Loading...
1------------------------------------------------------------------------------
2 T H E /proc F I L E S Y S T E M
3------------------------------------------------------------------------------
4/proc/sys Terrehon Bowden <terrehon@pacbell.net> October 7 1999
5 Bodo Bauer <bb@ricochet.net>
6
72.4.x update Jorge Nerin <comandante@zaralinux.com> November 14 2000
8move /proc/sys Shen Feng <shen@cn.fujitsu.com> April 1 2009
9------------------------------------------------------------------------------
10Version 1.3 Kernel version 2.2.12
11 Kernel version 2.4.0-test11-pre4
12------------------------------------------------------------------------------
13fixes/update part 1.1 Stefani Seibold <stefani@seibold.net> June 9 2009
14
15Table of Contents
16-----------------
17
18 0 Preface
19 0.1 Introduction/Credits
20 0.2 Legal Stuff
21
22 1 Collecting System Information
23 1.1 Process-Specific Subdirectories
24 1.2 Kernel data
25 1.3 IDE devices in /proc/ide
26 1.4 Networking info in /proc/net
27 1.5 SCSI info
28 1.6 Parallel port info in /proc/parport
29 1.7 TTY info in /proc/tty
30 1.8 Miscellaneous kernel statistics in /proc/stat
31 1.9 Ext4 file system parameters
32
33 2 Modifying System Parameters
34
35 3 Per-Process Parameters
36 3.1 /proc/<pid>/oom_adj & /proc/<pid>/oom_score_adj - Adjust the oom-killer
37 score
38 3.2 /proc/<pid>/oom_score - Display current oom-killer score
39 3.3 /proc/<pid>/io - Display the IO accounting fields
40 3.4 /proc/<pid>/coredump_filter - Core dump filtering settings
41 3.5 /proc/<pid>/mountinfo - Information about mounts
42 3.6 /proc/<pid>/comm & /proc/<pid>/task/<tid>/comm
43
44
45------------------------------------------------------------------------------
46Preface
47------------------------------------------------------------------------------
48
490.1 Introduction/Credits
50------------------------
51
52This documentation is part of a soon (or so we hope) to be released book on
53the SuSE Linux distribution. As there is no complete documentation for the
54/proc file system and we've used many freely available sources to write these
55chapters, it seems only fair to give the work back to the Linux community.
56This work is based on the 2.2.* kernel version and the upcoming 2.4.*. I'm
57afraid it's still far from complete, but we hope it will be useful. As far as
58we know, it is the first 'all-in-one' document about the /proc file system. It
59is focused on the Intel x86 hardware, so if you are looking for PPC, ARM,
60SPARC, AXP, etc., features, you probably won't find what you are looking for.
61It also only covers IPv4 networking, not IPv6 nor other protocols - sorry. But
62additions and patches are welcome and will be added to this document if you
63mail them to Bodo.
64
65We'd like to thank Alan Cox, Rik van Riel, and Alexey Kuznetsov and a lot of
66other people for help compiling this documentation. We'd also like to extend a
67special thank you to Andi Kleen for documentation, which we relied on heavily
68to create this document, as well as the additional information he provided.
69Thanks to everybody else who contributed source or docs to the Linux kernel
70and helped create a great piece of software... :)
71
72If you have any comments, corrections or additions, please don't hesitate to
73contact Bodo Bauer at bb@ricochet.net. We'll be happy to add them to this
74document.
75
76The latest version of this document is available online at
77http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html
78
79If the above direction does not works for you, you could try the kernel
80mailing list at linux-kernel@vger.kernel.org and/or try to reach me at
81comandante@zaralinux.com.
82
830.2 Legal Stuff
84---------------
85
86We don't guarantee the correctness of this document, and if you come to us
87complaining about how you screwed up your system because of incorrect
88documentation, we won't feel responsible...
89
90------------------------------------------------------------------------------
91CHAPTER 1: COLLECTING SYSTEM INFORMATION
92------------------------------------------------------------------------------
93
94------------------------------------------------------------------------------
95In This Chapter
96------------------------------------------------------------------------------
97* Investigating the properties of the pseudo file system /proc and its
98 ability to provide information on the running Linux system
99* Examining /proc's structure
100* Uncovering various information about the kernel and the processes running
101 on the system
102------------------------------------------------------------------------------
103
104
105The proc file system acts as an interface to internal data structures in the
106kernel. It can be used to obtain information about the system and to change
107certain kernel parameters at runtime (sysctl).
108
109First, we'll take a look at the read-only parts of /proc. In Chapter 2, we
110show you how you can use /proc/sys to change settings.
111
1121.1 Process-Specific Subdirectories
113-----------------------------------
114
115The directory /proc contains (among other things) one subdirectory for each
116process running on the system, which is named after the process ID (PID).
117
118The link self points to the process reading the file system. Each process
119subdirectory has the entries listed in Table 1-1.
120
121
122Table 1-1: Process specific entries in /proc
123..............................................................................
124 File Content
125 clear_refs Clears page referenced bits shown in smaps output
126 cmdline Command line arguments
127 cpu Current and last cpu in which it was executed (2.4)(smp)
128 cwd Link to the current working directory
129 environ Values of environment variables
130 exe Link to the executable of this process
131 fd Directory, which contains all file descriptors
132 maps Memory maps to executables and library files (2.4)
133 mem Memory held by this process
134 root Link to the root directory of this process
135 stat Process status
136 statm Process memory status information
137 status Process status in human readable form
138 wchan If CONFIG_KALLSYMS is set, a pre-decoded wchan
139 pagemap Page table
140 stack Report full stack trace, enable via CONFIG_STACKTRACE
141 smaps a extension based on maps, showing the memory consumption of
142 each mapping
143..............................................................................
144
145For example, to get the status information of a process, all you have to do is
146read the file /proc/PID/status:
147
148 >cat /proc/self/status
149 Name: cat
150 State: R (running)
151 Tgid: 5452
152 Pid: 5452
153 PPid: 743
154 TracerPid: 0 (2.4)
155 Uid: 501 501 501 501
156 Gid: 100 100 100 100
157 FDSize: 256
158 Groups: 100 14 16
159 VmPeak: 5004 kB
160 VmSize: 5004 kB
161 VmLck: 0 kB
162 VmHWM: 476 kB
163 VmRSS: 476 kB
164 VmData: 156 kB
165 VmStk: 88 kB
166 VmExe: 68 kB
167 VmLib: 1412 kB
168 VmPTE: 20 kb
169 VmSwap: 0 kB
170 Threads: 1
171 SigQ: 0/28578
172 SigPnd: 0000000000000000
173 ShdPnd: 0000000000000000
174 SigBlk: 0000000000000000
175 SigIgn: 0000000000000000
176 SigCgt: 0000000000000000
177 CapInh: 00000000fffffeff
178 CapPrm: 0000000000000000
179 CapEff: 0000000000000000
180 CapBnd: ffffffffffffffff
181 voluntary_ctxt_switches: 0
182 nonvoluntary_ctxt_switches: 1
183
184This shows you nearly the same information you would get if you viewed it with
185the ps command. In fact, ps uses the proc file system to obtain its
186information. But you get a more detailed view of the process by reading the
187file /proc/PID/status. It fields are described in table 1-2.
188
189The statm file contains more detailed information about the process
190memory usage. Its seven fields are explained in Table 1-3. The stat file
191contains details information about the process itself. Its fields are
192explained in Table 1-4.
193
194(for SMP CONFIG users)
195For making accounting scalable, RSS related information are handled in
196asynchronous manner and the vaule may not be very precise. To see a precise
197snapshot of a moment, you can see /proc/<pid>/smaps file and scan page table.
198It's slow but very precise.
199
200Table 1-2: Contents of the status files (as of 2.6.30-rc7)
201..............................................................................
202 Field Content
203 Name filename of the executable
204 State state (R is running, S is sleeping, D is sleeping
205 in an uninterruptible wait, Z is zombie,
206 T is traced or stopped)
207 Tgid thread group ID
208 Pid process id
209 PPid process id of the parent process
210 TracerPid PID of process tracing this process (0 if not)
211 Uid Real, effective, saved set, and file system UIDs
212 Gid Real, effective, saved set, and file system GIDs
213 FDSize number of file descriptor slots currently allocated
214 Groups supplementary group list
215 VmPeak peak virtual memory size
216 VmSize total program size
217 VmLck locked memory size
218 VmHWM peak resident set size ("high water mark")
219 VmRSS size of memory portions
220 VmData size of data, stack, and text segments
221 VmStk size of data, stack, and text segments
222 VmExe size of text segment
223 VmLib size of shared library code
224 VmPTE size of page table entries
225 VmSwap size of swap usage (the number of referred swapents)
226 Threads number of threads
227 SigQ number of signals queued/max. number for queue
228 SigPnd bitmap of pending signals for the thread
229 ShdPnd bitmap of shared pending signals for the process
230 SigBlk bitmap of blocked signals
231 SigIgn bitmap of ignored signals
232 SigCgt bitmap of catched signals
233 CapInh bitmap of inheritable capabilities
234 CapPrm bitmap of permitted capabilities
235 CapEff bitmap of effective capabilities
236 CapBnd bitmap of capabilities bounding set
237 Cpus_allowed mask of CPUs on which this process may run
238 Cpus_allowed_list Same as previous, but in "list format"
239 Mems_allowed mask of memory nodes allowed to this process
240 Mems_allowed_list Same as previous, but in "list format"
241 voluntary_ctxt_switches number of voluntary context switches
242 nonvoluntary_ctxt_switches number of non voluntary context switches
243..............................................................................
244
245Table 1-3: Contents of the statm files (as of 2.6.8-rc3)
246..............................................................................
247 Field Content
248 size total program size (pages) (same as VmSize in status)
249 resident size of memory portions (pages) (same as VmRSS in status)
250 shared number of pages that are shared (i.e. backed by a file)
251 trs number of pages that are 'code' (not including libs; broken,
252 includes data segment)
253 lrs number of pages of library (always 0 on 2.6)
254 drs number of pages of data/stack (including libs; broken,
255 includes library text)
256 dt number of dirty pages (always 0 on 2.6)
257..............................................................................
258
259
260Table 1-4: Contents of the stat files (as of 2.6.30-rc7)
261..............................................................................
262 Field Content
263 pid process id
264 tcomm filename of the executable
265 state state (R is running, S is sleeping, D is sleeping in an
266 uninterruptible wait, Z is zombie, T is traced or stopped)
267 ppid process id of the parent process
268 pgrp pgrp of the process
269 sid session id
270 tty_nr tty the process uses
271 tty_pgrp pgrp of the tty
272 flags task flags
273 min_flt number of minor faults
274 cmin_flt number of minor faults with child's
275 maj_flt number of major faults
276 cmaj_flt number of major faults with child's
277 utime user mode jiffies
278 stime kernel mode jiffies
279 cutime user mode jiffies with child's
280 cstime kernel mode jiffies with child's
281 priority priority level
282 nice nice level
283 num_threads number of threads
284 it_real_value (obsolete, always 0)
285 start_time time the process started after system boot
286 vsize virtual memory size
287 rss resident set memory size
288 rsslim current limit in bytes on the rss
289 start_code address above which program text can run
290 end_code address below which program text can run
291 start_stack address of the start of the stack
292 esp current value of ESP
293 eip current value of EIP
294 pending bitmap of pending signals
295 blocked bitmap of blocked signals
296 sigign bitmap of ignored signals
297 sigcatch bitmap of catched signals
298 wchan address where process went to sleep
299 0 (place holder)
300 0 (place holder)
301 exit_signal signal to send to parent thread on exit
302 task_cpu which CPU the task is scheduled on
303 rt_priority realtime priority
304 policy scheduling policy (man sched_setscheduler)
305 blkio_ticks time spent waiting for block IO
306 gtime guest time of the task in jiffies
307 cgtime guest time of the task children in jiffies
308..............................................................................
309
310The /proc/PID/maps file containing the currently mapped memory regions and
311their access permissions.
312
313The format is:
314
315address perms offset dev inode pathname
316
31708048000-08049000 r-xp 00000000 03:00 8312 /opt/test
31808049000-0804a000 rw-p 00001000 03:00 8312 /opt/test
3190804a000-0806b000 rw-p 00000000 00:00 0 [heap]
320a7cb1000-a7cb2000 ---p 00000000 00:00 0
321a7cb2000-a7eb2000 rw-p 00000000 00:00 0
322a7eb2000-a7eb3000 ---p 00000000 00:00 0
323a7eb3000-a7ed5000 rw-p 00000000 00:00 0
324a7ed5000-a8008000 r-xp 00000000 03:00 4222 /lib/libc.so.6
325a8008000-a800a000 r--p 00133000 03:00 4222 /lib/libc.so.6
326a800a000-a800b000 rw-p 00135000 03:00 4222 /lib/libc.so.6
327a800b000-a800e000 rw-p 00000000 00:00 0
328a800e000-a8022000 r-xp 00000000 03:00 14462 /lib/libpthread.so.0
329a8022000-a8023000 r--p 00013000 03:00 14462 /lib/libpthread.so.0
330a8023000-a8024000 rw-p 00014000 03:00 14462 /lib/libpthread.so.0
331a8024000-a8027000 rw-p 00000000 00:00 0
332a8027000-a8043000 r-xp 00000000 03:00 8317 /lib/ld-linux.so.2
333a8043000-a8044000 r--p 0001b000 03:00 8317 /lib/ld-linux.so.2
334a8044000-a8045000 rw-p 0001c000 03:00 8317 /lib/ld-linux.so.2
335aff35000-aff4a000 rw-p 00000000 00:00 0 [stack]
336ffffe000-fffff000 r-xp 00000000 00:00 0 [vdso]
337
338where "address" is the address space in the process that it occupies, "perms"
339is a set of permissions:
340
341 r = read
342 w = write
343 x = execute
344 s = shared
345 p = private (copy on write)
346
347"offset" is the offset into the mapping, "dev" is the device (major:minor), and
348"inode" is the inode on that device. 0 indicates that no inode is associated
349with the memory region, as the case would be with BSS (uninitialized data).
350The "pathname" shows the name associated file for this mapping. If the mapping
351is not associated with a file:
352
353 [heap] = the heap of the program
354 [stack] = the stack of the main process
355 [vdso] = the "virtual dynamic shared object",
356 the kernel system call handler
357
358 or if empty, the mapping is anonymous.
359
360
361The /proc/PID/smaps is an extension based on maps, showing the memory
362consumption for each of the process's mappings. For each of mappings there
363is a series of lines such as the following:
364
36508048000-080bc000 r-xp 00000000 03:02 13130 /bin/bash
366Size: 1084 kB
367Rss: 892 kB
368Pss: 374 kB
369Shared_Clean: 892 kB
370Shared_Dirty: 0 kB
371Private_Clean: 0 kB
372Private_Dirty: 0 kB
373Referenced: 892 kB
374Anonymous: 0 kB
375Swap: 0 kB
376KernelPageSize: 4 kB
377MMUPageSize: 4 kB
378Locked: 374 kB
379
380The first of these lines shows the same information as is displayed for the
381mapping in /proc/PID/maps. The remaining lines show the size of the mapping
382(size), the amount of the mapping that is currently resident in RAM (RSS), the
383process' proportional share of this mapping (PSS), the number of clean and
384dirty private pages in the mapping. Note that even a page which is part of a
385MAP_SHARED mapping, but has only a single pte mapped, i.e. is currently used
386by only one process, is accounted as private and not as shared. "Referenced"
387indicates the amount of memory currently marked as referenced or accessed.
388"Anonymous" shows the amount of memory that does not belong to any file. Even
389a mapping associated with a file may contain anonymous pages: when MAP_PRIVATE
390and a page is modified, the file page is replaced by a private anonymous copy.
391"Swap" shows how much would-be-anonymous memory is also used, but out on
392swap.
393
394This file is only present if the CONFIG_MMU kernel configuration option is
395enabled.
396
397The /proc/PID/clear_refs is used to reset the PG_Referenced and ACCESSED/YOUNG
398bits on both physical and virtual pages associated with a process.
399To clear the bits for all the pages associated with the process
400 > echo 1 > /proc/PID/clear_refs
401
402To clear the bits for the anonymous pages associated with the process
403 > echo 2 > /proc/PID/clear_refs
404
405To clear the bits for the file mapped pages associated with the process
406 > echo 3 > /proc/PID/clear_refs
407Any other value written to /proc/PID/clear_refs will have no effect.
408
409The /proc/pid/pagemap gives the PFN, which can be used to find the pageflags
410using /proc/kpageflags and number of times a page is mapped using
411/proc/kpagecount. For detailed explanation, see Documentation/vm/pagemap.txt.
412
4131.2 Kernel data
414---------------
415
416Similar to the process entries, the kernel data files give information about
417the running kernel. The files used to obtain this information are contained in
418/proc and are listed in Table 1-5. Not all of these will be present in your
419system. It depends on the kernel configuration and the loaded modules, which
420files are there, and which are missing.
421
422Table 1-5: Kernel info in /proc
423..............................................................................
