Linux Audio

Check our new training course

Loading...
v3.1
  1#ifndef _SPARC64_TSB_H
  2#define _SPARC64_TSB_H
  3
  4/* The sparc64 TSB is similar to the powerpc hashtables.  It's a
  5 * power-of-2 sized table of TAG/PTE pairs.  The cpu precomputes
  6 * pointers into this table for 8K and 64K page sizes, and also a
  7 * comparison TAG based upon the virtual address and context which
  8 * faults.
  9 *
 10 * TLB miss trap handler software does the actual lookup via something
 11 * of the form:
 12 *
 13 * 	ldxa		[%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
 14 * 	ldxa		[%g0] ASI_{D,I}MMU, %g6
 15 *	sllx		%g6, 22, %g6
 16 *	srlx		%g6, 22, %g6
 17 * 	ldda		[%g1] ASI_NUCLEUS_QUAD_LDD, %g4
 18 * 	cmp		%g4, %g6
 19 * 	bne,pn	%xcc, tsb_miss_{d,i}tlb
 20 * 	 mov		FAULT_CODE_{D,I}TLB, %g3
 21 * 	stxa		%g5, [%g0] ASI_{D,I}TLB_DATA_IN
 22 * 	retry
 23 *
 24 *
 25 * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
 26 * PTE.  The TAG is of the same layout as the TLB TAG TARGET mmu
 27 * register which is:
 28 *
 29 * -------------------------------------------------
 30 * |  -  |  CONTEXT |  -  |    VADDR bits 63:22    |
 31 * -------------------------------------------------
 32 *  63 61 60      48 47 42 41                     0
 33 *
 34 * But actually, since we use per-mm TSB's, we zero out the CONTEXT
 35 * field.
 36 *
 37 * Like the powerpc hashtables we need to use locking in order to
 38 * synchronize while we update the entries.  PTE updates need locking
 39 * as well.
 40 *
 41 * We need to carefully choose a lock bits for the TSB entry.  We
 42 * choose to use bit 47 in the tag.  Also, since we never map anything
 43 * at page zero in context zero, we use zero as an invalid tag entry.
 44 * When the lock bit is set, this forces a tag comparison failure.
 45 */
 46
 47#define TSB_TAG_LOCK_BIT	47
 48#define TSB_TAG_LOCK_HIGH	(1 << (TSB_TAG_LOCK_BIT - 32))
 49
 50#define TSB_TAG_INVALID_BIT	46
 51#define TSB_TAG_INVALID_HIGH	(1 << (TSB_TAG_INVALID_BIT - 32))
 52
 53/* Some cpus support physical address quad loads.  We want to use
 54 * those if possible so we don't need to hard-lock the TSB mapping
 55 * into the TLB.  We encode some instruction patching in order to
 56 * support this.
 57 *
 58 * The kernel TSB is locked into the TLB by virtue of being in the
 59 * kernel image, so we don't play these games for swapper_tsb access.
