Linux Audio

Check our new training course

Loading...
v3.1
   1/* -*- mode: asm -*-
   2**
   3** head.S -- This file contains the initial boot code for the
   4**	     Linux/68k kernel.
   5**
   6** Copyright 1993 by Hamish Macdonald
   7**
   8** 68040 fixes by Michael Rausch
   9** 68060 fixes by Roman Hodek
  10** MMU cleanup by Randy Thelen
  11** Final MMU cleanup by Roman Zippel
  12**
  13** Atari support by Andreas Schwab, using ideas of Robert de Vries
  14** and Bjoern Brauel
  15** VME Support by Richard Hirst
  16**
  17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
  18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
  19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
  20** 95/11/18 Richard Hirst: Added MVME166 support
  21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
  22**			      Magnum- and FX-alternate ram
  23** 98/04/25 Phil Blundell: added HP300 support
  24** 1998/08/30 David Kilzer: Added support for font_desc structures
  25**            for linux-2.1.115
  26** 9/02/11  Richard Zidlicky: added Q40 support (initial vesion 99/01/01)
  27** 2004/05/13 Kars de Jong: Finalised HP300 support
  28**
  29** This file is subject to the terms and conditions of the GNU General Public
  30** License. See the file README.legal in the main directory of this archive
  31** for more details.
  32**
  33*/
  34
  35/*
  36 * Linux startup code.
  37 *
  38 * At this point, the boot loader has:
  39 * Disabled interrupts
  40 * Disabled caches
  41 * Put us in supervisor state.
  42 *
  43 * The kernel setup code takes the following steps:
  44 * .  Raise interrupt level
  45 * .  Set up initial kernel memory mapping.
  46 *    .  This sets up a mapping of the 4M of memory the kernel is located in.
  47 *    .  It also does a mapping of any initial machine specific areas.
  48 * .  Enable the MMU
  49 * .  Enable cache memories
  50 * .  Jump to kernel startup
  51 *
  52 * Much of the file restructuring was to accomplish:
  53 * 1) Remove register dependency through-out the file.
  54 * 2) Increase use of subroutines to perform functions
  55 * 3) Increase readability of the code
  56 *
  57 * Of course, readability is a subjective issue, so it will never be
  58 * argued that that goal was accomplished.  It was merely a goal.
  59 * A key way to help make code more readable is to give good
  60 * documentation.  So, the first thing you will find is exaustive
  61 * write-ups on the structure of the file, and the features of the
  62 * functional subroutines.
  63 *
  64 * General Structure:
  65 * ------------------
  66 *	Without a doubt the single largest chunk of head.S is spent
  67 * mapping the kernel and I/O physical space into the logical range
  68 * for the kernel.
  69 *	There are new subroutines and data structures to make MMU
  70 * support cleaner and easier to understand.
  71 *	First, you will find a routine call "mmu_map" which maps
  72 * a logical to a physical region for some length given a cache
  73 * type on behalf of the caller.  This routine makes writing the
  74 * actual per-machine specific code very simple.
  75 *	A central part of the code, but not a subroutine in itself,
  76 * is the mmu_init code which is broken down into mapping the kernel
  77 * (the same for all machines) and mapping machine-specific I/O
  78 * regions.
  79 *	Also, there will be a description of engaging the MMU and
  80 * caches.
  81 *	You will notice that there is a chunk of code which
  82 * can emit the entire MMU mapping of the machine.  This is present
  83 * only in debug modes and can be very helpful.
  84 *	Further, there is a new console driver in head.S that is
  85 * also only engaged in debug mode.  Currently, it's only supported
  86 * on the Macintosh class of machines.  However, it is hoped that
  87 * others will plug-in support for specific machines.
  88 *
  89 * ######################################################################
  90 *
  91 * mmu_map
  92 * -------
  93 *	mmu_map was written for two key reasons.  First, it was clear
  94 * that it was very difficult to read the previous code for mapping
  95 * regions of memory.  Second, the Macintosh required such extensive
  96 * memory allocations that it didn't make sense to propagate the
  97 * existing code any further.
  98 *	mmu_map requires some parameters:
  99 *
 100 *	mmu_map (logical, physical, length, cache_type)
 101 *
 102 *	While this essentially describes the function in the abstract, you'll
 103 * find more indepth description of other parameters at the implementation site.
 104 *
 105 * mmu_get_root_table_entry
 106 * ------------------------
 107 * mmu_get_ptr_table_entry
 108 * -----------------------
 109 * mmu_get_page_table_entry
 110 * ------------------------
 111 *
 112 *	These routines are used by other mmu routines to get a pointer into
 113 * a table, if necessary a new table is allocated. These routines are working
 114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
 115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
 116 * so that here also some mmu specific initialization is done. The second page
 117 * at the start of the kernel (the first page is unmapped later) is used for
 118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
 119 * to initialize the init task struct) and since it needs special cache
 120 * settings, it's the easiest to use this page, the rest of the page is used
 121 * for further pointer tables.
 122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
 123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
 124 * to manage page tables in smaller pieces as nearly all mappings have that
 125 * size.
 126 *
 127 * ######################################################################
 128 *
 129 *
 130 * ######################################################################
 131 *
 132 * mmu_engage
 133 * ----------
 134 *	Thanks to a small helping routine enabling the mmu got quite simple
 135 * and there is only one way left. mmu_engage makes a complete a new mapping
 136 * that only includes the absolute necessary to be able to jump to the final
 137 * position and to restore the original mapping.
 138 * As this code doesn't need a transparent translation register anymore this
 139 * means all registers are free to be used by machines that needs them for
 140 * other purposes.
 141 *
 142 * ######################################################################
 143 *
 144 * mmu_print
 145 * ---------
 146 *	This algorithm will print out the page tables of the system as
 147 * appropriate for an 030 or an 040.  This is useful for debugging purposes
 148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
 149 *
 150 * ######################################################################
 151 *
 152 * console_init
 153 * ------------
 154 *	The console is also able to be turned off.  The console in head.S
 155 * is specifically for debugging and can be very useful.  It is surrounded by
 156 * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good
 157 * kernels.  It's basic algorithm is to determine the size of the screen
 158 * (in height/width and bit depth) and then use that information for
 159 * displaying an 8x8 font or an 8x16 (widthxheight).  I prefer the 8x8 for
 160 * debugging so I can see more good data.  But it was trivial to add support
 161 * for both fonts, so I included it.
 162 *	Also, the algorithm for plotting pixels is abstracted so that in
 163 * theory other platforms could add support for different kinds of frame
 164 * buffers.  This could be very useful.
 165 *
 166 * console_put_penguin
 167 * -------------------
 168 *	An important part of any Linux bring up is the penguin and there's
 169 * nothing like getting the Penguin on the screen!  This algorithm will work
 170 * on any machine for which there is a console_plot_pixel.
 171 *
 172 * console_scroll
 173 * --------------
 174 *	My hope is that the scroll algorithm does the right thing on the
 175 * various platforms, but it wouldn't be hard to add the test conditions
 176 * and new code if it doesn't.
 177 *
 178 * console_putc
 179 * -------------
 180 *
 181 * ######################################################################
 182 *
 183 *	Register usage has greatly simplified within head.S. Every subroutine
 184 * saves and restores all registers that it modifies (except it returns a
 185 * value in there of course). So the only register that needs to be initialized
 186 * is the stack pointer.
 187 * All other init code and data is now placed in the init section, so it will
 188 * be automatically freed at the end of the kernel initialization.
 189 *
 190 * ######################################################################
 191 *
 192 * options
 193 * -------
 194 *	There are many options available in a build of this file.  I've
 195 * taken the time to describe them here to save you the time of searching
 196 * for them and trying to understand what they mean.
 197 *
 198 * CONFIG_xxx:	These are the obvious machine configuration defines created
 199 * during configuration.  These are defined in autoconf.h.
 200 *
 201 * CONSOLE:	There is support for head.S console in this file.  This
 202 * console can talk to a Mac frame buffer, but could easily be extrapolated
 203 * to extend it to support other platforms.
 204 *
 205 * TEST_MMU:	This is a test harness for running on any given machine but
 206 * getting an MMU dump for another class of machine.  The classes of machines
 207 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
 208 * and any of the models (030, 040, 060, etc.).
 209 *
 210 *	NOTE:	TEST_MMU is NOT permanent!  It is scheduled to be removed
 211 *		When head.S boots on Atari, Amiga, Macintosh, and VME
 212 *		machines.  At that point the underlying logic will be
 213 *		believed to be solid enough to be trusted, and TEST_MMU
 214 *		can be dropped.  Do note that that will clean up the
 215 *		head.S code significantly as large blocks of #if/#else
 216 *		clauses can be removed.
 217 *
 218 * MMU_NOCACHE_KERNEL:	On the Macintosh platform there was an inquiry into
 219 * determing why devices don't appear to work.  A test case was to remove
 220 * the cacheability of the kernel bits.
 221 *
 222 * MMU_PRINT:	There is a routine built into head.S that can display the
 223 * MMU data structures.  It outputs its result through the serial_putc
 224 * interface.  So where ever that winds up driving data, that's where the
 225 * mmu struct will appear.  On the Macintosh that's typically the console.
 226 *
 227 * SERIAL_DEBUG:	There are a series of putc() macro statements
 228 * scattered through out the code to give progress of status to the
 229 * person sitting at the console.  This constant determines whether those
 230 * are used.
 231 *
 232 * DEBUG:	This is the standard DEBUG flag that can be set for building
 233 *		the kernel.  It has the effect adding additional tests into
 234 *		the code.
 235 *
 236 * FONT_6x11:
 237 * FONT_8x8:
 238 * FONT_8x16:
 239 *		In theory these could be determined at run time or handed
 240 *		over by the booter.  But, let's be real, it's a fine hard
 241 *		coded value.  (But, you will notice the code is run-time
 242 *		flexible!)  A pointer to the font's struct font_desc
 243 *		is kept locally in Lconsole_font.  It is used to determine
 244 *		font size information dynamically.
 245 *
 246 * Atari constants:
 247 * USE_PRINTER:	Use the printer port for serial debug.
 248 * USE_SCC_B:	Use the SCC port A (Serial2) for serial debug.
 249 * USE_SCC_A:	Use the SCC port B (Modem2) for serial debug.
 250 * USE_MFP:	Use the ST-MFP port (Modem1) for serial debug.
 251 *
 252 * Macintosh constants:
 253 * MAC_SERIAL_DEBUG:	Turns on serial debug output for the Macintosh.
 254 * MAC_USE_SCC_A:	Use the SCC port A (modem) for serial debug.
 255 * MAC_USE_SCC_B:	Use the SCC port B (printer) for serial debug (default).
 256 */
 257
 258#include <linux/linkage.h>
 259#include <linux/init.h>
 260#include <asm/bootinfo.h>
 
 
 
 
 
 
 261#include <asm/setup.h>
 262#include <asm/entry.h>
 263#include <asm/pgtable.h>
 264#include <asm/page.h>
 265#include <asm/asm-offsets.h>
 266
 267#ifdef CONFIG_MAC
 268
 269#include <asm/machw.h>
 270
 271/*
 272 * Macintosh console support
 273 */
 274
 275#ifdef CONFIG_FRAMEBUFFER_CONSOLE
 276#define CONSOLE
 277#define CONSOLE_PENGUIN
 278#endif
 279
 280/*
 281 * Macintosh serial debug support; outputs boot info to the printer
 282 *   and/or modem serial ports
 283 */
 284#undef MAC_SERIAL_DEBUG
 285
 286/*
 287 * Macintosh serial debug port selection; define one or both;
 288 *   requires MAC_SERIAL_DEBUG to be defined
 289 */
 290#define MAC_USE_SCC_A		/* Macintosh modem serial port */
 291#define MAC_USE_SCC_B		/* Macintosh printer serial port */
 292
 293#endif	/* CONFIG_MAC */
 