424 File Content
425 apm Advanced power management info
426 buddyinfo Kernel memory allocator information (see text) (2.5)
427 bus Directory containing bus specific information
428 cmdline Kernel command line
429 cpuinfo Info about the CPU
430 devices Available devices (block and character)
431 dma Used DMS channels
432 filesystems Supported filesystems
433 driver Various drivers grouped here, currently rtc (2.4)
434 execdomains Execdomains, related to security (2.4)
435 fb Frame Buffer devices (2.4)
436 fs File system parameters, currently nfs/exports (2.4)
437 ide Directory containing info about the IDE subsystem
438 interrupts Interrupt usage
439 iomem Memory map (2.4)
440 ioports I/O port usage
441 irq Masks for irq to cpu affinity (2.4)(smp?)
442 isapnp ISA PnP (Plug&Play) Info (2.4)
443 kcore Kernel core image (can be ELF or A.OUT(deprecated in 2.4))
444 kmsg Kernel messages
445 ksyms Kernel symbol table
446 loadavg Load average of last 1, 5 & 15 minutes
447 locks Kernel locks
448 meminfo Memory info
449 misc Miscellaneous
450 modules List of loaded modules
451 mounts Mounted filesystems
452 net Networking info (see text)
453 pagetypeinfo Additional page allocator information (see text) (2.5)
454 partitions Table of partitions known to the system
455 pci Deprecated info of PCI bus (new way -> /proc/bus/pci/,
456 decoupled by lspci (2.4)
457 rtc Real time clock
458 scsi SCSI info (see text)
459 slabinfo Slab pool info
460 softirqs softirq usage
461 stat Overall statistics
462 swaps Swap space utilization
463 sys See chapter 2
464 sysvipc Info of SysVIPC Resources (msg, sem, shm) (2.4)
465 tty Info of tty drivers
466 uptime System uptime
467 version Kernel version
468 video bttv info of video resources (2.4)
469 vmallocinfo Show vmalloced areas
470..............................................................................
471
472You can, for example, check which interrupts are currently in use and what
473they are used for by looking in the file /proc/interrupts:
474
475 > cat /proc/interrupts
476 CPU0
477 0: 8728810 XT-PIC timer
478 1: 895 XT-PIC keyboard
479 2: 0 XT-PIC cascade
480 3: 531695 XT-PIC aha152x
481 4: 2014133 XT-PIC serial
482 5: 44401 XT-PIC pcnet_cs
483 8: 2 XT-PIC rtc
484 11: 8 XT-PIC i82365
485 12: 182918 XT-PIC PS/2 Mouse
486 13: 1 XT-PIC fpu
487 14: 1232265 XT-PIC ide0
488 15: 7 XT-PIC ide1
489 NMI: 0
490
491In 2.4.* a couple of lines where added to this file LOC & ERR (this time is the
492output of a SMP machine):
493
494 > cat /proc/interrupts
495
496 CPU0 CPU1
497 0: 1243498 1214548 IO-APIC-edge timer
498 1: 8949 8958 IO-APIC-edge keyboard
499 2: 0 0 XT-PIC cascade
500 5: 11286 10161 IO-APIC-edge soundblaster
501 8: 1 0 IO-APIC-edge rtc
502 9: 27422 27407 IO-APIC-edge 3c503
503 12: 113645 113873 IO-APIC-edge PS/2 Mouse
504 13: 0 0 XT-PIC fpu
505 14: 22491 24012 IO-APIC-edge ide0
506 15: 2183 2415 IO-APIC-edge ide1
507 17: 30564 30414 IO-APIC-level eth0
508 18: 177 164 IO-APIC-level bttv
509 NMI: 2457961 2457959
510 LOC: 2457882 2457881
511 ERR: 2155
512
513NMI is incremented in this case because every timer interrupt generates a NMI
514(Non Maskable Interrupt) which is used by the NMI Watchdog to detect lockups.
515
516LOC is the local interrupt counter of the internal APIC of every CPU.
517
518ERR is incremented in the case of errors in the IO-APIC bus (the bus that
519connects the CPUs in a SMP system. This means that an error has been detected,
520the IO-APIC automatically retry the transmission, so it should not be a big
521problem, but you should read the SMP-FAQ.
522
523In 2.6.2* /proc/interrupts was expanded again. This time the goal was for
524/proc/interrupts to display every IRQ vector in use by the system, not
525just those considered 'most important'. The new vectors are:
526
527 THR -- interrupt raised when a machine check threshold counter
528 (typically counting ECC corrected errors of memory or cache) exceeds
529 a configurable threshold. Only available on some systems.
530
531 TRM -- a thermal event interrupt occurs when a temperature threshold
532 has been exceeded for the CPU. This interrupt may also be generated
533 when the temperature drops back to normal.
534
535 SPU -- a spurious interrupt is some interrupt that was raised then lowered
536 by some IO device before it could be fully processed by the APIC. Hence
537 the APIC sees the interrupt but does not know what device it came from.
538 For this case the APIC will generate the interrupt with a IRQ vector
539 of 0xff. This might also be generated by chipset bugs.
540
541 RES, CAL, TLB -- rescheduling, call and TLB flush interrupts are
542 sent from one CPU to another per the needs of the OS. Typically,
543 their statistics are used by kernel developers and interested users to
544 determine the occurrence of interrupts of the given type.
545
546The above IRQ vectors are displayed only when relevant. For example,
547the threshold vector does not exist on x86_64 platforms. Others are
548suppressed when the system is a uniprocessor. As of this writing, only
549i386 and x86_64 platforms support the new IRQ vector displays.
550
551Of some interest is the introduction of the /proc/irq directory to 2.4.
552It could be used to set IRQ to CPU affinity, this means that you can "hook" an
553IRQ to only one CPU, or to exclude a CPU of handling IRQs. The contents of the
554irq subdir is one subdir for each IRQ, and two files; default_smp_affinity and
555prof_cpu_mask.
556
557For example
558 > ls /proc/irq/
559 0 10 12 14 16 18 2 4 6 8 prof_cpu_mask
560 1 11 13 15 17 19 3 5 7 9 default_smp_affinity
561 > ls /proc/irq/0/
562 smp_affinity
563
564smp_affinity is a bitmask, in which you can specify which CPUs can handle the
565IRQ, you can set it by doing:
566
567 > echo 1 > /proc/irq/10/smp_affinity
568
569This means that only the first CPU will handle the IRQ, but you can also echo
5705 which means that only the first and fourth CPU can handle the IRQ.
571
572The contents of each smp_affinity file is the same by default:
573
574 > cat /proc/irq/0/smp_affinity
575 ffffffff
576
577There is an alternate interface, smp_affinity_list which allows specifying
578a cpu range instead of a bitmask:
579
580 > cat /proc/irq/0/smp_affinity_list
581 1024-1031
582
583The default_smp_affinity mask applies to all non-active IRQs, which are the
584IRQs which have not yet been allocated/activated, and hence which lack a
585/proc/irq/[0-9]* directory.
586
587The node file on an SMP system shows the node to which the device using the IRQ
588reports itself as being attached. This hardware locality information does not
589include information about any possible driver locality preference.
590
591prof_cpu_mask specifies which CPUs are to be profiled by the system wide
592profiler. Default value is ffffffff (all cpus if there are only 32 of them).
593
594The way IRQs are routed is handled by the IO-APIC, and it's Round Robin
595between all the CPUs which are allowed to handle it. As usual the kernel has
596more info than you and does a better job than you, so the defaults are the
597best choice for almost everyone. [Note this applies only to those IO-APIC's
598that support "Round Robin" interrupt distribution.]
599
600There are three more important subdirectories in /proc: net, scsi, and sys.
601The general rule is that the contents, or even the existence of these
602directories, depend on your kernel configuration. If SCSI is not enabled, the
603directory scsi may not exist. The same is true with the net, which is there
604only when networking support is present in the running kernel.
605
606The slabinfo file gives information about memory usage at the slab level.
607Linux uses slab pools for memory management above page level in version 2.2.
608Commonly used objects have their own slab pool (such as network buffers,
609directory cache, and so on).
610
611..............................................................................
612
613> cat /proc/buddyinfo
614
615Node 0, zone DMA 0 4 5 4 4 3 ...
616Node 0, zone Normal 1 0 0 1 101 8 ...
617Node 0, zone HighMem 2 0 0 1 1 0 ...
618
619External fragmentation is a problem under some workloads, and buddyinfo is a
620useful tool for helping diagnose these problems. Buddyinfo will give you a
621clue as to how big an area you can safely allocate, or why a previous
622allocation failed.
623
624Each column represents the number of pages of a certain order which are
625available. In this case, there are 0 chunks of 2^0*PAGE_SIZE available in
626ZONE_DMA, 4 chunks of 2^1*PAGE_SIZE in ZONE_DMA, 101 chunks of 2^4*PAGE_SIZE
627available in ZONE_NORMAL, etc...
628
629More information relevant to external fragmentation can be found in
630pagetypeinfo.
631
632> cat /proc/pagetypeinfo
633Page block order: 9
634Pages per block: 512
635
636Free pages count per migrate type at order 0 1 2 3 4 5 6 7 8 9 10
637Node 0, zone DMA, type Unmovable 0 0 0 1 1 1 1 1 1 1 0
638Node 0, zone DMA, type Reclaimable 0 0 0 0 0 0 0 0 0 0 0
639Node 0, zone DMA, type Movable 1 1 2 1 2 1 1 0 1 0 2
640Node 0, zone DMA, type Reserve 0 0 0 0 0 0 0 0 0 1 0
641Node 0, zone DMA, type Isolate 0 0 0 0 0 0 0 0 0 0 0
642Node 0, zone DMA32, type Unmovable 103 54 77 1 1 1 11 8 7 1 9
643Node 0, zone DMA32, type Reclaimable 0 0 2 1 0 0 0 0 1 0 0
644Node 0, zone DMA32, type Movable 169 152 113 91 77 54 39 13 6 1 452
645Node 0, zone DMA32, type Reserve 1 2 2 2 2 0 1 1 1 1 0
646Node 0, zone DMA32, type Isolate 0 0 0 0 0 0 0 0 0 0 0
647
648Number of blocks type Unmovable Reclaimable Movable Reserve Isolate
649Node 0, zone DMA 2 0 5 1 0
650Node 0, zone DMA32 41 6 967 2 0
651
652Fragmentation avoidance in the kernel works by grouping pages of different
653migrate types into the same contiguous regions of memory called page blocks.
654A page block is typically the size of the default hugepage size e.g. 2MB on
655X86-64. By keeping pages grouped based on their ability to move, the kernel
656can reclaim pages within a page block to satisfy a high-order allocation.
657
658The pagetypinfo begins with information on the size of a page block. It
659then gives the same type of information as buddyinfo except broken down
660by migrate-type and finishes with details on how many page blocks of each
661type exist.
662
663If min_free_kbytes has been tuned correctly (recommendations made by hugeadm
664from libhugetlbfs http://sourceforge.net/projects/libhugetlbfs/), one can
665make an estimate of the likely number of huge pages that can be allocated
666at a given point in time. All the "Movable" blocks should be allocatable
667unless memory has been mlock()'d. Some of the Reclaimable blocks should
668also be allocatable although a lot of filesystem metadata may have to be
669reclaimed to achieve this.
670
671..............................................................................
672
673meminfo:
674
675Provides information about distribution and utilization of memory. This
676varies by architecture and compile options. The following is from a
67716GB PIII, which has highmem enabled. You may not have all of these fields.
678
679> cat /proc/meminfo
680
681The "Locked" indicates whether the mapping is locked in memory or not.
682
683
684MemTotal: 16344972 kB
685MemFree: 13634064 kB
686Buffers: 3656 kB
687Cached: 1195708 kB
688SwapCached: 0 kB
689Active: 891636 kB
690Inactive: 1077224 kB
691HighTotal: 15597528 kB
692HighFree: 13629632 kB
693LowTotal: 747444 kB
694LowFree: 4432 kB
695SwapTotal: 0 kB
696SwapFree: 0 kB
697Dirty: 968 kB
698Writeback: 0 kB
699AnonPages: 861800 kB
700Mapped: 280372 kB
701Slab: 284364 kB
702SReclaimable: 159856 kB
703SUnreclaim: 124508 kB
704PageTables: 24448 kB
705NFS_Unstable: 0 kB
706Bounce: 0 kB
707WritebackTmp: 0 kB
708CommitLimit: 7669796 kB
709Committed_AS: 100056 kB
710VmallocTotal: 112216 kB
711VmallocUsed: 428 kB
712VmallocChunk: 111088 kB
713
714 MemTotal: Total usable ram (i.e. physical ram minus a few reserved
715 bits and the kernel binary code)
716 MemFree: The sum of LowFree+HighFree
717 Buffers: Relatively temporary storage for raw disk blocks
718 shouldn't get tremendously large (20MB or so)
719 Cached: in-memory cache for files read from the disk (the
720 pagecache). Doesn't include SwapCached
721 SwapCached: Memory that once was swapped out, is swapped back in but
722 still also is in the swapfile (if memory is needed it
723 doesn't need to be swapped out AGAIN because it is already
724 in the swapfile. This saves I/O)
725 Active: Memory that has been used more recently and usually not
726 reclaimed unless absolutely necessary.
727 Inactive: Memory which has been less recently used. It is more
728 eligible to be reclaimed for other purposes
729 HighTotal:
730 HighFree: Highmem is all memory above ~860MB of physical memory
731 Highmem areas are for use by userspace programs, or
732 for the pagecache. The kernel must use tricks to access
733 this memory, making it slower to access than lowmem.
734 LowTotal:
735 LowFree: Lowmem is memory which can be used for everything that
736 highmem can be used for, but it is also available for the
737 kernel's use for its own data structures. Among many
738 other things, it is where everything from the Slab is
739 allocated. Bad things happen when you're out of lowmem.
740 SwapTotal: total amount of swap space available
741 SwapFree: Memory which has been evicted from RAM, and is temporarily
742 on the disk
743 Dirty: Memory which is waiting to get written back to the disk
744 Writeback: Memory which is actively being written back to the disk
745 AnonPages: Non-file backed pages mapped into userspace page tables
746 Mapped: files which have been mmaped, such as libraries
747 Slab: in-kernel data structures cache
748SReclaimable: Part of Slab, that might be reclaimed, such as caches
749 SUnreclaim: Part of Slab, that cannot be reclaimed on memory pressure
750 PageTables: amount of memory dedicated to the lowest level of page
751 tables.
752NFS_Unstable: NFS pages sent to the server, but not yet committed to stable
753 storage
754 Bounce: Memory used for block device "bounce buffers"
755WritebackTmp: Memory used by FUSE for temporary writeback buffers
756 CommitLimit: Based on the overcommit ratio ('vm.overcommit_ratio'),
757 this is the total amount of memory currently available to
758 be allocated on the system. This limit is only adhered to
759 if strict overcommit accounting is enabled (mode 2 in
760 'vm.overcommit_memory').
761 The CommitLimit is calculated with the following formula:
762 CommitLimit = ('vm.overcommit_ratio' * Physical RAM) + Swap
763 For example, on a system with 1G of physical RAM and 7G
764 of swap with a `vm.overcommit_ratio` of 30 it would
765 yield a CommitLimit of 7.3G.
766 For more details, see the memory overcommit documentation
767 in vm/overcommit-accounting.
768Committed_AS: The amount of memory presently allocated on the system.
769 The committed memory is a sum of all of the memory which
770 has been allocated by processes, even if it has not been
771 "used" by them as of yet. A process which malloc()'s 1G
772 of memory, but only touches 300M of it will only show up
773 as using 300M of memory even if it has the address space
774 allocated for the entire 1G. This 1G is memory which has
775 been "committed" to by the VM and can be used at any time
776 by the allocating application. With strict overcommit
777 enabled on the system (mode 2 in 'vm.overcommit_memory'),
778 allocations which would exceed the CommitLimit (detailed
779 above) will not be permitted. This is useful if one needs
780 to guarantee that processes will not fail due to lack of
781 memory once that memory has been successfully allocated.
782VmallocTotal: total size of vmalloc memory area
783 VmallocUsed: amount of vmalloc area which is used
784VmallocChunk: largest contiguous block of vmalloc area which is free
785
786..............................................................................
787
788vmallocinfo:
789
790Provides information about vmalloced/vmaped areas. One line per area,
791containing the virtual address range of the area, size in bytes,
792caller information of the creator, and optional information depending
793on the kind of area :
794
795 pages=nr number of pages
796 phys=addr if a physical address was specified
797 ioremap I/O mapping (ioremap() and friends)
798 vmalloc vmalloc() area
799 vmap vmap()ed pages
800 user VM_USERMAP area
801 vpages buffer for pages pointers was vmalloced (huge area)
802 N<node>=nr (Only on NUMA kernels)
803 Number of pages allocated on memory node <node>
804
805> cat /proc/vmallocinfo
8060xffffc20000000000-0xffffc20000201000 2101248 alloc_large_system_hash+0x204 ...
