Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3 *
  4 *   This program is free software; you can redistribute it and/or
  5 *   modify it under the terms of the GNU General Public License
  6 *   as published by the Free Software Foundation, version 2.
  7 *
  8 *   This program is distributed in the hope that it will be useful, but
  9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 11 *   NON INFRINGEMENT.  See the GNU General Public License for
 12 *   more details.
 13 */
 14
 15#include <linux/mm.h>
 16#include <linux/dma-mapping.h>
 
 17#include <linux/vmalloc.h>
 
 18#include <asm/tlbflush.h>
 19#include <asm/homecache.h>
 20
 21/* Generic DMA mapping functions: */
 22
 23/*
 24 * Allocate what Linux calls "coherent" memory, which for us just
 25 * means uncached.
 26 */
 27void *dma_alloc_coherent(struct device *dev,
 28			 size_t size,
 29			 dma_addr_t *dma_handle,
 30			 gfp_t gfp)
 31{
 32	u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
 33	int node = dev_to_node(dev);
 
 
 
 
 
 
 34	int order = get_order(size);
 35	struct page *pg;
 36	dma_addr_t addr;
 37
 38	gfp |= __GFP_ZERO;
 39
 40	/*
 41	 * By forcing NUMA node 0 for 32-bit masks we ensure that the
 42	 * high 32 bits of the resulting PA will be zero.  If the mask
 43	 * size is, e.g., 24, we may still not be able to guarantee a
 44	 * suitable memory address, in which case we will return NULL.
 45	 * But such devices are uncommon.
 
 46	 */
 47	if (dma_mask <= DMA_BIT_MASK(32))
 
 48		node = 0;
 
 49
 50	pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_UNCACHED);
 51	if (pg == NULL)
 52		return NULL;
 53
 54	addr = page_to_phys(pg);
 55	if (addr + size > dma_mask) {
 56		homecache_free_pages(addr, order);
 57		return NULL;
 58	}
 59
 60	*dma_handle = addr;
 
 61	return page_address(pg);
 62}
 63EXPORT_SYMBOL(dma_alloc_coherent);
 64
 65/*
 66 * Free memory that was allocated with dma_alloc_coherent.
 67 */
 68void dma_free_coherent(struct device *dev, size_t size,
 69		  void *vaddr, dma_addr_t dma_handle)
 
 70{
 71	homecache_free_pages((unsigned long)vaddr, get_order(size));
 72}
 73EXPORT_SYMBOL(dma_free_coherent);
 74
 75/*
 76 * The map routines "map" the specified address range for DMA
 77 * accesses.  The memory belongs to the device after this call is
 78 * issued, until it is unmapped with dma_unmap_single.
 79 *
 80 * We don't need to do any mapping, we just flush the address range
 81 * out of the cache and return a DMA address.
 82 *
 83 * The unmap routines do whatever is necessary before the processor
 84 * accesses the memory again, and must be called before the driver
 85 * touches the memory.  We can get away with a cache invalidate if we
 86 * can count on nothing having been touched.
 87 */
 88
 89/* Flush a PA range from cache page by page. */
 90static void __dma_map_pa_range(dma_addr_t dma_addr, size_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 91{
 92	struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
 93	size_t bytesleft = PAGE_SIZE - (dma_addr & (PAGE_SIZE - 1));
 
 94
 95	while ((ssize_t)size > 0) {
 96		/* Flush the page. */
 97		homecache_flush_cache(page++, 0);
 98
 99		/* Figure out if we need to continue on the next page. */
100		size -= bytesleft;
101		bytesleft = PAGE_SIZE;
102	}
103}
104
105/*
106 * dma_map_single can be passed any memory address, and there appear
107 * to be no alignment constraints.
108 *
109 * There is a chance that the start of the buffer will share a cache
110 * line with some other data that has been touched in the meantime.
111 */
112dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
113	       enum dma_data_direction direction)
114{
115	dma_addr_t dma_addr = __pa(ptr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
117	BUG_ON(!valid_dma_direction(direction));
118	WARN_ON(size == 0);
119
120	__dma_map_pa_range(dma_addr, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
122	return dma_addr;
 