 
 294
 295#undef MMU_PRINT
 296#undef MMU_NOCACHE_KERNEL
 297#define SERIAL_DEBUG
 298#undef DEBUG
 299
 300/*
 301 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
 302 * The 8x8 font is harder to read but fits more on the screen.
 303 */
 304#define FONT_8x8	/* default */
 305/* #define FONT_8x16 */	/* 2nd choice */
 306/* #define FONT_6x11 */	/* 3rd choice */
 307
 308.globl kernel_pg_dir
 309.globl availmem
 310.globl m68k_pgtable_cachemode
 311.globl m68k_supervisor_cachemode
 312#ifdef CONFIG_MVME16x
 313.globl mvme_bdid
 314#endif
 315#ifdef CONFIG_Q40
 316.globl q40_mem_cptr
 317#endif
 318
 319CPUTYPE_040	= 1	/* indicates an 040 */
 320CPUTYPE_060	= 2	/* indicates an 060 */
 321CPUTYPE_0460	= 3	/* if either above are set, this is set */
 322CPUTYPE_020	= 4	/* indicates an 020 */
 323
 324/* Translation control register */
 325TC_ENABLE = 0x8000
 326TC_PAGE8K = 0x4000
 327TC_PAGE4K = 0x0000
 328
 329/* Transparent translation registers */
 330TTR_ENABLE	= 0x8000	/* enable transparent translation */
 331TTR_ANYMODE	= 0x4000	/* user and kernel mode access */
 332TTR_KERNELMODE	= 0x2000	/* only kernel mode access */
 333TTR_USERMODE	= 0x0000	/* only user mode access */
 334TTR_CI		= 0x0400	/* inhibit cache */
 335TTR_RW		= 0x0200	/* read/write mode */
 336TTR_RWM		= 0x0100	/* read/write mask */
 337TTR_FCB2	= 0x0040	/* function code base bit 2 */
 338TTR_FCB1	= 0x0020	/* function code base bit 1 */
 339TTR_FCB0	= 0x0010	/* function code base bit 0 */
 340TTR_FCM2	= 0x0004	/* function code mask bit 2 */
 341TTR_FCM1	= 0x0002	/* function code mask bit 1 */
 342TTR_FCM0	= 0x0001	/* function code mask bit 0 */
 343
 344/* Cache Control registers */
 345CC6_ENABLE_D	= 0x80000000	/* enable data cache (680[46]0) */
 346CC6_FREEZE_D	= 0x40000000	/* freeze data cache (68060) */
 347CC6_ENABLE_SB	= 0x20000000	/* enable store buffer (68060) */
 348CC6_PUSH_DPI	= 0x10000000	/* disable CPUSH invalidation (68060) */
 349CC6_HALF_D	= 0x08000000	/* half-cache mode for data cache (68060) */
 350CC6_ENABLE_B	= 0x00800000	/* enable branch cache (68060) */
 351CC6_CLRA_B	= 0x00400000	/* clear all entries in branch cache (68060) */
 352CC6_CLRU_B	= 0x00200000	/* clear user entries in branch cache (68060) */
 353CC6_ENABLE_I	= 0x00008000	/* enable instruction cache (680[46]0) */
 354CC6_FREEZE_I	= 0x00004000	/* freeze instruction cache (68060) */
 355CC6_HALF_I	= 0x00002000	/* half-cache mode for instruction cache (68060) */
 356CC3_ALLOC_WRITE	= 0x00002000	/* write allocate mode(68030) */
 357CC3_ENABLE_DB	= 0x00001000	/* enable data burst (68030) */
 358CC3_CLR_D	= 0x00000800	/* clear data cache (68030) */
 359CC3_CLRE_D	= 0x00000400	/* clear entry in data cache (68030) */
 360CC3_FREEZE_D	= 0x00000200	/* freeze data cache (68030) */
 361CC3_ENABLE_D	= 0x00000100	/* enable data cache (68030) */
 362CC3_ENABLE_IB	= 0x00000010	/* enable instruction burst (68030) */
 363CC3_CLR_I	= 0x00000008	/* clear instruction cache (68030) */
 364CC3_CLRE_I	= 0x00000004	/* clear entry in instruction cache (68030) */
 365CC3_FREEZE_I	= 0x00000002	/* freeze instruction cache (68030) */
 366CC3_ENABLE_I	= 0x00000001	/* enable instruction cache (68030) */
 367
 368/* Miscellaneous definitions */
 369PAGESIZE	= 4096
 370PAGESHIFT	= 12
 371
 372ROOT_TABLE_SIZE	= 128
 373PTR_TABLE_SIZE	= 128
 374PAGE_TABLE_SIZE	= 64
 375ROOT_INDEX_SHIFT = 25
 376PTR_INDEX_SHIFT  = 18
 377PAGE_INDEX_SHIFT = 12
 378
 379#ifdef DEBUG
 380/* When debugging use readable names for labels */
 381#ifdef __STDC__
 382#define L(name) .head.S.##name
 383#else
 384#define L(name) .head.S./**/name
 385#endif
 386#else
 387#ifdef __STDC__
 388#define L(name) .L##name
 389#else
 390#define L(name) .L/**/name
 391#endif
 392#endif
 393
 394/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
 395#ifndef __INITDATA
 396#define __INITDATA	.data
 397#define __FINIT		.previous
 398#endif
 399
 400/* Several macros to make the writing of subroutines easier:
 401 * - func_start marks the beginning of the routine which setups the frame
 402 *   register and saves the registers, it also defines another macro
 403 *   to automatically restore the registers again.
 404 * - func_return marks the end of the routine and simply calls the prepared
 405 *   macro to restore registers and jump back to the caller.
 406 * - func_define generates another macro to automatically put arguments
 407 *   onto the stack call the subroutine and cleanup the stack again.
 408 */
 409
 410/* Within subroutines these macros can be used to access the arguments
 411 * on the stack. With STACK some allocated memory on the stack can be
 412 * accessed and ARG0 points to the return address (used by mmu_engage).
 413 */
 414#define	STACK	%a6@(stackstart)
 415#define ARG0	%a6@(4)
 416#define ARG1	%a6@(8)
 417#define ARG2	%a6@(12)
 418#define ARG3	%a6@(16)
 419#define ARG4	%a6@(20)
 420
 421.macro	func_start	name,saveregs,stack=0
 422L(\name):
 423	linkw	%a6,#-\stack
 424	moveml	\saveregs,%sp@-
 425.set	stackstart,-\stack
 426
 427.macro	func_return_\name
 428	moveml	%sp@+,\saveregs
 429	unlk	%a6
 430	rts
 431.endm
 432.endm
 433
 434.macro	func_return	name
 435	func_return_\name
 436.endm
 437
 438.macro	func_call	name
 439	jbsr	L(\name)
 440.endm
 441
 442.macro	move_stack	nr,arg1,arg2,arg3,arg4
 443.if	\nr
 444	move_stack	"(\nr-1)",\arg2,\arg3,\arg4
 445	movel	\arg1,%sp@-
 446.endif
 447.endm
 448
 449.macro	func_define	name,nr=0
 450.macro	\name	arg1,arg2,arg3,arg4
 451	move_stack	\nr,\arg1,\arg2,\arg3,\arg4
 452	func_call	\name
 453.if	\nr
 454	lea	%sp@(\nr*4),%sp
 455.endif
 456.endm
 457.endm
 458
 459func_define	mmu_map,4
 460func_define	mmu_map_tt,4
 461func_define	mmu_fixup_page_mmu_cache,1
 462func_define	mmu_temp_map,2
 463func_define	mmu_engage
 464func_define	mmu_get_root_table_entry,1
 465func_define	mmu_get_ptr_table_entry,2
 466func_define	mmu_get_page_table_entry,2
 467func_define	mmu_print
 468func_define	get_new_page
 469#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
 470func_define	set_leds
 471#endif
 472
 473.macro	mmu_map_eq	arg1,arg2,arg3
 474	mmu_map	\arg1,\arg1,\arg2,\arg3
 475.endm
 476
 477.macro	get_bi_record	record
 478	pea	\record
 479	func_call	get_bi_record
 480	addql	#4,%sp
 481.endm
 482
 483func_define	serial_putc,1
 484func_define	console_putc,1
 485
 486func_define	console_init
 487func_define	console_put_stats
 488func_define	console_put_penguin
 489func_define	console_plot_pixel,3
 490func_define	console_scroll
 491
 492.macro	putc	ch
 493#if defined(CONSOLE) || defined(SERIAL_DEBUG)
 494	pea	\ch
 495#endif
 496#ifdef CONSOLE
 497	func_call	console_putc
 498#endif
 499#ifdef SERIAL_DEBUG
 500	func_call	serial_putc
 501#endif
 502#if defined(CONSOLE) || defined(SERIAL_DEBUG)
 503	addql	#4,%sp
 504#endif
 505.endm
 506
 507.macro	dputc	ch
 508#ifdef DEBUG
 509	putc	\ch
 510#endif
 511.endm
 512
 513func_define	putn,1
 514
 515.macro	dputn	nr
 516#ifdef DEBUG
 517	putn	\nr
 518#endif
 519.endm
 520
 521.macro	puts		string
 522#if defined(CONSOLE) || defined(SERIAL_DEBUG)
 523	__INITDATA
 524.Lstr\@:
 525	.string	"\string"
 526	__FINIT
 527	pea	%pc@(.Lstr\@)
 528	func_call	puts
 529	addql	#4,%sp
 530#endif
 531.endm
 532
 533.macro	dputs	string
 534#ifdef DEBUG
 535	puts	"\string"
 536#endif
 537.endm
 538
 539#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
 540#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
 541#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
 542#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
 543#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
 544#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
 545#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
 546#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
 547#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
 548#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
 549#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
 550#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
 551#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
 552
 553#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
 554			jeq 42f; \
 555			cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
 556			jne lab ;\
 557		42:\
 558
 559#define is_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
 560#define is_not_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
 561#define is_040(lab)		btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
 562#define is_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
 563#define is_not_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
 564#define is_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
 565#define is_not_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
 566
 567/* On the HP300 we use the on-board LEDs for debug output before
 568   the console is running.  Writing a 1 bit turns the corresponding LED
 569   _off_ - on the 340 bit 7 is towards the back panel of the machine.  */
 570.macro	leds	mask
 571#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
 572	hasnt_leds(.Lled\@)
 573	pea	\mask
 574	func_call	set_leds
 575	addql	#4,%sp
 576.Lled\@:
 577#endif
 578.endm
 579
 580__HEAD
 581ENTRY(_stext)
 582/*
 583 * Version numbers of the bootinfo interface
 584 * The area from _stext to _start will later be used as kernel pointer table
 585 */
 586	bras	1f	/* Jump over bootinfo version numbers */
 587
 588	.long	BOOTINFOV_MAGIC
 589	.long	MACH_AMIGA, AMIGA_BOOTI_VERSION
 590	.long	MACH_ATARI, ATARI_BOOTI_VERSION
 591	.long	MACH_MVME147, MVME147_BOOTI_VERSION
 592	.long	MACH_MVME16x, MVME16x_BOOTI_VERSION
 593	.long	MACH_BVME6000, BVME6000_BOOTI_VERSION
 594	.long	MACH_MAC, MAC_BOOTI_VERSION
 595	.long	MACH_Q40, Q40_BOOTI_VERSION
 596	.long	MACH_HP300, HP300_BOOTI_VERSION
 597	.long	0
 5981:	jra	__start
 599
 600.equ	kernel_pg_dir,_stext
 601
 602.equ	.,_stext+PAGESIZE
 603
 604ENTRY(_start)
 605	jra	__start
 606__INIT
 607ENTRY(__start)
 608/*
 609 * Setup initial stack pointer
 610 */
 611	lea	%pc@(_stext),%sp
 612
 613/*
 614 * Record the CPU and machine type.
 615 */
 616	get_bi_record	BI_MACHTYPE
 617	lea	%pc@(m68k_machtype),%a1
 618	movel	%a0@,%a1@
 619
 620	get_bi_record	BI_FPUTYPE
 621	lea	%pc@(m68k_fputype),%a1
 622	movel	%a0@,%a1@
 623
 624	get_bi_record	BI_MMUTYPE
 625	lea	%pc@(m68k_mmutype),%a1
 626	movel	%a0@,%a1@
 627
 628	get_bi_record	BI_CPUTYPE
 629	lea	%pc@(m68k_cputype),%a1
 630	movel	%a0@,%a1@
 631
 632	leds	0x1
 633
 634#ifdef CONFIG_MAC
 635/*
 636 * For Macintosh, we need to determine the display parameters early (at least
 637 * while debugging it).
 638 */
 639
 640	is_not_mac(L(test_notmac))
 641
 642	get_bi_record	BI_MAC_VADDR
 643	lea	%pc@(L(mac_videobase)),%a1
 644	movel	%a0@,%a1@
 645
 646	get_bi_record	BI_MAC_VDEPTH
 647	lea	%pc@(L(mac_videodepth)),%a1
 648	movel	%a0@,%a1@
 649
 650	get_bi_record	BI_MAC_VDIM
 651	lea	%pc@(L(mac_dimensions)),%a1
 652	movel	%a0@,%a1@
 653
 654	get_bi_record	BI_MAC_VROW
 655	lea	%pc@(L(mac_rowbytes)),%a1
 656	movel	%a0@,%a1@
 657
 658#ifdef MAC_SERIAL_DEBUG
 659	get_bi_record	BI_MAC_SCCBASE
 660	lea	%pc@(L(mac_sccbase)),%a1
 661	movel	%a0@,%a1@
 662#endif /* MAC_SERIAL_DEBUG */
 663
 664#if 0
 665	/*
 666	 * Clear the screen
 667	 */
 668	lea	%pc@(L(mac_videobase)),%a0
 669	movel	%a0@,%a1
 670	lea	%pc@(L(mac_dimensions)),%a0
 671	movel	%a0@,%d1
 672	swap	%d1		/* #rows is high bytes */
 673	andl	#0xFFFF,%d1	/* rows */
 674	subl	#10,%d1
 675	lea	%pc@(L(mac_rowbytes)),%a0
 676loopy2:
 677	movel	%a0@,%d0
 678	subql	#1,%d0
 679loopx2:
 680	moveb	#0x55, %a1@+
 681	dbra	%d0,loopx2
 682	dbra	%d1,loopy2
 683#endif
 684
 685L(test_notmac):
 686#endif /* CONFIG_MAC */
 687
 688
 689/*
 690 * There are ultimately two pieces of information we want for all kinds of
 691 * processors CpuType and CacheBits.  The CPUTYPE was passed in from booter
 692 * and is converted here from a booter type definition to a separate bit
 693 * number which allows for the standard is_0x0 macro tests.
 694 */
 695	movel	%pc@(m68k_cputype),%d0
 696	/*
 697	 * Assume it's an 030
 698	 */
 699	clrl	%d1
 700
 701	/*
 702	 * Test the BootInfo cputype for 060
 703	 */
 704	btst	#CPUB_68060,%d0
 705	jeq	1f
 706	bset	#CPUTYPE_060,%d1
 707	bset	#CPUTYPE_0460,%d1
 708	jra	3f
 7091:
 710	/*
 711	 * Test the BootInfo cputype for 040
 712	 */
 713	btst	#CPUB_68040,%d0
 714	jeq	2f
 715	bset	#CPUTYPE_040,%d1
 716	bset	#CPUTYPE_0460,%d1
 717	jra	3f
 7182:
 719	/*
 720	 * Test the BootInfo cputype for 020
 721	 */
 722	btst	#CPUB_68020,%d0
 723	jeq	3f
 724	bset	#CPUTYPE_020,%d1
 725	jra	3f
 7263:
 727	/*
 728	 * Record the cpu type
 729	 */
 730	lea	%pc@(L(cputype)),%a0
 731	movel	%d1,%a0@
 732
 733	/*
 734	 * NOTE:
 735	 *
 736	 * Now the macros are valid:
 737	 *	is_040_or_060
 738	 *	is_not_040_or_060
 739	 *	is_040
 740	 *	is_060
 741	 *	is_not_060
 742	 */
 743
 744	/*
 745	 * Determine the cache mode for pages holding MMU tables
 746	 * and for supervisor mode, unused for '020 and '030
 747	 */
 748	clrl	%d0
 749	clrl	%d1
 750
 751	is_not_040_or_060(L(save_cachetype))
 752
 753	/*
 754	 * '040 or '060
 755	 * d1 := cacheable write-through
 756	 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
 757	 * but we have been using write-through since at least 2.0.29 so I
 758	 * guess it is OK.
 759	 */
 760#ifdef CONFIG_060_WRITETHROUGH
 761	/*
 762	 * If this is a 68060 board using drivers with cache coherency
 763	 * problems, then supervisor memory accesses need to be write-through
 764	 * also; otherwise, we want copyback.
 765	 */
 766
 767	is_not_060(1f)
 768	movel	#_PAGE_CACHE040W,%d0
 769	jra	L(save_cachetype)
 770#endif /* CONFIG_060_WRITETHROUGH */
 7711:
 772	movew	#_PAGE_CACHE040,%d0
 773
 774	movel	#_PAGE_CACHE040W,%d1
 775
 776L(save_cachetype):
 777	/* Save cache mode for supervisor mode and page tables
 778	 */
 779	lea	%pc@(m68k_supervisor_cachemode),%a0
 780	movel	%d0,%a0@
 781	lea	%pc@(m68k_pgtable_cachemode),%a0
 782	movel	%d1,%a0@
 783
 784/*
 785 * raise interrupt level
 786 */
 787	movew	#0x2700,%sr
 788
 789/*
 790   If running on an Atari, determine the I/O base of the
 791   serial port and test if we are running on a Medusa or Hades.
 792   This test is necessary here, because on the Hades the serial
 793   port is only accessible in the high I/O memory area.
 794
 795   The test whether it is a Medusa is done by writing to the byte at
 796   phys. 0x0. This should result in a bus error on all other machines.
 797
 798   ...should, but doesn't. The Afterburner040 for the Falcon has the
 799   same behaviour (0x0..0x7 are no ROM shadow). So we have to do
 800   another test to distinguish Medusa and AB040. This is a
 801   read attempt for 0x00ff82fe phys. that should bus error on a Falcon
 802   (+AB040), but is in the range where the Medusa always asserts DTACK.
 803
 804   The test for the Hades is done by reading address 0xb0000000. This
 805   should give a bus error on the Medusa.
 806 */
 807
 808#ifdef CONFIG_ATARI
 809	is_not_atari(L(notypetest))
 810
 811	/* get special machine type (Medusa/Hades/AB40) */
 812	moveq	#0,%d3 /* default if tag doesn't exist */
 813	get_bi_record	BI_ATARI_MCH_TYPE
 814	tstl	%d0
 815	jbmi	1f
 816	movel	%a0@,%d3
 817	lea	%pc@(atari_mch_type),%a0
 818	movel	%d3,%a0@
 8191:
 820	/* On the Hades, the iobase must be set up before opening the
 821	 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
 822	moveq	#0,%d0
 823	cmpl	#ATARI_MACH_HADES,%d3
 824	jbne	1f
 825	movel	#0xff000000,%d0		/* Hades I/O base addr: 0xff000000 */
 8261:	lea     %pc@(L(iobase)),%a0
 827	movel   %d0,%a0@
 828
 829L(notypetest):
 830#endif
 831
 832#ifdef CONFIG_VME
 833	is_mvme147(L(getvmetype))
 834	is_bvme6000(L(getvmetype))
 835	is_not_mvme16x(L(gvtdone))
 836
 837	/* See if the loader has specified the BI_VME_TYPE tag.  Recent
 838	 * versions of VMELILO and TFTPLILO do this.  We have to do this
 839	 * early so we know how to handle console output.  If the tag
 840	 * doesn't exist then we use the Bug for output on MVME16x.
 841	 */
 842L(getvmetype):
 843	get_bi_record	BI_VME_TYPE
 844	tstl	%d0
 845	jbmi	1f
 846	movel	%a0@,%d3
 847	lea	%pc@(vme_brdtype),%a0
 848	movel	%d3,%a0@
 8491:
 850#ifdef CONFIG_MVME16x
 851	is_not_mvme16x(L(gvtdone))
 852
 853	/* Need to get the BRD_ID info to differentiate between 162, 167,
 854	 * etc.  This is available as a BI_VME_BRDINFO tag with later
 855	 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
 856	 */
 857	get_bi_record	BI_VME_BRDINFO
 858	tstl	%d0
 859	jpl	1f
 860
 861	/* Get pointer to board ID data from Bug */
 862	movel	%d2,%sp@-
 863	trap	#15
 864	.word	0x70		/* trap 0x70 - .BRD_ID */
 865	movel	%sp@+,%a0
 8661:
 867	lea	%pc@(mvme_bdid),%a1
 868	/* Structure is 32 bytes long */
 869	movel	%a0@+,%a1@+
 870	movel	%a0@+,%a1@+
 871	movel	%a0@+,%a1@+
 872	movel	%a0@+,%a1@+
 873	movel	%a0@+,%a1@+
 874	movel	%a0@+,%a1@+
 875	movel	%a0@+,%a1@+
 876	movel	%a0@+,%a1@+
 877#endif
 878
 879L(gvtdone):
 880
 881#endif
 882
 883#ifdef CONFIG_HP300
 884	is_not_hp300(L(nothp))
 885
 886	/* Get the address of the UART for serial debugging */
 887	get_bi_record	BI_HP300_UART_ADDR
 888	tstl	%d0
 889	jbmi	1f
 890	movel	%a0@,%d3
 891	lea	%pc@(L(uartbase)),%a0
 892	movel	%d3,%a0@
 893	get_bi_record	BI_HP300_UART_SCODE
 894	tstl	%d0
 895	jbmi	1f
 896	movel	%a0@,%d3
 897	lea	%pc@(L(uart_scode)),%a0
 898	movel	%d3,%a0@
 8991:
 900L(nothp):
 901#endif
 902
 903/*
 904 * Initialize serial port
 905 */
 906	jbsr	L(serial_init)
 907
 908/*
 909 * Initialize console
 910 */
 911#ifdef CONFIG_MAC
 912	is_not_mac(L(nocon))
 913#ifdef CONSOLE
 914	console_init
 915#ifdef CONSOLE_PENGUIN
 916	console_put_penguin
 917#endif	/* CONSOLE_PENGUIN */
 918	console_put_stats
 919#endif	/* CONSOLE */
 920L(nocon):
 921#endif	/* CONFIG_MAC */
 922
 923
 924	putc	'\n'
 925	putc	'A'
 926	leds	0x2
 927	dputn	%pc@(L(cputype))
 928	dputn	%pc@(m68k_supervisor_cachemode)
 929	dputn	%pc@(m68k_pgtable_cachemode)
 930	dputc	'\n'
 931
 932/*
 933 * Save physical start address of kernel
 934 */
 935	lea	%pc@(L(phys_kernel_start)),%a0
 936	lea	%pc@(_stext),%a1
 937	subl	#_stext,%a1
 938	addl	#PAGE_OFFSET,%a1
 939	movel	%a1,%a0@
 940
 941	putc	'B'
 942
 943	leds	0x4
 944
 945/*
 946 *	mmu_init
 947 *
 948 *	This block of code does what's necessary to map in the various kinds
 949 *	of machines for execution of Linux.
 950 *	First map the first 4 MB of kernel code & data
 951 */
 952
 953	mmu_map	#PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\
 954		%pc@(m68k_supervisor_cachemode)
 955
 956	putc	'C'
 957
 958#ifdef CONFIG_AMIGA
 959
 960L(mmu_init_amiga):
 961
 962	is_not_amiga(L(mmu_init_not_amiga))
 963/*
 964 * mmu_init_amiga
 965 */
 966
 967	putc	'D'
 968
 969	is_not_040_or_060(1f)
 970
 971	/*
 972	 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
 973	 */
 974	mmu_map		#0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
 975	/*
 976	 * Map the Zorro III I/O space with transparent translation
 977	 * for frame buffer memory etc.
 978	 */
 979	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
 980
 981	jbra	L(mmu_init_done)
 982
 9831:
 984	/*
 985	 * 030:	Map the 32Meg range physical 0x0 up to logical 0x8000.0000
 986	 */
 987	mmu_map		#0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
 988	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
 989
 990	jbra	L(mmu_init_done)
 991
 992L(mmu_init_not_amiga):
 993#endif
 994
 995#ifdef CONFIG_ATARI
 996
 997L(mmu_init_atari):
 998
 999	is_not_atari(L(mmu_init_not_atari))
1000
1001	putc	'E'
1002
1003/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
1004   the last 16 MB of virtual address space to the first 16 MB (i.e.
1005   0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
1006   needed. I/O ranges are marked non-cachable.
1007
1008   For the Medusa it is better to map the I/O region transparently
1009   (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
1010   accessible only in the high area.
1011
1012   On the Hades all I/O registers are only accessible in the high
1013   area.
1014*/
1015
1016	/* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
1017	moveq	#0,%d0
1018	movel	%pc@(atari_mch_type),%d3
1019	cmpl	#ATARI_MACH_MEDUSA,%d3
1020	jbeq	2f
1021	cmpl	#ATARI_MACH_HADES,%d3
1022	jbne	1f
10232:	movel	#0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
10241:	movel	%d0,%d3
1025
1026	is_040_or_060(L(spata68040))
1027
1028	/* Map everything non-cacheable, though not all parts really
1029	 * need to disable caches (crucial only for 0xff8000..0xffffff
1030	 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1031	 * isn't really used, except for sometimes peeking into the
1032	 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1033	 * this. */
1034	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1035
1036	jbra	L(mmu_init_done)
1037
1038L(spata68040):
1039
1040	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1041
1042	jbra	L(mmu_init_done)
1043
1044L(mmu_init_not_atari):
1045#endif
1046
1047#ifdef CONFIG_Q40
1048	is_not_q40(L(notq40))
1049	/*
1050	 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1051	 * non-cached serialized etc..
1052	 * this includes master chip, DAC, RTC and ISA ports
1053	 * 0xfe000000-0xfeffffff is for screen and ROM
1054	 */
1055
1056	putc    'Q'
1057
1058	mmu_map_tt	#0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1059	mmu_map_tt	#1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1060
1061	jbra	L(mmu_init_done)
1062
1063L(notq40):
1064#endif
1065
1066#ifdef CONFIG_HP300
1067	is_not_hp300(L(nothp300))
1068
1069	/* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1070	 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1071	 * The ROM mapping is needed because the LEDs are mapped there too.
1072	 */
1073
1074	is_040(1f)
1075
1076	/*
1077	 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1078	 */
1079	mmu_map	#0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1080
1081	jbra	L(mmu_init_done)
1082
10831:
1084	/*
1085	 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1086	 */
1087	mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1088
1089	jbra	L(mmu_init_done)
1090
1091L(nothp300):
1092#endif /* CONFIG_HP300 */
1093
1094#ifdef CONFIG_MVME147
1095
1096	is_not_mvme147(L(not147))
1097
1098	/*
1099	 * On MVME147 we have already created kernel page tables for
1100	 * 4MB of RAM at address 0, so now need to do a transparent
1101	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1102	 * so we can access on-board i/o areas.
1103	 */
1104
1105	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1106
1107	jbra	L(mmu_init_done)
1108
1109L(not147):
1110#endif /* CONFIG_MVME147 */
1111
1112#ifdef CONFIG_MVME16x
1113
1114	is_not_mvme16x(L(not16x))
1115
1116	/*
1117	 * On MVME16x we have already created kernel page tables for
1118	 * 4MB of RAM at address 0, so now need to do a transparent
1119	 * mapping of the top of memory space.  Make it 0.5GByte for now.
1120	 * Supervisor only access, so transparent mapping doesn't
1121	 * clash with User code virtual address space.
1122	 * this covers IO devices, PROM and SRAM.  The PROM and SRAM
1123	 * mapping is needed to allow 167Bug to run.
1124	 * IO is in the range 0xfff00000 to 0xfffeffff.
1125	 * PROM is 0xff800000->0xffbfffff and SRAM is
1126	 * 0xffe00000->0xffe1ffff.
1127	 */
1128
1129	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1130
1131	jbra	L(mmu_init_done)
1132
1133L(not16x):
1134#endif	/* CONFIG_MVME162 | CONFIG_MVME167 */
1135
1136#ifdef CONFIG_BVME6000
1137
1138	is_not_bvme6000(L(not6000))
1139
1140	/*
1141	 * On BVME6000 we have already created kernel page tables for
1142	 * 4MB of RAM at address 0, so now need to do a transparent
1143	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1144	 * so we can access on-board i/o areas.
1145	 * Supervisor only access, so transparent mapping doesn't
1146	 * clash with User code virtual address space.
1147	 */
1148
1149	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1150
1151	jbra	L(mmu_init_done)
1152
1153L(not6000):
1154#endif /* CONFIG_BVME6000 */
1155
1156/*
1157 * mmu_init_mac
1158 *
1159 * The Macintosh mappings are less clear.
1160 *
1161 * Even as of this writing, it is unclear how the
1162 * Macintosh mappings will be done.  However, as
1163 * the first author of this code I'm proposing the
1164 * following model:
1165 *
1166 * Map the kernel (that's already done),
1167 * Map the I/O (on most machines that's the
1168 * 0x5000.0000 ... 0x5300.0000 range,
1169 * Map the video frame buffer using as few pages
1170 * as absolutely (this requirement mostly stems from
1171 * the fact that when the frame buffer is at
1172 * 0x0000.0000 then we know there is valid RAM just
1173 * above the screen that we don't want to waste!).
1174 *
1175 * By the way, if the frame buffer is at 0x0000.0000
1176 * then the Macintosh is known as an RBV based Mac.
1177 *
1178 * By the way 2, the code currently maps in a bunch of
1179 * regions.  But I'd like to cut that out.  (And move most
1180 * of the mappings up into the kernel proper ... or only
1181 * map what's necessary.)
1182 */
1183
1184#ifdef CONFIG_MAC
1185
1186L(mmu_init_mac):
1187
1188	is_not_mac(L(mmu_init_not_mac))
1189
1190	putc	'F'
1191
1192	is_not_040_or_060(1f)
1193
1194	moveq	#_PAGE_NOCACHE_S,%d3
1195	jbra	2f
11961:
1197	moveq	#_PAGE_NOCACHE030,%d3
11982:
1199	/*
1200	 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1201	 *	     we simply map the 4MB that contains the videomem
1202	 */
1203
1204	movel	#VIDEOMEMMASK,%d0
1205	andl	%pc@(L(mac_videobase)),%d0
1206
1207	mmu_map		#VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1208	/* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1209	mmu_map_eq	#0x40000000,#0x02000000,%d3
1210	/* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1211	mmu_map_eq	#0x50000000,#0x03000000,%d3
1212	/* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1213	mmu_map_tt	#1,#0xf8000000,#0x08000000,%d3
1214
1215	jbra	L(mmu_init_done)
1216
1217L(mmu_init_not_mac):
1218#endif
1219
1220#ifdef CONFIG_SUN3X
1221	is_not_sun3x(L(notsun3x))
1222
1223	/* oh, the pain..  We're gonna want the prom code after
1224	 * starting the MMU, so we copy the mappings, translating
1225	 * from 8k -> 4k pages as we go.
1226	 */
1227
1228	/* copy maps from 0xfee00000 to 0xff000000 */
1229	movel	#0xfee00000, %d0
1230	moveq	#ROOT_INDEX_SHIFT, %d1
1231	lsrl	%d1,%d0
1232	mmu_get_root_table_entry	%d0
1233
1234	movel	#0xfee00000, %d0
1235	moveq	#PTR_INDEX_SHIFT, %d1
1236	lsrl	%d1,%d0
1237	andl	#PTR_TABLE_SIZE-1, %d0
1238	mmu_get_ptr_table_entry		%a0,%d0
1239
1240	movel	#0xfee00000, %d0
1241	moveq	#PAGE_INDEX_SHIFT, %d1
1242	lsrl	%d1,%d0
1243	andl	#PAGE_TABLE_SIZE-1, %d0
1244	mmu_get_page_table_entry	%a0,%d0
1245
1246	/* this is where the prom page table lives */
1247	movel	0xfefe00d4, %a1
1248	movel	%a1@, %a1
1249
1250	movel	#((0x200000 >> 13)-1), %d1
1251
12521:
1253	movel	%a1@+, %d3
1254	movel	%d3,%a0@+
1255	addl	#0x1000,%d3
1256	movel	%d3,%a0@+
1257
1258	dbra	%d1,1b
1259
1260	/* setup tt1 for I/O */
1261	mmu_map_tt	#1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1262	jbra	L(mmu_init_done)
1263
1264L(notsun3x):
1265#endif
1266
1267#ifdef CONFIG_APOLLO
1268	is_not_apollo(L(notapollo))
1269
1270	putc	'P'
1271	mmu_map         #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1272
1273L(notapollo):
1274	jbra	L(mmu_init_done)
1275#endif
1276
1277L(mmu_init_done):
1278
1279	putc	'G'
1280	leds	0x8
1281
1282/*
1283 * mmu_fixup
1284 *
1285 * On the 040 class machines, all pages that are used for the
1286 * mmu have to be fixed up. According to Motorola, pages holding mmu
1287 * tables should be non-cacheable on a '040 and write-through on a
1288 * '060. But analysis of the reasons for this, and practical
1289 * experience, showed that write-through also works on a '040.
1290 *
1291 * Allocated memory so far goes from kernel_end to memory_start that
1292 * is used for all kind of tables, for that the cache attributes
1293 * are now fixed.
1294 */
1295L(mmu_fixup):
1296
1297	is_not_040_or_060(L(mmu_fixup_done))
1298
1299#ifdef MMU_NOCACHE_KERNEL
1300	jbra	L(mmu_fixup_done)
1301#endif
1302
1303	/* first fix the page at the start of the kernel, that
1304	 * contains also kernel_pg_dir.
1305	 */
1306	movel	%pc@(L(phys_kernel_start)),%d0
1307	subl	#PAGE_OFFSET,%d0
1308	lea	%pc@(_stext),%a0
1309	subl	%d0,%a0
1310	mmu_fixup_page_mmu_cache	%a0
1311
1312	movel	%pc@(L(kernel_end)),%a0
1313	subl	%d0,%a0
1314	movel	%pc@(L(memory_start)),%a1
1315	subl	%d0,%a1
1316	bra	2f
13171:
1318	mmu_fixup_page_mmu_cache	%a0
1319	addw	#PAGESIZE,%a0
13202:
1321	cmpl	%a0,%a1
1322	jgt	1b
1323
1324L(mmu_fixup_done):
1325
1326#ifdef MMU_PRINT
1327	mmu_print
1328#endif
1329
1330/*
1331 * mmu_engage
1332 *
1333 * This chunk of code performs the gruesome task of engaging the MMU.
1334 * The reason its gruesome is because when the MMU becomes engaged it
1335 * maps logical addresses to physical addresses.  The Program Counter
1336 * register is then passed through the MMU before the next instruction
1337 * is fetched (the instruction following the engage MMU instruction).
1338 * This may mean one of two things:
1339 * 1. The Program Counter falls within the logical address space of
1340 *    the kernel of which there are two sub-possibilities:
1341 *    A. The PC maps to the correct instruction (logical PC == physical
1342 *       code location), or
1343 *    B. The PC does not map through and the processor will read some
1344 *       data (or instruction) which is not the logically next instr.
1345 *    As you can imagine, A is good and B is bad.
1346 * Alternatively,
1347 * 2. The Program Counter does not map through the MMU.  The processor
1348 *    will take a Bus Error.
1349 * Clearly, 2 is bad.
1350 * It doesn't take a wiz kid to figure you want 1.A.
1351 * This code creates that possibility.
1352 * There are two possible 1.A. states (we now ignore the other above states):
1353 * A. The kernel is located at physical memory addressed the same as
1354 *    the logical memory for the kernel, i.e., 0x01000.
1355 * B. The kernel is located some where else.  e.g., 0x0400.0000
1356 *
1357 *    Under some conditions the Macintosh can look like A or B.
1358 * [A friend and I once noted that Apple hardware engineers should be
1359 * wacked twice each day: once when they show up at work (as in, Whack!,
1360 * "This is for the screwy hardware we know you're going to design today."),
1361 * and also at the end of the day (as in, Whack! "I don't know what
1362 * you designed today, but I'm sure it wasn't good."). -- rst]
1363 *
1364 * This code works on the following premise:
1365 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1366 * then create a mapping for the kernel at logical 0x8000.0000 to
1367 * the physical location of the pc.  And, create a transparent
1368 * translation register for the first 16 Meg.  Then, after the MMU
1369 * is engaged, the PC can be moved up into the 0x8000.0000 range
1370 * and then the transparent translation can be turned off and then
1371 * the PC can jump to the correct logical location and it will be
1372 * home (finally).  This is essentially the code that the Amiga used
1373 * to use.  Now, it's generalized for all processors.  Which means
1374 * that a fresh (but temporary) mapping has to be created.  The mapping
1375 * is made in page 0 (an as of yet unused location -- except for the
1376 * stack!).  This temporary mapping will only require 1 pointer table
1377 * and a single page table (it can map 256K).
1378 *
1379 * OK, alternatively, imagine that the Program Counter is not within
1380 * the first 16 Meg.  Then, just use Transparent Translation registers
1381 * to do the right thing.
1382 *
1383 * Last, if _start is already at 0x01000, then there's nothing special
1384 * to do (in other words, in a degenerate case of the first case above,
1385 * do nothing).
1386 *
1387 * Let's do it.
1388 *
1389 *
1390 */
1391
1392	putc	'H'
1393
1394	mmu_engage
1395
1396/*
1397 * After this point no new memory is allocated and
1398 * the start of available memory is stored in availmem.
1399 * (The bootmem allocator requires now the physicall address.)
1400 */
1401
1402	movel	L(memory_start),availmem
1403
1404#ifdef CONFIG_AMIGA
1405	is_not_amiga(1f)
1406	/* fixup the Amiga custom register location before printing */
1407	clrl	L(custom)
14081:
1409#endif
1410
1411#ifdef CONFIG_ATARI
1412	is_not_atari(1f)
1413	/* fixup the Atari iobase register location before printing */
1414	movel	#0xff000000,L(iobase)
14151:
1416#endif
1417
1418#ifdef CONFIG_MAC
1419	is_not_mac(1f)
1420	movel	#~VIDEOMEMMASK,%d0
1421	andl	L(mac_videobase),%d0
1422	addl	#VIDEOMEMBASE,%d0
1423	movel	%d0,L(mac_videobase)
1424#if defined(CONSOLE)
1425	movel	%pc@(L(phys_kernel_start)),%d0
1426	subl	#PAGE_OFFSET,%d0
1427	subl	%d0,L(console_font)
1428	subl	%d0,L(console_font_data)
1429#endif
1430#ifdef MAC_SERIAL_DEBUG
1431	orl	#0x50000000,L(mac_sccbase)
1432#endif
14331:
1434#endif
1435
1436#ifdef CONFIG_HP300
1437	is_not_hp300(2f)
1438	/*
1439	 * Fix up the iobase register to point to the new location of the LEDs.
1440	 */
1441	movel	#0xf0000000,L(iobase)
1442
1443	/*
1444	 * Energise the FPU and caches.
1445	 */
1446	is_040(1f)
1447	movel	#0x60,0xf05f400c
1448	jbra	2f
1449
1450	/*
1451	 * 040: slightly different, apparently.
1452	 */
14531:	movew	#0,0xf05f400e
1454	movew	#0x64,0xf05f400e
14552:
1456#endif
1457
1458#ifdef CONFIG_SUN3X
1459	is_not_sun3x(1f)
1460
1461	/* enable copro */
1462	oriw	#0x4000,0x61000000
14631:
1464#endif
1465
1466#ifdef CONFIG_APOLLO
1467	is_not_apollo(1f)
1468
1469	/*
1470	 * Fix up the iobase before printing
1471	 */
1472	movel	#0x80000000,L(iobase)
14731:
1474#endif
1475
1476	putc	'I'
1477	leds	0x10
1478
1479/*
1480 * Enable caches
1481 */
1482
1483	is_not_040_or_060(L(cache_not_680460))
1484
1485L(cache680460):
1486	.chip	68040
1487	nop
1488	cpusha	%bc
1489	nop
1490
1491	is_060(L(cache68060))
1492
1493	movel	#CC6_ENABLE_D+CC6_ENABLE_I,%d0
1494	/* MMU stuff works in copyback mode now, so enable the cache */
1495	movec	%d0,%cacr
1496	jra	L(cache_done)
1497
1498L(cache68060):
1499	movel	#CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1500	/* MMU stuff works in copyback mode now, so enable the cache */
1501	movec	%d0,%cacr
1502	/* enable superscalar dispatch in PCR */
1503	moveq	#1,%d0
1504	.chip	68060
1505	movec	%d0,%pcr
1506
1507	jbra	L(cache_done)
1508L(cache_not_680460):
1509L(cache68030):
1510	.chip	68030
1511	movel	#CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1512	movec	%d0,%cacr
1513
1514	jra	L(cache_done)
1515	.chip	68k
1516L(cache_done):
1517
1518	putc	'J'
1519
1520/*
1521 * Setup initial stack pointer
1522 */
1523	lea	init_task,%curptr
1524	lea	init_thread_union+THREAD_SIZE,%sp
1525
1526	putc	'K'
1527
1528	subl	%a6,%a6		/* clear a6 for gdb */
1529
1530/*
1531 * The new 64bit printf support requires an early exception initialization.
1532 */
1533	jbsr	base_trap_init
1534
1535/* jump to the kernel start */
1536
1537	putc	'\n'
1538	leds	0x55
1539
1540	jbsr	start_kernel
1541
1542/*
1543 * Find a tag record in the bootinfo structure
1544 * The bootinfo structure is located right after the kernel bss
1545 * Returns: d0: size (-1 if not found)
1546 *          a0: data pointer (end-of-records if not found)
1547 */
1548func_start	get_bi_record,%d1
1549
1550	movel	ARG1,%d0
1551	lea	%pc@(_end),%a0
15521:	tstw	%a0@(BIR_TAG)
1553	jeq	3f
1554	cmpw	%a0@(BIR_TAG),%d0
1555	jeq	2f
1556	addw	%a0@(BIR_SIZE),%a0
1557	jra	1b
15582:	moveq	#0,%d0
1559	movew	%a0@(BIR_SIZE),%d0
1560	lea	%a0@(BIR_DATA),%a0
1561	jra	4f
15623:	moveq	#-1,%d0
1563	lea	%a0@(BIR_SIZE),%a0
15644:
1565func_return	get_bi_record
1566
1567
1568/*
1569 *	MMU Initialization Begins Here
1570 *
1571 *	The structure of the MMU tables on the 68k machines
1572 *	is thus:
1573 *	Root Table
1574 *		Logical addresses are translated through
1575 *	a hierarchical translation mechanism where the high-order
1576 *	seven bits of the logical address (LA) are used as an
1577 *	index into the "root table."  Each entry in the root
1578 *	table has a bit which specifies if it's a valid pointer to a
1579 *	pointer table.  Each entry defines a 32KMeg range of memory.
1580 *	If an entry is invalid then that logical range of 32M is
1581 *	invalid and references to that range of memory (when the MMU
1582 *	is enabled) will fault.  If the entry is valid, then it does
1583 *	one of two things.  On 040/060 class machines, it points to
1584 *	a pointer table which then describes more finely the memory
1585 *	within that 32M range.  On 020/030 class machines, a technique
1586 *	called "early terminating descriptors" are used.  This technique
1587 *	allows an entire 32Meg to be described by a single entry in the
1588 *	root table.  Thus, this entry in the root table, contains the
1589 *	physical address of the memory or I/O at the logical address
1590 *	which the entry represents and it also contains the necessary
1591 *	cache bits for this region.
1592 *
1593 *	Pointer Tables
1594 *		Per the Root Table, there will be one or more
1595 *	pointer tables.  Each pointer table defines a 32M range.
1596 *	Not all of the 32M range need be defined.  Again, the next
1597 *	seven bits of the logical address are used an index into
1598 *	the pointer table to point to page tables (if the pointer
1599 *	is valid).  There will undoubtedly be more than one
1600 *	pointer table for the kernel because each pointer table
1601 *	defines a range of only 32M.  Valid pointer table entries
1602 *	point to page tables, or are early terminating entries
1603 *	themselves.
1604 *
1605 *	Page Tables
1606 *		Per the Pointer Tables, each page table entry points
1607 *	to the physical page in memory that supports the logical
1608 *	address that translates to the particular index.
1609 *
1610 *	In short, the Logical Address gets translated as follows:
1611 *		bits 31..26 - index into the Root Table
1612 *		bits 25..18 - index into the Pointer Table
1613 *		bits 17..12 - index into the Page Table
1614 *		bits 11..0  - offset into a particular 4K page
1615 *
1616 *	The algorithms which follows do one thing: they abstract
1617 *	the MMU hardware.  For example, there are three kinds of
1618 *	cache settings that are relevant.  Either, memory is
1619 *	being mapped in which case it is either Kernel Code (or
1620 *	the RamDisk) or it is MMU data.  On the 030, the MMU data
1621 *	option also describes the kernel.  Or, I/O is being mapped
1622 *	in which case it has its own kind of cache bits.  There
1623 *	are constants which abstract these notions from the code that
1624 *	actually makes the call to map some range of memory.
1625 *
1626 *
1627 *
1628 */
1629
1630#ifdef MMU_PRINT
1631/*
1632 *	mmu_print
1633 *
1634 *	This algorithm will print out the current MMU mappings.
1635 *
1636 *	Input:
1637 *		%a5 points to the root table.  Everything else is calculated
1638 *			from this.
1639 */
1640
1641#define mmu_next_valid		0
1642#define mmu_start_logical	4
1643#define mmu_next_logical	8
1644#define mmu_start_physical	12
1645#define mmu_next_physical	16
1646
1647#define MMU_PRINT_INVALID		-1
1648#define MMU_PRINT_VALID			1
1649#define MMU_PRINT_UNINITED		0
1650
1651#define putZc(z,n)		jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1652
1653func_start	mmu_print,%a0-%a6/%d0-%d7
1654
1655	movel	%pc@(L(kernel_pgdir_ptr)),%a5
1656	lea	%pc@(L(mmu_print_data)),%a0
1657	movel	#MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1658
1659	is_not_040_or_060(mmu_030_print)
1660
1661mmu_040_print:
1662	puts	"\nMMU040\n"
1663	puts	"rp:"
1664	putn	%a5
1665	putc	'\n'
1666#if 0
1667	/*
1668	 * The following #if/#endif block is a tight algorithm for dumping the 040
1669	 * MMU Map in gory detail.  It really isn't that practical unless the
1670	 * MMU Map algorithm appears to go awry and you need to debug it at the
1671	 * entry per entry level.
1672	 */
1673	movel	#ROOT_TABLE_SIZE,%d5
1674#if 0
1675	movel	%a5@+,%d7		| Burn an entry to skip the kernel mappings,
1676	subql	#1,%d5			| they (might) work
1677#endif
16781:	tstl	%d5
1679	jbeq	mmu_print_done
1680	subq	#1,%d5
1681	movel	%a5@+,%d7
1682	btst	#1,%d7
1683	jbeq	1b
1684
16852:	putn	%d7
1686	andil	#0xFFFFFE00,%d7
1687	movel	%d7,%a4
1688	movel	#PTR_TABLE_SIZE,%d4
1689	putc	' '
16903:	tstl	%d4
1691	jbeq	11f
1692	subq	#1,%d4
1693	movel	%a4@+,%d7
1694	btst	#1,%d7
1695	jbeq	3b
1696
16974:	putn	%d7
1698	andil	#0xFFFFFF00,%d7
1699	movel	%d7,%a3
1700	movel	#PAGE_TABLE_SIZE,%d3
17015:	movel	#8,%d2
17026:	tstl	%d3
1703	jbeq	31f
1704	subq	#1,%d3
1705	movel	%a3@+,%d6
1706	btst	#0,%d6
1707	jbeq	6b
17087:	tstl	%d2
1709	jbeq	8f
1710	subq	#1,%d2
1711	putc	' '
1712	jbra	91f
17138:	putc	'\n'
1714	movel	#8+1+8+1+1,%d2
17159:	putc	' '
1716	dbra	%d2,9b
1717	movel	#7,%d2
171891:	putn	%d6
1719	jbra	6b
1720
172131:	putc	'\n'
1722	movel	#8+1,%d2
172332:	putc	' '
1724	dbra	%d2,32b
1725	jbra	3b
1726
172711:	putc	'\n'
1728	jbra	1b
1729#endif /* MMU 040 Dumping code that's gory and detailed */
1730
1731	lea	%pc@(kernel_pg_dir),%a5
1732	movel	%a5,%a0			/* a0 has the address of the root table ptr */
1733	movel	#0x00000000,%a4		/* logical address */
1734	moveql	#0,%d0
173540:
1736	/* Increment the logical address and preserve in d5 */
1737	movel	%a4,%d5
1738	addil	#PAGESIZE<<13,%d5
1739	movel	%a0@+,%d6
1740	btst	#1,%d6
1741	jbne	41f
1742	jbsr	mmu_print_tuple_invalidate
1743	jbra	48f
174441:
1745	movel	#0,%d1
1746	andil	#0xfffffe00,%d6
1747	movel	%d6,%a1
174842:
1749	movel	%a4,%d5
1750	addil	#PAGESIZE<<6,%d5
1751	movel	%a1@+,%d6
1752	btst	#1,%d6
1753	jbne	43f
1754	jbsr	mmu_print_tuple_invalidate
1755	jbra	47f
175643:
1757	movel	#0,%d2
1758	andil	#0xffffff00,%d6
1759	movel	%d6,%a2
176044:
1761	movel	%a4,%d5
1762	addil	#PAGESIZE,%d5
1763	movel	%a2@+,%d6
1764	btst	#0,%d6
1765	jbne	45f
1766	jbsr	mmu_print_tuple_invalidate
1767	jbra	46f
176845:
1769	moveml	%d0-%d1,%sp@-
1770	movel	%a4,%d0
1771	movel	%d6,%d1
1772	andil	#0xfffff4e0,%d1
1773	lea	%pc@(mmu_040_print_flags),%a6
1774	jbsr	mmu_print_tuple
1775	moveml	%sp@+,%d0-%d1
177646:
1777	movel	%d5,%a4
1778	addq	#1,%d2
1779	cmpib	#64,%d2
1780	jbne	44b
178147:
1782	movel	%d5,%a4
1783	addq	#1,%d1
1784	cmpib	#128,%d1
1785	jbne	42b
178648:
1787	movel	%d5,%a4			/* move to the next logical address */
1788	addq	#1,%d0
1789	cmpib	#128,%d0
1790	jbne	40b
1791
1792	.chip	68040
1793	movec	%dtt1,%d0
1794	movel	%d0,%d1
1795	andiw	#0x8000,%d1		/* is it valid ? */
1796	jbeq	1f			/* No, bail out */
1797
1798	movel	%d0,%d1
1799	andil	#0xff000000,%d1		/* Get the address */
1800	putn	%d1
1801	puts	"=="
1802	putn	%d1
1803
1804	movel	%d0,%d6
1805	jbsr	mmu_040_print_flags_tt
18061:
1807	movec	%dtt0,%d0
1808	movel	%d0,%d1
1809	andiw	#0x8000,%d1		/* is it valid ? */
1810	jbeq	1f			/* No, bail out */
1811
1812	movel	%d0,%d1
1813	andil	#0xff000000,%d1		/* Get the address */
1814	putn	%d1
1815	puts	"=="
1816	putn	%d1
1817
1818	movel	%d0,%d6
1819	jbsr	mmu_040_print_flags_tt
18201:
1821	.chip	68k
1822
1823	jbra	mmu_print_done
1824
1825mmu_040_print_flags:
1826	btstl	#10,%d6
1827	putZc(' ','G')	/* global bit */
1828	btstl	#7,%d6
1829	putZc(' ','S')	/* supervisor bit */
1830mmu_040_print_flags_tt:
1831	btstl	#6,%d6
1832	jbne	3f
1833	putc	'C'
1834	btstl	#5,%d6
1835	putZc('w','c')	/* write through or copy-back */
1836	jbra	4f
18373:
1838	putc	'N'
1839	btstl	#5,%d6
1840	putZc('s',' ')	/* serialized non-cacheable, or non-cacheable */
18414:
1842	rts
1843
1844mmu_030_print_flags:
1845	btstl	#6,%d6
1846	putZc('C','I')	/* write through or copy-back */
1847	rts
1848
1849mmu_030_print:
1850	puts	"\nMMU030\n"
1851	puts	"\nrp:"
1852	putn	%a5
1853	putc	'\n'
1854	movel	%a5,%d0
1855	andil	#0xfffffff0,%d0
1856	movel	%d0,%a0
1857	movel	#0x00000000,%a4		/* logical address */
1858	movel	#0,%d0
185930:
1860	movel	%a4,%d5
1861	addil	#PAGESIZE<<13,%d5
1862	movel	%a0@+,%d6
1863	btst	#1,%d6			/* is it a table ptr? */
1864	jbne	31f			/* yes */
1865	btst	#0,%d6			/* is it early terminating? */
1866	jbeq	1f			/* no */
1867	jbsr	mmu_030_print_helper
1868	jbra	38f
18691:
1870	jbsr	mmu_print_tuple_invalidate
1871	jbra	38f
187231:
1873	movel	#0,%d1
1874	andil	#0xfffffff0,%d6
1875	movel	%d6,%a1
187632:
1877	movel	%a4,%d5
1878	addil	#PAGESIZE<<6,%d5
1879	movel	%a1@+,%d6
1880	btst	#1,%d6			/* is it a table ptr? */
1881	jbne	33f			/* yes */
1882	btst	#0,%d6			/* is it a page descriptor? */
1883	jbeq	1f			/* no */
1884	jbsr	mmu_030_print_helper
1885	jbra	37f
18861:
1887	jbsr	mmu_print_tuple_invalidate
1888	jbra	37f
188933:
1890	movel	#0,%d2
1891	andil	#0xfffffff0,%d6
1892	movel	%d6,%a2
189334:
1894	movel	%a4,%d5
1895	addil	#PAGESIZE,%d5
1896	movel	%a2@+,%d6
1897	btst	#0,%d6
1898	jbne	35f
1899	jbsr	mmu_print_tuple_invalidate
1900	jbra	36f
190135:
1902	jbsr	mmu_030_print_helper
190336:
1904	movel	%d5,%a4
1905	addq	#1,%d2
1906	cmpib	#64,%d2
1907	jbne	34b
190837:
1909	movel	%d5,%a4
1910	addq	#1,%d1
1911	cmpib	#128,%d1
1912	jbne	32b
191338:
1914	movel	%d5,%a4			/* move to the next logical address */
1915	addq	#1,%d0
1916	cmpib	#128,%d0
1917	jbne	30b
1918
1919mmu_print_done:
1920	puts	"\n\n"
1921
1922func_return	mmu_print
1923
1924
1925mmu_030_print_helper:
1926	moveml	%d0-%d1,%sp@-
1927	movel	%a4,%d0
1928	movel	%d6,%d1
1929	lea	%pc@(mmu_030_print_flags),%a6
1930	jbsr	mmu_print_tuple
1931	moveml	%sp@+,%d0-%d1
1932	rts
1933
1934mmu_print_tuple_invalidate:
1935	moveml	%a0/%d7,%sp@-
1936
1937	lea	%pc@(L(mmu_print_data)),%a0
1938	tstl	%a0@(mmu_next_valid)
1939	jbmi	mmu_print_tuple_invalidate_exit
1940
1941	movel	#MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1942
1943	putn	%a4
1944
1945	puts	"##\n"
1946
1947mmu_print_tuple_invalidate_exit:
1948	moveml	%sp@+,%a0/%d7
1949	rts
1950
1951
1952mmu_print_tuple:
1953	moveml	%d0-%d7/%a0,%sp@-
1954
1955	lea	%pc@(L(mmu_print_data)),%a0
1956
1957	tstl	%a0@(mmu_next_valid)
1958	jble	mmu_print_tuple_print
1959
1960	cmpl	%a0@(mmu_next_physical),%d1
1961	jbeq	mmu_print_tuple_increment
1962
1963mmu_print_tuple_print:
1964	putn	%d0
1965	puts	"->"
1966	putn	%d1
1967
1968	movel	%d1,%d6
1969	jbsr	%a6@
1970
1971mmu_print_tuple_record:
1972	movel	#MMU_PRINT_VALID,%a0@(mmu_next_valid)
1973
1974	movel	%d1,%a0@(mmu_next_physical)
1975
1976mmu_print_tuple_increment:
1977	movel	%d5,%d7
1978	subl	%a4,%d7
1979	addl	%d7,%a0@(mmu_next_physical)
1980
1981mmu_print_tuple_exit:
1982	moveml	%sp@+,%d0-%d7/%a0
1983	rts
1984
1985mmu_print_machine_cpu_types:
1986	puts	"machine: "
1987
1988	is_not_amiga(1f)
1989	puts	"amiga"
1990	jbra	9f
19911:
1992	is_not_atari(2f)
1993	puts	"atari"
1994	jbra	9f
19952:
1996	is_not_mac(3f)
1997	puts	"macintosh"
1998	jbra	9f
19993:	puts	"unknown"
20009:	putc	'\n'
2001
2002	puts	"cputype: 0"
2003	is_not_060(1f)
2004	putc	'6'
2005	jbra	9f
20061:
2007	is_not_040_or_060(2f)
2008	putc	'4'
2009	jbra	9f
20102:	putc	'3'
20119:	putc	'0'
2012	putc	'\n'
2013
2014	rts
2015#endif /* MMU_PRINT */
2016
2017/*
2018 * mmu_map_tt
2019 *
2020 * This is a specific function which works on all 680x0 machines.
2021 * On 030, 040 & 060 it will attempt to use Transparent Translation
2022 * registers (tt1).
2023 * On 020 it will call the standard mmu_map which will use early
2024 * terminating descriptors.
2025 */
2026func_start	mmu_map_tt,%d0/%d1/%a0,4
2027
2028	dputs	"mmu_map_tt:"
2029	dputn	ARG1
2030	dputn	ARG2
2031	dputn	ARG3
2032	dputn	ARG4
2033	dputc	'\n'
2034
2035	is_020(L(do_map))
2036
2037	/* Extract the highest bit set
2038	 */
2039	bfffo	ARG3{#0,#32},%d1
2040	cmpw	#8,%d1
2041	jcc	L(do_map)
2042
2043	/* And get the mask
2044	 */
2045	moveq	#-1,%d0
2046	lsrl	%d1,%d0
2047	lsrl	#1,%d0
2048
2049	/* Mask the address
2050	 */
2051	movel	%d0,%d1
2052	notl	%d1
2053	andl	ARG2,%d1
2054
2055	/* Generate the upper 16bit of the tt register
2056	 */
2057	lsrl	#8,%d0
2058	orl	%d0,%d1
2059	clrw	%d1
2060
2061	is_040_or_060(L(mmu_map_tt_040))
2062
2063	/* set 030 specific bits (read/write access for supervisor mode
2064	 * (highest function code set, lower two bits masked))
2065	 */
2066	orw	#TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2067	movel	ARG4,%d0
2068	btst	#6,%d0
2069	jeq	1f
2070	orw	#TTR_CI,%d1
2071
20721:	lea	STACK,%a0
2073	dputn	%d1
2074	movel	%d1,%a0@
2075	.chip	68030
2076	tstl	ARG1
2077	jne	1f
2078	pmove	%a0@,%tt0
2079	jra	2f
20801:	pmove	%a0@,%tt1
20812:	.chip	68k
2082	jra	L(mmu_map_tt_done)
2083
2084	/* set 040 specific bits
2085	 */
2086L(mmu_map_tt_040):
2087	orw	#TTR_ENABLE+TTR_KERNELMODE,%d1
2088	orl	ARG4,%d1
2089	dputn	%d1
2090
2091	.chip	68040
2092	tstl	ARG1
2093	jne	1f
2094	movec	%d1,%itt0
2095	movec	%d1,%dtt0
2096	jra	2f
20971:	movec	%d1,%itt1
2098	movec	%d1,%dtt1
20992:	.chip	68k
2100
2101	jra	L(mmu_map_tt_done)
2102
2103L(do_map):
2104	mmu_map_eq	ARG2,ARG3,ARG4
2105
2106L(mmu_map_tt_done):
2107
2108func_return	mmu_map_tt
2109
2110/*
2111 *	mmu_map
2112 *
2113 *	This routine will map a range of memory using a pointer
2114 *	table and allocating the pages on the fly from the kernel.
2115 *	The pointer table does not have to be already linked into
2116 *	the root table, this routine will do that if necessary.
2117 *
2118 *	NOTE
2119 *	This routine will assert failure and use the serial_putc
2120 *	routines in the case of a run-time error.  For example,
2121 *	if the address is already mapped.
2122 *
2123 *	NOTE-2
2124 *	This routine will use early terminating descriptors
2125 *	where possible for the 68020+68851 and 68030 type
2126 *	processors.
2127 */
2128func_start	mmu_map,%d0-%d4/%a0-%a4
2129
2130	dputs	"\nmmu_map:"
2131	dputn	ARG1
2132	dputn	ARG2
2133	dputn	ARG3
2134	dputn	ARG4
2135	dputc	'\n'
2136
2137	/* Get logical address and round it down to 256KB
2138	 */
2139	movel	ARG1,%d0
2140	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2141	movel	%d0,%a3
2142
2143	/* Get the end address
2144	 */
2145	movel	ARG1,%a4
2146	addl	ARG3,%a4
2147	subql	#1,%a4
2148
2149	/* Get physical address and round it down to 256KB
2150	 */
2151	movel	ARG2,%d0
2152	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2153	movel	%d0,%a2
2154
2155	/* Add page attributes to the physical address
2156	 */
2157	movel	ARG4,%d0
2158	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2159	addw	%d0,%a2
2160
2161	dputn	%a2
2162	dputn	%a3
2163	dputn	%a4
2164
2165	is_not_040_or_060(L(mmu_map_030))
2166
2167	addw	#_PAGE_GLOBAL040,%a2
2168/*
2169 *	MMU 040 & 060 Support
2170 *
2171 *	The MMU usage for the 040 and 060 is different enough from
2172 *	the 030 and 68851 that there is separate code.  This comment
2173 *	block describes the data structures and algorithms built by
2174 *	this code.
2175 *
2176 *	The 040 does not support early terminating descriptors, as
2177 *	the 030 does.  Therefore, a third level of table is needed
2178 *	for the 040, and that would be the page table.  In Linux,
2179 *	page tables are allocated directly from the memory above the
2180 *	kernel.
2181 *
2182 */
2183
2184L(mmu_map_040):
2185	/* Calculate the offset into the root table
2186	 */
2187	movel	%a3,%d0
2188	moveq	#ROOT_INDEX_SHIFT,%d1
2189	lsrl	%d1,%d0
2190	mmu_get_root_table_entry	%d0
2191
2192	/* Calculate the offset into the pointer table
2193	 */
2194	movel	%a3,%d0
2195	moveq	#PTR_INDEX_SHIFT,%d1
2196	lsrl	%d1,%d0
2197	andl	#PTR_TABLE_SIZE-1,%d0
2198	mmu_get_ptr_table_entry		%a0,%d0
2199
2200	/* Calculate the offset into the page table
2201	 */
2202	movel	%a3,%d0
2203	moveq	#PAGE_INDEX_SHIFT,%d1
2204	lsrl	%d1,%d0
2205	andl	#PAGE_TABLE_SIZE-1,%d0
2206	mmu_get_page_table_entry	%a0,%d0
2207
2208	/* The page table entry must not no be busy
2209	 */
2210	tstl	%a0@
2211	jne	L(mmu_map_error)
2212
2213	/* Do the mapping and advance the pointers
2214	 */
2215	movel	%a2,%a0@
22162:
2217	addw	#PAGESIZE,%a2
2218	addw	#PAGESIZE,%a3
2219
2220	/* Ready with mapping?
2221	 */
2222	lea	%a3@(-1),%a0
2223	cmpl	%a0,%a4
2224	jhi	L(mmu_map_040)
2225	jra	L(mmu_map_done)
2226
2227L(mmu_map_030):
2228	/* Calculate the offset into the root table
2229	 */
2230	movel	%a3,%d0
2231	moveq	#ROOT_INDEX_SHIFT,%d1
2232	lsrl	%d1,%d0
2233	mmu_get_root_table_entry	%d0
2234
2235	/* Check if logical address 32MB aligned,
2236	 * so we can try to map it once
2237	 */
2238	movel	%a3,%d0
2239	andl	#(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2240	jne	1f
2241
2242	/* Is there enough to map for 32MB at once
2243	 */
2244	lea	%a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2245	cmpl	%a1,%a4
2246	jcs	1f
2247
2248	addql	#1,%a1
2249
2250	/* The root table entry must not no be busy
2251	 */
2252	tstl	%a0@
2253	jne	L(mmu_map_error)
2254
2255	/* Do the mapping and advance the pointers
2256	 */
2257	dputs	"early term1"
2258	dputn	%a2
2259	dputn	%a3
2260	dputn	%a1
2261	dputc	'\n'
2262	movel	%a2,%a0@
2263
2264	movel	%a1,%a3
2265	lea	%a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2266	jra	L(mmu_mapnext_030)
22671:
2268	/* Calculate the offset into the pointer table
2269	 */
2270	movel	%a3,%d0
2271	moveq	#PTR_INDEX_SHIFT,%d1
2272	lsrl	%d1,%d0
2273	andl	#PTR_TABLE_SIZE-1,%d0
2274	mmu_get_ptr_table_entry		%a0,%d0
2275
2276	/* The pointer table entry must not no be busy
2277	 */
2278	tstl	%a0@
2279	jne	L(mmu_map_error)
2280
2281	/* Do the mapping and advance the pointers
2282	 */
2283	dputs	"early term2"
2284	dputn	%a2
2285	dputn	%a3
2286	dputc	'\n'
2287	movel	%a2,%a0@
2288
2289	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a2
2290	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a3
2291
2292L(mmu_mapnext_030):
2293	/* Ready with mapping?
2294	 */
2295	lea	%a3@(-1),%a0
2296	cmpl	%a0,%a4
2297	jhi	L(mmu_map_030)
2298	jra	L(mmu_map_done)
2299
2300L(mmu_map_error):
2301
2302	dputs	"mmu_map error:"
2303	dputn	%a2
2304	dputn	%a3
2305	dputc	'\n'
2306
2307L(mmu_map_done):
2308
2309func_return	mmu_map
2310
2311/*
2312 *	mmu_fixup
2313 *
2314 *	On the 040 class machines, all pages that are used for the
2315 *	mmu have to be fixed up.
2316 */
2317
2318func_start	mmu_fixup_page_mmu_cache,%d0/%a0
2319
2320	dputs	"mmu_fixup_page_mmu_cache"
2321	dputn	ARG1
2322
2323	/* Calculate the offset into the root table
2324	 */
2325	movel	ARG1,%d0
2326	moveq	#ROOT_INDEX_SHIFT,%d1
2327	lsrl	%d1,%d0
2328	mmu_get_root_table_entry	%d0
2329
2330	/* Calculate the offset into the pointer table
2331	 */
2332	movel	ARG1,%d0
2333	moveq	#PTR_INDEX_SHIFT,%d1
2334	lsrl	%d1,%d0
2335	andl	#PTR_TABLE_SIZE-1,%d0
2336	mmu_get_ptr_table_entry		%a0,%d0
2337
2338	/* Calculate the offset into the page table
2339	 */
2340	movel	ARG1,%d0
2341	moveq	#PAGE_INDEX_SHIFT,%d1
2342	lsrl	%d1,%d0
2343	andl	#PAGE_TABLE_SIZE-1,%d0
2344	mmu_get_page_table_entry	%a0,%d0
2345
2346	movel	%a0@,%d0
2347	andil	#_CACHEMASK040,%d0
2348	orl	%pc@(m68k_pgtable_cachemode),%d0
2349	movel	%d0,%a0@
2350
2351	dputc	'\n'
2352
2353func_return	mmu_fixup_page_mmu_cache
2354
2355/*
2356 *	mmu_temp_map
2357 *
2358 *	create a temporary mapping to enable the mmu,
2359 *	this we don't need any transparation translation tricks.
2360 */
2361
2362func_start	mmu_temp_map,%d0/%d1/%a0/%a1
2363
2364	dputs	"mmu_temp_map"
2365	dputn	ARG1
2366	dputn	ARG2
2367	dputc	'\n'
2368
2369	lea	%pc@(L(temp_mmap_mem)),%a1
2370
2371	/* Calculate the offset in the root table
2372	 */
2373	movel	ARG2,%d0
2374	moveq	#ROOT_INDEX_SHIFT,%d1
2375	lsrl	%d1,%d0
2376	mmu_get_root_table_entry	%d0
2377
2378	/* Check if the table is temporary allocated, so we have to reuse it
2379	 */
2380	movel	%a0@,%d0
2381	cmpl	%pc@(L(memory_start)),%d0
2382	jcc	1f
2383
2384	/* Temporary allocate a ptr table and insert it into the root table
2385	 */
2386	movel	%a1@,%d0
2387	addl	#PTR_TABLE_SIZE*4,%a1@
2388	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2389	movel	%d0,%a0@
2390	dputs	" (new)"
23911:
2392	dputn	%d0
2393	/* Mask the root table entry for the ptr table
2394	 */
2395	andw	#-ROOT_TABLE_SIZE,%d0
2396	movel	%d0,%a0
2397
2398	/* Calculate the offset into the pointer table
2399	 */
2400	movel	ARG2,%d0
2401	moveq	#PTR_INDEX_SHIFT,%d1
2402	lsrl	%d1,%d0
2403	andl	#PTR_TABLE_SIZE-1,%d0
2404	lea	%a0@(%d0*4),%a0
2405	dputn	%a0
2406
2407	/* Check if a temporary page table is already allocated
2408	 */
2409	movel	%a0@,%d0
2410	jne	1f
2411
2412	/* Temporary allocate a page table and insert it into the ptr table
2413	 */
2414	movel	%a1@,%d0
2415	/* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2416	   alignment restriction for pointer tables on the '0[46]0.  */
2417	addl	#512,%a1@
2418	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2419	movel	%d0,%a0@
2420	dputs	" (new)"
24211:
2422	dputn	%d0
2423	/* Mask the ptr table entry for the page table
2424	 */
2425	andw	#-PTR_TABLE_SIZE,%d0
2426	movel	%d0,%a0
2427
2428	/* Calculate the offset into the page table
2429	 */
2430	movel	ARG2,%d0
2431	moveq	#PAGE_INDEX_SHIFT,%d1
2432	lsrl	%d1,%d0
2433	andl	#PAGE_TABLE_SIZE-1,%d0
2434	lea	%a0@(%d0*4),%a0
2435	dputn	%a0
2436
2437	/* Insert the address into the page table
2438	 */
2439	movel	ARG1,%d0
2440	andw	#-PAGESIZE,%d0
2441	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2442	movel	%d0,%a0@
2443	dputn	%d0
2444
2445	dputc	'\n'
2446
2447func_return	mmu_temp_map
2448
2449func_start	mmu_engage,%d0-%d2/%a0-%a3
2450
2451	moveq	#ROOT_TABLE_SIZE-1,%d0
2452	/* Temporarily use a different root table.  */
2453	lea	%pc@(L(kernel_pgdir_ptr)),%a0
2454	movel	%a0@,%a2
2455	movel	%pc@(L(memory_start)),%a1
2456	movel	%a1,%a0@
2457	movel	%a2,%a0
24581:
2459	movel	%a0@+,%a1@+
2460	dbra	%d0,1b
2461
2462	lea	%pc@(L(temp_mmap_mem)),%a0
2463	movel	%a1,%a0@
2464
2465	movew	#PAGESIZE-1,%d0
24661:
2467	clrl	%a1@+
2468	dbra	%d0,1b
2469
2470	lea	%pc@(1b),%a0
2471	movel	#1b,%a1
2472	/* Skip temp mappings if phys == virt */
2473	cmpl	%a0,%a1
2474	jeq	1f
2475
2476	mmu_temp_map	%a0,%a0
2477	mmu_temp_map	%a0,%a1
2478
2479	addw	#PAGESIZE,%a0
2480	addw	#PAGESIZE,%a1
2481	mmu_temp_map	%a0,%a0
2482	mmu_temp_map	%a0,%a1
24831:
2484	movel	%pc@(L(memory_start)),%a3
2485	movel	%pc@(L(phys_kernel_start)),%d2
2486
2487	is_not_040_or_060(L(mmu_engage_030))
2488
2489L(mmu_engage_040):
2490	.chip	68040
2491	nop
2492	cinva	%bc
2493	nop
2494	pflusha
2495	nop
2496	movec	%a3,%srp
2497	movel	#TC_ENABLE+TC_PAGE4K,%d0
2498	movec	%d0,%tc		/* enable the MMU */
2499	jmp	1f:l
25001:	nop
2501	movec	%a2,%srp
2502	nop
2503	cinva	%bc
2504	nop
2505	pflusha
2506	.chip	68k
2507	jra	L(mmu_engage_cleanup)
2508
2509L(mmu_engage_030_temp):
2510	.space	12
2511L(mmu_engage_030):
2512	.chip	68030
2513	lea	%pc@(L(mmu_engage_030_temp)),%a0
2514	movel	#0x80000002,%a0@
2515	movel	%a3,%a0@(4)
2516	movel	#0x0808,%d0
2517	movec	%d0,%cacr
2518	pmove	%a0@,%srp
2519	pflusha
2520	/*
2521	 * enable,super root enable,4096 byte pages,7 bit root index,
2522	 * 7 bit pointer index, 6 bit page table index.
2523	 */
2524	movel	#0x82c07760,%a0@(8)
2525	pmove	%a0@(8),%tc	/* enable the MMU */
2526	jmp	1f:l
25271:	movel	%a2,%a0@(4)
2528	movel	#0x0808,%d0
2529	movec	%d0,%cacr
2530	pmove	%a0@,%srp
2531	pflusha
2532	.chip	68k
2533
2534L(mmu_engage_cleanup):
2535	subl	#PAGE_OFFSET,%d2
2536	subl	%d2,%a2
2537	movel	%a2,L(kernel_pgdir_ptr)
2538	subl	%d2,%fp
2539	subl	%d2,%sp
2540	subl	%d2,ARG0
2541
2542func_return	mmu_engage
2543
2544func_start	mmu_get_root_table_entry,%d0/%a1
2545
2546#if 0
2547	dputs	"mmu_get_root_table_entry:"
2548	dputn	ARG1
2549	dputs	" ="
2550#endif
2551
2552	movel	%pc@(L(kernel_pgdir_ptr)),%a0
2553	tstl	%a0
2554	jne	2f
2555
2556	dputs	"\nmmu_init:"
2557
2558	/* Find the start of free memory, get_bi_record does this for us,
2559	 * as the bootinfo structure is located directly behind the kernel
2560	 * and and we simply search for the last entry.
2561	 */
2562	get_bi_record	BI_LAST
2563	addw	#PAGESIZE-1,%a0
2564	movel	%a0,%d0
2565	andw	#-PAGESIZE,%d0
2566
2567	dputn	%d0
2568
2569	lea	%pc@(L(memory_start)),%a0
2570	movel	%d0,%a0@
2571	lea	%pc@(L(kernel_end)),%a0
2572	movel	%d0,%a0@
2573
2574	/* we have to return the first page at _stext since the init code
2575	 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2576	 * page is used for further ptr tables in get_ptr_table.
2577	 */
2578	lea	%pc@(_stext),%a0
2579	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2580	movel	%a0,%a1@
2581	addl	#ROOT_TABLE_SIZE*4,%a1@
2582
2583	lea	%pc@(L(mmu_num_pointer_tables)),%a1
2584	addql	#1,%a1@
2585
2586	/* clear the page
2587	 */
2588	movel	%a0,%a1
2589	movew	#PAGESIZE/4-1,%d0
25901:
2591	clrl	%a1@+
2592	dbra	%d0,1b
2593
2594	lea	%pc@(L(kernel_pgdir_ptr)),%a1
2595	movel	%a0,%a1@
2596
2597	dputn	%a0
2598	dputc	'\n'
25992:
2600	movel	ARG1,%d0
2601	lea	%a0@(%d0*4),%a0
2602
2603#if 0
2604	dputn	%a0
2605	dputc	'\n'
2606#endif
2607
2608func_return	mmu_get_root_table_entry
2609
2610
2611
2612func_start	mmu_get_ptr_table_entry,%d0/%a1
2613
2614#if 0
2615	dputs	"mmu_get_ptr_table_entry:"
2616	dputn	ARG1
2617	dputn	ARG2
2618	dputs	" ="
2619#endif
2620
2621	movel	ARG1,%a0
2622	movel	%a0@,%d0
2623	jne	2f
2624
2625	/* Keep track of the number of pointer tables we use
2626	 */
2627	dputs	"\nmmu_get_new_ptr_table:"
2628	lea	%pc@(L(mmu_num_pointer_tables)),%a0
2629	movel	%a0@,%d0
2630	addql	#1,%a0@
2631
2632	/* See if there is a free pointer table in our cache of pointer tables
2633	 */
2634	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2635	andw	#7,%d0
2636	jne	1f
2637
2638	/* Get a new pointer table page from above the kernel memory
2639	 */
2640	get_new_page
2641	movel	%a0,%a1@
26421:
2643	/* There is an unused pointer table in our cache... use it
2644	 */
2645	movel	%a1@,%d0
2646	addl	#PTR_TABLE_SIZE*4,%a1@
2647
2648	dputn	%d0
2649	dputc	'\n'
2650
2651	/* Insert the new pointer table into the root table
2652	 */
2653	movel	ARG1,%a0
2654	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2655	movel	%d0,%a0@
26562:
2657	/* Extract the pointer table entry
2658	 */
2659	andw	#-PTR_TABLE_SIZE,%d0
2660	movel	%d0,%a0
2661	movel	ARG2,%d0
2662	lea	%a0@(%d0*4),%a0
2663
2664#if 0
2665	dputn	%a0
2666	dputc	'\n'
2667#endif
2668
2669func_return	mmu_get_ptr_table_entry
2670
2671
2672func_start	mmu_get_page_table_entry,%d0/%a1
2673
2674#if 0
2675	dputs	"mmu_get_page_table_entry:"
2676	dputn	ARG1
2677	dputn	ARG2
2678	dputs	" ="
2679#endif
2680
2681	movel	ARG1,%a0
2682	movel	%a0@,%d0
2683	jne	2f
2684
2685	/* If the page table entry doesn't exist, we allocate a complete new
2686	 * page and use it as one continues big page table which can cover
2687	 * 4MB of memory, nearly almost all mappings have that alignment.
2688	 */
2689	get_new_page
2690	addw	#_PAGE_TABLE+_PAGE_ACCESSED,%a0
2691
2692	/* align pointer table entry for a page of page tables
2693	 */
2694	movel	ARG1,%d0
2695	andw	#-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2696	movel	%d0,%a1
2697
2698	/* Insert the page tables into the pointer entries
2699	 */
2700	moveq	#PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
27011:
2702	movel	%a0,%a1@+
2703	lea	%a0@(PAGE_TABLE_SIZE*4),%a0
2704	dbra	%d0,1b
2705
2706	/* Now we can get the initialized pointer table entry
2707	 */
2708	movel	ARG1,%a0
2709	movel	%a0@,%d0
27102:
2711	/* Extract the page table entry
2712	 */
2713	andw	#-PAGE_TABLE_SIZE,%d0
2714	movel	%d0,%a0
2715	movel	ARG2,%d0
2716	lea	%a0@(%d0*4),%a0
2717
2718#if 0
2719	dputn	%a0
2720	dputc	'\n'
2721#endif
2722
2723func_return	mmu_get_page_table_entry
2724
2725/*
2726 *	get_new_page
2727 *
2728 *	Return a new page from the memory start and clear it.
2729 */
2730func_start	get_new_page,%d0/%a1
2731
2732	dputs	"\nget_new_page:"
2733
2734	/* allocate the page and adjust memory_start
2735	 */
2736	lea	%pc@(L(memory_start)),%a0
2737	movel	%a0@,%a1
2738	addl	#PAGESIZE,%a0@
2739
2740	/* clear the new page
2741	 */
2742	movel	%a1,%a0
2743	movew	#PAGESIZE/4-1,%d0
27441:
2745	clrl	%a1@+
2746	dbra	%d0,1b
2747
2748	dputn	%a0
2749	dputc	'\n'
2750
2751func_return	get_new_page
2752
2753
2754
2755/*
2756 * Debug output support
2757 * Atarians have a choice between the parallel port, the serial port
2758 * from the MFP or a serial port of the SCC
2759 */
2760
2761#ifdef CONFIG_MAC
2762
2763L(scc_initable_mac):
2764	.byte	9,12		/* Reset */
2765	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2766	.byte	3,0xc0		/* receiver: 8 bpc */
2767	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2768	.byte	9,0		/* no interrupts */
2769	.byte	10,0		/* NRZ */
2770	.byte	11,0x50		/* use baud rate generator */
2771	.byte	12,10,13,0	/* 9600 baud */
2772	.byte	14,1		/* Baud rate generator enable */
2773	.byte	3,0xc1		/* enable receiver */
2774	.byte	5,0xea		/* enable transmitter */
2775	.byte	-1
2776	.even
2777#endif
2778
2779#ifdef CONFIG_ATARI
2780/* #define USE_PRINTER */
2781/* #define USE_SCC_B */
2782/* #define USE_SCC_A */
2783#define USE_MFP
2784
2785#if defined(USE_SCC_A) || defined(USE_SCC_B)
2786#define USE_SCC
2787/* Initialisation table for SCC */
2788L(scc_initable):
2789	.byte	9,12		/* Reset */
2790	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2791	.byte	3,0xc0		/* receiver: 8 bpc */
2792	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2793	.byte	9,0		/* no interrupts */
2794	.byte	10,0		/* NRZ */
2795	.byte	11,0x50		/* use baud rate generator */
2796	.byte	12,24,13,0	/* 9600 baud */
2797	.byte	14,2,14,3	/* use master clock for BRG, enable */
2798	.byte	3,0xc1		/* enable receiver */
2799	.byte	5,0xea		/* enable transmitter */
2800	.byte	-1
2801	.even
2802#endif
2803
2804#ifdef USE_PRINTER
2805
2806LPSG_SELECT	= 0xff8800
2807LPSG_READ	= 0xff8800
2808LPSG_WRITE	= 0xff8802
2809LPSG_IO_A	= 14
2810LPSG_IO_B	= 15
2811LPSG_CONTROL	= 7
2812LSTMFP_GPIP	= 0xfffa01
2813LSTMFP_DDR	= 0xfffa05
2814LSTMFP_IERB	= 0xfffa09
2815
2816#elif defined(USE_SCC_B)
2817
2818LSCC_CTRL	= 0xff8c85
2819LSCC_DATA	= 0xff8c87
2820
2821#elif defined(USE_SCC_A)
2822
2823LSCC_CTRL	= 0xff8c81
2824LSCC_DATA	= 0xff8c83
2825
2826#elif defined(USE_MFP)
2827
2828LMFP_UCR     = 0xfffa29
2829LMFP_TDCDR   = 0xfffa1d
2830LMFP_TDDR    = 0xfffa25
2831LMFP_TSR     = 0xfffa2d
2832LMFP_UDR     = 0xfffa2f
2833
2834#endif
2835#endif	/* CONFIG_ATARI */
2836
2837/*
2838 * Serial port output support.
2839 */
2840
2841/*
2842 * Initialize serial port hardware for 9600/8/1
2843 */
2844func_start	serial_init,%d0/%d1/%a0/%a1
2845	/*
2846	 *	Some of the register usage that follows
2847	 *	CONFIG_AMIGA
2848	 *		a0 = pointer to boot info record
2849	 *		d0 = boot info offset
2850	 *	CONFIG_ATARI
2851	 *		a0 = address of SCC
2852	 *		a1 = Liobase address/address of scc_initable
2853	 *		d0 = init data for serial port
2854	 *	CONFIG_MAC
2855	 *		a0 = address of SCC
2856	 *		a1 = address of scc_initable_mac
2857	 *		d0 = init data for serial port
2858	 */
2859
2860#ifdef CONFIG_AMIGA
2861#define SERIAL_DTR	7
2862#define SERIAL_CNTRL	CIABBASE+C_PRA
2863
2864	is_not_amiga(1f)
2865	lea	%pc@(L(custom)),%a0
2866	movel	#-ZTWOBASE,%a0@
2867	bclr	#SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2868	get_bi_record	BI_AMIGA_SERPER
2869	movew	%a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2870|	movew	#61,CUSTOMBASE+C_SERPER-ZTWOBASE
28711:
2872#endif
2873#ifdef CONFIG_ATARI
2874	is_not_atari(4f)
2875	movel	%pc@(L(iobase)),%a1
2876#if defined(USE_PRINTER)
2877	bclr	#0,%a1@(LSTMFP_IERB)
2878	bclr	#0,%a1@(LSTMFP_DDR)
2879	moveb	#LPSG_CONTROL,%a1@(LPSG_SELECT)
2880	moveb	#0xff,%a1@(LPSG_WRITE)
2881	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
2882	clrb	%a1@(LPSG_WRITE)
2883	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
2884	moveb	%a1@(LPSG_READ),%d0
2885	bset	#5,%d0
2886	moveb	%d0,%a1@(LPSG_WRITE)
2887#elif defined(USE_SCC)
2888	lea	%a1@(LSCC_CTRL),%a0
2889	lea	%pc@(L(scc_initable)),%a1
28902:	moveb	%a1@+,%d0
2891	jmi	3f
2892	moveb	%d0,%a0@
2893	moveb	%a1@+,%a0@
2894	jra	2b
28953:	clrb	%a0@
2896#elif defined(USE_MFP)
2897	bclr	#1,%a1@(LMFP_TSR)
2898	moveb   #0x88,%a1@(LMFP_UCR)
2899	andb	#0x70,%a1@(LMFP_TDCDR)
2900	moveb   #2,%a1@(LMFP_TDDR)
2901	orb	#1,%a1@(LMFP_TDCDR)
2902	bset	#1,%a1@(LMFP_TSR)
2903#endif
2904	jra	L(serial_init_done)
29054:
2906#endif
2907#ifdef CONFIG_MAC
2908	is_not_mac(L(serial_init_not_mac))
2909#ifdef MAC_SERIAL_DEBUG
2910#if !defined(MAC_USE_SCC_A) && !defined(MAC_USE_SCC_B)
2911#define MAC_USE_SCC_B
2912#endif
 
