Loading...
1/* -*- mode: asm -*-
2**
3** head.S -- This file contains the initial boot code for the
4** Linux/68k kernel.
5**
6** Copyright 1993 by Hamish Macdonald
7**
8** 68040 fixes by Michael Rausch
9** 68060 fixes by Roman Hodek
10** MMU cleanup by Randy Thelen
11** Final MMU cleanup by Roman Zippel
12**
13** Atari support by Andreas Schwab, using ideas of Robert de Vries
14** and Bjoern Brauel
15** VME Support by Richard Hirst
16**
17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
20** 95/11/18 Richard Hirst: Added MVME166 support
21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
22** Magnum- and FX-alternate ram
23** 98/04/25 Phil Blundell: added HP300 support
24** 1998/08/30 David Kilzer: Added support for font_desc structures
25** for linux-2.1.115
26** 9/02/11 Richard Zidlicky: added Q40 support (initial vesion 99/01/01)
27** 2004/05/13 Kars de Jong: Finalised HP300 support
28**
29** This file is subject to the terms and conditions of the GNU General Public
30** License. See the file README.legal in the main directory of this archive
31** for more details.
32**
33*/
34
35/*
36 * Linux startup code.
37 *
38 * At this point, the boot loader has:
39 * Disabled interrupts
40 * Disabled caches
41 * Put us in supervisor state.
42 *
43 * The kernel setup code takes the following steps:
44 * . Raise interrupt level
45 * . Set up initial kernel memory mapping.
46 * . This sets up a mapping of the 4M of memory the kernel is located in.
47 * . It also does a mapping of any initial machine specific areas.
48 * . Enable the MMU
49 * . Enable cache memories
50 * . Jump to kernel startup
51 *
52 * Much of the file restructuring was to accomplish:
53 * 1) Remove register dependency through-out the file.
54 * 2) Increase use of subroutines to perform functions
55 * 3) Increase readability of the code
56 *
57 * Of course, readability is a subjective issue, so it will never be
58 * argued that that goal was accomplished. It was merely a goal.
59 * A key way to help make code more readable is to give good
60 * documentation. So, the first thing you will find is exaustive
61 * write-ups on the structure of the file, and the features of the
62 * functional subroutines.
63 *
64 * General Structure:
65 * ------------------
66 * Without a doubt the single largest chunk of head.S is spent
67 * mapping the kernel and I/O physical space into the logical range
68 * for the kernel.
69 * There are new subroutines and data structures to make MMU
70 * support cleaner and easier to understand.
71 * First, you will find a routine call "mmu_map" which maps
72 * a logical to a physical region for some length given a cache
73 * type on behalf of the caller. This routine makes writing the
74 * actual per-machine specific code very simple.
75 * A central part of the code, but not a subroutine in itself,
76 * is the mmu_init code which is broken down into mapping the kernel
77 * (the same for all machines) and mapping machine-specific I/O
78 * regions.
79 * Also, there will be a description of engaging the MMU and
80 * caches.
81 * You will notice that there is a chunk of code which
82 * can emit the entire MMU mapping of the machine. This is present
83 * only in debug modes and can be very helpful.
84 * Further, there is a new console driver in head.S that is
85 * also only engaged in debug mode. Currently, it's only supported
86 * on the Macintosh class of machines. However, it is hoped that
87 * others will plug-in support for specific machines.
88 *
89 * ######################################################################
90 *
91 * mmu_map
92 * -------
93 * mmu_map was written for two key reasons. First, it was clear
94 * that it was very difficult to read the previous code for mapping
95 * regions of memory. Second, the Macintosh required such extensive
96 * memory allocations that it didn't make sense to propagate the
97 * existing code any further.
98 * mmu_map requires some parameters:
99 *
100 * mmu_map (logical, physical, length, cache_type)
101 *
102 * While this essentially describes the function in the abstract, you'll
103 * find more indepth description of other parameters at the implementation site.
104 *
105 * mmu_get_root_table_entry
106 * ------------------------
107 * mmu_get_ptr_table_entry
108 * -----------------------
109 * mmu_get_page_table_entry
110 * ------------------------
111 *
112 * These routines are used by other mmu routines to get a pointer into
113 * a table, if necessary a new table is allocated. These routines are working
114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
116 * so that here also some mmu specific initialization is done. The second page
117 * at the start of the kernel (the first page is unmapped later) is used for
118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
119 * to initialize the init task struct) and since it needs special cache
120 * settings, it's the easiest to use this page, the rest of the page is used
121 * for further pointer tables.
122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
124 * to manage page tables in smaller pieces as nearly all mappings have that
125 * size.
126 *
127 * ######################################################################
128 *
129 *
130 * ######################################################################
131 *
132 * mmu_engage
133 * ----------
134 * Thanks to a small helping routine enabling the mmu got quite simple
135 * and there is only one way left. mmu_engage makes a complete a new mapping
136 * that only includes the absolute necessary to be able to jump to the final
137 * position and to restore the original mapping.
138 * As this code doesn't need a transparent translation register anymore this
139 * means all registers are free to be used by machines that needs them for
140 * other purposes.
141 *
142 * ######################################################################
143 *
144 * mmu_print
145 * ---------
146 * This algorithm will print out the page tables of the system as
147 * appropriate for an 030 or an 040. This is useful for debugging purposes
148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
149 *
150 * ######################################################################
151 *
152 * console_init
153 * ------------
154 * The console is also able to be turned off. The console in head.S
155 * is specifically for debugging and can be very useful. It is surrounded by
156 * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good
157 * kernels. It's basic algorithm is to determine the size of the screen
158 * (in height/width and bit depth) and then use that information for
159 * displaying an 8x8 font or an 8x16 (widthxheight). I prefer the 8x8 for
160 * debugging so I can see more good data. But it was trivial to add support
161 * for both fonts, so I included it.
162 * Also, the algorithm for plotting pixels is abstracted so that in
163 * theory other platforms could add support for different kinds of frame
164 * buffers. This could be very useful.
165 *
166 * console_put_penguin
167 * -------------------
168 * An important part of any Linux bring up is the penguin and there's
169 * nothing like getting the Penguin on the screen! This algorithm will work
170 * on any machine for which there is a console_plot_pixel.
171 *
172 * console_scroll
173 * --------------
174 * My hope is that the scroll algorithm does the right thing on the
175 * various platforms, but it wouldn't be hard to add the test conditions
176 * and new code if it doesn't.
177 *
178 * console_putc
179 * -------------
180 *
181 * ######################################################################
182 *
183 * Register usage has greatly simplified within head.S. Every subroutine
184 * saves and restores all registers that it modifies (except it returns a
185 * value in there of course). So the only register that needs to be initialized
186 * is the stack pointer.
187 * All other init code and data is now placed in the init section, so it will
188 * be automatically freed at the end of the kernel initialization.
189 *
190 * ######################################################################
191 *
192 * options
193 * -------
194 * There are many options available in a build of this file. I've
195 * taken the time to describe them here to save you the time of searching
196 * for them and trying to understand what they mean.
197 *
198 * CONFIG_xxx: These are the obvious machine configuration defines created
199 * during configuration. These are defined in autoconf.h.
200 *
201 * CONSOLE: There is support for head.S console in this file. This
202 * console can talk to a Mac frame buffer, but could easily be extrapolated
203 * to extend it to support other platforms.
204 *
205 * TEST_MMU: This is a test harness for running on any given machine but
206 * getting an MMU dump for another class of machine. The classes of machines
207 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
208 * and any of the models (030, 040, 060, etc.).
209 *
210 * NOTE: TEST_MMU is NOT permanent! It is scheduled to be removed
211 * When head.S boots on Atari, Amiga, Macintosh, and VME
212 * machines. At that point the underlying logic will be
213 * believed to be solid enough to be trusted, and TEST_MMU
214 * can be dropped. Do note that that will clean up the
215 * head.S code significantly as large blocks of #if/#else
216 * clauses can be removed.
217 *
218 * MMU_NOCACHE_KERNEL: On the Macintosh platform there was an inquiry into
219 * determing why devices don't appear to work. A test case was to remove
220 * the cacheability of the kernel bits.
221 *
222 * MMU_PRINT: There is a routine built into head.S that can display the
223 * MMU data structures. It outputs its result through the serial_putc
224 * interface. So where ever that winds up driving data, that's where the
225 * mmu struct will appear. On the Macintosh that's typically the console.
226 *
227 * SERIAL_DEBUG: There are a series of putc() macro statements
228 * scattered through out the code to give progress of status to the
229 * person sitting at the console. This constant determines whether those
230 * are used.
231 *
232 * DEBUG: This is the standard DEBUG flag that can be set for building
233 * the kernel. It has the effect adding additional tests into
234 * the code.
235 *
236 * FONT_6x11:
237 * FONT_8x8:
238 * FONT_8x16:
239 * In theory these could be determined at run time or handed
240 * over by the booter. But, let's be real, it's a fine hard
241 * coded value. (But, you will notice the code is run-time
242 * flexible!) A pointer to the font's struct font_desc
243 * is kept locally in Lconsole_font. It is used to determine
244 * font size information dynamically.
245 *
246 * Atari constants:
247 * USE_PRINTER: Use the printer port for serial debug.
248 * USE_SCC_B: Use the SCC port A (Serial2) for serial debug.
249 * USE_SCC_A: Use the SCC port B (Modem2) for serial debug.
250 * USE_MFP: Use the ST-MFP port (Modem1) for serial debug.
251 *
252 * Macintosh constants:
253 * MAC_SERIAL_DEBUG: Turns on serial debug output for the Macintosh.
254 * MAC_USE_SCC_A: Use the SCC port A (modem) for serial debug.
255 * MAC_USE_SCC_B: Use the SCC port B (printer) for serial debug (default).
256 */
257
258#include <linux/linkage.h>
259#include <linux/init.h>
260#include <asm/bootinfo.h>
261#include <asm/setup.h>
262#include <asm/entry.h>
263#include <asm/pgtable.h>
264#include <asm/page.h>
265#include <asm/asm-offsets.h>
266
267#ifdef CONFIG_MAC
268
269#include <asm/machw.h>
270
271/*
272 * Macintosh console support
273 */
274
275#ifdef CONFIG_FRAMEBUFFER_CONSOLE
276#define CONSOLE
277#define CONSOLE_PENGUIN
278#endif
279
280/*
281 * Macintosh serial debug support; outputs boot info to the printer
282 * and/or modem serial ports
283 */
284#undef MAC_SERIAL_DEBUG
285
286/*
287 * Macintosh serial debug port selection; define one or both;
288 * requires MAC_SERIAL_DEBUG to be defined
289 */
290#define MAC_USE_SCC_A /* Macintosh modem serial port */
291#define MAC_USE_SCC_B /* Macintosh printer serial port */
292
293#endif /* CONFIG_MAC */
294
295#undef MMU_PRINT
296#undef MMU_NOCACHE_KERNEL
297#define SERIAL_DEBUG
298#undef DEBUG
299
300/*
301 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
302 * The 8x8 font is harder to read but fits more on the screen.
303 */
304#define FONT_8x8 /* default */
305/* #define FONT_8x16 */ /* 2nd choice */
306/* #define FONT_6x11 */ /* 3rd choice */
307
308.globl kernel_pg_dir
309.globl availmem
310.globl m68k_pgtable_cachemode
311.globl m68k_supervisor_cachemode
312#ifdef CONFIG_MVME16x
313.globl mvme_bdid
314#endif
315#ifdef CONFIG_Q40
316.globl q40_mem_cptr
317#endif
318
319CPUTYPE_040 = 1 /* indicates an 040 */
320CPUTYPE_060 = 2 /* indicates an 060 */
321CPUTYPE_0460 = 3 /* if either above are set, this is set */
322CPUTYPE_020 = 4 /* indicates an 020 */
323
324/* Translation control register */
325TC_ENABLE = 0x8000
326TC_PAGE8K = 0x4000
327TC_PAGE4K = 0x0000
328
329/* Transparent translation registers */
330TTR_ENABLE = 0x8000 /* enable transparent translation */
331TTR_ANYMODE = 0x4000 /* user and kernel mode access */
332TTR_KERNELMODE = 0x2000 /* only kernel mode access */
333TTR_USERMODE = 0x0000 /* only user mode access */
334TTR_CI = 0x0400 /* inhibit cache */
335TTR_RW = 0x0200 /* read/write mode */
336TTR_RWM = 0x0100 /* read/write mask */
337TTR_FCB2 = 0x0040 /* function code base bit 2 */
338TTR_FCB1 = 0x0020 /* function code base bit 1 */
339TTR_FCB0 = 0x0010 /* function code base bit 0 */
340TTR_FCM2 = 0x0004 /* function code mask bit 2 */
341TTR_FCM1 = 0x0002 /* function code mask bit 1 */
342TTR_FCM0 = 0x0001 /* function code mask bit 0 */
343
344/* Cache Control registers */
345CC6_ENABLE_D = 0x80000000 /* enable data cache (680[46]0) */
346CC6_FREEZE_D = 0x40000000 /* freeze data cache (68060) */
347CC6_ENABLE_SB = 0x20000000 /* enable store buffer (68060) */
348CC6_PUSH_DPI = 0x10000000 /* disable CPUSH invalidation (68060) */
349CC6_HALF_D = 0x08000000 /* half-cache mode for data cache (68060) */
350CC6_ENABLE_B = 0x00800000 /* enable branch cache (68060) */
351CC6_CLRA_B = 0x00400000 /* clear all entries in branch cache (68060) */
352CC6_CLRU_B = 0x00200000 /* clear user entries in branch cache (68060) */
353CC6_ENABLE_I = 0x00008000 /* enable instruction cache (680[46]0) */
354CC6_FREEZE_I = 0x00004000 /* freeze instruction cache (68060) */
355CC6_HALF_I = 0x00002000 /* half-cache mode for instruction cache (68060) */
356CC3_ALLOC_WRITE = 0x00002000 /* write allocate mode(68030) */
357CC3_ENABLE_DB = 0x00001000 /* enable data burst (68030) */
358CC3_CLR_D = 0x00000800 /* clear data cache (68030) */
359CC3_CLRE_D = 0x00000400 /* clear entry in data cache (68030) */
360CC3_FREEZE_D = 0x00000200 /* freeze data cache (68030) */
361CC3_ENABLE_D = 0x00000100 /* enable data cache (68030) */
362CC3_ENABLE_IB = 0x00000010 /* enable instruction burst (68030) */
363CC3_CLR_I = 0x00000008 /* clear instruction cache (68030) */
364CC3_CLRE_I = 0x00000004 /* clear entry in instruction cache (68030) */
365CC3_FREEZE_I = 0x00000002 /* freeze instruction cache (68030) */
366CC3_ENABLE_I = 0x00000001 /* enable instruction cache (68030) */
367
368/* Miscellaneous definitions */
369PAGESIZE = 4096
370PAGESHIFT = 12
371
372ROOT_TABLE_SIZE = 128
373PTR_TABLE_SIZE = 128
374PAGE_TABLE_SIZE = 64
375ROOT_INDEX_SHIFT = 25
376PTR_INDEX_SHIFT = 18
377PAGE_INDEX_SHIFT = 12
378
379#ifdef DEBUG
380/* When debugging use readable names for labels */
381#ifdef __STDC__
382#define L(name) .head.S.##name
383#else
384#define L(name) .head.S./**/name
385#endif
386#else
387#ifdef __STDC__
388#define L(name) .L##name
389#else
390#define L(name) .L/**/name
391#endif
392#endif
393
394/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
395#ifndef __INITDATA
396#define __INITDATA .data
397#define __FINIT .previous
398#endif
399
400/* Several macros to make the writing of subroutines easier:
401 * - func_start marks the beginning of the routine which setups the frame
402 * register and saves the registers, it also defines another macro
403 * to automatically restore the registers again.
404 * - func_return marks the end of the routine and simply calls the prepared
405 * macro to restore registers and jump back to the caller.
406 * - func_define generates another macro to automatically put arguments
407 * onto the stack call the subroutine and cleanup the stack again.
408 */
409
410/* Within subroutines these macros can be used to access the arguments
411 * on the stack. With STACK some allocated memory on the stack can be
412 * accessed and ARG0 points to the return address (used by mmu_engage).
413 */
414#define STACK %a6@(stackstart)
415#define ARG0 %a6@(4)
416#define ARG1 %a6@(8)
417#define ARG2 %a6@(12)
418#define ARG3 %a6@(16)
419#define ARG4 %a6@(20)
420
421.macro func_start name,saveregs,stack=0
422L(\name):
423 linkw %a6,#-\stack
424 moveml \saveregs,%sp@-
425.set stackstart,-\stack
426
427.macro func_return_\name
428 moveml %sp@+,\saveregs
429 unlk %a6
430 rts
431.endm
432.endm
433
434.macro func_return name
435 func_return_\name
436.endm
437
438.macro func_call name
439 jbsr L(\name)
440.endm
441
442.macro move_stack nr,arg1,arg2,arg3,arg4
443.if \nr
444 move_stack "(\nr-1)",\arg2,\arg3,\arg4
445 movel \arg1,%sp@-
446.endif
447.endm
448
449.macro func_define name,nr=0
450.macro \name arg1,arg2,arg3,arg4
451 move_stack \nr,\arg1,\arg2,\arg3,\arg4
452 func_call \name
453.if \nr
454 lea %sp@(\nr*4),%sp
455.endif
456.endm
457.endm
458
459func_define mmu_map,4
460func_define mmu_map_tt,4
461func_define mmu_fixup_page_mmu_cache,1
462func_define mmu_temp_map,2
463func_define mmu_engage
464func_define mmu_get_root_table_entry,1
465func_define mmu_get_ptr_table_entry,2
466func_define mmu_get_page_table_entry,2
467func_define mmu_print
468func_define get_new_page
469#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
470func_define set_leds
471#endif
472
473.macro mmu_map_eq arg1,arg2,arg3
474 mmu_map \arg1,\arg1,\arg2,\arg3
475.endm
476
477.macro get_bi_record record
478 pea \record
479 func_call get_bi_record
480 addql #4,%sp
481.endm
482
483func_define serial_putc,1
484func_define console_putc,1
485
486func_define console_init
487func_define console_put_stats
488func_define console_put_penguin
489func_define console_plot_pixel,3
490func_define console_scroll
491
492.macro putc ch
493#if defined(CONSOLE) || defined(SERIAL_DEBUG)
494 pea \ch
495#endif
496#ifdef CONSOLE
497 func_call console_putc
498#endif
499#ifdef SERIAL_DEBUG
500 func_call serial_putc
501#endif
502#if defined(CONSOLE) || defined(SERIAL_DEBUG)
503 addql #4,%sp
504#endif
505.endm
506
507.macro dputc ch
508#ifdef DEBUG
509 putc \ch
510#endif
511.endm
512
513func_define putn,1
514
515.macro dputn nr
516#ifdef DEBUG
517 putn \nr
518#endif
519.endm
520
521.macro puts string
522#if defined(CONSOLE) || defined(SERIAL_DEBUG)
523 __INITDATA
524.Lstr\@:
525 .string "\string"
526 __FINIT
527 pea %pc@(.Lstr\@)
528 func_call puts
529 addql #4,%sp
530#endif
531.endm
532
533.macro dputs string
534#ifdef DEBUG
535 puts "\string"
536#endif
537.endm
538
539#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
540#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
541#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
542#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
543#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
544#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
545#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
546#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
547#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
548#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
549#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
550#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
551#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
552
553#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
554 jeq 42f; \
555 cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
556 jne lab ;\
557 42:\
558
559#define is_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
560#define is_not_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
561#define is_040(lab) btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
562#define is_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
563#define is_not_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
564#define is_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
565#define is_not_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
566
567/* On the HP300 we use the on-board LEDs for debug output before
568 the console is running. Writing a 1 bit turns the corresponding LED
569 _off_ - on the 340 bit 7 is towards the back panel of the machine. */
570.macro leds mask
571#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
572 hasnt_leds(.Lled\@)
573 pea \mask
574 func_call set_leds
575 addql #4,%sp
576.Lled\@:
577#endif
578.endm
579
580__HEAD
581ENTRY(_stext)
582/*
583 * Version numbers of the bootinfo interface
584 * The area from _stext to _start will later be used as kernel pointer table
585 */
586 bras 1f /* Jump over bootinfo version numbers */
587
588 .long BOOTINFOV_MAGIC
589 .long MACH_AMIGA, AMIGA_BOOTI_VERSION
590 .long MACH_ATARI, ATARI_BOOTI_VERSION
591 .long MACH_MVME147, MVME147_BOOTI_VERSION
592 .long MACH_MVME16x, MVME16x_BOOTI_VERSION
593 .long MACH_BVME6000, BVME6000_BOOTI_VERSION
594 .long MACH_MAC, MAC_BOOTI_VERSION
595 .long MACH_Q40, Q40_BOOTI_VERSION
596 .long MACH_HP300, HP300_BOOTI_VERSION
597 .long 0
5981: jra __start
599
600.equ kernel_pg_dir,_stext
601
602.equ .,_stext+PAGESIZE
603
604ENTRY(_start)
605 jra __start
606__INIT
607ENTRY(__start)
608/*
609 * Setup initial stack pointer
610 */
611 lea %pc@(_stext),%sp
612
613/*
614 * Record the CPU and machine type.
615 */
616 get_bi_record BI_MACHTYPE
617 lea %pc@(m68k_machtype),%a1
618 movel %a0@,%a1@
619
620 get_bi_record BI_FPUTYPE
621 lea %pc@(m68k_fputype),%a1
622 movel %a0@,%a1@
623
624 get_bi_record BI_MMUTYPE
625 lea %pc@(m68k_mmutype),%a1
626 movel %a0@,%a1@
627
628 get_bi_record BI_CPUTYPE
629 lea %pc@(m68k_cputype),%a1
630 movel %a0@,%a1@
631
632 leds 0x1
633
634#ifdef CONFIG_MAC
635/*
636 * For Macintosh, we need to determine the display parameters early (at least
637 * while debugging it).
638 */
639
640 is_not_mac(L(test_notmac))
641
642 get_bi_record BI_MAC_VADDR
643 lea %pc@(L(mac_videobase)),%a1
644 movel %a0@,%a1@
645
646 get_bi_record BI_MAC_VDEPTH
647 lea %pc@(L(mac_videodepth)),%a1
648 movel %a0@,%a1@
649
650 get_bi_record BI_MAC_VDIM
651 lea %pc@(L(mac_dimensions)),%a1
652 movel %a0@,%a1@
653
654 get_bi_record BI_MAC_VROW
655 lea %pc@(L(mac_rowbytes)),%a1
656 movel %a0@,%a1@
657
658#ifdef MAC_SERIAL_DEBUG
659 get_bi_record BI_MAC_SCCBASE
660 lea %pc@(L(mac_sccbase)),%a1
661 movel %a0@,%a1@
662#endif /* MAC_SERIAL_DEBUG */
663
664#if 0
665 /*
666 * Clear the screen
667 */
668 lea %pc@(L(mac_videobase)),%a0
669 movel %a0@,%a1
670 lea %pc@(L(mac_dimensions)),%a0
671 movel %a0@,%d1
672 swap %d1 /* #rows is high bytes */
673 andl #0xFFFF,%d1 /* rows */
674 subl #10,%d1
675 lea %pc@(L(mac_rowbytes)),%a0
676loopy2:
677 movel %a0@,%d0
678 subql #1,%d0
679loopx2:
680 moveb #0x55, %a1@+
681 dbra %d0,loopx2
682 dbra %d1,loopy2
683#endif
684
685L(test_notmac):
686#endif /* CONFIG_MAC */
687
688
689/*
690 * There are ultimately two pieces of information we want for all kinds of
691 * processors CpuType and CacheBits. The CPUTYPE was passed in from booter
692 * and is converted here from a booter type definition to a separate bit
693 * number which allows for the standard is_0x0 macro tests.
694 */
695 movel %pc@(m68k_cputype),%d0
696 /*
697 * Assume it's an 030
698 */
699 clrl %d1
700
701 /*
702 * Test the BootInfo cputype for 060
703 */
704 btst #CPUB_68060,%d0
705 jeq 1f
706 bset #CPUTYPE_060,%d1
707 bset #CPUTYPE_0460,%d1
708 jra 3f
7091:
710 /*
711 * Test the BootInfo cputype for 040
712 */
713 btst #CPUB_68040,%d0
714 jeq 2f
715 bset #CPUTYPE_040,%d1
716 bset #CPUTYPE_0460,%d1
717 jra 3f
7182:
719 /*
720 * Test the BootInfo cputype for 020
721 */
722 btst #CPUB_68020,%d0
723 jeq 3f
724 bset #CPUTYPE_020,%d1
725 jra 3f
7263:
727 /*
728 * Record the cpu type
729 */
730 lea %pc@(L(cputype)),%a0
731 movel %d1,%a0@
732
733 /*
734 * NOTE:
735 *
736 * Now the macros are valid:
737 * is_040_or_060
738 * is_not_040_or_060
739 * is_040
740 * is_060
741 * is_not_060
742 */
743
744 /*
745 * Determine the cache mode for pages holding MMU tables
746 * and for supervisor mode, unused for '020 and '030
747 */
748 clrl %d0
749 clrl %d1
750
751 is_not_040_or_060(L(save_cachetype))
752
753 /*
754 * '040 or '060
755 * d1 := cacheable write-through
756 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
757 * but we have been using write-through since at least 2.0.29 so I
758 * guess it is OK.
759 */
760#ifdef CONFIG_060_WRITETHROUGH
761 /*
762 * If this is a 68060 board using drivers with cache coherency
763 * problems, then supervisor memory accesses need to be write-through
764 * also; otherwise, we want copyback.
765 */
766
767 is_not_060(1f)
768 movel #_PAGE_CACHE040W,%d0
769 jra L(save_cachetype)
770#endif /* CONFIG_060_WRITETHROUGH */
7711:
772 movew #_PAGE_CACHE040,%d0
773
774 movel #_PAGE_CACHE040W,%d1
775
776L(save_cachetype):
777 /* Save cache mode for supervisor mode and page tables
778 */
779 lea %pc@(m68k_supervisor_cachemode),%a0
780 movel %d0,%a0@
781 lea %pc@(m68k_pgtable_cachemode),%a0
782 movel %d1,%a0@
783
784/*
785 * raise interrupt level
786 */
787 movew #0x2700,%sr
788
789/*
790 If running on an Atari, determine the I/O base of the
791 serial port and test if we are running on a Medusa or Hades.
792 This test is necessary here, because on the Hades the serial
793 port is only accessible in the high I/O memory area.
794
795 The test whether it is a Medusa is done by writing to the byte at
796 phys. 0x0. This should result in a bus error on all other machines.
797
798 ...should, but doesn't. The Afterburner040 for the Falcon has the
799 same behaviour (0x0..0x7 are no ROM shadow). So we have to do
800 another test to distinguish Medusa and AB040. This is a
801 read attempt for 0x00ff82fe phys. that should bus error on a Falcon
802 (+AB040), but is in the range where the Medusa always asserts DTACK.
803
804 The test for the Hades is done by reading address 0xb0000000. This
805 should give a bus error on the Medusa.
806 */
807
808#ifdef CONFIG_ATARI
809 is_not_atari(L(notypetest))
810
811 /* get special machine type (Medusa/Hades/AB40) */
812 moveq #0,%d3 /* default if tag doesn't exist */
813 get_bi_record BI_ATARI_MCH_TYPE
814 tstl %d0
815 jbmi 1f
816 movel %a0@,%d3
817 lea %pc@(atari_mch_type),%a0
818 movel %d3,%a0@
8191:
820 /* On the Hades, the iobase must be set up before opening the
821 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
822 moveq #0,%d0
823 cmpl #ATARI_MACH_HADES,%d3
824 jbne 1f
825 movel #0xff000000,%d0 /* Hades I/O base addr: 0xff000000 */
8261: lea %pc@(L(iobase)),%a0
827 movel %d0,%a0@
828
829L(notypetest):
830#endif
831
832#ifdef CONFIG_VME
833 is_mvme147(L(getvmetype))
834 is_bvme6000(L(getvmetype))
835 is_not_mvme16x(L(gvtdone))
836
837 /* See if the loader has specified the BI_VME_TYPE tag. Recent
838 * versions of VMELILO and TFTPLILO do this. We have to do this
839 * early so we know how to handle console output. If the tag
840 * doesn't exist then we use the Bug for output on MVME16x.
841 */
842L(getvmetype):
843 get_bi_record BI_VME_TYPE
844 tstl %d0
845 jbmi 1f
846 movel %a0@,%d3
847 lea %pc@(vme_brdtype),%a0
848 movel %d3,%a0@
8491:
850#ifdef CONFIG_MVME16x
851 is_not_mvme16x(L(gvtdone))
852
853 /* Need to get the BRD_ID info to differentiate between 162, 167,
854 * etc. This is available as a BI_VME_BRDINFO tag with later
855 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
856 */
857 get_bi_record BI_VME_BRDINFO
858 tstl %d0
859 jpl 1f
860
861 /* Get pointer to board ID data from Bug */
862 movel %d2,%sp@-
863 trap #15
864 .word 0x70 /* trap 0x70 - .BRD_ID */
865 movel %sp@+,%a0
8661:
867 lea %pc@(mvme_bdid),%a1
868 /* Structure is 32 bytes long */
869 movel %a0@+,%a1@+
870 movel %a0@+,%a1@+
871 movel %a0@+,%a1@+
872 movel %a0@+,%a1@+
873 movel %a0@+,%a1@+
874 movel %a0@+,%a1@+
875 movel %a0@+,%a1@+
876 movel %a0@+,%a1@+
877#endif
878
879L(gvtdone):
880
881#endif
882
883#ifdef CONFIG_HP300
884 is_not_hp300(L(nothp))
885
886 /* Get the address of the UART for serial debugging */
887 get_bi_record BI_HP300_UART_ADDR
888 tstl %d0
889 jbmi 1f
890 movel %a0@,%d3
891 lea %pc@(L(uartbase)),%a0
892 movel %d3,%a0@
893 get_bi_record BI_HP300_UART_SCODE
894 tstl %d0
895 jbmi 1f
896 movel %a0@,%d3
897 lea %pc@(L(uart_scode)),%a0
898 movel %d3,%a0@
8991:
900L(nothp):
901#endif
902
903/*
904 * Initialize serial port
905 */
906 jbsr L(serial_init)
907
908/*
909 * Initialize console
910 */
911#ifdef CONFIG_MAC
912 is_not_mac(L(nocon))
913#ifdef CONSOLE
914 console_init
915#ifdef CONSOLE_PENGUIN
916 console_put_penguin
917#endif /* CONSOLE_PENGUIN */
918 console_put_stats
919#endif /* CONSOLE */
920L(nocon):
921#endif /* CONFIG_MAC */
922
923
924 putc '\n'
925 putc 'A'
926 leds 0x2
927 dputn %pc@(L(cputype))
928 dputn %pc@(m68k_supervisor_cachemode)
929 dputn %pc@(m68k_pgtable_cachemode)
930 dputc '\n'
931
932/*
933 * Save physical start address of kernel
934 */
935 lea %pc@(L(phys_kernel_start)),%a0
936 lea %pc@(_stext),%a1
937 subl #_stext,%a1
938 addl #PAGE_OFFSET,%a1
939 movel %a1,%a0@
940
941 putc 'B'
942
943 leds 0x4
944
945/*
946 * mmu_init
947 *
948 * This block of code does what's necessary to map in the various kinds
949 * of machines for execution of Linux.
950 * First map the first 4 MB of kernel code & data
951 */
952
953 mmu_map #PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\
954 %pc@(m68k_supervisor_cachemode)
955
956 putc 'C'
957
958#ifdef CONFIG_AMIGA
959
960L(mmu_init_amiga):
961
962 is_not_amiga(L(mmu_init_not_amiga))
963/*
964 * mmu_init_amiga
965 */
966
967 putc 'D'
968
969 is_not_040_or_060(1f)
970
971 /*
972 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
973 */
974 mmu_map #0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
975 /*
976 * Map the Zorro III I/O space with transparent translation
977 * for frame buffer memory etc.
