Loading...
1/*
2 * arch/cris/mm/fault.c
3 *
4 * Copyright (C) 2000-2010 Axis Communications AB
5 */
6
7#include <linux/mm.h>
8#include <linux/interrupt.h>
9#include <linux/module.h>
10#include <linux/wait.h>
11#include <asm/uaccess.h>
12
13extern int find_fixup_code(struct pt_regs *);
14extern void die_if_kernel(const char *, struct pt_regs *, long);
15extern void show_registers(struct pt_regs *regs);
16
17/* debug of low-level TLB reload */
18#undef DEBUG
19
20#ifdef DEBUG
21#define D(x) x
22#else
23#define D(x)
24#endif
25
26/* debug of higher-level faults */
27#define DPG(x)
28
29/* current active page directory */
30
31DEFINE_PER_CPU(pgd_t *, current_pgd);
32unsigned long cris_signal_return_page;
33
34/*
35 * This routine handles page faults. It determines the address,
36 * and the problem, and then passes it off to one of the appropriate
37 * routines.
38 *
39 * Notice that the address we're given is aligned to the page the fault
40 * occurred in, since we only get the PFN in R_MMU_CAUSE not the complete
41 * address.
42 *
43 * error_code:
44 * bit 0 == 0 means no page found, 1 means protection fault
45 * bit 1 == 0 means read, 1 means write
46 *
47 * If this routine detects a bad access, it returns 1, otherwise it
48 * returns 0.
49 */
50
51asmlinkage void
52do_page_fault(unsigned long address, struct pt_regs *regs,
53 int protection, int writeaccess)
54{
55 struct task_struct *tsk;
56 struct mm_struct *mm;
57 struct vm_area_struct * vma;
58 siginfo_t info;
59 int fault;
60
61 D(printk(KERN_DEBUG
62 "Page fault for %lX on %X at %lX, prot %d write %d\n",
63 address, smp_processor_id(), instruction_pointer(regs),
64 protection, writeaccess));
65
66 tsk = current;
67
68 /*
69 * We fault-in kernel-space virtual memory on-demand. The
70 * 'reference' page table is init_mm.pgd.
71 *
72 * NOTE! We MUST NOT take any locks for this case. We may
73 * be in an interrupt or a critical region, and should
74 * only copy the information from the master page table,
75 * nothing more.
76 *
77 * NOTE2: This is done so that, when updating the vmalloc
78 * mappings we don't have to walk all processes pgdirs and
79 * add the high mappings all at once. Instead we do it as they
80 * are used. However vmalloc'ed page entries have the PAGE_GLOBAL
81 * bit set so sometimes the TLB can use a lingering entry.
82 *
83 * This verifies that the fault happens in kernel space
84 * and that the fault was not a protection error (error_code & 1).
85 */
86
87 if (address >= VMALLOC_START &&
88 !protection &&
89 !user_mode(regs))
90 goto vmalloc_fault;
91
92 /* When stack execution is not allowed we store the signal
93 * trampolines in the reserved cris_signal_return_page.
94 * Handle this in the exact same way as vmalloc (we know
95 * that the mapping is there and is valid so no need to
96 * call handle_mm_fault).
97 */
98 if (cris_signal_return_page &&
99 address == cris_signal_return_page &&
100 !protection && user_mode(regs))
101 goto vmalloc_fault;
102
103 /* we can and should enable interrupts at this point */
104 local_irq_enable();
105
106 mm = tsk->mm;
107 info.si_code = SEGV_MAPERR;
108
109 /*
110 * If we're in an interrupt or "atomic" operation or have no
111 * user context, we must not take the fault.
112 */
113
114 if (in_atomic() || !mm)
115 goto no_context;
116
117 down_read(&mm->mmap_sem);
118 vma = find_vma(mm, address);
119 if (!vma)
120 goto bad_area;
121 if (vma->vm_start <= address)
122 goto good_area;
123 if (!(vma->vm_flags & VM_GROWSDOWN))
124 goto bad_area;
125 if (user_mode(regs)) {
126 /*
127 * accessing the stack below usp is always a bug.