 
 
2913#define mac_scc_cha_b_ctrl_offset	0x0
2914#define mac_scc_cha_a_ctrl_offset	0x2
2915#define mac_scc_cha_b_data_offset	0x4
2916#define mac_scc_cha_a_data_offset	0x6
2917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2918#ifdef MAC_USE_SCC_A
2919	/* Initialize channel A */
2920	movel	%pc@(L(mac_sccbase)),%a0
2921	lea	%pc@(L(scc_initable_mac)),%a1
29225:	moveb	%a1@+,%d0
2923	jmi	6f
2924	moveb	%d0,%a0@(mac_scc_cha_a_ctrl_offset)
2925	moveb	%a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2926	jra	5b
29276:
2928#endif	/* MAC_USE_SCC_A */
2929
2930#ifdef MAC_USE_SCC_B
2931	/* Initialize channel B */
2932#ifndef MAC_USE_SCC_A	/* Load mac_sccbase only if needed */
2933	movel	%pc@(L(mac_sccbase)),%a0
2934#endif	/* MAC_USE_SCC_A */
2935	lea	%pc@(L(scc_initable_mac)),%a1
29367:	moveb	%a1@+,%d0
2937	jmi	8f
2938	moveb	%d0,%a0@(mac_scc_cha_b_ctrl_offset)
2939	moveb	%a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2940	jra	7b
29418:
2942#endif	/* MAC_USE_SCC_B */
2943#endif	/* MAC_SERIAL_DEBUG */
 