807 /0x2c0 pages=512 vmalloc N0=128 N1=128 N2=128 N3=128
8080xffffc20000201000-0xffffc20000302000 1052672 alloc_large_system_hash+0x204 ...
809 /0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64
8100xffffc20000302000-0xffffc20000304000 8192 acpi_tb_verify_table+0x21/0x4f...
811 phys=7fee8000 ioremap
8120xffffc20000304000-0xffffc20000307000 12288 acpi_tb_verify_table+0x21/0x4f...
813 phys=7fee7000 ioremap
8140xffffc2000031d000-0xffffc2000031f000 8192 init_vdso_vars+0x112/0x210
8150xffffc2000031f000-0xffffc2000032b000 49152 cramfs_uncompress_init+0x2e ...
816 /0x80 pages=11 vmalloc N0=3 N1=3 N2=2 N3=3
8170xffffc2000033a000-0xffffc2000033d000 12288 sys_swapon+0x640/0xac0 ...
818 pages=2 vmalloc N1=2
8190xffffc20000347000-0xffffc2000034c000 20480 xt_alloc_table_info+0xfe ...
820 /0x130 [x_tables] pages=4 vmalloc N0=4
8210xffffffffa0000000-0xffffffffa000f000 61440 sys_init_module+0xc27/0x1d00 ...
822 pages=14 vmalloc N2=14
8230xffffffffa000f000-0xffffffffa0014000 20480 sys_init_module+0xc27/0x1d00 ...
824 pages=4 vmalloc N1=4
8250xffffffffa0014000-0xffffffffa0017000 12288 sys_init_module+0xc27/0x1d00 ...
826 pages=2 vmalloc N1=2
8270xffffffffa0017000-0xffffffffa0022000 45056 sys_init_module+0xc27/0x1d00 ...
828 pages=10 vmalloc N0=10
829
830..............................................................................
831
832softirqs:
833
834Provides counts of softirq handlers serviced since boot time, for each cpu.
835
836> cat /proc/softirqs
837 CPU0 CPU1 CPU2 CPU3
838 HI: 0 0 0 0
839 TIMER: 27166 27120 27097 27034
840 NET_TX: 0 0 0 17
841 NET_RX: 42 0 0 39
842 BLOCK: 0 0 107 1121
843 TASKLET: 0 0 0 290
844 SCHED: 27035 26983 26971 26746
845 HRTIMER: 0 0 0 0
846 RCU: 1678 1769 2178 2250
847
848
8491.3 IDE devices in /proc/ide
850----------------------------
851
852The subdirectory /proc/ide contains information about all IDE devices of which
853the kernel is aware. There is one subdirectory for each IDE controller, the
854file drivers and a link for each IDE device, pointing to the device directory
855in the controller specific subtree.
856
857The file drivers contains general information about the drivers used for the
858IDE devices:
859
860 > cat /proc/ide/drivers
861 ide-cdrom version 4.53
862 ide-disk version 1.08
863
864More detailed information can be found in the controller specific
865subdirectories. These are named ide0, ide1 and so on. Each of these
866directories contains the files shown in table 1-6.
867
868
869Table 1-6: IDE controller info in /proc/ide/ide?
870..............................................................................
871 File Content
872 channel IDE channel (0 or 1)
873 config Configuration (only for PCI/IDE bridge)
874 mate Mate name
875 model Type/Chipset of IDE controller
876..............................................................................
877
878Each device connected to a controller has a separate subdirectory in the
879controllers directory. The files listed in table 1-7 are contained in these
880directories.
881
882
883Table 1-7: IDE device information
884..............................................................................
885 File Content
886 cache The cache
887 capacity Capacity of the medium (in 512Byte blocks)
888 driver driver and version
889 geometry physical and logical geometry
890 identify device identify block
891 media media type
892 model device identifier
893 settings device setup
894 smart_thresholds IDE disk management thresholds
895 smart_values IDE disk management values
896..............................................................................
897
898The most interesting file is settings. This file contains a nice overview of
899the drive parameters:
900
901 # cat /proc/ide/ide0/hda/settings
902 name value min max mode
903 ---- ----- --- --- ----
904 bios_cyl 526 0 65535 rw
905 bios_head 255 0 255 rw
906 bios_sect 63 0 63 rw
907 breada_readahead 4 0 127 rw
908 bswap 0 0 1 r
909 file_readahead 72 0 2097151 rw
910 io_32bit 0 0 3 rw
911 keepsettings 0 0 1 rw
912 max_kb_per_request 122 1 127 rw
913 multcount 0 0 8 rw
914 nice1 1 0 1 rw
915 nowerr 0 0 1 rw
916 pio_mode write-only 0 255 w
917 slow 0 0 1 rw
918 unmaskirq 0 0 1 rw
919 using_dma 0 0 1 rw
920
921
9221.4 Networking info in /proc/net
923--------------------------------
924
925The subdirectory /proc/net follows the usual pattern. Table 1-8 shows the
926additional values you get for IP version 6 if you configure the kernel to
927support this. Table 1-9 lists the files and their meaning.
928
929
930Table 1-8: IPv6 info in /proc/net
931..............................................................................
932 File Content
933 udp6 UDP sockets (IPv6)
934 tcp6 TCP sockets (IPv6)
935 raw6 Raw device statistics (IPv6)
936 igmp6 IP multicast addresses, which this host joined (IPv6)
937 if_inet6 List of IPv6 interface addresses
938 ipv6_route Kernel routing table for IPv6
939 rt6_stats Global IPv6 routing tables statistics
940 sockstat6 Socket statistics (IPv6)
941 snmp6 Snmp data (IPv6)
942..............................................................................
943
944
945Table 1-9: Network info in /proc/net
946..............................................................................
947 File Content
948 arp Kernel ARP table
949 dev network devices with statistics
950 dev_mcast the Layer2 multicast groups a device is listening too
951 (interface index, label, number of references, number of bound
952 addresses).
953 dev_stat network device status
954 ip_fwchains Firewall chain linkage
955 ip_fwnames Firewall chain names
956 ip_masq Directory containing the masquerading tables
957 ip_masquerade Major masquerading table
958 netstat Network statistics
959 raw raw device statistics
960 route Kernel routing table
961 rpc Directory containing rpc info
962 rt_cache Routing cache
963 snmp SNMP data
964 sockstat Socket statistics
965 tcp TCP sockets
966 tr_rif Token ring RIF routing table
967 udp UDP sockets
968 unix UNIX domain sockets
969 wireless Wireless interface data (Wavelan etc)
970 igmp IP multicast addresses, which this host joined
971 psched Global packet scheduler parameters.
972 netlink List of PF_NETLINK sockets
973 ip_mr_vifs List of multicast virtual interfaces
974 ip_mr_cache List of multicast routing cache
975..............................................................................
976
977You can use this information to see which network devices are available in
978your system and how much traffic was routed over those devices:
979
980 > cat /proc/net/dev
981 Inter-|Receive |[...
982 face |bytes packets errs drop fifo frame compressed multicast|[...
983 lo: 908188 5596 0 0 0 0 0 0 [...
984 ppp0:15475140 20721 410 0 0 410 0 0 [...
985 eth0: 614530 7085 0 0 0 0 0 1 [...
986
987 ...] Transmit
988 ...] bytes packets errs drop fifo colls carrier compressed
989 ...] 908188 5596 0 0 0 0 0 0
990 ...] 1375103 17405 0 0 0 0 0 0
991 ...] 1703981 5535 0 0 0 3 0 0
992
993In addition, each Channel Bond interface has its own directory. For
994example, the bond0 device will have a directory called /proc/net/bond0/.
995It will contain information that is specific to that bond, such as the
996current slaves of the bond, the link status of the slaves, and how
997many times the slaves link has failed.
998
9991.5 SCSI info
1000-------------
1001
1002If you have a SCSI host adapter in your system, you'll find a subdirectory
1003named after the driver for this adapter in /proc/scsi. You'll also see a list
1004of all recognized SCSI devices in /proc/scsi:
1005
1006 >cat /proc/scsi/scsi
1007 Attached devices:
1008 Host: scsi0 Channel: 00 Id: 00 Lun: 00
1009 Vendor: IBM Model: DGHS09U Rev: 03E0
1010 Type: Direct-Access ANSI SCSI revision: 03
1011 Host: scsi0 Channel: 00 Id: 06 Lun: 00
1012 Vendor: PIONEER Model: CD-ROM DR-U06S Rev: 1.04
1013 Type: CD-ROM ANSI SCSI revision: 02
1014
1015
1016The directory named after the driver has one file for each adapter found in
1017the system. These files contain information about the controller, including
1018the used IRQ and the IO address range. The amount of information shown is
1019dependent on the adapter you use. The example shows the output for an Adaptec
1020AHA-2940 SCSI adapter:
1021
1022 > cat /proc/scsi/aic7xxx/0
1023
1024 Adaptec AIC7xxx driver version: 5.1.19/3.2.4
1025 Compile Options:
1026 TCQ Enabled By Default : Disabled
1027 AIC7XXX_PROC_STATS : Disabled
1028 AIC7XXX_RESET_DELAY : 5
1029 Adapter Configuration:
1030 SCSI Adapter: Adaptec AHA-294X Ultra SCSI host adapter
1031 Ultra Wide Controller
1032 PCI MMAPed I/O Base: 0xeb001000
1033 Adapter SEEPROM Config: SEEPROM found and used.
1034 Adaptec SCSI BIOS: Enabled
1035 IRQ: 10
1036 SCBs: Active 0, Max Active 2,
1037 Allocated 15, HW 16, Page 255
1038 Interrupts: 160328
1039 BIOS Control Word: 0x18b6
1040 Adapter Control Word: 0x005b
1041 Extended Translation: Enabled
1042 Disconnect Enable Flags: 0xffff
1043 Ultra Enable Flags: 0x0001
1044 Tag Queue Enable Flags: 0x0000
1045 Ordered Queue Tag Flags: 0x0000
1046 Default Tag Queue Depth: 8
1047 Tagged Queue By Device array for aic7xxx host instance 0:
1048 {255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255}
1049 Actual queue depth per device for aic7xxx host instance 0:
1050 {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
1051 Statistics:
1052 (scsi0:0:0:0)
1053 Device using Wide/Sync transfers at 40.0 MByte/sec, offset 8
1054 Transinfo settings: current(12/8/1/0), goal(12/8/1/0), user(12/15/1/0)
1055 Total transfers 160151 (74577 reads and 85574 writes)
1056 (scsi0:0:6:0)
1057 Device using Narrow/Sync transfers at 5.0 MByte/sec, offset 15
1058 Transinfo settings: current(50/15/0/0), goal(50/15/0/0), user(50/15/0/0)
1059 Total transfers 0 (0 reads and 0 writes)
1060
1061
10621.6 Parallel port info in /proc/parport
1063---------------------------------------
1064
1065The directory /proc/parport contains information about the parallel ports of
1066your system. It has one subdirectory for each port, named after the port
1067number (0,1,2,...).
1068
1069These directories contain the four files shown in Table 1-10.
1070
1071
1072Table 1-10: Files in /proc/parport
1073..............................................................................
1074 File Content
1075 autoprobe Any IEEE-1284 device ID information that has been acquired.
1076 devices list of the device drivers using that port. A + will appear by the
1077 name of the device currently using the port (it might not appear
1078 against any).
1079 hardware Parallel port's base address, IRQ line and DMA channel.
1080 irq IRQ that parport is using for that port. This is in a separate
1081 file to allow you to alter it by writing a new value in (IRQ
1082 number or none).
1083..............................................................................
1084
10851.7 TTY info in /proc/tty
1086-------------------------
1087
1088Information about the available and actually used tty's can be found in the
1089directory /proc/tty.You'll find entries for drivers and line disciplines in
1090this directory, as shown in Table 1-11.
1091
1092
1093Table 1-11: Files in /proc/tty
1094..............................................................................
1095 File Content
1096 drivers list of drivers and their usage
1097 ldiscs registered line disciplines
1098 driver/serial usage statistic and status of single tty lines
1099..............................................................................
1100
1101To see which tty's are currently in use, you can simply look into the file
1102/proc/tty/drivers:
1103
1104 > cat /proc/tty/drivers
1105 pty_slave /dev/pts 136 0-255 pty:slave
1106 pty_master /dev/ptm 128 0-255 pty:master
1107 pty_slave /dev/ttyp 3 0-255 pty:slave
1108 pty_master /dev/pty 2 0-255 pty:master
1109 serial /dev/cua 5 64-67 serial:callout
1110 serial /dev/ttyS 4 64-67 serial
1111 /dev/tty0 /dev/tty0 4 0 system:vtmaster
1112 /dev/ptmx /dev/ptmx 5 2 system
1113 /dev/console /dev/console 5 1 system:console
1114 /dev/tty /dev/tty 5 0 system:/dev/tty
1115 unknown /dev/tty 4 1-63 console
1116
1117
11181.8 Miscellaneous kernel statistics in /proc/stat
1119-------------------------------------------------
1120
1121Various pieces of information about kernel activity are available in the
1122/proc/stat file. All of the numbers reported in this file are aggregates
1123since the system first booted. For a quick look, simply cat the file:
1124
1125 > cat /proc/stat
1126 cpu 2255 34 2290 22625563 6290 127 456 0 0
1127 cpu0 1132 34 1441 11311718 3675 127 438 0 0
1128 cpu1 1123 0 849 11313845 2614 0 18 0 0
1129 intr 114930548 113199788 3 0 5 263 0 4 [... lots more numbers ...]
1130 ctxt 1990473
1131 btime 1062191376
1132 processes 2915
1133 procs_running 1
1134 procs_blocked 0
1135 softirq 183433 0 21755 12 39 1137 231 21459 2263
1136
1137The very first "cpu" line aggregates the numbers in all of the other "cpuN"
1138lines. These numbers identify the amount of time the CPU has spent performing
1139different kinds of work. Time units are in USER_HZ (typically hundredths of a
1140second). The meanings of the columns are as follows, from left to right:
1141
1142- user: normal processes executing in user mode
1143- nice: niced processes executing in user mode
1144- system: processes executing in kernel mode
1145- idle: twiddling thumbs
1146- iowait: waiting for I/O to complete
1147- irq: servicing interrupts
1148- softirq: servicing softirqs
1149- steal: involuntary wait
1150- guest: running a normal guest
1151- guest_nice: running a niced guest
1152
1153The "intr" line gives counts of interrupts serviced since boot time, for each
1154of the possible system interrupts. The first column is the total of all
1155interrupts serviced; each subsequent column is the total for that particular
1156interrupt.
1157
1158The "ctxt" line gives the total number of context switches across all CPUs.
1159
1160The "btime" line gives the time at which the system booted, in seconds since
1161the Unix epoch.
1162
1163The "processes" line gives the number of processes and threads created, which
1164includes (but is not limited to) those created by calls to the fork() and
1165clone() system calls.
1166
1167The "procs_running" line gives the total number of threads that are
1168running or ready to run (i.e., the total number of runnable threads).
1169
1170The "procs_blocked" line gives the number of processes currently blocked,
1171waiting for I/O to complete.
1172
1173The "softirq" line gives counts of softirqs serviced since boot time, for each
1174of the possible system softirqs. The first column is the total of all
1175softirqs serviced; each subsequent column is the total for that particular
1176softirq.
1177
1178
11791.9 Ext4 file system parameters
1180------------------------------
1181
1182Information about mounted ext4 file systems can be found in
1183/proc/fs/ext4. Each mounted filesystem will have a directory in
1184/proc/fs/ext4 based on its device name (i.e., /proc/fs/ext4/hdc or
1185/proc/fs/ext4/dm-0). The files in each per-device directory are shown
1186in Table 1-12, below.
1187
1188Table 1-12: Files in /proc/fs/ext4/<devname>
1189..............................................................................
1190 File Content
1191 mb_groups details of multiblock allocator buddy cache of free blocks
1192..............................................................................
1193
11942.0 /proc/consoles
1195------------------
1196Shows registered system console lines.
1197
1198To see which character device lines are currently used for the system console
1199/dev/console, you may simply look into the file /proc/consoles:
1200
1201 > cat /proc/consoles
1202 tty0 -WU (ECp) 4:7
1203 ttyS0 -W- (Ep) 4:64
1204
1205The columns are:
1206
1207 device name of the device
1208 operations R = can do read operations
1209 W = can do write operations
1210 U = can do unblank
1211 flags E = it is enabled
1212 C = it is preferred console
1213 B = it is primary boot console
1214 p = it is used for printk buffer
1215 b = it is not a TTY but a Braille device
1216 a = it is safe to use when cpu is offline
1217 major:minor major and minor number of the device separated by a colon
1218
1219------------------------------------------------------------------------------
1220Summary
1221------------------------------------------------------------------------------
1222The /proc file system serves information about the running system. It not only
1223allows access to process data but also allows you to request the kernel status
1224by reading files in the hierarchy.
1225
1226The directory structure of /proc reflects the types of information and makes
1227it easy, if not obvious, where to look for specific data.