 60 */
 61#ifndef __ASSEMBLY__
 62struct tsb_ldquad_phys_patch_entry {
 63	unsigned int	addr;
 64	unsigned int	sun4u_insn;
 65	unsigned int	sun4v_insn;
 66};
 67extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch,
 68	__tsb_ldquad_phys_patch_end;
 69
 70struct tsb_phys_patch_entry {
 71	unsigned int	addr;
 72	unsigned int	insn;
 73};
 74extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
 75#endif
 76#define TSB_LOAD_QUAD(TSB, REG)	\
 77661:	ldda		[TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
 78	.section	.tsb_ldquad_phys_patch, "ax"; \
 79	.word		661b; \
 80	ldda		[TSB] ASI_QUAD_LDD_PHYS, REG; \
 81	ldda		[TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
 82	.previous
 83
 84#define TSB_LOAD_TAG_HIGH(TSB, REG) \
 85661:	lduwa		[TSB] ASI_N, REG; \
 86	.section	.tsb_phys_patch, "ax"; \
 87	.word		661b; \
 88	lduwa		[TSB] ASI_PHYS_USE_EC, REG; \
 89	.previous
 90
 91#define TSB_LOAD_TAG(TSB, REG) \
 92661:	ldxa		[TSB] ASI_N, REG; \
 93	.section	.tsb_phys_patch, "ax"; \
 94	.word		661b; \
 95	ldxa		[TSB] ASI_PHYS_USE_EC, REG; \
 96	.previous
 97
 98#define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
 99661:	casa		[TSB] ASI_N, REG1, REG2; \
100	.section	.tsb_phys_patch, "ax"; \
101	.word		661b; \
102	casa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
103	.previous
104
105#define TSB_CAS_TAG(TSB, REG1, REG2) \
106661:	casxa		[TSB] ASI_N, REG1, REG2; \
107	.section	.tsb_phys_patch, "ax"; \
108	.word		661b; \
109	casxa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
110	.previous
111
112#define TSB_STORE(ADDR, VAL) \
113661:	stxa		VAL, [ADDR] ASI_N; \
114	.section	.tsb_phys_patch, "ax"; \
115	.word		661b; \
116	stxa		VAL, [ADDR] ASI_PHYS_USE_EC; \
117	.previous
118
119#define TSB_LOCK_TAG(TSB, REG1, REG2)	\
12099:	TSB_LOAD_TAG_HIGH(TSB, REG1);	\
121	sethi	%hi(TSB_TAG_LOCK_HIGH), REG2;\
122	andcc	REG1, REG2, %g0;	\
123	bne,pn	%icc, 99b;		\
124	 nop;				\
125	TSB_CAS_TAG_HIGH(TSB, REG1, REG2);	\
126	cmp	REG1, REG2;		\
127	bne,pn	%icc, 99b;		\
128	 nop;				\
129
130#define TSB_WRITE(TSB, TTE, TAG) \
131	add	TSB, 0x8, TSB;   \
132	TSB_STORE(TSB, TTE);     \
133	sub	TSB, 0x8, TSB;   \
134	TSB_STORE(TSB, TAG);
135
136	/* Do a kernel page table walk.  Leaves physical PTE pointer in
137	 * REG1.  Jumps to FAIL_LABEL on early page table walk termination.
138	 * VADDR will not be clobbered, but REG2 will.
139	 */
140#define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL)	\
141	sethi		%hi(swapper_pg_dir), REG1; \
142	or		REG1, %lo(swapper_pg_dir), REG1; \
143	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
144	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
145	andn		REG2, 0x3, REG2; \
146	lduw		[REG1 + REG2], REG1; \
147	brz,pn		REG1, FAIL_LABEL; \
148	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
149	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
150	sllx		REG1, 11, REG1; \
151	andn		REG2, 0x3, REG2; \
152	lduwa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
153	brz,pn		REG1, FAIL_LABEL; \
154	 sllx		VADDR, 64 - PMD_SHIFT, REG2; \
155	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
156	sllx		REG1, 11, REG1; \
157	andn		REG2, 0x7, REG2; \
158	add		REG1, REG2, REG1;
159
160	/* Do a user page table walk in MMU globals.  Leaves physical PTE
161	 * pointer in REG1.  Jumps to FAIL_LABEL on early page table walk
162	 * termination.  Physical base of page tables is in PHYS_PGD which
163	 * will not be modified.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164	 *
165	 * VADDR will not be clobbered, but REG1 and REG2 will.
166	 */
167#define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL)	\
168	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
169	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
170	andn		REG2, 0x3, REG2; \
171	lduwa		[PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
172	brz,pn		REG1, FAIL_LABEL; \
173	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
174	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
175	sllx		REG1, 11, REG1; \
176	andn		REG2, 0x3, REG2; \
177	lduwa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
178	brz,pn		REG1, FAIL_LABEL; \
179	 sllx		VADDR, 64 - PMD_SHIFT, REG2; \
180	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
181	sllx		REG1, 11, REG1; \
182	andn		REG2, 0x7, REG2; \
183	add		REG1, REG2, REG1;
 
 
 
 
184
185/* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
186 * If no entry is found, FAIL_LABEL will be branched to.  On success
187 * the resulting PTE value will be left in REG1.  VADDR is preserved
188 * by this routine.