2944
2945	jra	L(serial_init_done)
2946L(serial_init_not_mac):
2947#endif	/* CONFIG_MAC */
2948
2949#ifdef CONFIG_Q40
2950	is_not_q40(2f)
2951/* debug output goes into SRAM, so we don't do it unless requested
2952   - check for '%LX$' signature in SRAM   */
2953	lea	%pc@(q40_mem_cptr),%a1
2954	move.l	#0xff020010,%a1@  /* must be inited - also used by debug=mem */
2955	move.l	#0xff020000,%a1
2956	cmp.b	#'%',%a1@
2957	bne	2f	/*nodbg*/
2958	addq.w	#4,%a1
2959	cmp.b	#'L',%a1@
2960	bne	2f	/*nodbg*/
2961	addq.w	#4,%a1
2962	cmp.b	#'X',%a1@
2963	bne	2f	/*nodbg*/
2964	addq.w	#4,%a1
2965	cmp.b	#'$',%a1@
2966	bne	2f	/*nodbg*/
2967	/* signature OK */
2968	lea	%pc@(L(q40_do_debug)),%a1
2969	tas	%a1@
2970/*nodbg: q40_do_debug is 0 by default*/
29712:
2972#endif
2973
2974#ifdef CONFIG_APOLLO
2975/* We count on the PROM initializing SIO1 */
2976#endif
2977
2978#ifdef CONFIG_HP300
2979/* We count on the boot loader initialising the UART */
2980#endif
2981
2982L(serial_init_done):
2983func_return	serial_init
2984
2985/*
2986 * Output character on serial port.
2987 */
2988func_start	serial_putc,%d0/%d1/%a0/%a1
2989
2990	movel	ARG1,%d0
2991	cmpib	#'\n',%d0
2992	jbne	1f
2993
2994	/* A little safe recursion is good for the soul */
2995	serial_putc	#'\r'
29961:
2997
2998#ifdef CONFIG_AMIGA
2999	is_not_amiga(2f)
3000	andw	#0x00ff,%d0
3001	oriw	#0x0100,%d0
3002	movel	%pc@(L(custom)),%a0
3003	movew	%d0,%a0@(CUSTOMBASE+C_SERDAT)
30041:	movew	%a0@(CUSTOMBASE+C_SERDATR),%d0
3005	andw	#0x2000,%d0
3006	jeq	1b
3007	jra	L(serial_putc_done)
30082:
3009#endif
3010
3011#ifdef CONFIG_MAC
3012	is_not_mac(5f)
3013
3014#ifdef MAC_SERIAL_DEBUG
3015
3016#ifdef MAC_USE_SCC_A
3017	movel	%pc@(L(mac_sccbase)),%a1
 
 
 
30183:	btst	#2,%a1@(mac_scc_cha_a_ctrl_offset)
3019	jeq	3b
3020	moveb	%d0,%a1@(mac_scc_cha_a_data_offset)
3021#endif	/* MAC_USE_SCC_A */
3022
3023#ifdef MAC_USE_SCC_B
3024#ifndef MAC_USE_SCC_A	/* Load mac_sccbase only if needed */
3025	movel	%pc@(L(mac_sccbase)),%a1
3026#endif	/* MAC_USE_SCC_A */
30274:	btst	#2,%a1@(mac_scc_cha_b_ctrl_offset)
3028	jeq	4b
3029	moveb	%d0,%a1@(mac_scc_cha_b_data_offset)
3030#endif	/* MAC_USE_SCC_B */
3031
3032#endif	/* MAC_SERIAL_DEBUG */
3033
3034	jra	L(serial_putc_done)
30355:
3036#endif	/* CONFIG_MAC */
3037
3038#ifdef CONFIG_ATARI
3039	is_not_atari(4f)
3040	movel	%pc@(L(iobase)),%a1
3041#if defined(USE_PRINTER)
30423:	btst	#0,%a1@(LSTMFP_GPIP)
3043	jne	3b
3044	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
3045	moveb	%d0,%a1@(LPSG_WRITE)
3046	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
3047	moveb	%a1@(LPSG_READ),%d0
3048	bclr	#5,%d0
3049	moveb	%d0,%a1@(LPSG_WRITE)
3050	nop
3051	nop
3052	bset	#5,%d0
3053	moveb	%d0,%a1@(LPSG_WRITE)
3054#elif defined(USE_SCC)
30553:	btst	#2,%a1@(LSCC_CTRL)
3056	jeq	3b
3057	moveb	%d0,%a1@(LSCC_DATA)
3058#elif defined(USE_MFP)
30593:	btst	#7,%a1@(LMFP_TSR)
3060	jeq	3b
3061	moveb	%d0,%a1@(LMFP_UDR)
3062#endif
3063	jra	L(serial_putc_done)
30644:
3065#endif	/* CONFIG_ATARI */
3066
3067#ifdef CONFIG_MVME147
3068	is_not_mvme147(2f)
30691:	btst	#2,M147_SCC_CTRL_A
3070	jeq	1b
3071	moveb	%d0,M147_SCC_DATA_A
3072	jbra	L(serial_putc_done)
30732:
3074#endif
3075
3076#ifdef CONFIG_MVME16x
3077	is_not_mvme16x(2f)
3078	/*
3079	 * If the loader gave us a board type then we can use that to
3080	 * select an appropriate output routine; otherwise we just use
3081	 * the Bug code.  If we have to use the Bug that means the Bug
3082	 * workspace has to be valid, which means the Bug has to use
3083	 * the SRAM, which is non-standard.
3084	 */
3085	moveml	%d0-%d7/%a2-%a6,%sp@-
3086	movel	vme_brdtype,%d1
3087	jeq	1f			| No tag - use the Bug
3088	cmpi	#VME_TYPE_MVME162,%d1
3089	jeq	6f
3090	cmpi	#VME_TYPE_MVME172,%d1
3091	jne	5f
3092	/* 162/172; it's an SCC */
30936:	btst	#2,M162_SCC_CTRL_A
3094	nop
3095	nop
3096	nop
3097	jeq	6b
3098	moveb	#8,M162_SCC_CTRL_A
3099	nop
3100	nop
3101	nop
3102	moveb	%d0,M162_SCC_CTRL_A
3103	jra	3f
31045:
3105	/* 166/167/177; it's a CD2401 */
3106	moveb	#0,M167_CYCAR
3107	moveb	M167_CYIER,%d2
3108	moveb	#0x02,M167_CYIER
31097:
3110	btst	#5,M167_PCSCCTICR
3111	jeq	7b
3112	moveb	M167_PCTPIACKR,%d1
3113	moveb	M167_CYLICR,%d1
3114	jeq	8f
3115	moveb	#0x08,M167_CYTEOIR
3116	jra	7b
31178:
3118	moveb	%d0,M167_CYTDR
3119	moveb	#0,M167_CYTEOIR
3120	moveb	%d2,M167_CYIER
3121	jra	3f
31221:
3123	moveb	%d0,%sp@-
3124	trap	#15
3125	.word	0x0020	/* TRAP 0x020 */
31263:
3127	moveml	%sp@+,%d0-%d7/%a2-%a6
3128	jbra	L(serial_putc_done)
31292:
3130#endif /* CONFIG_MVME16x */
3131
3132#ifdef CONFIG_BVME6000
3133	is_not_bvme6000(2f)
3134	/*
3135	 * The BVME6000 machine has a serial port ...
3136	 */
31371:	btst	#2,BVME_SCC_CTRL_A
3138	jeq	1b
3139	moveb	%d0,BVME_SCC_DATA_A
3140	jbra	L(serial_putc_done)
31412:
3142#endif
3143
3144#ifdef CONFIG_SUN3X
3145	is_not_sun3x(2f)
3146	movel	%d0,-(%sp)
3147	movel	0xFEFE0018,%a1
3148	jbsr	(%a1)
3149	addq	#4,%sp
3150	jbra	L(serial_putc_done)
31512:
3152#endif
3153
3154#ifdef CONFIG_Q40
3155	is_not_q40(2f)
3156	tst.l	%pc@(L(q40_do_debug))	/* only debug if requested */
3157	beq	2f
3158	lea	%pc@(q40_mem_cptr),%a1
3159	move.l	%a1@,%a0
3160	move.b	%d0,%a0@
3161	addq.l	#4,%a0
3162	move.l	%a0,%a1@
3163	jbra    L(serial_putc_done)
31642:
3165#endif
3166
3167#ifdef CONFIG_APOLLO
3168	is_not_apollo(2f)
3169	movl    %pc@(L(iobase)),%a1
3170	moveb	%d0,%a1@(LTHRB0)
31711:      moveb   %a1@(LSRB0),%d0
3172	andb	#0x4,%d0
3173	beq	1b
3174	jbra	L(serial_putc_done)
31752:
3176#endif
3177
3178#ifdef CONFIG_HP300
3179	is_not_hp300(3f)
3180	movl    %pc@(L(iobase)),%a1
3181	addl	%pc@(L(uartbase)),%a1
3182	movel	%pc@(L(uart_scode)),%d1	/* Check the scode */
3183	jmi	3f			/* Unset? Exit */
3184	cmpi	#256,%d1		/* APCI scode? */
3185	jeq	2f
31861:      moveb   %a1@(DCALSR),%d1	/* Output to DCA */
3187	andb	#0x20,%d1
3188	beq	1b
3189	moveb	%d0,%a1@(DCADATA)
3190	jbra	L(serial_putc_done)
31912:	moveb	%a1@(APCILSR),%d1	/* Output to APCI */
3192	andb	#0x20,%d1
3193	beq	2b
3194	moveb	%d0,%a1@(APCIDATA)
3195	jbra	L(serial_putc_done)
31963:
3197#endif
3198
3199L(serial_putc_done):
3200func_return	serial_putc
3201
3202/*
3203 * Output a string.
3204 */
3205func_start	puts,%d0/%a0
3206
3207	movel	ARG1,%a0
3208	jra	2f
32091:
3210#ifdef CONSOLE
3211	console_putc	%d0
3212#endif
3213#ifdef SERIAL_DEBUG
3214	serial_putc	%d0
3215#endif
32162:	moveb	%a0@+,%d0
3217	jne	1b
3218
3219func_return	puts
3220
3221/*
3222 * Output number in hex notation.
3223 */
3224
3225func_start	putn,%d0-%d2
3226
3227	putc	' '
3228
3229	movel	ARG1,%d0
3230	moveq	#7,%d1
32311:	roll	#4,%d0
3232	move	%d0,%d2
3233	andb	#0x0f,%d2
3234	addb	#'0',%d2
3235	cmpb	#'9',%d2
3236	jls	2f
3237	addb	#'A'-('9'+1),%d2
32382:
3239#ifdef CONSOLE
3240	console_putc	%d2
3241#endif
3242#ifdef SERIAL_DEBUG
3243	serial_putc	%d2
3244#endif
3245	dbra	%d1,1b
3246
3247func_return	putn
3248
3249#ifdef CONFIG_MAC
3250/*
3251 *	mac_serial_print
3252 *
3253 *	This routine takes its parameters on the stack.  It then
3254 *	turns around and calls the internal routine.  This routine
3255 *	is used until the Linux console driver initializes itself.
3256 *
3257 *	The calling parameters are:
3258 *		void mac_serial_print(const char *str);
3259 *
3260 *	This routine does NOT understand variable arguments only
3261 *	simple strings!
3262 */
3263ENTRY(mac_serial_print)
3264	moveml	%d0/%a0,%sp@-
3265#if 1
3266	move	%sr,%sp@-
3267	ori	#0x0700,%sr
3268#endif
3269	movel	%sp@(10),%a0		/* fetch parameter */
3270	jra	2f
32711:	serial_putc	%d0
32722:	moveb	%a0@+,%d0
3273	jne	1b
3274#if 1
3275	move	%sp@+,%sr
3276#endif
3277	moveml	%sp@+,%d0/%a0
 
 
 
 
 
 
 
 
 
3278	rts
3279#endif /* CONFIG_MAC */
3280
3281#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3282func_start	set_leds,%d0/%a0
3283	movel	ARG1,%d0
3284#ifdef CONFIG_HP300
3285	is_not_hp300(1f)
3286	movel	%pc@(L(iobase)),%a0
3287	moveb	%d0,%a0@(0x1ffff)
3288	jra	2f
3289#endif
32901:
3291#ifdef CONFIG_APOLLO
3292	movel   %pc@(L(iobase)),%a0
3293	lsll    #8,%d0
3294	eorw    #0xff00,%d0
3295	moveb	%d0,%a0@(LCPUCTRL)
3296#endif
32972:
3298func_return	set_leds
3299#endif
3300
3301#ifdef CONSOLE
3302/*
3303 *	For continuity, see the data alignment
3304 *	to which this structure is tied.
3305 */
3306#define Lconsole_struct_cur_column	0
3307#define Lconsole_struct_cur_row		4
3308#define Lconsole_struct_num_columns	8
3309#define Lconsole_struct_num_rows	12
3310#define Lconsole_struct_left_edge	16
3311#define Lconsole_struct_penguin_putc	20
3312
3313func_start	console_init,%a0-%a4/%d0-%d7
3314	/*
3315	 *	Some of the register usage that follows
3316	 *		a0 = pointer to boot_info
3317	 *		a1 = pointer to screen
3318	 *		a2 = pointer to Lconsole_globals
3319	 *		d3 = pixel width of screen
3320	 *		d4 = pixel height of screen
3321	 *		(d3,d4) ~= (x,y) of a point just below
3322	 *			and to the right of the screen
3323	 *			NOT on the screen!
3324	 *		d5 = number of bytes per scan line
3325	 *		d6 = number of bytes on the entire screen
3326	 */
3327
3328	lea	%pc@(L(console_globals)),%a2
3329	movel	%pc@(L(mac_videobase)),%a1
3330	movel	%pc@(L(mac_rowbytes)),%d5
3331	movel	%pc@(L(mac_dimensions)),%d3	/* -> low byte */
3332	movel	%d3,%d4
3333	swap	%d4		/* -> high byte */
3334	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3335	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3336
3337	movel	%d5,%d6
3338|	subl	#20,%d6
3339	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3340	divul	#8,%d6		/* we'll clear 8 bytes at a time */
3341	moveq	#-1,%d0		/* Mac_black */
3342	subq	#1,%d6
3343
3344L(console_clear_loop):
3345	movel	%d0,%a1@+
3346	movel	%d0,%a1@+
3347	dbra	%d6,L(console_clear_loop)
3348
3349	/* Calculate font size */
3350
3351#if   defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3352	lea	%pc@(font_vga_8x8),%a0
3353#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3354	lea	%pc@(font_vga_8x16),%a0
3355#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3356	lea	%pc@(font_vga_6x11),%a0
3357#elif defined(CONFIG_FONT_8x8) /* default */
3358	lea	%pc@(font_vga_8x8),%a0
3359#else /* no compiled-in font */
3360	lea	0,%a0
3361#endif
3362
3363	/*
3364	 *	At this point we make a shift in register usage
3365	 *	a1 = address of console_font pointer
3366	 */
3367	lea	%pc@(L(console_font)),%a1
3368	movel	%a0,%a1@	/* store pointer to struct fbcon_font_desc in console_font */
3369	tstl	%a0
3370	jeq	1f
3371	lea	%pc@(L(console_font_data)),%a4
3372	movel	%a0@(FONT_DESC_DATA),%d0
3373	subl	#L(console_font),%a1
3374	addl	%a1,%d0
3375	movel	%d0,%a4@
3376
3377	/*
3378	 *	Calculate global maxs
3379	 *	Note - we can use either an
3380	 *	8 x 16 or 8 x 8 character font
3381	 *	6 x 11 also supported
3382	 */
3383		/* ASSERT: a0 = contents of Lconsole_font */
3384	movel	%d3,%d0				/* screen width in pixels */
3385	divul	%a0@(FONT_DESC_WIDTH),%d0	/* d0 = max num chars per row */
3386
3387	movel	%d4,%d1				/* screen height in pixels */
3388	divul	%a0@(FONT_DESC_HEIGHT),%d1	/* d1 = max num rows */
3389
3390	movel	%d0,%a2@(Lconsole_struct_num_columns)
3391	movel	%d1,%a2@(Lconsole_struct_num_rows)
3392
3393	/*
3394	 *	Clear the current row and column
3395	 */
3396	clrl	%a2@(Lconsole_struct_cur_column)
3397	clrl	%a2@(Lconsole_struct_cur_row)
3398	clrl	%a2@(Lconsole_struct_left_edge)
3399
3400	/*
3401	 * Initialization is complete
3402	 */
34031:
3404func_return	console_init
3405
3406func_start	console_put_stats,%a0/%d7
3407	/*
3408	 *	Some of the register usage that follows
3409	 *		a0 = pointer to boot_info
3410	 *		d7 = value of boot_info fields
3411	 */
3412	puts	"\nMacLinux\n\n"
3413
3414#ifdef SERIAL_DEBUG
3415	puts	" vidaddr:"
3416	putn	%pc@(L(mac_videobase))		/* video addr. */
3417
3418	puts	"\n  _stext:"
3419	lea	%pc@(_stext),%a0
3420	putn	%a0
3421
3422	puts	"\nbootinfo:"
3423	lea	%pc@(_end),%a0
3424	putn	%a0
3425
3426	puts	"\ncpuid:"
3427	putn	%pc@(L(cputype))
3428	putc	'\n'
3429
3430#ifdef MAC_SERIAL_DEBUG
 
3431	putn	%pc@(L(mac_sccbase))
 
 
3432	putc	'\n'
3433#endif
3434#  if defined(MMU_PRINT)
3435	jbsr	mmu_print_machine_cpu_types
3436#  endif /* MMU_PRINT */
3437#endif /* SERIAL_DEBUG */
3438
 
 
3439func_return	console_put_stats
3440
3441#ifdef CONSOLE_PENGUIN
3442func_start	console_put_penguin,%a0-%a1/%d0-%d7
3443	/*
3444	 *	Get 'that_penguin' onto the screen in the upper right corner
3445	 *	penguin is 64 x 74 pixels, align against right edge of screen
3446	 */
3447	lea	%pc@(L(mac_dimensions)),%a0
3448	movel	%a0@,%d0
3449	andil	#0xffff,%d0
3450	subil	#64,%d0		/* snug up against the right edge */
3451	clrl	%d1		/* start at the top */
3452	movel	#73,%d7
3453	lea	%pc@(L(that_penguin)),%a1
3454L(console_penguin_row):
3455	movel	#31,%d6
3456L(console_penguin_pixel_pair):
3457	moveb	%a1@,%d2
3458	lsrb	#4,%d2
3459	console_plot_pixel %d0,%d1,%d2
3460	addq	#1,%d0
3461	moveb	%a1@+,%d2
3462	console_plot_pixel %d0,%d1,%d2
3463	addq	#1,%d0
3464	dbra	%d6,L(console_penguin_pixel_pair)
3465
3466	subil	#64,%d0
3467	addq	#1,%d1
3468	dbra	%d7,L(console_penguin_row)
3469
3470func_return	console_put_penguin
3471
3472/* include penguin bitmap */
3473L(that_penguin):
3474#include "../mac/mac_penguin.S"
3475#endif
3476
3477	/*
3478	 * Calculate source and destination addresses
3479	 *	output	a1 = dest
3480	 *		a2 = source
3481	 */
3482
3483func_start	console_scroll,%a0-%a4/%d0-%d7
3484	lea	%pc@(L(mac_videobase)),%a0
3485	movel	%a0@,%a1
3486	movel	%a1,%a2
3487	lea	%pc@(L(mac_rowbytes)),%a0
3488	movel	%a0@,%d5
3489	movel	%pc@(L(console_font)),%a0
3490	tstl	%a0
3491	jeq	1f
3492	mulul	%a0@(FONT_DESC_HEIGHT),%d5	/* account for # scan lines per character */
3493	addal	%d5,%a2
3494
3495	/*
3496	 * Get dimensions
3497	 */
3498	lea	%pc@(L(mac_dimensions)),%a0
3499	movel	%a0@,%d3
3500	movel	%d3,%d4
3501	swap	%d4
3502	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3503	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3504
3505	/*
3506	 * Calculate number of bytes to move
3507	 */
3508	lea	%pc@(L(mac_rowbytes)),%a0
3509	movel	%a0@,%d6
3510	movel	%pc@(L(console_font)),%a0
3511	subl	%a0@(FONT_DESC_HEIGHT),%d4	/* we're not scrolling the top row! */
3512	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3513	divul	#32,%d6		/* we'll move 8 longs at a time */
3514	subq	#1,%d6
3515
3516L(console_scroll_loop):
3517	movel	%a2@+,%a1@+
3518	movel	%a2@+,%a1@+
3519	movel	%a2@+,%a1@+
3520	movel	%a2@+,%a1@+
3521	movel	%a2@+,%a1@+
3522	movel	%a2@+,%a1@+
3523	movel	%a2@+,%a1@+
3524	movel	%a2@+,%a1@+
3525	dbra	%d6,L(console_scroll_loop)
3526
3527	lea	%pc@(L(mac_rowbytes)),%a0
3528	movel	%a0@,%d6
3529	movel	%pc@(L(console_font)),%a0
3530	mulul	%a0@(FONT_DESC_HEIGHT),%d6	/* scan line bytes x font height */
3531	divul	#32,%d6			/* we'll move 8 words at a time */
3532	subq	#1,%d6
3533
3534	moveq	#-1,%d0
3535L(console_scroll_clear_loop):
3536	movel	%d0,%a1@+
3537	movel	%d0,%a1@+
3538	movel	%d0,%a1@+
3539	movel	%d0,%a1@+
3540	movel	%d0,%a1@+
3541	movel	%d0,%a1@+
3542	movel	%d0,%a1@+
3543	movel	%d0,%a1@+
3544	dbra	%d6,L(console_scroll_clear_loop)
3545
35461:
3547func_return	console_scroll
3548
3549
3550func_start	console_putc,%a0/%a1/%d0-%d7
3551
3552	is_not_mac(L(console_exit))
3553	tstl	%pc@(L(console_font))
3554	jeq	L(console_exit)
3555
3556	/* Output character in d7 on console.
3557	 */
3558	movel	ARG1,%d7
3559	cmpib	#'\n',%d7
3560	jbne	1f
3561
3562	/* A little safe recursion is good for the soul */
3563	console_putc	#'\r'
35641:
3565	lea	%pc@(L(console_globals)),%a0
3566
3567	cmpib	#10,%d7
3568	jne	L(console_not_lf)
3569	movel	%a0@(Lconsole_struct_cur_row),%d0
3570	addil	#1,%d0
3571	movel	%d0,%a0@(Lconsole_struct_cur_row)
3572	movel	%a0@(Lconsole_struct_num_rows),%d1
3573	cmpl	%d1,%d0
3574	jcs	1f
3575	subil	#1,%d0
3576	movel	%d0,%a0@(Lconsole_struct_cur_row)
3577	console_scroll
35781:
3579	jra	L(console_exit)
3580
3581L(console_not_lf):
3582	cmpib	#13,%d7
3583	jne	L(console_not_cr)
3584	clrl	%a0@(Lconsole_struct_cur_column)
3585	jra	L(console_exit)
3586
3587L(console_not_cr):
3588	cmpib	#1,%d7
3589	jne	L(console_not_home)
3590	clrl	%a0@(Lconsole_struct_cur_row)
3591	clrl	%a0@(Lconsole_struct_cur_column)
3592	jra	L(console_exit)
3593
3594/*
3595 *	At this point we know that the %d7 character is going to be
3596 *	rendered on the screen.  Register usage is -
3597 *		a0 = pointer to console globals
3598 *		a1 = font data
3599 *		d0 = cursor column
3600 *		d1 = cursor row to draw the character
3601 *		d7 = character number
3602 */
3603L(console_not_home):
3604	movel	%a0@(Lconsole_struct_cur_column),%d0
3605	addql	#1,%a0@(Lconsole_struct_cur_column)
3606	movel	%a0@(Lconsole_struct_num_columns),%d1
3607	cmpl	%d1,%d0
3608	jcs	1f
3609	console_putc	#'\n'	/* recursion is OK! */
36101:
3611	movel	%a0@(Lconsole_struct_cur_row),%d1
3612
3613	/*
3614	 *	At this point we make a shift in register usage
3615	 *	a0 = address of pointer to font data (fbcon_font_desc)
3616	 */
3617	movel	%pc@(L(console_font)),%a0
3618	movel	%pc@(L(console_font_data)),%a1	/* Load fbcon_font_desc.data into a1 */
3619	andl	#0x000000ff,%d7
3620		/* ASSERT: a0 = contents of Lconsole_font */
3621	mulul	%a0@(FONT_DESC_HEIGHT),%d7	/* d7 = index into font data */
3622	addl	%d7,%a1			/* a1 = points to char image */
3623
3624	/*
3625	 *	At this point we make a shift in register usage
3626	 *	d0 = pixel coordinate, x
3627	 *	d1 = pixel coordinate, y
3628	 *	d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3629	 *	d3 = font scan line data (8 pixels)
3630	 *	d6 = count down for the font's pixel width (8)
3631	 *	d7 = count down for the font's pixel count in height
3632	 */
3633		/* ASSERT: a0 = contents of Lconsole_font */
3634	mulul	%a0@(FONT_DESC_WIDTH),%d0
3635	mulul	%a0@(FONT_DESC_HEIGHT),%d1
3636	movel	%a0@(FONT_DESC_HEIGHT),%d7	/* Load fbcon_font_desc.height into d7 */
3637	subq	#1,%d7
3638L(console_read_char_scanline):
3639	moveb	%a1@+,%d3
3640
3641		/* ASSERT: a0 = contents of Lconsole_font */
3642	movel	%a0@(FONT_DESC_WIDTH),%d6	/* Load fbcon_font_desc.width into d6 */
3643	subql	#1,%d6
3644
3645L(console_do_font_scanline):
3646	lslb	#1,%d3
3647	scsb	%d2		/* convert 1 bit into a byte */
3648	console_plot_pixel %d0,%d1,%d2
3649	addq	#1,%d0
3650	dbra	%d6,L(console_do_font_scanline)
3651
3652		/* ASSERT: a0 = contents of Lconsole_font */
3653	subl	%a0@(FONT_DESC_WIDTH),%d0
3654	addq	#1,%d1
3655	dbra	%d7,L(console_read_char_scanline)
3656
3657L(console_exit):
3658func_return	console_putc
3659
3660	/*
3661	 *	Input:
3662	 *		d0 = x coordinate
3663	 *		d1 = y coordinate
3664	 *		d2 = (bit 0) 1/0 for white/black (!)
3665	 *	All registers are preserved
3666	 */
3667func_start	console_plot_pixel,%a0-%a1/%d0-%d4
3668
3669	movel	%pc@(L(mac_videobase)),%a1
3670	movel	%pc@(L(mac_videodepth)),%d3
3671	movel	ARG1,%d0
3672	movel	ARG2,%d1
3673	mulul	%pc@(L(mac_rowbytes)),%d1
3674	movel	ARG3,%d2
3675
3676	/*
3677	 *	Register usage:
3678	 *		d0 = x coord becomes byte offset into frame buffer
3679	 *		d1 = y coord
3680	 *		d2 = black or white (0/1)
3681	 *		d3 = video depth
3682	 *		d4 = temp of x (d0) for many bit depths
3683	 */
3684L(test_1bit):
3685	cmpb	#1,%d3
3686	jbne	L(test_2bit)
3687	movel	%d0,%d4		/* we need the low order 3 bits! */
3688	divul	#8,%d0
3689	addal	%d0,%a1
3690	addal	%d1,%a1
3691	andb	#7,%d4
3692	eorb	#7,%d4		/* reverse the x-coordinate w/ screen-bit # */
3693	andb	#1,%d2
3694	jbne	L(white_1)
3695	bsetb	%d4,%a1@
3696	jbra	L(console_plot_pixel_exit)
3697L(white_1):
3698	bclrb	%d4,%a1@
3699	jbra	L(console_plot_pixel_exit)
3700
3701L(test_2bit):
3702	cmpb	#2,%d3
3703	jbne	L(test_4bit)
3704	movel	%d0,%d4		/* we need the low order 2 bits! */
3705	divul	#4,%d0
3706	addal	%d0,%a1
3707	addal	%d1,%a1
3708	andb	#3,%d4
3709	eorb	#3,%d4		/* reverse the x-coordinate w/ screen-bit # */
3710	lsll	#1,%d4		/* ! */
3711	andb	#1,%d2
3712	jbne	L(white_2)
3713	bsetb	%d4,%a1@
3714	addq	#1,%d4
3715	bsetb	%d4,%a1@
3716	jbra	L(console_plot_pixel_exit)
3717L(white_2):
3718	bclrb	%d4,%a1@
3719	addq	#1,%d4
3720	bclrb	%d4,%a1@
3721	jbra	L(console_plot_pixel_exit)
3722
3723L(test_4bit):
3724	cmpb	#4,%d3
3725	jbne	L(test_8bit)
3726	movel	%d0,%d4		/* we need the low order bit! */
3727	divul	#2,%d0
3728	addal	%d0,%a1
3729	addal	%d1,%a1
3730	andb	#1,%d4
3731	eorb	#1,%d4
3732	lsll	#2,%d4		/* ! */
3733	andb	#1,%d2
3734	jbne	L(white_4)
3735	bsetb	%d4,%a1@
3736	addq	#1,%d4
3737	bsetb	%d4,%a1@
3738	addq	#1,%d4
3739	bsetb	%d4,%a1@
3740	addq	#1,%d4
3741	bsetb	%d4,%a1@
3742	jbra	L(console_plot_pixel_exit)
3743L(white_4):
3744	bclrb	%d4,%a1@
3745	addq	#1,%d4
3746	bclrb	%d4,%a1@
3747	addq	#1,%d4
3748	bclrb	%d4,%a1@
3749	addq	#1,%d4
3750	bclrb	%d4,%a1@
3751	jbra	L(console_plot_pixel_exit)
3752
3753L(test_8bit):
3754	cmpb	#8,%d3
3755	jbne	L(test_16bit)
3756	addal	%d0,%a1
3757	addal	%d1,%a1
3758	andb	#1,%d2
3759	jbne	L(white_8)
3760	moveb	#0xff,%a1@
3761	jbra	L(console_plot_pixel_exit)
3762L(white_8):
3763	clrb	%a1@
3764	jbra	L(console_plot_pixel_exit)
3765
3766L(test_16bit):
3767	cmpb	#16,%d3
3768	jbne	L(console_plot_pixel_exit)
3769	addal	%d0,%a1
3770	addal	%d0,%a1
3771	addal	%d1,%a1
3772	andb	#1,%d2
3773	jbne	L(white_16)
3774	clrw	%a1@
3775	jbra	L(console_plot_pixel_exit)
3776L(white_16):
3777	movew	#0x0fff,%a1@
3778	jbra	L(console_plot_pixel_exit)
3779
3780L(console_plot_pixel_exit):
3781func_return	console_plot_pixel
3782#endif /* CONSOLE */
3783
3784#if 0
3785/*
3786 * This is some old code lying around.  I don't believe
3787 * it's used or important anymore.  My guess is it contributed
3788 * to getting to this point, but it's done for now.
3789 * It was still in the 2.1.77 head.S, so it's still here.
3790 * (And still not used!)
3791 */
3792L(showtest):
3793	moveml	%a0/%d7,%sp@-
3794	puts	"A="
3795	putn	%a1
3796
3797	.long	0xf0119f15		| ptestr	#5,%a1@,#7,%a0
3798
3799	puts	"DA="
3800	putn	%a0
3801
3802	puts	"D="
3803	putn	%a0@
3804
3805	puts	"S="
3806	lea	%pc@(L(mmu)),%a0
3807	.long	0xf0106200		| pmove		%psr,%a0@
3808	clrl	%d7
3809	movew	%a0@,%d7
3810	putn	%d7
3811
3812	putc	'\n'
3813	moveml	%sp@+,%a0/%d7
3814	rts
3815#endif	/* 0 */
3816
3817__INITDATA
3818	.align	4
3819
3820#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3821    defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3822L(custom):
3823L(iobase):
3824	.long 0
3825#endif
3826
3827#if defined(CONSOLE)
3828L(console_globals):
3829	.long	0		/* cursor column */
3830	.long	0		/* cursor row */
3831	.long	0		/* max num columns */
3832	.long	0		/* max num rows */
3833	.long	0		/* left edge */
3834	.long	0		/* mac putc */
3835L(console_font):
3836	.long	0		/* pointer to console font (struct font_desc) */
3837L(console_font_data):
3838	.long	0		/* pointer to console font data */
3839#endif /* CONSOLE */
3840
3841#if defined(MMU_PRINT)
3842L(mmu_print_data):
3843	.long	0		/* valid flag */
3844	.long	0		/* start logical */
3845	.long	0		/* next logical */
3846	.long	0		/* start physical */
3847	.long	0		/* next physical */
3848#endif /* MMU_PRINT */
3849
3850L(cputype):
3851	.long	0
3852L(mmu_cached_pointer_tables):
3853	.long	0
3854L(mmu_num_pointer_tables):
3855	.long	0
3856L(phys_kernel_start):
3857	.long	0
3858L(kernel_end):
3859	.long	0
3860L(memory_start):
3861	.long	0
3862L(kernel_pgdir_ptr):
3863	.long	0
3864L(temp_mmap_mem):
3865	.long	0
3866
3867#if defined (CONFIG_MVME147)
3868M147_SCC_CTRL_A = 0xfffe3002
3869M147_SCC_DATA_A = 0xfffe3003
3870#endif
3871
3872#if defined (CONFIG_MVME16x)
3873M162_SCC_CTRL_A = 0xfff45005
3874M167_CYCAR = 0xfff450ee
3875M167_CYIER = 0xfff45011
3876M167_CYLICR = 0xfff45026
3877M167_CYTEOIR = 0xfff45085
3878M167_CYTDR = 0xfff450f8
3879M167_PCSCCTICR = 0xfff4201e
3880M167_PCTPIACKR = 0xfff42025
3881#endif
3882
3883#if defined (CONFIG_BVME6000)
3884BVME_SCC_CTRL_A	= 0xffb0000b
3885BVME_SCC_DATA_A	= 0xffb0000f
3886#endif
3887
3888#if defined(CONFIG_MAC)
3889L(mac_booter_data):
3890	.long	0
3891L(mac_videobase):
3892	.long	0
3893L(mac_videodepth):
3894	.long	0
3895L(mac_dimensions):
3896	.long	0
3897L(mac_rowbytes):
3898	.long	0
3899#ifdef MAC_SERIAL_DEBUG
3900L(mac_sccbase):
3901	.long	0
3902#endif /* MAC_SERIAL_DEBUG */
3903#endif
 