978 */
979 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
980
981 jbra L(mmu_init_done)
982
9831:
984 /*
985 * 030: Map the 32Meg range physical 0x0 up to logical 0x8000.0000
986 */
987 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
988 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
989
990 jbra L(mmu_init_done)
991
992L(mmu_init_not_amiga):
993#endif
994
995#ifdef CONFIG_ATARI
996
997L(mmu_init_atari):
998
999 is_not_atari(L(mmu_init_not_atari))
1000
1001 putc 'E'
1002
1003/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
1004 the last 16 MB of virtual address space to the first 16 MB (i.e.
1005 0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
1006 needed. I/O ranges are marked non-cachable.
1007
1008 For the Medusa it is better to map the I/O region transparently
1009 (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
1010 accessible only in the high area.
1011
1012 On the Hades all I/O registers are only accessible in the high
1013 area.
1014*/
1015
1016 /* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
1017 moveq #0,%d0
1018 movel %pc@(atari_mch_type),%d3
1019 cmpl #ATARI_MACH_MEDUSA,%d3
1020 jbeq 2f
1021 cmpl #ATARI_MACH_HADES,%d3
1022 jbne 1f
10232: movel #0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
10241: movel %d0,%d3
1025
1026 is_040_or_060(L(spata68040))
1027
1028 /* Map everything non-cacheable, though not all parts really
1029 * need to disable caches (crucial only for 0xff8000..0xffffff
1030 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1031 * isn't really used, except for sometimes peeking into the
1032 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1033 * this. */
1034 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1035
1036 jbra L(mmu_init_done)
1037
1038L(spata68040):
1039
1040 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1041
1042 jbra L(mmu_init_done)
1043
1044L(mmu_init_not_atari):
1045#endif
1046
1047#ifdef CONFIG_Q40
1048 is_not_q40(L(notq40))
1049 /*
1050 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1051 * non-cached serialized etc..
1052 * this includes master chip, DAC, RTC and ISA ports
1053 * 0xfe000000-0xfeffffff is for screen and ROM
1054 */
1055
1056 putc 'Q'
1057
1058 mmu_map_tt #0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1059 mmu_map_tt #1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1060
1061 jbra L(mmu_init_done)
1062
1063L(notq40):
1064#endif
1065
1066#ifdef CONFIG_HP300
1067 is_not_hp300(L(nothp300))
1068
1069 /* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1070 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1071 * The ROM mapping is needed because the LEDs are mapped there too.
1072 */
1073
1074 is_040(1f)
1075
1076 /*
1077 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1078 */
1079 mmu_map #0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1080
1081 jbra L(mmu_init_done)
1082
10831:
1084 /*
1085 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1086 */
1087 mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1088
1089 jbra L(mmu_init_done)
1090
1091L(nothp300):
1092#endif /* CONFIG_HP300 */
1093
1094#ifdef CONFIG_MVME147
1095
1096 is_not_mvme147(L(not147))
1097
1098 /*
1099 * On MVME147 we have already created kernel page tables for
1100 * 4MB of RAM at address 0, so now need to do a transparent
1101 * mapping of the top of memory space. Make it 0.5GByte for now,
1102 * so we can access on-board i/o areas.
1103 */
1104
1105 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1106
1107 jbra L(mmu_init_done)
1108
1109L(not147):
1110#endif /* CONFIG_MVME147 */
1111
1112#ifdef CONFIG_MVME16x
1113
1114 is_not_mvme16x(L(not16x))
1115
1116 /*
1117 * On MVME16x we have already created kernel page tables for
1118 * 4MB of RAM at address 0, so now need to do a transparent
1119 * mapping of the top of memory space. Make it 0.5GByte for now.
1120 * Supervisor only access, so transparent mapping doesn't
1121 * clash with User code virtual address space.
1122 * this covers IO devices, PROM and SRAM. The PROM and SRAM
1123 * mapping is needed to allow 167Bug to run.
1124 * IO is in the range 0xfff00000 to 0xfffeffff.
1125 * PROM is 0xff800000->0xffbfffff and SRAM is
1126 * 0xffe00000->0xffe1ffff.
1127 */
1128
1129 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1130
1131 jbra L(mmu_init_done)
1132
1133L(not16x):
1134#endif /* CONFIG_MVME162 | CONFIG_MVME167 */
1135
1136#ifdef CONFIG_BVME6000
1137
1138 is_not_bvme6000(L(not6000))
1139
1140 /*
1141 * On BVME6000 we have already created kernel page tables for
1142 * 4MB of RAM at address 0, so now need to do a transparent
1143 * mapping of the top of memory space. Make it 0.5GByte for now,
1144 * so we can access on-board i/o areas.
1145 * Supervisor only access, so transparent mapping doesn't
1146 * clash with User code virtual address space.
1147 */
1148
1149 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1150
1151 jbra L(mmu_init_done)
1152
1153L(not6000):
1154#endif /* CONFIG_BVME6000 */
1155
1156/*
1157 * mmu_init_mac
1158 *
1159 * The Macintosh mappings are less clear.
1160 *
1161 * Even as of this writing, it is unclear how the
1162 * Macintosh mappings will be done. However, as
1163 * the first author of this code I'm proposing the
1164 * following model:
1165 *
1166 * Map the kernel (that's already done),
1167 * Map the I/O (on most machines that's the
1168 * 0x5000.0000 ... 0x5300.0000 range,
1169 * Map the video frame buffer using as few pages
1170 * as absolutely (this requirement mostly stems from
1171 * the fact that when the frame buffer is at
1172 * 0x0000.0000 then we know there is valid RAM just
1173 * above the screen that we don't want to waste!).
1174 *
1175 * By the way, if the frame buffer is at 0x0000.0000
1176 * then the Macintosh is known as an RBV based Mac.
1177 *
1178 * By the way 2, the code currently maps in a bunch of
1179 * regions. But I'd like to cut that out. (And move most
1180 * of the mappings up into the kernel proper ... or only
1181 * map what's necessary.)
1182 */
1183
1184#ifdef CONFIG_MAC
1185
1186L(mmu_init_mac):
1187
1188 is_not_mac(L(mmu_init_not_mac))
1189
1190 putc 'F'
1191
1192 is_not_040_or_060(1f)
1193
1194 moveq #_PAGE_NOCACHE_S,%d3
1195 jbra 2f
11961:
1197 moveq #_PAGE_NOCACHE030,%d3
11982:
1199 /*
1200 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1201 * we simply map the 4MB that contains the videomem
1202 */
1203
1204 movel #VIDEOMEMMASK,%d0
1205 andl %pc@(L(mac_videobase)),%d0
1206
1207 mmu_map #VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1208 /* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1209 mmu_map_eq #0x40000000,#0x02000000,%d3
1210 /* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1211 mmu_map_eq #0x50000000,#0x03000000,%d3
1212 /* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1213 mmu_map_tt #1,#0xf8000000,#0x08000000,%d3
1214
1215 jbra L(mmu_init_done)
1216
1217L(mmu_init_not_mac):
1218#endif
1219
1220#ifdef CONFIG_SUN3X
1221 is_not_sun3x(L(notsun3x))
1222
1223 /* oh, the pain.. We're gonna want the prom code after
1224 * starting the MMU, so we copy the mappings, translating
1225 * from 8k -> 4k pages as we go.
1226 */
1227
1228 /* copy maps from 0xfee00000 to 0xff000000 */
1229 movel #0xfee00000, %d0
1230 moveq #ROOT_INDEX_SHIFT, %d1
1231 lsrl %d1,%d0
1232 mmu_get_root_table_entry %d0
1233
1234 movel #0xfee00000, %d0
1235 moveq #PTR_INDEX_SHIFT, %d1
1236 lsrl %d1,%d0
1237 andl #PTR_TABLE_SIZE-1, %d0
1238 mmu_get_ptr_table_entry %a0,%d0
1239
1240 movel #0xfee00000, %d0
1241 moveq #PAGE_INDEX_SHIFT, %d1
1242 lsrl %d1,%d0
1243 andl #PAGE_TABLE_SIZE-1, %d0
1244 mmu_get_page_table_entry %a0,%d0
1245
1246 /* this is where the prom page table lives */
1247 movel 0xfefe00d4, %a1
1248 movel %a1@, %a1
1249
1250 movel #((0x200000 >> 13)-1), %d1
1251
12521:
1253 movel %a1@+, %d3
1254 movel %d3,%a0@+
1255 addl #0x1000,%d3
1256 movel %d3,%a0@+
1257
1258 dbra %d1,1b
1259
1260 /* setup tt1 for I/O */
1261 mmu_map_tt #1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1262 jbra L(mmu_init_done)
1263
1264L(notsun3x):
1265#endif
1266
1267#ifdef CONFIG_APOLLO
1268 is_not_apollo(L(notapollo))
1269
1270 putc 'P'
1271 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1272
1273L(notapollo):
1274 jbra L(mmu_init_done)
1275#endif
1276
1277L(mmu_init_done):
1278
1279 putc 'G'
1280 leds 0x8
1281
1282/*
1283 * mmu_fixup
1284 *
1285 * On the 040 class machines, all pages that are used for the
1286 * mmu have to be fixed up. According to Motorola, pages holding mmu
1287 * tables should be non-cacheable on a '040 and write-through on a
1288 * '060. But analysis of the reasons for this, and practical
1289 * experience, showed that write-through also works on a '040.
1290 *
1291 * Allocated memory so far goes from kernel_end to memory_start that
1292 * is used for all kind of tables, for that the cache attributes
1293 * are now fixed.
1294 */
1295L(mmu_fixup):
1296
1297 is_not_040_or_060(L(mmu_fixup_done))
1298
1299#ifdef MMU_NOCACHE_KERNEL
1300 jbra L(mmu_fixup_done)
1301#endif
1302
1303 /* first fix the page at the start of the kernel, that
1304 * contains also kernel_pg_dir.
1305 */
1306 movel %pc@(L(phys_kernel_start)),%d0
1307 subl #PAGE_OFFSET,%d0
1308 lea %pc@(_stext),%a0
1309 subl %d0,%a0
1310 mmu_fixup_page_mmu_cache %a0
1311
1312 movel %pc@(L(kernel_end)),%a0
1313 subl %d0,%a0
1314 movel %pc@(L(memory_start)),%a1
1315 subl %d0,%a1
1316 bra 2f
13171:
1318 mmu_fixup_page_mmu_cache %a0
1319 addw #PAGESIZE,%a0
13202:
1321 cmpl %a0,%a1
1322 jgt 1b
1323
1324L(mmu_fixup_done):
1325
1326#ifdef MMU_PRINT
1327 mmu_print
1328#endif
1329
1330/*
1331 * mmu_engage
1332 *
1333 * This chunk of code performs the gruesome task of engaging the MMU.
1334 * The reason its gruesome is because when the MMU becomes engaged it
1335 * maps logical addresses to physical addresses. The Program Counter
1336 * register is then passed through the MMU before the next instruction
1337 * is fetched (the instruction following the engage MMU instruction).
1338 * This may mean one of two things:
1339 * 1. The Program Counter falls within the logical address space of
1340 * the kernel of which there are two sub-possibilities:
1341 * A. The PC maps to the correct instruction (logical PC == physical
1342 * code location), or
1343 * B. The PC does not map through and the processor will read some
1344 * data (or instruction) which is not the logically next instr.
1345 * As you can imagine, A is good and B is bad.
1346 * Alternatively,
1347 * 2. The Program Counter does not map through the MMU. The processor
1348 * will take a Bus Error.
1349 * Clearly, 2 is bad.
1350 * It doesn't take a wiz kid to figure you want 1.A.
1351 * This code creates that possibility.
1352 * There are two possible 1.A. states (we now ignore the other above states):
1353 * A. The kernel is located at physical memory addressed the same as
1354 * the logical memory for the kernel, i.e., 0x01000.
1355 * B. The kernel is located some where else. e.g., 0x0400.0000
1356 *
1357 * Under some conditions the Macintosh can look like A or B.
1358 * [A friend and I once noted that Apple hardware engineers should be
1359 * wacked twice each day: once when they show up at work (as in, Whack!,
1360 * "This is for the screwy hardware we know you're going to design today."),
1361 * and also at the end of the day (as in, Whack! "I don't know what
1362 * you designed today, but I'm sure it wasn't good."). -- rst]
1363 *
1364 * This code works on the following premise:
1365 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1366 * then create a mapping for the kernel at logical 0x8000.0000 to
1367 * the physical location of the pc. And, create a transparent
1368 * translation register for the first 16 Meg. Then, after the MMU
1369 * is engaged, the PC can be moved up into the 0x8000.0000 range
1370 * and then the transparent translation can be turned off and then
1371 * the PC can jump to the correct logical location and it will be
1372 * home (finally). This is essentially the code that the Amiga used
1373 * to use. Now, it's generalized for all processors. Which means
1374 * that a fresh (but temporary) mapping has to be created. The mapping
1375 * is made in page 0 (an as of yet unused location -- except for the
1376 * stack!). This temporary mapping will only require 1 pointer table
1377 * and a single page table (it can map 256K).
1378 *
1379 * OK, alternatively, imagine that the Program Counter is not within
1380 * the first 16 Meg. Then, just use Transparent Translation registers
1381 * to do the right thing.
1382 *
1383 * Last, if _start is already at 0x01000, then there's nothing special
1384 * to do (in other words, in a degenerate case of the first case above,
1385 * do nothing).
1386 *
1387 * Let's do it.
1388 *
1389 *
1390 */
1391
1392 putc 'H'
1393
1394 mmu_engage
1395
1396/*
1397 * After this point no new memory is allocated and
1398 * the start of available memory is stored in availmem.
1399 * (The bootmem allocator requires now the physicall address.)
1400 */
1401
1402 movel L(memory_start),availmem
1403
1404#ifdef CONFIG_AMIGA
1405 is_not_amiga(1f)
1406 /* fixup the Amiga custom register location before printing */
1407 clrl L(custom)
14081:
1409#endif
1410
1411#ifdef CONFIG_ATARI
1412 is_not_atari(1f)
1413 /* fixup the Atari iobase register location before printing */
1414 movel #0xff000000,L(iobase)
14151:
1416#endif
1417
1418#ifdef CONFIG_MAC
1419 is_not_mac(1f)
1420 movel #~VIDEOMEMMASK,%d0
1421 andl L(mac_videobase),%d0
1422 addl #VIDEOMEMBASE,%d0
1423 movel %d0,L(mac_videobase)
1424#if defined(CONSOLE)
1425 movel %pc@(L(phys_kernel_start)),%d0
1426 subl #PAGE_OFFSET,%d0
1427 subl %d0,L(console_font)
1428 subl %d0,L(console_font_data)
1429#endif
1430#ifdef MAC_SERIAL_DEBUG
1431 orl #0x50000000,L(mac_sccbase)
1432#endif
14331:
1434#endif
1435
1436#ifdef CONFIG_HP300
1437 is_not_hp300(2f)
1438 /*
1439 * Fix up the iobase register to point to the new location of the LEDs.
1440 */
1441 movel #0xf0000000,L(iobase)
1442
1443 /*
1444 * Energise the FPU and caches.
1445 */
1446 is_040(1f)
1447 movel #0x60,0xf05f400c
1448 jbra 2f
1449
1450 /*
1451 * 040: slightly different, apparently.
1452 */
14531: movew #0,0xf05f400e
1454 movew #0x64,0xf05f400e
14552:
1456#endif
1457
1458#ifdef CONFIG_SUN3X
1459 is_not_sun3x(1f)
1460
1461 /* enable copro */
1462 oriw #0x4000,0x61000000
14631:
1464#endif
1465
1466#ifdef CONFIG_APOLLO
1467 is_not_apollo(1f)
1468
1469 /*
1470 * Fix up the iobase before printing
1471 */
1472 movel #0x80000000,L(iobase)
14731:
1474#endif
1475
1476 putc 'I'
1477 leds 0x10
1478
1479/*
1480 * Enable caches
1481 */
1482
1483 is_not_040_or_060(L(cache_not_680460))
1484
1485L(cache680460):
1486 .chip 68040
1487 nop
1488 cpusha %bc
1489 nop
1490
1491 is_060(L(cache68060))
1492
1493 movel #CC6_ENABLE_D+CC6_ENABLE_I,%d0
1494 /* MMU stuff works in copyback mode now, so enable the cache */
1495 movec %d0,%cacr
1496 jra L(cache_done)
1497
1498L(cache68060):
1499 movel #CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1500 /* MMU stuff works in copyback mode now, so enable the cache */
1501 movec %d0,%cacr
1502 /* enable superscalar dispatch in PCR */
1503 moveq #1,%d0
1504 .chip 68060
1505 movec %d0,%pcr
1506
1507 jbra L(cache_done)
1508L(cache_not_680460):
1509L(cache68030):
1510 .chip 68030
1511 movel #CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1512 movec %d0,%cacr
1513
1514 jra L(cache_done)
1515 .chip 68k
1516L(cache_done):
1517
1518 putc 'J'
1519
1520/*
1521 * Setup initial stack pointer
1522 */
1523 lea init_task,%curptr
1524 lea init_thread_union+THREAD_SIZE,%sp
1525
1526 putc 'K'
1527
1528 subl %a6,%a6 /* clear a6 for gdb */
1529
1530/*
1531 * The new 64bit printf support requires an early exception initialization.
1532 */
1533 jbsr base_trap_init
1534
1535/* jump to the kernel start */
1536
1537 putc '\n'
1538 leds 0x55
1539
1540 jbsr start_kernel
1541
1542/*
1543 * Find a tag record in the bootinfo structure
1544 * The bootinfo structure is located right after the kernel bss
1545 * Returns: d0: size (-1 if not found)
1546 * a0: data pointer (end-of-records if not found)
1547 */
1548func_start get_bi_record,%d1
1549
1550 movel ARG1,%d0
1551 lea %pc@(_end),%a0
15521: tstw %a0@(BIR_TAG)
1553 jeq 3f
1554 cmpw %a0@(BIR_TAG),%d0
1555 jeq 2f
1556 addw %a0@(BIR_SIZE),%a0
1557 jra 1b
15582: moveq #0,%d0
1559 movew %a0@(BIR_SIZE),%d0
1560 lea %a0@(BIR_DATA),%a0
1561 jra 4f
15623: moveq #-1,%d0
1563 lea %a0@(BIR_SIZE),%a0
15644:
1565func_return get_bi_record
1566
1567
1568/*
1569 * MMU Initialization Begins Here
1570 *
1571 * The structure of the MMU tables on the 68k machines
1572 * is thus:
1573 * Root Table
1574 * Logical addresses are translated through
1575 * a hierarchical translation mechanism where the high-order
1576 * seven bits of the logical address (LA) are used as an
1577 * index into the "root table." Each entry in the root
1578 * table has a bit which specifies if it's a valid pointer to a
1579 * pointer table. Each entry defines a 32KMeg range of memory.
1580 * If an entry is invalid then that logical range of 32M is
1581 * invalid and references to that range of memory (when the MMU
1582 * is enabled) will fault. If the entry is valid, then it does
1583 * one of two things. On 040/060 class machines, it points to
1584 * a pointer table which then describes more finely the memory
1585 * within that 32M range. On 020/030 class machines, a technique
1586 * called "early terminating descriptors" are used. This technique
1587 * allows an entire 32Meg to be described by a single entry in the
1588 * root table. Thus, this entry in the root table, contains the
1589 * physical address of the memory or I/O at the logical address
1590 * which the entry represents and it also contains the necessary
1591 * cache bits for this region.
1592 *
1593 * Pointer Tables
1594 * Per the Root Table, there will be one or more
1595 * pointer tables. Each pointer table defines a 32M range.
1596 * Not all of the 32M range need be defined. Again, the next
1597 * seven bits of the logical address are used an index into
1598 * the pointer table to point to page tables (if the pointer
1599 * is valid). There will undoubtedly be more than one
1600 * pointer table for the kernel because each pointer table
1601 * defines a range of only 32M. Valid pointer table entries
1602 * point to page tables, or are early terminating entries
1603 * themselves.
1604 *
1605 * Page Tables
1606 * Per the Pointer Tables, each page table entry points
1607 * to the physical page in memory that supports the logical
1608 * address that translates to the particular index.
1609 *
1610 * In short, the Logical Address gets translated as follows:
1611 * bits 31..26 - index into the Root Table
1612 * bits 25..18 - index into the Pointer Table
1613 * bits 17..12 - index into the Page Table
1614 * bits 11..0 - offset into a particular 4K page
1615 *
1616 * The algorithms which follows do one thing: they abstract
1617 * the MMU hardware. For example, there are three kinds of
1618 * cache settings that are relevant. Either, memory is
1619 * being mapped in which case it is either Kernel Code (or
1620 * the RamDisk) or it is MMU data. On the 030, the MMU data
1621 * option also describes the kernel. Or, I/O is being mapped
1622 * in which case it has its own kind of cache bits. There
1623 * are constants which abstract these notions from the code that
1624 * actually makes the call to map some range of memory.
1625 *
1626 *
1627 *
1628 */
1629
1630#ifdef MMU_PRINT
1631/*
1632 * mmu_print
1633 *
1634 * This algorithm will print out the current MMU mappings.
1635 *
1636 * Input:
1637 * %a5 points to the root table. Everything else is calculated
1638 * from this.
1639 */
1640
1641#define mmu_next_valid 0
1642#define mmu_start_logical 4
1643#define mmu_next_logical 8
1644#define mmu_start_physical 12
1645#define mmu_next_physical 16
1646
1647#define MMU_PRINT_INVALID -1
1648#define MMU_PRINT_VALID 1
1649#define MMU_PRINT_UNINITED 0
1650
1651#define putZc(z,n) jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1652
1653func_start mmu_print,%a0-%a6/%d0-%d7
1654
1655 movel %pc@(L(kernel_pgdir_ptr)),%a5
1656 lea %pc@(L(mmu_print_data)),%a0
1657 movel #MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1658
1659 is_not_040_or_060(mmu_030_print)
1660
1661mmu_040_print:
1662 puts "\nMMU040\n"
1663 puts "rp:"
1664 putn %a5
1665 putc '\n'
1666#if 0
1667 /*
1668 * The following #if/#endif block is a tight algorithm for dumping the 040
1669 * MMU Map in gory detail. It really isn't that practical unless the
1670 * MMU Map algorithm appears to go awry and you need to debug it at the
1671 * entry per entry level.
1672 */
1673 movel #ROOT_TABLE_SIZE,%d5
1674#if 0
1675 movel %a5@+,%d7 | Burn an entry to skip the kernel mappings,
1676 subql #1,%d5 | they (might) work
1677#endif
16781: tstl %d5
1679 jbeq mmu_print_done
1680 subq #1,%d5
1681 movel %a5@+,%d7
1682 btst #1,%d7
1683 jbeq 1b
1684
16852: putn %d7
1686 andil #0xFFFFFE00,%d7
1687 movel %d7,%a4
1688 movel #PTR_TABLE_SIZE,%d4
1689 putc ' '
16903: tstl %d4
1691 jbeq 11f
1692 subq #1,%d4
1693 movel %a4@+,%d7
1694 btst #1,%d7
1695 jbeq 3b
1696
16974: putn %d7
1698 andil #0xFFFFFF00,%d7
1699 movel %d7,%a3
1700 movel #PAGE_TABLE_SIZE,%d3
17015: movel #8,%d2
17026: tstl %d3
1703 jbeq 31f
1704 subq #1,%d3
1705 movel %a3@+,%d6
1706 btst #0,%d6
1707 jbeq 6b
17087: tstl %d2
1709 jbeq 8f
1710 subq #1,%d2
1711 putc ' '
1712 jbra 91f
17138: putc '\n'
1714 movel #8+1+8+1+1,%d2
17159: putc ' '
1716 dbra %d2,9b
1717 movel #7,%d2
171891: putn %d6
1719 jbra 6b
1720
172131: putc '\n'
1722 movel #8+1,%d2
172332: putc ' '
1724 dbra %d2,32b
1725 jbra 3b
1726
172711: putc '\n'
1728 jbra 1b
1729#endif /* MMU 040 Dumping code that's gory and detailed */
1730
1731 lea %pc@(kernel_pg_dir),%a5
1732 movel %a5,%a0 /* a0 has the address of the root table ptr */
1733 movel #0x00000000,%a4 /* logical address */
1734 moveql #0,%d0
173540:
1736 /* Increment the logical address and preserve in d5 */
1737 movel %a4,%d5
1738 addil #PAGESIZE<<13,%d5
1739 movel %a0@+,%d6
1740 btst #1,%d6
1741 jbne 41f
1742 jbsr mmu_print_tuple_invalidate
1743 jbra 48f
174441:
1745 movel #0,%d1
1746 andil #0xfffffe00,%d6
1747 movel %d6,%a1
174842:
1749 movel %a4,%d5
1750 addil #PAGESIZE<<6,%d5
1751 movel %a1@+,%d6
1752 btst #1,%d6
1753 jbne 43f
1754 jbsr mmu_print_tuple_invalidate
1755 jbra 47f
175643:
1757 movel #0,%d2
1758 andil #0xffffff00,%d6
1759 movel %d6,%a2
176044:
1761 movel %a4,%d5
1762 addil #PAGESIZE,%d5
1763 movel %a2@+,%d6
1764 btst #0,%d6
1765 jbne 45f
1766 jbsr mmu_print_tuple_invalidate
1767 jbra 46f
176845:
1769 moveml %d0-%d1,%sp@-
1770 movel %a4,%d0
1771 movel %d6,%d1
1772 andil #0xfffff4e0,%d1
1773 lea %pc@(mmu_040_print_flags),%a6
1774 jbsr mmu_print_tuple
1775 moveml %sp@+,%d0-%d1
177646:
1777 movel %d5,%a4
1778 addq #1,%d2
1779 cmpib #64,%d2
1780 jbne 44b
178147:
1782 movel %d5,%a4
1783 addq #1,%d1
1784 cmpib #128,%d1
1785 jbne 42b
178648:
1787 movel %d5,%a4 /* move to the next logical address */
1788 addq #1,%d0
1789 cmpib #128,%d0
1790 jbne 40b
1791
1792 .chip 68040
1793 movec %dtt1,%d0
1794 movel %d0,%d1
1795 andiw #0x8000,%d1 /* is it valid ? */
1796 jbeq 1f /* No, bail out */
1797
1798 movel %d0,%d1
1799 andil #0xff000000,%d1 /* Get the address */
1800 putn %d1
1801 puts "=="
1802 putn %d1
1803
1804 movel %d0,%d6
1805 jbsr mmu_040_print_flags_tt
18061:
1807 movec %dtt0,%d0
1808 movel %d0,%d1
1809 andiw #0x8000,%d1 /* is it valid ? */
1810 jbeq 1f /* No, bail out */
1811
1812 movel %d0,%d1
1813 andil #0xff000000,%d1 /* Get the address */
1814 putn %d1
1815 puts "=="
1816 putn %d1
1817
1818 movel %d0,%d6
1819 jbsr mmu_040_print_flags_tt
18201:
1821 .chip 68k
1822
1823 jbra mmu_print_done
1824
1825mmu_040_print_flags:
1826 btstl #10,%d6
1827 putZc(' ','G') /* global bit */
1828 btstl #7,%d6
1829 putZc(' ','S') /* supervisor bit */
1830mmu_040_print_flags_tt:
1831 btstl #6,%d6
1832 jbne 3f
1833 putc 'C'
1834 btstl #5,%d6
1835 putZc('w','c') /* write through or copy-back */
1836 jbra 4f
18373:
1838 putc 'N'
1839 btstl #5,%d6
1840 putZc('s',' ') /* serialized non-cacheable, or non-cacheable */
18414:
1842 rts
1843
1844mmu_030_print_flags:
1845 btstl #6,%d6
1846 putZc('C','I') /* write through or copy-back */
1847 rts
1848
1849mmu_030_print:
1850 puts "\nMMU030\n"
1851 puts "\nrp:"
1852 putn %a5
1853 putc '\n'
1854 movel %a5,%d0
1855 andil #0xfffffff0,%d0
1856 movel %d0,%a0
1857 movel #0x00000000,%a4 /* logical address */
1858 movel #0,%d0
185930:
1860 movel %a4,%d5
1861 addil #PAGESIZE<<13,%d5
1862 movel %a0@+,%d6
1863 btst #1,%d6 /* is it a table ptr? */
1864 jbne 31f /* yes */
1865 btst #0,%d6 /* is it early terminating? */
1866 jbeq 1f /* no */
1867 jbsr mmu_030_print_helper
1868 jbra 38f
18691:
1870 jbsr mmu_print_tuple_invalidate
1871 jbra 38f
187231:
1873 movel #0,%d1
1874 andil #0xfffffff0,%d6
1875 movel %d6,%a1
187632:
1877 movel %a4,%d5
1878 addil #PAGESIZE<<6,%d5
1879 movel %a1@+,%d6
1880 btst #1,%d6 /* is it a table ptr? */
1881 jbne 33f /* yes */
1882 btst #0,%d6 /* is it a page descriptor? */
1883 jbeq 1f /* no */
1884 jbsr mmu_030_print_helper
1885 jbra 37f
18861:
1887 jbsr mmu_print_tuple_invalidate
1888 jbra 37f
188933:
1890 movel #0,%d2
1891 andil #0xfffffff0,%d6
1892 movel %d6,%a2
189334:
1894 movel %a4,%d5
1895 addil #PAGESIZE,%d5
1896 movel %a2@+,%d6
1897 btst #0,%d6
1898 jbne 35f
1899 jbsr mmu_print_tuple_invalidate
1900 jbra 36f
190135:
1902 jbsr mmu_030_print_helper
190336:
1904 movel %d5,%a4
1905 addq #1,%d2
1906 cmpib #64,%d2
1907 jbne 34b
190837:
1909 movel %d5,%a4
1910 addq #1,%d1
1911 cmpib #128,%d1
1912 jbne 32b
191338:
1914 movel %d5,%a4 /* move to the next logical address */
1915 addq #1,%d0
1916 cmpib #128,%d0
1917 jbne 30b
1918
1919mmu_print_done:
1920 puts "\n\n"
1921
1922func_return mmu_print
1923
1924
1925mmu_030_print_helper:
1926 moveml %d0-%d1,%sp@-
1927 movel %a4,%d0
1928 movel %d6,%d1
1929 lea %pc@(mmu_030_print_flags),%a6
1930 jbsr mmu_print_tuple
1931 moveml %sp@+,%d0-%d1
1932 rts
1933
1934mmu_print_tuple_invalidate:
1935 moveml %a0/%d7,%sp@-
1936
1937 lea %pc@(L(mmu_print_data)),%a0
1938 tstl %a0@(mmu_next_valid)
1939 jbmi mmu_print_tuple_invalidate_exit
1940
1941 movel #MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1942
1943 putn %a4
1944
1945 puts "##\n"
1946
1947mmu_print_tuple_invalidate_exit:
1948 moveml %sp@+,%a0/%d7
1949 rts
1950
1951
1952mmu_print_tuple:
1953 moveml %d0-%d7/%a0,%sp@-
1954
1955 lea %pc@(L(mmu_print_data)),%a0
1956
1957 tstl %a0@(mmu_next_valid)
1958 jble mmu_print_tuple_print
1959
1960 cmpl %a0@(mmu_next_physical),%d1
1961 jbeq mmu_print_tuple_increment
1962
1963mmu_print_tuple_print:
1964 putn %d0
1965 puts "->"
1966 putn %d1
1967
1968 movel %d1,%d6
1969 jbsr %a6@
1970
1971mmu_print_tuple_record:
1972 movel #MMU_PRINT_VALID,%a0@(mmu_next_valid)
1973
1974 movel %d1,%a0@(mmu_next_physical)
1975
1976mmu_print_tuple_increment:
1977 movel %d5,%d7
1978 subl %a4,%d7
1979 addl %d7,%a0@(mmu_next_physical)
1980
1981mmu_print_tuple_exit:
1982 moveml %sp@+,%d0-%d7/%a0
1983 rts
1984
1985mmu_print_machine_cpu_types:
1986 puts "machine: "
1987
1988 is_not_amiga(1f)
1989 puts "amiga"
1990 jbra 9f
19911:
1992 is_not_atari(2f)
1993 puts "atari"
1994 jbra 9f
19952:
1996 is_not_mac(3f)
1997 puts "macintosh"
1998 jbra 9f
19993: puts "unknown"
20009: putc '\n'
2001
2002 puts "cputype: 0"
2003 is_not_060(1f)
2004 putc '6'
2005 jbra 9f
20061:
2007 is_not_040_or_060(2f)
2008 putc '4'
2009 jbra 9f
20102: putc '3'
20119: putc '0'
2012 putc '\n'
2013
2014 rts
2015#endif /* MMU_PRINT */
2016
2017/*
2018 * mmu_map_tt
2019 *
2020 * This is a specific function which works on all 680x0 machines.