128 * we get page-aligned addresses so we can only check
129 * if we're within a page from usp, but that might be
130 * enough to catch brutal errors at least.
131 */
132 if (address + PAGE_SIZE < rdusp())
133 goto bad_area;
134 }
135 if (expand_stack(vma, address))
136 goto bad_area;
137
138 /*
139 * Ok, we have a good vm_area for this memory access, so
140 * we can handle it..
141 */
142
143 good_area:
144 info.si_code = SEGV_ACCERR;
145
146 /* first do some preliminary protection checks */
147
148 if (writeaccess == 2){
149 if (!(vma->vm_flags & VM_EXEC))
150 goto bad_area;
151 } else if (writeaccess == 1) {
152 if (!(vma->vm_flags & VM_WRITE))
153 goto bad_area;
154 } else {
155 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
156 goto bad_area;
157 }
158
159 /*
160 * If for any reason at all we couldn't handle the fault,
161 * make sure we exit gracefully rather than endlessly redo
162 * the fault.
163 */
164
165 fault = handle_mm_fault(mm, vma, address, (writeaccess & 1) ? FAULT_FLAG_WRITE : 0);
166 if (unlikely(fault & VM_FAULT_ERROR)) {
167 if (fault & VM_FAULT_OOM)
168 goto out_of_memory;
169 else if (fault & VM_FAULT_SIGBUS)
170 goto do_sigbus;
171 BUG();
172 }
173 if (fault & VM_FAULT_MAJOR)
174 tsk->maj_flt++;
175 else
176 tsk->min_flt++;
177
178 up_read(&mm->mmap_sem);
179 return;
180
181 /*
182 * Something tried to access memory that isn't in our memory map..
183 * Fix it, but check if it's kernel or user first..
184 */
185
186 bad_area:
187 up_read(&mm->mmap_sem);
188
189 bad_area_nosemaphore:
190 DPG(show_registers(regs));
191
192 /* User mode accesses just cause a SIGSEGV */
193
194 if (user_mode(regs)) {
195 printk(KERN_NOTICE "%s (pid %d) segfaults for page "
196 "address %08lx at pc %08lx\n",
197 tsk->comm, tsk->pid,
198 address, instruction_pointer(regs));
199
200 /* With DPG on, we've already dumped registers above. */
201 DPG(if (0))
202 show_registers(regs);
203
204#ifdef CONFIG_NO_SEGFAULT_TERMINATION
205 DECLARE_WAIT_QUEUE_HEAD(wq);
206 wait_event_interruptible(wq, 0 == 1);
207#else
208 info.si_signo = SIGSEGV;
209 info.si_errno = 0;
210 /* info.si_code has been set above */
211 info.si_addr = (void *)address;
212 force_sig_info(SIGSEGV, &info, tsk);
213#endif
214 return;
215 }
216
217 no_context:
218
219 /* Are we prepared to handle this kernel fault?
220 *
221 * (The kernel has valid exception-points in the source
222 * when it accesses user-memory. When it fails in one
223 * of those points, we find it in a table and do a jump
224 * to some fixup code that loads an appropriate error
225 * code)
226 */
227
228 if (find_fixup_code(regs))
229 return;
230
231 /*
232 * Oops. The kernel tried to access some bad page. We'll have to
233 * terminate things with extreme prejudice.
234 */
235
236 if (!oops_in_progress) {
237 oops_in_progress = 1;
238 if ((unsigned long) (address) < PAGE_SIZE)
239 printk(KERN_ALERT "Unable to handle kernel NULL "
240 "pointer dereference");
241 else
242 printk(KERN_ALERT "Unable to handle kernel access"
243 " at virtual address %08lx\n", address);
244
245 die_if_kernel("Oops", regs, (writeaccess << 1) | protection);
246 oops_in_progress = 0;
247 }
248
249 do_exit(SIGKILL);
250
251 /*
252 * We ran out of memory, or some other thing happened to us that made
253 * us unable to handle the page fault gracefully.