3904
3905#if defined (CONFIG_APOLLO)
3906LSRB0        = 0x10412
3907LTHRB0       = 0x10416
3908LCPUCTRL     = 0x10100
3909#endif
3910
3911#if defined(CONFIG_HP300)
3912DCADATA	     = 0x11
3913DCALSR	     = 0x1b
3914APCIDATA     = 0x00
3915APCILSR      = 0x14
3916L(uartbase):
3917	.long	0
3918L(uart_scode):
3919	.long	-1
3920#endif
3921
3922__FINIT
3923	.data
3924	.align	4
3925
3926availmem:
3927	.long	0
3928m68k_pgtable_cachemode:
3929	.long	0
3930m68k_supervisor_cachemode:
3931	.long	0
3932#if defined(CONFIG_MVME16x)
3933mvme_bdid:
3934	.long	0,0,0,0,0,0,0,0
3935#endif
3936#if defined(CONFIG_Q40)
3937q40_mem_cptr:
3938	.long	0
3939L(q40_do_debug):
3940	.long	0
3941#endif
v3.15
   1/* -*- mode: asm -*-
   2**
   3** head.S -- This file contains the initial boot code for the
   4**	     Linux/68k kernel.
   5**
   6** Copyright 1993 by Hamish Macdonald
   7**
   8** 68040 fixes by Michael Rausch
   9** 68060 fixes by Roman Hodek
  10** MMU cleanup by Randy Thelen
  11** Final MMU cleanup by Roman Zippel
  12**
  13** Atari support by Andreas Schwab, using ideas of Robert de Vries
  14** and Bjoern Brauel
  15** VME Support by Richard Hirst
  16**
  17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
  18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
  19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
  20** 95/11/18 Richard Hirst: Added MVME166 support
  21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
  22**			      Magnum- and FX-alternate ram
  23** 98/04/25 Phil Blundell: added HP300 support
  24** 1998/08/30 David Kilzer: Added support for font_desc structures
  25**            for linux-2.1.115
  26** 1999/02/11  Richard Zidlicky: added Q40 support (initial version 99/01/01)
  27** 2004/05/13 Kars de Jong: Finalised HP300 support
  28**
  29** This file is subject to the terms and conditions of the GNU General Public
  30** License. See the file README.legal in the main directory of this archive
  31** for more details.
  32**
  33*/
  34
  35/*
  36 * Linux startup code.
  37 *
  38 * At this point, the boot loader has:
  39 * Disabled interrupts
  40 * Disabled caches
  41 * Put us in supervisor state.
  42 *
  43 * The kernel setup code takes the following steps:
  44 * .  Raise interrupt level
  45 * .  Set up initial kernel memory mapping.
  46 *    .  This sets up a mapping of the 4M of memory the kernel is located in.
  47 *    .  It also does a mapping of any initial machine specific areas.
  48 * .  Enable the MMU
  49 * .  Enable cache memories
  50 * .  Jump to kernel startup
  51 *
  52 * Much of the file restructuring was to accomplish:
  53 * 1) Remove register dependency through-out the file.
  54 * 2) Increase use of subroutines to perform functions
  55 * 3) Increase readability of the code
  56 *
  57 * Of course, readability is a subjective issue, so it will never be
  58 * argued that that goal was accomplished.  It was merely a goal.
  59 * A key way to help make code more readable is to give good
  60 * documentation.  So, the first thing you will find is exaustive
  61 * write-ups on the structure of the file, and the features of the
  62 * functional subroutines.
  63 *
  64 * General Structure:
  65 * ------------------
  66 *	Without a doubt the single largest chunk of head.S is spent
  67 * mapping the kernel and I/O physical space into the logical range
  68 * for the kernel.
  69 *	There are new subroutines and data structures to make MMU
  70 * support cleaner and easier to understand.
  71 *	First, you will find a routine call "mmu_map" which maps
  72 * a logical to a physical region for some length given a cache
  73 * type on behalf of the caller.  This routine makes writing the
  74 * actual per-machine specific code very simple.
  75 *	A central part of the code, but not a subroutine in itself,
  76 * is the mmu_init code which is broken down into mapping the kernel
  77 * (the same for all machines) and mapping machine-specific I/O
  78 * regions.
  79 *	Also, there will be a description of engaging the MMU and
  80 * caches.
  81 *	You will notice that there is a chunk of code which
  82 * can emit the entire MMU mapping of the machine.  This is present
  83 * only in debug modes and can be very helpful.
  84 *	Further, there is a new console driver in head.S that is
  85 * also only engaged in debug mode.  Currently, it's only supported
  86 * on the Macintosh class of machines.  However, it is hoped that
  87 * others will plug-in support for specific machines.
  88 *
  89 * ######################################################################
  90 *
  91 * mmu_map
  92 * -------
  93 *	mmu_map was written for two key reasons.  First, it was clear
  94 * that it was very difficult to read the previous code for mapping
  95 * regions of memory.  Second, the Macintosh required such extensive
  96 * memory allocations that it didn't make sense to propagate the
  97 * existing code any further.
  98 *	mmu_map requires some parameters:
  99 *
 100 *	mmu_map (logical, physical, length, cache_type)
 101 *
 102 *	While this essentially describes the function in the abstract, you'll
 103 * find more indepth description of other parameters at the implementation site.
 104 *
 105 * mmu_get_root_table_entry
 106 * ------------------------
 107 * mmu_get_ptr_table_entry
 108 * -----------------------
 109 * mmu_get_page_table_entry
 110 * ------------------------
 111 *
 112 *	These routines are used by other mmu routines to get a pointer into
 113 * a table, if necessary a new table is allocated. These routines are working
 114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
 115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
 116 * so that here also some mmu specific initialization is done. The second page
 117 * at the start of the kernel (the first page is unmapped later) is used for
 118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
 119 * to initialize the init task struct) and since it needs special cache
 120 * settings, it's the easiest to use this page, the rest of the page is used
 121 * for further pointer tables.
 122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
 123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
 124 * to manage page tables in smaller pieces as nearly all mappings have that
 125 * size.
 126 *
 127 * ######################################################################
 128 *
 129 *
 130 * ######################################################################
 131 *
 132 * mmu_engage
 133 * ----------
 134 *	Thanks to a small helping routine enabling the mmu got quite simple
 135 * and there is only one way left. mmu_engage makes a complete a new mapping
 136 * that only includes the absolute necessary to be able to jump to the final
 137 * position and to restore the original mapping.
 138 * As this code doesn't need a transparent translation register anymore this
 139 * means all registers are free to be used by machines that needs them for
 140 * other purposes.
 141 *
 142 * ######################################################################
 143 *
 144 * mmu_print
 145 * ---------
 146 *	This algorithm will print out the page tables of the system as
 147 * appropriate for an 030 or an 040.  This is useful for debugging purposes
 148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
 149 *
 150 * ######################################################################
 151 *
 152 * console_init
 153 * ------------
 154 *	The console is also able to be turned off.  The console in head.S
 155 * is specifically for debugging and can be very useful.  It is surrounded by
 156 * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good
 157 * kernels.  It's basic algorithm is to determine the size of the screen
 158 * (in height/width and bit depth) and then use that information for
 159 * displaying an 8x8 font or an 8x16 (widthxheight).  I prefer the 8x8 for
 160 * debugging so I can see more good data.  But it was trivial to add support
 161 * for both fonts, so I included it.
 162 *	Also, the algorithm for plotting pixels is abstracted so that in
 163 * theory other platforms could add support for different kinds of frame
 164 * buffers.  This could be very useful.
 165 *
 166 * console_put_penguin
 167 * -------------------
 168 *	An important part of any Linux bring up is the penguin and there's
 169 * nothing like getting the Penguin on the screen!  This algorithm will work
 170 * on any machine for which there is a console_plot_pixel.
 171 *
 172 * console_scroll
 173 * --------------
 174 *	My hope is that the scroll algorithm does the right thing on the
 175 * various platforms, but it wouldn't be hard to add the test conditions
 176 * and new code if it doesn't.
 177 *
 178 * console_putc
 179 * -------------
 180 *
 181 * ######################################################################
 182 *
 183 *	Register usage has greatly simplified within head.S. Every subroutine
 184 * saves and restores all registers that it modifies (except it returns a
 185 * value in there of course). So the only register that needs to be initialized
 186 * is the stack pointer.
 187 * All other init code and data is now placed in the init section, so it will
 188 * be automatically freed at the end of the kernel initialization.
 189 *
 190 * ######################################################################
 191 *
 192 * options
 193 * -------
 194 *	There are many options available in a build of this file.  I've
 195 * taken the time to describe them here to save you the time of searching
 196 * for them and trying to understand what they mean.
 197 *
 198 * CONFIG_xxx:	These are the obvious machine configuration defines created
 199 * during configuration.  These are defined in autoconf.h.
 200 *
 201 * CONSOLE:	There is support for head.S console in this file.  This
 202 * console can talk to a Mac frame buffer, but could easily be extrapolated
 203 * to extend it to support other platforms.
 204 *
 205 * TEST_MMU:	This is a test harness for running on any given machine but
 206 * getting an MMU dump for another class of machine.  The classes of machines
 207 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
 208 * and any of the models (030, 040, 060, etc.).
 209 *
 210 *	NOTE:	TEST_MMU is NOT permanent!  It is scheduled to be removed
 211 *		When head.S boots on Atari, Amiga, Macintosh, and VME
 212 *		machines.  At that point the underlying logic will be
 213 *		believed to be solid enough to be trusted, and TEST_MMU
 214 *		can be dropped.  Do note that that will clean up the
 215 *		head.S code significantly as large blocks of #if/#else
 216 *		clauses can be removed.
 217 *
 218 * MMU_NOCACHE_KERNEL:	On the Macintosh platform there was an inquiry into
 219 * determing why devices don't appear to work.  A test case was to remove
 220 * the cacheability of the kernel bits.
 221 *
 222 * MMU_PRINT:	There is a routine built into head.S that can display the
 223 * MMU data structures.  It outputs its result through the serial_putc
 224 * interface.  So where ever that winds up driving data, that's where the
 225 * mmu struct will appear.  On the Macintosh that's typically the console.
 226 *
 227 * SERIAL_DEBUG:	There are a series of putc() macro statements
 228 * scattered through out the code to give progress of status to the
 229 * person sitting at the console.  This constant determines whether those
 230 * are used.
 231 *
 232 * DEBUG:	This is the standard DEBUG flag that can be set for building
 233 *		the kernel.  It has the effect adding additional tests into
 234 *		the code.
 235 *
 236 * FONT_6x11:
 237 * FONT_8x8:
 238 * FONT_8x16:
 239 *		In theory these could be determined at run time or handed
 240 *		over by the booter.  But, let's be real, it's a fine hard
 241 *		coded value.  (But, you will notice the code is run-time
 242 *		flexible!)  A pointer to the font's struct font_desc
 243 *		is kept locally in Lconsole_font.  It is used to determine
 244 *		font size information dynamically.
 245 *
 246 * Atari constants:
 247 * USE_PRINTER:	Use the printer port for serial debug.
 248 * USE_SCC_B:	Use the SCC port A (Serial2) for serial debug.
 249 * USE_SCC_A:	Use the SCC port B (Modem2) for serial debug.
 250 * USE_MFP:	Use the ST-MFP port (Modem1) for serial debug.
 251 *
 252 * Macintosh constants:
 253 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug and early console.
 254 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug and early console.
 
 255 */
 256
 257#include <linux/linkage.h>
 258#include <linux/init.h>
 259#include <asm/bootinfo.h>
 260#include <asm/bootinfo-amiga.h>
 261#include <asm/bootinfo-atari.h>
 262#include <asm/bootinfo-hp300.h>
 263#include <asm/bootinfo-mac.h>
 264#include <asm/bootinfo-q40.h>
 265#include <asm/bootinfo-vme.h>
 266#include <asm/setup.h>
 267#include <asm/entry.h>
 268#include <asm/pgtable.h>
 269#include <asm/page.h>
 270#include <asm/asm-offsets.h>
 271
 272#ifdef CONFIG_MAC
 273
 274#include <asm/machw.h>
 275
 
 
 
 
 276#ifdef CONFIG_FRAMEBUFFER_CONSOLE
 277#define CONSOLE
 
 278#endif
 279
 280#ifdef CONFIG_EARLY_PRINTK
 281#define SERIAL_DEBUG
 282#else
 283#undef SERIAL_DEBUG
 284#endif
 285
 286#else /* !CONFIG_MAC */
 
 
 
 
 
 287
 288#define SERIAL_DEBUG
 289
 290#endif /* !CONFIG_MAC */
 291
 292#undef MMU_PRINT
 293#undef MMU_NOCACHE_KERNEL
 