2021 * On 030, 040 & 060 it will attempt to use Transparent Translation
2022 * registers (tt1).
2023 * On 020 it will call the standard mmu_map which will use early
2024 * terminating descriptors.
2025 */
2026func_start mmu_map_tt,%d0/%d1/%a0,4
2027
2028 dputs "mmu_map_tt:"
2029 dputn ARG1
2030 dputn ARG2
2031 dputn ARG3
2032 dputn ARG4
2033 dputc '\n'
2034
2035 is_020(L(do_map))
2036
2037 /* Extract the highest bit set
2038 */
2039 bfffo ARG3{#0,#32},%d1
2040 cmpw #8,%d1
2041 jcc L(do_map)
2042
2043 /* And get the mask
2044 */
2045 moveq #-1,%d0
2046 lsrl %d1,%d0
2047 lsrl #1,%d0
2048
2049 /* Mask the address
2050 */
2051 movel %d0,%d1
2052 notl %d1
2053 andl ARG2,%d1
2054
2055 /* Generate the upper 16bit of the tt register
2056 */
2057 lsrl #8,%d0
2058 orl %d0,%d1
2059 clrw %d1
2060
2061 is_040_or_060(L(mmu_map_tt_040))
2062
2063 /* set 030 specific bits (read/write access for supervisor mode
2064 * (highest function code set, lower two bits masked))
2065 */
2066 orw #TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2067 movel ARG4,%d0
2068 btst #6,%d0
2069 jeq 1f
2070 orw #TTR_CI,%d1
2071
20721: lea STACK,%a0
2073 dputn %d1
2074 movel %d1,%a0@
2075 .chip 68030
2076 tstl ARG1
2077 jne 1f
2078 pmove %a0@,%tt0
2079 jra 2f
20801: pmove %a0@,%tt1
20812: .chip 68k
2082 jra L(mmu_map_tt_done)
2083
2084 /* set 040 specific bits
2085 */
2086L(mmu_map_tt_040):
2087 orw #TTR_ENABLE+TTR_KERNELMODE,%d1
2088 orl ARG4,%d1
2089 dputn %d1
2090
2091 .chip 68040
2092 tstl ARG1
2093 jne 1f
2094 movec %d1,%itt0
2095 movec %d1,%dtt0
2096 jra 2f
20971: movec %d1,%itt1
2098 movec %d1,%dtt1
20992: .chip 68k
2100
2101 jra L(mmu_map_tt_done)
2102
2103L(do_map):
2104 mmu_map_eq ARG2,ARG3,ARG4
2105
2106L(mmu_map_tt_done):
2107
2108func_return mmu_map_tt
2109
2110/*
2111 * mmu_map
2112 *
2113 * This routine will map a range of memory using a pointer
2114 * table and allocating the pages on the fly from the kernel.
2115 * The pointer table does not have to be already linked into
2116 * the root table, this routine will do that if necessary.
2117 *
2118 * NOTE
2119 * This routine will assert failure and use the serial_putc
2120 * routines in the case of a run-time error. For example,
2121 * if the address is already mapped.
2122 *
2123 * NOTE-2
2124 * This routine will use early terminating descriptors
2125 * where possible for the 68020+68851 and 68030 type
2126 * processors.
2127 */
2128func_start mmu_map,%d0-%d4/%a0-%a4
2129
2130 dputs "\nmmu_map:"
2131 dputn ARG1
2132 dputn ARG2
2133 dputn ARG3
2134 dputn ARG4
2135 dputc '\n'
2136
2137 /* Get logical address and round it down to 256KB
2138 */
2139 movel ARG1,%d0
2140 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2141 movel %d0,%a3
2142
2143 /* Get the end address
2144 */
2145 movel ARG1,%a4
2146 addl ARG3,%a4
2147 subql #1,%a4
2148
2149 /* Get physical address and round it down to 256KB
2150 */
2151 movel ARG2,%d0
2152 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2153 movel %d0,%a2
2154
2155 /* Add page attributes to the physical address
2156 */
2157 movel ARG4,%d0
2158 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2159 addw %d0,%a2
2160
2161 dputn %a2
2162 dputn %a3
2163 dputn %a4
2164
2165 is_not_040_or_060(L(mmu_map_030))
2166
2167 addw #_PAGE_GLOBAL040,%a2
2168/*
2169 * MMU 040 & 060 Support
2170 *
2171 * The MMU usage for the 040 and 060 is different enough from
2172 * the 030 and 68851 that there is separate code. This comment
2173 * block describes the data structures and algorithms built by
2174 * this code.
2175 *
2176 * The 040 does not support early terminating descriptors, as
2177 * the 030 does. Therefore, a third level of table is needed
2178 * for the 040, and that would be the page table. In Linux,
2179 * page tables are allocated directly from the memory above the
2180 * kernel.
2181 *
2182 */
2183
2184L(mmu_map_040):
2185 /* Calculate the offset into the root table
2186 */
2187 movel %a3,%d0
2188 moveq #ROOT_INDEX_SHIFT,%d1
2189 lsrl %d1,%d0
2190 mmu_get_root_table_entry %d0
2191
2192 /* Calculate the offset into the pointer table
2193 */
2194 movel %a3,%d0
2195 moveq #PTR_INDEX_SHIFT,%d1
2196 lsrl %d1,%d0
2197 andl #PTR_TABLE_SIZE-1,%d0
2198 mmu_get_ptr_table_entry %a0,%d0
2199
2200 /* Calculate the offset into the page table
2201 */
2202 movel %a3,%d0
2203 moveq #PAGE_INDEX_SHIFT,%d1
2204 lsrl %d1,%d0
2205 andl #PAGE_TABLE_SIZE-1,%d0
2206 mmu_get_page_table_entry %a0,%d0
2207
2208 /* The page table entry must not no be busy
2209 */
2210 tstl %a0@
2211 jne L(mmu_map_error)
2212
2213 /* Do the mapping and advance the pointers
2214 */
2215 movel %a2,%a0@
22162:
2217 addw #PAGESIZE,%a2
2218 addw #PAGESIZE,%a3
2219
2220 /* Ready with mapping?
2221 */
2222 lea %a3@(-1),%a0
2223 cmpl %a0,%a4
2224 jhi L(mmu_map_040)
2225 jra L(mmu_map_done)
2226
2227L(mmu_map_030):
2228 /* Calculate the offset into the root table
2229 */
2230 movel %a3,%d0
2231 moveq #ROOT_INDEX_SHIFT,%d1
2232 lsrl %d1,%d0
2233 mmu_get_root_table_entry %d0
2234
2235 /* Check if logical address 32MB aligned,
2236 * so we can try to map it once
2237 */
2238 movel %a3,%d0
2239 andl #(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2240 jne 1f
2241
2242 /* Is there enough to map for 32MB at once
2243 */
2244 lea %a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2245 cmpl %a1,%a4
2246 jcs 1f
2247
2248 addql #1,%a1
2249
2250 /* The root table entry must not no be busy
2251 */
2252 tstl %a0@
2253 jne L(mmu_map_error)
2254
2255 /* Do the mapping and advance the pointers
2256 */
2257 dputs "early term1"
2258 dputn %a2
2259 dputn %a3
2260 dputn %a1
2261 dputc '\n'
2262 movel %a2,%a0@
2263
2264 movel %a1,%a3
2265 lea %a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2266 jra L(mmu_mapnext_030)
22671:
2268 /* Calculate the offset into the pointer table
2269 */
2270 movel %a3,%d0
2271 moveq #PTR_INDEX_SHIFT,%d1
2272 lsrl %d1,%d0
2273 andl #PTR_TABLE_SIZE-1,%d0
2274 mmu_get_ptr_table_entry %a0,%d0
2275
2276 /* The pointer table entry must not no be busy
2277 */
2278 tstl %a0@
2279 jne L(mmu_map_error)
2280
2281 /* Do the mapping and advance the pointers
2282 */
2283 dputs "early term2"
2284 dputn %a2
2285 dputn %a3
2286 dputc '\n'
2287 movel %a2,%a0@
2288
2289 addl #PAGE_TABLE_SIZE*PAGESIZE,%a2
2290 addl #PAGE_TABLE_SIZE*PAGESIZE,%a3
2291
2292L(mmu_mapnext_030):
2293 /* Ready with mapping?
2294 */
2295 lea %a3@(-1),%a0
2296 cmpl %a0,%a4
2297 jhi L(mmu_map_030)
2298 jra L(mmu_map_done)
2299
2300L(mmu_map_error):
2301
2302 dputs "mmu_map error:"
2303 dputn %a2
2304 dputn %a3
2305 dputc '\n'
2306
2307L(mmu_map_done):
2308
2309func_return mmu_map
2310
2311/*
2312 * mmu_fixup
2313 *
2314 * On the 040 class machines, all pages that are used for the
2315 * mmu have to be fixed up.
2316 */
2317
2318func_start mmu_fixup_page_mmu_cache,%d0/%a0
2319
2320 dputs "mmu_fixup_page_mmu_cache"
2321 dputn ARG1
2322
2323 /* Calculate the offset into the root table
2324 */
2325 movel ARG1,%d0
2326 moveq #ROOT_INDEX_SHIFT,%d1
2327 lsrl %d1,%d0
2328 mmu_get_root_table_entry %d0
2329
2330 /* Calculate the offset into the pointer table
2331 */
2332 movel ARG1,%d0
2333 moveq #PTR_INDEX_SHIFT,%d1
2334 lsrl %d1,%d0
2335 andl #PTR_TABLE_SIZE-1,%d0
2336 mmu_get_ptr_table_entry %a0,%d0
2337
2338 /* Calculate the offset into the page table
2339 */
2340 movel ARG1,%d0
2341 moveq #PAGE_INDEX_SHIFT,%d1
2342 lsrl %d1,%d0
2343 andl #PAGE_TABLE_SIZE-1,%d0
2344 mmu_get_page_table_entry %a0,%d0
2345
2346 movel %a0@,%d0
2347 andil #_CACHEMASK040,%d0
2348 orl %pc@(m68k_pgtable_cachemode),%d0
2349 movel %d0,%a0@
2350
2351 dputc '\n'
2352
2353func_return mmu_fixup_page_mmu_cache
2354
2355/*
2356 * mmu_temp_map
2357 *
2358 * create a temporary mapping to enable the mmu,
2359 * this we don't need any transparation translation tricks.
2360 */
2361
2362func_start mmu_temp_map,%d0/%d1/%a0/%a1
2363
2364 dputs "mmu_temp_map"
2365 dputn ARG1
2366 dputn ARG2
2367 dputc '\n'
2368
2369 lea %pc@(L(temp_mmap_mem)),%a1
2370
2371 /* Calculate the offset in the root table
2372 */
2373 movel ARG2,%d0
2374 moveq #ROOT_INDEX_SHIFT,%d1
2375 lsrl %d1,%d0
2376 mmu_get_root_table_entry %d0
2377
2378 /* Check if the table is temporary allocated, so we have to reuse it
2379 */
2380 movel %a0@,%d0
2381 cmpl %pc@(L(memory_start)),%d0
2382 jcc 1f
2383
2384 /* Temporary allocate a ptr table and insert it into the root table
2385 */
2386 movel %a1@,%d0
2387 addl #PTR_TABLE_SIZE*4,%a1@
2388 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2389 movel %d0,%a0@
2390 dputs " (new)"
23911:
2392 dputn %d0
2393 /* Mask the root table entry for the ptr table
2394 */
2395 andw #-ROOT_TABLE_SIZE,%d0
2396 movel %d0,%a0
2397
2398 /* Calculate the offset into the pointer table
2399 */
2400 movel ARG2,%d0
2401 moveq #PTR_INDEX_SHIFT,%d1
2402 lsrl %d1,%d0
2403 andl #PTR_TABLE_SIZE-1,%d0
2404 lea %a0@(%d0*4),%a0
2405 dputn %a0
2406
2407 /* Check if a temporary page table is already allocated
2408 */
2409 movel %a0@,%d0
2410 jne 1f
2411
2412 /* Temporary allocate a page table and insert it into the ptr table
2413 */
2414 movel %a1@,%d0
2415 /* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2416 alignment restriction for pointer tables on the '0[46]0. */
2417 addl #512,%a1@
2418 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2419 movel %d0,%a0@
2420 dputs " (new)"
24211:
2422 dputn %d0
2423 /* Mask the ptr table entry for the page table
2424 */
2425 andw #-PTR_TABLE_SIZE,%d0
2426 movel %d0,%a0
2427
2428 /* Calculate the offset into the page table
2429 */
2430 movel ARG2,%d0
2431 moveq #PAGE_INDEX_SHIFT,%d1
2432 lsrl %d1,%d0
2433 andl #PAGE_TABLE_SIZE-1,%d0
2434 lea %a0@(%d0*4),%a0
2435 dputn %a0
2436
2437 /* Insert the address into the page table
2438 */
2439 movel ARG1,%d0
2440 andw #-PAGESIZE,%d0
2441 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2442 movel %d0,%a0@
2443 dputn %d0
2444
2445 dputc '\n'
2446
2447func_return mmu_temp_map
2448
2449func_start mmu_engage,%d0-%d2/%a0-%a3
2450
2451 moveq #ROOT_TABLE_SIZE-1,%d0
2452 /* Temporarily use a different root table. */
2453 lea %pc@(L(kernel_pgdir_ptr)),%a0
2454 movel %a0@,%a2
2455 movel %pc@(L(memory_start)),%a1
2456 movel %a1,%a0@
2457 movel %a2,%a0
24581:
2459 movel %a0@+,%a1@+
2460 dbra %d0,1b
2461
2462 lea %pc@(L(temp_mmap_mem)),%a0
2463 movel %a1,%a0@
2464
2465 movew #PAGESIZE-1,%d0
24661:
2467 clrl %a1@+
2468 dbra %d0,1b
2469
2470 lea %pc@(1b),%a0
2471 movel #1b,%a1
2472 /* Skip temp mappings if phys == virt */
2473 cmpl %a0,%a1
2474 jeq 1f
2475
2476 mmu_temp_map %a0,%a0
2477 mmu_temp_map %a0,%a1
2478
2479 addw #PAGESIZE,%a0
2480 addw #PAGESIZE,%a1
2481 mmu_temp_map %a0,%a0
2482 mmu_temp_map %a0,%a1
24831:
2484 movel %pc@(L(memory_start)),%a3
2485 movel %pc@(L(phys_kernel_start)),%d2
2486
2487 is_not_040_or_060(L(mmu_engage_030))
2488
2489L(mmu_engage_040):
2490 .chip 68040
2491 nop
2492 cinva %bc
2493 nop
2494 pflusha
2495 nop
2496 movec %a3,%srp
2497 movel #TC_ENABLE+TC_PAGE4K,%d0
2498 movec %d0,%tc /* enable the MMU */
2499 jmp 1f:l
25001: nop
2501 movec %a2,%srp
2502 nop
2503 cinva %bc
2504 nop
2505 pflusha
2506 .chip 68k
2507 jra L(mmu_engage_cleanup)
2508
2509L(mmu_engage_030_temp):
2510 .space 12
2511L(mmu_engage_030):
2512 .chip 68030
2513 lea %pc@(L(mmu_engage_030_temp)),%a0
2514 movel #0x80000002,%a0@
2515 movel %a3,%a0@(4)
2516 movel #0x0808,%d0
2517 movec %d0,%cacr
2518 pmove %a0@,%srp
2519 pflusha
2520 /*
2521 * enable,super root enable,4096 byte pages,7 bit root index,
2522 * 7 bit pointer index, 6 bit page table index.
2523 */
2524 movel #0x82c07760,%a0@(8)
2525 pmove %a0@(8),%tc /* enable the MMU */
2526 jmp 1f:l
25271: movel %a2,%a0@(4)
2528 movel #0x0808,%d0
2529 movec %d0,%cacr
2530 pmove %a0@,%srp
2531 pflusha
2532 .chip 68k
2533
2534L(mmu_engage_cleanup):
2535 subl #PAGE_OFFSET,%d2
2536 subl %d2,%a2
2537 movel %a2,L(kernel_pgdir_ptr)
2538 subl %d2,%fp
2539 subl %d2,%sp
2540 subl %d2,ARG0
2541
2542func_return mmu_engage
2543
2544func_start mmu_get_root_table_entry,%d0/%a1
2545
2546#if 0
2547 dputs "mmu_get_root_table_entry:"
2548 dputn ARG1
2549 dputs " ="
2550#endif
2551
2552 movel %pc@(L(kernel_pgdir_ptr)),%a0
2553 tstl %a0
2554 jne 2f
2555
2556 dputs "\nmmu_init:"
2557
2558 /* Find the start of free memory, get_bi_record does this for us,
2559 * as the bootinfo structure is located directly behind the kernel
2560 * and and we simply search for the last entry.
2561 */
2562 get_bi_record BI_LAST
2563 addw #PAGESIZE-1,%a0
2564 movel %a0,%d0
2565 andw #-PAGESIZE,%d0
2566
2567 dputn %d0
2568
2569 lea %pc@(L(memory_start)),%a0
2570 movel %d0,%a0@
2571 lea %pc@(L(kernel_end)),%a0
2572 movel %d0,%a0@
2573
2574 /* we have to return the first page at _stext since the init code
2575 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2576 * page is used for further ptr tables in get_ptr_table.
2577 */
2578 lea %pc@(_stext),%a0
2579 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2580 movel %a0,%a1@
2581 addl #ROOT_TABLE_SIZE*4,%a1@
2582
2583 lea %pc@(L(mmu_num_pointer_tables)),%a1
2584 addql #1,%a1@
2585
2586 /* clear the page
2587 */
2588 movel %a0,%a1
2589 movew #PAGESIZE/4-1,%d0
25901:
2591 clrl %a1@+
2592 dbra %d0,1b
2593
2594 lea %pc@(L(kernel_pgdir_ptr)),%a1
2595 movel %a0,%a1@
2596
2597 dputn %a0
2598 dputc '\n'
25992:
2600 movel ARG1,%d0
2601 lea %a0@(%d0*4),%a0
2602
2603#if 0
2604 dputn %a0
2605 dputc '\n'
2606#endif
2607
2608func_return mmu_get_root_table_entry
2609
2610
2611
2612func_start mmu_get_ptr_table_entry,%d0/%a1
2613
2614#if 0
2615 dputs "mmu_get_ptr_table_entry:"
2616 dputn ARG1
2617 dputn ARG2
2618 dputs " ="
2619#endif
2620
2621 movel ARG1,%a0
2622 movel %a0@,%d0
2623 jne 2f
2624
2625 /* Keep track of the number of pointer tables we use
2626 */
2627 dputs "\nmmu_get_new_ptr_table:"
2628 lea %pc@(L(mmu_num_pointer_tables)),%a0
2629 movel %a0@,%d0
2630 addql #1,%a0@
2631
2632 /* See if there is a free pointer table in our cache of pointer tables
2633 */
2634 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2635 andw #7,%d0
2636 jne 1f
2637
2638 /* Get a new pointer table page from above the kernel memory
2639 */
2640 get_new_page
2641 movel %a0,%a1@
26421:
2643 /* There is an unused pointer table in our cache... use it
2644 */
2645 movel %a1@,%d0
2646 addl #PTR_TABLE_SIZE*4,%a1@
2647
2648 dputn %d0
2649 dputc '\n'
2650
2651 /* Insert the new pointer table into the root table
2652 */
2653 movel ARG1,%a0
2654 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2655 movel %d0,%a0@
26562:
2657 /* Extract the pointer table entry
2658 */
2659 andw #-PTR_TABLE_SIZE,%d0
2660 movel %d0,%a0
2661 movel ARG2,%d0
2662 lea %a0@(%d0*4),%a0
2663
2664#if 0
2665 dputn %a0
2666 dputc '\n'
2667#endif
2668
2669func_return mmu_get_ptr_table_entry
2670
2671
2672func_start mmu_get_page_table_entry,%d0/%a1
2673
2674#if 0
2675 dputs "mmu_get_page_table_entry:"
2676 dputn ARG1
2677 dputn ARG2
2678 dputs " ="
2679#endif
2680
2681 movel ARG1,%a0
2682 movel %a0@,%d0
2683 jne 2f
2684
2685 /* If the page table entry doesn't exist, we allocate a complete new
2686 * page and use it as one continues big page table which can cover
2687 * 4MB of memory, nearly almost all mappings have that alignment.
2688 */
2689 get_new_page
2690 addw #_PAGE_TABLE+_PAGE_ACCESSED,%a0
2691
2692 /* align pointer table entry for a page of page tables
2693 */
2694 movel ARG1,%d0
2695 andw #-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2696 movel %d0,%a1
2697
2698 /* Insert the page tables into the pointer entries
2699 */
2700 moveq #PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
27011:
2702 movel %a0,%a1@+
2703 lea %a0@(PAGE_TABLE_SIZE*4),%a0
2704 dbra %d0,1b
2705
2706 /* Now we can get the initialized pointer table entry
2707 */
2708 movel ARG1,%a0
2709 movel %a0@,%d0
27102:
2711 /* Extract the page table entry
2712 */
2713 andw #-PAGE_TABLE_SIZE,%d0
2714 movel %d0,%a0
2715 movel ARG2,%d0
2716 lea %a0@(%d0*4),%a0
2717
2718#if 0
2719 dputn %a0
2720 dputc '\n'
2721#endif
2722
2723func_return mmu_get_page_table_entry
2724
2725/*
2726 * get_new_page
2727 *
2728 * Return a new page from the memory start and clear it.
2729 */
2730func_start get_new_page,%d0/%a1
2731
2732 dputs "\nget_new_page:"
2733
2734 /* allocate the page and adjust memory_start
2735 */
2736 lea %pc@(L(memory_start)),%a0
2737 movel %a0@,%a1
2738 addl #PAGESIZE,%a0@
2739
2740 /* clear the new page
2741 */
2742 movel %a1,%a0
2743 movew #PAGESIZE/4-1,%d0
27441:
2745 clrl %a1@+
2746 dbra %d0,1b
2747
2748 dputn %a0
2749 dputc '\n'
2750
2751func_return get_new_page
2752
2753
2754
2755/*
2756 * Debug output support
2757 * Atarians have a choice between the parallel port, the serial port
2758 * from the MFP or a serial port of the SCC
2759 */
2760
2761#ifdef CONFIG_MAC
2762
2763L(scc_initable_mac):
2764 .byte 9,12 /* Reset */
2765 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2766 .byte 3,0xc0 /* receiver: 8 bpc */
2767 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2768 .byte 9,0 /* no interrupts */
2769 .byte 10,0 /* NRZ */
2770 .byte 11,0x50 /* use baud rate generator */
2771 .byte 12,10,13,0 /* 9600 baud */
2772 .byte 14,1 /* Baud rate generator enable */
2773 .byte 3,0xc1 /* enable receiver */
2774 .byte 5,0xea /* enable transmitter */
2775 .byte -1
2776 .even
2777#endif
2778
2779#ifdef CONFIG_ATARI
2780/* #define USE_PRINTER */
2781/* #define USE_SCC_B */
2782/* #define USE_SCC_A */
2783#define USE_MFP
2784
2785#if defined(USE_SCC_A) || defined(USE_SCC_B)
2786#define USE_SCC
2787/* Initialisation table for SCC */
2788L(scc_initable):
2789 .byte 9,12 /* Reset */
2790 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2791 .byte 3,0xc0 /* receiver: 8 bpc */
2792 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2793 .byte 9,0 /* no interrupts */
2794 .byte 10,0 /* NRZ */
2795 .byte 11,0x50 /* use baud rate generator */
2796 .byte 12,24,13,0 /* 9600 baud */
2797 .byte 14,2,14,3 /* use master clock for BRG, enable */
2798 .byte 3,0xc1 /* enable receiver */
2799 .byte 5,0xea /* enable transmitter */
2800 .byte -1
2801 .even
2802#endif
2803
2804#ifdef USE_PRINTER
2805
2806LPSG_SELECT = 0xff8800
2807LPSG_READ = 0xff8800
2808LPSG_WRITE = 0xff8802
2809LPSG_IO_A = 14
2810LPSG_IO_B = 15
2811LPSG_CONTROL = 7
2812LSTMFP_GPIP = 0xfffa01
2813LSTMFP_DDR = 0xfffa05
2814LSTMFP_IERB = 0xfffa09
2815
2816#elif defined(USE_SCC_B)
2817
2818LSCC_CTRL = 0xff8c85
2819LSCC_DATA = 0xff8c87
2820
2821#elif defined(USE_SCC_A)
2822
2823LSCC_CTRL = 0xff8c81
2824LSCC_DATA = 0xff8c83
2825
2826#elif defined(USE_MFP)
2827
2828LMFP_UCR = 0xfffa29
2829LMFP_TDCDR = 0xfffa1d
2830LMFP_TDDR = 0xfffa25
2831LMFP_TSR = 0xfffa2d
2832LMFP_UDR = 0xfffa2f
2833
2834#endif
2835#endif /* CONFIG_ATARI */
2836
2837/*
2838 * Serial port output support.
2839 */
2840
2841/*
2842 * Initialize serial port hardware for 9600/8/1
2843 */
2844func_start serial_init,%d0/%d1/%a0/%a1
2845 /*
2846 * Some of the register usage that follows
2847 * CONFIG_AMIGA
2848 * a0 = pointer to boot info record
2849 * d0 = boot info offset
2850 * CONFIG_ATARI
2851 * a0 = address of SCC
2852 * a1 = Liobase address/address of scc_initable
2853 * d0 = init data for serial port
2854 * CONFIG_MAC
2855 * a0 = address of SCC
2856 * a1 = address of scc_initable_mac
2857 * d0 = init data for serial port
2858 */
2859
2860#ifdef CONFIG_AMIGA
2861#define SERIAL_DTR 7
2862#define SERIAL_CNTRL CIABBASE+C_PRA
2863
2864 is_not_amiga(1f)
2865 lea %pc@(L(custom)),%a0
2866 movel #-ZTWOBASE,%a0@
2867 bclr #SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2868 get_bi_record BI_AMIGA_SERPER
2869 movew %a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2870| movew #61,CUSTOMBASE+C_SERPER-ZTWOBASE
28711:
2872#endif
2873#ifdef CONFIG_ATARI
2874 is_not_atari(4f)
2875 movel %pc@(L(iobase)),%a1
2876#if defined(USE_PRINTER)
2877 bclr #0,%a1@(LSTMFP_IERB)
2878 bclr #0,%a1@(LSTMFP_DDR)
2879 moveb #LPSG_CONTROL,%a1@(LPSG_SELECT)
2880 moveb #0xff,%a1@(LPSG_WRITE)
2881 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
2882 clrb %a1@(LPSG_WRITE)
2883 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
2884 moveb %a1@(LPSG_READ),%d0
2885 bset #5,%d0
2886 moveb %d0,%a1@(LPSG_WRITE)
2887#elif defined(USE_SCC)
2888 lea %a1@(LSCC_CTRL),%a0
2889 lea %pc@(L(scc_initable)),%a1
28902: moveb %a1@+,%d0
2891 jmi 3f
2892 moveb %d0,%a0@
2893 moveb %a1@+,%a0@
2894 jra 2b
28953: clrb %a0@
2896#elif defined(USE_MFP)
2897 bclr #1,%a1@(LMFP_TSR)
2898 moveb #0x88,%a1@(LMFP_UCR)
2899 andb #0x70,%a1@(LMFP_TDCDR)
2900 moveb #2,%a1@(LMFP_TDDR)
2901 orb #1,%a1@(LMFP_TDCDR)
2902 bset #1,%a1@(LMFP_TSR)
2903#endif
2904 jra L(serial_init_done)
29054:
2906#endif
2907#ifdef CONFIG_MAC
2908 is_not_mac(L(serial_init_not_mac))
2909#ifdef MAC_SERIAL_DEBUG
2910#if !defined(MAC_USE_SCC_A) && !defined(MAC_USE_SCC_B)
2911#define MAC_USE_SCC_B
2912#endif
2913#define mac_scc_cha_b_ctrl_offset 0x0
2914#define mac_scc_cha_a_ctrl_offset 0x2
2915#define mac_scc_cha_b_data_offset 0x4
2916#define mac_scc_cha_a_data_offset 0x6
2917
2918#ifdef MAC_USE_SCC_A
2919 /* Initialize channel A */
2920 movel %pc@(L(mac_sccbase)),%a0
2921 lea %pc@(L(scc_initable_mac)),%a1
29225: moveb %a1@+,%d0
2923 jmi 6f
2924 moveb %d0,%a0@(mac_scc_cha_a_ctrl_offset)
2925 moveb %a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2926 jra 5b
29276:
2928#endif /* MAC_USE_SCC_A */
2929
2930#ifdef MAC_USE_SCC_B
2931 /* Initialize channel B */
2932#ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */
2933 movel %pc@(L(mac_sccbase)),%a0
2934#endif /* MAC_USE_SCC_A */
2935 lea %pc@(L(scc_initable_mac)),%a1
29367: moveb %a1@+,%d0
2937 jmi 8f
2938 moveb %d0,%a0@(mac_scc_cha_b_ctrl_offset)
2939 moveb %a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2940 jra 7b
29418:
2942#endif /* MAC_USE_SCC_B */
2943#endif /* MAC_SERIAL_DEBUG */
2944
2945 jra L(serial_init_done)
2946L(serial_init_not_mac):
2947#endif /* CONFIG_MAC */
2948
2949#ifdef CONFIG_Q40
2950 is_not_q40(2f)
2951/* debug output goes into SRAM, so we don't do it unless requested
2952 - check for '%LX$' signature in SRAM */
2953 lea %pc@(q40_mem_cptr),%a1
2954 move.l #0xff020010,%a1@ /* must be inited - also used by debug=mem */
2955 move.l #0xff020000,%a1
2956 cmp.b #'%',%a1@
2957 bne 2f /*nodbg*/
2958 addq.w #4,%a1
2959 cmp.b #'L',%a1@
2960 bne 2f /*nodbg*/
2961 addq.w #4,%a1
2962 cmp.b #'X',%a1@
2963 bne 2f /*nodbg*/
2964 addq.w #4,%a1
2965 cmp.b #'$',%a1@
2966 bne 2f /*nodbg*/
2967 /* signature OK */
2968 lea %pc@(L(q40_do_debug)),%a1
2969 tas %a1@
2970/*nodbg: q40_do_debug is 0 by default*/
29712:
2972#endif
2973
2974#ifdef CONFIG_APOLLO
2975/* We count on the PROM initializing SIO1 */
2976#endif
2977
2978#ifdef CONFIG_HP300
2979/* We count on the boot loader initialising the UART */
2980#endif
2981
2982L(serial_init_done):
2983func_return serial_init
2984
2985/*
2986 * Output character on serial port.