1228------------------------------------------------------------------------------
1229
1230------------------------------------------------------------------------------
1231CHAPTER 2: MODIFYING SYSTEM PARAMETERS
1232------------------------------------------------------------------------------
1233
1234------------------------------------------------------------------------------
1235In This Chapter
1236------------------------------------------------------------------------------
1237* Modifying kernel parameters by writing into files found in /proc/sys
1238* Exploring the files which modify certain parameters
1239* Review of the /proc/sys file tree
1240------------------------------------------------------------------------------
1241
1242
1243A very interesting part of /proc is the directory /proc/sys. This is not only
1244a source of information, it also allows you to change parameters within the
1245kernel. Be very careful when attempting this. You can optimize your system,
1246but you can also cause it to crash. Never alter kernel parameters on a
1247production system. Set up a development machine and test to make sure that
1248everything works the way you want it to. You may have no alternative but to
1249reboot the machine once an error has been made.
1250
1251To change a value, simply echo the new value into the file. An example is
1252given below in the section on the file system data. You need to be root to do
1253this. You can create your own boot script to perform this every time your
1254system boots.
1255
1256The files in /proc/sys can be used to fine tune and monitor miscellaneous and
1257general things in the operation of the Linux kernel. Since some of the files
1258can inadvertently disrupt your system, it is advisable to read both
1259documentation and source before actually making adjustments. In any case, be
1260very careful when writing to any of these files. The entries in /proc may
1261change slightly between the 2.1.* and the 2.2 kernel, so if there is any doubt
1262review the kernel documentation in the directory /usr/src/linux/Documentation.
1263This chapter is heavily based on the documentation included in the pre 2.2
1264kernels, and became part of it in version 2.2.1 of the Linux kernel.
1265
1266Please see: Documentation/sysctls/ directory for descriptions of these
1267entries.
1268
1269------------------------------------------------------------------------------
1270Summary
1271------------------------------------------------------------------------------
1272Certain aspects of kernel behavior can be modified at runtime, without the
1273need to recompile the kernel, or even to reboot the system. The files in the
1274/proc/sys tree can not only be read, but also modified. You can use the echo
1275command to write value into these files, thereby changing the default settings
1276of the kernel.
1277------------------------------------------------------------------------------
1278
1279------------------------------------------------------------------------------
1280CHAPTER 3: PER-PROCESS PARAMETERS
1281------------------------------------------------------------------------------
1282
12833.1 /proc/<pid>/oom_adj & /proc/<pid>/oom_score_adj- Adjust the oom-killer score
1284--------------------------------------------------------------------------------
1285
1286These file can be used to adjust the badness heuristic used to select which
1287process gets killed in out of memory conditions.
1288
1289The badness heuristic assigns a value to each candidate task ranging from 0
1290(never kill) to 1000 (always kill) to determine which process is targeted. The
1291units are roughly a proportion along that range of allowed memory the process
1292may allocate from based on an estimation of its current memory and swap use.
1293For example, if a task is using all allowed memory, its badness score will be
12941000. If it is using half of its allowed memory, its score will be 500.
1295
1296There is an additional factor included in the badness score: root
1297processes are given 3% extra memory over other tasks.
1298
1299The amount of "allowed" memory depends on the context in which the oom killer
1300was called. If it is due to the memory assigned to the allocating task's cpuset
1301being exhausted, the allowed memory represents the set of mems assigned to that
1302cpuset. If it is due to a mempolicy's node(s) being exhausted, the allowed
1303memory represents the set of mempolicy nodes. If it is due to a memory
1304limit (or swap limit) being reached, the allowed memory is that configured
1305limit. Finally, if it is due to the entire system being out of memory, the
1306allowed memory represents all allocatable resources.
1307
1308The value of /proc/<pid>/oom_score_adj is added to the badness score before it
1309is used to determine which task to kill. Acceptable values range from -1000
1310(OOM_SCORE_ADJ_MIN) to +1000 (OOM_SCORE_ADJ_MAX). This allows userspace to
1311polarize the preference for oom killing either by always preferring a certain
1312task or completely disabling it. The lowest possible value, -1000, is
1313equivalent to disabling oom killing entirely for that task since it will always
1314report a badness score of 0.
1315
1316Consequently, it is very simple for userspace to define the amount of memory to
1317consider for each task. Setting a /proc/<pid>/oom_score_adj value of +500, for
1318example, is roughly equivalent to allowing the remainder of tasks sharing the
1319same system, cpuset, mempolicy, or memory controller resources to use at least
132050% more memory. A value of -500, on the other hand, would be roughly
1321equivalent to discounting 50% of the task's allowed memory from being considered
1322as scoring against the task.
1323
1324For backwards compatibility with previous kernels, /proc/<pid>/oom_adj may also
1325be used to tune the badness score. Its acceptable values range from -16
1326(OOM_ADJUST_MIN) to +15 (OOM_ADJUST_MAX) and a special value of -17
1327(OOM_DISABLE) to disable oom killing entirely for that task. Its value is
1328scaled linearly with /proc/<pid>/oom_score_adj.
1329
1330Writing to /proc/<pid>/oom_score_adj or /proc/<pid>/oom_adj will change the
1331other with its scaled value.
1332
1333The value of /proc/<pid>/oom_score_adj may be reduced no lower than the last
1334value set by a CAP_SYS_RESOURCE process. To reduce the value any lower
1335requires CAP_SYS_RESOURCE.
1336
1337NOTICE: /proc/<pid>/oom_adj is deprecated and will be removed, please see
1338Documentation/feature-removal-schedule.txt.
1339
1340Caveat: when a parent task is selected, the oom killer will sacrifice any first
1341generation children with separate address spaces instead, if possible. This
1342avoids servers and important system daemons from being killed and loses the
1343minimal amount of work.
1344
1345
13463.2 /proc/<pid>/oom_score - Display current oom-killer score
1347-------------------------------------------------------------
1348
1349This file can be used to check the current score used by the oom-killer is for
1350any given <pid>. Use it together with /proc/<pid>/oom_adj to tune which
1351process should be killed in an out-of-memory situation.
1352
1353
13543.3 /proc/<pid>/io - Display the IO accounting fields
1355-------------------------------------------------------
1356
1357This file contains IO statistics for each running process
1358
1359Example
1360-------
1361
1362test:/tmp # dd if=/dev/zero of=/tmp/test.dat &
1363[1] 3828
1364
1365test:/tmp # cat /proc/3828/io
1366rchar: 323934931
1367wchar: 323929600
1368syscr: 632687
1369syscw: 632675
1370read_bytes: 0
1371write_bytes: 323932160
1372cancelled_write_bytes: 0
1373
1374
1375Description
1376-----------
1377
1378rchar
1379-----
1380
1381I/O counter: chars read
1382The number of bytes which this task has caused to be read from storage. This
1383is simply the sum of bytes which this process passed to read() and pread().
1384It includes things like tty IO and it is unaffected by whether or not actual
1385physical disk IO was required (the read might have been satisfied from
1386pagecache)
1387
1388
1389wchar
1390-----
1391
1392I/O counter: chars written
1393The number of bytes which this task has caused, or shall cause to be written
1394to disk. Similar caveats apply here as with rchar.
1395
1396
1397syscr
1398-----
1399
1400I/O counter: read syscalls
1401Attempt to count the number of read I/O operations, i.e. syscalls like read()
1402and pread().
1403
1404
1405syscw
1406-----
1407
1408I/O counter: write syscalls
1409Attempt to count the number of write I/O operations, i.e. syscalls like
1410write() and pwrite().
1411
1412
1413read_bytes
1414----------
1415
1416I/O counter: bytes read
1417Attempt to count the number of bytes which this process really did cause to
1418be fetched from the storage layer. Done at the submit_bio() level, so it is
1419accurate for block-backed filesystems. <please add status regarding NFS and
1420CIFS at a later time>
1421
1422
1423write_bytes
1424-----------
1425
1426I/O counter: bytes written
1427Attempt to count the number of bytes which this process caused to be sent to
1428the storage layer. This is done at page-dirtying time.
1429
1430
1431cancelled_write_bytes
1432---------------------
1433
1434The big inaccuracy here is truncate. If a process writes 1MB to a file and
1435then deletes the file, it will in fact perform no writeout. But it will have
1436been accounted as having caused 1MB of write.
1437In other words: The number of bytes which this process caused to not happen,
1438by truncating pagecache. A task can cause "negative" IO too. If this task
1439truncates some dirty pagecache, some IO which another task has been accounted
1440for (in its write_bytes) will not be happening. We _could_ just subtract that
1441from the truncating task's write_bytes, but there is information loss in doing
1442that.
1443
1444
1445Note
1446----
1447
1448At its current implementation state, this is a bit racy on 32-bit machines: if
1449process A reads process B's /proc/pid/io while process B is updating one of
1450those 64-bit counters, process A could see an intermediate result.
1451
1452
1453More information about this can be found within the taskstats documentation in
1454Documentation/accounting.
1455
14563.4 /proc/<pid>/coredump_filter - Core dump filtering settings
1457---------------------------------------------------------------
1458When a process is dumped, all anonymous memory is written to a core file as
1459long as the size of the core file isn't limited. But sometimes we don't want
1460to dump some memory segments, for example, huge shared memory. Conversely,
1461sometimes we want to save file-backed memory segments into a core file, not
1462only the individual files.
1463
1464/proc/<pid>/coredump_filter allows you to customize which memory segments
1465will be dumped when the <pid> process is dumped. coredump_filter is a bitmask
1466of memory types. If a bit of the bitmask is set, memory segments of the
1467corresponding memory type are dumped, otherwise they are not dumped.
1468
1469The following 7 memory types are supported:
1470 - (bit 0) anonymous private memory
1471 - (bit 1) anonymous shared memory
1472 - (bit 2) file-backed private memory
1473 - (bit 3) file-backed shared memory
1474 - (bit 4) ELF header pages in file-backed private memory areas (it is
1475 effective only if the bit 2 is cleared)
1476 - (bit 5) hugetlb private memory
1477 - (bit 6) hugetlb shared memory
1478
1479 Note that MMIO pages such as frame buffer are never dumped and vDSO pages
1480 are always dumped regardless of the bitmask status.
1481
1482 Note bit 0-4 doesn't effect any hugetlb memory. hugetlb memory are only
1483 effected by bit 5-6.
1484
1485Default value of coredump_filter is 0x23; this means all anonymous memory
1486segments and hugetlb private memory are dumped.
1487
1488If you don't want to dump all shared memory segments attached to pid 1234,
1489write 0x21 to the process's proc file.
1490
1491 $ echo 0x21 > /proc/1234/coredump_filter
1492
1493When a new process is created, the process inherits the bitmask status from its
1494parent. It is useful to set up coredump_filter before the program runs.
1495For example:
1496
1497 $ echo 0x7 > /proc/self/coredump_filter
1498 $ ./some_program
1499
15003.5 /proc/<pid>/mountinfo - Information about mounts
1501--------------------------------------------------------
1502
1503This file contains lines of the form:
1504
150536 35 98:0 /mnt1 /mnt2 rw,noatime master:1 - ext3 /dev/root rw,errors=continue
1506(1)(2)(3) (4) (5) (6) (7) (8) (9) (10) (11)
1507
1508(1) mount ID: unique identifier of the mount (may be reused after umount)
1509(2) parent ID: ID of parent (or of self for the top of the mount tree)
1510(3) major:minor: value of st_dev for files on filesystem
1511(4) root: root of the mount within the filesystem
1512(5) mount point: mount point relative to the process's root
1513(6) mount options: per mount options
1514(7) optional fields: zero or more fields of the form "tag[:value]"
1515(8) separator: marks the end of the optional fields
1516(9) filesystem type: name of filesystem of the form "type[.subtype]"
1517(10) mount source: filesystem specific information or "none"
1518(11) super options: per super block options
1519
1520Parsers should ignore all unrecognised optional fields. Currently the
1521possible optional fields are:
1522
1523shared:X mount is shared in peer group X
1524master:X mount is slave to peer group X
1525propagate_from:X mount is slave and receives propagation from peer group X (*)
1526unbindable mount is unbindable
1527
1528(*) X is the closest dominant peer group under the process's root. If
1529X is the immediate master of the mount, or if there's no dominant peer
1530group under the same root, then only the "master:X" field is present
1531and not the "propagate_from:X" field.
1532
1533For more information on mount propagation see:
1534
1535 Documentation/filesystems/sharedsubtree.txt
1536
1537
15383.6 /proc/<pid>/comm & /proc/<pid>/task/<tid>/comm
1539--------------------------------------------------------
1540These files provide a method to access a tasks comm value. It also allows for
1541a task to set its own or one of its thread siblings comm value. The comm value
1542is limited in size compared to the cmdline value, so writing anything longer
1543then the kernel's TASK_COMM_LEN (currently 16 chars) will result in a truncated
1544comm value.
1------------------------------------------------------------------------------
2 T H E /proc F I L E S Y S T E M
3------------------------------------------------------------------------------
4/proc/sys Terrehon Bowden <terrehon@pacbell.net> October 7 1999
5 Bodo Bauer <bb@ricochet.net>
6
72.4.x update Jorge Nerin <comandante@zaralinux.com> November 14 2000
8move /proc/sys Shen Feng <shen@cn.fujitsu.com> April 1 2009
9------------------------------------------------------------------------------
10Version 1.3 Kernel version 2.2.12
11 Kernel version 2.4.0-test11-pre4
12------------------------------------------------------------------------------
13fixes/update part 1.1 Stefani Seibold <stefani@seibold.net> June 9 2009
14
15Table of Contents
16-----------------
17
18 0 Preface
19 0.1 Introduction/Credits
20 0.2 Legal Stuff
21
22 1 Collecting System Information
23 1.1 Process-Specific Subdirectories
24 1.2 Kernel data
25 1.3 IDE devices in /proc/ide
26 1.4 Networking info in /proc/net
27 1.5 SCSI info
28 1.6 Parallel port info in /proc/parport
29 1.7 TTY info in /proc/tty
30 1.8 Miscellaneous kernel statistics in /proc/stat
31 1.9 Ext4 file system parameters
32
33 2 Modifying System Parameters
34
35 3 Per-Process Parameters
36 3.1 /proc/<pid>/oom_adj & /proc/<pid>/oom_score_adj - Adjust the oom-killer
37 score
38 3.2 /proc/<pid>/oom_score - Display current oom-killer score
39 3.3 /proc/<pid>/io - Display the IO accounting fields
40 3.4 /proc/<pid>/coredump_filter - Core dump filtering settings
41 3.5 /proc/<pid>/mountinfo - Information about mounts
42 3.6 /proc/<pid>/comm & /proc/<pid>/task/<tid>/comm
43 3.7 /proc/<pid>/task/<tid>/children - Information about task children
44 3.8 /proc/<pid>/fdinfo/<fd> - Information about opened file
45
46 4 Configuring procfs
47 4.1 Mount options
48
49------------------------------------------------------------------------------
50Preface
51------------------------------------------------------------------------------
52
530.1 Introduction/Credits
54------------------------
55
56This documentation is part of a soon (or so we hope) to be released book on
57the SuSE Linux distribution. As there is no complete documentation for the
58/proc file system and we've used many freely available sources to write these
59chapters, it seems only fair to give the work back to the Linux community.
60This work is based on the 2.2.* kernel version and the upcoming 2.4.*. I'm
61afraid it's still far from complete, but we hope it will be useful. As far as
62we know, it is the first 'all-in-one' document about the /proc file system. It
63is focused on the Intel x86 hardware, so if you are looking for PPC, ARM,
64SPARC, AXP, etc., features, you probably won't find what you are looking for.
65It also only covers IPv4 networking, not IPv6 nor other protocols - sorry. But
66additions and patches are welcome and will be added to this document if you
67mail them to Bodo.
68
69We'd like to thank Alan Cox, Rik van Riel, and Alexey Kuznetsov and a lot of
70other people for help compiling this documentation. We'd also like to extend a
71special thank you to Andi Kleen for documentation, which we relied on heavily
72to create this document, as well as the additional information he provided.
73Thanks to everybody else who contributed source or docs to the Linux kernel
74and helped create a great piece of software... :)
75
76If you have any comments, corrections or additions, please don't hesitate to
77contact Bodo Bauer at bb@ricochet.net. We'll be happy to add them to this
78document.
79
80The latest version of this document is available online at
81http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html
82
83If the above direction does not works for you, you could try the kernel
84mailing list at linux-kernel@vger.kernel.org and/or try to reach me at
85comandante@zaralinux.com.
86
870.2 Legal Stuff
88---------------
89
90We don't guarantee the correctness of this document, and if you come to us
91complaining about how you screwed up your system because of incorrect
92documentation, we won't feel responsible...
93
94------------------------------------------------------------------------------
95CHAPTER 1: COLLECTING SYSTEM INFORMATION
96------------------------------------------------------------------------------
97
98------------------------------------------------------------------------------
99In This Chapter
100------------------------------------------------------------------------------
101* Investigating the properties of the pseudo file system /proc and its
102 ability to provide information on the running Linux system
103* Examining /proc's structure
104* Uncovering various information about the kernel and the processes running
105 on the system
106------------------------------------------------------------------------------
107
108
109The proc file system acts as an interface to internal data structures in the
110kernel. It can be used to obtain information about the system and to change
111certain kernel parameters at runtime (sysctl).