189 */
190#define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
191	sethi		%hi(prom_trans), REG1; \
192	or		REG1, %lo(prom_trans), REG1; \
19397:	ldx		[REG1 + 0x00], REG2; \
194	brz,pn		REG2, FAIL_LABEL; \
195	 nop; \
196	ldx		[REG1 + 0x08], REG3; \
197	add		REG2, REG3, REG3; \
198	cmp		REG2, VADDR; \
199	bgu,pt		%xcc, 98f; \
200	 cmp		VADDR, REG3; \
201	bgeu,pt		%xcc, 98f; \
202	 ldx		[REG1 + 0x10], REG3; \
203	sub		VADDR, REG2, REG2; \
204	ba,pt		%xcc, 99f; \
205	 add		REG3, REG2, REG1; \
20698:	ba,pt		%xcc, 97b; \
207	 add		REG1, (3 * 8), REG1; \
20899:
209
210	/* We use a 32K TSB for the whole kernel, this allows to
211	 * handle about 16MB of modules and vmalloc mappings without
212	 * incurring many hash conflicts.
213	 */
214#define KERNEL_TSB_SIZE_BYTES	(32 * 1024)
215#define KERNEL_TSB_NENTRIES	\
216	(KERNEL_TSB_SIZE_BYTES / 16)
217#define KERNEL_TSB4M_NENTRIES	4096
218
219#define KTSB_PHYS_SHIFT		15
220
221	/* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
222	 * on TSB hit.  REG1, REG2, REG3, and REG4 are used as temporaries
223	 * and the found TTE will be left in REG1.  REG3 and REG4 must
224	 * be an even/odd pair of registers.
225	 *
226	 * VADDR and TAG will be preserved and not clobbered by this macro.
227	 */
228#define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
229661:	sethi		%hi(swapper_tsb), REG1;			\
230	or		REG1, %lo(swapper_tsb), REG1; \
231	.section	.swapper_tsb_phys_patch, "ax"; \
232	.word		661b; \
233	.previous; \
234661:	nop; \
235	.section	.tsb_ldquad_phys_patch, "ax"; \
236	.word		661b; \
237	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
238	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
239	.previous; \
240	srlx		VADDR, PAGE_SHIFT, REG2; \
241	and		REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
242	sllx		REG2, 4, REG2; \
243	add		REG1, REG2, REG2; \
244	TSB_LOAD_QUAD(REG2, REG3); \
245	cmp		REG3, TAG; \
246	be,a,pt		%xcc, OK_LABEL; \
247	 mov		REG4, REG1;
248
249#ifndef CONFIG_DEBUG_PAGEALLOC
250	/* This version uses a trick, the TAG is already (VADDR >> 22) so
251	 * we can make use of that for the index computation.
252	 */
253#define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
254661:	sethi		%hi(swapper_4m_tsb), REG1;	     \
255	or		REG1, %lo(swapper_4m_tsb), REG1; \
256	.section	.swapper_4m_tsb_phys_patch, "ax"; \
257	.word		661b; \
258	.previous; \
259661:	nop; \
260	.section	.tsb_ldquad_phys_patch, "ax"; \
261	.word		661b; \
262	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
263	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
264	.previous; \
265	and		TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
266	sllx		REG2, 4, REG2; \
267	add		REG1, REG2, REG2; \
268	TSB_LOAD_QUAD(REG2, REG3); \
269	cmp		REG3, TAG; \
270	be,a,pt		%xcc, OK_LABEL; \
271	 mov		REG4, REG1;
272#endif
273
274#endif /* !(_SPARC64_TSB_H) */
v3.15
  1#ifndef _SPARC64_TSB_H
  2#define _SPARC64_TSB_H
  3
  4/* The sparc64 TSB is similar to the powerpc hashtables.  It's a
  5 * power-of-2 sized table of TAG/PTE pairs.  The cpu precomputes
  6 * pointers into this table for 8K and 64K page sizes, and also a
  7 * comparison TAG based upon the virtual address and context which
  8 * faults.
