*
 64 * Free current thread data structures etc..
 65 */
 66void exit_thread(void)
 67{
 68	struct task_struct *me = current;
 69	struct thread_struct *t = &me->thread;
 70	unsigned long *bp = t->io_bitmap_ptr;
 71
 72	if (bp) {
 73		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
 74
 75		t->io_bitmap_ptr = NULL;
 76		clear_thread_flag(TIF_IO_BITMAP);
 77		/*
 78		 * Careful, clear this in the TSS too:
 79		 */
 80		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
 81		t->io_bitmap_max = 0;
 82		put_cpu();
 83		kfree(bp);
 84	}
 85}
 86
 87void show_regs(struct pt_regs *regs)
 88{
 89	show_registers(regs);
 90	show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0);
 91}
 92
 93void show_regs_common(void)
 94{
 95	const char *vendor, *product, *board;
 96
 97	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 98	if (!vendor)
 99		vendor = "";
100	product = dmi_get_system_info(DMI_PRODUCT_NAME);
101	if (!product)
102		product = "";
103
104	/* Board Name is optional */
105	board = dmi_get_system_info(DMI_BOARD_NAME);
106
107	printk(KERN_CONT "\n");
108	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
109		current->pid, current->comm, print_tainted(),
110		init_utsname()->release,
111		(int)strcspn(init_utsname()->version, " "),
112		init_utsname()->version);
113	printk(KERN_CONT " %s %s", vendor, product);
114	if (board)
115		printk(KERN_CONT "/%s", board);
116	printk(KERN_CONT "\n");
117}
118
119void flush_thread(void)
120{
121	struct task_struct *tsk = current;
122
123	flush_ptrace_hw_breakpoint(tsk);
124	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 
125	/*
126	 * Forget coprocessor state..
 