112
113First, we'll take a look at the read-only parts of /proc. In Chapter 2, we
114show you how you can use /proc/sys to change settings.
115
1161.1 Process-Specific Subdirectories
117-----------------------------------
118
119The directory /proc contains (among other things) one subdirectory for each
120process running on the system, which is named after the process ID (PID).
121
122The link self points to the process reading the file system. Each process
123subdirectory has the entries listed in Table 1-1.
124
125
126Table 1-1: Process specific entries in /proc
127..............................................................................
128 File Content
129 clear_refs Clears page referenced bits shown in smaps output
130 cmdline Command line arguments
131 cpu Current and last cpu in which it was executed (2.4)(smp)
132 cwd Link to the current working directory
133 environ Values of environment variables
134 exe Link to the executable of this process
135 fd Directory, which contains all file descriptors
136 maps Memory maps to executables and library files (2.4)
137 mem Memory held by this process
138 root Link to the root directory of this process
139 stat Process status
140 statm Process memory status information
141 status Process status in human readable form
142 wchan If CONFIG_KALLSYMS is set, a pre-decoded wchan
143 pagemap Page table
144 stack Report full stack trace, enable via CONFIG_STACKTRACE
145 smaps a extension based on maps, showing the memory consumption of
146 each mapping and flags associated with it
147..............................................................................
148
149For example, to get the status information of a process, all you have to do is
150read the file /proc/PID/status:
151
152 >cat /proc/self/status
153 Name: cat
154 State: R (running)
155 Tgid: 5452
156 Pid: 5452
157 PPid: 743
158 TracerPid: 0 (2.4)
159 Uid: 501 501 501 501
160 Gid: 100 100 100 100
161 FDSize: 256
162 Groups: 100 14 16
163 VmPeak: 5004 kB
164 VmSize: 5004 kB
165 VmLck: 0 kB
166 VmHWM: 476 kB
167 VmRSS: 476 kB
168 VmData: 156 kB
169 VmStk: 88 kB
170 VmExe: 68 kB
171 VmLib: 1412 kB
172 VmPTE: 20 kb
173 VmSwap: 0 kB
174 Threads: 1
175 SigQ: 0/28578
176 SigPnd: 0000000000000000
177 ShdPnd: 0000000000000000
178 SigBlk: 0000000000000000
179 SigIgn: 0000000000000000
180 SigCgt: 0000000000000000
181 CapInh: 00000000fffffeff
182 CapPrm: 0000000000000000
183 CapEff: 0000000000000000
184 CapBnd: ffffffffffffffff
185 Seccomp: 0
186 voluntary_ctxt_switches: 0
187 nonvoluntary_ctxt_switches: 1
188
189This shows you nearly the same information you would get if you viewed it with
190the ps command. In fact, ps uses the proc file system to obtain its
191information. But you get a more detailed view of the process by reading the
192file /proc/PID/status. It fields are described in table 1-2.
193
194The statm file contains more detailed information about the process
195memory usage. Its seven fields are explained in Table 1-3. The stat file
196contains details information about the process itself. Its fields are
197explained in Table 1-4.
198
199(for SMP CONFIG users)
200For making accounting scalable, RSS related information are handled in
201asynchronous manner and the vaule may not be very precise. To see a precise
202snapshot of a moment, you can see /proc/<pid>/smaps file and scan page table.
203It's slow but very precise.
204
205Table 1-2: Contents of the status files (as of 2.6.30-rc7)
206..............................................................................
207 Field Content
208 Name filename of the executable
209 State state (R is running, S is sleeping, D is sleeping
210 in an uninterruptible wait, Z is zombie,
211 T is traced or stopped)
212 Tgid thread group ID
213 Pid process id
214 PPid process id of the parent process
215 TracerPid PID of process tracing this process (0 if not)
216 Uid Real, effective, saved set, and file system UIDs
217 Gid Real, effective, saved set, and file system GIDs
218 FDSize number of file descriptor slots currently allocated
219 Groups supplementary group list
220 VmPeak peak virtual memory size
221 VmSize total program size
222 VmLck locked memory size
223 VmHWM peak resident set size ("high water mark")
224 VmRSS size of memory portions
225 VmData size of data, stack, and text segments
226 VmStk size of data, stack, and text segments
227 VmExe size of text segment
228 VmLib size of shared library code
229 VmPTE size of page table entries
230 VmSwap size of swap usage (the number of referred swapents)
231 Threads number of threads
232 SigQ number of signals queued/max. number for queue
233 SigPnd bitmap of pending signals for the thread
234 ShdPnd bitmap of shared pending signals for the process
235 SigBlk bitmap of blocked signals
236 SigIgn bitmap of ignored signals
237 SigCgt bitmap of catched signals
238 CapInh bitmap of inheritable capabilities
239 CapPrm bitmap of permitted capabilities
240 CapEff bitmap of effective capabilities
241 CapBnd bitmap of capabilities bounding set
242 Seccomp seccomp mode, like prctl(PR_GET_SECCOMP, ...)
243 Cpus_allowed mask of CPUs on which this process may run
244 Cpus_allowed_list Same as previous, but in "list format"
245 Mems_allowed mask of memory nodes allowed to this process
246 Mems_allowed_list Same as previous, but in "list format"
247 voluntary_ctxt_switches number of voluntary context switches
248 nonvoluntary_ctxt_switches number of non voluntary context switches
249..............................................................................
250
251Table 1-3: Contents of the statm files (as of 2.6.8-rc3)
252..............................................................................
253 Field Content
254 size total program size (pages) (same as VmSize in status)
255 resident size of memory portions (pages) (same as VmRSS in status)
256 shared number of pages that are shared (i.e. backed by a file)
257 trs number of pages that are 'code' (not including libs; broken,
258 includes data segment)
259 lrs number of pages of library (always 0 on 2.6)
260 drs number of pages of data/stack (including libs; broken,
261 includes library text)
262 dt number of dirty pages (always 0 on 2.6)
263..............................................................................
264
265
266Table 1-4: Contents of the stat files (as of 2.6.30-rc7)
267..............................................................................
268 Field Content
269 pid process id
270 tcomm filename of the executable
271 state state (R is running, S is sleeping, D is sleeping in an
272 uninterruptible wait, Z is zombie, T is traced or stopped)
273 ppid process id of the parent process
274 pgrp pgrp of the process
275 sid session id
276 tty_nr tty the process uses
277 tty_pgrp pgrp of the tty
278 flags task flags
279 min_flt number of minor faults
280 cmin_flt number of minor faults with child's
281 maj_flt number of major faults
282 cmaj_flt number of major faults with child's
283 utime user mode jiffies
284 stime kernel mode jiffies
285 cutime user mode jiffies with child's
286 cstime kernel mode jiffies with child's
287 priority priority level
288 nice nice level
289 num_threads number of threads
290 it_real_value (obsolete, always 0)
291 start_time time the process started after system boot
292 vsize virtual memory size
293 rss resident set memory size
294 rsslim current limit in bytes on the rss
295 start_code address above which program text can run
296 end_code address below which program text can run
297 start_stack address of the start of the main process stack
298 esp current value of ESP
299 eip current value of EIP
300 pending bitmap of pending signals
301 blocked bitmap of blocked signals
302 sigign bitmap of ignored signals
303 sigcatch bitmap of catched signals
304 wchan address where process went to sleep
305 0 (place holder)
306 0 (place holder)
307 exit_signal signal to send to parent thread on exit
308 task_cpu which CPU the task is scheduled on
309 rt_priority realtime priority
310 policy scheduling policy (man sched_setscheduler)
311 blkio_ticks time spent waiting for block IO
312 gtime guest time of the task in jiffies
313 cgtime guest time of the task children in jiffies
314 start_data address above which program data+bss is placed
315 end_data address below which program data+bss is placed
316 start_brk address above which program heap can be expanded with brk()
317 arg_start address above which program command line is placed
318 arg_end address below which program command line is placed
319 env_start address above which program environment is placed
320 env_end address below which program environment is placed
321 exit_code the thread's exit_code in the form reported by the waitpid system call
322..............................................................................
323
324The /proc/PID/maps file containing the currently mapped memory regions and
325their access permissions.
326
327The format is:
328
329address perms offset dev inode pathname
330
33108048000-08049000 r-xp 00000000 03:00 8312 /opt/test
33208049000-0804a000 rw-p 00001000 03:00 8312 /opt/test
3330804a000-0806b000 rw-p 00000000 00:00 0 [heap]
334a7cb1000-a7cb2000 ---p 00000000 00:00 0
335a7cb2000-a7eb2000 rw-p 00000000 00:00 0
336a7eb2000-a7eb3000 ---p 00000000 00:00 0
337a7eb3000-a7ed5000 rw-p 00000000 00:00 0 [stack:1001]
338a7ed5000-a8008000 r-xp 00000000 03:00 4222 /lib/libc.so.6
339a8008000-a800a000 r--p 00133000 03:00 4222 /lib/libc.so.6
340a800a000-a800b000 rw-p 00135000 03:00 4222 /lib/libc.so.6
341a800b000-a800e000 rw-p 00000000 00:00 0
342a800e000-a8022000 r-xp 00000000 03:00 14462 /lib/libpthread.so.0
343a8022000-a8023000 r--p 00013000 03:00 14462 /lib/libpthread.so.0
344a8023000-a8024000 rw-p 00014000 03:00 14462 /lib/libpthread.so.0
345a8024000-a8027000 rw-p 00000000 00:00 0
346a8027000-a8043000 r-xp 00000000 03:00 8317 /lib/ld-linux.so.2
347a8043000-a8044000 r--p 0001b000 03:00 8317 /lib/ld-linux.so.2
348a8044000-a8045000 rw-p 0001c000 03:00 8317 /lib/ld-linux.so.2
349aff35000-aff4a000 rw-p 00000000 00:00 0 [stack]
350ffffe000-fffff000 r-xp 00000000 00:00 0 [vdso]
351
352where "address" is the address space in the process that it occupies, "perms"
353is a set of permissions:
354
355 r = read
356 w = write
357 x = execute
358 s = shared
359 p = private (copy on write)
360
361"offset" is the offset into the mapping, "dev" is the device (major:minor), and
362"inode" is the inode on that device. 0 indicates that no inode is associated
363with the memory region, as the case would be with BSS (uninitialized data).
364The "pathname" shows the name associated file for this mapping. If the mapping
365is not associated with a file:
366
367 [heap] = the heap of the program
368 [stack] = the stack of the main process
369 [stack:1001] = the stack of the thread with tid 1001
370 [vdso] = the "virtual dynamic shared object",
371 the kernel system call handler
372
373 or if empty, the mapping is anonymous.
374
375The /proc/PID/task/TID/maps is a view of the virtual memory from the viewpoint
376of the individual tasks of a process. In this file you will see a mapping marked
377as [stack] if that task sees it as a stack. This is a key difference from the
378content of /proc/PID/maps, where you will see all mappings that are being used
379as stack by all of those tasks. Hence, for the example above, the task-level
380map, i.e. /proc/PID/task/TID/maps for thread 1001 will look like this:
381
38208048000-08049000 r-xp 00000000 03:00 8312 /opt/test
38308049000-0804a000 rw-p 00001000 03:00 8312 /opt/test
3840804a000-0806b000 rw-p 00000000 00:00 0 [heap]
385a7cb1000-a7cb2000 ---p 00000000 00:00 0
386a7cb2000-a7eb2000 rw-p 00000000 00:00 0
387a7eb2000-a7eb3000 ---p 00000000 00:00 0
388a7eb3000-a7ed5000 rw-p 00000000 00:00 0 [stack]
389a7ed5000-a8008000 r-xp 00000000 03:00 4222 /lib/libc.so.6
390a8008000-a800a000 r--p 00133000 03:00 4222 /lib/libc.so.6
391a800a000-a800b000 rw-p 00135000 03:00 4222 /lib/libc.so.6
392a800b000-a800e000 rw-p 00000000 00:00 0
393a800e000-a8022000 r-xp 00000000 03:00 14462 /lib/libpthread.so.0
394a8022000-a8023000 r--p 00013000 03:00 14462 /lib/libpthread.so.0
395a8023000-a8024000 rw-p 00014000 03:00 14462 /lib/libpthread.so.0
396a8024000-a8027000 rw-p 00000000 00:00 0
397a8027000-a8043000 r-xp 00000000 03:00 8317 /lib/ld-linux.so.2
398a8043000-a8044000 r--p 0001b000 03:00 8317 /lib/ld-linux.so.2
399a8044000-a8045000 rw-p 0001c000 03:00 8317 /lib/ld-linux.so.2
400aff35000-aff4a000 rw-p 00000000 00:00 0
401ffffe000-fffff000 r-xp 00000000 00:00 0 [vdso]
402
403The /proc/PID/smaps is an extension based on maps, showing the memory
404consumption for each of the process's mappings. For each of mappings there
405is a series of lines such as the following:
406
40708048000-080bc000 r-xp 00000000 03:02 13130 /bin/bash
408Size: 1084 kB
409Rss: 892 kB
410Pss: 374 kB
411Shared_Clean: 892 kB
412Shared_Dirty: 0 kB
413Private_Clean: 0 kB
414Private_Dirty: 0 kB
415Referenced: 892 kB
416Anonymous: 0 kB
417Swap: 0 kB
418KernelPageSize: 4 kB
419MMUPageSize: 4 kB
420Locked: 374 kB
421VmFlags: rd ex mr mw me de
422
423the first of these lines shows the same information as is displayed for the
424mapping in /proc/PID/maps. The remaining lines show the size of the mapping
425(size), the amount of the mapping that is currently resident in RAM (RSS), the
426process' proportional share of this mapping (PSS), the number of clean and
427dirty private pages in the mapping. Note that even a page which is part of a
428MAP_SHARED mapping, but has only a single pte mapped, i.e. is currently used
429by only one process, is accounted as private and not as shared. "Referenced"
430indicates the amount of memory currently marked as referenced or accessed.
431"Anonymous" shows the amount of memory that does not belong to any file. Even
432a mapping associated with a file may contain anonymous pages: when MAP_PRIVATE
433and a page is modified, the file page is replaced by a private anonymous copy.
434"Swap" shows how much would-be-anonymous memory is also used, but out on
435swap.
436
437"VmFlags" field deserves a separate description. This member represents the kernel
438flags associated with the particular virtual memory area in two letter encoded
439manner. The codes are the following:
440 rd - readable
441 wr - writeable
442 ex - executable
443 sh - shared
444 mr - may read
445 mw - may write
446 me - may execute
447 ms - may share
448 gd - stack segment growns down
449 pf - pure PFN range
450 dw - disabled write to the mapped file
451 lo - pages are locked in memory
452 io - memory mapped I/O area
453 sr - sequential read advise provided
454 rr - random read advise provided
455 dc - do not copy area on fork
456 de - do not expand area on remapping
457 ac - area is accountable
458 nr - swap space is not reserved for the area
459 ht - area uses huge tlb pages
460 nl - non-linear mapping
461 ar - architecture specific flag
462 dd - do not include area into core dump
463 sd - soft-dirty flag
464 mm - mixed map area
465 hg - huge page advise flag
466 nh - no-huge page advise flag
467 mg - mergable advise flag
468
469Note that there is no guarantee that every flag and associated mnemonic will
470be present in all further kernel releases. Things get changed, the flags may
471be vanished or the reverse -- new added.
472
473This file is only present if the CONFIG_MMU kernel configuration option is
474enabled.
475
476The /proc/PID/clear_refs is used to reset the PG_Referenced and ACCESSED/YOUNG
477bits on both physical and virtual pages associated with a process, and the
478soft-dirty bit on pte (see Documentation/vm/soft-dirty.txt for details).
479To clear the bits for all the pages associated with the process
480 > echo 1 > /proc/PID/clear_refs
481
482To clear the bits for the anonymous pages associated with the process
483 > echo 2 > /proc/PID/clear_refs
484
485To clear the bits for the file mapped pages associated with the process
486 > echo 3 > /proc/PID/clear_refs
487
488To clear the soft-dirty bit
489 > echo 4 > /proc/PID/clear_refs
490
491Any other value written to /proc/PID/clear_refs will have no effect.
492
493The /proc/pid/pagemap gives the PFN, which can be used to find the pageflags
494using /proc/kpageflags and number of times a page is mapped using
495/proc/kpagecount. For detailed explanation, see Documentation/vm/pagemap.txt.
496
4971.2 Kernel data
498---------------
499
500Similar to the process entries, the kernel data files give information about
501the running kernel. The files used to obtain this information are contained in
502/proc and are listed in Table 1-5. Not all of these will be present in your
503system. It depends on the kernel configuration and the loaded modules, which
504files are there, and which are missing.
505
506Table 1-5: Kernel info in /proc
507..............................................................................