2987 */
2988func_start serial_putc,%d0/%d1/%a0/%a1
2989
2990 movel ARG1,%d0
2991 cmpib #'\n',%d0
2992 jbne 1f
2993
2994 /* A little safe recursion is good for the soul */
2995 serial_putc #'\r'
29961:
2997
2998#ifdef CONFIG_AMIGA
2999 is_not_amiga(2f)
3000 andw #0x00ff,%d0
3001 oriw #0x0100,%d0
3002 movel %pc@(L(custom)),%a0
3003 movew %d0,%a0@(CUSTOMBASE+C_SERDAT)
30041: movew %a0@(CUSTOMBASE+C_SERDATR),%d0
3005 andw #0x2000,%d0
3006 jeq 1b
3007 jra L(serial_putc_done)
30082:
3009#endif
3010
3011#ifdef CONFIG_MAC
3012 is_not_mac(5f)
3013
3014#ifdef MAC_SERIAL_DEBUG
3015
3016#ifdef MAC_USE_SCC_A
3017 movel %pc@(L(mac_sccbase)),%a1
30183: btst #2,%a1@(mac_scc_cha_a_ctrl_offset)
3019 jeq 3b
3020 moveb %d0,%a1@(mac_scc_cha_a_data_offset)
3021#endif /* MAC_USE_SCC_A */
3022
3023#ifdef MAC_USE_SCC_B
3024#ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */
3025 movel %pc@(L(mac_sccbase)),%a1
3026#endif /* MAC_USE_SCC_A */
30274: btst #2,%a1@(mac_scc_cha_b_ctrl_offset)
3028 jeq 4b
3029 moveb %d0,%a1@(mac_scc_cha_b_data_offset)
3030#endif /* MAC_USE_SCC_B */
3031
3032#endif /* MAC_SERIAL_DEBUG */
3033
3034 jra L(serial_putc_done)
30355:
3036#endif /* CONFIG_MAC */
3037
3038#ifdef CONFIG_ATARI
3039 is_not_atari(4f)
3040 movel %pc@(L(iobase)),%a1
3041#if defined(USE_PRINTER)
30423: btst #0,%a1@(LSTMFP_GPIP)
3043 jne 3b
3044 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
3045 moveb %d0,%a1@(LPSG_WRITE)
3046 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
3047 moveb %a1@(LPSG_READ),%d0
3048 bclr #5,%d0
3049 moveb %d0,%a1@(LPSG_WRITE)
3050 nop
3051 nop
3052 bset #5,%d0
3053 moveb %d0,%a1@(LPSG_WRITE)
3054#elif defined(USE_SCC)
30553: btst #2,%a1@(LSCC_CTRL)
3056 jeq 3b
3057 moveb %d0,%a1@(LSCC_DATA)
3058#elif defined(USE_MFP)
30593: btst #7,%a1@(LMFP_TSR)
3060 jeq 3b
3061 moveb %d0,%a1@(LMFP_UDR)
3062#endif
3063 jra L(serial_putc_done)
30644:
3065#endif /* CONFIG_ATARI */
3066
3067#ifdef CONFIG_MVME147
3068 is_not_mvme147(2f)
30691: btst #2,M147_SCC_CTRL_A
3070 jeq 1b
3071 moveb %d0,M147_SCC_DATA_A
3072 jbra L(serial_putc_done)
30732:
3074#endif
3075
3076#ifdef CONFIG_MVME16x
3077 is_not_mvme16x(2f)
3078 /*
3079 * If the loader gave us a board type then we can use that to
3080 * select an appropriate output routine; otherwise we just use
3081 * the Bug code. If we have to use the Bug that means the Bug
3082 * workspace has to be valid, which means the Bug has to use
3083 * the SRAM, which is non-standard.
3084 */
3085 moveml %d0-%d7/%a2-%a6,%sp@-
3086 movel vme_brdtype,%d1
3087 jeq 1f | No tag - use the Bug
3088 cmpi #VME_TYPE_MVME162,%d1
3089 jeq 6f
3090 cmpi #VME_TYPE_MVME172,%d1
3091 jne 5f
3092 /* 162/172; it's an SCC */
30936: btst #2,M162_SCC_CTRL_A
3094 nop
3095 nop
3096 nop
3097 jeq 6b
3098 moveb #8,M162_SCC_CTRL_A
3099 nop
3100 nop
3101 nop
3102 moveb %d0,M162_SCC_CTRL_A
3103 jra 3f
31045:
3105 /* 166/167/177; it's a CD2401 */
3106 moveb #0,M167_CYCAR
3107 moveb M167_CYIER,%d2
3108 moveb #0x02,M167_CYIER
31097:
3110 btst #5,M167_PCSCCTICR
3111 jeq 7b
3112 moveb M167_PCTPIACKR,%d1
3113 moveb M167_CYLICR,%d1
3114 jeq 8f
3115 moveb #0x08,M167_CYTEOIR
3116 jra 7b
31178:
3118 moveb %d0,M167_CYTDR
3119 moveb #0,M167_CYTEOIR
3120 moveb %d2,M167_CYIER
3121 jra 3f
31221:
3123 moveb %d0,%sp@-
3124 trap #15
3125 .word 0x0020 /* TRAP 0x020 */
31263:
3127 moveml %sp@+,%d0-%d7/%a2-%a6
3128 jbra L(serial_putc_done)
31292:
3130#endif /* CONFIG_MVME16x */
3131
3132#ifdef CONFIG_BVME6000
3133 is_not_bvme6000(2f)
3134 /*
3135 * The BVME6000 machine has a serial port ...
3136 */
31371: btst #2,BVME_SCC_CTRL_A
3138 jeq 1b
3139 moveb %d0,BVME_SCC_DATA_A
3140 jbra L(serial_putc_done)
31412:
3142#endif
3143
3144#ifdef CONFIG_SUN3X
3145 is_not_sun3x(2f)
3146 movel %d0,-(%sp)
3147 movel 0xFEFE0018,%a1
3148 jbsr (%a1)
3149 addq #4,%sp
3150 jbra L(serial_putc_done)
31512:
3152#endif
3153
3154#ifdef CONFIG_Q40
3155 is_not_q40(2f)
3156 tst.l %pc@(L(q40_do_debug)) /* only debug if requested */
3157 beq 2f
3158 lea %pc@(q40_mem_cptr),%a1
3159 move.l %a1@,%a0
3160 move.b %d0,%a0@
3161 addq.l #4,%a0
3162 move.l %a0,%a1@
3163 jbra L(serial_putc_done)
31642:
3165#endif
3166
3167#ifdef CONFIG_APOLLO
3168 is_not_apollo(2f)
3169 movl %pc@(L(iobase)),%a1
3170 moveb %d0,%a1@(LTHRB0)
31711: moveb %a1@(LSRB0),%d0
3172 andb #0x4,%d0
3173 beq 1b
3174 jbra L(serial_putc_done)
31752:
3176#endif
3177
3178#ifdef CONFIG_HP300
3179 is_not_hp300(3f)
3180 movl %pc@(L(iobase)),%a1
3181 addl %pc@(L(uartbase)),%a1
3182 movel %pc@(L(uart_scode)),%d1 /* Check the scode */
3183 jmi 3f /* Unset? Exit */
3184 cmpi #256,%d1 /* APCI scode? */
3185 jeq 2f
31861: moveb %a1@(DCALSR),%d1 /* Output to DCA */
3187 andb #0x20,%d1
3188 beq 1b
3189 moveb %d0,%a1@(DCADATA)
3190 jbra L(serial_putc_done)
31912: moveb %a1@(APCILSR),%d1 /* Output to APCI */
3192 andb #0x20,%d1
3193 beq 2b
3194 moveb %d0,%a1@(APCIDATA)
3195 jbra L(serial_putc_done)
31963:
3197#endif
3198
3199L(serial_putc_done):
3200func_return serial_putc
3201
3202/*
3203 * Output a string.
3204 */
3205func_start puts,%d0/%a0
3206
3207 movel ARG1,%a0
3208 jra 2f
32091:
3210#ifdef CONSOLE
3211 console_putc %d0
3212#endif
3213#ifdef SERIAL_DEBUG
3214 serial_putc %d0
3215#endif
32162: moveb %a0@+,%d0
3217 jne 1b
3218
3219func_return puts
3220
3221/*
3222 * Output number in hex notation.
3223 */
3224
3225func_start putn,%d0-%d2
3226
3227 putc ' '
3228
3229 movel ARG1,%d0
3230 moveq #7,%d1
32311: roll #4,%d0
3232 move %d0,%d2
3233 andb #0x0f,%d2
3234 addb #'0',%d2
3235 cmpb #'9',%d2
3236 jls 2f
3237 addb #'A'-('9'+1),%d2
32382:
3239#ifdef CONSOLE
3240 console_putc %d2
3241#endif
3242#ifdef SERIAL_DEBUG
3243 serial_putc %d2
3244#endif
3245 dbra %d1,1b
3246
3247func_return putn
3248
3249#ifdef CONFIG_MAC
3250/*
3251 * mac_serial_print
3252 *
3253 * This routine takes its parameters on the stack. It then
3254 * turns around and calls the internal routine. This routine
3255 * is used until the Linux console driver initializes itself.
3256 *
3257 * The calling parameters are:
3258 * void mac_serial_print(const char *str);
3259 *
3260 * This routine does NOT understand variable arguments only
3261 * simple strings!
3262 */
3263ENTRY(mac_serial_print)
3264 moveml %d0/%a0,%sp@-
3265#if 1
3266 move %sr,%sp@-
3267 ori #0x0700,%sr
3268#endif
3269 movel %sp@(10),%a0 /* fetch parameter */
3270 jra 2f
32711: serial_putc %d0
32722: moveb %a0@+,%d0
3273 jne 1b
3274#if 1
3275 move %sp@+,%sr
3276#endif
3277 moveml %sp@+,%d0/%a0
3278 rts
3279#endif /* CONFIG_MAC */
3280
3281#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3282func_start set_leds,%d0/%a0
3283 movel ARG1,%d0
3284#ifdef CONFIG_HP300
3285 is_not_hp300(1f)
3286 movel %pc@(L(iobase)),%a0
3287 moveb %d0,%a0@(0x1ffff)
3288 jra 2f
3289#endif
32901:
3291#ifdef CONFIG_APOLLO
3292 movel %pc@(L(iobase)),%a0
3293 lsll #8,%d0
3294 eorw #0xff00,%d0
3295 moveb %d0,%a0@(LCPUCTRL)
3296#endif
32972:
3298func_return set_leds
3299#endif
3300
3301#ifdef CONSOLE
3302/*
3303 * For continuity, see the data alignment
3304 * to which this structure is tied.
3305 */
3306#define Lconsole_struct_cur_column 0
3307#define Lconsole_struct_cur_row 4
3308#define Lconsole_struct_num_columns 8
3309#define Lconsole_struct_num_rows 12
3310#define Lconsole_struct_left_edge 16
3311#define Lconsole_struct_penguin_putc 20
3312
3313func_start console_init,%a0-%a4/%d0-%d7
3314 /*
3315 * Some of the register usage that follows
3316 * a0 = pointer to boot_info
3317 * a1 = pointer to screen
3318 * a2 = pointer to Lconsole_globals
3319 * d3 = pixel width of screen
3320 * d4 = pixel height of screen
3321 * (d3,d4) ~= (x,y) of a point just below
3322 * and to the right of the screen
3323 * NOT on the screen!
3324 * d5 = number of bytes per scan line
3325 * d6 = number of bytes on the entire screen
3326 */
3327
3328 lea %pc@(L(console_globals)),%a2
3329 movel %pc@(L(mac_videobase)),%a1
3330 movel %pc@(L(mac_rowbytes)),%d5
3331 movel %pc@(L(mac_dimensions)),%d3 /* -> low byte */
3332 movel %d3,%d4
3333 swap %d4 /* -> high byte */
3334 andl #0xffff,%d3 /* d3 = screen width in pixels */
3335 andl #0xffff,%d4 /* d4 = screen height in pixels */
3336
3337 movel %d5,%d6
3338| subl #20,%d6
3339 mulul %d4,%d6 /* scan line bytes x num scan lines */
3340 divul #8,%d6 /* we'll clear 8 bytes at a time */
3341 moveq #-1,%d0 /* Mac_black */
3342 subq #1,%d6
3343
3344L(console_clear_loop):
3345 movel %d0,%a1@+
3346 movel %d0,%a1@+
3347 dbra %d6,L(console_clear_loop)
3348
3349 /* Calculate font size */
3350
3351#if defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3352 lea %pc@(font_vga_8x8),%a0
3353#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3354 lea %pc@(font_vga_8x16),%a0
3355#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3356 lea %pc@(font_vga_6x11),%a0
3357#elif defined(CONFIG_FONT_8x8) /* default */
3358 lea %pc@(font_vga_8x8),%a0
3359#else /* no compiled-in font */
3360 lea 0,%a0
3361#endif
3362
3363 /*
3364 * At this point we make a shift in register usage
3365 * a1 = address of console_font pointer
3366 */
3367 lea %pc@(L(console_font)),%a1
3368 movel %a0,%a1@ /* store pointer to struct fbcon_font_desc in console_font */
3369 tstl %a0
3370 jeq 1f
3371 lea %pc@(L(console_font_data)),%a4
3372 movel %a0@(FONT_DESC_DATA),%d0
3373 subl #L(console_font),%a1
3374 addl %a1,%d0
3375 movel %d0,%a4@
3376
3377 /*
3378 * Calculate global maxs
3379 * Note - we can use either an
3380 * 8 x 16 or 8 x 8 character font
3381 * 6 x 11 also supported
3382 */
3383 /* ASSERT: a0 = contents of Lconsole_font */
3384 movel %d3,%d0 /* screen width in pixels */
3385 divul %a0@(FONT_DESC_WIDTH),%d0 /* d0 = max num chars per row */
3386
3387 movel %d4,%d1 /* screen height in pixels */
3388 divul %a0@(FONT_DESC_HEIGHT),%d1 /* d1 = max num rows */
3389
3390 movel %d0,%a2@(Lconsole_struct_num_columns)
3391 movel %d1,%a2@(Lconsole_struct_num_rows)
3392
3393 /*
3394 * Clear the current row and column
3395 */
3396 clrl %a2@(Lconsole_struct_cur_column)
3397 clrl %a2@(Lconsole_struct_cur_row)
3398 clrl %a2@(Lconsole_struct_left_edge)
3399
3400 /*
3401 * Initialization is complete
3402 */
34031:
3404func_return console_init
3405
3406func_start console_put_stats,%a0/%d7
3407 /*
3408 * Some of the register usage that follows
3409 * a0 = pointer to boot_info
3410 * d7 = value of boot_info fields
3411 */
3412 puts "\nMacLinux\n\n"
3413
3414#ifdef SERIAL_DEBUG
3415 puts " vidaddr:"
3416 putn %pc@(L(mac_videobase)) /* video addr. */
3417
3418 puts "\n _stext:"
3419 lea %pc@(_stext),%a0
3420 putn %a0
3421
3422 puts "\nbootinfo:"
3423 lea %pc@(_end),%a0
3424 putn %a0
3425
3426 puts "\ncpuid:"
3427 putn %pc@(L(cputype))
3428 putc '\n'
3429
3430#ifdef MAC_SERIAL_DEBUG
3431 putn %pc@(L(mac_sccbase))
3432 putc '\n'
3433#endif
3434# if defined(MMU_PRINT)
3435 jbsr mmu_print_machine_cpu_types
3436# endif /* MMU_PRINT */
3437#endif /* SERIAL_DEBUG */
3438
3439func_return console_put_stats
3440
3441#ifdef CONSOLE_PENGUIN
3442func_start console_put_penguin,%a0-%a1/%d0-%d7
3443 /*
3444 * Get 'that_penguin' onto the screen in the upper right corner
3445 * penguin is 64 x 74 pixels, align against right edge of screen
3446 */
3447 lea %pc@(L(mac_dimensions)),%a0
3448 movel %a0@,%d0
3449 andil #0xffff,%d0
3450 subil #64,%d0 /* snug up against the right edge */
3451 clrl %d1 /* start at the top */
3452 movel #73,%d7
3453 lea %pc@(L(that_penguin)),%a1
3454L(console_penguin_row):
3455 movel #31,%d6
3456L(console_penguin_pixel_pair):
3457 moveb %a1@,%d2
3458 lsrb #4,%d2
3459 console_plot_pixel %d0,%d1,%d2
3460 addq #1,%d0
3461 moveb %a1@+,%d2
3462 console_plot_pixel %d0,%d1,%d2
3463 addq #1,%d0
3464 dbra %d6,L(console_penguin_pixel_pair)
3465
3466 subil #64,%d0
3467 addq #1,%d1
3468 dbra %d7,L(console_penguin_row)
3469
3470func_return console_put_penguin
3471
3472/* include penguin bitmap */
3473L(that_penguin):
3474#include "../mac/mac_penguin.S"
3475#endif
3476
3477 /*
3478 * Calculate source and destination addresses
3479 * output a1 = dest
3480 * a2 = source
3481 */
3482
3483func_start console_scroll,%a0-%a4/%d0-%d7
3484 lea %pc@(L(mac_videobase)),%a0
3485 movel %a0@,%a1
3486 movel %a1,%a2
3487 lea %pc@(L(mac_rowbytes)),%a0
3488 movel %a0@,%d5
3489 movel %pc@(L(console_font)),%a0
3490 tstl %a0
3491 jeq 1f
3492 mulul %a0@(FONT_DESC_HEIGHT),%d5 /* account for # scan lines per character */
3493 addal %d5,%a2
3494
3495 /*
3496 * Get dimensions
3497 */
3498 lea %pc@(L(mac_dimensions)),%a0
3499 movel %a0@,%d3
3500 movel %d3,%d4
3501 swap %d4
3502 andl #0xffff,%d3 /* d3 = screen width in pixels */
3503 andl #0xffff,%d4 /* d4 = screen height in pixels */
3504
3505 /*
3506 * Calculate number of bytes to move
3507 */
3508 lea %pc@(L(mac_rowbytes)),%a0
3509 movel %a0@,%d6
3510 movel %pc@(L(console_font)),%a0
3511 subl %a0@(FONT_DESC_HEIGHT),%d4 /* we're not scrolling the top row! */
3512 mulul %d4,%d6 /* scan line bytes x num scan lines */
3513 divul #32,%d6 /* we'll move 8 longs at a time */
3514 subq #1,%d6
3515
3516L(console_scroll_loop):
3517 movel %a2@+,%a1@+
3518 movel %a2@+,%a1@+
3519 movel %a2@+,%a1@+
3520 movel %a2@+,%a1@+
3521 movel %a2@+,%a1@+
3522 movel %a2@+,%a1@+
3523 movel %a2@+,%a1@+
3524 movel %a2@+,%a1@+
3525 dbra %d6,L(console_scroll_loop)
3526
3527 lea %pc@(L(mac_rowbytes)),%a0
3528 movel %a0@,%d6
3529 movel %pc@(L(console_font)),%a0
3530 mulul %a0@(FONT_DESC_HEIGHT),%d6 /* scan line bytes x font height */
3531 divul #32,%d6 /* we'll move 8 words at a time */
3532 subq #1,%d6
3533
3534 moveq #-1,%d0
3535L(console_scroll_clear_loop):
3536 movel %d0,%a1@+
3537 movel %d0,%a1@+
3538 movel %d0,%a1@+
3539 movel %d0,%a1@+
3540 movel %d0,%a1@+
3541 movel %d0,%a1@+
3542 movel %d0,%a1@+
3543 movel %d0,%a1@+
3544 dbra %d6,L(console_scroll_clear_loop)
3545
35461:
3547func_return console_scroll
3548
3549
3550func_start console_putc,%a0/%a1/%d0-%d7
3551
3552 is_not_mac(L(console_exit))
3553 tstl %pc@(L(console_font))
3554 jeq L(console_exit)
3555
3556 /* Output character in d7 on console.
3557 */
3558 movel ARG1,%d7
3559 cmpib #'\n',%d7
3560 jbne 1f
3561
3562 /* A little safe recursion is good for the soul */
3563 console_putc #'\r'
35641:
3565 lea %pc@(L(console_globals)),%a0
3566
3567 cmpib #10,%d7
3568 jne L(console_not_lf)
3569 movel %a0@(Lconsole_struct_cur_row),%d0
3570 addil #1,%d0
3571 movel %d0,%a0@(Lconsole_struct_cur_row)
3572 movel %a0@(Lconsole_struct_num_rows),%d1
3573 cmpl %d1,%d0
3574 jcs 1f
3575 subil #1,%d0
3576 movel %d0,%a0@(Lconsole_struct_cur_row)
3577 console_scroll
35781:
3579 jra L(console_exit)
3580
3581L(console_not_lf):
3582 cmpib #13,%d7
3583 jne L(console_not_cr)
3584 clrl %a0@(Lconsole_struct_cur_column)
3585 jra L(console_exit)
3586
3587L(console_not_cr):
3588 cmpib #1,%d7
3589 jne L(console_not_home)
3590 clrl %a0@(Lconsole_struct_cur_row)
3591 clrl %a0@(Lconsole_struct_cur_column)
3592 jra L(console_exit)
3593
3594/*
3595 * At this point we know that the %d7 character is going to be
3596 * rendered on the screen. Register usage is -
3597 * a0 = pointer to console globals
3598 * a1 = font data
3599 * d0 = cursor column
3600 * d1 = cursor row to draw the character
3601 * d7 = character number
3602 */
3603L(console_not_home):
3604 movel %a0@(Lconsole_struct_cur_column),%d0
3605 addql #1,%a0@(Lconsole_struct_cur_column)
3606 movel %a0@(Lconsole_struct_num_columns),%d1
3607 cmpl %d1,%d0
3608 jcs 1f
3609 console_putc #'\n' /* recursion is OK! */
36101:
3611 movel %a0@(Lconsole_struct_cur_row),%d1
3612
3613 /*
3614 * At this point we make a shift in register usage
3615 * a0 = address of pointer to font data (fbcon_font_desc)
3616 */
3617 movel %pc@(L(console_font)),%a0
3618 movel %pc@(L(console_font_data)),%a1 /* Load fbcon_font_desc.data into a1 */
3619 andl #0x000000ff,%d7
3620 /* ASSERT: a0 = contents of Lconsole_font */
3621 mulul %a0@(FONT_DESC_HEIGHT),%d7 /* d7 = index into font data */
3622 addl %d7,%a1 /* a1 = points to char image */
3623
3624 /*
3625 * At this point we make a shift in register usage
3626 * d0 = pixel coordinate, x
3627 * d1 = pixel coordinate, y
3628 * d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3629 * d3 = font scan line data (8 pixels)
3630 * d6 = count down for the font's pixel width (8)
3631 * d7 = count down for the font's pixel count in height
3632 */
3633 /* ASSERT: a0 = contents of Lconsole_font */
3634 mulul %a0@(FONT_DESC_WIDTH),%d0
3635 mulul %a0@(FONT_DESC_HEIGHT),%d1
3636 movel %a0@(FONT_DESC_HEIGHT),%d7 /* Load fbcon_font_desc.height into d7 */
3637 subq #1,%d7
3638L(console_read_char_scanline):
3639 moveb %a1@+,%d3
3640
3641 /* ASSERT: a0 = contents of Lconsole_font */
3642 movel %a0@(FONT_DESC_WIDTH),%d6 /* Load fbcon_font_desc.width into d6 */
3643 subql #1,%d6
3644
3645L(console_do_font_scanline):
3646 lslb #1,%d3
3647 scsb %d2 /* convert 1 bit into a byte */
3648 console_plot_pixel %d0,%d1,%d2
3649 addq #1,%d0
3650 dbra %d6,L(console_do_font_scanline)
3651
3652 /* ASSERT: a0 = contents of Lconsole_font */
3653 subl %a0@(FONT_DESC_WIDTH),%d0
3654 addq #1,%d1
3655 dbra %d7,L(console_read_char_scanline)
3656
3657L(console_exit):
3658func_return console_putc
3659
3660 /*
3661 * Input:
3662 * d0 = x coordinate
3663 * d1 = y coordinate
3664 * d2 = (bit 0) 1/0 for white/black (!)
3665 * All registers are preserved
3666 */
3667func_start console_plot_pixel,%a0-%a1/%d0-%d4
3668
3669 movel %pc@(L(mac_videobase)),%a1
3670 movel %pc@(L(mac_videodepth)),%d3
3671 movel ARG1,%d0
3672 movel ARG2,%d1
3673 mulul %pc@(L(mac_rowbytes)),%d1
3674 movel ARG3,%d2
3675
3676 /*
3677 * Register usage:
3678 * d0 = x coord becomes byte offset into frame buffer
3679 * d1 = y coord
3680 * d2 = black or white (0/1)
3681 * d3 = video depth
3682 * d4 = temp of x (d0) for many bit depths
3683 */
3684L(test_1bit):
3685 cmpb #1,%d3
3686 jbne L(test_2bit)
3687 movel %d0,%d4 /* we need the low order 3 bits! */
3688 divul #8,%d0
3689 addal %d0,%a1
3690 addal %d1,%a1
3691 andb #7,%d4
3692 eorb #7,%d4 /* reverse the x-coordinate w/ screen-bit # */
3693 andb #1,%d2
3694 jbne L(white_1)
3695 bsetb %d4,%a1@
3696 jbra L(console_plot_pixel_exit)
3697L(white_1):
3698 bclrb %d4,%a1@
3699 jbra L(console_plot_pixel_exit)
3700
3701L(test_2bit):
3702 cmpb #2,%d3
3703 jbne L(test_4bit)
3704 movel %d0,%d4 /* we need the low order 2 bits! */
3705 divul #4,%d0
3706 addal %d0,%a1
3707 addal %d1,%a1
3708 andb #3,%d4
3709 eorb #3,%d4 /* reverse the x-coordinate w/ screen-bit # */
3710 lsll #1,%d4 /* ! */
3711 andb #1,%d2
3712 jbne L(white_2)
3713 bsetb %d4,%a1@
3714 addq #1,%d4
3715 bsetb %d4,%a1@
3716 jbra L(console_plot_pixel_exit)
3717L(white_2):
3718 bclrb %d4,%a1@
3719 addq #1,%d4
3720 bclrb %d4,%a1@
3721 jbra L(console_plot_pixel_exit)
3722
3723L(test_4bit):
3724 cmpb #4,%d3
3725 jbne L(test_8bit)
3726 movel %d0,%d4 /* we need the low order bit! */
3727 divul #2,%d0
3728 addal %d0,%a1
3729 addal %d1,%a1
3730 andb #1,%d4
3731 eorb #1,%d4
3732 lsll #2,%d4 /* ! */
3733 andb #1,%d2
3734 jbne L(white_4)
3735 bsetb %d4,%a1@
3736 addq #1,%d4
3737 bsetb %d4,%a1@
3738 addq #1,%d4
3739 bsetb %d4,%a1@
3740 addq #1,%d4
3741 bsetb %d4,%a1@
3742 jbra L(console_plot_pixel_exit)
3743L(white_4):
3744 bclrb %d4,%a1@
3745 addq #1,%d4
3746 bclrb %d4,%a1@
3747 addq #1,%d4
3748 bclrb %d4,%a1@
3749 addq #1,%d4
3750 bclrb %d4,%a1@
3751 jbra L(console_plot_pixel_exit)
3752
3753L(test_8bit):
3754 cmpb #8,%d3
3755 jbne L(test_16bit)
3756 addal %d0,%a1
3757 addal %d1,%a1
3758 andb #1,%d2
3759 jbne L(white_8)
3760 moveb #0xff,%a1@
3761 jbra L(console_plot_pixel_exit)
3762L(white_8):
3763 clrb %a1@
3764 jbra L(console_plot_pixel_exit)
3765
3766L(test_16bit):
3767 cmpb #16,%d3
3768 jbne L(console_plot_pixel_exit)
3769 addal %d0,%a1
3770 addal %d0,%a1
3771 addal %d1,%a1
3772 andb #1,%d2
3773 jbne L(white_16)
3774 clrw %a1@
3775 jbra L(console_plot_pixel_exit)
3776L(white_16):
3777 movew #0x0fff,%a1@
3778 jbra L(console_plot_pixel_exit)
3779
3780L(console_plot_pixel_exit):
3781func_return console_plot_pixel
3782#endif /* CONSOLE */
3783
3784#if 0
3785/*
3786 * This is some old code lying around. I don't believe
3787 * it's used or important anymore. My guess is it contributed
3788 * to getting to this point, but it's done for now.
3789 * It was still in the 2.1.77 head.S, so it's still here.
3790 * (And still not used!)
3791 */
3792L(showtest):
3793 moveml %a0/%d7,%sp@-
3794 puts "A="
3795 putn %a1
3796
3797 .long 0xf0119f15 | ptestr #5,%a1@,#7,%a0
3798
3799 puts "DA="
3800 putn %a0
3801
3802 puts "D="
3803 putn %a0@
3804
3805 puts "S="
3806 lea %pc@(L(mmu)),%a0
3807 .long 0xf0106200 | pmove %psr,%a0@
3808 clrl %d7
3809 movew %a0@,%d7
3810 putn %d7
3811
3812 putc '\n'
3813 moveml %sp@+,%a0/%d7
3814 rts
3815#endif /* 0 */
3816
3817__INITDATA
3818 .align 4
3819
3820#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3821 defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3822L(custom):
3823L(iobase):
3824 .long 0
3825#endif
3826
3827#if defined(CONSOLE)
3828L(console_globals):
3829 .long 0 /* cursor column */
3830 .long 0 /* cursor row */
3831 .long 0 /* max num columns */
3832 .long 0 /* max num rows */
3833 .long 0 /* left edge */
3834 .long 0 /* mac putc */
3835L(console_font):
3836 .long 0 /* pointer to console font (struct font_desc) */
3837L(console_font_data):
3838 .long 0 /* pointer to console font data */
3839#endif /* CONSOLE */
3840
3841#if defined(MMU_PRINT)
3842L(mmu_print_data):
3843 .long 0 /* valid flag */
3844 .long 0 /* start logical */
3845 .long 0 /* next logical */
3846 .long 0 /* start physical */
3847 .long 0 /* next physical */
3848#endif /* MMU_PRINT */
3849
3850L(cputype):
3851 .long 0
3852L(mmu_cached_pointer_tables):
3853 .long 0
3854L(mmu_num_pointer_tables):
3855 .long 0
3856L(phys_kernel_start):
3857 .long 0
3858L(kernel_end):
3859 .long 0
3860L(memory_start):
3861 .long 0
3862L(kernel_pgdir_ptr):
3863 .long 0
3864L(temp_mmap_mem):
3865 .long 0
3866
3867#if defined (CONFIG_MVME147)
3868M147_SCC_CTRL_A = 0xfffe3002
3869M147_SCC_DATA_A = 0xfffe3003
3870#endif
3871
3872#if defined (CONFIG_MVME16x)
3873M162_SCC_CTRL_A = 0xfff45005
3874M167_CYCAR = 0xfff450ee
3875M167_CYIER = 0xfff45011
3876M167_CYLICR = 0xfff45026
3877M167_CYTEOIR = 0xfff45085
3878M167_CYTDR = 0xfff450f8
3879M167_PCSCCTICR = 0xfff4201e
3880M167_PCTPIACKR = 0xfff42025
3881#endif
3882
3883#if defined (CONFIG_BVME6000)
3884BVME_SCC_CTRL_A = 0xffb0000b
3885BVME_SCC_DATA_A = 0xffb0000f
3886#endif
3887
3888#if defined(CONFIG_MAC)
3889L(mac_booter_data):
3890 .long 0
3891L(mac_videobase):
3892 .long 0
3893L(mac_videodepth):
3894 .long 0
3895L(mac_dimensions):
3896 .long 0
3897L(mac_rowbytes):
3898 .long 0
3899#ifdef MAC_SERIAL_DEBUG
3900L(mac_sccbase):
3901 .long 0
3902#endif /* MAC_SERIAL_DEBUG */
3903#endif
3904
3905#if defined (CONFIG_APOLLO)
3906LSRB0 = 0x10412
3907LTHRB0 = 0x10416
3908LCPUCTRL = 0x10100
3909#endif
3910
3911#if defined(CONFIG_HP300)
3912DCADATA = 0x11
3913DCALSR = 0x1b
3914APCIDATA = 0x00
3915APCILSR = 0x14
3916L(uartbase):
3917 .long 0
3918L(uart_scode):
3919 .long -1
3920#endif
3921
3922__FINIT
3923 .data
3924 .align 4
3925
3926availmem:
3927 .long 0
3928m68k_pgtable_cachemode:
3929 .long 0
3930m68k_supervisor_cachemode:
3931 .long 0
3932#if defined(CONFIG_MVME16x)
3933mvme_bdid:
3934 .long 0,0,0,0,0,0,0,0
3935#endif
3936#if defined(CONFIG_Q40)
3937q40_mem_cptr:
3938 .long 0
3939L(q40_do_debug):
3940 .long 0
3941#endif
1/* -*- mode: asm -*-
2**
3** head.S -- This file contains the initial boot code for the
4** Linux/68k kernel.