 
 
123}
124EXPORT_SYMBOL(dma_map_single);
125
126void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
127		 enum dma_data_direction direction)
 
128{
 
 
 
129	BUG_ON(!valid_dma_direction(direction));
 
 
 
 
 
 
130}
131EXPORT_SYMBOL(dma_unmap_single);
132
133int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
134	   enum dma_data_direction direction)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135{
136	struct scatterlist *sg;
137	int i;
138
139	BUG_ON(!valid_dma_direction(direction));
140
141	WARN_ON(nents == 0 || sglist->length == 0);
142
143	for_each_sg(sglist, sg, nents, i) {
144		sg->dma_address = sg_phys(sg);
145		__dma_map_pa_range(sg->dma_address, sg->length);
 
 
 
 
 
146	}
147
148	return nents;
149}
150EXPORT_SYMBOL(dma_map_sg);
151
152void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
153	     enum dma_data_direction direction)
 
 
154{
 
 
 
155	BUG_ON(!valid_dma_direction(direction));
 
 
 
 
 
156}
157EXPORT_SYMBOL(dma_unmap_sg);
158
159dma_addr_t dma_map_page(struct device *dev, struct page *page,
160			unsigned long offset, size_t size,
161			enum dma_data_direction direction)
 
162{
163	BUG_ON(!valid_dma_direction(direction));
164
165	BUG_ON(offset + size > PAGE_SIZE);
166	homecache_flush_cache(page, 0);
167
168	return page_to_pa(page) + offset;
169}
170EXPORT_SYMBOL(dma_map_page);
171
172void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
173	       enum dma_data_direction direction)
 
 
174{
175	BUG_ON(!valid_dma_direction(direction));
 
 
 
 
 
176}
177EXPORT_SYMBOL(dma_unmap_page);
178
179void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
180			     size_t size, enum dma_data_direction direction)
 
 
181{
182	BUG_ON(!valid_dma_direction(direction));
 
 
 
 
183}
184EXPORT_SYMBOL(dma_sync_single_for_cpu);
185
186void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
187				size_t size, enum dma_data_direction direction)
 
 
 
188{
189	unsigned long start = PFN_DOWN(dma_handle);
190	unsigned long end = PFN_DOWN(dma_handle + size - 1);
191	unsigned long i;
192
193	BUG_ON(!valid_dma_direction(direction));
194	for (i = start; i <= end; ++i)
195		homecache_flush_cache(pfn_to_page(i), 0);
196}
197EXPORT_SYMBOL(dma_sync_single_for_device);
198
199void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
200		    enum dma_data_direction direction)
 
 
201{
 
 
 
202	BUG_ON(!valid_dma_direction(direction));
203	WARN_ON(nelems == 0 || sg[0].length == 0);
 
 
 
 
 
204}
205EXPORT_SYMBOL(dma_sync_sg_for_cpu);
206
207/*
208 * Flush and invalidate cache for scatterlist.
209 */
210void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
211			    int nelems, enum dma_data_direction direction)
212{
213	struct scatterlist *sg;
214	int i;
215
216	BUG_ON(!valid_dma_direction(direction));
217	WARN_ON(nelems == 0 || sglist->length == 0);
218
219	for_each_sg(sglist, sg, nelems, i) {
220		dma_sync_single_for_device(dev, sg->dma_address,
221					   sg_dma_len(sg), direction);
222	}
223}
224EXPORT_SYMBOL(dma_sync_sg_for_device);
225
226void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
227				   unsigned long offset, size_t size,
228				   enum dma_data_direction direction)
229{
230	dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction);
231}
232EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
233
234void dma_sync_single_range_for_device(struct device *dev,
235				      dma_addr_t dma_handle,
236				      unsigned long offset, size_t size,
237				      enum dma_data_direction direction)
238{
239	dma_sync_single_for_device(dev, dma_handle + offset, size, direction);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240}
241EXPORT_SYMBOL(dma_sync_single_range_for_device);
 
242
 
243/*
244 * dma_alloc_noncoherent() returns non-cacheable memory, so there's no
245 * need to do any flushing here.
 