508 File Content
509 apm Advanced power management info
510 buddyinfo Kernel memory allocator information (see text) (2.5)
511 bus Directory containing bus specific information
512 cmdline Kernel command line
513 cpuinfo Info about the CPU
514 devices Available devices (block and character)
515 dma Used DMS channels
516 filesystems Supported filesystems
517 driver Various drivers grouped here, currently rtc (2.4)
518 execdomains Execdomains, related to security (2.4)
519 fb Frame Buffer devices (2.4)
520 fs File system parameters, currently nfs/exports (2.4)
521 ide Directory containing info about the IDE subsystem
522 interrupts Interrupt usage
523 iomem Memory map (2.4)
524 ioports I/O port usage
525 irq Masks for irq to cpu affinity (2.4)(smp?)
526 isapnp ISA PnP (Plug&Play) Info (2.4)
527 kcore Kernel core image (can be ELF or A.OUT(deprecated in 2.4))
528 kmsg Kernel messages
529 ksyms Kernel symbol table
530 loadavg Load average of last 1, 5 & 15 minutes
531 locks Kernel locks
532 meminfo Memory info
533 misc Miscellaneous
534 modules List of loaded modules
535 mounts Mounted filesystems
536 net Networking info (see text)
537 pagetypeinfo Additional page allocator information (see text) (2.5)
538 partitions Table of partitions known to the system
539 pci Deprecated info of PCI bus (new way -> /proc/bus/pci/,
540 decoupled by lspci (2.4)
541 rtc Real time clock
542 scsi SCSI info (see text)
543 slabinfo Slab pool info
544 softirqs softirq usage
545 stat Overall statistics
546 swaps Swap space utilization
547 sys See chapter 2
548 sysvipc Info of SysVIPC Resources (msg, sem, shm) (2.4)
549 tty Info of tty drivers
550 uptime Wall clock since boot, combined idle time of all cpus
551 version Kernel version
552 video bttv info of video resources (2.4)
553 vmallocinfo Show vmalloced areas
554..............................................................................
555
556You can, for example, check which interrupts are currently in use and what
557they are used for by looking in the file /proc/interrupts:
558
559 > cat /proc/interrupts
560 CPU0
561 0: 8728810 XT-PIC timer
562 1: 895 XT-PIC keyboard
563 2: 0 XT-PIC cascade
564 3: 531695 XT-PIC aha152x
565 4: 2014133 XT-PIC serial
566 5: 44401 XT-PIC pcnet_cs
567 8: 2 XT-PIC rtc
568 11: 8 XT-PIC i82365
569 12: 182918 XT-PIC PS/2 Mouse
570 13: 1 XT-PIC fpu
571 14: 1232265 XT-PIC ide0
572 15: 7 XT-PIC ide1
573 NMI: 0
574
575In 2.4.* a couple of lines where added to this file LOC & ERR (this time is the
576output of a SMP machine):
577
578 > cat /proc/interrupts
579
580 CPU0 CPU1
581 0: 1243498 1214548 IO-APIC-edge timer
582 1: 8949 8958 IO-APIC-edge keyboard
583 2: 0 0 XT-PIC cascade
584 5: 11286 10161 IO-APIC-edge soundblaster
585 8: 1 0 IO-APIC-edge rtc
586 9: 27422 27407 IO-APIC-edge 3c503
587 12: 113645 113873 IO-APIC-edge PS/2 Mouse
588 13: 0 0 XT-PIC fpu
589 14: 22491 24012 IO-APIC-edge ide0
590 15: 2183 2415 IO-APIC-edge ide1
591 17: 30564 30414 IO-APIC-level eth0
592 18: 177 164 IO-APIC-level bttv
593 NMI: 2457961 2457959
594 LOC: 2457882 2457881
595 ERR: 2155
596
597NMI is incremented in this case because every timer interrupt generates a NMI
598(Non Maskable Interrupt) which is used by the NMI Watchdog to detect lockups.
599
600LOC is the local interrupt counter of the internal APIC of every CPU.
601
602ERR is incremented in the case of errors in the IO-APIC bus (the bus that
603connects the CPUs in a SMP system. This means that an error has been detected,
604the IO-APIC automatically retry the transmission, so it should not be a big
605problem, but you should read the SMP-FAQ.
606
607In 2.6.2* /proc/interrupts was expanded again. This time the goal was for
608/proc/interrupts to display every IRQ vector in use by the system, not
609just those considered 'most important'. The new vectors are:
610
611 THR -- interrupt raised when a machine check threshold counter
612 (typically counting ECC corrected errors of memory or cache) exceeds
613 a configurable threshold. Only available on some systems.
614
615 TRM -- a thermal event interrupt occurs when a temperature threshold
616 has been exceeded for the CPU. This interrupt may also be generated
617 when the temperature drops back to normal.
618
619 SPU -- a spurious interrupt is some interrupt that was raised then lowered
620 by some IO device before it could be fully processed by the APIC. Hence
621 the APIC sees the interrupt but does not know what device it came from.
622 For this case the APIC will generate the interrupt with a IRQ vector
623 of 0xff. This might also be generated by chipset bugs.
624
625 RES, CAL, TLB -- rescheduling, call and TLB flush interrupts are
626 sent from one CPU to another per the needs of the OS. Typically,
627 their statistics are used by kernel developers and interested users to
628 determine the occurrence of interrupts of the given type.
629
630The above IRQ vectors are displayed only when relevant. For example,
631the threshold vector does not exist on x86_64 platforms. Others are
632suppressed when the system is a uniprocessor. As of this writing, only
633i386 and x86_64 platforms support the new IRQ vector displays.
634
635Of some interest is the introduction of the /proc/irq directory to 2.4.
636It could be used to set IRQ to CPU affinity, this means that you can "hook" an
637IRQ to only one CPU, or to exclude a CPU of handling IRQs. The contents of the
638irq subdir is one subdir for each IRQ, and two files; default_smp_affinity and
639prof_cpu_mask.
640
641For example
642 > ls /proc/irq/
643 0 10 12 14 16 18 2 4 6 8 prof_cpu_mask
644 1 11 13 15 17 19 3 5 7 9 default_smp_affinity
645 > ls /proc/irq/0/
646 smp_affinity
647
648smp_affinity is a bitmask, in which you can specify which CPUs can handle the
649IRQ, you can set it by doing:
650
651 > echo 1 > /proc/irq/10/smp_affinity
652
653This means that only the first CPU will handle the IRQ, but you can also echo
6545 which means that only the first and fourth CPU can handle the IRQ.
655
656The contents of each smp_affinity file is the same by default:
657
658 > cat /proc/irq/0/smp_affinity
659 ffffffff
660
661There is an alternate interface, smp_affinity_list which allows specifying
662a cpu range instead of a bitmask:
663
664 > cat /proc/irq/0/smp_affinity_list
665 1024-1031
666
667The default_smp_affinity mask applies to all non-active IRQs, which are the
668IRQs which have not yet been allocated/activated, and hence which lack a
669/proc/irq/[0-9]* directory.
670
671The node file on an SMP system shows the node to which the device using the IRQ
672reports itself as being attached. This hardware locality information does not
673include information about any possible driver locality preference.
674
675prof_cpu_mask specifies which CPUs are to be profiled by the system wide
676profiler. Default value is ffffffff (all cpus if there are only 32 of them).
677
678The way IRQs are routed is handled by the IO-APIC, and it's Round Robin
679between all the CPUs which are allowed to handle it. As usual the kernel has
680more info than you and does a better job than you, so the defaults are the
681best choice for almost everyone. [Note this applies only to those IO-APIC's
682that support "Round Robin" interrupt distribution.]
683
684There are three more important subdirectories in /proc: net, scsi, and sys.
685The general rule is that the contents, or even the existence of these
686directories, depend on your kernel configuration. If SCSI is not enabled, the
687directory scsi may not exist. The same is true with the net, which is there
688only when networking support is present in the running kernel.
689
690The slabinfo file gives information about memory usage at the slab level.
691Linux uses slab pools for memory management above page level in version 2.2.
692Commonly used objects have their own slab pool (such as network buffers,
693directory cache, and so on).
694
695..............................................................................
696
697> cat /proc/buddyinfo
698
699Node 0, zone DMA 0 4 5 4 4 3 ...
700Node 0, zone Normal 1 0 0 1 101 8 ...
701Node 0, zone HighMem 2 0 0 1 1 0 ...
702
703External fragmentation is a problem under some workloads, and buddyinfo is a
704useful tool for helping diagnose these problems. Buddyinfo will give you a
705clue as to how big an area you can safely allocate, or why a previous
706allocation failed.
707
708Each column represents the number of pages of a certain order which are
709available. In this case, there are 0 chunks of 2^0*PAGE_SIZE available in
710ZONE_DMA, 4 chunks of 2^1*PAGE_SIZE in ZONE_DMA, 101 chunks of 2^4*PAGE_SIZE
711available in ZONE_NORMAL, etc...
712
713More information relevant to external fragmentation can be found in
714pagetypeinfo.
715
716> cat /proc/pagetypeinfo
717Page block order: 9
718Pages per block: 512
719
720Free pages count per migrate type at order 0 1 2 3 4 5 6 7 8 9 10
721Node 0, zone DMA, type Unmovable 0 0 0 1 1 1 1 1 1 1 0
722Node 0, zone DMA, type Reclaimable 0 0 0 0 0 0 0 0 0 0 0
723Node 0, zone DMA, type Movable 1 1 2 1 2 1 1 0 1 0 2
724Node 0, zone DMA, type Reserve 0 0 0 0 0 0 0 0 0 1 0
725Node 0, zone DMA, type Isolate 0 0 0 0 0 0 0 0 0 0 0
726Node 0, zone DMA32, type Unmovable 103 54 77 1 1 1 11 8 7 1 9
727Node 0, zone DMA32, type Reclaimable 0 0 2 1 0 0 0 0 1 0 0
728Node 0, zone DMA32, type Movable 169 152 113 91 77 54 39 13 6 1 452
729Node 0, zone DMA32, type Reserve 1 2 2 2 2 0 1 1 1 1 0
730Node 0, zone DMA32, type Isolate 0 0 0 0 0 0 0 0 0 0 0
731
732Number of blocks type Unmovable Reclaimable Movable Reserve Isolate
733Node 0, zone DMA 2 0 5 1 0
734Node 0, zone DMA32 41 6 967 2 0
735
736Fragmentation avoidance in the kernel works by grouping pages of different
737migrate types into the same contiguous regions of memory called page blocks.
738A page block is typically the size of the default hugepage size e.g. 2MB on
739X86-64. By keeping pages grouped based on their ability to move, the kernel
740can reclaim pages within a page block to satisfy a high-order allocation.
741
742The pagetypinfo begins with information on the size of a page block. It
743then gives the same type of information as buddyinfo except broken down
744by migrate-type and finishes with details on how many page blocks of each
745type exist.
746
747If min_free_kbytes has been tuned correctly (recommendations made by hugeadm
748from libhugetlbfs http://sourceforge.net/projects/libhugetlbfs/), one can
749make an estimate of the likely number of huge pages that can be allocated
750at a given point in time. All the "Movable" blocks should be allocatable
751unless memory has been mlock()'d. Some of the Reclaimable blocks should
752also be allocatable although a lot of filesystem metadata may have to be
753reclaimed to achieve this.
754
755..............................................................................
756
757meminfo:
758
759Provides information about distribution and utilization of memory. This
760varies by architecture and compile options. The following is from a
76116GB PIII, which has highmem enabled. You may not have all of these fields.
762
763> cat /proc/meminfo
764
765The "Locked" indicates whether the mapping is locked in memory or not.
766
767
768MemTotal: 16344972 kB
769MemFree: 13634064 kB
770MemAvailable: 14836172 kB
771Buffers: 3656 kB
772Cached: 1195708 kB
773SwapCached: 0 kB
774Active: 891636 kB
775Inactive: 1077224 kB
776HighTotal: 15597528 kB
777HighFree: 13629632 kB
778LowTotal: 747444 kB
779LowFree: 4432 kB
780SwapTotal: 0 kB
781SwapFree: 0 kB
782Dirty: 968 kB
783Writeback: 0 kB
784AnonPages: 861800 kB
785Mapped: 280372 kB
786Slab: 284364 kB
787SReclaimable: 159856 kB
788SUnreclaim: 124508 kB
789PageTables: 24448 kB
790NFS_Unstable: 0 kB
791Bounce: 0 kB
792WritebackTmp: 0 kB
793CommitLimit: 7669796 kB
794Committed_AS: 100056 kB
795VmallocTotal: 112216 kB
796VmallocUsed: 428 kB
797VmallocChunk: 111088 kB
798AnonHugePages: 49152 kB
799
800 MemTotal: Total usable ram (i.e. physical ram minus a few reserved
801 bits and the kernel binary code)
802 MemFree: The sum of LowFree+HighFree
803MemAvailable: An estimate of how much memory is available for starting new
804 applications, without swapping. Calculated from MemFree,
805 SReclaimable, the size of the file LRU lists, and the low
806 watermarks in each zone.
807 The estimate takes into account that the system needs some
808 page cache to function well, and that not all reclaimable
809 slab will be reclaimable, due to items being in use. The
810 impact of those factors will vary from system to system.
811 Buffers: Relatively temporary storage for raw disk blocks
812 shouldn't get tremendously large (20MB or so)
813 Cached: in-memory cache for files read from the disk (the
814 pagecache). Doesn't include SwapCached
815 SwapCached: Memory that once was swapped out, is swapped back in but
816 still also is in the swapfile (if memory is needed it
817 doesn't need to be swapped out AGAIN because it is already
818 in the swapfile. This saves I/O)
819 Active: Memory that has been used more recently and usually not
820 reclaimed unless absolutely necessary.
821 Inactive: Memory which has been less recently used. It is more
822 eligible to be reclaimed for other purposes
823 HighTotal:
824 HighFree: Highmem is all memory above ~860MB of physical memory
825 Highmem areas are for use by userspace programs, or
826 for the pagecache. The kernel must use tricks to access
827 this memory, making it slower to access than lowmem.
828 LowTotal:
829 LowFree: Lowmem is memory which can be used for everything that
830 highmem can be used for, but it is also available for the
831 kernel's use for its own data structures. Among many
832 other things, it is where everything from the Slab is
833 allocated. Bad things happen when you're out of lowmem.
834 SwapTotal: total amount of swap space available
835 SwapFree: Memory which has been evicted from RAM, and is temporarily
836 on the disk
837 Dirty: Memory which is waiting to get written back to the disk
838 Writeback: Memory which is actively being written back to the disk
839 AnonPages: Non-file backed pages mapped into userspace page tables
840AnonHugePages: Non-file backed huge pages mapped into userspace page tables
841 Mapped: files which have been mmaped, such as libraries
842 Slab: in-kernel data structures cache
843SReclaimable: Part of Slab, that might be reclaimed, such as caches
844 SUnreclaim: Part of Slab, that cannot be reclaimed on memory pressure
845 PageTables: amount of memory dedicated to the lowest level of page
846 tables.
847NFS_Unstable: NFS pages sent to the server, but not yet committed to stable
848 storage
849 Bounce: Memory used for block device "bounce buffers"
850WritebackTmp: Memory used by FUSE for temporary writeback buffers
851 CommitLimit: Based on the overcommit ratio ('vm.overcommit_ratio'),
852 this is the total amount of memory currently available to
853 be allocated on the system. This limit is only adhered to
854 if strict overcommit accounting is enabled (mode 2 in
855 'vm.overcommit_memory').
856 The CommitLimit is calculated with the following formula:
857 CommitLimit = ('vm.overcommit_ratio' * Physical RAM) + Swap
858 For example, on a system with 1G of physical RAM and 7G
859 of swap with a `vm.overcommit_ratio` of 30 it would
860 yield a CommitLimit of 7.3G.
861 For more details, see the memory overcommit documentation
862 in vm/overcommit-accounting.
863Committed_AS: The amount of memory presently allocated on the system.
864 The committed memory is a sum of all of the memory which
865 has been allocated by processes, even if it has not been
866 "used" by them as of yet. A process which malloc()'s 1G
867 of memory, but only touches 300M of it will show up as
868 using 1G. This 1G is memory which has been "committed" to
869 by the VM and can be used at any time by the allocating
870 application. With strict overcommit enabled on the system
871 (mode 2 in 'vm.overcommit_memory'),allocations which would
872 exceed the CommitLimit (detailed above) will not be permitted.
873 This is useful if one needs to guarantee that processes will
874 not fail due to lack of memory once that memory has been
875 successfully allocated.
876VmallocTotal: total size of vmalloc memory area
877 VmallocUsed: amount of vmalloc area which is used
878VmallocChunk: largest contiguous block of vmalloc area which is free
879
880..............................................................................
881
882vmallocinfo:
883
884Provides information about vmalloced/vmaped areas. One line per area,
885containing the virtual address range of the area, size in bytes,
886caller information of the creator, and optional information depending
887on the kind of area :
888
889 pages=nr number of pages
890 phys=addr if a physical address was specified
891 ioremap I/O mapping (ioremap() and friends)
892 vmalloc vmalloc() area
893 vmap vmap()ed pages
894 user VM_USERMAP area
895 vpages buffer for pages pointers was vmalloced (huge area)
896 N<node>=nr (Only on NUMA kernels)
897 Number of pages allocated on memory node <node>
898
899> cat /proc/vmallocinfo
9000xffffc20000000000-0xffffc20000201000 2101248 alloc_large_system_hash+0x204 ...