  9 *
 10 * TLB miss trap handler software does the actual lookup via something
 11 * of the form:
 12 *
 13 * 	ldxa		[%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
 14 * 	ldxa		[%g0] ASI_{D,I}MMU, %g6
 15 *	sllx		%g6, 22, %g6
 16 *	srlx		%g6, 22, %g6
 17 * 	ldda		[%g1] ASI_NUCLEUS_QUAD_LDD, %g4
 18 * 	cmp		%g4, %g6
 19 * 	bne,pn	%xcc, tsb_miss_{d,i}tlb
 20 * 	 mov		FAULT_CODE_{D,I}TLB, %g3
 21 * 	stxa		%g5, [%g0] ASI_{D,I}TLB_DATA_IN
 22 * 	retry
 23 *
 24 *
 25 * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
 26 * PTE.  The TAG is of the same layout as the TLB TAG TARGET mmu
 27 * register which is:
 28 *
 29 * -------------------------------------------------
 30 * |  -  |  CONTEXT |  -  |    VADDR bits 63:22    |
 31 * -------------------------------------------------
 32 *  63 61 60      48 47 42 41                     0
 33 *
 34 * But actually, since we use per-mm TSB's, we zero out the CONTEXT
 35 * field.
 36 *
 37 * Like the powerpc hashtables we need to use locking in order to
 38 * synchronize while we update the entries.  PTE updates need locking
 39 * as well.
 40 *
 41 * We need to carefully choose a lock bits for the TSB entry.  We
 42 * choose to use bit 47 in the tag.  Also, since we never map anything
 43 * at page zero in context zero, we use zero as an invalid tag entry.
 44 * When the lock bit is set, this forces a tag comparison failure.
 45 */
 46
 47#define TSB_TAG_LOCK_BIT	47
 48#define TSB_TAG_LOCK_HIGH	(1 << (TSB_TAG_LOCK_BIT - 32))
 49
 50#define TSB_TAG_INVALID_BIT	46
 51#define TSB_TAG_INVALID_HIGH	(1 << (TSB_TAG_INVALID_BIT - 32))
 52
 53/* Some cpus support physical address quad loads.  We want to use
 54 * those if possible so we don't need to hard-lock the TSB mapping
 55 * into the TLB.  We encode some instruction patching in order to
 56 * support this.
 57 *
 58 * The kernel TSB is locked into the TLB by virtue of being in the
 59 * kernel image, so we don't play these games for swapper_tsb access.
 60 */
 61#ifndef __ASSEMBLY__
 62struct tsb_ldquad_phys_patch_entry {
 63	unsigned int	addr;
 64	unsigned int	sun4u_insn;
 65	unsigned int	sun4v_insn;
 66};
 67extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch,
 68	__tsb_ldquad_phys_patch_end;
 69
 70struct tsb_phys_patch_entry {
 71	unsigned int	addr;
 72	unsigned int	insn;
 73};
 74extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
 75#endif
 76#define TSB_LOAD_QUAD(TSB, REG)	\
 77661:	ldda		[TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
 78	.section	.tsb_ldquad_phys_patch, "ax"; \
 79	.word		661b; \
 80	ldda		[TSB] ASI_QUAD_LDD_PHYS, REG; \
 81	ldda		[TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
 82	.previous
 83
 84#define TSB_LOAD_TAG_HIGH(TSB, REG) \
 85661:	lduwa		[TSB] ASI_N, REG; \
 86	.section	.tsb_phys_patch, "ax"; \
 87	.word		661b; \
 88	lduwa		[TSB] ASI_PHYS_USE_EC, REG; \
 89	.previous
 90
 91#define TSB_LOAD_TAG(TSB, REG) \
 92661:	ldxa		[TSB] ASI_N, REG; \
 93	.section	.tsb_phys_patch, "ax"; \
 94	.word		661b; \
 95	ldxa		[TSB] ASI_PHYS_USE_EC, REG; \
 96	.previous
 97
 98#define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
 99661:	casa		[TSB] ASI_N, REG1, REG2; \
100	.section	.tsb_phys_patch, "ax"; \
101	.word		661b; \