 
 
 
 
 
246 */
247void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
248		    enum dma_data_direction direction)
249{
 
250}
251EXPORT_SYMBOL(dma_cache_sync);
 
v3.15
  1/*
  2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3 *
  4 *   This program is free software; you can redistribute it and/or
  5 *   modify it under the terms of the GNU General Public License
  6 *   as published by the Free Software Foundation, version 2.
  7 *
  8 *   This program is distributed in the hope that it will be useful, but
  9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 11 *   NON INFRINGEMENT.  See the GNU General Public License for
 12 *   more details.
 13 */
 14
 15#include <linux/mm.h>
 16#include <linux/dma-mapping.h>
 17#include <linux/swiotlb.h>
 18#include <linux/vmalloc.h>
 19#include <linux/export.h>
 20#include <asm/tlbflush.h>
 21#include <asm/homecache.h>
 22
 23/* Generic DMA mapping functions: */
 24
 25/*
 26 * Allocate what Linux calls "coherent" memory.  On TILEPro this is
 27 * uncached memory; on TILE-Gx it is hash-for-home memory.
 28 */
 29#ifdef __tilepro__
 30#define PAGE_HOME_DMA PAGE_HOME_UNCACHED
 31#else
 32#define PAGE_HOME_DMA PAGE_HOME_HASH
 33#endif
 34
 35static void *tile_dma_alloc_coherent(struct device *dev, size_t size,
 36				     dma_addr_t *dma_handle, gfp_t gfp,
 37				     struct dma_attrs *attrs)
 38{
 39	u64 dma_mask = (dev && dev->coherent_dma_mask) ?
 40		dev->coherent_dma_mask : DMA_BIT_MASK(32);
 41	int node = dev ? dev_to_node(dev) : 0;
 42	int order = get_order(size);
 43	struct page *pg;
 44	dma_addr_t addr;
 45
 46	gfp |= __GFP_ZERO;
 47
 48	/*
 49	 * If the mask specifies that the memory be in the first 4 GB, then
 50	 * we force the allocation to come from the DMA zone.  We also
 51	 * force the node to 0 since that's the only node where the DMA
 52	 * zone isn't empty.  If the mask size is smaller than 32 bits, we
 53	 * may still not be able to guarantee a suitable memory address, in
 54	 * which case we will return NULL.  But such devices are uncommon.
 55	 */
 56	if (dma_mask <= DMA_BIT_MASK(32)) {
 57		gfp |= GFP_DMA;
 58		node = 0;
 59	}
 60
 61	pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
 62	if (pg == NULL)
 63		return NULL;
 64
 65	addr = page_to_phys(pg);
 66	if (addr + size > dma_mask) {
 67		__homecache_free_pages(pg, order);
 68		return NULL;
 69	}
 70
 71	*dma_handle = addr;
 72
 73	return page_address(pg);
 74}
 
 75
 76/*
 77 * Free memory that was allocated with tile_dma_alloc_coherent.
 78 */
 79static void tile_dma_free_coherent(struct device *dev, size_t size,
 80				   void *vaddr, dma_addr_t dma_handle,
 81				   struct dma_attrs *attrs)
 82{
 83	homecache_free_pages((unsigned long)vaddr, get_order(size));
 84}
 