901 /0x2c0 pages=512 vmalloc N0=128 N1=128 N2=128 N3=128
9020xffffc20000201000-0xffffc20000302000 1052672 alloc_large_system_hash+0x204 ...
903 /0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64
9040xffffc20000302000-0xffffc20000304000 8192 acpi_tb_verify_table+0x21/0x4f...
905 phys=7fee8000 ioremap
9060xffffc20000304000-0xffffc20000307000 12288 acpi_tb_verify_table+0x21/0x4f...
907 phys=7fee7000 ioremap
9080xffffc2000031d000-0xffffc2000031f000 8192 init_vdso_vars+0x112/0x210
9090xffffc2000031f000-0xffffc2000032b000 49152 cramfs_uncompress_init+0x2e ...
910 /0x80 pages=11 vmalloc N0=3 N1=3 N2=2 N3=3
9110xffffc2000033a000-0xffffc2000033d000 12288 sys_swapon+0x640/0xac0 ...
912 pages=2 vmalloc N1=2
9130xffffc20000347000-0xffffc2000034c000 20480 xt_alloc_table_info+0xfe ...
914 /0x130 [x_tables] pages=4 vmalloc N0=4
9150xffffffffa0000000-0xffffffffa000f000 61440 sys_init_module+0xc27/0x1d00 ...
916 pages=14 vmalloc N2=14
9170xffffffffa000f000-0xffffffffa0014000 20480 sys_init_module+0xc27/0x1d00 ...
918 pages=4 vmalloc N1=4
9190xffffffffa0014000-0xffffffffa0017000 12288 sys_init_module+0xc27/0x1d00 ...
920 pages=2 vmalloc N1=2
9210xffffffffa0017000-0xffffffffa0022000 45056 sys_init_module+0xc27/0x1d00 ...
922 pages=10 vmalloc N0=10
923
924..............................................................................
925
926softirqs:
927
928Provides counts of softirq handlers serviced since boot time, for each cpu.
929
930> cat /proc/softirqs
931 CPU0 CPU1 CPU2 CPU3
932 HI: 0 0 0 0
933 TIMER: 27166 27120 27097 27034
934 NET_TX: 0 0 0 17
935 NET_RX: 42 0 0 39
936 BLOCK: 0 0 107 1121
937 TASKLET: 0 0 0 290
938 SCHED: 27035 26983 26971 26746
939 HRTIMER: 0 0 0 0
940 RCU: 1678 1769 2178 2250
941
942
9431.3 IDE devices in /proc/ide
944----------------------------
945
946The subdirectory /proc/ide contains information about all IDE devices of which
947the kernel is aware. There is one subdirectory for each IDE controller, the
948file drivers and a link for each IDE device, pointing to the device directory
949in the controller specific subtree.
950
951The file drivers contains general information about the drivers used for the
952IDE devices:
953
954 > cat /proc/ide/drivers
955 ide-cdrom version 4.53
956 ide-disk version 1.08
957
958More detailed information can be found in the controller specific
959subdirectories. These are named ide0, ide1 and so on. Each of these
960directories contains the files shown in table 1-6.
961
962
963Table 1-6: IDE controller info in /proc/ide/ide?
964..............................................................................
965 File Content
966 channel IDE channel (0 or 1)
967 config Configuration (only for PCI/IDE bridge)
968 mate Mate name
969 model Type/Chipset of IDE controller
970..............................................................................
971
972Each device connected to a controller has a separate subdirectory in the
973controllers directory. The files listed in table 1-7 are contained in these
974directories.
975
976
977Table 1-7: IDE device information
978..............................................................................
979 File Content
980 cache The cache
981 capacity Capacity of the medium (in 512Byte blocks)
982 driver driver and version
983 geometry physical and logical geometry
984 identify device identify block
985 media media type
986 model device identifier
987 settings device setup
988 smart_thresholds IDE disk management thresholds
989 smart_values IDE disk management values
990..............................................................................
991
992The most interesting file is settings. This file contains a nice overview of
993the drive parameters:
994
995 # cat /proc/ide/ide0/hda/settings
996 name value min max mode
997 ---- ----- --- --- ----
998 bios_cyl 526 0 65535 rw
999 bios_head 255 0 255 rw
1000 bios_sect 63 0 63 rw
1001 breada_readahead 4 0 127 rw
1002 bswap 0 0 1 r
1003 file_readahead 72 0 2097151 rw
1004 io_32bit 0 0 3 rw
1005 keepsettings 0 0 1 rw
1006 max_kb_per_request 122 1 127 rw
1007 multcount 0 0 8 rw
1008 nice1 1 0 1 rw
1009 nowerr 0 0 1 rw
1010 pio_mode write-only 0 255 w
1011 slow 0 0 1 rw
1012 unmaskirq 0 0 1 rw
1013 using_dma 0 0 1 rw
1014
1015
10161.4 Networking info in /proc/net
1017--------------------------------
1018
1019The subdirectory /proc/net follows the usual pattern. Table 1-8 shows the
1020additional values you get for IP version 6 if you configure the kernel to
1021support this. Table 1-9 lists the files and their meaning.
1022
1023
1024Table 1-8: IPv6 info in /proc/net
1025..............................................................................
1026 File Content
1027 udp6 UDP sockets (IPv6)
1028 tcp6 TCP sockets (IPv6)
1029 raw6 Raw device statistics (IPv6)
1030 igmp6 IP multicast addresses, which this host joined (IPv6)
1031 if_inet6 List of IPv6 interface addresses
1032 ipv6_route Kernel routing table for IPv6
1033 rt6_stats Global IPv6 routing tables statistics
1034 sockstat6 Socket statistics (IPv6)
1035 snmp6 Snmp data (IPv6)
1036..............................................................................
1037
1038
1039Table 1-9: Network info in /proc/net
1040..............................................................................
1041 File Content
1042 arp Kernel ARP table
1043 dev network devices with statistics
1044 dev_mcast the Layer2 multicast groups a device is listening too
1045 (interface index, label, number of references, number of bound
1046 addresses).
1047 dev_stat network device status
1048 ip_fwchains Firewall chain linkage
1049 ip_fwnames Firewall chain names
1050 ip_masq Directory containing the masquerading tables
1051 ip_masquerade Major masquerading table
1052 netstat Network statistics
1053 raw raw device statistics
1054 route Kernel routing table
1055 rpc Directory containing rpc info
1056 rt_cache Routing cache
1057 snmp SNMP data
1058 sockstat Socket statistics
1059 tcp TCP sockets
1060 udp UDP sockets
1061 unix UNIX domain sockets
1062 wireless Wireless interface data (Wavelan etc)
1063 igmp IP multicast addresses, which this host joined
1064 psched Global packet scheduler parameters.
1065 netlink List of PF_NETLINK sockets
1066 ip_mr_vifs List of multicast virtual interfaces
1067 ip_mr_cache List of multicast routing cache
1068..............................................................................
1069
1070You can use this information to see which network devices are available in
1071your system and how much traffic was routed over those devices:
1072
1073 > cat /proc/net/dev
1074 Inter-|Receive |[...
1075 face |bytes packets errs drop fifo frame compressed multicast|[...
1076 lo: 908188 5596 0 0 0 0 0 0 [...
1077 ppp0:15475140 20721 410 0 0 410 0 0 [...
1078 eth0: 614530 7085 0 0 0 0 0 1 [...
1079
1080 ...] Transmit
1081 ...] bytes packets errs drop fifo colls carrier compressed
1082 ...] 908188 5596 0 0 0 0 0 0
1083 ...] 1375103 17405 0 0 0 0 0 0
1084 ...] 1703981 5535 0 0 0 3 0 0
1085
1086In addition, each Channel Bond interface has its own directory. For
1087example, the bond0 device will have a directory called /proc/net/bond0/.
1088It will contain information that is specific to that bond, such as the
1089current slaves of the bond, the link status of the slaves, and how
1090many times the slaves link has failed.
1091
10921.5 SCSI info
1093-------------
1094
1095If you have a SCSI host adapter in your system, you'll find a subdirectory
1096named after the driver for this adapter in /proc/scsi. You'll also see a list
1097of all recognized SCSI devices in /proc/scsi:
1098
1099 >cat /proc/scsi/scsi
1100 Attached devices:
1101 Host: scsi0 Channel: 00 Id: 00 Lun: 00
1102 Vendor: IBM Model: DGHS09U Rev: 03E0
1103 Type: Direct-Access ANSI SCSI revision: 03
1104 Host: scsi0 Channel: 00 Id: 06 Lun: 00
1105 Vendor: PIONEER Model: CD-ROM DR-U06S Rev: 1.04
1106 Type: CD-ROM ANSI SCSI revision: 02
1107
1108
1109The directory named after the driver has one file for each adapter found in
1110the system. These files contain information about the controller, including
1111the used IRQ and the IO address range. The amount of information shown is
1112dependent on the adapter you use. The example shows the output for an Adaptec
1113AHA-2940 SCSI adapter:
1114
1115 > cat /proc/scsi/aic7xxx/0
1116
1117 Adaptec AIC7xxx driver version: 5.1.19/3.2.4
1118 Compile Options:
1119 TCQ Enabled By Default : Disabled
1120 AIC7XXX_PROC_STATS : Disabled
1121 AIC7XXX_RESET_DELAY : 5
1122 Adapter Configuration:
1123 SCSI Adapter: Adaptec AHA-294X Ultra SCSI host adapter
1124 Ultra Wide Controller
1125 PCI MMAPed I/O Base: 0xeb001000
1126 Adapter SEEPROM Config: SEEPROM found and used.
1127 Adaptec SCSI BIOS: Enabled
1128 IRQ: 10
1129 SCBs: Active 0, Max Active 2,
1130 Allocated 15, HW 16, Page 255
1131 Interrupts: 160328
1132 BIOS Control Word: 0x18b6
1133 Adapter Control Word: 0x005b
1134 Extended Translation: Enabled
1135 Disconnect Enable Flags: 0xffff
1136 Ultra Enable Flags: 0x0001
1137 Tag Queue Enable Flags: 0x0000
1138 Ordered Queue Tag Flags: 0x0000
1139 Default Tag Queue Depth: 8
1140 Tagged Queue By Device array for aic7xxx host instance 0:
1141 {255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255}
1142 Actual queue depth per device for aic7xxx host instance 0:
1143 {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
1144 Statistics:
1145 (scsi0:0:0:0)
1146 Device using Wide/Sync transfers at 40.0 MByte/sec, offset 8
1147 Transinfo settings: current(12/8/1/0), goal(12/8/1/0), user(12/15/1/0)
1148 Total transfers 160151 (74577 reads and 85574 writes)
1149 (scsi0:0:6:0)
1150 Device using Narrow/Sync transfers at 5.0 MByte/sec, offset 15
1151 Transinfo settings: current(50/15/0/0), goal(50/15/0/0), user(50/15/0/0)
1152 Total transfers 0 (0 reads and 0 writes)
1153
1154
11551.6 Parallel port info in /proc/parport
1156---------------------------------------
1157
1158The directory /proc/parport contains information about the parallel ports of
1159your system. It has one subdirectory for each port, named after the port
1160number (0,1,2,...).
1161
1162These directories contain the four files shown in Table 1-10.
1163
1164
1165Table 1-10: Files in /proc/parport
1166..............................................................................
1167 File Content
1168 autoprobe Any IEEE-1284 device ID information that has been acquired.
1169 devices list of the device drivers using that port. A + will appear by the
1170 name of the device currently using the port (it might not appear
1171 against any).
1172 hardware Parallel port's base address, IRQ line and DMA channel.
1173 irq IRQ that parport is using for that port. This is in a separate
1174 file to allow you to alter it by writing a new value in (IRQ
1175 number or none).
1176..............................................................................
1177
11781.7 TTY info in /proc/tty
1179-------------------------
1180
1181Information about the available and actually used tty's can be found in the
1182directory /proc/tty.You'll find entries for drivers and line disciplines in
1183this directory, as shown in Table 1-11.
1184
1185
1186Table 1-11: Files in /proc/tty
1187..............................................................................
1188 File Content
1189 drivers list of drivers and their usage
1190 ldiscs registered line disciplines
1191 driver/serial usage statistic and status of single tty lines
1192..............................................................................
1193
1194To see which tty's are currently in use, you can simply look into the file
1195/proc/tty/drivers:
1196
1197 > cat /proc/tty/drivers
1198 pty_slave /dev/pts 136 0-255 pty:slave
1199 pty_master /dev/ptm 128 0-255 pty:master
1200 pty_slave /dev/ttyp 3 0-255 pty:slave
1201 pty_master /dev/pty 2 0-255 pty:master
1202 serial /dev/cua 5 64-67 serial:callout
1203 serial /dev/ttyS 4 64-67 serial
1204 /dev/tty0 /dev/tty0 4 0 system:vtmaster
1205 /dev/ptmx /dev/ptmx 5 2 system
1206 /dev/console /dev/console 5 1 system:console
1207 /dev/tty /dev/tty 5 0 system:/dev/tty
1208 unknown /dev/tty 4 1-63 console
1209
1210
12111.8 Miscellaneous kernel statistics in /proc/stat
1212-------------------------------------------------
1213
1214Various pieces of information about kernel activity are available in the
1215/proc/stat file. All of the numbers reported in this file are aggregates
1216since the system first booted. For a quick look, simply cat the file:
1217
1218 > cat /proc/stat
1219 cpu 2255 34 2290 22625563 6290 127 456 0 0
1220 cpu0 1132 34 1441 11311718 3675 127 438 0 0
1221 cpu1 1123 0 849 11313845 2614 0 18 0 0
1222 intr 114930548 113199788 3 0 5 263 0 4 [... lots more numbers ...]
1223 ctxt 1990473
1224 btime 1062191376
1225 processes 2915
1226 procs_running 1
1227 procs_blocked 0
1228 softirq 183433 0 21755 12 39 1137 231 21459 2263
1229
1230The very first "cpu" line aggregates the numbers in all of the other "cpuN"
1231lines. These numbers identify the amount of time the CPU has spent performing
1232different kinds of work. Time units are in USER_HZ (typically hundredths of a
1233second). The meanings of the columns are as follows, from left to right:
1234
1235- user: normal processes executing in user mode
1236- nice: niced processes executing in user mode
1237- system: processes executing in kernel mode
1238- idle: twiddling thumbs
1239- iowait: waiting for I/O to complete
1240- irq: servicing interrupts
1241- softirq: servicing softirqs
1242- steal: involuntary wait
1243- guest: running a normal guest
1244- guest_nice: running a niced guest
1245
1246The "intr" line gives counts of interrupts serviced since boot time, for each
1247of the possible system interrupts. The first column is the total of all
1248interrupts serviced including unnumbered architecture specific interrupts;
1249each subsequent column is the total for that particular numbered interrupt.
1250Unnumbered interrupts are not shown, only summed into the total.
1251
1252The "ctxt" line gives the total number of context switches across all CPUs.
1253
1254The "btime" line gives the time at which the system booted, in seconds since
1255the Unix epoch.
1256
1257The "processes" line gives the number of processes and threads created, which
1258includes (but is not limited to) those created by calls to the fork() and
1259clone() system calls.
1260
1261The "procs_running" line gives the total number of threads that are
1262running or ready to run (i.e., the total number of runnable threads).
1263
1264The "procs_blocked" line gives the number of processes currently blocked,
1265waiting for I/O to complete.
1266
1267The "softirq" line gives counts of softirqs serviced since boot time, for each
1268of the possible system softirqs. The first column is the total of all
1269softirqs serviced; each subsequent column is the total for that particular
1270softirq.
1271
1272
12731.9 Ext4 file system parameters
1274------------------------------
1275
1276Information about mounted ext4 file systems can be found in
1277/proc/fs/ext4. Each mounted filesystem will have a directory in
1278/proc/fs/ext4 based on its device name (i.e., /proc/fs/ext4/hdc or
1279/proc/fs/ext4/dm-0). The files in each per-device directory are shown
1280in Table 1-12, below.
1281
1282Table 1-12: Files in /proc/fs/ext4/<devname>
1283..............................................................................
1284 File Content
1285 mb_groups details of multiblock allocator buddy cache of free blocks
1286..............................................................................
1287
12882.0 /proc/consoles
1289------------------
1290Shows registered system console lines.
1291
1292To see which character device lines are currently used for the system console
1293/dev/console, you may simply look into the file /proc/consoles:
1294
1295 > cat /proc/consoles
1296 tty0 -WU (ECp) 4:7
1297 ttyS0 -W- (Ep) 4:64
1298
1299The columns are:
1300
1301 device name of the device
1302 operations R = can do read operations
1303 W = can do write operations
1304 U = can do unblank
1305 flags E = it is enabled
1306 C = it is preferred console
1307 B = it is primary boot console
1308 p = it is used for printk buffer
1309 b = it is not a TTY but a Braille device
1310 a = it is safe to use when cpu is offline
1311 major:minor major and minor number of the device separated by a colon
1312
1313------------------------------------------------------------------------------
1314Summary
1315------------------------------------------------------------------------------
1316The /proc file system serves information about the running system. It not only
1317allows access to process data but also allows you to request the kernel status
1318by reading files in the hierarchy.