127	 */
128	tsk->fpu_counter = 0;
129	clear_fpu(tsk);
130	clear_used_math();
131}
132
133static void hard_disable_TSC(void)
134{
135	write_cr4(read_cr4() | X86_CR4_TSD);
136}
137
138void disable_TSC(void)
139{
140	preempt_disable();
141	if (!test_and_set_thread_flag(TIF_NOTSC))
142		/*
143		 * Must flip the CPU state synchronously with
144		 * TIF_NOTSC in the current running context.
145		 */
146		hard_disable_TSC();
147	preempt_enable();
148}
149
150static void hard_enable_TSC(void)
151{
152	write_cr4(read_cr4() & ~X86_CR4_TSD);
153}
154
155static void enable_TSC(void)
156{
157	preempt_disable();
158	if (test_and_clear_thread_flag(TIF_NOTSC))
159		/*
160		 * Must flip the CPU state synchronously with
161		 * TIF_NOTSC in the current running context.
162		 */
163		hard_enable_TSC();
164	preempt_enable();
165}
166
167int get_tsc_mode(unsigned long adr)
168{
169	unsigned int val;
170
171	if (test_thread_flag(TIF_NOTSC))
172		val = PR_TSC_SIGSEGV;
173	else
174		val = PR_TSC_ENABLE;
175
176	return put_user(val, (unsigned int __user *)adr);
177}
178
179int set_tsc_mode(unsigned int val)
180{
181	if (val == PR_TSC_SIGSEGV)
182		disable_TSC();
183	else if (val == PR_TSC_ENABLE)
184		enable_TSC();
185	else
186		return -EINVAL;
187
188	return 0;
189}
190
191void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
192		      struct tss_struct *tss)
193{
194	struct thread_struct *prev, *next;
195
196	prev = &prev_p->thread;
197	next = &next_p->thread;
198
199	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
200	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
201		unsigned long debugctl = get_debugctlmsr();
202
203		debugctl &= ~DEBUGCTLMSR_BTF;
204		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
205			debugctl |= DEBUGCTLMSR_BTF;
206
207		update_debugctlmsr(debugctl);
208	}
209
210	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
211	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
212		/* prev and next are different */
213		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
214			hard_disable_TSC();
215		else
216			hard_enable_TSC();
217	}
218
219	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
220		/*
221		 * Copy the relevant range of the IO bitmap.
222		 * Normally this is 128 bytes or less:
223		 */
224		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
225		       max(prev->io_bitmap_max, next->io_bitmap_max));
226	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
227		/*
228		 * Clear any possible leftover bits:
229		 */
230		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
231	}
232	propagate_user_return_notify(prev_p, next_p);
233}
234
235int sys_fork(struct pt_regs *regs)
236{
237	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
238}
239
240/*
241 * This is trivial, and on the face of it looks like it
242 * could equally well be done in user mode.
243 *
244 * Not so, for quite unobvious reasons - register pressure.
245 * In user mode vfork() cannot have a stack frame, and if
246 * done by calling the "clone()" system call directly, you
247 * do not have enough call-clobbered registers to hold all
248 * the information you need.
249 */
250int sys_vfork(struct pt_regs *regs)
251{
252	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
253		       NULL, NULL);
254}
255
256long
257sys_clone(unsigned long clone_flags, unsigned long newsp,
258	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
259{
260	if (!newsp)
261		newsp = regs->sp;
262	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
263}
264
265/*
266 * This gets run with %si containing the
267 * function to call, and %di containing
268 * the "args".
269 */
270extern void kernel_thread_helper(void);
271
272/*
273 * Create a kernel thread
274 */
275int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
276{
277	struct pt_regs regs;
278
279	memset(&regs, 0, sizeof(regs));
280
281	regs.si = (unsigned long) fn;
282	regs.di = (unsigned long) arg;
283
284#ifdef CONFIG_X86_32
285	regs.ds = __USER_DS;
286	regs.es = __USER_DS;
287	regs.fs = __KERNEL_PERCPU;
288	regs.gs = __KERNEL_STACK_CANARY;
289#else
290	regs.ss = __KERNEL_DS;
291#endif
292
293	regs.orig_ax = -1;
294	regs.ip = (unsigned long) kernel_thread_helper;
295	regs.cs = __KERNEL_CS | get_kernel_rpl();
296	regs.flags = X86_EFLAGS_IF | 0x2;
297
298	/* Ok, create the new process.. */
299	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
300}
301EXPORT_SYMBOL(kernel_thread);
302
303/*
304 * sys_execve() executes a new program.
305 */
306long sys_execve(const char __user *name,
307		const char __user *const __user *argv,
308		const char __user *const __user *envp, struct pt_regs *regs)
309{
310	long error;
311	char *filename;
312
313	filename = getname(name);
314	error = PTR_ERR(filename);
315	if (IS_ERR(filename))
316		return error;
317	error = do_execve(filename, argv, envp, regs);
318
319#ifdef CONFIG_X86_32
320	if (error == 0) {
321		/* Make sure we don't return using sysenter.. */
322                set_thread_flag(TIF_IRET);
323        }
324#endif
325
326	putname(filename);
327	return error;
328}
329
330/*
331 * Idle related variables and functions
332 */
333unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
334EXPORT_SYMBOL(boot_option_idle_override);
335
336/*
337 * Powermanagement idle function, if any..
338 */
339void (*pm_idle)(void);
340#ifdef CONFIG_APM_MODULE
341EXPORT_SYMBOL(pm_idle);
342#endif
343
344#ifdef CONFIG_X86_32
345/*
346 * This halt magic was a workaround for ancient floppy DMA
347 * wreckage. It should be safe to remove.
348 */
349static int hlt_counter;
350void disable_hlt(void)
351{
352	hlt_counter++;
353}
354EXPORT_SYMBOL(disable_hlt);
355
356void enable_hlt(void)
 
357{
358	hlt_counter--;
 
359}
360EXPORT_SYMBOL(enable_hlt);
361
362static inline int hlt_use_halt(void)
363{
364	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
 
 
365}
366#else
367static inline int hlt_use_halt(void)
 
368{
369	return 1;
 
 
 