 85
 86/*
 87 * The map routines "map" the specified address range for DMA
 88 * accesses.  The memory belongs to the device after this call is
 89 * issued, until it is unmapped with dma_unmap_single.
 90 *
 91 * We don't need to do any mapping, we just flush the address range
 92 * out of the cache and return a DMA address.
 93 *
 94 * The unmap routines do whatever is necessary before the processor
 95 * accesses the memory again, and must be called before the driver
 96 * touches the memory.  We can get away with a cache invalidate if we
 97 * can count on nothing having been touched.
 98 */
 99
100/* Set up a single page for DMA access. */
101static void __dma_prep_page(struct page *page, unsigned long offset,
102			    size_t size, enum dma_data_direction direction)
103{
104	/*
105	 * Flush the page from cache if necessary.
106	 * On tilegx, data is delivered to hash-for-home L3; on tilepro,
107	 * data is delivered direct to memory.
108	 *
109	 * NOTE: If we were just doing DMA_TO_DEVICE we could optimize
110	 * this to be a "flush" not a "finv" and keep some of the
111	 * state in cache across the DMA operation, but it doesn't seem
112	 * worth creating the necessary flush_buffer_xxx() infrastructure.
113	 */
114	int home = page_home(page);
115	switch (home) {
116	case PAGE_HOME_HASH:
117#ifdef __tilegx__
118		return;
119#endif
120		break;
121	case PAGE_HOME_UNCACHED:
122#ifdef __tilepro__
123		return;
124#endif
125		break;
126	case PAGE_HOME_IMMUTABLE:
127		/* Should be going to the device only. */
128		BUG_ON(direction == DMA_FROM_DEVICE ||
129		       direction == DMA_BIDIRECTIONAL);
130		return;
131	case PAGE_HOME_INCOHERENT:
132		/* Incoherent anyway, so no need to work hard here. */
133		return;
134	default:
135		BUG_ON(home < 0 || home >= NR_CPUS);
136		break;
137	}
138	homecache_finv_page(page);
139
140#ifdef DEBUG_ALIGNMENT
141	/* Warn if the region isn't cacheline aligned. */
142	if (offset & (L2_CACHE_BYTES - 1) || (size & (L2_CACHE_BYTES - 1)))
143		pr_warn("Unaligned DMA to non-hfh memory: PA %#llx/%#lx\n",
144			PFN_PHYS(page_to_pfn(page)) + offset, size);
145#endif
146}
147
148/* Make the page ready to be read by the core. */
149static void __dma_complete_page(struct page *page, unsigned long offset,
150				size_t size, enum dma_data_direction direction)
151{
152#ifdef __tilegx__
153	switch (page_home(page)) {
154	case PAGE_HOME_HASH:
155		/* I/O device delivered data the way the cpu wanted it. */
156		break;
157	case PAGE_HOME_INCOHERENT:
158		/* Incoherent anyway, so no need to work hard here. */
159		break;
160	case PAGE_HOME_IMMUTABLE:
161		/* Extra read-only copies are not a problem. */
162		break;
163	default:
164		/* Flush the bogus hash-for-home I/O entries to memory. */
165		homecache_finv_map_page(page, PAGE_HOME_HASH);
166		break;
167	}
168#endif
169}
170
171static void __dma_prep_pa_range(dma_addr_t dma_addr, size_t size,
172				enum dma_data_direction direction)
173{
174	struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
175	unsigned long offset = dma_addr & (PAGE_SIZE - 1);
176	size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
177
178	while (size != 0) {
179		__dma_prep_page(page, offset, bytes, direction);
180		size -= bytes;
181		++page;
182		offset = 0;
183		bytes = min((size_t)PAGE_SIZE, size);
 
184	}
185}
186
187static void __dma_complete_pa_range(dma_addr_t dma_addr, size_t size,
188				    enum dma_data_direction direction)
 
 
 
 
 
 
 
189{
190	struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
191	unsigned long offset = dma_addr & (PAGE_SIZE - 1);
192	size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
193
194	while (size != 0) {
195		__dma_complete_page(page, offset, bytes, direction);
196		size -= bytes;
197		++page;
198		offset = 0;
199		bytes = min((size_t)PAGE_SIZE, size);
200	}
201}
202
203static int tile_dma_map_sg(struct device *dev, struct scatterlist *sglist,
204			   int nents, enum dma_data_direction direction,
205			   struct dma_attrs *attrs)
206{
207	struct scatterlist *sg;
208	int i;
209
210	BUG_ON(!valid_dma_direction(direction));
 