254 */
255
256 out_of_memory:
257 up_read(&mm->mmap_sem);
258 if (!user_mode(regs))
259 goto no_context;
260 pagefault_out_of_memory();
261 return;
262
263 do_sigbus:
264 up_read(&mm->mmap_sem);
265
266 /*
267 * Send a sigbus, regardless of whether we were in kernel
268 * or user mode.
269 */
270 info.si_signo = SIGBUS;
271 info.si_errno = 0;
272 info.si_code = BUS_ADRERR;
273 info.si_addr = (void *)address;
274 force_sig_info(SIGBUS, &info, tsk);
275
276 /* Kernel mode? Handle exceptions or die */
277 if (!user_mode(regs))
278 goto no_context;
279 return;
280
281vmalloc_fault:
282 {
283 /*
284 * Synchronize this task's top level page-table
285 * with the 'reference' page table.
286 *
287 * Use current_pgd instead of tsk->active_mm->pgd
288 * since the latter might be unavailable if this
289 * code is executed in a misfortunately run irq
290 * (like inside schedule() between switch_mm and
291 * switch_to...).
292 */
293
294 int offset = pgd_index(address);
295 pgd_t *pgd, *pgd_k;
296 pud_t *pud, *pud_k;
297 pmd_t *pmd, *pmd_k;
298 pte_t *pte_k;
299
300 pgd = (pgd_t *)per_cpu(current_pgd, smp_processor_id()) + offset;
301 pgd_k = init_mm.pgd + offset;
302
303 /* Since we're two-level, we don't need to do both
304 * set_pgd and set_pmd (they do the same thing). If
305 * we go three-level at some point, do the right thing
306 * with pgd_present and set_pgd here.
307 *
308 * Also, since the vmalloc area is global, we don't
309 * need to copy individual PTE's, it is enough to
310 * copy the pgd pointer into the pte page of the
311 * root task. If that is there, we'll find our pte if
312 * it exists.
313 */
314
315 pud = pud_offset(pgd, address);
316 pud_k = pud_offset(pgd_k, address);
317 if (!pud_present(*pud_k))
318 goto no_context;
319
320 pmd = pmd_offset(pud, address);
321 pmd_k = pmd_offset(pud_k, address);
322
323 if (!pmd_present(*pmd_k))
324 goto bad_area_nosemaphore;
325
326 set_pmd(pmd, *pmd_k);
327
328 /* Make sure the actual PTE exists as well to
329 * catch kernel vmalloc-area accesses to non-mapped
330 * addresses. If we don't do this, this will just
331 * silently loop forever.
332 */
333
334 pte_k = pte_offset_kernel(pmd_k, address);
335 if (!pte_present(*pte_k))
336 goto no_context;
337
338 return;
339 }
340}
341
342/* Find fixup code. */
343int
344find_fixup_code(struct pt_regs *regs)
345{
346 const struct exception_table_entry *fixup;
347 /* in case of delay slot fault (v32) */
348 unsigned long ip = (instruction_pointer(regs) & ~0x1);
349
350 fixup = search_exception_tables(ip);
351 if (fixup != 0) {
352 /* Adjust the instruction pointer in the stackframe. */
353 instruction_pointer(regs) = fixup->fixup;
354 arch_fixup(regs);
355 return 1;
356 }
357
358 return 0;
359}
1/*
2 * arch/cris/mm/fault.c
3 *
4 * Copyright (C) 2000-2010 Axis Communications AB
5 */
6
7#include <linux/mm.h>
8#include <linux/interrupt.h>
9#include <linux/module.h>
10#include <linux/wait.h>
11#include <asm/uaccess.h>
12#include <arch/system.h>
13
14extern int find_fixup_code(struct pt_regs *);
15extern void die_if_kernel(const char *, struct pt_regs *, long);
16extern void show_registers(struct pt_regs *regs);
17
18/* debug of low-level TLB reload */
19#undef DEBUG
20
21#ifdef DEBUG
22#define D(x) x
23#else
24#define D(x)
25#endif
26
27/* debug of higher-level faults */
28#define DPG(x)
29
30/* current active page directory */
31
32DEFINE_PER_CPU(pgd_t *, current_pgd);
33unsigned long cris_signal_return_page;
34
35/*
36 * This routine handles page faults. It determines the address,
37 * and the problem, and then passes it off to one of the appropriate
38 * routines.