 294#undef DEBUG
 295
 296/*
 297 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
 298 * The 8x8 font is harder to read but fits more on the screen.
 299 */
 300#define FONT_8x8	/* default */
 301/* #define FONT_8x16 */	/* 2nd choice */
 302/* #define FONT_6x11 */	/* 3rd choice */
 303
 304.globl kernel_pg_dir
 305.globl availmem
 306.globl m68k_pgtable_cachemode
 307.globl m68k_supervisor_cachemode
 308#ifdef CONFIG_MVME16x
 309.globl mvme_bdid
 310#endif
 311#ifdef CONFIG_Q40
 312.globl q40_mem_cptr
 313#endif
 314
 315CPUTYPE_040	= 1	/* indicates an 040 */
 316CPUTYPE_060	= 2	/* indicates an 060 */
 317CPUTYPE_0460	= 3	/* if either above are set, this is set */
 318CPUTYPE_020	= 4	/* indicates an 020 */
 319
 320/* Translation control register */
 321TC_ENABLE = 0x8000
 322TC_PAGE8K = 0x4000
 323TC_PAGE4K = 0x0000
 324
 325/* Transparent translation registers */
 326TTR_ENABLE	= 0x8000	/* enable transparent translation */
 327TTR_ANYMODE	= 0x4000	/* user and kernel mode access */
 328TTR_KERNELMODE	= 0x2000	/* only kernel mode access */
 329TTR_USERMODE	= 0x0000	/* only user mode access */
 330TTR_CI		= 0x0400	/* inhibit cache */
 331TTR_RW		= 0x0200	/* read/write mode */
 332TTR_RWM		= 0x0100	/* read/write mask */
 333TTR_FCB2	= 0x0040	/* function code base bit 2 */
 334TTR_FCB1	= 0x0020	/* function code base bit 1 */
 335TTR_FCB0	= 0x0010	/* function code base bit 0 */
 336TTR_FCM2	= 0x0004	/* function code mask bit 2 */
 337TTR_FCM1	= 0x0002	/* function code mask bit 1 */
 338TTR_FCM0	= 0x0001	/* function code mask bit 0 */
 339
 340/* Cache Control registers */
 341CC6_ENABLE_D	= 0x80000000	/* enable data cache (680[46]0) */
 342CC6_FREEZE_D	= 0x40000000	/* freeze data cache (68060) */
 343CC6_ENABLE_SB	= 0x20000000	/* enable store buffer (68060) */
 344CC6_PUSH_DPI	= 0x10000000	/* disable CPUSH invalidation (68060) */
 345CC6_HALF_D	= 0x08000000	/* half-cache mode for data cache (68060) */
 346CC6_ENABLE_B	= 0x00800000	/* enable branch cache (68060) */
 347CC6_CLRA_B	= 0x00400000	/* clear all entries in branch cache (68060) */
 348CC6_CLRU_B	= 0x00200000	/* clear user entries in branch cache (68060) */
 349CC6_ENABLE_I	= 0x00008000	/* enable instruction cache (680[46]0) */
 350CC6_FREEZE_I	= 0x00004000	/* freeze instruction cache (68060) */
 351CC6_HALF_I	= 0x00002000	/* half-cache mode for instruction cache (68060) */
 352CC3_ALLOC_WRITE	= 0x00002000	/* write allocate mode(68030) */
 353CC3_ENABLE_DB	= 0x00001000	/* enable data burst (68030) */
 354CC3_CLR_D	= 0x00000800	/* clear data cache (68030) */
 355CC3_CLRE_D	= 0x00000400	/* clear entry in data cache (68030) */
 356CC3_FREEZE_D	= 0x00000200	/* freeze data cache (68030) */
 357CC3_ENABLE_D	= 0x00000100	/* enable data cache (68030) */
 358CC3_ENABLE_IB	= 0x00000010	/* enable instruction burst (68030) */
 359CC3_CLR_I	= 0x00000008	/* clear instruction cache (68030) */
 360CC3_CLRE_I	= 0x00000004	/* clear entry in instruction cache (68030) */
 361CC3_FREEZE_I	= 0x00000002	/* freeze instruction cache (68030) */
 362CC3_ENABLE_I	= 0x00000001	/* enable instruction cache (68030) */
 363
 364/* Miscellaneous definitions */
 365PAGESIZE	= 4096
 366PAGESHIFT	= 12
 367
 368ROOT_TABLE_SIZE	= 128
 369PTR_TABLE_SIZE	= 128
 370PAGE_TABLE_SIZE	= 64
 371ROOT_INDEX_SHIFT = 25
 372PTR_INDEX_SHIFT  = 18
 373PAGE_INDEX_SHIFT = 12
 374
 375#ifdef DEBUG
 376/* When debugging use readable names for labels */
 377#ifdef __STDC__
 378#define L(name) .head.S.##name
 379#else
 380#define L(name) .head.S./**/name
 381#endif
 382#else
 383#ifdef __STDC__
 384#define L(name) .L##name
 385#else
 386#define L(name) .L/**/name
 387#endif
 388#endif
 389
 390/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
 391#ifndef __INITDATA
 392#define __INITDATA	.data
 393#define __FINIT		.previous
 394#endif
 395
 396/* Several macros to make the writing of subroutines easier:
 397 * - func_start marks the beginning of the routine which setups the frame
 398 *   register and saves the registers, it also defines another macro
 399 *   to automatically restore the registers again.
 400 * - func_return marks the end of the routine and simply calls the prepared
 401 *   macro to restore registers and jump back to the caller.
 402 * - func_define generates another macro to automatically put arguments
 403 *   onto the stack call the subroutine and cleanup the stack again.
 404 */
 405
 406/* Within subroutines these macros can be used to access the arguments
 407 * on the stack. With STACK some allocated memory on the stack can be
 408 * accessed and ARG0 points to the return address (used by mmu_engage).
 409 */
 410#define	STACK	%a6@(stackstart)
 411#define ARG0	%a6@(4)
 412#define ARG1	%a6@(8)
 413#define ARG2	%a6@(12)
 414#define ARG3	%a6@(16)
 415#define ARG4	%a6@(20)
 416
 417.macro	func_start	name,saveregs,stack=0
 418L(\name):
 419	linkw	%a6,#-\stack
 420	moveml	\saveregs,%sp@-
 421.set	stackstart,-\stack
 422
 423.macro	func_return_\name
 424	moveml	%sp@+,\saveregs
 425	unlk	%a6
 426	rts
 427.endm
 428.endm
 429
 430.macro	func_return	name
 431	func_return_\name
 432.endm
 433
 434.macro	func_call	name
 435	jbsr	L(\name)
 436.endm
 437
 438.macro	move_stack	nr,arg1,arg2,arg3,arg4
 439.if	\nr
 440	move_stack	"(\nr-1)",\arg2,\arg3,\arg4
 441	movel	\arg1,%sp@-
 442.endif
 443.endm
 444
 445.macro	func_define	name,nr=0
 446.macro	\name	arg1,arg2,arg3,arg4
 447	move_stack	\nr,\arg1,\arg2,\arg3,\arg4
 448	func_call	\name
 449.if	\nr
 450	lea	%sp@(\nr*4),%sp
 451.endif
 452.endm
 453.endm
 454
 455func_define	mmu_map,4
 456func_define	mmu_map_tt,4
 457func_define	mmu_fixup_page_mmu_cache,1
 458func_define	mmu_temp_map,2
 459func_define	mmu_engage
 460func_define	mmu_get_root_table_entry,1
 461func_define	mmu_get_ptr_table_entry,2
 462func_define	mmu_get_page_table_entry,2
 463func_define	mmu_print
 464func_define	get_new_page
 465#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
 466func_define	set_leds
 467#endif
 468
 469.macro	mmu_map_eq	arg1,arg2,arg3
 470	mmu_map	\arg1,\arg1,\arg2,\arg3
 471.endm
 472
 473.macro	get_bi_record	record
 474	pea	\record
 475	func_call	get_bi_record
 476	addql	#4,%sp
 477.endm
 478
 479func_define	serial_putc,1
 480func_define	console_putc,1
 481
 482func_define	console_init
 483func_define	console_put_stats
 484func_define	console_put_penguin
 485func_define	console_plot_pixel,3
 486func_define	console_scroll
 487
 488.macro	putc	ch
 489#if defined(CONSOLE) || defined(SERIAL_DEBUG)
 490	pea	\ch
 491#endif
 492#ifdef CONSOLE
 493	func_call	console_putc
 494#endif
 495#ifdef SERIAL_DEBUG
 496	func_call	serial_putc
 497#endif
 498#if defined(CONSOLE) || defined(SERIAL_DEBUG)
 499	addql	#4,%sp
 500#endif
 501.endm
 502
 503.macro	dputc	ch
 504#ifdef DEBUG
 505	putc	\ch
 506#endif
 507.endm
 508
 509func_define	putn,1
 510
 511.macro	dputn	nr
 512#ifdef DEBUG
 513	putn	\nr
 514#endif
 515.endm
 516
 517.macro	puts		string
 518#if defined(CONSOLE) || defined(SERIAL_DEBUG)
 519	__INITDATA
 520.Lstr\@:
 521	.string	"\string"
 522	__FINIT
 523	pea	%pc@(.Lstr\@)
 524	func_call	puts
 525	addql	#4,%sp
 526#endif
 527.endm
 528
 529.macro	dputs	string
 530#ifdef DEBUG
 531	puts	"\string"
 532#endif
 533.endm
 534
 535#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
 536#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
 537#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
 538#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
 539#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
 540#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
 541#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
 542#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
 543#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
 544#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
 545#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
 546#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
 547#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
 548
 549#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
 550			jeq 42f; \
 551			cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
 552			jne lab ;\
 553		42:\
 554
 555#define is_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
 556#define is_not_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
 557#define is_040(lab)		btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
 558#define is_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
 559#define is_not_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
 560#define is_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
 561#define is_not_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
 562
 563/* On the HP300 we use the on-board LEDs for debug output before
 564   the console is running.  Writing a 1 bit turns the corresponding LED
 565   _off_ - on the 340 bit 7 is towards the back panel of the machine.  */
 566.macro	leds	mask
 567#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
 568	hasnt_leds(.Lled\@)
 569	pea	\mask
 570	func_call	set_leds
 571	addql	#4,%sp
 572.Lled\@:
 573#endif
 574.endm
 575
 576__HEAD
 577ENTRY(_stext)
 578/*
 579 * Version numbers of the bootinfo interface
 580 * The area from _stext to _start will later be used as kernel pointer table
 581 */
 582	bras	1f	/* Jump over bootinfo version numbers */
 583
 584	.long	BOOTINFOV_MAGIC
 585	.long	MACH_AMIGA, AMIGA_BOOTI_VERSION
 586	.long	MACH_ATARI, ATARI_BOOTI_VERSION
 587	.long	MACH_MVME147, MVME147_BOOTI_VERSION
 588	.long	MACH_MVME16x, MVME16x_BOOTI_VERSION
 589	.long	MACH_BVME6000, BVME6000_BOOTI_VERSION
 590	.long	MACH_MAC, MAC_BOOTI_VERSION
 591	.long	MACH_Q40, Q40_BOOTI_VERSION
 592	.long	MACH_HP300, HP300_BOOTI_VERSION
 593	.long	0
 5941:	jra	__start
 595
 596.equ	kernel_pg_dir,_stext
 597
 598.equ	.,_stext+PAGESIZE
 599
 600ENTRY(_start)
 601	jra	__start
 602__INIT
 603ENTRY(__start)
 604/*
 605 * Setup initial stack pointer
 606 */
 607	lea	%pc@(_stext),%sp
 608
 609/*
 610 * Record the CPU and machine type.
 611 */
 612	get_bi_record	BI_MACHTYPE
 613	lea	%pc@(m68k_machtype),%a1
 614	movel	%a0@,%a1@
 615
 616	get_bi_record	BI_FPUTYPE
 617	lea	%pc@(m68k_fputype),%a1
 618	movel	%a0@,%a1@
 619
 620	get_bi_record	BI_MMUTYPE
 621	lea	%pc@(m68k_mmutype),%a1
 622	movel	%a0@,%a1@
 623
 624	get_bi_record	BI_CPUTYPE
 625	lea	%pc@(m68k_cputype),%a1
 626	movel	%a0@,%a1@
 627
 628	leds	0x1
 629
 630#ifdef CONFIG_MAC
 631/*
 632 * For Macintosh, we need to determine the display parameters early (at least
 633 * while debugging it).
 634 */
 635
 636	is_not_mac(L(test_notmac))
 637
 638	get_bi_record	BI_MAC_VADDR
 639	lea	%pc@(L(mac_videobase)),%a1
 640	movel	%a0@,%a1@
 641
 642	get_bi_record	BI_MAC_VDEPTH
 643	lea	%pc@(L(mac_videodepth)),%a1
 644	movel	%a0@,%a1@
 645
 646	get_bi_record	BI_MAC_VDIM
 647	lea	%pc@(L(mac_dimensions)),%a1
 648	movel	%a0@,%a1@
 649
 650	get_bi_record	BI_MAC_VROW
 651	lea	%pc@(L(mac_rowbytes)),%a1
 652	movel	%a0@,%a1@
 653
 654#ifdef SERIAL_DEBUG
 655	get_bi_record	BI_MAC_SCCBASE
 656	lea	%pc@(L(mac_sccbase)),%a1
 657	movel	%a0@,%a1@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658#endif
 659
 660L(test_notmac):
 661#endif /* CONFIG_MAC */
 662
 663
 664/*
 665 * There are ultimately two pieces of information we want for all kinds of
 666 * processors CpuType and CacheBits.  The CPUTYPE was passed in from booter
 667 * and is converted here from a booter type definition to a separate bit
 668 * number which allows for the standard is_0x0 macro tests.
 669 */
 670	movel	%pc@(m68k_cputype),%d0
 671	/*
 672	 * Assume it's an 030
 673	 */
 674	clrl	%d1
 675
 676	/*
 677	 * Test the BootInfo cputype for 060
 678	 */
 679	btst	#CPUB_68060,%d0
 680	jeq	1f
 681	bset	#CPUTYPE_060,%d1
 682	bset	#CPUTYPE_0460,%d1
 683	jra	3f
 6841:
 685	/*
 686	 * Test the BootInfo cputype for 040
 687	 */
 688	btst	#CPUB_68040,%d0
 689	jeq	2f
 690	bset	#CPUTYPE_040,%d1
 691	bset	#CPUTYPE_0460,%d1
 692	jra	3f
 6932:
 694	/*
 695	 * Test the BootInfo cputype for 020
 696	 */
 697	btst	#CPUB_68020,%d0
 698	jeq	3f
 699	bset	#CPUTYPE_020,%d1
 700	jra	3f
 7013:
 702	/*
 703	 * Record the cpu type
 704	 */
 705	lea	%pc@(L(cputype)),%a0
 706	movel	%d1,%a0@
 707
 708	/*
 709	 * NOTE:
 710	 *
 711	 * Now the macros are valid:
 712	 *	is_040_or_060
 713	 *	is_not_040_or_060
 714	 *	is_040
 715	 *	is_060
 716	 *	is_not_060
 717	 */
 718
 719	/*
 720	 * Determine the cache mode for pages holding MMU tables
 721	 * and for supervisor mode, unused for '020 and '030
 722	 */
 723	clrl	%d0
 724	clrl	%d1
 725
 726	is_not_040_or_060(L(save_cachetype))
 727
 728	/*
 729	 * '040 or '060
 730	 * d1 := cacheable write-through
 731	 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
 732	 * but we have been using write-through since at least 2.0.29 so I
 733	 * guess it is OK.
 734	 */
 735#ifdef CONFIG_060_WRITETHROUGH
 736	/*
 737	 * If this is a 68060 board using drivers with cache coherency
 738	 * problems, then supervisor memory accesses need to be write-through
 739	 * also; otherwise, we want copyback.
 740	 */
 741
 742	is_not_060(1f)
 743	movel	#_PAGE_CACHE040W,%d0
 744	jra	L(save_cachetype)
 745#endif /* CONFIG_060_WRITETHROUGH */
 7461:
 747	movew	#_PAGE_CACHE040,%d0
 748
 749	movel	#_PAGE_CACHE040W,%d1
 750
 751L(save_cachetype):
 752	/* Save cache mode for supervisor mode and page tables
 753	 */
 754	lea	%pc@(m68k_supervisor_cachemode),%a0
 755	movel	%d0,%a0@
 756	lea	%pc@(m68k_pgtable_cachemode),%a0
 757	movel	%d1,%a0@
 758
 759/*
 760 * raise interrupt level
 761 */
 762	movew	#0x2700,%sr
 763
 764/*
 765   If running on an Atari, determine the I/O base of the
 766   serial port and test if we are running on a Medusa or Hades.
 767   This test is necessary here, because on the Hades the serial
 768   port is only accessible in the high I/O memory area.
 769
 770   The test whether it is a Medusa is done by writing to the byte at
 771   phys. 0x0. This should result in a bus error on all other machines.
 772
 773   ...should, but doesn't. The Afterburner040 for the Falcon has the
 774   same behaviour (0x0..0x7 are no ROM shadow). So we have to do
 775   another test to distinguish Medusa and AB040. This is a
 776   read attempt for 0x00ff82fe phys. that should bus error on a Falcon
 777   (+AB040), but is in the range where the Medusa always asserts DTACK.
 778
 779   The test for the Hades is done by reading address 0xb0000000. This
 780   should give a bus error on the Medusa.
 781 */
 782
 783#ifdef CONFIG_ATARI
 784	is_not_atari(L(notypetest))
 785
 786	/* get special machine type (Medusa/Hades/AB40) */
 787	moveq	#0,%d3 /* default if tag doesn't exist */
 788	get_bi_record	BI_ATARI_MCH_TYPE
 789	tstl	%d0
 790	jbmi	1f
 791	movel	%a0@,%d3
 792	lea	%pc@(atari_mch_type),%a0
 793	movel	%d3,%a0@
 7941:
 795	/* On the Hades, the iobase must be set up before opening the
 796	 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
 797	moveq	#0,%d0
 798	cmpl	#ATARI_MACH_HADES,%d3
 799	jbne	1f
 800	movel	#0xff000000,%d0		/* Hades I/O base addr: 0xff000000 */
 8011:	lea     %pc@(L(iobase)),%a0
 802	movel   %d0,%a0@
 803
 804L(notypetest):
 805#endif
 806
 807#ifdef CONFIG_VME
 808	is_mvme147(L(getvmetype))
 809	is_bvme6000(L(getvmetype))
 810	is_not_mvme16x(L(gvtdone))
 811
 812	/* See if the loader has specified the BI_VME_TYPE tag.  Recent
 813	 * versions of VMELILO and TFTPLILO do this.  We have to do this
 814	 * early so we know how to handle console output.  If the tag
 815	 * doesn't exist then we use the Bug for output on MVME16x.
 816	 */
 817L(getvmetype):
 818	get_bi_record	BI_VME_TYPE
 819	tstl	%d0
 820	jbmi	1f
 821	movel	%a0@,%d3
 822	lea	%pc@(vme_brdtype),%a0
 823	movel	%d3,%a0@
 8241:
 825#ifdef CONFIG_MVME16x
 826	is_not_mvme16x(L(gvtdone))
 827
 828	/* Need to get the BRD_ID info to differentiate between 162, 167,
 829	 * etc.  This is available as a BI_VME_BRDINFO tag with later
 830	 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
 831	 */
 832	get_bi_record	BI_VME_BRDINFO
 833	tstl	%d0
 834	jpl	1f
 835
 836	/* Get pointer to board ID data from Bug */
 837	movel	%d2,%sp@-
 838	trap	#15
 839	.word	0x70		/* trap 0x70 - .BRD_ID */
 840	movel	%sp@+,%a0
 8411:
 842	lea	%pc@(mvme_bdid),%a1
 843	/* Structure is 32 bytes long */
 844	movel	%a0@+,%a1@+
 845	movel	%a0@+,%a1@+
 846	movel	%a0@+,%a1@+
 847	movel	%a0@+,%a1@+
 848	movel	%a0@+,%a1@+
 849	movel	%a0@+,%a1@+
 850	movel	%a0@+,%a1@+
 851	movel	%a0@+,%a1@+
 852#endif
 853
 854L(gvtdone):
 855
 856#endif
 857
 858#ifdef CONFIG_HP300
 859	is_not_hp300(L(nothp))
 860
 861	/* Get the address of the UART for serial debugging */
 862	get_bi_record	BI_HP300_UART_ADDR
 863	tstl	%d0
 864	jbmi	1f
 865	movel	%a0@,%d3
 866	lea	%pc@(L(uartbase)),%a0
 867	movel	%d3,%a0@
 868	get_bi_record	BI_HP300_UART_SCODE
 869	tstl	%d0
 870	jbmi	1f
 871	movel	%a0@,%d3
 872	lea	%pc@(L(uart_scode)),%a0
 873	movel	%d3,%a0@
 8741:
 875L(nothp):
 876#endif
 877
 878/*
 879 * Initialize serial port
 880 */
 881	jbsr	L(serial_init)
 882
 883/*
 884 * Initialize console
 885 */
 886#ifdef CONFIG_MAC
 887	is_not_mac(L(nocon))
 888#  ifdef CONSOLE
 889	console_init
 890#    ifdef CONFIG_LOGO
 891	console_put_penguin
 892#    endif /* CONFIG_LOGO */
 893	console_put_stats
 894#  endif /* CONSOLE */
 895L(nocon):
 896#endif /* CONFIG_MAC */
 897
 898
 899	putc	'\n'
 900	putc	'A'
 901	leds	0x2
 902	dputn	%pc@(L(cputype))
 903	dputn	%pc@(m68k_supervisor_cachemode)
 904	dputn	%pc@(m68k_pgtable_cachemode)
 905	dputc	'\n'
 906
 907/*
 908 * Save physical start address of kernel
 909 */
 910	lea	%pc@(L(phys_kernel_start)),%a0
 911	lea	%pc@(_stext),%a1
 912	subl	#_stext,%a1
 913	addl	#PAGE_OFFSET,%a1
 914	movel	%a1,%a0@
 915
 916	putc	'B'
 917
 918	leds	0x4
 919
 920/*
 921 *	mmu_init
 922 *
 923 *	This block of code does what's necessary to map in the various kinds
 924 *	of machines for execution of Linux.
 925 *	First map the first 4 MB of kernel code & data
 926 */
 927
 928	mmu_map	#PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\
 929		%pc@(m68k_supervisor_cachemode)
 930
 931	putc	'C'
 932
 933#ifdef CONFIG_AMIGA
 934
 935L(mmu_init_amiga):
 936
 937	is_not_amiga(L(mmu_init_not_amiga))
 938/*
 939 * mmu_init_amiga
 940 */
 941
 942	putc	'D'
 943
 944	is_not_040_or_060(1f)
 945
 946	/*
 947	 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
 948	 */
 949	mmu_map		#0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
 950	/*
 951	 * Map the Zorro III I/O space with transparent translation
 952	 * for frame buffer memory etc.
 953	 */
 954	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
 955
 956	jbra	L(mmu_init_done)
 957
 9581:
 959	/*
 960	 * 030:	Map the 32Meg range physical 0x0 up to logical 0x8000.0000
 961	 */
 962	mmu_map		#0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
 963	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
 964
 965	jbra	L(mmu_init_done)
 966
 967L(mmu_init_not_amiga):
 968#endif
 969
 970#ifdef CONFIG_ATARI
 971
 972L(mmu_init_atari):
 973
 974	is_not_atari(L(mmu_init_not_atari))
 975
 976	putc	'E'
 977
 978/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
 979   the last 16 MB of virtual address space to the first 16 MB (i.e.
 980   0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
 981   needed. I/O ranges are marked non-cachable.
 982
 983   For the Medusa it is better to map the I/O region transparently
 984   (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
 985   accessible only in the high area.
 986
 987   On the Hades all I/O registers are only accessible in the high
 988   area.
 989*/
 990
 991	/* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
 992	moveq	#0,%d0
 993	movel	%pc@(atari_mch_type),%d3
 994	cmpl	#ATARI_MACH_MEDUSA,%d3
 995	jbeq	2f
 996	cmpl	#ATARI_MACH_HADES,%d3
 997	jbne	1f
 9982:	movel	#0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
 9991:	movel	%d0,%d3
1000
1001	is_040_or_060(L(spata68040))
1002
1003	/* Map everything non-cacheable, though not all parts really
1004	 * need to disable caches (crucial only for 0xff8000..0xffffff
1005	 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1006	 * isn't really used, except for sometimes peeking into the
1007	 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1008	 * this. */
1009	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1010
1011	jbra	L(mmu_init_done)
1012
1013L(spata68040):
1014
1015	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1016
1017	jbra	L(mmu_init_done)
1018
1019L(mmu_init_not_atari):
1020#endif
1021
1022#ifdef CONFIG_Q40
1023	is_not_q40(L(notq40))
1024	/*
1025	 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1026	 * non-cached serialized etc..
1027	 * this includes master chip, DAC, RTC and ISA ports
1028	 * 0xfe000000-0xfeffffff is for screen and ROM
1029	 */
1030
1031	putc    'Q'
1032
1033	mmu_map_tt	#0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1034	mmu_map_tt	#1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1035
1036	jbra	L(mmu_init_done)
1037
1038L(notq40):
1039#endif
1040
1041#ifdef CONFIG_HP300
1042	is_not_hp300(L(nothp300))
1043
1044	/* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1045	 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1046	 * The ROM mapping is needed because the LEDs are mapped there too.
1047	 */
1048
1049	is_040(1f)
1050
1051	/*
1052	 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1053	 */
1054	mmu_map	#0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1055
1056	jbra	L(mmu_init_done)
1057
10581:
1059	/*
1060	 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1061	 */
1062	mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1063
1064	jbra	L(mmu_init_done)
1065
1066L(nothp300):
1067#endif /* CONFIG_HP300 */
1068
1069#ifdef CONFIG_MVME147
1070
1071	is_not_mvme147(L(not147))
1072
1073	/*
1074	 * On MVME147 we have already created kernel page tables for
1075	 * 4MB of RAM at address 0, so now need to do a transparent
1076	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1077	 * so we can access on-board i/o areas.
1078	 */
1079
1080	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1081
1082	jbra	L(mmu_init_done)
1083
1084L(not147):
1085#endif /* CONFIG_MVME147 */
1086
1087#ifdef CONFIG_MVME16x
1088
1089	is_not_mvme16x(L(not16x))
1090
1091	/*
1092	 * On MVME16x we have already created kernel page tables for
1093	 * 4MB of RAM at address 0, so now need to do a transparent
1094	 * mapping of the top of memory space.  Make it 0.5GByte for now.
1095	 * Supervisor only access, so transparent mapping doesn't
1096	 * clash with User code virtual address space.
1097	 * this covers IO devices, PROM and SRAM.  The PROM and SRAM
1098	 * mapping is needed to allow 167Bug to run.
1099	 * IO is in the range 0xfff00000 to 0xfffeffff.
1100	 * PROM is 0xff800000->0xffbfffff and SRAM is
1101	 * 0xffe00000->0xffe1ffff.
1102	 */
1103
1104	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1105
1106	jbra	L(mmu_init_done)
1107
1108L(not16x):
1109#endif	/* CONFIG_MVME162 | CONFIG_MVME167 */
1110
1111#ifdef CONFIG_BVME6000
1112
1113	is_not_bvme6000(L(not6000))
1114
1115	/*
1116	 * On BVME6000 we have already created kernel page tables for
1117	 * 4MB of RAM at address 0, so now need to do a transparent
1118	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1119	 * so we can access on-board i/o areas.
1120	 * Supervisor only access, so transparent mapping doesn't
1121	 * clash with User code virtual address space.
1122	 */
1123
1124	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1125
1126	jbra	L(mmu_init_done)
1127
1128L(not6000):
1129#endif /* CONFIG_BVME6000 */
1130
1131/*
1132 * mmu_init_mac
1133 *
1134 * The Macintosh mappings are less clear.
1135 *
1136 * Even as of this writing, it is unclear how the
1137 * Macintosh mappings will be done.  However, as
1138 * the first author of this code I'm proposing the
1139 * following model:
1140 *
1141 * Map the kernel (that's already done),
1142 * Map the I/O (on most machines that's the
1143 * 0x5000.0000 ... 0x5300.0000 range,
1144 * Map the video frame buffer using as few pages
1145 * as absolutely (this requirement mostly stems from
1146 * the fact that when the frame buffer is at
1147 * 0x0000.0000 then we know there is valid RAM just
1148 * above the screen that we don't want to waste!).
1149 *
1150 * By the way, if the frame buffer is at 0x0000.0000
1151 * then the Macintosh is known as an RBV based Mac.
1152 *
1153 * By the way 2, the code currently maps in a bunch of
1154 * regions.  But I'd like to cut that out.  (And move most
1155 * of the mappings up into the kernel proper ... or only
1156 * map what's necessary.)
1157 */
1158
1159#ifdef CONFIG_MAC
1160
1161L(mmu_init_mac):
1162
1163	is_not_mac(L(mmu_init_not_mac))
1164
1165	putc	'F'
1166
1167	is_not_040_or_060(1f)
1168
1169	moveq	#_PAGE_NOCACHE_S,%d3
1170	jbra	2f
11711:
1172	moveq	#_PAGE_NOCACHE030,%d3
11732:
1174	/*
1175	 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1176	 *	     we simply map the 4MB that contains the videomem
1177	 */
1178
1179	movel	#VIDEOMEMMASK,%d0
1180	andl	%pc@(L(mac_videobase)),%d0
1181
1182	mmu_map		#VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1183	/* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1184	mmu_map_eq	#0x40000000,#0x02000000,%d3
1185	/* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1186	mmu_map_eq	#0x50000000,#0x03000000,%d3
1187	/* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1188	mmu_map_tt	#1,#0xf8000000,#0x08000000,%d3
1189
1190	jbra	L(mmu_init_done)
1191
1192L(mmu_init_not_mac):
1193#endif
1194
1195#ifdef CONFIG_SUN3X
1196	is_not_sun3x(L(notsun3x))
1197
1198	/* oh, the pain..  We're gonna want the prom code after
1199	 * starting the MMU, so we copy the mappings, translating
1200	 * from 8k -> 4k pages as we go.
1201	 */
1202
1203	/* copy maps from 0xfee00000 to 0xff000000 */
1204	movel	#0xfee00000, %d0
1205	moveq	#ROOT_INDEX_SHIFT, %d1
1206	lsrl	%d1,%d0
1207	mmu_get_root_table_entry	%d0
1208
1209	movel	#0xfee00000, %d0
1210	moveq	#PTR_INDEX_SHIFT, %d1
1211	lsrl	%d1,%d0
1212	andl	#PTR_TABLE_SIZE-1, %d0
1213	mmu_get_ptr_table_entry		%a0,%d0
1214
1215	movel	#0xfee00000, %d0
1216	moveq	#PAGE_INDEX_SHIFT, %d1
1217	lsrl	%d1,%d0
1218	andl	#PAGE_TABLE_SIZE-1, %d0
1219	mmu_get_page_table_entry	%a0,%d0
1220
1221	/* this is where the prom page table lives */
1222	movel	0xfefe00d4, %a1
1223	movel	%a1@, %a1
1224
1225	movel	#((0x200000 >> 13)-1), %d1
1226
12271:
1228	movel	%a1@+, %d3
1229	movel	%d3,%a0@+
1230	addl	#0x1000,%d3
1231	movel	%d3,%a0@+
1232
1233	dbra	%d1,1b
1234
1235	/* setup tt1 for I/O */
1236	mmu_map_tt	#1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1237	jbra	L(mmu_init_done)
1238
1239L(notsun3x):
1240#endif
1241
1242#ifdef CONFIG_APOLLO
1243	is_not_apollo(L(notapollo))
1244
1245	putc	'P'
1246	mmu_map         #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1247
1248L(notapollo):
1249	jbra	L(mmu_init_done)
1250#endif
1251
1252L(mmu_init_done):
1253
1254	putc	'G'
1255	leds	0x8
1256
1257/*
1258 * mmu_fixup
1259 *
1260 * On the 040 class machines, all pages that are used for the
1261 * mmu have to be fixed up. According to Motorola, pages holding mmu
1262 * tables should be non-cacheable on a '040 and write-through on a
1263 * '060. But analysis of the reasons for this, and practical
1264 * experience, showed that write-through also works on a '040.
1265 *
1266 * Allocated memory so far goes from kernel_end to memory_start that
1267 * is used for all kind of tables, for that the cache attributes
1268 * are now fixed.
1269 */
1270L(mmu_fixup):
1271
1272	is_not_040_or_060(L(mmu_fixup_done))
1273
1274#ifdef MMU_NOCACHE_KERNEL
1275	jbra	L(mmu_fixup_done)
1276#endif
1277
1278	/* first fix the page at the start of the kernel, that
1279	 * contains also kernel_pg_dir.
1280	 */
1281	movel	%pc@(L(phys_kernel_start)),%d0
1282	subl	#PAGE_OFFSET,%d0
1283	lea	%pc@(_stext),%a0
1284	subl	%d0,%a0
1285	mmu_fixup_page_mmu_cache	%a0
1286
1287	movel	%pc@(L(kernel_end)),%a0
1288	subl	%d0,%a0
1289	movel	%pc@(L(memory_start)),%a1
1290	subl	%d0,%a1
1291	bra	2f
12921:
1293	mmu_fixup_page_mmu_cache	%a0
1294	addw	#PAGESIZE,%a0
12952:
1296	cmpl	%a0,%a1
1297	jgt	1b
1298
1299L(mmu_fixup_done):
1300
1301#ifdef MMU_PRINT
1302	mmu_print
1303#endif
1304
1305/*
1306 * mmu_engage
1307 *
1308 * This chunk of code performs the gruesome task of engaging the MMU.
1309 * The reason its gruesome is because when the MMU becomes engaged it
1310 * maps logical addresses to physical addresses.  The Program Counter
1311 * register is then passed through the MMU before the next instruction
1312 * is fetched (the instruction following the engage MMU instruction).
1313 * This may mean one of two things:
1314 * 1. The Program Counter falls within the logical address space of
1315 *    the kernel of which there are two sub-possibilities:
1316 *    A. The PC maps to the correct instruction (logical PC == physical
1317 *       code location), or
1318 *    B. The PC does not map through and the processor will read some
1319 *       data (or instruction) which is not the logically next instr.
1320 *    As you can imagine, A is good and B is bad.
1321 * Alternatively,
1322 * 2. The Program Counter does not map through the MMU.  The processor
1323 *    will take a Bus Error.
1324 * Clearly, 2 is bad.
1325 * It doesn't take a wiz kid to figure you want 1.A.
1326 * This code creates that possibility.
1327 * There are two possible 1.A. states (we now ignore the other above states):
1328 * A. The kernel is located at physical memory addressed the same as
1329 *    the logical memory for the kernel, i.e., 0x01000.
1330 * B. The kernel is located some where else.  e.g., 0x0400.0000
1331 *
1332 *    Under some conditions the Macintosh can look like A or B.
1333 * [A friend and I once noted that Apple hardware engineers should be
1334 * wacked twice each day: once when they show up at work (as in, Whack!,
1335 * "This is for the screwy hardware we know you're going to design today."),
1336 * and also at the end of the day (as in, Whack! "I don't know what
1337 * you designed today, but I'm sure it wasn't good."). -- rst]
1338 *
1339 * This code works on the following premise:
1340 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1341 * then create a mapping for the kernel at logical 0x8000.0000 to
1342 * the physical location of the pc.  And, create a transparent
1343 * translation register for the first 16 Meg.  Then, after the MMU
1344 * is engaged, the PC can be moved up into the 0x8000.0000 range
1345 * and then the transparent translation can be turned off and then
1346 * the PC can jump to the correct logical location and it will be
1347 * home (finally).  This is essentially the code that the Amiga used
1348 * to use.  Now, it's generalized for all processors.  Which means
1349 * that a fresh (but temporary) mapping has to be created.  The mapping
1350 * is made in page 0 (an as of yet unused location -- except for the
1351 * stack!).  This temporary mapping will only require 1 pointer table
1352 * and a single page table (it can map 256K).
1353 *
1354 * OK, alternatively, imagine that the Program Counter is not within
1355 * the first 16 Meg.  Then, just use Transparent Translation registers
1356 * to do the right thing.
1357 *
1358 * Last, if _start is already at 0x01000, then there's nothing special
1359 * to do (in other words, in a degenerate case of the first case above,
1360 * do nothing).
1361 *
1362 * Let's do it.
1363 *
1364 *
1365 */
1366
1367	putc	'H'
1368
1369	mmu_engage
1370
1371/*
1372 * After this point no new memory is allocated and
1373 * the start of available memory is stored in availmem.
1374 * (The bootmem allocator requires now the physicall address.)
1375 */
1376
1377	movel	L(memory_start),availmem
1378
1379#ifdef CONFIG_AMIGA
1380	is_not_amiga(1f)
1381	/* fixup the Amiga custom register location before printing */
1382	clrl	L(custom)
13831:
1384#endif
1385
1386#ifdef CONFIG_ATARI
1387	is_not_atari(1f)
1388	/* fixup the Atari iobase register location before printing */
1389	movel	#0xff000000,L(iobase)
13901:
1391#endif
1392
1393#ifdef CONFIG_MAC
1394	is_not_mac(1f)
1395	movel	#~VIDEOMEMMASK,%d0
1396	andl	L(mac_videobase),%d0
1397	addl	#VIDEOMEMBASE,%d0
1398	movel	%d0,L(mac_videobase)
1399#if defined(CONSOLE)
1400	movel	%pc@(L(phys_kernel_start)),%d0
1401	subl	#PAGE_OFFSET,%d0
1402	subl	%d0,L(console_font)
1403	subl	%d0,L(console_font_data)
1404#endif
1405#ifdef SERIAL_DEBUG
1406	orl	#0x50000000,L(mac_sccbase)
1407#endif
14081:
1409#endif
1410
1411#ifdef CONFIG_HP300
1412	is_not_hp300(2f)
1413	/*
1414	 * Fix up the iobase register to point to the new location of the LEDs.
1415	 */
1416	movel	#0xf0000000,L(iobase)
1417
1418	/*
1419	 * Energise the FPU and caches.
1420	 */
1421	is_040(1f)
1422	movel	#0x60,0xf05f400c
1423	jbra	2f
1424
1425	/*
1426	 * 040: slightly different, apparently.
1427	 */
14281:	movew	#0,0xf05f400e
1429	movew	#0x64,0xf05f400e
14302:
1431#endif
1432
1433#ifdef CONFIG_SUN3X
1434	is_not_sun3x(1f)
1435
1436	/* enable copro */
1437	oriw	#0x4000,0x61000000
14381:
1439#endif
1440
1441#ifdef CONFIG_APOLLO
1442	is_not_apollo(1f)
1443
1444	/*
1445	 * Fix up the iobase before printing
1446	 */
1447	movel	#0x80000000,L(iobase)
14481:
1449#endif
1450
1451	putc	'I'
1452	leds	0x10
1453
1454/*
1455 * Enable caches
1456 */
1457
1458	is_not_040_or_060(L(cache_not_680460))
1459
1460L(cache680460):
1461	.chip	68040
1462	nop
1463	cpusha	%bc
1464	nop
1465
1466	is_060(L(cache68060))
1467
1468	movel	#CC6_ENABLE_D+CC6_ENABLE_I,%d0
1469	/* MMU stuff works in copyback mode now, so enable the cache */
1470	movec	%d0,%cacr
1471	jra	L(cache_done)
1472
1473L(cache68060):
1474	movel	#CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1475	/* MMU stuff works in copyback mode now, so enable the cache */
1476	movec	%d0,%cacr
1477	/* enable superscalar dispatch in PCR */
1478	moveq	#1,%d0
1479	.chip	68060
1480	movec	%d0,%pcr
1481
1482	jbra	L(cache_done)
1483L(cache_not_680460):
1484L(cache68030):
1485	.chip	68030
1486	movel	#CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1487	movec	%d0,%cacr
1488
1489	jra	L(cache_done)
1490	.chip	68k
1491L(cache_done):
1492
1493	putc	'J'
1494
1495/*
1496 * Setup initial stack pointer
1497 */
1498	lea	init_task,%curptr
1499	lea	init_thread_union+THREAD_SIZE,%sp
1500
1501	putc	'K'
1502
1503	subl	%a6,%a6		/* clear a6 for gdb */
1504
1505/*
1506 * The new 64bit printf support requires an early exception initialization.
1507 */
1508	jbsr	base_trap_init
1509
1510/* jump to the kernel start */
1511
1512	putc	'\n'
1513	leds	0x55
1514
1515	jbsr	start_kernel
1516
1517/*
1518 * Find a tag record in the bootinfo structure
1519 * The bootinfo structure is located right after the kernel
1520 * Returns: d0: size (-1 if not found)
1521 *          a0: data pointer (end-of-records if not found)
1522 */
1523func_start	get_bi_record,%d1
1524
1525	movel	ARG1,%d0
1526	lea	%pc@(_end),%a0
15271:	tstw	%a0@(BIR_TAG)
1528	jeq	3f
1529	cmpw	%a0@(BIR_TAG),%d0
1530	jeq	2f
1531	addw	%a0@(BIR_SIZE),%a0
1532	jra	1b
15332:	moveq	#0,%d0
1534	movew	%a0@(BIR_SIZE),%d0
1535	lea	%a0@(BIR_DATA),%a0
1536	jra	4f
15373:	moveq	#-1,%d0
1538	lea	%a0@(BIR_SIZE),%a0
15394:
1540func_return	get_bi_record
1541
1542
1543/*
1544 *	MMU Initialization Begins Here
1545 *
1546 *	The structure of the MMU tables on the 68k machines
1547 *	is thus:
1548 *	Root Table
1549 *		Logical addresses are translated through
1550 *	a hierarchical translation mechanism where the high-order
1551 *	seven bits of the logical address (LA) are used as an
1552 *	index into the "root table."  Each entry in the root
1553 *	table has a bit which specifies if it's a valid pointer to a
1554 *	pointer table.  Each entry defines a 32KMeg range of memory.
1555 *	If an entry is invalid then that logical range of 32M is
1556 *	invalid and references to that range of memory (when the MMU
1557 *	is enabled) will fault.  If the entry is valid, then it does
1558 *	one of two things.  On 040/060 class machines, it points to
1559 *	a pointer table which then describes more finely the memory
1560 *	within that 32M range.  On 020/030 class machines, a technique
1561 *	called "early terminating descriptors" are used.  This technique
1562 *	allows an entire 32Meg to be described by a single entry in the
1563 *	root table.  Thus, this entry in the root table, contains the
1564 *	physical address of the memory or I/O at the logical address
1565 *	which the entry represents and it also contains the necessary
1566 *	cache bits for this region.
1567 *
1568 *	Pointer Tables
1569 *		Per the Root Table, there will be one or more
1570 *	pointer tables.  Each pointer table defines a 32M range.
1571 *	Not all of the 32M range need be defined.  Again, the next
1572 *	seven bits of the logical address are used an index into
1573 *	the pointer table to point to page tables (if the pointer
1574 *	is valid).  There will undoubtedly be more than one
1575 *	pointer table for the kernel because each pointer table
1576 *	defines a range of only 32M.  Valid pointer table entries
1577 *	point to page tables, or are early terminating entries
1578 *	themselves.
1579 *
1580 *	Page Tables
1581 *		Per the Pointer Tables, each page table entry points
1582 *	to the physical page in memory that supports the logical
1583 *	address that translates to the particular index.
1584 *
1585 *	In short, the Logical Address gets translated as follows:
1586 *		bits 31..26 - index into the Root Table
1587 *		bits 25..18 - index into the Pointer Table
1588 *		bits 17..12 - index into the Page Table
1589 *		bits 11..0  - offset into a particular 4K page
1590 *
1591 *	The algorithms which follows do one thing: they abstract
1592 *	the MMU hardware.  For example, there are three kinds of
1593 *	cache settings that are relevant.  Either, memory is
1594 *	being mapped in which case it is either Kernel Code (or
1595 *	the RamDisk) or it is MMU data.  On the 030, the MMU data
1596 *	option also describes the kernel.  Or, I/O is being mapped
1597 *	in which case it has its own kind of cache bits.  There
1598 *	are constants which abstract these notions from the code that
1599 *	actually makes the call to map some range of memory.
1600 *
1601 *
1602 *
1603 */
1604
1605#ifdef MMU_PRINT
1606/*
1607 *	mmu_print
1608 *
1609 *	This algorithm will print out the current MMU mappings.
1610 *
1611 *	Input:
1612 *		%a5 points to the root table.  Everything else is calculated
1613 *			from this.
1614 */
1615
1616#define mmu_next_valid		0
1617#define mmu_start_logical	4
1618#define mmu_next_logical	8
1619#define mmu_start_physical	12
1620#define mmu_next_physical	16
1621
1622#define MMU_PRINT_INVALID		-1
1623#define MMU_PRINT_VALID			1
1624#define MMU_PRINT_UNINITED		0
1625
1626#define putZc(z,n)		jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1627
1628func_start	mmu_print,%a0-%a6/%d0-%d7
1629
1630	movel	%pc@(L(kernel_pgdir_ptr)),%a5
1631	lea	%pc@(L(mmu_print_data)),%a0
1632	movel	#MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1633
1634	is_not_040_or_060(mmu_030_print)
1635
1636mmu_040_print:
1637	puts	"\nMMU040\n"
1638	puts	"rp:"
1639	putn	%a5
1640	putc	'\n'
1641#if 0
1642	/*
1643	 * The following #if/#endif block is a tight algorithm for dumping the 040
1644	 * MMU Map in gory detail.  It really isn't that practical unless the
1645	 * MMU Map algorithm appears to go awry and you need to debug it at the
1646	 * entry per entry level.
1647	 */
1648	movel	#ROOT_TABLE_SIZE,%d5
1649#if 0
1650	movel	%a5@+,%d7		| Burn an entry to skip the kernel mappings,
1651	subql	#1,%d5			| they (might) work
1652#endif
16531:	tstl	%d5
1654	jbeq	mmu_print_done
1655	subq	#1,%d5
1656	movel	%a5@+,%d7
1657	btst	#1,%d7
1658	jbeq	1b
1659
16602:	putn	%d7
1661	andil	#0xFFFFFE00,%d7
1662	movel	%d7,%a4
1663	movel	#PTR_TABLE_SIZE,%d4
1664	putc	' '
16653:	tstl	%d4
1666	jbeq	11f
1667	subq	#1,%d4
1668	movel	%a4@+,%d7
1669	btst	#1,%d7
1670	jbeq	3b
1671
16724:	putn	%d7
1673	andil	#0xFFFFFF00,%d7
1674	movel	%d7,%a3
1675	movel	#PAGE_TABLE_SIZE,%d3
16765:	movel	#8,%d2
16776:	tstl	%d3
1678	jbeq	31f
1679	subq	#1,%d3
1680	movel	%a3@+,%d6
1681	btst	#0,%d6
1682	jbeq	6b
16837:	tstl	%d2
1684	jbeq	8f
1685	subq	#1,%d2
1686	putc	' '
1687	jbra	91f
16888:	putc	'\n'
1689	movel	#8+1+8+1+1,%d2
16909:	putc	' '
1691	dbra	%d2,9b
1692	movel	#7,%d2
169391:	putn	%d6
1694	jbra	6b
1695
169631:	putc	'\n'
1697	movel	#8+1,%d2
169832:	putc	' '
1699	dbra	%d2,32b
1700	jbra	3b
1701
170211:	putc	'\n'
1703	jbra	1b
1704#endif /* MMU 040 Dumping code that's gory and detailed */
1705
1706	lea	%pc@(kernel_pg_dir),%a5
1707	movel	%a5,%a0			/* a0 has the address of the root table ptr */
1708	movel	#0x00000000,%a4		/* logical address */
1709	moveql	#0,%d0
171040:
1711	/* Increment the logical address and preserve in d5 */
1712	movel	%a4,%d5
1713	addil	#PAGESIZE<<13,%d5
1714	movel	%a0@+,%d6
1715	btst	#1,%d6
1716	jbne	41f
1717	jbsr	mmu_print_tuple_invalidate
1718	jbra	48f
171941:
1720	movel	#0,%d1
1721	andil	#0xfffffe00,%d6
1722	movel	%d6,%a1
172342:
1724	movel	%a4,%d5
1725	addil	#PAGESIZE<<6,%d5
1726	movel	%a1@+,%d6
1727	btst	#1,%d6
1728	jbne	43f
1729	jbsr	mmu_print_tuple_invalidate
1730	jbra	47f
173143:
1732	movel	#0,%d2
1733	andil	#0xffffff00,%d6
1734	movel	%d6,%a2
173544:
1736	movel	%a4,%d5
1737	addil	#PAGESIZE,%d5
1738	movel	%a2@+,%d6
1739	btst	#0,%d6
1740	jbne	45f
1741	jbsr	mmu_print_tuple_invalidate
1742	jbra	46f
174345:
1744	moveml	%d0-%d1,%sp@-
1745	movel	%a4,%d0
1746	movel	%d6,%d1
1747	andil	#0xfffff4e0,%d1
1748	lea	%pc@(mmu_040_print_flags),%a6
1749	jbsr	mmu_print_tuple
1750	moveml	%sp@+,%d0-%d1
175146:
1752	movel	%d5,%a4
1753	addq	#1,%d2
1754	cmpib	#64,%d2
1755	jbne	44b
175647:
1757	movel	%d5,%a4
1758	addq	#1,%d1
1759	cmpib	#128,%d1
1760	jbne	42b
176148:
1762	movel	%d5,%a4			/* move to the next logical address */
1763	addq	#1,%d0
1764	cmpib	#128,%d0
1765	jbne	40b
1766
1767	.chip	68040
1768	movec	%dtt1,%d0
1769	movel	%d0,%d1
1770	andiw	#0x8000,%d1		/* is it valid ? */
1771	jbeq	1f			/* No, bail out */
1772
1773	movel	%d0,%d1
1774	andil	#0xff000000,%d1		/* Get the address */
1775	putn	%d1
1776	puts	"=="
1777	putn	%d1
1778
1779	movel	%d0,%d6
1780	jbsr	mmu_040_print_flags_tt
17811:
1782	movec	%dtt0,%d0
1783	movel	%d0,%d1
1784	andiw	#0x8000,%d1		/* is it valid ? */
1785	jbeq	1f			/* No, bail out */
1786
1787	movel	%d0,%d1
1788	andil	#0xff000000,%d1		/* Get the address */
1789	putn	%d1
1790	puts	"=="
1791	putn	%d1
1792
1793	movel	%d0,%d6
1794	jbsr	mmu_040_print_flags_tt
17951:
1796	.chip	68k
1797
1798	jbra	mmu_print_done
1799
1800mmu_040_print_flags:
1801	btstl	#10,%d6
1802	putZc(' ','G')	/* global bit */
1803	btstl	#7,%d6
1804	putZc(' ','S')	/* supervisor bit */
1805mmu_040_print_flags_tt:
1806	btstl	#6,%d6
1807	jbne	3f
1808	putc	'C'
1809	btstl	#5,%d6
1810	putZc('w','c')	/* write through or copy-back */
1811	jbra	4f
18123:
1813	putc	'N'
1814	btstl	#5,%d6
1815	putZc('s',' ')	/* serialized non-cacheable, or non-cacheable */
18164:
1817	rts
1818
1819mmu_030_print_flags:
1820	btstl	#6,%d6
1821	putZc('C','I')	/* write through or copy-back */
1822	rts
1823
1824mmu_030_print:
1825	puts	"\nMMU030\n"
1826	puts	"\nrp:"
1827	putn	%a5
1828	putc	'\n'
1829	movel	%a5,%d0
1830	andil	#0xfffffff0,%d0
1831	movel	%d0,%a0
1832	movel	#0x00000000,%a4		/* logical address */
1833	movel	#0,%d0
183430:
1835	movel	%a4,%d5
1836	addil	#PAGESIZE<<13,%d5
1837	movel	%a0@+,%d6
1838	btst	#1,%d6			/* is it a table ptr? */
1839	jbne	31f			/* yes */
1840	btst	#0,%d6			/* is it early terminating? */
1841	jbeq	1f			/* no */
1842	jbsr	mmu_030_print_helper
1843	jbra	38f
18441:
1845	jbsr	mmu_print_tuple_invalidate
1846	jbra	38f
184731:
1848	movel	#0,%d1
1849	andil	#0xfffffff0,%d6
1850	movel	%d6,%a1
185132:
1852	movel	%a4,%d5
1853	addil	#PAGESIZE<<6,%d5
1854	movel	%a1@+,%d6
1855	btst	#1,%d6			/* is it a table ptr? */
1856	jbne	33f			/* yes */
1857	btst	#0,%d6			/* is it a page descriptor? */
1858	jbeq	1f			/* no */
1859	jbsr	mmu_030_print_helper
1860	jbra	37f
18611:
1862	jbsr	mmu_print_tuple_invalidate
1863	jbra	37f
186433:
1865	movel	#0,%d2
1866	andil	#0xfffffff0,%d6
1867	movel	%d6,%a2
186834:
1869	movel	%a4,%d5
1870	addil	#PAGESIZE,%d5
1871	movel	%a2@+,%d6
1872	btst	#0,%d6
1873	jbne	35f
1874	jbsr	mmu_print_tuple_invalidate
1875	jbra	36f
187635:
1877	jbsr	mmu_030_print_helper
187836:
1879	movel	%d5,%a4
1880	addq	#1,%d2
1881	cmpib	#64,%d2
1882	jbne	34b
188337:
1884	movel	%d5,%a4
1885	addq	#1,%d1
1886	cmpib	#128,%d1
1887	jbne	32b
188838:
1889	movel	%d5,%a4			/* move to the next logical address */
1890	addq	#1,%d0
1891	cmpib	#128,%d0
1892	jbne	30b
1893
1894mmu_print_done:
1895	puts	"\n"
1896
1897func_return	mmu_print
1898
1899
1900mmu_030_print_helper:
1901	moveml	%d0-%d1,%sp@-
1902	movel	%a4,%d0
1903	movel	%d6,%d1
1904	lea	%pc@(mmu_030_print_flags),%a6
1905	jbsr	mmu_print_tuple
1906	moveml	%sp@+,%d0-%d1
1907	rts
1908
1909mmu_print_tuple_invalidate:
1910	moveml	%a0/%d7,%sp@-
1911
1912	lea	%pc@(L(mmu_print_data)),%a0
1913	tstl	%a0@(mmu_next_valid)
1914	jbmi	mmu_print_tuple_invalidate_exit
1915
1916	movel	#MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1917
1918	putn	%a4
1919
1920	puts	"##\n"
1921
1922mmu_print_tuple_invalidate_exit:
1923	moveml	%sp@+,%a0/%d7
1924	rts
1925
1926
1927mmu_print_tuple:
1928	moveml	%d0-%d7/%a0,%sp@-
1929
1930	lea	%pc@(L(mmu_print_data)),%a0
1931
1932	tstl	%a0@(mmu_next_valid)
1933	jble	mmu_print_tuple_print
1934
1935	cmpl	%a0@(mmu_next_physical),%d1
1936	jbeq	mmu_print_tuple_increment
1937
1938mmu_print_tuple_print:
1939	putn	%d0
1940	puts	"->"
1941	putn	%d1
1942
1943	movel	%d1,%d6
1944	jbsr	%a6@
1945
1946mmu_print_tuple_record:
1947	movel	#MMU_PRINT_VALID,%a0@(mmu_next_valid)
1948
1949	movel	%d1,%a0@(mmu_next_physical)
1950
1951mmu_print_tuple_increment:
1952	movel	%d5,%d7
1953	subl	%a4,%d7
1954	addl	%d7,%a0@(mmu_next_physical)
1955
1956mmu_print_tuple_exit:
1957	moveml	%sp@+,%d0-%d7/%a0
1958	rts
1959
1960mmu_print_machine_cpu_types:
1961	puts	"machine: "
1962
1963	is_not_amiga(1f)
1964	puts	"amiga"
1965	jbra	9f
19661:
1967	is_not_atari(2f)
1968	puts	"atari"
1969	jbra	9f
19702:
1971	is_not_mac(3f)
1972	puts	"macintosh"
1973	jbra	9f
19743:	puts	"unknown"
19759:	putc	'\n'
1976
1977	puts	"cputype: 0"
1978	is_not_060(1f)
1979	putc	'6'
1980	jbra	9f
19811:
1982	is_not_040_or_060(2f)
1983	putc	'4'
1984	jbra	9f
19852:	putc	'3'
19869:	putc	'0'
1987	putc	'\n'
1988
1989	rts
1990#endif /* MMU_PRINT */
1991
1992/*
1993 * mmu_map_tt
1994 *
1995 * This is a specific function which works on all 680x0 machines.
1996 * On 030, 040 & 060 it will attempt to use Transparent Translation
1997 * registers (tt1).
1998 * On 020 it will call the standard mmu_map which will use early
1999 * terminating descriptors.
2000 */
2001func_start	mmu_map_tt,%d0/%d1/%a0,4
2002
2003	dputs	"mmu_map_tt:"
2004	dputn	ARG1
2005	dputn	ARG2
2006	dputn	ARG3
2007	dputn	ARG4
2008	dputc	'\n'
2009
2010	is_020(L(do_map))
2011
2012	/* Extract the highest bit set
2013	 */
2014	bfffo	ARG3{#0,#32},%d1
2015	cmpw	#8,%d1
2016	jcc	L(do_map)
2017
2018	/* And get the mask
2019	 */
2020	moveq	#-1,%d0
2021	lsrl	%d1,%d0
2022	lsrl	#1,%d0
2023
2024	/* Mask the address
2025	 */
2026	movel	%d0,%d1
2027	notl	%d1
2028	andl	ARG2,%d1
2029
2030	/* Generate the upper 16bit of the tt register
2031	 */
2032	lsrl	#8,%d0
2033	orl	%d0,%d1
2034	clrw	%d1
2035
2036	is_040_or_060(L(mmu_map_tt_040))
2037
2038	/* set 030 specific bits (read/write access for supervisor mode
2039	 * (highest function code set, lower two bits masked))
2040	 */
2041	orw	#TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2042	movel	ARG4,%d0
2043	btst	#6,%d0
2044	jeq	1f
2045	orw	#TTR_CI,%d1
2046
20471:	lea	STACK,%a0
2048	dputn	%d1
2049	movel	%d1,%a0@
2050	.chip	68030
2051	tstl	ARG1
2052	jne	1f
2053	pmove	%a0@,%tt0
2054	jra	2f
20551:	pmove	%a0@,%tt1
20562:	.chip	68k
2057	jra	L(mmu_map_tt_done)
2058
2059	/* set 040 specific bits
2060	 */
2061L(mmu_map_tt_040):
2062	orw	#TTR_ENABLE+TTR_KERNELMODE,%d1
2063	orl	ARG4,%d1
2064	dputn	%d1
2065
2066	.chip	68040
2067	tstl	ARG1
2068	jne	1f
2069	movec	%d1,%itt0
2070	movec	%d1,%dtt0
2071	jra	2f
20721:	movec	%d1,%itt1
2073	movec	%d1,%dtt1
20742:	.chip	68k
2075
2076	jra	L(mmu_map_tt_done)
2077
2078L(do_map):
2079	mmu_map_eq	ARG2,ARG3,ARG4
2080
2081L(mmu_map_tt_done):
2082
2083func_return	mmu_map_tt
2084
2085/*
2086 *	mmu_map
2087 *
2088 *	This routine will map a range of memory using a pointer
2089 *	table and allocating the pages on the fly from the kernel.
2090 *	The pointer table does not have to be already linked into
2091 *	the root table, this routine will do that if necessary.
2092 *
2093 *	NOTE
2094 *	This routine will assert failure and use the serial_putc
2095 *	routines in the case of a run-time error.  For example,
2096 *	if the address is already mapped.
2097 *
2098 *	NOTE-2
2099 *	This routine will use early terminating descriptors
2100 *	where possible for the 68020+68851 and 68030 type
2101 *	processors.
2102 */
2103func_start	mmu_map,%d0-%d4/%a0-%a4
2104
2105	dputs	"\nmmu_map:"
2106	dputn	ARG1
2107	dputn	ARG2
2108	dputn	ARG3
2109	dputn	ARG4
2110	dputc	'\n'
2111
2112	/* Get logical address and round it down to 256KB
2113	 */
2114	movel	ARG1,%d0
2115	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2116	movel	%d0,%a3
2117
2118	/* Get the end address
2119	 */
2120	movel	ARG1,%a4
2121	addl	ARG3,%a4
2122	subql	#1,%a4
2123
2124	/* Get physical address and round it down to 256KB
2125	 */
2126	movel	ARG2,%d0
2127	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2128	movel	%d0,%a2
2129
2130	/* Add page attributes to the physical address
2131	 */
2132	movel	ARG4,%d0
2133	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2134	addw	%d0,%a2
2135
2136	dputn	%a2
2137	dputn	%a3
2138	dputn	%a4
2139
2140	is_not_040_or_060(L(mmu_map_030))
2141
2142	addw	#_PAGE_GLOBAL040,%a2
2143/*
2144 *	MMU 040 & 060 Support
2145 *
2146 *	The MMU usage for the 040 and 060 is different enough from
2147 *	the 030 and 68851 that there is separate code.  This comment
2148 *	block describes the data structures and algorithms built by
2149 *	this code.
2150 *
2151 *	The 040 does not support early terminating descriptors, as
2152 *	the 030 does.  Therefore, a third level of table is needed
2153 *	for the 040, and that would be the page table.  In Linux,
2154 *	page tables are allocated directly from the memory above the
2155 *	kernel.
2156 *
2157 */
2158
2159L(mmu_map_040):
2160	/* Calculate the offset into the root table
2161	 */
2162	movel	%a3,%d0
2163	moveq	#ROOT_INDEX_SHIFT,%d1
2164	lsrl	%d1,%d0
2165	mmu_get_root_table_entry	%d0
2166
2167	/* Calculate the offset into the pointer table
2168	 */
2169	movel	%a3,%d0
2170	moveq	#PTR_INDEX_SHIFT,%d1
2171	lsrl	%d1,%d0
2172	andl	#PTR_TABLE_SIZE-1,%d0
2173	mmu_get_ptr_table_entry		%a0,%d0
2174
2175	/* Calculate the offset into the page table
2176	 */
2177	movel	%a3,%d0
2178	moveq	#PAGE_INDEX_SHIFT,%d1
2179	lsrl	%d1,%d0
2180	andl	#PAGE_TABLE_SIZE-1,%d0
2181	mmu_get_page_table_entry	%a0,%d0
2182
2183	/* The page table entry must not no be busy
2184	 */
2185	tstl	%a0@
2186	jne	L(mmu_map_error)
2187
2188	/* Do the mapping and advance the pointers
2189	 */
2190	movel	%a2,%a0@
21912:
2192	addw	#PAGESIZE,%a2
2193	addw	#PAGESIZE,%a3
2194
2195	/* Ready with mapping?
2196	 */
2197	lea	%a3@(-1),%a0
2198	cmpl	%a0,%a4
2199	jhi	L(mmu_map_040)
2200	jra	L(mmu_map_done)
2201
2202L(mmu_map_030):
2203	/* Calculate the offset into the root table
2204	 */
2205	movel	%a3,%d0
2206	moveq	#ROOT_INDEX_SHIFT,%d1
2207	lsrl	%d1,%d0
2208	mmu_get_root_table_entry	%d0
2209
2210	/* Check if logical address 32MB aligned,
2211	 * so we can try to map it once
2212	 */
2213	movel	%a3,%d0
2214	andl	#(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2215	jne	1f
2216
2217	/* Is there enough to map for 32MB at once
2218	 */
2219	lea	%a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2220	cmpl	%a1,%a4
2221	jcs	1f
2222
2223	addql	#1,%a1
2224
2225	/* The root table entry must not no be busy
2226	 */
2227	tstl	%a0@
2228	jne	L(mmu_map_error)
2229
2230	/* Do the mapping and advance the pointers
2231	 */
2232	dputs	"early term1"
2233	dputn	%a2
2234	dputn	%a3
2235	dputn	%a1
2236	dputc	'\n'
2237	movel	%a2,%a0@
2238
2239	movel	%a1,%a3
2240	lea	%a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2241	jra	L(mmu_mapnext_030)
22421:
2243	/* Calculate the offset into the pointer table
2244	 */
2245	movel	%a3,%d0
2246	moveq	#PTR_INDEX_SHIFT,%d1
2247	lsrl	%d1,%d0
2248	andl	#PTR_TABLE_SIZE-1,%d0
2249	mmu_get_ptr_table_entry		%a0,%d0
2250
2251	/* The pointer table entry must not no be busy
2252	 */
2253	tstl	%a0@
2254	jne	L(mmu_map_error)
2255
2256	/* Do the mapping and advance the pointers
2257	 */
2258	dputs	"early term2"
2259	dputn	%a2
2260	dputn	%a3
2261	dputc	'\n'
2262	movel	%a2,%a0@
2263
2264	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a2
2265	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a3
2266
2267L(mmu_mapnext_030):
2268	/* Ready with mapping?
2269	 */
2270	lea	%a3@(-1),%a0
2271	cmpl	%a0,%a4
2272	jhi	L(mmu_map_030)
2273	jra	L(mmu_map_done)
2274
2275L(mmu_map_error):
2276
2277	dputs	"mmu_map error:"
2278	dputn	%a2
2279	dputn	%a3
2280	dputc	'\n'
2281
2282L(mmu_map_done):
2283
2284func_return	mmu_map
2285
2286/*
2287 *	mmu_fixup
2288 *
2289 *	On the 040 class machines, all pages that are used for the
2290 *	mmu have to be fixed up.
2291 */
2292
2293func_start	mmu_fixup_page_mmu_cache,%d0/%a0
2294
2295	dputs	"mmu_fixup_page_mmu_cache"
2296	dputn	ARG1
2297
2298	/* Calculate the offset into the root table
2299	 */
2300	movel	ARG1,%d0
2301	moveq	#ROOT_INDEX_SHIFT,%d1
2302	lsrl	%d1,%d0
2303	mmu_get_root_table_entry	%d0
2304
2305	/* Calculate the offset into the pointer table
2306	 */
2307	movel	ARG1,%d0
2308	moveq	#PTR_INDEX_SHIFT,%d1
2309	lsrl	%d1,%d0
2310	andl	#PTR_TABLE_SIZE-1,%d0
2311	mmu_get_ptr_table_entry		%a0,%d0
2312
2313	/* Calculate the offset into the page table
2314	 */
2315	movel	ARG1,%d0
2316	moveq	#PAGE_INDEX_SHIFT,%d1
2317	lsrl	%d1,%d0
2318	andl	#PAGE_TABLE_SIZE-1,%d0
2319	mmu_get_page_table_entry	%a0,%d0
2320
2321	movel	%a0@,%d0
2322	andil	#_CACHEMASK040,%d0
2323	orl	%pc@(m68k_pgtable_cachemode),%d0
2324	movel	%d0,%a0@
2325
2326	dputc	'\n'
2327
2328func_return	mmu_fixup_page_mmu_cache
2329
2330/*
2331 *	mmu_temp_map
2332 *
2333 *	create a temporary mapping to enable the mmu,
2334 *	this we don't need any transparation translation tricks.
2335 */
2336
2337func_start	mmu_temp_map,%d0/%d1/%a0/%a1
2338
2339	dputs	"mmu_temp_map"
2340	dputn	ARG1
2341	dputn	ARG2
2342	dputc	'\n'
2343
2344	lea	%pc@(L(temp_mmap_mem)),%a1
2345
2346	/* Calculate the offset in the root table
2347	 */
2348	movel	ARG2,%d0
2349	moveq	#ROOT_INDEX_SHIFT,%d1
2350	lsrl	%d1,%d0
2351	mmu_get_root_table_entry	%d0
2352
2353	/* Check if the table is temporary allocated, so we have to reuse it
2354	 */
2355	movel	%a0@,%d0
2356	cmpl	%pc@(L(memory_start)),%d0
2357	jcc	1f
2358
2359	/* Temporary allocate a ptr table and insert it into the root table
2360	 */
2361	movel	%a1@,%d0
2362	addl	#PTR_TABLE_SIZE*4,%a1@
2363	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2364	movel	%d0,%a0@
2365	dputs	" (new)"
23661:
2367	dputn	%d0
2368	/* Mask the root table entry for the ptr table
2369	 */
2370	andw	#-ROOT_TABLE_SIZE,%d0
2371	movel	%d0,%a0
2372
2373	/* Calculate the offset into the pointer table
2374	 */
2375	movel	ARG2,%d0
2376	moveq	#PTR_INDEX_SHIFT,%d1
2377	lsrl	%d1,%d0
2378	andl	#PTR_TABLE_SIZE-1,%d0
2379	lea	%a0@(%d0*4),%a0
2380	dputn	%a0
2381
2382	/* Check if a temporary page table is already allocated
2383	 */
2384	movel	%a0@,%d0
2385	jne	1f
2386
2387	/* Temporary allocate a page table and insert it into the ptr table
2388	 */
2389	movel	%a1@,%d0
2390	/* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2391	   alignment restriction for pointer tables on the '0[46]0.  */
2392	addl	#512,%a1@
2393	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2394	movel	%d0,%a0@
2395	dputs	" (new)"
23961:
2397	dputn	%d0
2398	/* Mask the ptr table entry for the page table
2399	 */
2400	andw	#-PTR_TABLE_SIZE,%d0
2401	movel	%d0,%a0
2402
2403	/* Calculate the offset into the page table
2404	 */
2405	movel	ARG2,%d0
2406	moveq	#PAGE_INDEX_SHIFT,%d1
2407	lsrl	%d1,%d0
2408	andl	#PAGE_TABLE_SIZE-1,%d0
2409	lea	%a0@(%d0*4),%a0
2410	dputn	%a0
2411
2412	/* Insert the address into the page table
2413	 */
2414	movel	ARG1,%d0
2415	andw	#-PAGESIZE,%d0
2416	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2417	movel	%d0,%a0@
2418	dputn	%d0
2419
2420	dputc	'\n'
2421
2422func_return	mmu_temp_map
2423
2424func_start	mmu_engage,%d0-%d2/%a0-%a3
2425
2426	moveq	#ROOT_TABLE_SIZE-1,%d0
2427	/* Temporarily use a different root table.  */
2428	lea	%pc@(L(kernel_pgdir_ptr)),%a0
2429	movel	%a0@,%a2
2430	movel	%pc@(L(memory_start)),%a1
2431	movel	%a1,%a0@
2432	movel	%a2,%a0
24331:
2434	movel	%a0@+,%a1@+
2435	dbra	%d0,1b
2436
2437	lea	%pc@(L(temp_mmap_mem)),%a0
2438	movel	%a1,%a0@
2439
2440	movew	#PAGESIZE-1,%d0
24411:
2442	clrl	%a1@+
2443	dbra	%d0,1b
2444
2445	lea	%pc@(1b),%a0
2446	movel	#1b,%a1
2447	/* Skip temp mappings if phys == virt */
2448	cmpl	%a0,%a1
2449	jeq	1f
2450
2451	mmu_temp_map	%a0,%a0
2452	mmu_temp_map	%a0,%a1
2453
2454	addw	#PAGESIZE,%a0
2455	addw	#PAGESIZE,%a1
2456	mmu_temp_map	%a0,%a0
2457	mmu_temp_map	%a0,%a1
24581:
2459	movel	%pc@(L(memory_start)),%a3
2460	movel	%pc@(L(phys_kernel_start)),%d2
2461
2462	is_not_040_or_060(L(mmu_engage_030))
2463
2464L(mmu_engage_040):
2465	.chip	68040
2466	nop
2467	cinva	%bc
2468	nop
2469	pflusha
2470	nop
2471	movec	%a3,%srp
2472	movel	#TC_ENABLE+TC_PAGE4K,%d0
2473	movec	%d0,%tc		/* enable the MMU */
2474	jmp	1f:l
24751:	nop
2476	movec	%a2,%srp
2477	nop
2478	cinva	%bc
2479	nop
2480	pflusha
2481	.chip	68k
2482	jra	L(mmu_engage_cleanup)
2483
2484L(mmu_engage_030_temp):
2485	.space	12
2486L(mmu_engage_030):
2487	.chip	68030
2488	lea	%pc@(L(mmu_engage_030_temp)),%a0
2489	movel	#0x80000002,%a0@
2490	movel	%a3,%a0@(4)
2491	movel	#0x0808,%d0
2492	movec	%d0,%cacr
2493	pmove	%a0@,%srp
2494	pflusha
2495	/*
2496	 * enable,super root enable,4096 byte pages,7 bit root index,
2497	 * 7 bit pointer index, 6 bit page table index.
2498	 */
2499	movel	#0x82c07760,%a0@(8)
2500	pmove	%a0@(8),%tc	/* enable the MMU */
2501	jmp	1f:l
25021:	movel	%a2,%a0@(4)
2503	movel	#0x0808,%d0
2504	movec	%d0,%cacr
2505	pmove	%a0@,%srp
2506	pflusha
2507	.chip	68k
2508
2509L(mmu_engage_cleanup):
2510	subl	#PAGE_OFFSET,%d2
2511	subl	%d2,%a2
2512	movel	%a2,L(kernel_pgdir_ptr)
2513	subl	%d2,%fp
2514	subl	%d2,%sp
2515	subl	%d2,ARG0
2516
2517func_return	mmu_engage
2518
2519func_start	mmu_get_root_table_entry,%d0/%a1
2520
2521#if 0
2522	dputs	"mmu_get_root_table_entry:"
2523	dputn	ARG1
2524	dputs	" ="
2525#endif
2526
2527	movel	%pc@(L(kernel_pgdir_ptr)),%a0
2528	tstl	%a0
2529	jne	2f
2530
2531	dputs	"\nmmu_init:"
2532
2533	/* Find the start of free memory, get_bi_record does this for us,
2534	 * as the bootinfo structure is located directly behind the kernel
2535	 * and and we simply search for the last entry.
2536	 */
2537	get_bi_record	BI_LAST
2538	addw	#PAGESIZE-1,%a0
2539	movel	%a0,%d0
2540	andw	#-PAGESIZE,%d0
2541
2542	dputn	%d0
2543
2544	lea	%pc@(L(memory_start)),%a0
2545	movel	%d0,%a0@
2546	lea	%pc@(L(kernel_end)),%a0
2547	movel	%d0,%a0@
2548
2549	/* we have to return the first page at _stext since the init code
2550	 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2551	 * page is used for further ptr tables in get_ptr_table.
2552	 */
2553	lea	%pc@(_stext),%a0
2554	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2555	movel	%a0,%a1@
2556	addl	#ROOT_TABLE_SIZE*4,%a1@
2557
2558	lea	%pc@(L(mmu_num_pointer_tables)),%a1
2559	addql	#1,%a1@
2560
2561	/* clear the page
2562	 */
2563	movel	%a0,%a1
2564	movew	#PAGESIZE/4-1,%d0
25651:
2566	clrl	%a1@+
2567	dbra	%d0,1b
2568
2569	lea	%pc@(L(kernel_pgdir_ptr)),%a1
2570	movel	%a0,%a1@
2571
2572	dputn	%a0
2573	dputc	'\n'
25742:
2575	movel	ARG1,%d0
2576	lea	%a0@(%d0*4),%a0
2577
2578#if 0
2579	dputn	%a0
2580	dputc	'\n'
2581#endif
2582
2583func_return	mmu_get_root_table_entry
2584
2585
2586
2587func_start	mmu_get_ptr_table_entry,%d0/%a1
2588
2589#if 0
2590	dputs	"mmu_get_ptr_table_entry:"
2591	dputn	ARG1
2592	dputn	ARG2
2593	dputs	" ="
2594#endif
2595
2596	movel	ARG1,%a0
2597	movel	%a0@,%d0
2598	jne	2f
2599
2600	/* Keep track of the number of pointer tables we use
2601	 */
2602	dputs	"\nmmu_get_new_ptr_table:"
2603	lea	%pc@(L(mmu_num_pointer_tables)),%a0
2604	movel	%a0@,%d0
2605	addql	#1,%a0@
2606
2607	/* See if there is a free pointer table in our cache of pointer tables
2608	 */
2609	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2610	andw	#7,%d0
2611	jne	1f
2612
2613	/* Get a new pointer table page from above the kernel memory
2614	 */
2615	get_new_page
2616	movel	%a0,%a1@
26171:
2618	/* There is an unused pointer table in our cache... use it
2619	 */
2620	movel	%a1@,%d0
2621	addl	#PTR_TABLE_SIZE*4,%a1@
2622
2623	dputn	%d0
2624	dputc	'\n'
2625
2626	/* Insert the new pointer table into the root table
2627	 */
2628	movel	ARG1,%a0
2629	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2630	movel	%d0,%a0@
26312:
2632	/* Extract the pointer table entry
2633	 */
2634	andw	#-PTR_TABLE_SIZE,%d0
2635	movel	%d0,%a0
2636	movel	ARG2,%d0
2637	lea	%a0@(%d0*4),%a0
2638
2639#if 0
2640	dputn	%a0
2641	dputc	'\n'
2642#endif
2643
2644func_return	mmu_get_ptr_table_entry
2645
2646
2647func_start	mmu_get_page_table_entry,%d0/%a1
2648
2649#if 0
2650	dputs	"mmu_get_page_table_entry:"
2651	dputn	ARG1
2652	dputn	ARG2
2653	dputs	" ="
2654#endif
2655
2656	movel	ARG1,%a0
2657	movel	%a0@,%d0
2658	jne	2f
2659
2660	/* If the page table entry doesn't exist, we allocate a complete new
2661	 * page and use it as one continues big page table which can cover
2662	 * 4MB of memory, nearly almost all mappings have that alignment.
2663	 */
2664	get_new_page
2665	addw	#_PAGE_TABLE+_PAGE_ACCESSED,%a0
2666
2667	/* align pointer table entry for a page of page tables
2668	 */
2669	movel	ARG1,%d0
2670	andw	#-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2671	movel	%d0,%a1
2672
2673	/* Insert the page tables into the pointer entries
2674	 */
2675	moveq	#PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
26761:
2677	movel	%a0,%a1@+
2678	lea	%a0@(PAGE_TABLE_SIZE*4),%a0
2679	dbra	%d0,1b
2680
2681	/* Now we can get the initialized pointer table entry
2682	 */
2683	movel	ARG1,%a0
2684	movel	%a0@,%d0
26852:
2686	/* Extract the page table entry
2687	 */
2688	andw	#-PAGE_TABLE_SIZE,%d0
2689	movel	%d0,%a0
2690	movel	ARG2,%d0
2691	lea	%a0@(%d0*4),%a0
2692
2693#if 0
2694	dputn	%a0
2695	dputc	'\n'
2696#endif
2697
2698func_return	mmu_get_page_table_entry
2699
2700/*
2701 *	get_new_page
2702 *
2703 *	Return a new page from the memory start and clear it.
2704 */
2705func_start	get_new_page,%d0/%a1
2706
2707	dputs	"\nget_new_page:"
2708
2709	/* allocate the page and adjust memory_start
2710	 */
2711	lea	%pc@(L(memory_start)),%a0
2712	movel	%a0@,%a1
2713	addl	#PAGESIZE,%a0@
2714
2715	/* clear the new page
2716	 */
2717	movel	%a1,%a0
2718	movew	#PAGESIZE/4-1,%d0
27191:
2720	clrl	%a1@+
2721	dbra	%d0,1b
2722
2723	dputn	%a0
2724	dputc	'\n'
2725
2726func_return	get_new_page
2727
2728
2729
2730/*
2731 * Debug output support
2732 * Atarians have a choice between the parallel port, the serial port
2733 * from the MFP or a serial port of the SCC
2734 */
2735
2736#ifdef CONFIG_MAC
2737
2738L(scc_initable_mac):
 