211
212	WARN_ON(nents == 0 || sglist->length == 0);
213
214	for_each_sg(sglist, sg, nents, i) {
215		sg->dma_address = sg_phys(sg);
216		__dma_prep_pa_range(sg->dma_address, sg->length, direction);
217#ifdef CONFIG_NEED_SG_DMA_LENGTH
218		sg->dma_length = sg->length;
219#endif
220	}
221
222	return nents;
223}
224
225static void tile_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
226			      int nents, enum dma_data_direction direction,
227			      struct dma_attrs *attrs)
228{
229	struct scatterlist *sg;
230	int i;
231
232	BUG_ON(!valid_dma_direction(direction));
233	for_each_sg(sglist, sg, nents, i) {
234		sg->dma_address = sg_phys(sg);
235		__dma_complete_pa_range(sg->dma_address, sg->length,
236					direction);
237	}
238}
239
240static dma_addr_t tile_dma_map_page(struct device *dev, struct page *page,
241				    unsigned long offset, size_t size,
242				    enum dma_data_direction direction,
243				    struct dma_attrs *attrs)
244{
245	BUG_ON(!valid_dma_direction(direction));
246
247	BUG_ON(offset + size > PAGE_SIZE);
248	__dma_prep_page(page, offset, size, direction);
249
250	return page_to_pa(page) + offset;
251}
252
253static void tile_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
254				size_t size, enum dma_data_direction direction,
255				struct dma_attrs *attrs)
256{
257	BUG_ON(!valid_dma_direction(direction));
258
259	__dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
260			    dma_address & (PAGE_SIZE - 1), size, direction);
261}
262
263static void tile_dma_sync_single_for_cpu(struct device *dev,
264					 dma_addr_t dma_handle,
265					 size_t size,
266					 enum dma_data_direction direction)
267{
268	BUG_ON(!valid_dma_direction(direction));
269
270	__dma_complete_pa_range(dma_handle, size, direction);
271}
272
273static void tile_dma_sync_single_for_device(struct device *dev,
274					    dma_addr_t dma_handle, size_t size,
275					    enum dma_data_direction direction)
276{
277	__dma_prep_pa_range(dma_handle, size, direction);
278}
279
280static void tile_dma_sync_sg_for_cpu(struct device *dev,
281				     struct scatterlist *sglist, int nelems,
282				     enum dma_data_direction direction)
283{
284	struct scatterlist *sg;
285	int i;
286
287	BUG_ON(!valid_dma_direction(direction));
288	WARN_ON(nelems == 0 || sglist->length == 0);
289
290	for_each_sg(sglist, sg, nelems, i) {
291		dma_sync_single_for_cpu(dev, sg->dma_address,
292					sg_dma_len(sg), direction);
293	}
294}
 
295
296static void tile_dma_sync_sg_for_device(struct device *dev,
297					struct scatterlist *sglist, int nelems,
298					enum dma_data_direction direction)
299{
300	struct scatterlist *sg;
301	int i;
302
303	BUG_ON(!valid_dma_direction(direction));
304	WARN_ON(nelems == 0 || sglist->length == 0);
305
306	for_each_sg(sglist, sg, nelems, i) {
307		dma_sync_single_for_device(dev, sg->dma_address,
308					   sg_dma_len(sg), direction);
309	}
310}
 