39 *
40 * Notice that the address we're given is aligned to the page the fault
41 * occurred in, since we only get the PFN in R_MMU_CAUSE not the complete
42 * address.
43 *
44 * error_code:
45 * bit 0 == 0 means no page found, 1 means protection fault
46 * bit 1 == 0 means read, 1 means write
47 *
48 * If this routine detects a bad access, it returns 1, otherwise it
49 * returns 0.
50 */
51
52asmlinkage void
53do_page_fault(unsigned long address, struct pt_regs *regs,
54 int protection, int writeaccess)
55{
56 struct task_struct *tsk;
57 struct mm_struct *mm;
58 struct vm_area_struct * vma;
59 siginfo_t info;
60 int fault;
61 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
62
63 D(printk(KERN_DEBUG
64 "Page fault for %lX on %X at %lX, prot %d write %d\n",
65 address, smp_processor_id(), instruction_pointer(regs),
66 protection, writeaccess));
67
68 tsk = current;
69
70 /*
71 * We fault-in kernel-space virtual memory on-demand. The
72 * 'reference' page table is init_mm.pgd.
73 *
74 * NOTE! We MUST NOT take any locks for this case. We may
75 * be in an interrupt or a critical region, and should
76 * only copy the information from the master page table,
77 * nothing more.
78 *
79 * NOTE2: This is done so that, when updating the vmalloc
80 * mappings we don't have to walk all processes pgdirs and
81 * add the high mappings all at once. Instead we do it as they
82 * are used. However vmalloc'ed page entries have the PAGE_GLOBAL
83 * bit set so sometimes the TLB can use a lingering entry.
84 *
85 * This verifies that the fault happens in kernel space
86 * and that the fault was not a protection error (error_code & 1).
87 */
88
89 if (address >= VMALLOC_START &&
90 !protection &&
91 !user_mode(regs))
92 goto vmalloc_fault;
93
94 /* When stack execution is not allowed we store the signal
95 * trampolines in the reserved cris_signal_return_page.
96 * Handle this in the exact same way as vmalloc (we know
97 * that the mapping is there and is valid so no need to
98 * call handle_mm_fault).
99 */
100 if (cris_signal_return_page &&
101 address == cris_signal_return_page &&
102 !protection && user_mode(regs))
103 goto vmalloc_fault;
104
105 /* we can and should enable interrupts at this point */
106 local_irq_enable();
107
108 mm = tsk->mm;
109 info.si_code = SEGV_MAPERR;
110
111 /*
112 * If we're in an interrupt or "atomic" operation or have no
113 * user context, we must not take the fault.
114 */
115
116 if (in_atomic() || !mm)
117 goto no_context;
118
119 if (user_mode(regs))
120 flags |= FAULT_FLAG_USER;
121retry:
122 down_read(&mm->mmap_sem);
123 vma = find_vma(mm, address);
124 if (!vma)
125 goto bad_area;
126 if (vma->vm_start <= address)
127 goto good_area;
128 if (!(vma->vm_flags & VM_GROWSDOWN))
129 goto bad_area;
130 if (user_mode(regs)) {
131 /*
132 * accessing the stack below usp is always a bug.