5**
6** Copyright 1993 by Hamish Macdonald
7**
8** 68040 fixes by Michael Rausch
9** 68060 fixes by Roman Hodek
10** MMU cleanup by Randy Thelen
11** Final MMU cleanup by Roman Zippel
12**
13** Atari support by Andreas Schwab, using ideas of Robert de Vries
14** and Bjoern Brauel
15** VME Support by Richard Hirst
16**
17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
20** 95/11/18 Richard Hirst: Added MVME166 support
21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
22** Magnum- and FX-alternate ram
23** 98/04/25 Phil Blundell: added HP300 support
24** 1998/08/30 David Kilzer: Added support for font_desc structures
25** for linux-2.1.115
26** 1999/02/11 Richard Zidlicky: added Q40 support (initial version 99/01/01)
27** 2004/05/13 Kars de Jong: Finalised HP300 support
28**
29** This file is subject to the terms and conditions of the GNU General Public
30** License. See the file README.legal in the main directory of this archive
31** for more details.
32**
33*/
34
35/*
36 * Linux startup code.
37 *
38 * At this point, the boot loader has:
39 * Disabled interrupts
40 * Disabled caches
41 * Put us in supervisor state.
42 *
43 * The kernel setup code takes the following steps:
44 * . Raise interrupt level
45 * . Set up initial kernel memory mapping.
46 * . This sets up a mapping of the 4M of memory the kernel is located in.
47 * . It also does a mapping of any initial machine specific areas.
48 * . Enable the MMU
49 * . Enable cache memories
50 * . Jump to kernel startup
51 *
52 * Much of the file restructuring was to accomplish:
53 * 1) Remove register dependency through-out the file.
54 * 2) Increase use of subroutines to perform functions
55 * 3) Increase readability of the code
56 *
57 * Of course, readability is a subjective issue, so it will never be
58 * argued that that goal was accomplished. It was merely a goal.
59 * A key way to help make code more readable is to give good
60 * documentation. So, the first thing you will find is exaustive
61 * write-ups on the structure of the file, and the features of the
62 * functional subroutines.
63 *
64 * General Structure:
65 * ------------------
66 * Without a doubt the single largest chunk of head.S is spent
67 * mapping the kernel and I/O physical space into the logical range
68 * for the kernel.
69 * There are new subroutines and data structures to make MMU
70 * support cleaner and easier to understand.
71 * First, you will find a routine call "mmu_map" which maps
72 * a logical to a physical region for some length given a cache
73 * type on behalf of the caller. This routine makes writing the
74 * actual per-machine specific code very simple.
75 * A central part of the code, but not a subroutine in itself,
76 * is the mmu_init code which is broken down into mapping the kernel
77 * (the same for all machines) and mapping machine-specific I/O
78 * regions.
79 * Also, there will be a description of engaging the MMU and
80 * caches.
81 * You will notice that there is a chunk of code which
82 * can emit the entire MMU mapping of the machine. This is present
83 * only in debug modes and can be very helpful.
84 * Further, there is a new console driver in head.S that is
85 * also only engaged in debug mode. Currently, it's only supported
86 * on the Macintosh class of machines. However, it is hoped that
87 * others will plug-in support for specific machines.
88 *
89 * ######################################################################
90 *
91 * mmu_map
92 * -------
93 * mmu_map was written for two key reasons. First, it was clear
94 * that it was very difficult to read the previous code for mapping
95 * regions of memory. Second, the Macintosh required such extensive
96 * memory allocations that it didn't make sense to propagate the
97 * existing code any further.
98 * mmu_map requires some parameters:
99 *
100 * mmu_map (logical, physical, length, cache_type)
101 *
102 * While this essentially describes the function in the abstract, you'll
103 * find more indepth description of other parameters at the implementation site.
104 *
105 * mmu_get_root_table_entry
106 * ------------------------
107 * mmu_get_ptr_table_entry
108 * -----------------------
109 * mmu_get_page_table_entry
110 * ------------------------
111 *
112 * These routines are used by other mmu routines to get a pointer into
113 * a table, if necessary a new table is allocated. These routines are working
114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
116 * so that here also some mmu specific initialization is done. The second page
117 * at the start of the kernel (the first page is unmapped later) is used for
118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
119 * to initialize the init task struct) and since it needs special cache
120 * settings, it's the easiest to use this page, the rest of the page is used
121 * for further pointer tables.
122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
124 * to manage page tables in smaller pieces as nearly all mappings have that
125 * size.
126 *
127 * ######################################################################
128 *
129 *
130 * ######################################################################
131 *
132 * mmu_engage
133 * ----------
134 * Thanks to a small helping routine enabling the mmu got quite simple
135 * and there is only one way left. mmu_engage makes a complete a new mapping
136 * that only includes the absolute necessary to be able to jump to the final
137 * position and to restore the original mapping.
138 * As this code doesn't need a transparent translation register anymore this
139 * means all registers are free to be used by machines that needs them for
140 * other purposes.
141 *
142 * ######################################################################
143 *
144 * mmu_print
145 * ---------
146 * This algorithm will print out the page tables of the system as
147 * appropriate for an 030 or an 040. This is useful for debugging purposes
148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
149 *
150 * ######################################################################
151 *
152 * console_init
153 * ------------
154 * The console is also able to be turned off. The console in head.S
155 * is specifically for debugging and can be very useful. It is surrounded by
156 * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good
157 * kernels. It's basic algorithm is to determine the size of the screen
158 * (in height/width and bit depth) and then use that information for
159 * displaying an 8x8 font or an 8x16 (widthxheight). I prefer the 8x8 for
160 * debugging so I can see more good data. But it was trivial to add support
161 * for both fonts, so I included it.
162 * Also, the algorithm for plotting pixels is abstracted so that in
163 * theory other platforms could add support for different kinds of frame
164 * buffers. This could be very useful.
165 *
166 * console_put_penguin
167 * -------------------
168 * An important part of any Linux bring up is the penguin and there's
169 * nothing like getting the Penguin on the screen! This algorithm will work
170 * on any machine for which there is a console_plot_pixel.
171 *
172 * console_scroll
173 * --------------
174 * My hope is that the scroll algorithm does the right thing on the
175 * various platforms, but it wouldn't be hard to add the test conditions
176 * and new code if it doesn't.
177 *
178 * console_putc
179 * -------------
180 *
181 * ######################################################################
182 *
183 * Register usage has greatly simplified within head.S. Every subroutine
184 * saves and restores all registers that it modifies (except it returns a
185 * value in there of course). So the only register that needs to be initialized
186 * is the stack pointer.
187 * All other init code and data is now placed in the init section, so it will
188 * be automatically freed at the end of the kernel initialization.
189 *
190 * ######################################################################
191 *
192 * options
193 * -------
194 * There are many options available in a build of this file. I've
195 * taken the time to describe them here to save you the time of searching
196 * for them and trying to understand what they mean.
197 *
198 * CONFIG_xxx: These are the obvious machine configuration defines created
199 * during configuration. These are defined in autoconf.h.
200 *
201 * CONSOLE: There is support for head.S console in this file. This
202 * console can talk to a Mac frame buffer, but could easily be extrapolated
203 * to extend it to support other platforms.
204 *
205 * TEST_MMU: This is a test harness for running on any given machine but
206 * getting an MMU dump for another class of machine. The classes of machines
207 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
208 * and any of the models (030, 040, 060, etc.).
209 *
210 * NOTE: TEST_MMU is NOT permanent! It is scheduled to be removed
211 * When head.S boots on Atari, Amiga, Macintosh, and VME
212 * machines. At that point the underlying logic will be
213 * believed to be solid enough to be trusted, and TEST_MMU
214 * can be dropped. Do note that that will clean up the
215 * head.S code significantly as large blocks of #if/#else
216 * clauses can be removed.
217 *
218 * MMU_NOCACHE_KERNEL: On the Macintosh platform there was an inquiry into
219 * determing why devices don't appear to work. A test case was to remove
220 * the cacheability of the kernel bits.
221 *
222 * MMU_PRINT: There is a routine built into head.S that can display the
223 * MMU data structures. It outputs its result through the serial_putc
224 * interface. So where ever that winds up driving data, that's where the
225 * mmu struct will appear. On the Macintosh that's typically the console.
226 *
227 * SERIAL_DEBUG: There are a series of putc() macro statements
228 * scattered through out the code to give progress of status to the
229 * person sitting at the console. This constant determines whether those
230 * are used.
231 *
232 * DEBUG: This is the standard DEBUG flag that can be set for building
233 * the kernel. It has the effect adding additional tests into
234 * the code.
235 *
236 * FONT_6x11:
237 * FONT_8x8:
238 * FONT_8x16:
239 * In theory these could be determined at run time or handed
240 * over by the booter. But, let's be real, it's a fine hard
241 * coded value. (But, you will notice the code is run-time
242 * flexible!) A pointer to the font's struct font_desc
243 * is kept locally in Lconsole_font. It is used to determine
244 * font size information dynamically.
245 *
246 * Atari constants:
247 * USE_PRINTER: Use the printer port for serial debug.
248 * USE_SCC_B: Use the SCC port A (Serial2) for serial debug.
249 * USE_SCC_A: Use the SCC port B (Modem2) for serial debug.
250 * USE_MFP: Use the ST-MFP port (Modem1) for serial debug.
251 *
252 * Macintosh constants:
253 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug and early console.
254 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug and early console.
255 */
256
257#include <linux/linkage.h>
258#include <linux/init.h>
259#include <asm/bootinfo.h>
260#include <asm/bootinfo-amiga.h>
261#include <asm/bootinfo-atari.h>
262#include <asm/bootinfo-hp300.h>
263#include <asm/bootinfo-mac.h>
264#include <asm/bootinfo-q40.h>
265#include <asm/bootinfo-vme.h>
266#include <asm/setup.h>
267#include <asm/entry.h>
268#include <asm/pgtable.h>
269#include <asm/page.h>
270#include <asm/asm-offsets.h>
271
272#ifdef CONFIG_MAC
273
274#include <asm/machw.h>
275
276#ifdef CONFIG_FRAMEBUFFER_CONSOLE
277#define CONSOLE
278#endif
279
280#ifdef CONFIG_EARLY_PRINTK
281#define SERIAL_DEBUG
282#else
283#undef SERIAL_DEBUG
284#endif
285
286#else /* !CONFIG_MAC */
287
288#define SERIAL_DEBUG
289
290#endif /* !CONFIG_MAC */
291
292#undef MMU_PRINT
293#undef MMU_NOCACHE_KERNEL
294#undef DEBUG
295
296/*
297 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
298 * The 8x8 font is harder to read but fits more on the screen.
299 */
300#define FONT_8x8 /* default */
301/* #define FONT_8x16 */ /* 2nd choice */
302/* #define FONT_6x11 */ /* 3rd choice */
303
304.globl kernel_pg_dir
305.globl availmem
306.globl m68k_pgtable_cachemode
307.globl m68k_supervisor_cachemode
308#ifdef CONFIG_MVME16x
309.globl mvme_bdid
310#endif
311#ifdef CONFIG_Q40
312.globl q40_mem_cptr
313#endif
314
315CPUTYPE_040 = 1 /* indicates an 040 */
316CPUTYPE_060 = 2 /* indicates an 060 */
317CPUTYPE_0460 = 3 /* if either above are set, this is set */
318CPUTYPE_020 = 4 /* indicates an 020 */
319
320/* Translation control register */
321TC_ENABLE = 0x8000
322TC_PAGE8K = 0x4000
323TC_PAGE4K = 0x0000
324
325/* Transparent translation registers */
326TTR_ENABLE = 0x8000 /* enable transparent translation */
327TTR_ANYMODE = 0x4000 /* user and kernel mode access */
328TTR_KERNELMODE = 0x2000 /* only kernel mode access */
329TTR_USERMODE = 0x0000 /* only user mode access */
330TTR_CI = 0x0400 /* inhibit cache */
331TTR_RW = 0x0200 /* read/write mode */
332TTR_RWM = 0x0100 /* read/write mask */
333TTR_FCB2 = 0x0040 /* function code base bit 2 */
334TTR_FCB1 = 0x0020 /* function code base bit 1 */
335TTR_FCB0 = 0x0010 /* function code base bit 0 */
336TTR_FCM2 = 0x0004 /* function code mask bit 2 */
337TTR_FCM1 = 0x0002 /* function code mask bit 1 */
338TTR_FCM0 = 0x0001 /* function code mask bit 0 */
339
340/* Cache Control registers */
341CC6_ENABLE_D = 0x80000000 /* enable data cache (680[46]0) */
342CC6_FREEZE_D = 0x40000000 /* freeze data cache (68060) */
343CC6_ENABLE_SB = 0x20000000 /* enable store buffer (68060) */
344CC6_PUSH_DPI = 0x10000000 /* disable CPUSH invalidation (68060) */
345CC6_HALF_D = 0x08000000 /* half-cache mode for data cache (68060) */
346CC6_ENABLE_B = 0x00800000 /* enable branch cache (68060) */
347CC6_CLRA_B = 0x00400000 /* clear all entries in branch cache (68060) */
348CC6_CLRU_B = 0x00200000 /* clear user entries in branch cache (68060) */
349CC6_ENABLE_I = 0x00008000 /* enable instruction cache (680[46]0) */
350CC6_FREEZE_I = 0x00004000 /* freeze instruction cache (68060) */
351CC6_HALF_I = 0x00002000 /* half-cache mode for instruction cache (68060) */
352CC3_ALLOC_WRITE = 0x00002000 /* write allocate mode(68030) */
353CC3_ENABLE_DB = 0x00001000 /* enable data burst (68030) */
354CC3_CLR_D = 0x00000800 /* clear data cache (68030) */
355CC3_CLRE_D = 0x00000400 /* clear entry in data cache (68030) */
356CC3_FREEZE_D = 0x00000200 /* freeze data cache (68030) */
357CC3_ENABLE_D = 0x00000100 /* enable data cache (68030) */
358CC3_ENABLE_IB = 0x00000010 /* enable instruction burst (68030) */
359CC3_CLR_I = 0x00000008 /* clear instruction cache (68030) */
360CC3_CLRE_I = 0x00000004 /* clear entry in instruction cache (68030) */
361CC3_FREEZE_I = 0x00000002 /* freeze instruction cache (68030) */
362CC3_ENABLE_I = 0x00000001 /* enable instruction cache (68030) */
363
364/* Miscellaneous definitions */
365PAGESIZE = 4096
366PAGESHIFT = 12
367
368ROOT_TABLE_SIZE = 128
369PTR_TABLE_SIZE = 128
370PAGE_TABLE_SIZE = 64
371ROOT_INDEX_SHIFT = 25
372PTR_INDEX_SHIFT = 18
373PAGE_INDEX_SHIFT = 12
374
375#ifdef DEBUG
376/* When debugging use readable names for labels */
377#ifdef __STDC__
378#define L(name) .head.S.##name
379#else
380#define L(name) .head.S./**/name
381#endif
382#else
383#ifdef __STDC__
384#define L(name) .L##name
385#else
386#define L(name) .L/**/name
387#endif
388#endif
389
390/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
391#ifndef __INITDATA
392#define __INITDATA .data
393#define __FINIT .previous
394#endif
395
396/* Several macros to make the writing of subroutines easier:
397 * - func_start marks the beginning of the routine which setups the frame
398 * register and saves the registers, it also defines another macro
399 * to automatically restore the registers again.
400 * - func_return marks the end of the routine and simply calls the prepared
401 * macro to restore registers and jump back to the caller.
402 * - func_define generates another macro to automatically put arguments
403 * onto the stack call the subroutine and cleanup the stack again.
404 */
405
406/* Within subroutines these macros can be used to access the arguments
407 * on the stack. With STACK some allocated memory on the stack can be
408 * accessed and ARG0 points to the return address (used by mmu_engage).
409 */
410#define STACK %a6@(stackstart)
411#define ARG0 %a6@(4)
412#define ARG1 %a6@(8)
413#define ARG2 %a6@(12)
414#define ARG3 %a6@(16)
415#define ARG4 %a6@(20)
416
417.macro func_start name,saveregs,stack=0
418L(\name):
419 linkw %a6,#-\stack
420 moveml \saveregs,%sp@-
421.set stackstart,-\stack
422
423.macro func_return_\name
424 moveml %sp@+,\saveregs
425 unlk %a6
426 rts
427.endm
428.endm
429
430.macro func_return name
431 func_return_\name
432.endm
433
434.macro func_call name
435 jbsr L(\name)
436.endm
437
438.macro move_stack nr,arg1,arg2,arg3,arg4
439.if \nr
440 move_stack "(\nr-1)",\arg2,\arg3,\arg4
441 movel \arg1,%sp@-
442.endif
443.endm
444
445.macro func_define name,nr=0
446.macro \name arg1,arg2,arg3,arg4
447 move_stack \nr,\arg1,\arg2,\arg3,\arg4
448 func_call \name
449.if \nr
450 lea %sp@(\nr*4),%sp
451.endif
452.endm
453.endm
454
455func_define mmu_map,4
456func_define mmu_map_tt,4
457func_define mmu_fixup_page_mmu_cache,1
458func_define mmu_temp_map,2
459func_define mmu_engage
460func_define mmu_get_root_table_entry,1
461func_define mmu_get_ptr_table_entry,2
462func_define mmu_get_page_table_entry,2
463func_define mmu_print
464func_define get_new_page
465#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
466func_define set_leds
467#endif
468
469.macro mmu_map_eq arg1,arg2,arg3
470 mmu_map \arg1,\arg1,\arg2,\arg3
471.endm
472
473.macro get_bi_record record
474 pea \record
475 func_call get_bi_record
476 addql #4,%sp
477.endm
478
479func_define serial_putc,1
480func_define console_putc,1
481
482func_define console_init
483func_define console_put_stats
484func_define console_put_penguin
485func_define console_plot_pixel,3
486func_define console_scroll
487
488.macro putc ch
489#if defined(CONSOLE) || defined(SERIAL_DEBUG)
490 pea \ch
491#endif
492#ifdef CONSOLE
493 func_call console_putc
494#endif
495#ifdef SERIAL_DEBUG
496 func_call serial_putc
497#endif
498#if defined(CONSOLE) || defined(SERIAL_DEBUG)
499 addql #4,%sp
500#endif
501.endm
502
503.macro dputc ch
504#ifdef DEBUG
505 putc \ch
506#endif
507.endm
508
509func_define putn,1
510
511.macro dputn nr
512#ifdef DEBUG
513 putn \nr
514#endif
515.endm
516
517.macro puts string
518#if defined(CONSOLE) || defined(SERIAL_DEBUG)
519 __INITDATA
520.Lstr\@:
521 .string "\string"
522 __FINIT
523 pea %pc@(.Lstr\@)
524 func_call puts
525 addql #4,%sp
526#endif
527.endm
528
529.macro dputs string
530#ifdef DEBUG
531 puts "\string"
532#endif
533.endm
534
535#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
536#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
537#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
538#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
539#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
540#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
541#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
542#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
543#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
544#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
545#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
546#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
547#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
548
549#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
550 jeq 42f; \
551 cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
552 jne lab ;\
553 42:\
554
555#define is_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
556#define is_not_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
557#define is_040(lab) btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
558#define is_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
559#define is_not_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
560#define is_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
561#define is_not_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
562
563/* On the HP300 we use the on-board LEDs for debug output before
564 the console is running. Writing a 1 bit turns the corresponding LED
565 _off_ - on the 340 bit 7 is towards the back panel of the machine. */
566.macro leds mask
567#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
568 hasnt_leds(.Lled\@)
569 pea \mask
570 func_call set_leds
571 addql #4,%sp
572.Lled\@:
573#endif
574.endm
575
576__HEAD
577ENTRY(_stext)
578/*
579 * Version numbers of the bootinfo interface
580 * The area from _stext to _start will later be used as kernel pointer table
581 */
582 bras 1f /* Jump over bootinfo version numbers */
583
584 .long BOOTINFOV_MAGIC
585 .long MACH_AMIGA, AMIGA_BOOTI_VERSION
586 .long MACH_ATARI, ATARI_BOOTI_VERSION
587 .long MACH_MVME147, MVME147_BOOTI_VERSION
588 .long MACH_MVME16x, MVME16x_BOOTI_VERSION
589 .long MACH_BVME6000, BVME6000_BOOTI_VERSION
590 .long MACH_MAC, MAC_BOOTI_VERSION
591 .long MACH_Q40, Q40_BOOTI_VERSION
592 .long MACH_HP300, HP300_BOOTI_VERSION
593 .long 0
5941: jra __start
595
596.equ kernel_pg_dir,_stext
597
598.equ .,_stext+PAGESIZE
599
600ENTRY(_start)
601 jra __start
602__INIT
603ENTRY(__start)
604/*
605 * Setup initial stack pointer
606 */
607 lea %pc@(_stext),%sp
608
609/*
610 * Record the CPU and machine type.
611 */
612 get_bi_record BI_MACHTYPE
613 lea %pc@(m68k_machtype),%a1
614 movel %a0@,%a1@
615
616 get_bi_record BI_FPUTYPE
617 lea %pc@(m68k_fputype),%a1
618 movel %a0@,%a1@
619
620 get_bi_record BI_MMUTYPE
621 lea %pc@(m68k_mmutype),%a1
622 movel %a0@,%a1@
623
624 get_bi_record BI_CPUTYPE
625 lea %pc@(m68k_cputype),%a1
626 movel %a0@,%a1@
627
628 leds 0x1
629
630#ifdef CONFIG_MAC
631/*
632 * For Macintosh, we need to determine the display parameters early (at least
633 * while debugging it).
634 */
635
636 is_not_mac(L(test_notmac))
637
638 get_bi_record BI_MAC_VADDR
639 lea %pc@(L(mac_videobase)),%a1
640 movel %a0@,%a1@
641
642 get_bi_record BI_MAC_VDEPTH
643 lea %pc@(L(mac_videodepth)),%a1
644 movel %a0@,%a1@
645
646 get_bi_record BI_MAC_VDIM
647 lea %pc@(L(mac_dimensions)),%a1
648 movel %a0@,%a1@
649
650 get_bi_record BI_MAC_VROW
651 lea %pc@(L(mac_rowbytes)),%a1
652 movel %a0@,%a1@
653
654#ifdef SERIAL_DEBUG
655 get_bi_record BI_MAC_SCCBASE
656 lea %pc@(L(mac_sccbase)),%a1
657 movel %a0@,%a1@
658#endif
659
660L(test_notmac):
661#endif /* CONFIG_MAC */
662
663
664/*
665 * There are ultimately two pieces of information we want for all kinds of
666 * processors CpuType and CacheBits. The CPUTYPE was passed in from booter
667 * and is converted here from a booter type definition to a separate bit
668 * number which allows for the standard is_0x0 macro tests.
669 */
670 movel %pc@(m68k_cputype),%d0
671 /*
672 * Assume it's an 030
673 */
674 clrl %d1
675
676 /*
677 * Test the BootInfo cputype for 060
678 */
679 btst #CPUB_68060,%d0
680 jeq 1f
681 bset #CPUTYPE_060,%d1
682 bset #CPUTYPE_0460,%d1
683 jra 3f
6841:
685 /*
686 * Test the BootInfo cputype for 040
687 */
688 btst #CPUB_68040,%d0
689 jeq 2f
690 bset #CPUTYPE_040,%d1
691 bset #CPUTYPE_0460,%d1
692 jra 3f
6932:
694 /*
695 * Test the BootInfo cputype for 020
696 */
697 btst #CPUB_68020,%d0
698 jeq 3f
699 bset #CPUTYPE_020,%d1
700 jra 3f
7013:
702 /*
703 * Record the cpu type
704 */
705 lea %pc@(L(cputype)),%a0
706 movel %d1,%a0@
707
708 /*
709 * NOTE:
710 *
711 * Now the macros are valid:
712 * is_040_or_060
713 * is_not_040_or_060
714 * is_040
715 * is_060
716 * is_not_060
717 */
718
719 /*
720 * Determine the cache mode for pages holding MMU tables
721 * and for supervisor mode, unused for '020 and '030
722 */
723 clrl %d0
724 clrl %d1
725
726 is_not_040_or_060(L(save_cachetype))
727
728 /*
729 * '040 or '060
730 * d1 := cacheable write-through
731 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
732 * but we have been using write-through since at least 2.0.29 so I
733 * guess it is OK.
734 */
735#ifdef CONFIG_060_WRITETHROUGH
736 /*
737 * If this is a 68060 board using drivers with cache coherency
738 * problems, then supervisor memory accesses need to be write-through
739 * also; otherwise, we want copyback.
740 */
741
742 is_not_060(1f)
743 movel #_PAGE_CACHE040W,%d0
744 jra L(save_cachetype)
745#endif /* CONFIG_060_WRITETHROUGH */
7461:
747 movew #_PAGE_CACHE040,%d0
748
749 movel #_PAGE_CACHE040W,%d1
750
751L(save_cachetype):
752 /* Save cache mode for supervisor mode and page tables
753 */
754 lea %pc@(m68k_supervisor_cachemode),%a0
755 movel %d0,%a0@
756 lea %pc@(m68k_pgtable_cachemode),%a0
757 movel %d1,%a0@
758
759/*
760 * raise interrupt level
761 */
762 movew #0x2700,%sr
763
764/*
765 If running on an Atari, determine the I/O base of the
766 serial port and test if we are running on a Medusa or Hades.
767 This test is necessary here, because on the Hades the serial
768 port is only accessible in the high I/O memory area.
769
770 The test whether it is a Medusa is done by writing to the byte at
771 phys. 0x0. This should result in a bus error on all other machines.
772
773 ...should, but doesn't. The Afterburner040 for the Falcon has the
774 same behaviour (0x0..0x7 are no ROM shadow). So we have to do
775 another test to distinguish Medusa and AB040. This is a
776 read attempt for 0x00ff82fe phys. that should bus error on a Falcon
777 (+AB040), but is in the range where the Medusa always asserts DTACK.
778
779 The test for the Hades is done by reading address 0xb0000000. This
780 should give a bus error on the Medusa.
781 */
782
783#ifdef CONFIG_ATARI
784 is_not_atari(L(notypetest))
785
786 /* get special machine type (Medusa/Hades/AB40) */
787 moveq #0,%d3 /* default if tag doesn't exist */
788 get_bi_record BI_ATARI_MCH_TYPE
789 tstl %d0
790 jbmi 1f
791 movel %a0@,%d3
792 lea %pc@(atari_mch_type),%a0
793 movel %d3,%a0@
7941:
795 /* On the Hades, the iobase must be set up before opening the
796 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
797 moveq #0,%d0
798 cmpl #ATARI_MACH_HADES,%d3
799 jbne 1f
800 movel #0xff000000,%d0 /* Hades I/O base addr: 0xff000000 */
8011: lea %pc@(L(iobase)),%a0
802 movel %d0,%a0@
803
804L(notypetest):
805#endif
806
807#ifdef CONFIG_VME
808 is_mvme147(L(getvmetype))
809 is_bvme6000(L(getvmetype))
810 is_not_mvme16x(L(gvtdone))
811
812 /* See if the loader has specified the BI_VME_TYPE tag. Recent
813 * versions of VMELILO and TFTPLILO do this. We have to do this
814 * early so we know how to handle console output. If the tag
815 * doesn't exist then we use the Bug for output on MVME16x.
816 */
817L(getvmetype):
818 get_bi_record BI_VME_TYPE
819 tstl %d0
820 jbmi 1f
821 movel %a0@,%d3
822 lea %pc@(vme_brdtype),%a0
823 movel %d3,%a0@
8241:
825#ifdef CONFIG_MVME16x
826 is_not_mvme16x(L(gvtdone))
827
828 /* Need to get the BRD_ID info to differentiate between 162, 167,
829 * etc. This is available as a BI_VME_BRDINFO tag with later
830 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
831 */
832 get_bi_record BI_VME_BRDINFO
833 tstl %d0
834 jpl 1f
835
836 /* Get pointer to board ID data from Bug */
837 movel %d2,%sp@-
838 trap #15
839 .word 0x70 /* trap 0x70 - .BRD_ID */
840 movel %sp@+,%a0
8411:
842 lea %pc@(mvme_bdid),%a1
843 /* Structure is 32 bytes long */
844 movel %a0@+,%a1@+
845 movel %a0@+,%a1@+
846 movel %a0@+,%a1@+
847 movel %a0@+,%a1@+
848 movel %a0@+,%a1@+
849 movel %a0@+,%a1@+
850 movel %a0@+,%a1@+
851 movel %a0@+,%a1@+
852#endif
853
854L(gvtdone):
855
856#endif
857
858#ifdef CONFIG_HP300
859 is_not_hp300(L(nothp))
860
861 /* Get the address of the UART for serial debugging */
862 get_bi_record BI_HP300_UART_ADDR
863 tstl %d0
864 jbmi 1f
865 movel %a0@,%d3
866 lea %pc@(L(uartbase)),%a0
867 movel %d3,%a0@
868 get_bi_record BI_HP300_UART_SCODE
869 tstl %d0
870 jbmi 1f
871 movel %a0@,%d3
872 lea %pc@(L(uart_scode)),%a0
873 movel %d3,%a0@
8741:
875L(nothp):
876#endif
877
878/*
879 * Initialize serial port
880 */
881 jbsr L(serial_init)
882
883/*
884 * Initialize console
885 */
886#ifdef CONFIG_MAC
887 is_not_mac(L(nocon))
888# ifdef CONSOLE
889 console_init
890# ifdef CONFIG_LOGO
891 console_put_penguin
892# endif /* CONFIG_LOGO */
893 console_put_stats
894# endif /* CONSOLE */
895L(nocon):
896#endif /* CONFIG_MAC */
897
898
899 putc '\n'
900 putc 'A'
901 leds 0x2
902 dputn %pc@(L(cputype))
903 dputn %pc@(m68k_supervisor_cachemode)
904 dputn %pc@(m68k_pgtable_cachemode)
905 dputc '\n'
906
907/*
908 * Save physical start address of kernel
909 */
910 lea %pc@(L(phys_kernel_start)),%a0
911 lea %pc@(_stext),%a1
912 subl #_stext,%a1
913 addl #PAGE_OFFSET,%a1
914 movel %a1,%a0@
915
916 putc 'B'
917
918 leds 0x4
919
920/*
921 * mmu_init
922 *
923 * This block of code does what's necessary to map in the various kinds
924 * of machines for execution of Linux.
925 * First map the first 4 MB of kernel code & data
926 */
927
928 mmu_map #PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\
929 %pc@(m68k_supervisor_cachemode)
930
931 putc 'C'
932
933#ifdef CONFIG_AMIGA
934
935L(mmu_init_amiga):
936
937 is_not_amiga(L(mmu_init_not_amiga))
938/*
939 * mmu_init_amiga
940 */
941
942 putc 'D'
943
944 is_not_040_or_060(1f)
945
946 /*
947 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
948 */
949 mmu_map #0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
950 /*
951 * Map the Zorro III I/O space with transparent translation
952 * for frame buffer memory etc.