370}
371#endif
372
373/*
374 * We use this if we don't have any better
375 * idle routine..
376 */
377void default_idle(void)
378{
379	if (hlt_use_halt()) {
380		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
381		trace_cpu_idle(1, smp_processor_id());
382		current_thread_info()->status &= ~TS_POLLING;
383		/*
384		 * TS_POLLING-cleared state must be visible before we
385		 * test NEED_RESCHED:
386		 */
387		smp_mb();
388
389		if (!need_resched())
390			safe_halt();	/* enables interrupts racelessly */
391		else
392			local_irq_enable();
393		current_thread_info()->status |= TS_POLLING;
394		trace_power_end(smp_processor_id());
395		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
396	} else {
397		local_irq_enable();
398		/* loop is done by the caller */
399		cpu_relax();
400	}
401}
402#ifdef CONFIG_APM_MODULE
403EXPORT_SYMBOL(default_idle);
404#endif
405
406void stop_this_cpu(void *dummy)
407{
408	local_irq_disable();
409	/*
410	 * Remove this CPU:
411	 */
412	set_cpu_online(smp_processor_id(), false);
413	disable_local_APIC();
414
415	for (;;) {
416		if (hlt_works(smp_processor_id()))
417			halt();
418	}
419}
420
421static void do_nothing(void *unused)
422{
 
423}
424
425/*
426 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
427 * pm_idle and update to new pm_idle value. Required while changing pm_idle
428 * handler on SMP systems.
429 *
430 * Caller must have changed pm_idle to the new value before the call. Old
431 * pm_idle value will not be used by any CPU after the return of this function.
432 */
433void cpu_idle_wait(void)
434{
435	smp_mb();
436	/* kick all the CPUs so that they exit out of pm_idle */
437	smp_call_function(do_nothing, NULL, 1);
438}
439EXPORT_SYMBOL_GPL(cpu_idle_wait);
440
441/* Default MONITOR/MWAIT with no hints, used for default C1 state */
442static void mwait_idle(void)
443{
444	if (!need_resched()) {
445		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
446		trace_cpu_idle(1, smp_processor_id());
447		if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
448			clflush((void *)&current_thread_info()->flags);
449
450		__monitor((void *)&current_thread_info()->flags, 0, 0);
451		smp_mb();
452		if (!need_resched())
453			__sti_mwait(0, 0);
454		else
455			local_irq_enable();
456		trace_power_end(smp_processor_id());
457		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
458	} else
459		local_irq_enable();
460}
461
462/*
463 * On SMP it's slightly faster (but much more power-consuming!)
464 * to poll the ->work.need_resched flag instead of waiting for the
465 * cross-CPU IPI to arrive. Use this option with caution.
466 */
467static void poll_idle(void)
468{
469	trace_power_start(POWER_CSTATE, 0, smp_processor_id());
470	trace_cpu_idle(0, smp_processor_id());
471	local_irq_enable();
472	while (!need_resched())
473		cpu_relax();
474	trace_power_end(smp_processor_id());
475	trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
476}
 
 
 
477
478/*
479 * mwait selection logic:
480 *
481 * It depends on the CPU. For AMD CPUs that support MWAIT this is
482 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
483 * then depend on a clock divisor and current Pstate of the core. If
484 * all cores of a processor are in halt state (C1) the processor can
485 * enter the C1E (C1 enhanced) state. If mwait is used this will never
486 * happen.
487 *
488 * idle=mwait overrides this decision and forces the usage of mwait.
489 */
490
491#define MWAIT_INFO			0x05
492#define MWAIT_ECX_EXTENDED_INFO		0x01
493#define MWAIT_EDX_C1			0xf0
494
495int mwait_usable(const struct cpuinfo_x86 *c)
496{
497	u32 eax, ebx, ecx, edx;
498
499	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
500		return 1;
501
502	if (c->cpuid_level < MWAIT_INFO)
503		return 0;
504
505	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
506	/* Check, whether EDX has extended info about MWAIT */
507	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
508		return 1;
509
 
 
 
 
 
 
510	/*
511	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
512	 * C1  supports MWAIT
513	 */
514	return (edx & MWAIT_EDX_C1);
 
 
 