133 * we get page-aligned addresses so we can only check
134 * if we're within a page from usp, but that might be
135 * enough to catch brutal errors at least.
136 */
137 if (address + PAGE_SIZE < rdusp())
138 goto bad_area;
139 }
140 if (expand_stack(vma, address))
141 goto bad_area;
142
143 /*
144 * Ok, we have a good vm_area for this memory access, so
145 * we can handle it..
146 */
147
148 good_area:
149 info.si_code = SEGV_ACCERR;
150
151 /* first do some preliminary protection checks */
152
153 if (writeaccess == 2){
154 if (!(vma->vm_flags & VM_EXEC))
155 goto bad_area;
156 } else if (writeaccess == 1) {
157 if (!(vma->vm_flags & VM_WRITE))
158 goto bad_area;
159 flags |= FAULT_FLAG_WRITE;
160 } else {
161 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
162 goto bad_area;
163 }
164
165 /*
166 * If for any reason at all we couldn't handle the fault,
167 * make sure we exit gracefully rather than endlessly redo
168 * the fault.
169 */
170
171 fault = handle_mm_fault(mm, vma, address, flags);
172
173 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
174 return;
175
176 if (unlikely(fault & VM_FAULT_ERROR)) {
177 if (fault & VM_FAULT_OOM)
178 goto out_of_memory;
179 else if (fault & VM_FAULT_SIGBUS)
180 goto do_sigbus;
181 BUG();
182 }
183
184 if (flags & FAULT_FLAG_ALLOW_RETRY) {
185 if (fault & VM_FAULT_MAJOR)
186 tsk->maj_flt++;
187 else
188 tsk->min_flt++;
189 if (fault & VM_FAULT_RETRY) {
190 flags &= ~FAULT_FLAG_ALLOW_RETRY;
191 flags |= FAULT_FLAG_TRIED;
192
193 /*
194 * No need to up_read(&mm->mmap_sem) as we would
195 * have already released it in __lock_page_or_retry
196 * in mm/filemap.c.
197 */
198
199 goto retry;
200 }
201 }
202
203 up_read(&mm->mmap_sem);
204 return;
205
206 /*
207 * Something tried to access memory that isn't in our memory map..
208 * Fix it, but check if it's kernel or user first..
209 */
210
211 bad_area:
212 up_read(&mm->mmap_sem);
213
214 bad_area_nosemaphore:
215 DPG(show_registers(regs));
216
217 /* User mode accesses just cause a SIGSEGV */
218
219 if (user_mode(regs)) {
220 printk(KERN_NOTICE "%s (pid %d) segfaults for page "
221 "address %08lx at pc %08lx\n",
222 tsk->comm, tsk->pid,
223 address, instruction_pointer(regs));
224
225 /* With DPG on, we've already dumped registers above. */
226 DPG(if (0))
227 show_registers(regs);
228
229#ifdef CONFIG_NO_SEGFAULT_TERMINATION
230 DECLARE_WAIT_QUEUE_HEAD(wq);
231 wait_event_interruptible(wq, 0 == 1);
232#else
233 info.si_signo = SIGSEGV;
234 info.si_errno = 0;
235 /* info.si_code has been set above */
236 info.si_addr = (void *)address;
237 force_sig_info(SIGSEGV, &info, tsk);
238#endif
239 return;
240 }
241
242 no_context:
243
244 /* Are we prepared to handle this kernel fault?
245 *
246 * (The kernel has valid exception-points in the source
247 * when it accesses user-memory. When it fails in one
248 * of those points, we find it in a table and do a jump
249 * to some fixup code that loads an appropriate error
250 * code)
251 */
252
253 if (find_fixup_code(regs))
254 return;
255
256 /*
257 * Oops. The kernel tried to access some bad page. We'll have to
258 * terminate things with extreme prejudice.