953 */
954 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
955
956 jbra L(mmu_init_done)
957
9581:
959 /*
960 * 030: Map the 32Meg range physical 0x0 up to logical 0x8000.0000
961 */
962 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
963 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
964
965 jbra L(mmu_init_done)
966
967L(mmu_init_not_amiga):
968#endif
969
970#ifdef CONFIG_ATARI
971
972L(mmu_init_atari):
973
974 is_not_atari(L(mmu_init_not_atari))
975
976 putc 'E'
977
978/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
979 the last 16 MB of virtual address space to the first 16 MB (i.e.
980 0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
981 needed. I/O ranges are marked non-cachable.
982
983 For the Medusa it is better to map the I/O region transparently
984 (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
985 accessible only in the high area.
986
987 On the Hades all I/O registers are only accessible in the high
988 area.
989*/
990
991 /* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
992 moveq #0,%d0
993 movel %pc@(atari_mch_type),%d3
994 cmpl #ATARI_MACH_MEDUSA,%d3
995 jbeq 2f
996 cmpl #ATARI_MACH_HADES,%d3
997 jbne 1f
9982: movel #0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
9991: movel %d0,%d3
1000
1001 is_040_or_060(L(spata68040))
1002
1003 /* Map everything non-cacheable, though not all parts really
1004 * need to disable caches (crucial only for 0xff8000..0xffffff
1005 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1006 * isn't really used, except for sometimes peeking into the
1007 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1008 * this. */
1009 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1010
1011 jbra L(mmu_init_done)
1012
1013L(spata68040):
1014
1015 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1016
1017 jbra L(mmu_init_done)
1018
1019L(mmu_init_not_atari):
1020#endif
1021
1022#ifdef CONFIG_Q40
1023 is_not_q40(L(notq40))
1024 /*
1025 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1026 * non-cached serialized etc..
1027 * this includes master chip, DAC, RTC and ISA ports
1028 * 0xfe000000-0xfeffffff is for screen and ROM
1029 */
1030
1031 putc 'Q'
1032
1033 mmu_map_tt #0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1034 mmu_map_tt #1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1035
1036 jbra L(mmu_init_done)
1037
1038L(notq40):
1039#endif
1040
1041#ifdef CONFIG_HP300
1042 is_not_hp300(L(nothp300))
1043
1044 /* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1045 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1046 * The ROM mapping is needed because the LEDs are mapped there too.
1047 */
1048
1049 is_040(1f)
1050
1051 /*
1052 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1053 */
1054 mmu_map #0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1055
1056 jbra L(mmu_init_done)
1057
10581:
1059 /*
1060 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1061 */
1062 mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1063
1064 jbra L(mmu_init_done)
1065
1066L(nothp300):
1067#endif /* CONFIG_HP300 */
1068
1069#ifdef CONFIG_MVME147
1070
1071 is_not_mvme147(L(not147))
1072
1073 /*
1074 * On MVME147 we have already created kernel page tables for
1075 * 4MB of RAM at address 0, so now need to do a transparent
1076 * mapping of the top of memory space. Make it 0.5GByte for now,
1077 * so we can access on-board i/o areas.
1078 */
1079
1080 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1081
1082 jbra L(mmu_init_done)
1083
1084L(not147):
1085#endif /* CONFIG_MVME147 */
1086
1087#ifdef CONFIG_MVME16x
1088
1089 is_not_mvme16x(L(not16x))
1090
1091 /*
1092 * On MVME16x we have already created kernel page tables for
1093 * 4MB of RAM at address 0, so now need to do a transparent
1094 * mapping of the top of memory space. Make it 0.5GByte for now.
1095 * Supervisor only access, so transparent mapping doesn't
1096 * clash with User code virtual address space.
1097 * this covers IO devices, PROM and SRAM. The PROM and SRAM
1098 * mapping is needed to allow 167Bug to run.
1099 * IO is in the range 0xfff00000 to 0xfffeffff.
1100 * PROM is 0xff800000->0xffbfffff and SRAM is
1101 * 0xffe00000->0xffe1ffff.
1102 */
1103
1104 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1105
1106 jbra L(mmu_init_done)
1107
1108L(not16x):
1109#endif /* CONFIG_MVME162 | CONFIG_MVME167 */
1110
1111#ifdef CONFIG_BVME6000
1112
1113 is_not_bvme6000(L(not6000))
1114
1115 /*
1116 * On BVME6000 we have already created kernel page tables for
1117 * 4MB of RAM at address 0, so now need to do a transparent
1118 * mapping of the top of memory space. Make it 0.5GByte for now,
1119 * so we can access on-board i/o areas.
1120 * Supervisor only access, so transparent mapping doesn't
1121 * clash with User code virtual address space.
1122 */
1123
1124 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1125
1126 jbra L(mmu_init_done)
1127
1128L(not6000):
1129#endif /* CONFIG_BVME6000 */
1130
1131/*
1132 * mmu_init_mac
1133 *
1134 * The Macintosh mappings are less clear.
1135 *
1136 * Even as of this writing, it is unclear how the
1137 * Macintosh mappings will be done. However, as
1138 * the first author of this code I'm proposing the
1139 * following model:
1140 *
1141 * Map the kernel (that's already done),
1142 * Map the I/O (on most machines that's the
1143 * 0x5000.0000 ... 0x5300.0000 range,
1144 * Map the video frame buffer using as few pages
1145 * as absolutely (this requirement mostly stems from
1146 * the fact that when the frame buffer is at
1147 * 0x0000.0000 then we know there is valid RAM just
1148 * above the screen that we don't want to waste!).
1149 *
1150 * By the way, if the frame buffer is at 0x0000.0000
1151 * then the Macintosh is known as an RBV based Mac.
1152 *
1153 * By the way 2, the code currently maps in a bunch of
1154 * regions. But I'd like to cut that out. (And move most
1155 * of the mappings up into the kernel proper ... or only
1156 * map what's necessary.)
1157 */
1158
1159#ifdef CONFIG_MAC
1160
1161L(mmu_init_mac):
1162
1163 is_not_mac(L(mmu_init_not_mac))
1164
1165 putc 'F'
1166
1167 is_not_040_or_060(1f)
1168
1169 moveq #_PAGE_NOCACHE_S,%d3
1170 jbra 2f
11711:
1172 moveq #_PAGE_NOCACHE030,%d3
11732:
1174 /*
1175 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1176 * we simply map the 4MB that contains the videomem
1177 */
1178
1179 movel #VIDEOMEMMASK,%d0
1180 andl %pc@(L(mac_videobase)),%d0
1181
1182 mmu_map #VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1183 /* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1184 mmu_map_eq #0x40000000,#0x02000000,%d3
1185 /* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1186 mmu_map_eq #0x50000000,#0x03000000,%d3
1187 /* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1188 mmu_map_tt #1,#0xf8000000,#0x08000000,%d3
1189
1190 jbra L(mmu_init_done)
1191
1192L(mmu_init_not_mac):
1193#endif
1194
1195#ifdef CONFIG_SUN3X
1196 is_not_sun3x(L(notsun3x))
1197
1198 /* oh, the pain.. We're gonna want the prom code after
1199 * starting the MMU, so we copy the mappings, translating
1200 * from 8k -> 4k pages as we go.
1201 */
1202
1203 /* copy maps from 0xfee00000 to 0xff000000 */
1204 movel #0xfee00000, %d0
1205 moveq #ROOT_INDEX_SHIFT, %d1
1206 lsrl %d1,%d0
1207 mmu_get_root_table_entry %d0
1208
1209 movel #0xfee00000, %d0
1210 moveq #PTR_INDEX_SHIFT, %d1
1211 lsrl %d1,%d0
1212 andl #PTR_TABLE_SIZE-1, %d0
1213 mmu_get_ptr_table_entry %a0,%d0
1214
1215 movel #0xfee00000, %d0
1216 moveq #PAGE_INDEX_SHIFT, %d1
1217 lsrl %d1,%d0
1218 andl #PAGE_TABLE_SIZE-1, %d0
1219 mmu_get_page_table_entry %a0,%d0
1220
1221 /* this is where the prom page table lives */
1222 movel 0xfefe00d4, %a1
1223 movel %a1@, %a1
1224
1225 movel #((0x200000 >> 13)-1), %d1
1226
12271:
1228 movel %a1@+, %d3
1229 movel %d3,%a0@+
1230 addl #0x1000,%d3
1231 movel %d3,%a0@+
1232
1233 dbra %d1,1b
1234
1235 /* setup tt1 for I/O */
1236 mmu_map_tt #1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1237 jbra L(mmu_init_done)
1238
1239L(notsun3x):
1240#endif
1241
1242#ifdef CONFIG_APOLLO
1243 is_not_apollo(L(notapollo))
1244
1245 putc 'P'
1246 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1247
1248L(notapollo):
1249 jbra L(mmu_init_done)
1250#endif
1251
1252L(mmu_init_done):
1253
1254 putc 'G'
1255 leds 0x8
1256
1257/*
1258 * mmu_fixup
1259 *
1260 * On the 040 class machines, all pages that are used for the
1261 * mmu have to be fixed up. According to Motorola, pages holding mmu
1262 * tables should be non-cacheable on a '040 and write-through on a
1263 * '060. But analysis of the reasons for this, and practical
1264 * experience, showed that write-through also works on a '040.
1265 *
1266 * Allocated memory so far goes from kernel_end to memory_start that
1267 * is used for all kind of tables, for that the cache attributes
1268 * are now fixed.
1269 */
1270L(mmu_fixup):
1271
1272 is_not_040_or_060(L(mmu_fixup_done))
1273
1274#ifdef MMU_NOCACHE_KERNEL
1275 jbra L(mmu_fixup_done)
1276#endif
1277
1278 /* first fix the page at the start of the kernel, that
1279 * contains also kernel_pg_dir.
1280 */
1281 movel %pc@(L(phys_kernel_start)),%d0
1282 subl #PAGE_OFFSET,%d0
1283 lea %pc@(_stext),%a0
1284 subl %d0,%a0
1285 mmu_fixup_page_mmu_cache %a0
1286
1287 movel %pc@(L(kernel_end)),%a0
1288 subl %d0,%a0
1289 movel %pc@(L(memory_start)),%a1
1290 subl %d0,%a1
1291 bra 2f
12921:
1293 mmu_fixup_page_mmu_cache %a0
1294 addw #PAGESIZE,%a0
12952:
1296 cmpl %a0,%a1
1297 jgt 1b
1298
1299L(mmu_fixup_done):
1300
1301#ifdef MMU_PRINT
1302 mmu_print
1303#endif
1304
1305/*
1306 * mmu_engage
1307 *
1308 * This chunk of code performs the gruesome task of engaging the MMU.
1309 * The reason its gruesome is because when the MMU becomes engaged it
1310 * maps logical addresses to physical addresses. The Program Counter
1311 * register is then passed through the MMU before the next instruction
1312 * is fetched (the instruction following the engage MMU instruction).
1313 * This may mean one of two things:
1314 * 1. The Program Counter falls within the logical address space of
1315 * the kernel of which there are two sub-possibilities:
1316 * A. The PC maps to the correct instruction (logical PC == physical
1317 * code location), or
1318 * B. The PC does not map through and the processor will read some
1319 * data (or instruction) which is not the logically next instr.
1320 * As you can imagine, A is good and B is bad.
1321 * Alternatively,
1322 * 2. The Program Counter does not map through the MMU. The processor
1323 * will take a Bus Error.
1324 * Clearly, 2 is bad.
1325 * It doesn't take a wiz kid to figure you want 1.A.
1326 * This code creates that possibility.
1327 * There are two possible 1.A. states (we now ignore the other above states):
1328 * A. The kernel is located at physical memory addressed the same as
1329 * the logical memory for the kernel, i.e., 0x01000.
1330 * B. The kernel is located some where else. e.g., 0x0400.0000
1331 *
1332 * Under some conditions the Macintosh can look like A or B.
1333 * [A friend and I once noted that Apple hardware engineers should be
1334 * wacked twice each day: once when they show up at work (as in, Whack!,
1335 * "This is for the screwy hardware we know you're going to design today."),
1336 * and also at the end of the day (as in, Whack! "I don't know what
1337 * you designed today, but I'm sure it wasn't good."). -- rst]
1338 *
1339 * This code works on the following premise:
1340 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1341 * then create a mapping for the kernel at logical 0x8000.0000 to
1342 * the physical location of the pc. And, create a transparent
1343 * translation register for the first 16 Meg. Then, after the MMU
1344 * is engaged, the PC can be moved up into the 0x8000.0000 range
1345 * and then the transparent translation can be turned off and then
1346 * the PC can jump to the correct logical location and it will be
1347 * home (finally). This is essentially the code that the Amiga used
1348 * to use. Now, it's generalized for all processors. Which means
1349 * that a fresh (but temporary) mapping has to be created. The mapping
1350 * is made in page 0 (an as of yet unused location -- except for the
1351 * stack!). This temporary mapping will only require 1 pointer table
1352 * and a single page table (it can map 256K).
1353 *
1354 * OK, alternatively, imagine that the Program Counter is not within
1355 * the first 16 Meg. Then, just use Transparent Translation registers
1356 * to do the right thing.
1357 *
1358 * Last, if _start is already at 0x01000, then there's nothing special
1359 * to do (in other words, in a degenerate case of the first case above,
1360 * do nothing).
1361 *
1362 * Let's do it.
1363 *
1364 *
1365 */
1366
1367 putc 'H'
1368
1369 mmu_engage
1370
1371/*
1372 * After this point no new memory is allocated and
1373 * the start of available memory is stored in availmem.
1374 * (The bootmem allocator requires now the physicall address.)
1375 */
1376
1377 movel L(memory_start),availmem
1378
1379#ifdef CONFIG_AMIGA
1380 is_not_amiga(1f)
1381 /* fixup the Amiga custom register location before printing */
1382 clrl L(custom)
13831:
1384#endif
1385
1386#ifdef CONFIG_ATARI
1387 is_not_atari(1f)
1388 /* fixup the Atari iobase register location before printing */
1389 movel #0xff000000,L(iobase)
13901:
1391#endif
1392
1393#ifdef CONFIG_MAC
1394 is_not_mac(1f)
1395 movel #~VIDEOMEMMASK,%d0
1396 andl L(mac_videobase),%d0
1397 addl #VIDEOMEMBASE,%d0
1398 movel %d0,L(mac_videobase)
1399#if defined(CONSOLE)
1400 movel %pc@(L(phys_kernel_start)),%d0
1401 subl #PAGE_OFFSET,%d0
1402 subl %d0,L(console_font)
1403 subl %d0,L(console_font_data)
1404#endif
1405#ifdef SERIAL_DEBUG
1406 orl #0x50000000,L(mac_sccbase)
1407#endif
14081:
1409#endif
1410
1411#ifdef CONFIG_HP300
1412 is_not_hp300(2f)
1413 /*
1414 * Fix up the iobase register to point to the new location of the LEDs.
1415 */
1416 movel #0xf0000000,L(iobase)
1417
1418 /*
1419 * Energise the FPU and caches.
1420 */
1421 is_040(1f)
1422 movel #0x60,0xf05f400c
1423 jbra 2f
1424
1425 /*
1426 * 040: slightly different, apparently.
1427 */
14281: movew #0,0xf05f400e
1429 movew #0x64,0xf05f400e
14302:
1431#endif
1432
1433#ifdef CONFIG_SUN3X
1434 is_not_sun3x(1f)
1435
1436 /* enable copro */
1437 oriw #0x4000,0x61000000
14381:
1439#endif
1440
1441#ifdef CONFIG_APOLLO
1442 is_not_apollo(1f)
1443
1444 /*
1445 * Fix up the iobase before printing
1446 */
1447 movel #0x80000000,L(iobase)
14481:
1449#endif
1450
1451 putc 'I'
1452 leds 0x10
1453
1454/*
1455 * Enable caches
1456 */
1457
1458 is_not_040_or_060(L(cache_not_680460))
1459
1460L(cache680460):
1461 .chip 68040
1462 nop
1463 cpusha %bc
1464 nop
1465
1466 is_060(L(cache68060))
1467
1468 movel #CC6_ENABLE_D+CC6_ENABLE_I,%d0
1469 /* MMU stuff works in copyback mode now, so enable the cache */
1470 movec %d0,%cacr
1471 jra L(cache_done)
1472
1473L(cache68060):
1474 movel #CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1475 /* MMU stuff works in copyback mode now, so enable the cache */
1476 movec %d0,%cacr
1477 /* enable superscalar dispatch in PCR */
1478 moveq #1,%d0
1479 .chip 68060
1480 movec %d0,%pcr
1481
1482 jbra L(cache_done)
1483L(cache_not_680460):
1484L(cache68030):
1485 .chip 68030
1486 movel #CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1487 movec %d0,%cacr
1488
1489 jra L(cache_done)
1490 .chip 68k
1491L(cache_done):
1492
1493 putc 'J'
1494
1495/*
1496 * Setup initial stack pointer
1497 */
1498 lea init_task,%curptr
1499 lea init_thread_union+THREAD_SIZE,%sp
1500
1501 putc 'K'
1502
1503 subl %a6,%a6 /* clear a6 for gdb */
1504
1505/*
1506 * The new 64bit printf support requires an early exception initialization.
1507 */
1508 jbsr base_trap_init
1509
1510/* jump to the kernel start */
1511
1512 putc '\n'
1513 leds 0x55
1514
1515 jbsr start_kernel
1516
1517/*
1518 * Find a tag record in the bootinfo structure
1519 * The bootinfo structure is located right after the kernel
1520 * Returns: d0: size (-1 if not found)
1521 * a0: data pointer (end-of-records if not found)
1522 */
1523func_start get_bi_record,%d1
1524
1525 movel ARG1,%d0
1526 lea %pc@(_end),%a0
15271: tstw %a0@(BIR_TAG)
1528 jeq 3f
1529 cmpw %a0@(BIR_TAG),%d0
1530 jeq 2f
1531 addw %a0@(BIR_SIZE),%a0
1532 jra 1b
15332: moveq #0,%d0
1534 movew %a0@(BIR_SIZE),%d0
1535 lea %a0@(BIR_DATA),%a0
1536 jra 4f
15373: moveq #-1,%d0
1538 lea %a0@(BIR_SIZE),%a0
15394:
1540func_return get_bi_record
1541
1542
1543/*
1544 * MMU Initialization Begins Here
1545 *
1546 * The structure of the MMU tables on the 68k machines
1547 * is thus:
1548 * Root Table
1549 * Logical addresses are translated through
1550 * a hierarchical translation mechanism where the high-order
1551 * seven bits of the logical address (LA) are used as an
1552 * index into the "root table." Each entry in the root
1553 * table has a bit which specifies if it's a valid pointer to a
1554 * pointer table. Each entry defines a 32KMeg range of memory.
1555 * If an entry is invalid then that logical range of 32M is
1556 * invalid and references to that range of memory (when the MMU
1557 * is enabled) will fault. If the entry is valid, then it does
1558 * one of two things. On 040/060 class machines, it points to
1559 * a pointer table which then describes more finely the memory
1560 * within that 32M range. On 020/030 class machines, a technique
1561 * called "early terminating descriptors" are used. This technique
1562 * allows an entire 32Meg to be described by a single entry in the
1563 * root table. Thus, this entry in the root table, contains the
1564 * physical address of the memory or I/O at the logical address
1565 * which the entry represents and it also contains the necessary
1566 * cache bits for this region.
1567 *
1568 * Pointer Tables
1569 * Per the Root Table, there will be one or more
1570 * pointer tables. Each pointer table defines a 32M range.
1571 * Not all of the 32M range need be defined. Again, the next
1572 * seven bits of the logical address are used an index into
1573 * the pointer table to point to page tables (if the pointer
1574 * is valid). There will undoubtedly be more than one
1575 * pointer table for the kernel because each pointer table
1576 * defines a range of only 32M. Valid pointer table entries
1577 * point to page tables, or are early terminating entries
1578 * themselves.
1579 *
1580 * Page Tables
1581 * Per the Pointer Tables, each page table entry points
1582 * to the physical page in memory that supports the logical
1583 * address that translates to the particular index.
1584 *
1585 * In short, the Logical Address gets translated as follows:
1586 * bits 31..26 - index into the Root Table
1587 * bits 25..18 - index into the Pointer Table
1588 * bits 17..12 - index into the Page Table
1589 * bits 11..0 - offset into a particular 4K page
1590 *
1591 * The algorithms which follows do one thing: they abstract
1592 * the MMU hardware. For example, there are three kinds of
1593 * cache settings that are relevant. Either, memory is
1594 * being mapped in which case it is either Kernel Code (or
1595 * the RamDisk) or it is MMU data. On the 030, the MMU data
1596 * option also describes the kernel. Or, I/O is being mapped
1597 * in which case it has its own kind of cache bits. There
1598 * are constants which abstract these notions from the code that
1599 * actually makes the call to map some range of memory.
1600 *
1601 *
1602 *
1603 */
1604
1605#ifdef MMU_PRINT
1606/*
1607 * mmu_print
1608 *
1609 * This algorithm will print out the current MMU mappings.
1610 *
1611 * Input:
1612 * %a5 points to the root table. Everything else is calculated
1613 * from this.
1614 */
1615
1616#define mmu_next_valid 0
1617#define mmu_start_logical 4
1618#define mmu_next_logical 8
1619#define mmu_start_physical 12
1620#define mmu_next_physical 16
1621
1622#define MMU_PRINT_INVALID -1
1623#define MMU_PRINT_VALID 1
1624#define MMU_PRINT_UNINITED 0
1625
1626#define putZc(z,n) jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1627
1628func_start mmu_print,%a0-%a6/%d0-%d7
1629
1630 movel %pc@(L(kernel_pgdir_ptr)),%a5
1631 lea %pc@(L(mmu_print_data)),%a0
1632 movel #MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1633
1634 is_not_040_or_060(mmu_030_print)
1635
1636mmu_040_print:
1637 puts "\nMMU040\n"
1638 puts "rp:"
1639 putn %a5
1640 putc '\n'
1641#if 0
1642 /*
1643 * The following #if/#endif block is a tight algorithm for dumping the 040
1644 * MMU Map in gory detail. It really isn't that practical unless the
1645 * MMU Map algorithm appears to go awry and you need to debug it at the
1646 * entry per entry level.
1647 */
1648 movel #ROOT_TABLE_SIZE,%d5
1649#if 0
1650 movel %a5@+,%d7 | Burn an entry to skip the kernel mappings,
1651 subql #1,%d5 | they (might) work
1652#endif
16531: tstl %d5
1654 jbeq mmu_print_done
1655 subq #1,%d5
1656 movel %a5@+,%d7
1657 btst #1,%d7
1658 jbeq 1b
1659
16602: putn %d7
1661 andil #0xFFFFFE00,%d7
1662 movel %d7,%a4
1663 movel #PTR_TABLE_SIZE,%d4
1664 putc ' '
16653: tstl %d4
1666 jbeq 11f
1667 subq #1,%d4
1668 movel %a4@+,%d7
1669 btst #1,%d7
1670 jbeq 3b
1671
16724: putn %d7
1673 andil #0xFFFFFF00,%d7
1674 movel %d7,%a3
1675 movel #PAGE_TABLE_SIZE,%d3
16765: movel #8,%d2
16776: tstl %d3
1678 jbeq 31f
1679 subq #1,%d3
1680 movel %a3@+,%d6
1681 btst #0,%d6
1682 jbeq 6b
16837: tstl %d2
1684 jbeq 8f
1685 subq #1,%d2
1686 putc ' '
1687 jbra 91f
16888: putc '\n'
1689 movel #8+1+8+1+1,%d2
16909: putc ' '
1691 dbra %d2,9b
1692 movel #7,%d2
169391: putn %d6
1694 jbra 6b
1695
169631: putc '\n'
1697 movel #8+1,%d2
169832: putc ' '
1699 dbra %d2,32b
1700 jbra 3b
1701
170211: putc '\n'
1703 jbra 1b
1704#endif /* MMU 040 Dumping code that's gory and detailed */
1705
1706 lea %pc@(kernel_pg_dir),%a5
1707 movel %a5,%a0 /* a0 has the address of the root table ptr */
1708 movel #0x00000000,%a4 /* logical address */
1709 moveql #0,%d0
171040:
1711 /* Increment the logical address and preserve in d5 */
1712 movel %a4,%d5
1713 addil #PAGESIZE<<13,%d5
1714 movel %a0@+,%d6
1715 btst #1,%d6
1716 jbne 41f
1717 jbsr mmu_print_tuple_invalidate
1718 jbra 48f
171941:
1720 movel #0,%d1
1721 andil #0xfffffe00,%d6
1722 movel %d6,%a1
172342:
1724 movel %a4,%d5
1725 addil #PAGESIZE<<6,%d5
1726 movel %a1@+,%d6
1727 btst #1,%d6
1728 jbne 43f
1729 jbsr mmu_print_tuple_invalidate
1730 jbra 47f
173143:
1732 movel #0,%d2
1733 andil #0xffffff00,%d6
1734 movel %d6,%a2
173544:
1736 movel %a4,%d5
1737 addil #PAGESIZE,%d5
1738 movel %a2@+,%d6
1739 btst #0,%d6
1740 jbne 45f
1741 jbsr mmu_print_tuple_invalidate
1742 jbra 46f
174345:
1744 moveml %d0-%d1,%sp@-
1745 movel %a4,%d0
1746 movel %d6,%d1
1747 andil #0xfffff4e0,%d1
1748 lea %pc@(mmu_040_print_flags),%a6
1749 jbsr mmu_print_tuple
1750 moveml %sp@+,%d0-%d1
175146:
1752 movel %d5,%a4
1753 addq #1,%d2
1754 cmpib #64,%d2
1755 jbne 44b
175647:
1757 movel %d5,%a4
1758 addq #1,%d1
1759 cmpib #128,%d1
1760 jbne 42b
176148:
1762 movel %d5,%a4 /* move to the next logical address */
1763 addq #1,%d0
1764 cmpib #128,%d0
1765 jbne 40b
1766
1767 .chip 68040
1768 movec %dtt1,%d0
1769 movel %d0,%d1
1770 andiw #0x8000,%d1 /* is it valid ? */
1771 jbeq 1f /* No, bail out */
1772
1773 movel %d0,%d1
1774 andil #0xff000000,%d1 /* Get the address */
1775 putn %d1
1776 puts "=="
1777 putn %d1
1778
1779 movel %d0,%d6
1780 jbsr mmu_040_print_flags_tt
17811:
1782 movec %dtt0,%d0
1783 movel %d0,%d1
1784 andiw #0x8000,%d1 /* is it valid ? */
1785 jbeq 1f /* No, bail out */
1786
1787 movel %d0,%d1
1788 andil #0xff000000,%d1 /* Get the address */
1789 putn %d1
1790 puts "=="
1791 putn %d1
1792
1793 movel %d0,%d6
1794 jbsr mmu_040_print_flags_tt
17951:
1796 .chip 68k
1797
1798 jbra mmu_print_done
1799
1800mmu_040_print_flags:
1801 btstl #10,%d6
1802 putZc(' ','G') /* global bit */
1803 btstl #7,%d6
1804 putZc(' ','S') /* supervisor bit */
1805mmu_040_print_flags_tt:
1806 btstl #6,%d6
1807 jbne 3f
1808 putc 'C'
1809 btstl #5,%d6
1810 putZc('w','c') /* write through or copy-back */
1811 jbra 4f
18123:
1813 putc 'N'
1814 btstl #5,%d6
1815 putZc('s',' ') /* serialized non-cacheable, or non-cacheable */
18164:
1817 rts
1818
1819mmu_030_print_flags:
1820 btstl #6,%d6
1821 putZc('C','I') /* write through or copy-back */
1822 rts
1823
1824mmu_030_print:
1825 puts "\nMMU030\n"
1826 puts "\nrp:"
1827 putn %a5
1828 putc '\n'
1829 movel %a5,%d0
1830 andil #0xfffffff0,%d0
1831 movel %d0,%a0
1832 movel #0x00000000,%a4 /* logical address */
1833 movel #0,%d0
183430:
1835 movel %a4,%d5
1836 addil #PAGESIZE<<13,%d5
1837 movel %a0@+,%d6
1838 btst #1,%d6 /* is it a table ptr? */
1839 jbne 31f /* yes */
1840 btst #0,%d6 /* is it early terminating? */
1841 jbeq 1f /* no */
1842 jbsr mmu_030_print_helper
1843 jbra 38f
18441:
1845 jbsr mmu_print_tuple_invalidate
1846 jbra 38f
184731:
1848 movel #0,%d1
1849 andil #0xfffffff0,%d6
1850 movel %d6,%a1
185132:
1852 movel %a4,%d5
1853 addil #PAGESIZE<<6,%d5
1854 movel %a1@+,%d6
1855 btst #1,%d6 /* is it a table ptr? */
1856 jbne 33f /* yes */
1857 btst #0,%d6 /* is it a page descriptor? */
1858 jbeq 1f /* no */
1859 jbsr mmu_030_print_helper
1860 jbra 37f
18611:
1862 jbsr mmu_print_tuple_invalidate
1863 jbra 37f
186433:
1865 movel #0,%d2
1866 andil #0xfffffff0,%d6
1867 movel %d6,%a2
186834:
1869 movel %a4,%d5
1870 addil #PAGESIZE,%d5
1871 movel %a2@+,%d6
1872 btst #0,%d6
1873 jbne 35f
1874 jbsr mmu_print_tuple_invalidate
1875 jbra 36f
187635:
1877 jbsr mmu_030_print_helper
187836:
1879 movel %d5,%a4
1880 addq #1,%d2
1881 cmpib #64,%d2
1882 jbne 34b
188337:
1884 movel %d5,%a4
1885 addq #1,%d1
1886 cmpib #128,%d1
1887 jbne 32b
188838:
1889 movel %d5,%a4 /* move to the next logical address */
1890 addq #1,%d0
1891 cmpib #128,%d0
1892 jbne 30b
1893
1894mmu_print_done:
1895 puts "\n"
1896
1897func_return mmu_print
1898
1899
1900mmu_030_print_helper:
1901 moveml %d0-%d1,%sp@-
1902 movel %a4,%d0
1903 movel %d6,%d1
1904 lea %pc@(mmu_030_print_flags),%a6
1905 jbsr mmu_print_tuple
1906 moveml %sp@+,%d0-%d1
1907 rts
1908
1909mmu_print_tuple_invalidate:
1910 moveml %a0/%d7,%sp@-
1911
1912 lea %pc@(L(mmu_print_data)),%a0
1913 tstl %a0@(mmu_next_valid)
1914 jbmi mmu_print_tuple_invalidate_exit
1915
1916 movel #MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1917
1918 putn %a4
1919
1920 puts "##\n"
1921
1922mmu_print_tuple_invalidate_exit:
1923 moveml %sp@+,%a0/%d7
1924 rts
1925
1926
1927mmu_print_tuple:
1928 moveml %d0-%d7/%a0,%sp@-
1929
1930 lea %pc@(L(mmu_print_data)),%a0
1931
1932 tstl %a0@(mmu_next_valid)
1933 jble mmu_print_tuple_print
1934
1935 cmpl %a0@(mmu_next_physical),%d1
1936 jbeq mmu_print_tuple_increment
1937
1938mmu_print_tuple_print:
1939 putn %d0
1940 puts "->"
1941 putn %d1
1942
1943 movel %d1,%d6
1944 jbsr %a6@
1945
1946mmu_print_tuple_record:
1947 movel #MMU_PRINT_VALID,%a0@(mmu_next_valid)
1948
1949 movel %d1,%a0@(mmu_next_physical)
1950
1951mmu_print_tuple_increment:
1952 movel %d5,%d7
1953 subl %a4,%d7
1954 addl %d7,%a0@(mmu_next_physical)
1955
1956mmu_print_tuple_exit:
1957 moveml %sp@+,%d0-%d7/%a0
1958 rts
1959
1960mmu_print_machine_cpu_types:
1961 puts "machine: "
1962
1963 is_not_amiga(1f)
1964 puts "amiga"
1965 jbra 9f
19661:
1967 is_not_atari(2f)
1968 puts "atari"
1969 jbra 9f
19702:
1971 is_not_mac(3f)
1972 puts "macintosh"
1973 jbra 9f
19743: puts "unknown"
19759: putc '\n'
1976
1977 puts "cputype: 0"
1978 is_not_060(1f)
1979 putc '6'
1980 jbra 9f
19811:
1982 is_not_040_or_060(2f)
1983 putc '4'
1984 jbra 9f
19852: putc '3'
19869: putc '0'
1987 putc '\n'
1988
1989 rts
1990#endif /* MMU_PRINT */
1991
1992/*
1993 * mmu_map_tt
1994 *
1995 * This is a specific function which works on all 680x0 machines.