2739	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2740	.byte	3,0xc0		/* receiver: 8 bpc */
2741	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
 
2742	.byte	10,0		/* NRZ */
2743	.byte	11,0x50		/* use baud rate generator */
2744	.byte	12,1,13,0	/* 38400 baud */
2745	.byte	14,1		/* Baud rate generator enable */
2746	.byte	3,0xc1		/* enable receiver */
2747	.byte	5,0xea		/* enable transmitter */
2748	.byte	-1
2749	.even
2750#endif
2751
2752#ifdef CONFIG_ATARI
2753/* #define USE_PRINTER */
2754/* #define USE_SCC_B */
2755/* #define USE_SCC_A */
2756#define USE_MFP
2757
2758#if defined(USE_SCC_A) || defined(USE_SCC_B)
2759#define USE_SCC
2760/* Initialisation table for SCC */
2761L(scc_initable):
2762	.byte	9,12		/* Reset */
2763	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2764	.byte	3,0xc0		/* receiver: 8 bpc */
2765	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2766	.byte	9,0		/* no interrupts */
2767	.byte	10,0		/* NRZ */
2768	.byte	11,0x50		/* use baud rate generator */
2769	.byte	12,24,13,0	/* 9600 baud */
2770	.byte	14,2,14,3	/* use master clock for BRG, enable */
2771	.byte	3,0xc1		/* enable receiver */
2772	.byte	5,0xea		/* enable transmitter */
2773	.byte	-1
2774	.even
2775#endif
2776
2777#ifdef USE_PRINTER
2778
2779LPSG_SELECT	= 0xff8800
2780LPSG_READ	= 0xff8800
2781LPSG_WRITE	= 0xff8802
2782LPSG_IO_A	= 14
2783LPSG_IO_B	= 15
2784LPSG_CONTROL	= 7
2785LSTMFP_GPIP	= 0xfffa01
2786LSTMFP_DDR	= 0xfffa05
2787LSTMFP_IERB	= 0xfffa09
2788
2789#elif defined(USE_SCC_B)
2790
2791LSCC_CTRL	= 0xff8c85
2792LSCC_DATA	= 0xff8c87
2793
2794#elif defined(USE_SCC_A)
2795
2796LSCC_CTRL	= 0xff8c81
2797LSCC_DATA	= 0xff8c83
2798
2799#elif defined(USE_MFP)
2800
2801LMFP_UCR     = 0xfffa29
2802LMFP_TDCDR   = 0xfffa1d
2803LMFP_TDDR    = 0xfffa25
2804LMFP_TSR     = 0xfffa2d
2805LMFP_UDR     = 0xfffa2f
2806
2807#endif
2808#endif	/* CONFIG_ATARI */
2809
2810/*
2811 * Serial port output support.
2812 */
2813
2814/*
2815 * Initialize serial port hardware for 9600/8/1
2816 */
2817func_start	serial_init,%d0/%d1/%a0/%a1
2818	/*
2819	 *	Some of the register usage that follows
2820	 *	CONFIG_AMIGA
2821	 *		a0 = pointer to boot info record
2822	 *		d0 = boot info offset
2823	 *	CONFIG_ATARI
2824	 *		a0 = address of SCC
2825	 *		a1 = Liobase address/address of scc_initable
2826	 *		d0 = init data for serial port
2827	 *	CONFIG_MAC
2828	 *		a0 = address of SCC
2829	 *		a1 = address of scc_initable_mac
2830	 *		d0 = init data for serial port
2831	 */
2832
2833#ifdef CONFIG_AMIGA
2834#define SERIAL_DTR	7
2835#define SERIAL_CNTRL	CIABBASE+C_PRA
2836
2837	is_not_amiga(1f)
2838	lea	%pc@(L(custom)),%a0
2839	movel	#-ZTWOBASE,%a0@
2840	bclr	#SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2841	get_bi_record	BI_AMIGA_SERPER
2842	movew	%a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2843|	movew	#61,CUSTOMBASE+C_SERPER-ZTWOBASE
28441:
2845#endif
2846#ifdef CONFIG_ATARI
2847	is_not_atari(4f)
2848	movel	%pc@(L(iobase)),%a1
2849#if defined(USE_PRINTER)
2850	bclr	#0,%a1@(LSTMFP_IERB)
2851	bclr	#0,%a1@(LSTMFP_DDR)
2852	moveb	#LPSG_CONTROL,%a1@(LPSG_SELECT)
2853	moveb	#0xff,%a1@(LPSG_WRITE)
2854	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
2855	clrb	%a1@(LPSG_WRITE)
2856	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
2857	moveb	%a1@(LPSG_READ),%d0
2858	bset	#5,%d0
2859	moveb	%d0,%a1@(LPSG_WRITE)
2860#elif defined(USE_SCC)
2861	lea	%a1@(LSCC_CTRL),%a0
2862	lea	%pc@(L(scc_initable)),%a1
28632:	moveb	%a1@+,%d0
2864	jmi	3f
2865	moveb	%d0,%a0@
2866	moveb	%a1@+,%a0@
2867	jra	2b
28683:	clrb	%a0@
2869#elif defined(USE_MFP)
2870	bclr	#1,%a1@(LMFP_TSR)
2871	moveb   #0x88,%a1@(LMFP_UCR)
2872	andb	#0x70,%a1@(LMFP_TDCDR)
2873	moveb   #2,%a1@(LMFP_TDDR)
2874	orb	#1,%a1@(LMFP_TDCDR)
2875	bset	#1,%a1@(LMFP_TSR)
2876#endif
2877	jra	L(serial_init_done)
28784:
2879#endif
2880#ifdef CONFIG_MAC
2881	is_not_mac(L(serial_init_not_mac))
2882
2883#ifdef SERIAL_DEBUG
2884
2885/* You may define either or both of these. */
2886#define MAC_USE_SCC_A /* Modem port */
2887#define MAC_USE_SCC_B /* Printer port */
2888
2889#define mac_scc_cha_b_ctrl_offset	0x0
2890#define mac_scc_cha_a_ctrl_offset	0x2
2891#define mac_scc_cha_b_data_offset	0x4
2892#define mac_scc_cha_a_data_offset	0x6
2893
2894#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2895	movel	%pc@(L(mac_sccbase)),%a0
2896	/* Reset SCC register pointer */
2897	moveb	%a0@(mac_scc_cha_a_ctrl_offset),%d0
2898	/* Reset SCC device: write register pointer then register value */
2899	moveb	#9,%a0@(mac_scc_cha_a_ctrl_offset)
2900	moveb	#0xc0,%a0@(mac_scc_cha_a_ctrl_offset)
2901	/* Wait for 5 PCLK cycles, which is about 68 CPU cycles */
2902	/* 5 / 3.6864 MHz = approx. 1.36 us = 68 / 50 MHz */
2903	movel	#35,%d0
29045:
2905	subq	#1,%d0
2906	jne	5b
2907#endif
2908
2909#ifdef MAC_USE_SCC_A
2910	/* Initialize channel A */
 
2911	lea	%pc@(L(scc_initable_mac)),%a1
29125:	moveb	%a1@+,%d0
2913	jmi	6f
2914	moveb	%d0,%a0@(mac_scc_cha_a_ctrl_offset)
2915	moveb	%a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2916	jra	5b
29176:
2918#endif	/* MAC_USE_SCC_A */
2919
2920#ifdef MAC_USE_SCC_B
2921	/* Initialize channel B */
 
 
 