102	casa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
103	.previous
104
105#define TSB_CAS_TAG(TSB, REG1, REG2) \
106661:	casxa		[TSB] ASI_N, REG1, REG2; \
107	.section	.tsb_phys_patch, "ax"; \
108	.word		661b; \
109	casxa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
110	.previous
111
112#define TSB_STORE(ADDR, VAL) \
113661:	stxa		VAL, [ADDR] ASI_N; \
114	.section	.tsb_phys_patch, "ax"; \
115	.word		661b; \
116	stxa		VAL, [ADDR] ASI_PHYS_USE_EC; \
117	.previous
118
119#define TSB_LOCK_TAG(TSB, REG1, REG2)	\
12099:	TSB_LOAD_TAG_HIGH(TSB, REG1);	\
121	sethi	%hi(TSB_TAG_LOCK_HIGH), REG2;\
122	andcc	REG1, REG2, %g0;	\
123	bne,pn	%icc, 99b;		\
124	 nop;				\
125	TSB_CAS_TAG_HIGH(TSB, REG1, REG2);	\
126	cmp	REG1, REG2;		\
127	bne,pn	%icc, 99b;		\
128	 nop;				\
129
130#define TSB_WRITE(TSB, TTE, TAG) \
131	add	TSB, 0x8, TSB;   \
132	TSB_STORE(TSB, TTE);     \
133	sub	TSB, 0x8, TSB;   \
134	TSB_STORE(TSB, TAG);
135
136	/* Do a kernel page table walk.  Leaves physical PTE pointer in
137	 * REG1.  Jumps to FAIL_LABEL on early page table walk termination.
138	 * VADDR will not be clobbered, but REG2 will.
139	 */
140#define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL)	\
141	sethi		%hi(swapper_pg_dir), REG1; \
142	or		REG1, %lo(swapper_pg_dir), REG1; \
143	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
144	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
145	andn		REG2, 0x7, REG2; \
146	ldx		[REG1 + REG2], REG1; \
147	brz,pn		REG1, FAIL_LABEL; \
148	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
149	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
150	andn		REG2, 0x7, REG2; \
151	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
 
152	brz,pn		REG1, FAIL_LABEL; \
153	 sllx		VADDR, 64 - PMD_SHIFT, REG2; \
154	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
 
155	andn		REG2, 0x7, REG2; \
156	add		REG1, REG2, REG1;
157
158	/* PMD has been loaded into REG1, interpret the value, seeing
159	 * if it is a HUGE PMD or a normal one.  If it is not valid
160	 * then jump to FAIL_LABEL.  If it is a HUGE PMD, and it
161	 * translates to a valid PTE, branch to PTE_LABEL.
162	 *
163	 * We have to propagate the 4MB bit of the virtual address
164	 * because we are fabricating 8MB pages using 4MB hw pages.
165	 */
166#ifdef CONFIG_TRANSPARENT_HUGEPAGE
167#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
168	brz,pn		REG1, FAIL_LABEL;		\
169	 sethi		%uhi(_PAGE_PMD_HUGE), REG2;	\
170	sllx		REG2, 32, REG2;			\
171	andcc		REG1, REG2, %g0;		\
172	be,pt		%xcc, 700f;			\
173	 sethi		%hi(4 * 1024 * 1024), REG2;	\
174	brgez,pn	REG1, FAIL_LABEL;		\
175	 andn		REG1, REG2, REG1;		\
176	and		VADDR, REG2, REG2;		\
177	brlz,pt		REG1, PTE_LABEL;		\
178	 or		REG1, REG2, REG1;		\
179700:
180#else
181#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
182	brz,pn		REG1, FAIL_LABEL; \
183	 nop;
184#endif
185
186	/* Do a user page table walk in MMU globals.  Leaves final,
187	 * valid, PTE value in REG1.  Jumps to FAIL_LABEL on early
188	 * page table walk termination or if the PTE is not valid.
189	 *
190	 * Physical base of page tables is in PHYS_PGD which will not
191	 * be modified.
192	 *
193	 * VADDR will not be clobbered, but REG1 and REG2 will.