1996 * On 030, 040 & 060 it will attempt to use Transparent Translation
1997 * registers (tt1).
1998 * On 020 it will call the standard mmu_map which will use early
1999 * terminating descriptors.
2000 */
2001func_start mmu_map_tt,%d0/%d1/%a0,4
2002
2003 dputs "mmu_map_tt:"
2004 dputn ARG1
2005 dputn ARG2
2006 dputn ARG3
2007 dputn ARG4
2008 dputc '\n'
2009
2010 is_020(L(do_map))
2011
2012 /* Extract the highest bit set
2013 */
2014 bfffo ARG3{#0,#32},%d1
2015 cmpw #8,%d1
2016 jcc L(do_map)
2017
2018 /* And get the mask
2019 */
2020 moveq #-1,%d0
2021 lsrl %d1,%d0
2022 lsrl #1,%d0
2023
2024 /* Mask the address
2025 */
2026 movel %d0,%d1
2027 notl %d1
2028 andl ARG2,%d1
2029
2030 /* Generate the upper 16bit of the tt register
2031 */
2032 lsrl #8,%d0
2033 orl %d0,%d1
2034 clrw %d1
2035
2036 is_040_or_060(L(mmu_map_tt_040))
2037
2038 /* set 030 specific bits (read/write access for supervisor mode
2039 * (highest function code set, lower two bits masked))
2040 */
2041 orw #TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2042 movel ARG4,%d0
2043 btst #6,%d0
2044 jeq 1f
2045 orw #TTR_CI,%d1
2046
20471: lea STACK,%a0
2048 dputn %d1
2049 movel %d1,%a0@
2050 .chip 68030
2051 tstl ARG1
2052 jne 1f
2053 pmove %a0@,%tt0
2054 jra 2f
20551: pmove %a0@,%tt1
20562: .chip 68k
2057 jra L(mmu_map_tt_done)
2058
2059 /* set 040 specific bits
2060 */
2061L(mmu_map_tt_040):
2062 orw #TTR_ENABLE+TTR_KERNELMODE,%d1
2063 orl ARG4,%d1
2064 dputn %d1
2065
2066 .chip 68040
2067 tstl ARG1
2068 jne 1f
2069 movec %d1,%itt0
2070 movec %d1,%dtt0
2071 jra 2f
20721: movec %d1,%itt1
2073 movec %d1,%dtt1
20742: .chip 68k
2075
2076 jra L(mmu_map_tt_done)
2077
2078L(do_map):
2079 mmu_map_eq ARG2,ARG3,ARG4
2080
2081L(mmu_map_tt_done):
2082
2083func_return mmu_map_tt
2084
2085/*
2086 * mmu_map
2087 *
2088 * This routine will map a range of memory using a pointer
2089 * table and allocating the pages on the fly from the kernel.
2090 * The pointer table does not have to be already linked into
2091 * the root table, this routine will do that if necessary.
2092 *
2093 * NOTE
2094 * This routine will assert failure and use the serial_putc
2095 * routines in the case of a run-time error. For example,
2096 * if the address is already mapped.
2097 *
2098 * NOTE-2
2099 * This routine will use early terminating descriptors
2100 * where possible for the 68020+68851 and 68030 type
2101 * processors.
2102 */
2103func_start mmu_map,%d0-%d4/%a0-%a4
2104
2105 dputs "\nmmu_map:"
2106 dputn ARG1
2107 dputn ARG2
2108 dputn ARG3
2109 dputn ARG4
2110 dputc '\n'
2111
2112 /* Get logical address and round it down to 256KB
2113 */
2114 movel ARG1,%d0
2115 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2116 movel %d0,%a3
2117
2118 /* Get the end address
2119 */
2120 movel ARG1,%a4
2121 addl ARG3,%a4
2122 subql #1,%a4
2123
2124 /* Get physical address and round it down to 256KB
2125 */
2126 movel ARG2,%d0
2127 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2128 movel %d0,%a2
2129
2130 /* Add page attributes to the physical address
2131 */
2132 movel ARG4,%d0
2133 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2134 addw %d0,%a2
2135
2136 dputn %a2
2137 dputn %a3
2138 dputn %a4
2139
2140 is_not_040_or_060(L(mmu_map_030))
2141
2142 addw #_PAGE_GLOBAL040,%a2
2143/*
2144 * MMU 040 & 060 Support
2145 *
2146 * The MMU usage for the 040 and 060 is different enough from
2147 * the 030 and 68851 that there is separate code. This comment
2148 * block describes the data structures and algorithms built by
2149 * this code.
2150 *
2151 * The 040 does not support early terminating descriptors, as
2152 * the 030 does. Therefore, a third level of table is needed
2153 * for the 040, and that would be the page table. In Linux,
2154 * page tables are allocated directly from the memory above the
2155 * kernel.
2156 *
2157 */
2158
2159L(mmu_map_040):
2160 /* Calculate the offset into the root table
2161 */
2162 movel %a3,%d0
2163 moveq #ROOT_INDEX_SHIFT,%d1
2164 lsrl %d1,%d0
2165 mmu_get_root_table_entry %d0
2166
2167 /* Calculate the offset into the pointer table
2168 */
2169 movel %a3,%d0
2170 moveq #PTR_INDEX_SHIFT,%d1
2171 lsrl %d1,%d0
2172 andl #PTR_TABLE_SIZE-1,%d0
2173 mmu_get_ptr_table_entry %a0,%d0
2174
2175 /* Calculate the offset into the page table
2176 */
2177 movel %a3,%d0
2178 moveq #PAGE_INDEX_SHIFT,%d1
2179 lsrl %d1,%d0
2180 andl #PAGE_TABLE_SIZE-1,%d0
2181 mmu_get_page_table_entry %a0,%d0
2182
2183 /* The page table entry must not no be busy
2184 */
2185 tstl %a0@
2186 jne L(mmu_map_error)
2187
2188 /* Do the mapping and advance the pointers
2189 */
2190 movel %a2,%a0@
21912:
2192 addw #PAGESIZE,%a2
2193 addw #PAGESIZE,%a3
2194
2195 /* Ready with mapping?
2196 */
2197 lea %a3@(-1),%a0
2198 cmpl %a0,%a4
2199 jhi L(mmu_map_040)
2200 jra L(mmu_map_done)
2201
2202L(mmu_map_030):
2203 /* Calculate the offset into the root table
2204 */
2205 movel %a3,%d0
2206 moveq #ROOT_INDEX_SHIFT,%d1
2207 lsrl %d1,%d0
2208 mmu_get_root_table_entry %d0
2209
2210 /* Check if logical address 32MB aligned,
2211 * so we can try to map it once
2212 */
2213 movel %a3,%d0
2214 andl #(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2215 jne 1f
2216
2217 /* Is there enough to map for 32MB at once
2218 */
2219 lea %a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2220 cmpl %a1,%a4
2221 jcs 1f
2222
2223 addql #1,%a1
2224
2225 /* The root table entry must not no be busy
2226 */
2227 tstl %a0@
2228 jne L(mmu_map_error)
2229
2230 /* Do the mapping and advance the pointers
2231 */
2232 dputs "early term1"
2233 dputn %a2
2234 dputn %a3
2235 dputn %a1
2236 dputc '\n'
2237 movel %a2,%a0@
2238
2239 movel %a1,%a3
2240 lea %a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2241 jra L(mmu_mapnext_030)
22421:
2243 /* Calculate the offset into the pointer table
2244 */
2245 movel %a3,%d0
2246 moveq #PTR_INDEX_SHIFT,%d1
2247 lsrl %d1,%d0
2248 andl #PTR_TABLE_SIZE-1,%d0
2249 mmu_get_ptr_table_entry %a0,%d0
2250
2251 /* The pointer table entry must not no be busy
2252 */
2253 tstl %a0@
2254 jne L(mmu_map_error)
2255
2256 /* Do the mapping and advance the pointers
2257 */
2258 dputs "early term2"
2259 dputn %a2
2260 dputn %a3
2261 dputc '\n'
2262 movel %a2,%a0@
2263
2264 addl #PAGE_TABLE_SIZE*PAGESIZE,%a2
2265 addl #PAGE_TABLE_SIZE*PAGESIZE,%a3
2266
2267L(mmu_mapnext_030):
2268 /* Ready with mapping?
2269 */
2270 lea %a3@(-1),%a0
2271 cmpl %a0,%a4
2272 jhi L(mmu_map_030)
2273 jra L(mmu_map_done)
2274
2275L(mmu_map_error):
2276
2277 dputs "mmu_map error:"
2278 dputn %a2
2279 dputn %a3
2280 dputc '\n'
2281
2282L(mmu_map_done):
2283
2284func_return mmu_map
2285
2286/*
2287 * mmu_fixup
2288 *
2289 * On the 040 class machines, all pages that are used for the
2290 * mmu have to be fixed up.
2291 */
2292
2293func_start mmu_fixup_page_mmu_cache,%d0/%a0
2294
2295 dputs "mmu_fixup_page_mmu_cache"
2296 dputn ARG1
2297
2298 /* Calculate the offset into the root table
2299 */
2300 movel ARG1,%d0
2301 moveq #ROOT_INDEX_SHIFT,%d1
2302 lsrl %d1,%d0
2303 mmu_get_root_table_entry %d0
2304
2305 /* Calculate the offset into the pointer table
2306 */
2307 movel ARG1,%d0
2308 moveq #PTR_INDEX_SHIFT,%d1
2309 lsrl %d1,%d0
2310 andl #PTR_TABLE_SIZE-1,%d0
2311 mmu_get_ptr_table_entry %a0,%d0
2312
2313 /* Calculate the offset into the page table
2314 */
2315 movel ARG1,%d0
2316 moveq #PAGE_INDEX_SHIFT,%d1
2317 lsrl %d1,%d0
2318 andl #PAGE_TABLE_SIZE-1,%d0
2319 mmu_get_page_table_entry %a0,%d0
2320
2321 movel %a0@,%d0
2322 andil #_CACHEMASK040,%d0
2323 orl %pc@(m68k_pgtable_cachemode),%d0
2324 movel %d0,%a0@
2325
2326 dputc '\n'
2327
2328func_return mmu_fixup_page_mmu_cache
2329
2330/*
2331 * mmu_temp_map
2332 *
2333 * create a temporary mapping to enable the mmu,
2334 * this we don't need any transparation translation tricks.
2335 */
2336
2337func_start mmu_temp_map,%d0/%d1/%a0/%a1
2338
2339 dputs "mmu_temp_map"
2340 dputn ARG1
2341 dputn ARG2
2342 dputc '\n'
2343
2344 lea %pc@(L(temp_mmap_mem)),%a1
2345
2346 /* Calculate the offset in the root table
2347 */
2348 movel ARG2,%d0
2349 moveq #ROOT_INDEX_SHIFT,%d1
2350 lsrl %d1,%d0
2351 mmu_get_root_table_entry %d0
2352
2353 /* Check if the table is temporary allocated, so we have to reuse it
2354 */
2355 movel %a0@,%d0
2356 cmpl %pc@(L(memory_start)),%d0
2357 jcc 1f
2358
2359 /* Temporary allocate a ptr table and insert it into the root table
2360 */
2361 movel %a1@,%d0
2362 addl #PTR_TABLE_SIZE*4,%a1@
2363 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2364 movel %d0,%a0@
2365 dputs " (new)"
23661:
2367 dputn %d0
2368 /* Mask the root table entry for the ptr table
2369 */
2370 andw #-ROOT_TABLE_SIZE,%d0
2371 movel %d0,%a0
2372
2373 /* Calculate the offset into the pointer table
2374 */
2375 movel ARG2,%d0
2376 moveq #PTR_INDEX_SHIFT,%d1
2377 lsrl %d1,%d0
2378 andl #PTR_TABLE_SIZE-1,%d0
2379 lea %a0@(%d0*4),%a0
2380 dputn %a0
2381
2382 /* Check if a temporary page table is already allocated
2383 */
2384 movel %a0@,%d0
2385 jne 1f
2386
2387 /* Temporary allocate a page table and insert it into the ptr table
2388 */
2389 movel %a1@,%d0
2390 /* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2391 alignment restriction for pointer tables on the '0[46]0. */
2392 addl #512,%a1@
2393 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2394 movel %d0,%a0@
2395 dputs " (new)"
23961:
2397 dputn %d0
2398 /* Mask the ptr table entry for the page table
2399 */
2400 andw #-PTR_TABLE_SIZE,%d0
2401 movel %d0,%a0
2402
2403 /* Calculate the offset into the page table
2404 */
2405 movel ARG2,%d0
2406 moveq #PAGE_INDEX_SHIFT,%d1
2407 lsrl %d1,%d0
2408 andl #PAGE_TABLE_SIZE-1,%d0
2409 lea %a0@(%d0*4),%a0
2410 dputn %a0
2411
2412 /* Insert the address into the page table
2413 */
2414 movel ARG1,%d0
2415 andw #-PAGESIZE,%d0
2416 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2417 movel %d0,%a0@
2418 dputn %d0
2419
2420 dputc '\n'
2421
2422func_return mmu_temp_map
2423
2424func_start mmu_engage,%d0-%d2/%a0-%a3
2425
2426 moveq #ROOT_TABLE_SIZE-1,%d0
2427 /* Temporarily use a different root table. */
2428 lea %pc@(L(kernel_pgdir_ptr)),%a0
2429 movel %a0@,%a2
2430 movel %pc@(L(memory_start)),%a1
2431 movel %a1,%a0@
2432 movel %a2,%a0
24331:
2434 movel %a0@+,%a1@+
2435 dbra %d0,1b
2436
2437 lea %pc@(L(temp_mmap_mem)),%a0
2438 movel %a1,%a0@
2439
2440 movew #PAGESIZE-1,%d0
24411:
2442 clrl %a1@+
2443 dbra %d0,1b
2444
2445 lea %pc@(1b),%a0
2446 movel #1b,%a1
2447 /* Skip temp mappings if phys == virt */
2448 cmpl %a0,%a1
2449 jeq 1f
2450
2451 mmu_temp_map %a0,%a0
2452 mmu_temp_map %a0,%a1
2453
2454 addw #PAGESIZE,%a0
2455 addw #PAGESIZE,%a1
2456 mmu_temp_map %a0,%a0
2457 mmu_temp_map %a0,%a1
24581:
2459 movel %pc@(L(memory_start)),%a3
2460 movel %pc@(L(phys_kernel_start)),%d2
2461
2462 is_not_040_or_060(L(mmu_engage_030))
2463
2464L(mmu_engage_040):
2465 .chip 68040
2466 nop
2467 cinva %bc
2468 nop
2469 pflusha
2470 nop
2471 movec %a3,%srp
2472 movel #TC_ENABLE+TC_PAGE4K,%d0
2473 movec %d0,%tc /* enable the MMU */
2474 jmp 1f:l
24751: nop
2476 movec %a2,%srp
2477 nop
2478 cinva %bc
2479 nop
2480 pflusha
2481 .chip 68k
2482 jra L(mmu_engage_cleanup)
2483
2484L(mmu_engage_030_temp):
2485 .space 12
2486L(mmu_engage_030):
2487 .chip 68030
2488 lea %pc@(L(mmu_engage_030_temp)),%a0
2489 movel #0x80000002,%a0@
2490 movel %a3,%a0@(4)
2491 movel #0x0808,%d0
2492 movec %d0,%cacr
2493 pmove %a0@,%srp
2494 pflusha
2495 /*
2496 * enable,super root enable,4096 byte pages,7 bit root index,
2497 * 7 bit pointer index, 6 bit page table index.
2498 */
2499 movel #0x82c07760,%a0@(8)
2500 pmove %a0@(8),%tc /* enable the MMU */
2501 jmp 1f:l
25021: movel %a2,%a0@(4)
2503 movel #0x0808,%d0
2504 movec %d0,%cacr
2505 pmove %a0@,%srp
2506 pflusha
2507 .chip 68k
2508
2509L(mmu_engage_cleanup):
2510 subl #PAGE_OFFSET,%d2
2511 subl %d2,%a2
2512 movel %a2,L(kernel_pgdir_ptr)
2513 subl %d2,%fp
2514 subl %d2,%sp
2515 subl %d2,ARG0
2516
2517func_return mmu_engage
2518
2519func_start mmu_get_root_table_entry,%d0/%a1
2520
2521#if 0
2522 dputs "mmu_get_root_table_entry:"
2523 dputn ARG1
2524 dputs " ="
2525#endif
2526
2527 movel %pc@(L(kernel_pgdir_ptr)),%a0
2528 tstl %a0
2529 jne 2f
2530
2531 dputs "\nmmu_init:"
2532
2533 /* Find the start of free memory, get_bi_record does this for us,
2534 * as the bootinfo structure is located directly behind the kernel
2535 * and and we simply search for the last entry.
2536 */
2537 get_bi_record BI_LAST
2538 addw #PAGESIZE-1,%a0
2539 movel %a0,%d0
2540 andw #-PAGESIZE,%d0
2541
2542 dputn %d0
2543
2544 lea %pc@(L(memory_start)),%a0
2545 movel %d0,%a0@
2546 lea %pc@(L(kernel_end)),%a0
2547 movel %d0,%a0@
2548
2549 /* we have to return the first page at _stext since the init code
2550 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2551 * page is used for further ptr tables in get_ptr_table.
2552 */
2553 lea %pc@(_stext),%a0
2554 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2555 movel %a0,%a1@
2556 addl #ROOT_TABLE_SIZE*4,%a1@
2557
2558 lea %pc@(L(mmu_num_pointer_tables)),%a1
2559 addql #1,%a1@
2560
2561 /* clear the page
2562 */
2563 movel %a0,%a1
2564 movew #PAGESIZE/4-1,%d0
25651:
2566 clrl %a1@+
2567 dbra %d0,1b
2568
2569 lea %pc@(L(kernel_pgdir_ptr)),%a1
2570 movel %a0,%a1@
2571
2572 dputn %a0
2573 dputc '\n'
25742:
2575 movel ARG1,%d0
2576 lea %a0@(%d0*4),%a0
2577
2578#if 0
2579 dputn %a0
2580 dputc '\n'
2581#endif
2582
2583func_return mmu_get_root_table_entry
2584
2585
2586
2587func_start mmu_get_ptr_table_entry,%d0/%a1
2588
2589#if 0
2590 dputs "mmu_get_ptr_table_entry:"
2591 dputn ARG1
2592 dputn ARG2
2593 dputs " ="
2594#endif
2595
2596 movel ARG1,%a0
2597 movel %a0@,%d0
2598 jne 2f
2599
2600 /* Keep track of the number of pointer tables we use
2601 */
2602 dputs "\nmmu_get_new_ptr_table:"
2603 lea %pc@(L(mmu_num_pointer_tables)),%a0
2604 movel %a0@,%d0
2605 addql #1,%a0@
2606
2607 /* See if there is a free pointer table in our cache of pointer tables
2608 */
2609 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2610 andw #7,%d0
2611 jne 1f
2612
2613 /* Get a new pointer table page from above the kernel memory
2614 */
2615 get_new_page
2616 movel %a0,%a1@
26171:
2618 /* There is an unused pointer table in our cache... use it
2619 */
2620 movel %a1@,%d0
2621 addl #PTR_TABLE_SIZE*4,%a1@
2622
2623 dputn %d0
2624 dputc '\n'
2625
2626 /* Insert the new pointer table into the root table
2627 */
2628 movel ARG1,%a0
2629 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2630 movel %d0,%a0@
26312:
2632 /* Extract the pointer table entry
2633 */
2634 andw #-PTR_TABLE_SIZE,%d0
2635 movel %d0,%a0
2636 movel ARG2,%d0
2637 lea %a0@(%d0*4),%a0
2638
2639#if 0
2640 dputn %a0
2641 dputc '\n'
2642#endif
2643
2644func_return mmu_get_ptr_table_entry
2645
2646
2647func_start mmu_get_page_table_entry,%d0/%a1
2648
2649#if 0
2650 dputs "mmu_get_page_table_entry:"
2651 dputn ARG1
2652 dputn ARG2
2653 dputs " ="
2654#endif
2655
2656 movel ARG1,%a0
2657 movel %a0@,%d0
2658 jne 2f
2659
2660 /* If the page table entry doesn't exist, we allocate a complete new
2661 * page and use it as one continues big page table which can cover
2662 * 4MB of memory, nearly almost all mappings have that alignment.
2663 */
2664 get_new_page
2665 addw #_PAGE_TABLE+_PAGE_ACCESSED,%a0
2666
2667 /* align pointer table entry for a page of page tables
2668 */
2669 movel ARG1,%d0
2670 andw #-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2671 movel %d0,%a1
2672
2673 /* Insert the page tables into the pointer entries
2674 */
2675 moveq #PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
26761:
2677 movel %a0,%a1@+
2678 lea %a0@(PAGE_TABLE_SIZE*4),%a0
2679 dbra %d0,1b
2680
2681 /* Now we can get the initialized pointer table entry
2682 */
2683 movel ARG1,%a0
2684 movel %a0@,%d0
26852:
2686 /* Extract the page table entry
2687 */
2688 andw #-PAGE_TABLE_SIZE,%d0
2689 movel %d0,%a0
2690 movel ARG2,%d0
2691 lea %a0@(%d0*4),%a0
2692
2693#if 0
2694 dputn %a0
2695 dputc '\n'
2696#endif
2697
2698func_return mmu_get_page_table_entry
2699
2700/*
2701 * get_new_page
2702 *
2703 * Return a new page from the memory start and clear it.
2704 */
2705func_start get_new_page,%d0/%a1
2706
2707 dputs "\nget_new_page:"
2708
2709 /* allocate the page and adjust memory_start
2710 */
2711 lea %pc@(L(memory_start)),%a0
2712 movel %a0@,%a1
2713 addl #PAGESIZE,%a0@
2714
2715 /* clear the new page
2716 */
2717 movel %a1,%a0
2718 movew #PAGESIZE/4-1,%d0
27191:
2720 clrl %a1@+
2721 dbra %d0,1b
2722
2723 dputn %a0
2724 dputc '\n'
2725
2726func_return get_new_page
2727
2728
2729
2730/*
2731 * Debug output support
2732 * Atarians have a choice between the parallel port, the serial port
2733 * from the MFP or a serial port of the SCC
2734 */
2735
2736#ifdef CONFIG_MAC
2737
2738L(scc_initable_mac):
2739 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2740 .byte 3,0xc0 /* receiver: 8 bpc */
2741 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2742 .byte 10,0 /* NRZ */
2743 .byte 11,0x50 /* use baud rate generator */
2744 .byte 12,1,13,0 /* 38400 baud */
2745 .byte 14,1 /* Baud rate generator enable */
2746 .byte 3,0xc1 /* enable receiver */
2747 .byte 5,0xea /* enable transmitter */
2748 .byte -1
2749 .even
2750#endif
2751
2752#ifdef CONFIG_ATARI
2753/* #define USE_PRINTER */
2754/* #define USE_SCC_B */
2755/* #define USE_SCC_A */
2756#define USE_MFP
2757
2758#if defined(USE_SCC_A) || defined(USE_SCC_B)
2759#define USE_SCC
2760/* Initialisation table for SCC */
2761L(scc_initable):
2762 .byte 9,12 /* Reset */
2763 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2764 .byte 3,0xc0 /* receiver: 8 bpc */
2765 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2766 .byte 9,0 /* no interrupts */
2767 .byte 10,0 /* NRZ */
2768 .byte 11,0x50 /* use baud rate generator */
2769 .byte 12,24,13,0 /* 9600 baud */
2770 .byte 14,2,14,3 /* use master clock for BRG, enable */
2771 .byte 3,0xc1 /* enable receiver */
2772 .byte 5,0xea /* enable transmitter */
2773 .byte -1
2774 .even
2775#endif
2776
2777#ifdef USE_PRINTER
2778
2779LPSG_SELECT = 0xff8800
2780LPSG_READ = 0xff8800
2781LPSG_WRITE = 0xff8802
2782LPSG_IO_A = 14
2783LPSG_IO_B = 15
2784LPSG_CONTROL = 7
2785LSTMFP_GPIP = 0xfffa01
2786LSTMFP_DDR = 0xfffa05
2787LSTMFP_IERB = 0xfffa09
2788
2789#elif defined(USE_SCC_B)
2790
2791LSCC_CTRL = 0xff8c85
2792LSCC_DATA = 0xff8c87
2793
2794#elif defined(USE_SCC_A)
2795
2796LSCC_CTRL = 0xff8c81
2797LSCC_DATA = 0xff8c83
2798
2799#elif defined(USE_MFP)
2800
2801LMFP_UCR = 0xfffa29
2802LMFP_TDCDR = 0xfffa1d
2803LMFP_TDDR = 0xfffa25
2804LMFP_TSR = 0xfffa2d
2805LMFP_UDR = 0xfffa2f
2806
2807#endif
2808#endif /* CONFIG_ATARI */
2809
2810/*
2811 * Serial port output support.
2812 */
2813
2814/*
2815 * Initialize serial port hardware for 9600/8/1
2816 */
2817func_start serial_init,%d0/%d1/%a0/%a1
2818 /*
2819 * Some of the register usage that follows
2820 * CONFIG_AMIGA
2821 * a0 = pointer to boot info record
2822 * d0 = boot info offset
2823 * CONFIG_ATARI
2824 * a0 = address of SCC
2825 * a1 = Liobase address/address of scc_initable
2826 * d0 = init data for serial port
2827 * CONFIG_MAC
2828 * a0 = address of SCC
2829 * a1 = address of scc_initable_mac
2830 * d0 = init data for serial port
2831 */
2832
2833#ifdef CONFIG_AMIGA
2834#define SERIAL_DTR 7
2835#define SERIAL_CNTRL CIABBASE+C_PRA
2836
2837 is_not_amiga(1f)
2838 lea %pc@(L(custom)),%a0
2839 movel #-ZTWOBASE,%a0@
2840 bclr #SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2841 get_bi_record BI_AMIGA_SERPER
2842 movew %a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2843| movew #61,CUSTOMBASE+C_SERPER-ZTWOBASE
28441:
2845#endif
2846#ifdef CONFIG_ATARI
2847 is_not_atari(4f)
2848 movel %pc@(L(iobase)),%a1
2849#if defined(USE_PRINTER)
2850 bclr #0,%a1@(LSTMFP_IERB)
2851 bclr #0,%a1@(LSTMFP_DDR)
2852 moveb #LPSG_CONTROL,%a1@(LPSG_SELECT)
2853 moveb #0xff,%a1@(LPSG_WRITE)
2854 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
2855 clrb %a1@(LPSG_WRITE)
2856 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
2857 moveb %a1@(LPSG_READ),%d0
2858 bset #5,%d0
2859 moveb %d0,%a1@(LPSG_WRITE)
2860#elif defined(USE_SCC)
2861 lea %a1@(LSCC_CTRL),%a0
2862 lea %pc@(L(scc_initable)),%a1
28632: moveb %a1@+,%d0
2864 jmi 3f
2865 moveb %d0,%a0@
2866 moveb %a1@+,%a0@
2867 jra 2b
28683: clrb %a0@
2869#elif defined(USE_MFP)
2870 bclr #1,%a1@(LMFP_TSR)
2871 moveb #0x88,%a1@(LMFP_UCR)
2872 andb #0x70,%a1@(LMFP_TDCDR)
2873 moveb #2,%a1@(LMFP_TDDR)
2874 orb #1,%a1@(LMFP_TDCDR)
2875 bset #1,%a1@(LMFP_TSR)
2876#endif
2877 jra L(serial_init_done)
28784:
2879#endif
2880#ifdef CONFIG_MAC
2881 is_not_mac(L(serial_init_not_mac))
2882
2883#ifdef SERIAL_DEBUG
2884
2885/* You may define either or both of these. */
2886#define MAC_USE_SCC_A /* Modem port */
2887#define MAC_USE_SCC_B /* Printer port */
2888
2889#define mac_scc_cha_b_ctrl_offset 0x0
2890#define mac_scc_cha_a_ctrl_offset 0x2
2891#define mac_scc_cha_b_data_offset 0x4
2892#define mac_scc_cha_a_data_offset 0x6
2893
2894#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2895 movel %pc@(L(mac_sccbase)),%a0
2896 /* Reset SCC register pointer */
2897 moveb %a0@(mac_scc_cha_a_ctrl_offset),%d0
2898 /* Reset SCC device: write register pointer then register value */
2899 moveb #9,%a0@(mac_scc_cha_a_ctrl_offset)
2900 moveb #0xc0,%a0@(mac_scc_cha_a_ctrl_offset)
2901 /* Wait for 5 PCLK cycles, which is about 68 CPU cycles */
2902 /* 5 / 3.6864 MHz = approx. 1.36 us = 68 / 50 MHz */
2903 movel #35,%d0
29045:
2905 subq #1,%d0
2906 jne 5b
2907#endif
2908
2909#ifdef MAC_USE_SCC_A
2910 /* Initialize channel A */
2911 lea %pc@(L(scc_initable_mac)),%a1
29125: moveb %a1@+,%d0
2913 jmi 6f
2914 moveb %d0,%a0@(mac_scc_cha_a_ctrl_offset)
2915 moveb %a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2916 jra 5b
29176:
2918#endif /* MAC_USE_SCC_A */
2919
2920#ifdef MAC_USE_SCC_B
2921 /* Initialize channel B */
2922 lea %pc@(L(scc_initable_mac)),%a1
29237: moveb %a1@+,%d0
2924 jmi 8f
2925 moveb %d0,%a0@(mac_scc_cha_b_ctrl_offset)
2926 moveb %a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2927 jra 7b
29288:
2929#endif /* MAC_USE_SCC_B */
2930
2931#endif /* SERIAL_DEBUG */
2932
2933 jra L(serial_init_done)
2934L(serial_init_not_mac):
2935#endif /* CONFIG_MAC */
2936
2937#ifdef CONFIG_Q40
2938 is_not_q40(2f)
2939/* debug output goes into SRAM, so we don't do it unless requested
2940 - check for '%LX$' signature in SRAM */
2941 lea %pc@(q40_mem_cptr),%a1
2942 move.l #0xff020010,%a1@ /* must be inited - also used by debug=mem */
2943 move.l #0xff020000,%a1
2944 cmp.b #'%',%a1@
2945 bne 2f /*nodbg*/
2946 addq.w #4,%a1
2947 cmp.b #'L',%a1@
2948 bne 2f /*nodbg*/
2949 addq.w #4,%a1
2950 cmp.b #'X',%a1@
2951 bne 2f /*nodbg*/
2952 addq.w #4,%a1
2953 cmp.b #'$',%a1@
2954 bne 2f /*nodbg*/
2955 /* signature OK */
2956 lea %pc@(L(q40_do_debug)),%a1
2957 tas %a1@
2958/*nodbg: q40_do_debug is 0 by default*/
29592:
2960#endif
2961
2962#ifdef CONFIG_APOLLO
2963/* We count on the PROM initializing SIO1 */
2964#endif
2965
2966#ifdef CONFIG_HP300
2967/* We count on the boot loader initialising the UART */
2968#endif
2969
2970L(serial_init_done):
2971func_return serial_init
2972
2973/*
2974 * Output character on serial port.