 
515}
516
517bool amd_e400_c1e_detected;
518EXPORT_SYMBOL(amd_e400_c1e_detected);
519
520static cpumask_var_t amd_e400_c1e_mask;
521
522void amd_e400_remove_cpu(int cpu)
523{
524	if (amd_e400_c1e_mask != NULL)
525		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
526}
527
528/*
529 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
530 * pending message MSR. If we detect C1E, then we handle it the same
531 * way as C3 power states (local apic timer and TSC stop)
532 */
533static void amd_e400_idle(void)
534{
535	if (need_resched())
536		return;
537
538	if (!amd_e400_c1e_detected) {
539		u32 lo, hi;
540
541		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
542
543		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
544			amd_e400_c1e_detected = true;
545			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
546				mark_tsc_unstable("TSC halt in AMD C1E");
547			printk(KERN_INFO "System has AMD C1E enabled\n");
548		}
549	}
550
551	if (amd_e400_c1e_detected) {
552		int cpu = smp_processor_id();
553
554		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
555			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
556			/*
557			 * Force broadcast so ACPI can not interfere.
558			 */
559			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
560					   &cpu);
561			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
562			       cpu);
563		}
564		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
565
566		default_idle();
567
568		/*
569		 * The switch back from broadcast mode needs to be
570		 * called with interrupts disabled.
571		 */
572		 local_irq_disable();
573		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
574		 local_irq_enable();
575	} else
576		default_idle();
577}
578
579void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
580{
581#ifdef CONFIG_SMP
582	if (pm_idle == poll_idle && smp_num_siblings > 1) {
583		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
584			" performance may degrade.\n");
585	}
586#endif
587	if (pm_idle)
588		return;
589
590	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
591		/*
592		 * One CPU supports mwait => All CPUs supports mwait
593		 */
594		printk(KERN_INFO "using mwait in idle threads.\n");
595		pm_idle = mwait_idle;
596	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
597		/* E400: APIC timer interrupt does not wake up CPU from C1e */
598		printk(KERN_INFO "using AMD E400 aware idle routine\n");
599		pm_idle = amd_e400_idle;
600	} else
601		pm_idle = default_idle;
602}
603
604void __init init_amd_e400_c1e_mask(void)
605{
606	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
607	if (pm_idle == amd_e400_idle)
608		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
609}
610
611static int __init idle_setup(char *str)
612{
613	if (!str)
614		return -EINVAL;
615
616	if (!strcmp(str, "poll")) {
617		printk("using polling idle threads.\n");
618		pm_idle = poll_idle;
619		boot_option_idle_override = IDLE_POLL;
620	} else if (!strcmp(str, "mwait")) {
621		boot_option_idle_override = IDLE_FORCE_MWAIT;
622		WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
623	} else if (!strcmp(str, "halt")) {
624		/*
625		 * When the boot option of idle=halt is added, halt is
626		 * forced to be used for CPU idle. In such case CPU C2/C3
627		 * won't be used again.
628		 * To continue to load the CPU idle driver, don't touch
629		 * the boot_option_idle_override.
630		 */
631		pm_idle = default_idle;
632		boot_option_idle_override = IDLE_HALT;
633	} else if (!strcmp(str, "nomwait")) {
634		/*
635		 * If the boot option of "idle=nomwait" is added,
636		 * it means that mwait will be disabled for CPU C2/C3
637		 * states. In such case it won't touch the variable
638		 * of boot_option_idle_override.
639		 */
640		boot_option_idle_override = IDLE_NOMWAIT;
641	} else
642		return -1;
643
644	return 0;
645}
646early_param("idle", idle_setup);
647
648unsigned long arch_align_stack(unsigned long sp)
649{
650	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
651		sp -= get_random_int() % 8192;
652	return sp & ~0xf;
653}
654
655unsigned long arch_randomize_brk(struct mm_struct *mm)
656{
657	unsigned long range_end = mm->brk + 0x02000000;
658	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
659}
660
v3.15
  1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2
  3#include <linux/errno.h>
  4#include <linux/kernel.h>
  5#include <linux/mm.h>
  6#include <linux/smp.h>
  7#include <linux/prctl.h>
  8#include <linux/slab.h>
  9#include <linux/sched.h>
 10#include <linux/module.h>
 11#include <linux/pm.h>
 12#include <linux/clockchips.h>
 13#include <linux/random.h>
 14#include <linux/user-return-notifier.h>
 15#include <linux/dmi.h>
 16#include <linux/utsname.h>
 17#include <linux/stackprotector.h>
 18#include <linux/tick.h>
 19#include <linux/cpuidle.h>
 20#include <trace/events/power.h>
 21#include <linux/hw_breakpoint.h>
 22#include <asm/cpu.h>
 