311
312static inline int
313tile_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
314{
315	return 0;
316}
317
318static inline int
319tile_dma_supported(struct device *dev, u64 mask)
320{
321	return 1;
322}
323
324static struct dma_map_ops tile_default_dma_map_ops = {
325	.alloc = tile_dma_alloc_coherent,
326	.free = tile_dma_free_coherent,
327	.map_page = tile_dma_map_page,
328	.unmap_page = tile_dma_unmap_page,
329	.map_sg = tile_dma_map_sg,
330	.unmap_sg = tile_dma_unmap_sg,
331	.sync_single_for_cpu = tile_dma_sync_single_for_cpu,
332	.sync_single_for_device = tile_dma_sync_single_for_device,
333	.sync_sg_for_cpu = tile_dma_sync_sg_for_cpu,
334	.sync_sg_for_device = tile_dma_sync_sg_for_device,
335	.mapping_error = tile_dma_mapping_error,
336	.dma_supported = tile_dma_supported
337};
338
339struct dma_map_ops *tile_dma_map_ops = &tile_default_dma_map_ops;
340EXPORT_SYMBOL(tile_dma_map_ops);
341
342/* Generic PCI DMA mapping functions */
343
344static void *tile_pci_dma_alloc_coherent(struct device *dev, size_t size,
345					 dma_addr_t *dma_handle, gfp_t gfp,
346					 struct dma_attrs *attrs)
347{
348	int node = dev_to_node(dev);
349	int order = get_order(size);
350	struct page *pg;
351	dma_addr_t addr;
352
353	gfp |= __GFP_ZERO;
354
355	pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
356	if (pg == NULL)
357		return NULL;
358
359	addr = page_to_phys(pg);
360
361	*dma_handle = addr + get_dma_offset(dev);
362
363	return page_address(pg);
364}
365
366/*
367 * Free memory that was allocated with tile_pci_dma_alloc_coherent.
368 */
369static void tile_pci_dma_free_coherent(struct device *dev, size_t size,
370				       void *vaddr, dma_addr_t dma_handle,
371				       struct dma_attrs *attrs)
372{
373	homecache_free_pages((unsigned long)vaddr, get_order(size));
374}
375
376static int tile_pci_dma_map_sg(struct device *dev, struct scatterlist *sglist,
377			       int nents, enum dma_data_direction direction,
378			       struct dma_attrs *attrs)
379{
380	struct scatterlist *sg;
381	int i;
382
383	BUG_ON(!valid_dma_direction(direction));
384
385	WARN_ON(nents == 0 || sglist->length == 0);
386
387	for_each_sg(sglist, sg, nents, i) {
388		sg->dma_address = sg_phys(sg);
389		__dma_prep_pa_range(sg->dma_address, sg->length, direction);
390
391		sg->dma_address = sg->dma_address + get_dma_offset(dev);
392#ifdef CONFIG_NEED_SG_DMA_LENGTH
393		sg->dma_length = sg->length;
394#endif
395	}
396
397	return nents;
398}
 
399
400static void tile_pci_dma_unmap_sg(struct device *dev,
401				  struct scatterlist *sglist, int nents,
402				  enum dma_data_direction direction,
403				  struct dma_attrs *attrs)
404{
405	struct scatterlist *sg;
406	int i;
407
408	BUG_ON(!valid_dma_direction(direction));
409	for_each_sg(sglist, sg, nents, i) {
410		sg->dma_address = sg_phys(sg);
411		__dma_complete_pa_range(sg->dma_address, sg->length,
412					direction);
413	}
414}
 
415
416static dma_addr_t tile_pci_dma_map_page(struct device *dev, struct page *page,
417					unsigned long offset, size_t size,
418					enum dma_data_direction direction,
419					struct dma_attrs *attrs)
420{
421	BUG_ON(!valid_dma_direction(direction));
422
423	BUG_ON(offset + size > PAGE_SIZE);
424	__dma_prep_page(page, offset, size, direction);
425
426	return page_to_pa(page) + offset + get_dma_offset(dev);
427}
 