194	 */
195#define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL)	\
196	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
197	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
198	andn		REG2, 0x7, REG2; \
199	ldxa		[PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
200	brz,pn		REG1, FAIL_LABEL; \
201	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
202	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
203	andn		REG2, 0x7, REG2; \
204	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
205	USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
206	sllx		VADDR, 64 - PMD_SHIFT, REG2; \
 
207	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
 
208	andn		REG2, 0x7, REG2; \
209	add		REG1, REG2, REG1; \
210	ldxa		[REG1] ASI_PHYS_USE_EC, REG1; \
211	brgez,pn	REG1, FAIL_LABEL; \
212	 nop; \
213800:
214
215/* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
216 * If no entry is found, FAIL_LABEL will be branched to.  On success
217 * the resulting PTE value will be left in REG1.  VADDR is preserved
218 * by this routine.
219 */
220#define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
221	sethi		%hi(prom_trans), REG1; \
222	or		REG1, %lo(prom_trans), REG1; \
22397:	ldx		[REG1 + 0x00], REG2; \
224	brz,pn		REG2, FAIL_LABEL; \
225	 nop; \
226	ldx		[REG1 + 0x08], REG3; \
227	add		REG2, REG3, REG3; \
228	cmp		REG2, VADDR; \
229	bgu,pt		%xcc, 98f; \
230	 cmp		VADDR, REG3; \
231	bgeu,pt		%xcc, 98f; \
232	 ldx		[REG1 + 0x10], REG3; \
233	sub		VADDR, REG2, REG2; \
234	ba,pt		%xcc, 99f; \
235	 add		REG3, REG2, REG1; \
23698:	ba,pt		%xcc, 97b; \
237	 add		REG1, (3 * 8), REG1; \
23899:
239
240	/* We use a 32K TSB for the whole kernel, this allows to
241	 * handle about 16MB of modules and vmalloc mappings without
242	 * incurring many hash conflicts.
243	 */
244#define KERNEL_TSB_SIZE_BYTES	(32 * 1024)
245#define KERNEL_TSB_NENTRIES	\
246	(KERNEL_TSB_SIZE_BYTES / 16)
247#define KERNEL_TSB4M_NENTRIES	4096
248
249#define KTSB_PHYS_SHIFT		15
250
251	/* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
252	 * on TSB hit.  REG1, REG2, REG3, and REG4 are used as temporaries
253	 * and the found TTE will be left in REG1.  REG3 and REG4 must
254	 * be an even/odd pair of registers.
255	 *
256	 * VADDR and TAG will be preserved and not clobbered by this macro.
257	 */
258#define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
259661:	sethi		%hi(swapper_tsb), REG1;			\
260	or		REG1, %lo(swapper_tsb), REG1; \
261	.section	.swapper_tsb_phys_patch, "ax"; \
262	.word		661b; \
263	.previous; \
264661:	nop; \
265	.section	.tsb_ldquad_phys_patch, "ax"; \
266	.word		661b; \
267	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
268	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
269	.previous; \
270	srlx		VADDR, PAGE_SHIFT, REG2; \
271	and		REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
272	sllx		REG2, 4, REG2; \
273	add		REG1, REG2, REG2; \
274	TSB_LOAD_QUAD(REG2, REG3); \
275	cmp		REG3, TAG; \
276	be,a,pt		%xcc, OK_LABEL; \
277	 mov		REG4, REG1;
278
279#ifndef CONFIG_DEBUG_PAGEALLOC
280	/* This version uses a trick, the TAG is already (VADDR >> 22) so
281	 * we can make use of that for the index computation.
282	 */
283#define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
284661:	sethi		%hi(swapper_4m_tsb), REG1;	     \
285	or		REG1, %lo(swapper_4m_tsb), REG1; \
286	.section	.swapper_4m_tsb_phys_patch, "ax"; \
287	.word		661b; \
288	.previous; \
289661:	nop; \
290	.section	.tsb_ldquad_phys_patch, "ax"; \
291	.word		661b; \
292	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
293	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
294	.previous; \
295	and		TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
296	sllx		REG2, 4, REG2; \
297	add		REG1, REG2, REG2; \
298	TSB_LOAD_QUAD(REG2, REG3); \
299	cmp		REG3, TAG; \
300	be,a,pt		%xcc, OK_LABEL; \
301	 mov		REG4, REG1;
302#endif
303
304#endif /* !(_SPARC64_TSB_H) */