259 */
260
261 if (!oops_in_progress) {
262 oops_in_progress = 1;
263 if ((unsigned long) (address) < PAGE_SIZE)
264 printk(KERN_ALERT "Unable to handle kernel NULL "
265 "pointer dereference");
266 else
267 printk(KERN_ALERT "Unable to handle kernel access"
268 " at virtual address %08lx\n", address);
269
270 die_if_kernel("Oops", regs, (writeaccess << 1) | protection);
271 oops_in_progress = 0;
272 }
273
274 do_exit(SIGKILL);
275
276 /*
277 * We ran out of memory, or some other thing happened to us that made
278 * us unable to handle the page fault gracefully.
279 */
280
281 out_of_memory:
282 up_read(&mm->mmap_sem);
283 if (!user_mode(regs))
284 goto no_context;
285 pagefault_out_of_memory();
286 return;
287
288 do_sigbus:
289 up_read(&mm->mmap_sem);
290
291 /*
292 * Send a sigbus, regardless of whether we were in kernel
293 * or user mode.
294 */
295 info.si_signo = SIGBUS;
296 info.si_errno = 0;
297 info.si_code = BUS_ADRERR;
298 info.si_addr = (void *)address;
299 force_sig_info(SIGBUS, &info, tsk);
300
301 /* Kernel mode? Handle exceptions or die */
302 if (!user_mode(regs))
303 goto no_context;
304 return;
305
306vmalloc_fault:
307 {
308 /*
309 * Synchronize this task's top level page-table
310 * with the 'reference' page table.
311 *
312 * Use current_pgd instead of tsk->active_mm->pgd
313 * since the latter might be unavailable if this
314 * code is executed in a misfortunately run irq
315 * (like inside schedule() between switch_mm and
316 * switch_to...).
317 */
318
319 int offset = pgd_index(address);
320 pgd_t *pgd, *pgd_k;
321 pud_t *pud, *pud_k;
322 pmd_t *pmd, *pmd_k;
323 pte_t *pte_k;
324
325 pgd = (pgd_t *)per_cpu(current_pgd, smp_processor_id()) + offset;
326 pgd_k = init_mm.pgd + offset;
327
328 /* Since we're two-level, we don't need to do both
329 * set_pgd and set_pmd (they do the same thing). If
330 * we go three-level at some point, do the right thing
331 * with pgd_present and set_pgd here.
332 *
333 * Also, since the vmalloc area is global, we don't
334 * need to copy individual PTE's, it is enough to
335 * copy the pgd pointer into the pte page of the
336 * root task. If that is there, we'll find our pte if
337 * it exists.
338 */
339
340 pud = pud_offset(pgd, address);
341 pud_k = pud_offset(pgd_k, address);
342 if (!pud_present(*pud_k))
343 goto no_context;
344
345 pmd = pmd_offset(pud, address);
346 pmd_k = pmd_offset(pud_k, address);
347
348 if (!pmd_present(*pmd_k))
349 goto bad_area_nosemaphore;
350
351 set_pmd(pmd, *pmd_k);
352
353 /* Make sure the actual PTE exists as well to
354 * catch kernel vmalloc-area accesses to non-mapped
355 * addresses. If we don't do this, this will just
356 * silently loop forever.
357 */
358
359 pte_k = pte_offset_kernel(pmd_k, address);
360 if (!pte_present(*pte_k))
361 goto no_context;
362
363 return;
364 }
365}
366
367/* Find fixup code. */
368int
369find_fixup_code(struct pt_regs *regs)
370{
371 const struct exception_table_entry *fixup;
372 /* in case of delay slot fault (v32) */
373 unsigned long ip = (instruction_pointer(regs) & ~0x1);
374
375 fixup = search_exception_tables(ip);
376 if (fixup != 0) {
377 /* Adjust the instruction pointer in the stackframe. */
378 instruction_pointer(regs) = fixup->fixup;
379 arch_fixup(regs);
380 return 1;
381 }
382
383 return 0;
384}