428
429static void tile_pci_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
430				    size_t size,
431				    enum dma_data_direction direction,
432				    struct dma_attrs *attrs)
433{
434	BUG_ON(!valid_dma_direction(direction));
435
436	dma_address -= get_dma_offset(dev);
437
438	__dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
439			    dma_address & (PAGE_SIZE - 1), size, direction);
440}
 
441
442static void tile_pci_dma_sync_single_for_cpu(struct device *dev,
443					     dma_addr_t dma_handle,
444					     size_t size,
445					     enum dma_data_direction direction)
446{
447	BUG_ON(!valid_dma_direction(direction));
448
449	dma_handle -= get_dma_offset(dev);
450
451	__dma_complete_pa_range(dma_handle, size, direction);
452}
 
453
454static void tile_pci_dma_sync_single_for_device(struct device *dev,
455						dma_addr_t dma_handle,
456						size_t size,
457						enum dma_data_direction
458						direction)
459{
460	dma_handle -= get_dma_offset(dev);
 
 
461
462	__dma_prep_pa_range(dma_handle, size, direction);
 
 
463}
 
464
465static void tile_pci_dma_sync_sg_for_cpu(struct device *dev,
466					 struct scatterlist *sglist,
467					 int nelems,
468					 enum dma_data_direction direction)
469{
470	struct scatterlist *sg;
471	int i;
472
473	BUG_ON(!valid_dma_direction(direction));
474	WARN_ON(nelems == 0 || sglist->length == 0);
475
476	for_each_sg(sglist, sg, nelems, i) {
477		dma_sync_single_for_cpu(dev, sg->dma_address,
478					sg_dma_len(sg), direction);
479	}
480}
 
481
482static void tile_pci_dma_sync_sg_for_device(struct device *dev,
483					    struct scatterlist *sglist,
484					    int nelems,
485					    enum dma_data_direction direction)
 
486{
487	struct scatterlist *sg;
488	int i;
489
490	BUG_ON(!valid_dma_direction(direction));
491	WARN_ON(nelems == 0 || sglist->length == 0);
492
493	for_each_sg(sglist, sg, nelems, i) {
494		dma_sync_single_for_device(dev, sg->dma_address,
495					   sg_dma_len(sg), direction);
496	}
497}
 
498
499static inline int
500tile_pci_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 
501{
502	return 0;
503}
 
504
505static inline int
506tile_pci_dma_supported(struct device *dev, u64 mask)
 