2975 */
2976func_start serial_putc,%d0/%d1/%a0/%a1
2977
2978 movel ARG1,%d0
2979 cmpib #'\n',%d0
2980 jbne 1f
2981
2982 /* A little safe recursion is good for the soul */
2983 serial_putc #'\r'
29841:
2985
2986#ifdef CONFIG_AMIGA
2987 is_not_amiga(2f)
2988 andw #0x00ff,%d0
2989 oriw #0x0100,%d0
2990 movel %pc@(L(custom)),%a0
2991 movew %d0,%a0@(CUSTOMBASE+C_SERDAT)
29921: movew %a0@(CUSTOMBASE+C_SERDATR),%d0
2993 andw #0x2000,%d0
2994 jeq 1b
2995 jra L(serial_putc_done)
29962:
2997#endif
2998
2999#ifdef CONFIG_MAC
3000 is_not_mac(5f)
3001
3002#ifdef SERIAL_DEBUG
3003
3004#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
3005 movel %pc@(L(mac_sccbase)),%a1
3006#endif
3007
3008#ifdef MAC_USE_SCC_A
30093: btst #2,%a1@(mac_scc_cha_a_ctrl_offset)
3010 jeq 3b
3011 moveb %d0,%a1@(mac_scc_cha_a_data_offset)
3012#endif /* MAC_USE_SCC_A */
3013
3014#ifdef MAC_USE_SCC_B
30154: btst #2,%a1@(mac_scc_cha_b_ctrl_offset)
3016 jeq 4b
3017 moveb %d0,%a1@(mac_scc_cha_b_data_offset)
3018#endif /* MAC_USE_SCC_B */
3019
3020#endif /* SERIAL_DEBUG */
3021
3022 jra L(serial_putc_done)
30235:
3024#endif /* CONFIG_MAC */
3025
3026#ifdef CONFIG_ATARI
3027 is_not_atari(4f)
3028 movel %pc@(L(iobase)),%a1
3029#if defined(USE_PRINTER)
30303: btst #0,%a1@(LSTMFP_GPIP)
3031 jne 3b
3032 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
3033 moveb %d0,%a1@(LPSG_WRITE)
3034 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
3035 moveb %a1@(LPSG_READ),%d0
3036 bclr #5,%d0
3037 moveb %d0,%a1@(LPSG_WRITE)
3038 nop
3039 nop
3040 bset #5,%d0
3041 moveb %d0,%a1@(LPSG_WRITE)
3042#elif defined(USE_SCC)
30433: btst #2,%a1@(LSCC_CTRL)
3044 jeq 3b
3045 moveb %d0,%a1@(LSCC_DATA)
3046#elif defined(USE_MFP)
30473: btst #7,%a1@(LMFP_TSR)
3048 jeq 3b
3049 moveb %d0,%a1@(LMFP_UDR)
3050#endif
3051 jra L(serial_putc_done)
30524:
3053#endif /* CONFIG_ATARI */
3054
3055#ifdef CONFIG_MVME147
3056 is_not_mvme147(2f)
30571: btst #2,M147_SCC_CTRL_A
3058 jeq 1b
3059 moveb %d0,M147_SCC_DATA_A
3060 jbra L(serial_putc_done)
30612:
3062#endif
3063
3064#ifdef CONFIG_MVME16x
3065 is_not_mvme16x(2f)
3066 /*
3067 * If the loader gave us a board type then we can use that to
3068 * select an appropriate output routine; otherwise we just use
3069 * the Bug code. If we have to use the Bug that means the Bug
3070 * workspace has to be valid, which means the Bug has to use
3071 * the SRAM, which is non-standard.
3072 */
3073 moveml %d0-%d7/%a2-%a6,%sp@-
3074 movel vme_brdtype,%d1
3075 jeq 1f | No tag - use the Bug
3076 cmpi #VME_TYPE_MVME162,%d1
3077 jeq 6f
3078 cmpi #VME_TYPE_MVME172,%d1
3079 jne 5f
3080 /* 162/172; it's an SCC */
30816: btst #2,M162_SCC_CTRL_A
3082 nop
3083 nop
3084 nop
3085 jeq 6b
3086 moveb #8,M162_SCC_CTRL_A
3087 nop
3088 nop
3089 nop
3090 moveb %d0,M162_SCC_CTRL_A
3091 jra 3f
30925:
3093 /* 166/167/177; it's a CD2401 */
3094 moveb #0,M167_CYCAR
3095 moveb M167_CYIER,%d2
3096 moveb #0x02,M167_CYIER
30977:
3098 btst #5,M167_PCSCCTICR
3099 jeq 7b
3100 moveb M167_PCTPIACKR,%d1
3101 moveb M167_CYLICR,%d1
3102 jeq 8f
3103 moveb #0x08,M167_CYTEOIR
3104 jra 7b
31058:
3106 moveb %d0,M167_CYTDR
3107 moveb #0,M167_CYTEOIR
3108 moveb %d2,M167_CYIER
3109 jra 3f
31101:
3111 moveb %d0,%sp@-
3112 trap #15
3113 .word 0x0020 /* TRAP 0x020 */
31143:
3115 moveml %sp@+,%d0-%d7/%a2-%a6
3116 jbra L(serial_putc_done)
31172:
3118#endif /* CONFIG_MVME16x */
3119
3120#ifdef CONFIG_BVME6000
3121 is_not_bvme6000(2f)
3122 /*
3123 * The BVME6000 machine has a serial port ...
3124 */
31251: btst #2,BVME_SCC_CTRL_A
3126 jeq 1b
3127 moveb %d0,BVME_SCC_DATA_A
3128 jbra L(serial_putc_done)
31292:
3130#endif
3131
3132#ifdef CONFIG_SUN3X
3133 is_not_sun3x(2f)
3134 movel %d0,-(%sp)
3135 movel 0xFEFE0018,%a1
3136 jbsr (%a1)
3137 addq #4,%sp
3138 jbra L(serial_putc_done)
31392:
3140#endif
3141
3142#ifdef CONFIG_Q40
3143 is_not_q40(2f)
3144 tst.l %pc@(L(q40_do_debug)) /* only debug if requested */
3145 beq 2f
3146 lea %pc@(q40_mem_cptr),%a1
3147 move.l %a1@,%a0
3148 move.b %d0,%a0@
3149 addq.l #4,%a0
3150 move.l %a0,%a1@
3151 jbra L(serial_putc_done)
31522:
3153#endif
3154
3155#ifdef CONFIG_APOLLO
3156 is_not_apollo(2f)
3157 movl %pc@(L(iobase)),%a1
3158 moveb %d0,%a1@(LTHRB0)
31591: moveb %a1@(LSRB0),%d0
3160 andb #0x4,%d0
3161 beq 1b
3162 jbra L(serial_putc_done)
31632:
3164#endif
3165
3166#ifdef CONFIG_HP300
3167 is_not_hp300(3f)
3168 movl %pc@(L(iobase)),%a1
3169 addl %pc@(L(uartbase)),%a1
3170 movel %pc@(L(uart_scode)),%d1 /* Check the scode */
3171 jmi 3f /* Unset? Exit */
3172 cmpi #256,%d1 /* APCI scode? */
3173 jeq 2f
31741: moveb %a1@(DCALSR),%d1 /* Output to DCA */
3175 andb #0x20,%d1
3176 beq 1b
3177 moveb %d0,%a1@(DCADATA)
3178 jbra L(serial_putc_done)
31792: moveb %a1@(APCILSR),%d1 /* Output to APCI */
3180 andb #0x20,%d1
3181 beq 2b
3182 moveb %d0,%a1@(APCIDATA)
3183 jbra L(serial_putc_done)
31843:
3185#endif
3186
3187L(serial_putc_done):
3188func_return serial_putc
3189
3190/*
3191 * Output a string.
3192 */
3193func_start puts,%d0/%a0
3194
3195 movel ARG1,%a0
3196 jra 2f
31971:
3198#ifdef CONSOLE
3199 console_putc %d0
3200#endif
3201#ifdef SERIAL_DEBUG
3202 serial_putc %d0
3203#endif
32042: moveb %a0@+,%d0
3205 jne 1b
3206
3207func_return puts
3208
3209/*
3210 * Output number in hex notation.
3211 */
3212
3213func_start putn,%d0-%d2
3214
3215 putc ' '
3216
3217 movel ARG1,%d0
3218 moveq #7,%d1
32191: roll #4,%d0
3220 move %d0,%d2
3221 andb #0x0f,%d2
3222 addb #'0',%d2
3223 cmpb #'9',%d2
3224 jls 2f
3225 addb #'A'-('9'+1),%d2
32262:
3227#ifdef CONSOLE
3228 console_putc %d2
3229#endif
3230#ifdef SERIAL_DEBUG
3231 serial_putc %d2
3232#endif
3233 dbra %d1,1b
3234
3235func_return putn
3236
3237#ifdef CONFIG_MAC
3238/*
3239 * mac_early_print
3240 *
3241 * This routine takes its parameters on the stack. It then
3242 * turns around and calls the internal routines. This routine
3243 * is used by the boot console.
3244 *
3245 * The calling parameters are:
3246 * void mac_early_print(const char *str, unsigned length);
3247 *
3248 * This routine does NOT understand variable arguments only
3249 * simple strings!
3250 */
3251ENTRY(mac_early_print)
3252 moveml %d0/%d1/%a0,%sp@-
3253 movew %sr,%sp@-
3254 ori #0x0700,%sr
3255 movel %sp@(18),%a0 /* fetch parameter */
3256 movel %sp@(22),%d1 /* fetch parameter */
3257 jra 2f
32581:
3259#ifdef CONSOLE
3260 console_putc %d0
3261#endif
3262#ifdef SERIAL_DEBUG
3263 serial_putc %d0
3264#endif
3265 subq #1,%d1
32662: jeq 3f
3267 moveb %a0@+,%d0
3268 jne 1b
32693:
3270 movew %sp@+,%sr
3271 moveml %sp@+,%d0/%d1/%a0
3272 rts
3273#endif /* CONFIG_MAC */
3274
3275#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3276func_start set_leds,%d0/%a0
3277 movel ARG1,%d0
3278#ifdef CONFIG_HP300
3279 is_not_hp300(1f)
3280 movel %pc@(L(iobase)),%a0
3281 moveb %d0,%a0@(0x1ffff)
3282 jra 2f
3283#endif
32841:
3285#ifdef CONFIG_APOLLO
3286 movel %pc@(L(iobase)),%a0
3287 lsll #8,%d0
3288 eorw #0xff00,%d0
3289 moveb %d0,%a0@(LCPUCTRL)
3290#endif
32912:
3292func_return set_leds
3293#endif
3294
3295#ifdef CONSOLE
3296/*
3297 * For continuity, see the data alignment
3298 * to which this structure is tied.
3299 */
3300#define Lconsole_struct_cur_column 0
3301#define Lconsole_struct_cur_row 4
3302#define Lconsole_struct_num_columns 8
3303#define Lconsole_struct_num_rows 12
3304#define Lconsole_struct_left_edge 16
3305
3306func_start console_init,%a0-%a4/%d0-%d7
3307 /*
3308 * Some of the register usage that follows
3309 * a0 = pointer to boot_info
3310 * a1 = pointer to screen
3311 * a2 = pointer to console_globals
3312 * d3 = pixel width of screen
3313 * d4 = pixel height of screen
3314 * (d3,d4) ~= (x,y) of a point just below
3315 * and to the right of the screen
3316 * NOT on the screen!
3317 * d5 = number of bytes per scan line
3318 * d6 = number of bytes on the entire screen
3319 */
3320
3321 lea %pc@(L(console_globals)),%a2
3322 movel %pc@(L(mac_videobase)),%a1
3323 movel %pc@(L(mac_rowbytes)),%d5
3324 movel %pc@(L(mac_dimensions)),%d3 /* -> low byte */
3325 movel %d3,%d4
3326 swap %d4 /* -> high byte */
3327 andl #0xffff,%d3 /* d3 = screen width in pixels */
3328 andl #0xffff,%d4 /* d4 = screen height in pixels */
3329
3330 movel %d5,%d6
3331| subl #20,%d6
3332 mulul %d4,%d6 /* scan line bytes x num scan lines */
3333 divul #8,%d6 /* we'll clear 8 bytes at a time */
3334 moveq #-1,%d0 /* Mac_black */
3335 subq #1,%d6
3336
3337L(console_clear_loop):
3338 movel %d0,%a1@+
3339 movel %d0,%a1@+
3340 dbra %d6,L(console_clear_loop)
3341
3342 /* Calculate font size */
3343
3344#if defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3345 lea %pc@(font_vga_8x8),%a0
3346#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3347 lea %pc@(font_vga_8x16),%a0
3348#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3349 lea %pc@(font_vga_6x11),%a0
3350#elif defined(CONFIG_FONT_8x8) /* default */
3351 lea %pc@(font_vga_8x8),%a0
3352#else /* no compiled-in font */
3353 lea 0,%a0
3354#endif
3355
3356 /*
3357 * At this point we make a shift in register usage
3358 * a1 = address of console_font pointer
3359 */
3360 lea %pc@(L(console_font)),%a1
3361 movel %a0,%a1@ /* store pointer to struct fbcon_font_desc in console_font */
3362 tstl %a0
3363 jeq 1f
3364 lea %pc@(L(console_font_data)),%a4
3365 movel %a0@(FONT_DESC_DATA),%d0
3366 subl #L(console_font),%a1
3367 addl %a1,%d0
3368 movel %d0,%a4@
3369
3370 /*
3371 * Calculate global maxs
3372 * Note - we can use either an
3373 * 8 x 16 or 8 x 8 character font
3374 * 6 x 11 also supported
3375 */
3376 /* ASSERT: a0 = contents of Lconsole_font */
3377 movel %d3,%d0 /* screen width in pixels */
3378 divul %a0@(FONT_DESC_WIDTH),%d0 /* d0 = max num chars per row */
3379
3380 movel %d4,%d1 /* screen height in pixels */
3381 divul %a0@(FONT_DESC_HEIGHT),%d1 /* d1 = max num rows */
3382
3383 movel %d0,%a2@(Lconsole_struct_num_columns)
3384 movel %d1,%a2@(Lconsole_struct_num_rows)
3385
3386 /*
3387 * Clear the current row and column
3388 */
3389 clrl %a2@(Lconsole_struct_cur_column)
3390 clrl %a2@(Lconsole_struct_cur_row)
3391 clrl %a2@(Lconsole_struct_left_edge)
3392
3393 /*
3394 * Initialization is complete
3395 */
33961:
3397func_return console_init
3398
3399func_start console_put_stats,%a0/%d7
3400 /*
3401 * Some of the register usage that follows
3402 * a0 = pointer to boot_info
3403 * d7 = value of boot_info fields
3404 */
3405 puts "\nMacLinux\n"
3406
3407#ifdef SERIAL_DEBUG
3408 puts "\n vidaddr:"
3409 putn %pc@(L(mac_videobase)) /* video addr. */
3410
3411 puts "\n _stext:"
3412 lea %pc@(_stext),%a0
3413 putn %a0
3414
3415 puts "\nbootinfo:"
3416 lea %pc@(_end),%a0
3417 putn %a0
3418
3419 puts "\n cpuid:"
3420 putn %pc@(L(cputype))
3421
3422# ifdef CONFIG_MAC
3423 puts "\n sccbase:"
3424 putn %pc@(L(mac_sccbase))
3425# endif
3426# ifdef MMU_PRINT
3427 putc '\n'
3428 jbsr mmu_print_machine_cpu_types
3429# endif
3430#endif /* SERIAL_DEBUG */
3431
3432 putc '\n'
3433
3434func_return console_put_stats
3435
3436#ifdef CONFIG_LOGO
3437func_start console_put_penguin,%a0-%a1/%d0-%d7
3438 /*
3439 * Get 'that_penguin' onto the screen in the upper right corner
3440 * penguin is 64 x 74 pixels, align against right edge of screen
3441 */
3442 lea %pc@(L(mac_dimensions)),%a0
3443 movel %a0@,%d0
3444 andil #0xffff,%d0
3445 subil #64,%d0 /* snug up against the right edge */
3446 clrl %d1 /* start at the top */
3447 movel #73,%d7
3448 lea %pc@(L(that_penguin)),%a1
3449L(console_penguin_row):
3450 movel #31,%d6
3451L(console_penguin_pixel_pair):
3452 moveb %a1@,%d2
3453 lsrb #4,%d2
3454 console_plot_pixel %d0,%d1,%d2
3455 addq #1,%d0
3456 moveb %a1@+,%d2
3457 console_plot_pixel %d0,%d1,%d2
3458 addq #1,%d0
3459 dbra %d6,L(console_penguin_pixel_pair)
3460
3461 subil #64,%d0
3462 addq #1,%d1
3463 dbra %d7,L(console_penguin_row)
3464
3465func_return console_put_penguin
3466
3467/* include penguin bitmap */
3468L(that_penguin):
3469#include "../mac/mac_penguin.S"
3470#endif
3471
3472 /*
3473 * Calculate source and destination addresses
3474 * output a1 = dest
3475 * a2 = source
3476 */
3477
3478func_start console_scroll,%a0-%a4/%d0-%d7
3479 lea %pc@(L(mac_videobase)),%a0
3480 movel %a0@,%a1
3481 movel %a1,%a2
3482 lea %pc@(L(mac_rowbytes)),%a0
3483 movel %a0@,%d5
3484 movel %pc@(L(console_font)),%a0
3485 tstl %a0
3486 jeq 1f
3487 mulul %a0@(FONT_DESC_HEIGHT),%d5 /* account for # scan lines per character */
3488 addal %d5,%a2
3489
3490 /*
3491 * Get dimensions
3492 */
3493 lea %pc@(L(mac_dimensions)),%a0
3494 movel %a0@,%d3
3495 movel %d3,%d4
3496 swap %d4
3497 andl #0xffff,%d3 /* d3 = screen width in pixels */
3498 andl #0xffff,%d4 /* d4 = screen height in pixels */
3499
3500 /*
3501 * Calculate number of bytes to move
3502 */
3503 lea %pc@(L(mac_rowbytes)),%a0
3504 movel %a0@,%d6
3505 movel %pc@(L(console_font)),%a0
3506 subl %a0@(FONT_DESC_HEIGHT),%d4 /* we're not scrolling the top row! */
3507 mulul %d4,%d6 /* scan line bytes x num scan lines */
3508 divul #32,%d6 /* we'll move 8 longs at a time */
3509 subq #1,%d6
3510
3511L(console_scroll_loop):
3512 movel %a2@+,%a1@+
3513 movel %a2@+,%a1@+
3514 movel %a2@+,%a1@+
3515 movel %a2@+,%a1@+
3516 movel %a2@+,%a1@+
3517 movel %a2@+,%a1@+
3518 movel %a2@+,%a1@+
3519 movel %a2@+,%a1@+
3520 dbra %d6,L(console_scroll_loop)
3521
3522 lea %pc@(L(mac_rowbytes)),%a0
3523 movel %a0@,%d6
3524 movel %pc@(L(console_font)),%a0
3525 mulul %a0@(FONT_DESC_HEIGHT),%d6 /* scan line bytes x font height */
3526 divul #32,%d6 /* we'll move 8 words at a time */
3527 subq #1,%d6
3528
3529 moveq #-1,%d0
3530L(console_scroll_clear_loop):
3531 movel %d0,%a1@+
3532 movel %d0,%a1@+
3533 movel %d0,%a1@+
3534 movel %d0,%a1@+
3535 movel %d0,%a1@+
3536 movel %d0,%a1@+
3537 movel %d0,%a1@+
3538 movel %d0,%a1@+
3539 dbra %d6,L(console_scroll_clear_loop)
3540
35411:
3542func_return console_scroll
3543
3544
3545func_start console_putc,%a0/%a1/%d0-%d7
3546
3547 is_not_mac(L(console_exit))
3548 tstl %pc@(L(console_font))
3549 jeq L(console_exit)
3550
3551 /* Output character in d7 on console.
3552 */
3553 movel ARG1,%d7
3554 cmpib #'\n',%d7
3555 jbne 1f
3556
3557 /* A little safe recursion is good for the soul */
3558 console_putc #'\r'
35591:
3560 lea %pc@(L(console_globals)),%a0
3561
3562 cmpib #10,%d7
3563 jne L(console_not_lf)
3564 movel %a0@(Lconsole_struct_cur_row),%d0
3565 addil #1,%d0
3566 movel %d0,%a0@(Lconsole_struct_cur_row)
3567 movel %a0@(Lconsole_struct_num_rows),%d1
3568 cmpl %d1,%d0
3569 jcs 1f
3570 subil #1,%d0
3571 movel %d0,%a0@(Lconsole_struct_cur_row)
3572 console_scroll
35731:
3574 jra L(console_exit)
3575
3576L(console_not_lf):
3577 cmpib #13,%d7
3578 jne L(console_not_cr)
3579 clrl %a0@(Lconsole_struct_cur_column)
3580 jra L(console_exit)
3581
3582L(console_not_cr):
3583 cmpib #1,%d7
3584 jne L(console_not_home)
3585 clrl %a0@(Lconsole_struct_cur_row)
3586 clrl %a0@(Lconsole_struct_cur_column)
3587 jra L(console_exit)
3588
3589/*
3590 * At this point we know that the %d7 character is going to be
3591 * rendered on the screen. Register usage is -
3592 * a0 = pointer to console globals
3593 * a1 = font data
3594 * d0 = cursor column
3595 * d1 = cursor row to draw the character
3596 * d7 = character number
3597 */
3598L(console_not_home):
3599 movel %a0@(Lconsole_struct_cur_column),%d0
3600 addql #1,%a0@(Lconsole_struct_cur_column)
3601 movel %a0@(Lconsole_struct_num_columns),%d1
3602 cmpl %d1,%d0
3603 jcs 1f
3604 console_putc #'\n' /* recursion is OK! */
36051:
3606 movel %a0@(Lconsole_struct_cur_row),%d1
3607
3608 /*
3609 * At this point we make a shift in register usage
3610 * a0 = address of pointer to font data (fbcon_font_desc)
3611 */
3612 movel %pc@(L(console_font)),%a0
3613 movel %pc@(L(console_font_data)),%a1 /* Load fbcon_font_desc.data into a1 */
3614 andl #0x000000ff,%d7
3615 /* ASSERT: a0 = contents of Lconsole_font */
3616 mulul %a0@(FONT_DESC_HEIGHT),%d7 /* d7 = index into font data */
3617 addl %d7,%a1 /* a1 = points to char image */
3618
3619 /*
3620 * At this point we make a shift in register usage
3621 * d0 = pixel coordinate, x
3622 * d1 = pixel coordinate, y
3623 * d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3624 * d3 = font scan line data (8 pixels)
3625 * d6 = count down for the font's pixel width (8)
3626 * d7 = count down for the font's pixel count in height
3627 */
3628 /* ASSERT: a0 = contents of Lconsole_font */
3629 mulul %a0@(FONT_DESC_WIDTH),%d0
3630 mulul %a0@(FONT_DESC_HEIGHT),%d1
3631 movel %a0@(FONT_DESC_HEIGHT),%d7 /* Load fbcon_font_desc.height into d7 */
3632 subq #1,%d7
3633L(console_read_char_scanline):
3634 moveb %a1@+,%d3
3635
3636 /* ASSERT: a0 = contents of Lconsole_font */
3637 movel %a0@(FONT_DESC_WIDTH),%d6 /* Load fbcon_font_desc.width into d6 */
3638 subql #1,%d6
3639
3640L(console_do_font_scanline):
3641 lslb #1,%d3
3642 scsb %d2 /* convert 1 bit into a byte */
3643 console_plot_pixel %d0,%d1,%d2
3644 addq #1,%d0
3645 dbra %d6,L(console_do_font_scanline)
3646
3647 /* ASSERT: a0 = contents of Lconsole_font */
3648 subl %a0@(FONT_DESC_WIDTH),%d0
3649 addq #1,%d1
3650 dbra %d7,L(console_read_char_scanline)
3651
3652L(console_exit):
3653func_return console_putc
3654
3655 /*
3656 * Input:
3657 * d0 = x coordinate
3658 * d1 = y coordinate
3659 * d2 = (bit 0) 1/0 for white/black (!)
3660 * All registers are preserved
3661 */
3662func_start console_plot_pixel,%a0-%a1/%d0-%d4
3663
3664 movel %pc@(L(mac_videobase)),%a1
3665 movel %pc@(L(mac_videodepth)),%d3
3666 movel ARG1,%d0
3667 movel ARG2,%d1
3668 mulul %pc@(L(mac_rowbytes)),%d1
3669 movel ARG3,%d2
3670
3671 /*
3672 * Register usage:
3673 * d0 = x coord becomes byte offset into frame buffer
3674 * d1 = y coord
3675 * d2 = black or white (0/1)
3676 * d3 = video depth
3677 * d4 = temp of x (d0) for many bit depths
3678 */
3679L(test_1bit):
3680 cmpb #1,%d3
3681 jbne L(test_2bit)
3682 movel %d0,%d4 /* we need the low order 3 bits! */
3683 divul #8,%d0
3684 addal %d0,%a1
3685 addal %d1,%a1
3686 andb #7,%d4
3687 eorb #7,%d4 /* reverse the x-coordinate w/ screen-bit # */
3688 andb #1,%d2
3689 jbne L(white_1)
3690 bsetb %d4,%a1@
3691 jbra L(console_plot_pixel_exit)
3692L(white_1):
3693 bclrb %d4,%a1@
3694 jbra L(console_plot_pixel_exit)
3695
3696L(test_2bit):
3697 cmpb #2,%d3
3698 jbne L(test_4bit)
3699 movel %d0,%d4 /* we need the low order 2 bits! */
3700 divul #4,%d0
3701 addal %d0,%a1
3702 addal %d1,%a1
3703 andb #3,%d4
3704 eorb #3,%d4 /* reverse the x-coordinate w/ screen-bit # */
3705 lsll #1,%d4 /* ! */
3706 andb #1,%d2
3707 jbne L(white_2)
3708 bsetb %d4,%a1@
3709 addq #1,%d4
3710 bsetb %d4,%a1@
3711 jbra L(console_plot_pixel_exit)
3712L(white_2):
3713 bclrb %d4,%a1@
3714 addq #1,%d4
3715 bclrb %d4,%a1@
3716 jbra L(console_plot_pixel_exit)
3717
3718L(test_4bit):
3719 cmpb #4,%d3
3720 jbne L(test_8bit)
3721 movel %d0,%d4 /* we need the low order bit! */
3722 divul #2,%d0
3723 addal %d0,%a1
3724 addal %d1,%a1
3725 andb #1,%d4
3726 eorb #1,%d4
3727 lsll #2,%d4 /* ! */
3728 andb #1,%d2
3729 jbne L(white_4)
3730 bsetb %d4,%a1@
3731 addq #1,%d4
3732 bsetb %d4,%a1@
3733 addq #1,%d4
3734 bsetb %d4,%a1@
3735 addq #1,%d4
3736 bsetb %d4,%a1@
3737 jbra L(console_plot_pixel_exit)
3738L(white_4):
3739 bclrb %d4,%a1@
3740 addq #1,%d4
3741 bclrb %d4,%a1@
3742 addq #1,%d4
3743 bclrb %d4,%a1@
3744 addq #1,%d4
3745 bclrb %d4,%a1@
3746 jbra L(console_plot_pixel_exit)
3747
3748L(test_8bit):
3749 cmpb #8,%d3
3750 jbne L(test_16bit)
3751 addal %d0,%a1
3752 addal %d1,%a1
3753 andb #1,%d2
3754 jbne L(white_8)
3755 moveb #0xff,%a1@
3756 jbra L(console_plot_pixel_exit)
3757L(white_8):
3758 clrb %a1@
3759 jbra L(console_plot_pixel_exit)
3760
3761L(test_16bit):
3762 cmpb #16,%d3
3763 jbne L(console_plot_pixel_exit)
3764 addal %d0,%a1
3765 addal %d0,%a1
3766 addal %d1,%a1
3767 andb #1,%d2
3768 jbne L(white_16)
3769 clrw %a1@
3770 jbra L(console_plot_pixel_exit)
3771L(white_16):
3772 movew #0x0fff,%a1@
3773 jbra L(console_plot_pixel_exit)
3774
3775L(console_plot_pixel_exit):
3776func_return console_plot_pixel
3777#endif /* CONSOLE */
3778
3779
3780__INITDATA
3781 .align 4
3782
3783#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3784 defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3785L(custom):
3786L(iobase):
3787 .long 0
3788#endif
3789
3790#if defined(CONSOLE)
3791L(console_globals):
3792 .long 0 /* cursor column */
3793 .long 0 /* cursor row */
3794 .long 0 /* max num columns */
3795 .long 0 /* max num rows */
3796 .long 0 /* left edge */
3797L(console_font):
3798 .long 0 /* pointer to console font (struct font_desc) */
3799L(console_font_data):
3800 .long 0 /* pointer to console font data */
3801#endif /* CONSOLE */
3802
3803#if defined(MMU_PRINT)
3804L(mmu_print_data):
3805 .long 0 /* valid flag */
3806 .long 0 /* start logical */
3807 .long 0 /* next logical */
3808 .long 0 /* start physical */
3809 .long 0 /* next physical */
3810#endif /* MMU_PRINT */
3811
3812L(cputype):
3813 .long 0
3814L(mmu_cached_pointer_tables):
3815 .long 0
3816L(mmu_num_pointer_tables):
3817 .long 0
3818L(phys_kernel_start):
3819 .long 0
3820L(kernel_end):
3821 .long 0
3822L(memory_start):
3823 .long 0
3824L(kernel_pgdir_ptr):
3825 .long 0
3826L(temp_mmap_mem):
3827 .long 0
3828
3829#if defined (CONFIG_MVME147)
3830M147_SCC_CTRL_A = 0xfffe3002
3831M147_SCC_DATA_A = 0xfffe3003
3832#endif
3833
3834#if defined (CONFIG_MVME16x)
3835M162_SCC_CTRL_A = 0xfff45005
3836M167_CYCAR = 0xfff450ee
3837M167_CYIER = 0xfff45011
3838M167_CYLICR = 0xfff45026
3839M167_CYTEOIR = 0xfff45085
3840M167_CYTDR = 0xfff450f8
3841M167_PCSCCTICR = 0xfff4201e
3842M167_PCTPIACKR = 0xfff42025
3843#endif
3844
3845#if defined (CONFIG_BVME6000)
3846BVME_SCC_CTRL_A = 0xffb0000b
3847BVME_SCC_DATA_A = 0xffb0000f
3848#endif
3849
3850#if defined(CONFIG_MAC)
3851L(mac_videobase):
3852 .long 0
3853L(mac_videodepth):
3854 .long 0
3855L(mac_dimensions):
3856 .long 0
3857L(mac_rowbytes):
3858 .long 0
3859#ifdef SERIAL_DEBUG
3860L(mac_sccbase):
3861 .long 0
3862#endif
3863#endif /* CONFIG_MAC */
3864
3865#if defined (CONFIG_APOLLO)
3866LSRB0 = 0x10412
3867LTHRB0 = 0x10416
3868LCPUCTRL = 0x10100
3869#endif
3870
3871#if defined(CONFIG_HP300)
3872DCADATA = 0x11
3873DCALSR = 0x1b
3874APCIDATA = 0x00
3875APCILSR = 0x14
3876L(uartbase):
3877 .long 0
3878L(uart_scode):
3879 .long -1
3880#endif
3881
3882__FINIT
3883 .data
3884 .align 4
3885
3886availmem:
3887 .long 0
3888m68k_pgtable_cachemode:
3889 .long 0
3890m68k_supervisor_cachemode:
3891 .long 0
3892#if defined(CONFIG_MVME16x)
3893mvme_bdid:
3894 .long 0,0,0,0,0,0,0,0
3895#endif
3896#if defined(CONFIG_Q40)
3897q40_mem_cptr:
3898 .long 0
3899L(q40_do_debug):
3900 .long 0
3901#endif