2922	lea	%pc@(L(scc_initable_mac)),%a1
29237:	moveb	%a1@+,%d0
2924	jmi	8f
2925	moveb	%d0,%a0@(mac_scc_cha_b_ctrl_offset)
2926	moveb	%a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2927	jra	7b
29288:
2929#endif	/* MAC_USE_SCC_B */
2930
2931#endif	/* SERIAL_DEBUG */
2932
2933	jra	L(serial_init_done)
2934L(serial_init_not_mac):
2935#endif	/* CONFIG_MAC */
2936
2937#ifdef CONFIG_Q40
2938	is_not_q40(2f)
2939/* debug output goes into SRAM, so we don't do it unless requested
2940   - check for '%LX$' signature in SRAM   */
2941	lea	%pc@(q40_mem_cptr),%a1
2942	move.l	#0xff020010,%a1@  /* must be inited - also used by debug=mem */
2943	move.l	#0xff020000,%a1
2944	cmp.b	#'%',%a1@
2945	bne	2f	/*nodbg*/
2946	addq.w	#4,%a1
2947	cmp.b	#'L',%a1@
2948	bne	2f	/*nodbg*/
2949	addq.w	#4,%a1
2950	cmp.b	#'X',%a1@
2951	bne	2f	/*nodbg*/
2952	addq.w	#4,%a1
2953	cmp.b	#'$',%a1@
2954	bne	2f	/*nodbg*/
2955	/* signature OK */
2956	lea	%pc@(L(q40_do_debug)),%a1
2957	tas	%a1@
2958/*nodbg: q40_do_debug is 0 by default*/
29592:
2960#endif
2961
2962#ifdef CONFIG_APOLLO
2963/* We count on the PROM initializing SIO1 */
2964#endif
2965
2966#ifdef CONFIG_HP300
2967/* We count on the boot loader initialising the UART */
2968#endif
2969
2970L(serial_init_done):
2971func_return	serial_init
2972
2973/*
2974 * Output character on serial port.
2975 */
2976func_start	serial_putc,%d0/%d1/%a0/%a1
2977
2978	movel	ARG1,%d0
2979	cmpib	#'\n',%d0
2980	jbne	1f
2981
2982	/* A little safe recursion is good for the soul */
2983	serial_putc	#'\r'
29841:
2985
2986#ifdef CONFIG_AMIGA
2987	is_not_amiga(2f)
2988	andw	#0x00ff,%d0
2989	oriw	#0x0100,%d0
2990	movel	%pc@(L(custom)),%a0
2991	movew	%d0,%a0@(CUSTOMBASE+C_SERDAT)
29921:	movew	%a0@(CUSTOMBASE+C_SERDATR),%d0
2993	andw	#0x2000,%d0
2994	jeq	1b
2995	jra	L(serial_putc_done)
29962:
2997#endif
2998
2999#ifdef CONFIG_MAC
3000	is_not_mac(5f)
3001
3002#ifdef SERIAL_DEBUG
3003
3004#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
3005	movel	%pc@(L(mac_sccbase)),%a1
3006#endif
3007
3008#ifdef MAC_USE_SCC_A
30093:	btst	#2,%a1@(mac_scc_cha_a_ctrl_offset)
3010	jeq	3b
3011	moveb	%d0,%a1@(mac_scc_cha_a_data_offset)
3012#endif	/* MAC_USE_SCC_A */
3013
3014#ifdef MAC_USE_SCC_B
 
 
 
30154:	btst	#2,%a1@(mac_scc_cha_b_ctrl_offset)
3016	jeq	4b
3017	moveb	%d0,%a1@(mac_scc_cha_b_data_offset)
3018#endif	/* MAC_USE_SCC_B */
3019
3020#endif	/* SERIAL_DEBUG */
3021
3022	jra	L(serial_putc_done)
30235:
3024#endif	/* CONFIG_MAC */
3025
3026#ifdef CONFIG_ATARI
3027	is_not_atari(4f)
3028	movel	%pc@(L(iobase)),%a1
3029#if defined(USE_PRINTER)
30303:	btst	#0,%a1@(LSTMFP_GPIP)
3031	jne	3b
3032	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
3033	moveb	%d0,%a1@(LPSG_WRITE)
3034	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
3035	moveb	%a1@(LPSG_READ),%d0
3036	bclr	#5,%d0
3037	moveb	%d0,%a1@(LPSG_WRITE)
3038	nop
3039	nop
3040	bset	#5,%d0
3041	moveb	%d0,%a1@(LPSG_WRITE)
3042#elif defined(USE_SCC)
30433:	btst	#2,%a1@(LSCC_CTRL)
3044	jeq	3b
3045	moveb	%d0,%a1@(LSCC_DATA)
3046#elif defined(USE_MFP)
30473:	btst	#7,%a1@(LMFP_TSR)
3048	jeq	3b
3049	moveb	%d0,%a1@(LMFP_UDR)
3050#endif
3051	jra	L(serial_putc_done)
30524:
3053#endif	/* CONFIG_ATARI */
3054
3055#ifdef CONFIG_MVME147
3056	is_not_mvme147(2f)
30571:	btst	#2,M147_SCC_CTRL_A
3058	jeq	1b
3059	moveb	%d0,M147_SCC_DATA_A
3060	jbra	L(serial_putc_done)
30612:
3062#endif
3063
3064#ifdef CONFIG_MVME16x
3065	is_not_mvme16x(2f)
3066	/*
3067	 * If the loader gave us a board type then we can use that to
3068	 * select an appropriate output routine; otherwise we just use
3069	 * the Bug code.  If we have to use the Bug that means the Bug
3070	 * workspace has to be valid, which means the Bug has to use
3071	 * the SRAM, which is non-standard.
3072	 */
3073	moveml	%d0-%d7/%a2-%a6,%sp@-
3074	movel	vme_brdtype,%d1
3075	jeq	1f			| No tag - use the Bug
3076	cmpi	#VME_TYPE_MVME162,%d1
3077	jeq	6f
3078	cmpi	#VME_TYPE_MVME172,%d1
3079	jne	5f
3080	/* 162/172; it's an SCC */
30816:	btst	#2,M162_SCC_CTRL_A
3082	nop
3083	nop
3084	nop
3085	jeq	6b
3086	moveb	#8,M162_SCC_CTRL_A
3087	nop
3088	nop
3089	nop
3090	moveb	%d0,M162_SCC_CTRL_A
3091	jra	3f
30925:
3093	/* 166/167/177; it's a CD2401 */
3094	moveb	#0,M167_CYCAR
3095	moveb	M167_CYIER,%d2
3096	moveb	#0x02,M167_CYIER
30977:
3098	btst	#5,M167_PCSCCTICR
3099	jeq	7b
3100	moveb	M167_PCTPIACKR,%d1
3101	moveb	M167_CYLICR,%d1
3102	jeq	8f
3103	moveb	#0x08,M167_CYTEOIR
3104	jra	7b
31058:
3106	moveb	%d0,M167_CYTDR
3107	moveb	#0,M167_CYTEOIR
3108	moveb	%d2,M167_CYIER
3109	jra	3f
31101:
3111	moveb	%d0,%sp@-
3112	trap	#15
3113	.word	0x0020	/* TRAP 0x020 */
31143:
3115	moveml	%sp@+,%d0-%d7/%a2-%a6
3116	jbra	L(serial_putc_done)
31172:
3118#endif /* CONFIG_MVME16x */
3119
3120#ifdef CONFIG_BVME6000
3121	is_not_bvme6000(2f)
3122	/*
3123	 * The BVME6000 machine has a serial port ...
3124	 */
31251:	btst	#2,BVME_SCC_CTRL_A
3126	jeq	1b
3127	moveb	%d0,BVME_SCC_DATA_A
3128	jbra	L(serial_putc_done)
31292:
3130#endif
3131
3132#ifdef CONFIG_SUN3X
3133	is_not_sun3x(2f)
3134	movel	%d0,-(%sp)
3135	movel	0xFEFE0018,%a1
3136	jbsr	(%a1)
3137	addq	#4,%sp
3138	jbra	L(serial_putc_done)
31392:
3140#endif
3141
3142#ifdef CONFIG_Q40
3143	is_not_q40(2f)
3144	tst.l	%pc@(L(q40_do_debug))	/* only debug if requested */
3145	beq	2f
3146	lea	%pc@(q40_mem_cptr),%a1
3147	move.l	%a1@,%a0
3148	move.b	%d0,%a0@
3149	addq.l	#4,%a0
3150	move.l	%a0,%a1@
3151	jbra    L(serial_putc_done)
31522:
3153#endif
3154
3155#ifdef CONFIG_APOLLO
3156	is_not_apollo(2f)
3157	movl    %pc@(L(iobase)),%a1
3158	moveb	%d0,%a1@(LTHRB0)
31591:      moveb   %a1@(LSRB0),%d0
3160	andb	#0x4,%d0
3161	beq	1b
3162	jbra	L(serial_putc_done)
31632:
3164#endif
3165
3166#ifdef CONFIG_HP300
3167	is_not_hp300(3f)
3168	movl    %pc@(L(iobase)),%a1
3169	addl	%pc@(L(uartbase)),%a1
3170	movel	%pc@(L(uart_scode)),%d1	/* Check the scode */
3171	jmi	3f			/* Unset? Exit */
3172	cmpi	#256,%d1		/* APCI scode? */
3173	jeq	2f
31741:      moveb   %a1@(DCALSR),%d1	/* Output to DCA */
3175	andb	#0x20,%d1
3176	beq	1b
3177	moveb	%d0,%a1@(DCADATA)
3178	jbra	L(serial_putc_done)
31792:	moveb	%a1@(APCILSR),%d1	/* Output to APCI */
3180	andb	#0x20,%d1
3181	beq	2b
3182	moveb	%d0,%a1@(APCIDATA)
3183	jbra	L(serial_putc_done)
31843:
3185#endif
3186
3187L(serial_putc_done):
3188func_return	serial_putc
3189
3190/*
3191 * Output a string.
3192 */
3193func_start	puts,%d0/%a0
3194
3195	movel	ARG1,%a0
3196	jra	2f
31971:
3198#ifdef CONSOLE
3199	console_putc	%d0
3200#endif
3201#ifdef SERIAL_DEBUG
3202	serial_putc	%d0
3203#endif
32042:	moveb	%a0@+,%d0
3205	jne	1b
3206
3207func_return	puts
3208
3209/*
3210 * Output number in hex notation.
3211 */
3212
3213func_start	putn,%d0-%d2
3214
3215	putc	' '
3216
3217	movel	ARG1,%d0
3218	moveq	#7,%d1
32191:	roll	#4,%d0
3220	move	%d0,%d2
3221	andb	#0x0f,%d2
3222	addb	#'0',%d2
3223	cmpb	#'9',%d2
3224	jls	2f
3225	addb	#'A'-('9'+1),%d2
32262:
3227#ifdef CONSOLE
3228	console_putc	%d2
3229#endif
3230#ifdef SERIAL_DEBUG
3231	serial_putc	%d2
3232#endif
3233	dbra	%d1,1b
3234
3235func_return	putn
3236
3237#ifdef CONFIG_MAC
3238/*
3239 *	mac_early_print
3240 *
3241 *	This routine takes its parameters on the stack.  It then
3242 *	turns around and calls the internal routines.  This routine
3243 *	is used by the boot console.
3244 *
3245 *	The calling parameters are:
3246 *		void mac_early_print(const char *str, unsigned length);
3247 *
3248 *	This routine does NOT understand variable arguments only
3249 *	simple strings!
3250 */
3251ENTRY(mac_early_print)
3252	moveml	%d0/%d1/%a0,%sp@-
3253	movew	%sr,%sp@-
 
3254	ori	#0x0700,%sr
3255	movel	%sp@(18),%a0		/* fetch parameter */
3256	movel	%sp@(22),%d1		/* fetch parameter */
3257	jra	2f
32581:
3259#ifdef CONSOLE
3260	console_putc	%d0
 
 
3261#endif
3262#ifdef SERIAL_DEBUG
3263	serial_putc	%d0
3264#endif
3265	subq	#1,%d1
32662:	jeq	3f
3267	moveb	%a0@+,%d0
3268	jne	1b
32693:
3270	movew	%sp@+,%sr
3271	moveml	%sp@+,%d0/%d1/%a0
3272	rts
3273#endif /* CONFIG_MAC */
3274
3275#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3276func_start	set_leds,%d0/%a0
3277	movel	ARG1,%d0
3278#ifdef CONFIG_HP300
3279	is_not_hp300(1f)
3280	movel	%pc@(L(iobase)),%a0
3281	moveb	%d0,%a0@(0x1ffff)
3282	jra	2f
3283#endif
32841:
3285#ifdef CONFIG_APOLLO
3286	movel   %pc@(L(iobase)),%a0
3287	lsll    #8,%d0
3288	eorw    #0xff00,%d0
3289	moveb	%d0,%a0@(LCPUCTRL)
3290#endif
32912:
3292func_return	set_leds
3293#endif
3294
3295#ifdef CONSOLE
3296/*
3297 *	For continuity, see the data alignment
3298 *	to which this structure is tied.
3299 */
3300#define Lconsole_struct_cur_column	0
3301#define Lconsole_struct_cur_row		4
3302#define Lconsole_struct_num_columns	8
3303#define Lconsole_struct_num_rows	12
3304#define Lconsole_struct_left_edge	16
 
3305
3306func_start	console_init,%a0-%a4/%d0-%d7
3307	/*
3308	 *	Some of the register usage that follows
3309	 *		a0 = pointer to boot_info
3310	 *		a1 = pointer to screen
3311	 *		a2 = pointer to console_globals
3312	 *		d3 = pixel width of screen
3313	 *		d4 = pixel height of screen
3314	 *		(d3,d4) ~= (x,y) of a point just below
3315	 *			and to the right of the screen
3316	 *			NOT on the screen!
3317	 *		d5 = number of bytes per scan line
3318	 *		d6 = number of bytes on the entire screen
3319	 */
3320
3321	lea	%pc@(L(console_globals)),%a2
3322	movel	%pc@(L(mac_videobase)),%a1
3323	movel	%pc@(L(mac_rowbytes)),%d5
3324	movel	%pc@(L(mac_dimensions)),%d3	/* -> low byte */
3325	movel	%d3,%d4
3326	swap	%d4		/* -> high byte */
3327	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3328	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3329
3330	movel	%d5,%d6
3331|	subl	#20,%d6
3332	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3333	divul	#8,%d6		/* we'll clear 8 bytes at a time */
3334	moveq	#-1,%d0		/* Mac_black */
3335	subq	#1,%d6
3336
3337L(console_clear_loop):
3338	movel	%d0,%a1@+
3339	movel	%d0,%a1@+
3340	dbra	%d6,L(console_clear_loop)
3341
3342	/* Calculate font size */
3343
3344#if   defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3345	lea	%pc@(font_vga_8x8),%a0
3346#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3347	lea	%pc@(font_vga_8x16),%a0
3348#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3349	lea	%pc@(font_vga_6x11),%a0
3350#elif defined(CONFIG_FONT_8x8) /* default */
3351	lea	%pc@(font_vga_8x8),%a0
3352#else /* no compiled-in font */
3353	lea	0,%a0
3354#endif
3355
3356	/*
3357	 *	At this point we make a shift in register usage
3358	 *	a1 = address of console_font pointer
3359	 */
3360	lea	%pc@(L(console_font)),%a1
3361	movel	%a0,%a1@	/* store pointer to struct fbcon_font_desc in console_font */
3362	tstl	%a0
3363	jeq	1f
3364	lea	%pc@(L(console_font_data)),%a4
3365	movel	%a0@(FONT_DESC_DATA),%d0
3366	subl	#L(console_font),%a1
3367	addl	%a1,%d0
3368	movel	%d0,%a4@
3369
3370	/*
3371	 *	Calculate global maxs
3372	 *	Note - we can use either an
3373	 *	8 x 16 or 8 x 8 character font
3374	 *	6 x 11 also supported
3375	 */
3376		/* ASSERT: a0 = contents of Lconsole_font */
3377	movel	%d3,%d0				/* screen width in pixels */
3378	divul	%a0@(FONT_DESC_WIDTH),%d0	/* d0 = max num chars per row */
3379
3380	movel	%d4,%d1				/* screen height in pixels */
3381	divul	%a0@(FONT_DESC_HEIGHT),%d1	/* d1 = max num rows */
3382
3383	movel	%d0,%a2@(Lconsole_struct_num_columns)
3384	movel	%d1,%a2@(Lconsole_struct_num_rows)
3385
3386	/*
3387	 *	Clear the current row and column
3388	 */
3389	clrl	%a2@(Lconsole_struct_cur_column)
3390	clrl	%a2@(Lconsole_struct_cur_row)
3391	clrl	%a2@(Lconsole_struct_left_edge)
3392
3393	/*
3394	 * Initialization is complete
3395	 */
33961:
3397func_return	console_init
3398
3399func_start	console_put_stats,%a0/%d7
3400	/*
3401	 *	Some of the register usage that follows
3402	 *		a0 = pointer to boot_info
3403	 *		d7 = value of boot_info fields
3404	 */
3405	puts	"\nMacLinux\n"
3406
3407#ifdef SERIAL_DEBUG
3408	puts	"\n vidaddr:"
3409	putn	%pc@(L(mac_videobase))		/* video addr. */
3410
3411	puts	"\n  _stext:"
3412	lea	%pc@(_stext),%a0
3413	putn	%a0
3414
3415	puts	"\nbootinfo:"
3416	lea	%pc@(_end),%a0
3417	putn	%a0
3418
3419	puts	"\n   cpuid:"
3420	putn	%pc@(L(cputype))
 
3421
3422#  ifdef CONFIG_MAC
3423	puts	"\n sccbase:"
3424	putn	%pc@(L(mac_sccbase))
3425#  endif
3426#  ifdef MMU_PRINT
3427	putc	'\n'
 
 
3428	jbsr	mmu_print_machine_cpu_types
3429#  endif
3430#endif /* SERIAL_DEBUG */
3431
3432	putc	'\n'
3433
3434func_return	console_put_stats
3435
3436#ifdef CONFIG_LOGO
3437func_start	console_put_penguin,%a0-%a1/%d0-%d7
3438	/*
3439	 *	Get 'that_penguin' onto the screen in the upper right corner
3440	 *	penguin is 64 x 74 pixels, align against right edge of screen
3441	 */
3442	lea	%pc@(L(mac_dimensions)),%a0
3443	movel	%a0@,%d0
3444	andil	#0xffff,%d0
3445	subil	#64,%d0		/* snug up against the right edge */
3446	clrl	%d1		/* start at the top */
3447	movel	#73,%d7
3448	lea	%pc@(L(that_penguin)),%a1
3449L(console_penguin_row):
3450	movel	#31,%d6
3451L(console_penguin_pixel_pair):
3452	moveb	%a1@,%d2
3453	lsrb	#4,%d2
3454	console_plot_pixel %d0,%d1,%d2
3455	addq	#1,%d0
3456	moveb	%a1@+,%d2
3457	console_plot_pixel %d0,%d1,%d2
3458	addq	#1,%d0
3459	dbra	%d6,L(console_penguin_pixel_pair)
3460
3461	subil	#64,%d0
3462	addq	#1,%d1
3463	dbra	%d7,L(console_penguin_row)
3464
3465func_return	console_put_penguin
3466
3467/* include penguin bitmap */
3468L(that_penguin):
3469#include "../mac/mac_penguin.S"
3470#endif
3471
3472	/*
3473	 * Calculate source and destination addresses
3474	 *	output	a1 = dest
3475	 *		a2 = source
3476	 */
3477
3478func_start	console_scroll,%a0-%a4/%d0-%d7
3479	lea	%pc@(L(mac_videobase)),%a0
3480	movel	%a0@,%a1
3481	movel	%a1,%a2
3482	lea	%pc@(L(mac_rowbytes)),%a0
3483	movel	%a0@,%d5
3484	movel	%pc@(L(console_font)),%a0
3485	tstl	%a0
3486	jeq	1f
3487	mulul	%a0@(FONT_DESC_HEIGHT),%d5	/* account for # scan lines per character */
3488	addal	%d5,%a2
3489
3490	/*
3491	 * Get dimensions
3492	 */
3493	lea	%pc@(L(mac_dimensions)),%a0
3494	movel	%a0@,%d3
3495	movel	%d3,%d4
3496	swap	%d4
3497	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3498	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3499
3500	/*
3501	 * Calculate number of bytes to move
3502	 */
3503	lea	%pc@(L(mac_rowbytes)),%a0
3504	movel	%a0@,%d6
3505	movel	%pc@(L(console_font)),%a0
3506	subl	%a0@(FONT_DESC_HEIGHT),%d4	/* we're not scrolling the top row! */
3507	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3508	divul	#32,%d6		/* we'll move 8 longs at a time */
3509	subq	#1,%d6
3510
3511L(console_scroll_loop):
3512	movel	%a2@+,%a1@+
3513	movel	%a2@+,%a1@+
3514	movel	%a2@+,%a1@+
3515	movel	%a2@+,%a1@+
3516	movel	%a2@+,%a1@+
3517	movel	%a2@+,%a1@+
3518	movel	%a2@+,%a1@+
3519	movel	%a2@+,%a1@+
3520	dbra	%d6,L(console_scroll_loop)
3521
3522	lea	%pc@(L(mac_rowbytes)),%a0
3523	movel	%a0@,%d6
3524	movel	%pc@(L(console_font)),%a0
3525	mulul	%a0@(FONT_DESC_HEIGHT),%d6	/* scan line bytes x font height */
3526	divul	#32,%d6			/* we'll move 8 words at a time */
3527	subq	#1,%d6
3528
3529	moveq	#-1,%d0
3530L(console_scroll_clear_loop):
3531	movel	%d0,%a1@+
3532	movel	%d0,%a1@+
3533	movel	%d0,%a1@+
3534	movel	%d0,%a1@+
3535	movel	%d0,%a1@+
3536	movel	%d0,%a1@+
3537	movel	%d0,%a1@+
3538	movel	%d0,%a1@+
3539	dbra	%d6,L(console_scroll_clear_loop)
3540
35411:
3542func_return	console_scroll
3543
3544
3545func_start	console_putc,%a0/%a1/%d0-%d7
3546
3547	is_not_mac(L(console_exit))
3548	tstl	%pc@(L(console_font))
3549	jeq	L(console_exit)
3550
3551	/* Output character in d7 on console.
3552	 */
3553	movel	ARG1,%d7
3554	cmpib	#'\n',%d7
3555	jbne	1f
3556
3557	/* A little safe recursion is good for the soul */
3558	console_putc	#'\r'
35591:
3560	lea	%pc@(L(console_globals)),%a0
3561
3562	cmpib	#10,%d7
3563	jne	L(console_not_lf)
3564	movel	%a0@(Lconsole_struct_cur_row),%d0
3565	addil	#1,%d0
3566	movel	%d0,%a0@(Lconsole_struct_cur_row)
3567	movel	%a0@(Lconsole_struct_num_rows),%d1
3568	cmpl	%d1,%d0
3569	jcs	1f
3570	subil	#1,%d0
3571	movel	%d0,%a0@(Lconsole_struct_cur_row)
3572	console_scroll
35731:
3574	jra	L(console_exit)
3575
3576L(console_not_lf):
3577	cmpib	#13,%d7
3578	jne	L(console_not_cr)
3579	clrl	%a0@(Lconsole_struct_cur_column)
3580	jra	L(console_exit)
3581
3582L(console_not_cr):
3583	cmpib	#1,%d7
3584	jne	L(console_not_home)
3585	clrl	%a0@(Lconsole_struct_cur_row)
3586	clrl	%a0@(Lconsole_struct_cur_column)
3587	jra	L(console_exit)
3588
3589/*
3590 *	At this point we know that the %d7 character is going to be
3591 *	rendered on the screen.  Register usage is -
3592 *		a0 = pointer to console globals
3593 *		a1 = font data
3594 *		d0 = cursor column
3595 *		d1 = cursor row to draw the character
3596 *		d7 = character number
3597 */
3598L(console_not_home):
3599	movel	%a0@(Lconsole_struct_cur_column),%d0
3600	addql	#1,%a0@(Lconsole_struct_cur_column)
3601	movel	%a0@(Lconsole_struct_num_columns),%d1
3602	cmpl	%d1,%d0
3603	jcs	1f
3604	console_putc	#'\n'	/* recursion is OK! */
36051:
3606	movel	%a0@(Lconsole_struct_cur_row),%d1
3607
3608	/*
3609	 *	At this point we make a shift in register usage
3610	 *	a0 = address of pointer to font data (fbcon_font_desc)
3611	 */
3612	movel	%pc@(L(console_font)),%a0
3613	movel	%pc@(L(console_font_data)),%a1	/* Load fbcon_font_desc.data into a1 */
3614	andl	#0x000000ff,%d7
3615		/* ASSERT: a0 = contents of Lconsole_font */
3616	mulul	%a0@(FONT_DESC_HEIGHT),%d7	/* d7 = index into font data */
3617	addl	%d7,%a1			/* a1 = points to char image */
3618
3619	/*
3620	 *	At this point we make a shift in register usage
3621	 *	d0 = pixel coordinate, x
3622	 *	d1 = pixel coordinate, y
3623	 *	d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3624	 *	d3 = font scan line data (8 pixels)
3625	 *	d6 = count down for the font's pixel width (8)
3626	 *	d7 = count down for the font's pixel count in height
3627	 */
3628		/* ASSERT: a0 = contents of Lconsole_font */
3629	mulul	%a0@(FONT_DESC_WIDTH),%d0
3630	mulul	%a0@(FONT_DESC_HEIGHT),%d1
3631	movel	%a0@(FONT_DESC_HEIGHT),%d7	/* Load fbcon_font_desc.height into d7 */
3632	subq	#1,%d7
3633L(console_read_char_scanline):
3634	moveb	%a1@+,%d3
3635
3636		/* ASSERT: a0 = contents of Lconsole_font */
3637	movel	%a0@(FONT_DESC_WIDTH),%d6	/* Load fbcon_font_desc.width into d6 */
3638	subql	#1,%d6
3639
3640L(console_do_font_scanline):
3641	lslb	#1,%d3
3642	scsb	%d2		/* convert 1 bit into a byte */
3643	console_plot_pixel %d0,%d1,%d2
3644	addq	#1,%d0
3645	dbra	%d6,L(console_do_font_scanline)
3646
3647		/* ASSERT: a0 = contents of Lconsole_font */
3648	subl	%a0@(FONT_DESC_WIDTH),%d0
3649	addq	#1,%d1
3650	dbra	%d7,L(console_read_char_scanline)
3651
3652L(console_exit):
3653func_return	console_putc
3654
3655	/*
3656	 *	Input:
3657	 *		d0 = x coordinate
3658	 *		d1 = y coordinate
3659	 *		d2 = (bit 0) 1/0 for white/black (!)
3660	 *	All registers are preserved
3661	 */
3662func_start	console_plot_pixel,%a0-%a1/%d0-%d4
3663
3664	movel	%pc@(L(mac_videobase)),%a1
3665	movel	%pc@(L(mac_videodepth)),%d3
3666	movel	ARG1,%d0
3667	movel	ARG2,%d1
3668	mulul	%pc@(L(mac_rowbytes)),%d1
3669	movel	ARG3,%d2
3670
3671	/*
3672	 *	Register usage:
3673	 *		d0 = x coord becomes byte offset into frame buffer
3674	 *		d1 = y coord
3675	 *		d2 = black or white (0/1)
3676	 *		d3 = video depth
3677	 *		d4 = temp of x (d0) for many bit depths
3678	 */
3679L(test_1bit):
3680	cmpb	#1,%d3
3681	jbne	L(test_2bit)
3682	movel	%d0,%d4		/* we need the low order 3 bits! */
3683	divul	#8,%d0
3684	addal	%d0,%a1
3685	addal	%d1,%a1
3686	andb	#7,%d4
3687	eorb	#7,%d4		/* reverse the x-coordinate w/ screen-bit # */
3688	andb	#1,%d2
3689	jbne	L(white_1)
3690	bsetb	%d4,%a1@
3691	jbra	L(console_plot_pixel_exit)
3692L(white_1):
3693	bclrb	%d4,%a1@
3694	jbra	L(console_plot_pixel_exit)
3695
3696L(test_2bit):
3697	cmpb	#2,%d3
3698	jbne	L(test_4bit)
3699	movel	%d0,%d4		/* we need the low order 2 bits! */
3700	divul	#4,%d0
3701	addal	%d0,%a1
3702	addal	%d1,%a1
3703	andb	#3,%d4
3704	eorb	#3,%d4		/* reverse the x-coordinate w/ screen-bit # */
3705	lsll	#1,%d4		/* ! */
3706	andb	#1,%d2
3707	jbne	L(white_2)
3708	bsetb	%d4,%a1@
3709	addq	#1,%d4
3710	bsetb	%d4,%a1@
3711	jbra	L(console_plot_pixel_exit)
3712L(white_2):
3713	bclrb	%d4,%a1@
3714	addq	#1,%d4
3715	bclrb	%d4,%a1@
3716	jbra	L(console_plot_pixel_exit)
3717
3718L(test_4bit):
3719	cmpb	#4,%d3
3720	jbne	L(test_8bit)
3721	movel	%d0,%d4		/* we need the low order bit! */
3722	divul	#2,%d0
3723	addal	%d0,%a1
3724	addal	%d1,%a1
3725	andb	#1,%d4
3726	eorb	#1,%d4
3727	lsll	#2,%d4		/* ! */
3728	andb	#1,%d2
3729	jbne	L(white_4)
3730	bsetb	%d4,%a1@
3731	addq	#1,%d4
3732	bsetb	%d4,%a1@
3733	addq	#1,%d4
3734	bsetb	%d4,%a1@
3735	addq	#1,%d4
3736	bsetb	%d4,%a1@
3737	jbra	L(console_plot_pixel_exit)
3738L(white_4):
3739	bclrb	%d4,%a1@
3740	addq	#1,%d4
3741	bclrb	%d4,%a1@
3742	addq	#1,%d4
3743	bclrb	%d4,%a1@
3744	addq	#1,%d4
3745	bclrb	%d4,%a1@
3746	jbra	L(console_plot_pixel_exit)
3747
3748L(test_8bit):
3749	cmpb	#8,%d3
3750	jbne	L(test_16bit)
3751	addal	%d0,%a1
3752	addal	%d1,%a1
3753	andb	#1,%d2
3754	jbne	L(white_8)
3755	moveb	#0xff,%a1@
3756	jbra	L(console_plot_pixel_exit)
3757L(white_8):
3758	clrb	%a1@
3759	jbra	L(console_plot_pixel_exit)
3760
3761L(test_16bit):
3762	cmpb	#16,%d3
3763	jbne	L(console_plot_pixel_exit)
3764	addal	%d0,%a1
3765	addal	%d0,%a1
3766	addal	%d1,%a1
3767	andb	#1,%d2
3768	jbne	L(white_16)
3769	clrw	%a1@
3770	jbra	L(console_plot_pixel_exit)
3771L(white_16):
3772	movew	#0x0fff,%a1@
3773	jbra	L(console_plot_pixel_exit)
3774
3775L(console_plot_pixel_exit):
3776func_return	console_plot_pixel
3777#endif /* CONSOLE */
3778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3779
3780__INITDATA
3781	.align	4
3782
3783#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3784    defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3785L(custom):
3786L(iobase):
3787	.long 0
3788#endif
3789
3790#if defined(CONSOLE)
3791L(console_globals):
3792	.long	0		/* cursor column */
3793	.long	0		/* cursor row */
3794	.long	0		/* max num columns */
3795	.long	0		/* max num rows */
3796	.long	0		/* left edge */
 
3797L(console_font):
3798	.long	0		/* pointer to console font (struct font_desc) */
3799L(console_font_data):
3800	.long	0		/* pointer to console font data */
3801#endif /* CONSOLE */
3802
3803#if defined(MMU_PRINT)
3804L(mmu_print_data):
3805	.long	0		/* valid flag */
3806	.long	0		/* start logical */
3807	.long	0		/* next logical */
3808	.long	0		/* start physical */
3809	.long	0		/* next physical */
3810#endif /* MMU_PRINT */
3811
3812L(cputype):
3813	.long	0
3814L(mmu_cached_pointer_tables):
3815	.long	0
3816L(mmu_num_pointer_tables):
3817	.long	0
3818L(phys_kernel_start):
3819	.long	0
3820L(kernel_end):
3821	.long	0
3822L(memory_start):
3823	.long	0
3824L(kernel_pgdir_ptr):
3825	.long	0
3826L(temp_mmap_mem):
3827	.long	0
3828
3829#if defined (CONFIG_MVME147)
3830M147_SCC_CTRL_A = 0xfffe3002
3831M147_SCC_DATA_A = 0xfffe3003
3832#endif
3833
3834#if defined (CONFIG_MVME16x)
3835M162_SCC_CTRL_A = 0xfff45005
3836M167_CYCAR = 0xfff450ee
3837M167_CYIER = 0xfff45011
3838M167_CYLICR = 0xfff45026
3839M167_CYTEOIR = 0xfff45085
3840M167_CYTDR = 0xfff450f8
3841M167_PCSCCTICR = 0xfff4201e
3842M167_PCTPIACKR = 0xfff42025
3843#endif
3844
3845#if defined (CONFIG_BVME6000)
3846BVME_SCC_CTRL_A	= 0xffb0000b
3847BVME_SCC_DATA_A	= 0xffb0000f
3848#endif
3849
3850#if defined(CONFIG_MAC)
 
 
3851L(mac_videobase):
3852	.long	0
3853L(mac_videodepth):
3854	.long	0
3855L(mac_dimensions):
3856	.long	0
3857L(mac_rowbytes):
3858	.long	0
3859#ifdef SERIAL_DEBUG
3860L(mac_sccbase):
3861	.long	0
 
3862#endif
3863#endif /* CONFIG_MAC */
3864
3865#if defined (CONFIG_APOLLO)
3866LSRB0        = 0x10412
3867LTHRB0       = 0x10416
3868LCPUCTRL     = 0x10100
3869#endif
3870
3871#if defined(CONFIG_HP300)
3872DCADATA	     = 0x11
3873DCALSR	     = 0x1b
3874APCIDATA     = 0x00
3875APCILSR      = 0x14
3876L(uartbase):
3877	.long	0
3878L(uart_scode):
3879	.long	-1
3880#endif
3881
3882__FINIT
3883	.data
3884	.align	4
3885
3886availmem:
3887	.long	0
3888m68k_pgtable_cachemode:
3889	.long	0
3890m68k_supervisor_cachemode:
3891	.long	0
3892#if defined(CONFIG_MVME16x)
3893mvme_bdid:
3894	.long	0,0,0,0,0,0,0,0
3895#endif
3896#if defined(CONFIG_Q40)
3897q40_mem_cptr:
3898	.long	0
3899L(q40_do_debug):
3900	.long	0
3901#endif