 
507{
508	return 1;
509}
510
511static struct dma_map_ops tile_pci_default_dma_map_ops = {
512	.alloc = tile_pci_dma_alloc_coherent,
513	.free = tile_pci_dma_free_coherent,
514	.map_page = tile_pci_dma_map_page,
515	.unmap_page = tile_pci_dma_unmap_page,
516	.map_sg = tile_pci_dma_map_sg,
517	.unmap_sg = tile_pci_dma_unmap_sg,
518	.sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
519	.sync_single_for_device = tile_pci_dma_sync_single_for_device,
520	.sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
521	.sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
522	.mapping_error = tile_pci_dma_mapping_error,
523	.dma_supported = tile_pci_dma_supported
524};
525
526struct dma_map_ops *gx_pci_dma_map_ops = &tile_pci_default_dma_map_ops;
527EXPORT_SYMBOL(gx_pci_dma_map_ops);
528
529/* PCI DMA mapping functions for legacy PCI devices */
530
531#ifdef CONFIG_SWIOTLB
532static void *tile_swiotlb_alloc_coherent(struct device *dev, size_t size,
533					 dma_addr_t *dma_handle, gfp_t gfp,
534					 struct dma_attrs *attrs)
535{
536	gfp |= GFP_DMA;
537	return swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
538}
539
540static void tile_swiotlb_free_coherent(struct device *dev, size_t size,
541				       void *vaddr, dma_addr_t dma_addr,
542				       struct dma_attrs *attrs)
543{
544	swiotlb_free_coherent(dev, size, vaddr, dma_addr);
545}
546
547static struct dma_map_ops pci_swiotlb_dma_ops = {
548	.alloc = tile_swiotlb_alloc_coherent,
549	.free = tile_swiotlb_free_coherent,
550	.map_page = swiotlb_map_page,
551	.unmap_page = swiotlb_unmap_page,
552	.map_sg = swiotlb_map_sg_attrs,
553	.unmap_sg = swiotlb_unmap_sg_attrs,
554	.sync_single_for_cpu = swiotlb_sync_single_for_cpu,
555	.sync_single_for_device = swiotlb_sync_single_for_device,
556	.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
557	.sync_sg_for_device = swiotlb_sync_sg_for_device,
558	.dma_supported = swiotlb_dma_supported,
559	.mapping_error = swiotlb_dma_mapping_error,
560};
561
562static struct dma_map_ops pci_hybrid_dma_ops = {
563	.alloc = tile_swiotlb_alloc_coherent,
564	.free = tile_swiotlb_free_coherent,
565	.map_page = tile_pci_dma_map_page,
566	.unmap_page = tile_pci_dma_unmap_page,
567	.map_sg = tile_pci_dma_map_sg,
568	.unmap_sg = tile_pci_dma_unmap_sg,
569	.sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
570	.sync_single_for_device = tile_pci_dma_sync_single_for_device,
571	.sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
572	.sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
573	.mapping_error = tile_pci_dma_mapping_error,
574	.dma_supported = tile_pci_dma_supported
575};
576
577struct dma_map_ops *gx_legacy_pci_dma_map_ops = &pci_swiotlb_dma_ops;
578struct dma_map_ops *gx_hybrid_pci_dma_map_ops = &pci_hybrid_dma_ops;
579#else
580struct dma_map_ops *gx_legacy_pci_dma_map_ops;
581struct dma_map_ops *gx_hybrid_pci_dma_map_ops;
582#endif
583EXPORT_SYMBOL(gx_legacy_pci_dma_map_ops);
584EXPORT_SYMBOL(gx_hybrid_pci_dma_map_ops);
585
586#ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
587int dma_set_coherent_mask(struct device *dev, u64 mask)
588{
589	struct dma_map_ops *dma_ops = get_dma_ops(dev);
590
591	/*
592	 * For PCI devices with 64-bit DMA addressing capability, promote
593	 * the dma_ops to full capability for both streams and consistent
594	 * memory access. For 32-bit capable devices, limit the consistent 
595	 * memory DMA range to max_direct_dma_addr.
596	 */
597	if (dma_ops == gx_pci_dma_map_ops ||
598	    dma_ops == gx_hybrid_pci_dma_map_ops ||
599	    dma_ops == gx_legacy_pci_dma_map_ops) {
600		if (mask == DMA_BIT_MASK(64))
601			set_dma_ops(dev, gx_pci_dma_map_ops);
602		else if (mask > dev->archdata.max_direct_dma_addr)
603			mask = dev->archdata.max_direct_dma_addr;
604	}
605
606	if (!dma_supported(dev, mask))
607		return -EIO;
608	dev->coherent_dma_mask = mask;
609	return 0;
610}
611EXPORT_SYMBOL(dma_set_coherent_mask);
612#endif
613
614#ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
615/*
616 * The generic dma_get_required_mask() uses the highest physical address
617 * (max_pfn) to provide the hint to the PCI drivers regarding 32-bit or
618 * 64-bit DMA configuration. Since TILEGx has I/O TLB/MMU, allowing the
619 * DMAs to use the full 64-bit PCI address space and not limited by
620 * the physical memory space, we always let the PCI devices use
621 * 64-bit DMA if they have that capability, by returning the 64-bit
622 * DMA mask here. The device driver has the option to use 32-bit DMA if
623 * the device is not capable of 64-bit DMA.
624 */
625u64 dma_get_required_mask(struct device *dev)
 
626{
627	return DMA_BIT_MASK(64);
628}
629EXPORT_SYMBOL_GPL(dma_get_required_mask);
630#endif