 23#include <asm/apic.h>
 24#include <asm/syscalls.h>
 25#include <asm/idle.h>
 26#include <asm/uaccess.h>
 27#include <asm/i387.h>
 28#include <asm/fpu-internal.h>
 29#include <asm/debugreg.h>
 30#include <asm/nmi.h>
 31
 32/*
 33 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 34 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 35 * so they are allowed to end up in the .data..cacheline_aligned
 36 * section. Since TSS's are completely CPU-local, we want them
 37 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 38 */
 39__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
 40
 41#ifdef CONFIG_X86_64
 42static DEFINE_PER_CPU(unsigned char, is_idle);
 43static ATOMIC_NOTIFIER_HEAD(idle_notifier);
 44
 45void idle_notifier_register(struct notifier_block *n)
 46{
 47	atomic_notifier_chain_register(&idle_notifier, n);
 48}
 49EXPORT_SYMBOL_GPL(idle_notifier_register);
 50
 51void idle_notifier_unregister(struct notifier_block *n)
 52{
 53	atomic_notifier_chain_unregister(&idle_notifier, n);
 54}
 55EXPORT_SYMBOL_GPL(idle_notifier_unregister);
 56#endif
 57
 58struct kmem_cache *task_xstate_cachep;
 59EXPORT_SYMBOL_GPL(task_xstate_cachep);
 60
 61/*
 62 * this gets called so that we can store lazy state into memory and copy the
 63 * current task into the new thread.
 64 */
 65int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 66{
 67	int ret;
 68
 69	*dst = *src;
 70	if (fpu_allocated(&src->thread.fpu)) {
 71		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
 72		ret = fpu_alloc(&dst->thread.fpu);
 73		if (ret)
 74			return ret;
 75		fpu_copy(dst, src);
 76	}
 77	return 0;
 78}
 79
 80void free_thread_xstate(struct task_struct *tsk)
 81{
 82	fpu_free(&tsk->thread.fpu);
 83}
 84
 85void arch_release_task_struct(struct task_struct *tsk)
 86{
 87	free_thread_xstate(tsk);
 
 88}
 89
 90void arch_task_cache_init(void)
 91{
 92        task_xstate_cachep =
 93        	kmem_cache_create("task_xstate", xstate_size,
 94				  __alignof__(union thread_xstate),
 95				  SLAB_PANIC | SLAB_NOTRACK, NULL);
 96}
 97
 98/*
 99 * Free current thread data structures etc..
100 */
101void exit_thread(void)
102{
103	struct task_struct *me = current;
104	struct thread_struct *t = &me->thread;
105	unsigned long *bp = t->io_bitmap_ptr;
106
107	if (bp) {
108		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
109
110		t->io_bitmap_ptr = NULL;
111		clear_thread_flag(TIF_IO_BITMAP);
112		/*
113		 * Careful, clear this in the TSS too:
114		 */
115		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
116		t->io_bitmap_max = 0;
117		put_cpu();
118		kfree(bp);
119	}
 
120
121	drop_fpu(me);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122}
123
124void flush_thread(void)
125{
126	struct task_struct *tsk = current;
127
128	flush_ptrace_hw_breakpoint(tsk);
129	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
130	drop_init_fpu(tsk);
131	/*
132	 * Free the FPU state for non xsave platforms. They get reallocated
133	 * lazily at the first use.
134	 */
135	if (!use_eager_fpu())
136		free_thread_xstate(tsk);
 
137}
138
139static void hard_disable_TSC(void)
140{
141	write_cr4(read_cr4() | X86_CR4_TSD);
142}
143
144void disable_TSC(void)
145{
146	preempt_disable();
147	if (!test_and_set_thread_flag(TIF_NOTSC))
148		/*
149		 * Must flip the CPU state synchronously with
150		 * TIF_NOTSC in the current running context.
151		 */
152		hard_disable_TSC();
153	preempt_enable();
154}
155
156static void hard_enable_TSC(void)
157{
158	write_cr4(read_cr4() & ~X86_CR4_TSD);
159}
160
161static void enable_TSC(void)
162{
163	preempt_disable();
164	if (test_and_clear_thread_flag(TIF_NOTSC))
165		/*
166		 * Must flip the CPU state synchronously with
167		 * TIF_NOTSC in the current running context.
168		 */
169		hard_enable_TSC();
170	preempt_enable();
171}
172
173int get_tsc_mode(unsigned long adr)
174{
175	unsigned int val;
176
177	if (test_thread_flag(TIF_NOTSC))
178		val = PR_TSC_SIGSEGV;
179	else
180		val = PR_TSC_ENABLE;
181
182	return put_user(val, (unsigned int __user *)adr);
183}
184
185int set_tsc_mode(unsigned int val)
186{
187	if (val == PR_TSC_SIGSEGV)
188		disable_TSC();
189	else if (val == PR_TSC_ENABLE)
190		enable_TSC();
191	else
192		return -EINVAL;
193
194	return 0;
195}
196
197void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
198		      struct tss_struct *tss)
199{
200	struct thread_struct *prev, *next;
201
202	prev = &prev_p->thread;
203	next = &next_p->thread;
204
205	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
206	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
207		unsigned long debugctl = get_debugctlmsr();
208
209		debugctl &= ~DEBUGCTLMSR_BTF;
210		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
211			debugctl |= DEBUGCTLMSR_BTF;
212
213		update_debugctlmsr(debugctl);
214	}
215
216	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
217	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
218		/* prev and next are different */
219		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
220			hard_disable_TSC();
221		else
222			hard_enable_TSC();
223	}
224
225	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
226		/*
227		 * Copy the relevant range of the IO bitmap.
228		 * Normally this is 128 bytes or less:
229		 */
230		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
231		       max(prev->io_bitmap_max, next->io_bitmap_max));
232	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
233		/*
234		 * Clear any possible leftover bits:
235		 */
236		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
237	}
238	propagate_user_return_notify(prev_p, next_p);
239}
240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241/*
242 * Idle related variables and functions
243 */
244unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
245EXPORT_SYMBOL(boot_option_idle_override);
246
247static void (*x86_idle)(void);
 
 
 
 
 
 
248
249#ifndef CONFIG_SMP
250static inline void play_dead(void)
 
 
 
 
 
251{
252	BUG();
253}
254#endif
255
256#ifdef CONFIG_X86_64
257void enter_idle(void)
258{
259	this_cpu_write(is_idle, 1);
260	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
261}
 
262
263static void __exit_idle(void)
264{
265	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
266		return;
267	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
268}
269
270/* Called from interrupts to signify idle end */
271void exit_idle(void)
272{
273	/* idle loop has pid 0 */
274	if (current->pid)
275		return;
276	__exit_idle();
277}
278#endif
279
280void arch_cpu_idle_enter(void)
 
 
 
 
281{
282	local_touch_nmi();
283	enter_idle();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284}
 
 
 
285
286void arch_cpu_idle_exit(void)
287{
288	__exit_idle();
 
 
 
 
 
 
 
 
 
 
289}
290
291void arch_cpu_idle_dead(void)
292{
293	play_dead();
294}
295
296/*
297 * Called from the generic idle code.
 
 
 
 
 
298 */
299void arch_cpu_idle(void)
300{
301	x86_idle();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302}
303
304/*
305 * We use this if we don't have any better idle routine..
 
 
306 */
307void default_idle(void)
308{
309	trace_cpu_idle_rcuidle(1, smp_processor_id());
310	safe_halt();
311	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 
 
 
 
312}
313#ifdef CONFIG_APM_MODULE
314EXPORT_SYMBOL(default_idle);
315#endif
316
317#ifdef CONFIG_XEN
318bool xen_set_default_idle(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319{
320	bool ret = !!x86_idle;
 
 
 
321
322	x86_idle = default_idle;
 
 
 
 
 
 
323
324	return ret;
325}
326#endif
327void stop_this_cpu(void *dummy)
328{
329	local_irq_disable();
330	/*
331	 * Remove this CPU:
 
332	 */
333	set_cpu_online(smp_processor_id(), false);
334	disable_local_APIC();
335
336	for (;;)
337		halt();
338}
339
340bool amd_e400_c1e_detected;
341EXPORT_SYMBOL(amd_e400_c1e_detected);
342
343static cpumask_var_t amd_e400_c1e_mask;
344
345void amd_e400_remove_cpu(int cpu)
346{
347	if (amd_e400_c1e_mask != NULL)
348		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
349}
350
351/*
352 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
353 * pending message MSR. If we detect C1E, then we handle it the same
354 * way as C3 power states (local apic timer and TSC stop)
355 */
356static void amd_e400_idle(void)
357{
 
 
 
358	if (!amd_e400_c1e_detected) {
359		u32 lo, hi;
360
361		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
362
363		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
364			amd_e400_c1e_detected = true;
365			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
366				mark_tsc_unstable("TSC halt in AMD C1E");
367			pr_info("System has AMD C1E enabled\n");
368		}
369	}
370
371	if (amd_e400_c1e_detected) {
372		int cpu = smp_processor_id();
373
374		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
375			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
376			/*
377			 * Force broadcast so ACPI can not interfere.
378			 */
379			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
380					   &cpu);
381			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
 
382		}
383		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
384
385		default_idle();
386
387		/*
388		 * The switch back from broadcast mode needs to be
389		 * called with interrupts disabled.
390		 */
391		local_irq_disable();
392		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
393		local_irq_enable();
394	} else
395		default_idle();
396}
397
398void select_idle_routine(const struct cpuinfo_x86 *c)
399{
400#ifdef CONFIG_SMP
401	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
402		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 
 
403#endif
404	if (x86_idle || boot_option_idle_override == IDLE_POLL)
405		return;
406
407	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
 
 
 
 
 
 
408		/* E400: APIC timer interrupt does not wake up CPU from C1e */
409		pr_info("using AMD E400 aware idle routine\n");
410		x86_idle = amd_e400_idle;
411	} else
412		x86_idle = default_idle;
413}
414
415void __init init_amd_e400_c1e_mask(void)
416{
417	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
418	if (x86_idle == amd_e400_idle)
419		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
420}
421
422static int __init idle_setup(char *str)
423{
424	if (!str)
425		return -EINVAL;
426
427	if (!strcmp(str, "poll")) {
428		pr_info("using polling idle threads\n");
 
429		boot_option_idle_override = IDLE_POLL;
430		cpu_idle_poll_ctrl(true);
 
 
431	} else if (!strcmp(str, "halt")) {
432		/*
433		 * When the boot option of idle=halt is added, halt is
434		 * forced to be used for CPU idle. In such case CPU C2/C3
435		 * won't be used again.
436		 * To continue to load the CPU idle driver, don't touch
437		 * the boot_option_idle_override.
438		 */
439		x86_idle = default_idle;
440		boot_option_idle_override = IDLE_HALT;
441	} else if (!strcmp(str, "nomwait")) {
442		/*
443		 * If the boot option of "idle=nomwait" is added,
444		 * it means that mwait will be disabled for CPU C2/C3
445		 * states. In such case it won't touch the variable
446		 * of boot_option_idle_override.
447		 */
448		boot_option_idle_override = IDLE_NOMWAIT;
449	} else
450		return -1;
451
452	return 0;
453}
454early_param("idle", idle_setup);
455
456unsigned long arch_align_stack(unsigned long sp)
457{
458	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
459		sp -= get_random_int() % 8192;
460	return sp & ~0xf;
461}
462
463unsigned long arch_randomize_brk(struct mm_struct *mm)
464{
465	unsigned long range_end = mm->brk + 0x02000000;
466	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
467}
468