1319
1320The directory structure of /proc reflects the types of information and makes
1321it easy, if not obvious, where to look for specific data.
1322------------------------------------------------------------------------------
1323
1324------------------------------------------------------------------------------
1325CHAPTER 2: MODIFYING SYSTEM PARAMETERS
1326------------------------------------------------------------------------------
1327
1328------------------------------------------------------------------------------
1329In This Chapter
1330------------------------------------------------------------------------------
1331* Modifying kernel parameters by writing into files found in /proc/sys
1332* Exploring the files which modify certain parameters
1333* Review of the /proc/sys file tree
1334------------------------------------------------------------------------------
1335
1336
1337A very interesting part of /proc is the directory /proc/sys. This is not only
1338a source of information, it also allows you to change parameters within the
1339kernel. Be very careful when attempting this. You can optimize your system,
1340but you can also cause it to crash. Never alter kernel parameters on a
1341production system. Set up a development machine and test to make sure that
1342everything works the way you want it to. You may have no alternative but to
1343reboot the machine once an error has been made.
1344
1345To change a value, simply echo the new value into the file. An example is
1346given below in the section on the file system data. You need to be root to do
1347this. You can create your own boot script to perform this every time your
1348system boots.
1349
1350The files in /proc/sys can be used to fine tune and monitor miscellaneous and
1351general things in the operation of the Linux kernel. Since some of the files
1352can inadvertently disrupt your system, it is advisable to read both
1353documentation and source before actually making adjustments. In any case, be
1354very careful when writing to any of these files. The entries in /proc may
1355change slightly between the 2.1.* and the 2.2 kernel, so if there is any doubt
1356review the kernel documentation in the directory /usr/src/linux/Documentation.
1357This chapter is heavily based on the documentation included in the pre 2.2
1358kernels, and became part of it in version 2.2.1 of the Linux kernel.
1359
1360Please see: Documentation/sysctl/ directory for descriptions of these
1361entries.
1362
1363------------------------------------------------------------------------------
1364Summary
1365------------------------------------------------------------------------------
1366Certain aspects of kernel behavior can be modified at runtime, without the
1367need to recompile the kernel, or even to reboot the system. The files in the
1368/proc/sys tree can not only be read, but also modified. You can use the echo
1369command to write value into these files, thereby changing the default settings
1370of the kernel.
1371------------------------------------------------------------------------------
1372
1373------------------------------------------------------------------------------
1374CHAPTER 3: PER-PROCESS PARAMETERS
1375------------------------------------------------------------------------------
1376
13773.1 /proc/<pid>/oom_adj & /proc/<pid>/oom_score_adj- Adjust the oom-killer score
1378--------------------------------------------------------------------------------
1379
1380These file can be used to adjust the badness heuristic used to select which
1381process gets killed in out of memory conditions.
1382
1383The badness heuristic assigns a value to each candidate task ranging from 0
1384(never kill) to 1000 (always kill) to determine which process is targeted. The
1385units are roughly a proportion along that range of allowed memory the process
1386may allocate from based on an estimation of its current memory and swap use.
1387For example, if a task is using all allowed memory, its badness score will be
13881000. If it is using half of its allowed memory, its score will be 500.
1389
1390There is an additional factor included in the badness score: the current memory
1391and swap usage is discounted by 3% for root processes.
1392
1393The amount of "allowed" memory depends on the context in which the oom killer
1394was called. If it is due to the memory assigned to the allocating task's cpuset
1395being exhausted, the allowed memory represents the set of mems assigned to that
1396cpuset. If it is due to a mempolicy's node(s) being exhausted, the allowed
1397memory represents the set of mempolicy nodes. If it is due to a memory
1398limit (or swap limit) being reached, the allowed memory is that configured
1399limit. Finally, if it is due to the entire system being out of memory, the
1400allowed memory represents all allocatable resources.
1401
1402The value of /proc/<pid>/oom_score_adj is added to the badness score before it
1403is used to determine which task to kill. Acceptable values range from -1000
1404(OOM_SCORE_ADJ_MIN) to +1000 (OOM_SCORE_ADJ_MAX). This allows userspace to
1405polarize the preference for oom killing either by always preferring a certain
1406task or completely disabling it. The lowest possible value, -1000, is
1407equivalent to disabling oom killing entirely for that task since it will always
1408report a badness score of 0.
1409
1410Consequently, it is very simple for userspace to define the amount of memory to
1411consider for each task. Setting a /proc/<pid>/oom_score_adj value of +500, for
1412example, is roughly equivalent to allowing the remainder of tasks sharing the
1413same system, cpuset, mempolicy, or memory controller resources to use at least
141450% more memory. A value of -500, on the other hand, would be roughly
1415equivalent to discounting 50% of the task's allowed memory from being considered
1416as scoring against the task.
1417
1418For backwards compatibility with previous kernels, /proc/<pid>/oom_adj may also
1419be used to tune the badness score. Its acceptable values range from -16
1420(OOM_ADJUST_MIN) to +15 (OOM_ADJUST_MAX) and a special value of -17
1421(OOM_DISABLE) to disable oom killing entirely for that task. Its value is
1422scaled linearly with /proc/<pid>/oom_score_adj.
1423
1424The value of /proc/<pid>/oom_score_adj may be reduced no lower than the last
1425value set by a CAP_SYS_RESOURCE process. To reduce the value any lower
1426requires CAP_SYS_RESOURCE.
1427
1428Caveat: when a parent task is selected, the oom killer will sacrifice any first
1429generation children with separate address spaces instead, if possible. This
1430avoids servers and important system daemons from being killed and loses the
1431minimal amount of work.
1432
1433
14343.2 /proc/<pid>/oom_score - Display current oom-killer score
1435-------------------------------------------------------------
1436
1437This file can be used to check the current score used by the oom-killer is for
1438any given <pid>. Use it together with /proc/<pid>/oom_score_adj to tune which
1439process should be killed in an out-of-memory situation.
1440
1441
14423.3 /proc/<pid>/io - Display the IO accounting fields
1443-------------------------------------------------------
1444
1445This file contains IO statistics for each running process
1446
1447Example
1448-------
1449
1450test:/tmp # dd if=/dev/zero of=/tmp/test.dat &
1451[1] 3828
1452
1453test:/tmp # cat /proc/3828/io
1454rchar: 323934931
1455wchar: 323929600
1456syscr: 632687
1457syscw: 632675
1458read_bytes: 0
1459write_bytes: 323932160
1460cancelled_write_bytes: 0
1461
1462
1463Description
1464-----------
1465
1466rchar
1467-----
1468
1469I/O counter: chars read
1470The number of bytes which this task has caused to be read from storage. This
1471is simply the sum of bytes which this process passed to read() and pread().
1472It includes things like tty IO and it is unaffected by whether or not actual
1473physical disk IO was required (the read might have been satisfied from
1474pagecache)
1475
1476
1477wchar
1478-----
1479
1480I/O counter: chars written
1481The number of bytes which this task has caused, or shall cause to be written
1482to disk. Similar caveats apply here as with rchar.
1483
1484
1485syscr
1486-----
1487
1488I/O counter: read syscalls
1489Attempt to count the number of read I/O operations, i.e. syscalls like read()
1490and pread().
1491
1492
1493syscw
1494-----
1495
1496I/O counter: write syscalls
1497Attempt to count the number of write I/O operations, i.e. syscalls like
1498write() and pwrite().
1499
1500
1501read_bytes
1502----------
1503
1504I/O counter: bytes read
1505Attempt to count the number of bytes which this process really did cause to
1506be fetched from the storage layer. Done at the submit_bio() level, so it is
1507accurate for block-backed filesystems. <please add status regarding NFS and
1508CIFS at a later time>
1509
1510
1511write_bytes
1512-----------
1513
1514I/O counter: bytes written
1515Attempt to count the number of bytes which this process caused to be sent to
1516the storage layer. This is done at page-dirtying time.
1517
1518
1519cancelled_write_bytes
1520---------------------
1521
1522The big inaccuracy here is truncate. If a process writes 1MB to a file and
1523then deletes the file, it will in fact perform no writeout. But it will have
1524been accounted as having caused 1MB of write.
1525In other words: The number of bytes which this process caused to not happen,
1526by truncating pagecache. A task can cause "negative" IO too. If this task
1527truncates some dirty pagecache, some IO which another task has been accounted
1528for (in its write_bytes) will not be happening. We _could_ just subtract that
1529from the truncating task's write_bytes, but there is information loss in doing
1530that.
1531
1532
1533Note
1534----
1535
1536At its current implementation state, this is a bit racy on 32-bit machines: if
1537process A reads process B's /proc/pid/io while process B is updating one of
1538those 64-bit counters, process A could see an intermediate result.
1539
1540
1541More information about this can be found within the taskstats documentation in
1542Documentation/accounting.
1543
15443.4 /proc/<pid>/coredump_filter - Core dump filtering settings
1545---------------------------------------------------------------
1546When a process is dumped, all anonymous memory is written to a core file as
1547long as the size of the core file isn't limited. But sometimes we don't want
1548to dump some memory segments, for example, huge shared memory. Conversely,
1549sometimes we want to save file-backed memory segments into a core file, not
1550only the individual files.
1551
1552/proc/<pid>/coredump_filter allows you to customize which memory segments
1553will be dumped when the <pid> process is dumped. coredump_filter is a bitmask
1554of memory types. If a bit of the bitmask is set, memory segments of the
1555corresponding memory type are dumped, otherwise they are not dumped.
1556
1557The following 7 memory types are supported:
1558 - (bit 0) anonymous private memory
1559 - (bit 1) anonymous shared memory
1560 - (bit 2) file-backed private memory
1561 - (bit 3) file-backed shared memory
1562 - (bit 4) ELF header pages in file-backed private memory areas (it is
1563 effective only if the bit 2 is cleared)
1564 - (bit 5) hugetlb private memory
1565 - (bit 6) hugetlb shared memory
1566
1567 Note that MMIO pages such as frame buffer are never dumped and vDSO pages
1568 are always dumped regardless of the bitmask status.
1569
1570 Note bit 0-4 doesn't effect any hugetlb memory. hugetlb memory are only
1571 effected by bit 5-6.
1572
1573Default value of coredump_filter is 0x23; this means all anonymous memory
1574segments and hugetlb private memory are dumped.
1575
1576If you don't want to dump all shared memory segments attached to pid 1234,
1577write 0x21 to the process's proc file.
1578
1579 $ echo 0x21 > /proc/1234/coredump_filter
1580
1581When a new process is created, the process inherits the bitmask status from its
1582parent. It is useful to set up coredump_filter before the program runs.
1583For example:
1584
1585 $ echo 0x7 > /proc/self/coredump_filter
1586 $ ./some_program
1587
15883.5 /proc/<pid>/mountinfo - Information about mounts
1589--------------------------------------------------------
1590
1591This file contains lines of the form:
1592
159336 35 98:0 /mnt1 /mnt2 rw,noatime master:1 - ext3 /dev/root rw,errors=continue
1594(1)(2)(3) (4) (5) (6) (7) (8) (9) (10) (11)
1595
1596(1) mount ID: unique identifier of the mount (may be reused after umount)
1597(2) parent ID: ID of parent (or of self for the top of the mount tree)
1598(3) major:minor: value of st_dev for files on filesystem
1599(4) root: root of the mount within the filesystem
1600(5) mount point: mount point relative to the process's root
1601(6) mount options: per mount options
1602(7) optional fields: zero or more fields of the form "tag[:value]"
1603(8) separator: marks the end of the optional fields
1604(9) filesystem type: name of filesystem of the form "type[.subtype]"
1605(10) mount source: filesystem specific information or "none"
1606(11) super options: per super block options
1607
1608Parsers should ignore all unrecognised optional fields. Currently the
1609possible optional fields are:
1610
1611shared:X mount is shared in peer group X
1612master:X mount is slave to peer group X
1613propagate_from:X mount is slave and receives propagation from peer group X (*)
1614unbindable mount is unbindable
1615
1616(*) X is the closest dominant peer group under the process's root. If
1617X is the immediate master of the mount, or if there's no dominant peer
1618group under the same root, then only the "master:X" field is present
1619and not the "propagate_from:X" field.
1620
1621For more information on mount propagation see:
1622
1623 Documentation/filesystems/sharedsubtree.txt
1624
1625
16263.6 /proc/<pid>/comm & /proc/<pid>/task/<tid>/comm
1627--------------------------------------------------------
1628These files provide a method to access a tasks comm value. It also allows for
1629a task to set its own or one of its thread siblings comm value. The comm value
1630is limited in size compared to the cmdline value, so writing anything longer
1631then the kernel's TASK_COMM_LEN (currently 16 chars) will result in a truncated
1632comm value.
1633
1634
16353.7 /proc/<pid>/task/<tid>/children - Information about task children
1636-------------------------------------------------------------------------
1637This file provides a fast way to retrieve first level children pids
1638of a task pointed by <pid>/<tid> pair. The format is a space separated
1639stream of pids.
1640
1641Note the "first level" here -- if a child has own children they will
1642not be listed here, one needs to read /proc/<children-pid>/task/<tid>/children
1643to obtain the descendants.
1644
1645Since this interface is intended to be fast and cheap it doesn't
1646guarantee to provide precise results and some children might be
1647skipped, especially if they've exited right after we printed their
1648pids, so one need to either stop or freeze processes being inspected
1649if precise results are needed.
1650
1651
16523.8 /proc/<pid>/fdinfo/<fd> - Information about opened file
1653---------------------------------------------------------------
1654This file provides information associated with an opened file. The regular
1655files have at least three fields -- 'pos', 'flags' and mnt_id. The 'pos'
1656represents the current offset of the opened file in decimal form [see lseek(2)
1657for details], 'flags' denotes the octal O_xxx mask the file has been
1658created with [see open(2) for details] and 'mnt_id' represents mount ID of
1659the file system containing the opened file [see 3.5 /proc/<pid>/mountinfo
1660for details].
1661
1662A typical output is
1663
1664 pos: 0
1665 flags: 0100002
1666 mnt_id: 19
1667
1668The files such as eventfd, fsnotify, signalfd, epoll among the regular pos/flags
1669pair provide additional information particular to the objects they represent.
1670
1671 Eventfd files
1672 ~~~~~~~~~~~~~
1673 pos: 0
1674 flags: 04002
1675 mnt_id: 9
1676 eventfd-count: 5a
1677
1678 where 'eventfd-count' is hex value of a counter.
1679
1680 Signalfd files
1681 ~~~~~~~~~~~~~~
1682 pos: 0
1683 flags: 04002
1684 mnt_id: 9
1685 sigmask: 0000000000000200
1686
1687 where 'sigmask' is hex value of the signal mask associated
1688 with a file.
1689
1690 Epoll files
1691 ~~~~~~~~~~~
1692 pos: 0
1693 flags: 02
1694 mnt_id: 9
1695 tfd: 5 events: 1d data: ffffffffffffffff
1696
1697 where 'tfd' is a target file descriptor number in decimal form,
1698 'events' is events mask being watched and the 'data' is data
1699 associated with a target [see epoll(7) for more details].
1700
1701 Fsnotify files
1702 ~~~~~~~~~~~~~~
1703 For inotify files the format is the following
1704
1705 pos: 0
1706 flags: 02000000
1707 inotify wd:3 ino:9e7e sdev:800013 mask:800afce ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:7e9e0000640d1b6d
1708
1709 where 'wd' is a watch descriptor in decimal form, ie a target file
1710 descriptor number, 'ino' and 'sdev' are inode and device where the
1711 target file resides and the 'mask' is the mask of events, all in hex
1712 form [see inotify(7) for more details].
1713
1714 If the kernel was built with exportfs support, the path to the target
1715 file is encoded as a file handle. The file handle is provided by three
1716 fields 'fhandle-bytes', 'fhandle-type' and 'f_handle', all in hex
1717 format.
1718
1719 If the kernel is built without exportfs support the file handle won't be
1720 printed out.
1721
1722 If there is no inotify mark attached yet the 'inotify' line will be omitted.
1723
1724 For fanotify files the format is
1725
1726 pos: 0
1727 flags: 02
1728 mnt_id: 9
1729 fanotify flags:10 event-flags:0
1730 fanotify mnt_id:12 mflags:40 mask:38 ignored_mask:40000003
1731 fanotify ino:4f969 sdev:800013 mflags:0 mask:3b ignored_mask:40000000 fhandle-bytes:8 fhandle-type:1 f_handle:69f90400c275b5b4
1732
1733 where fanotify 'flags' and 'event-flags' are values used in fanotify_init
1734 call, 'mnt_id' is the mount point identifier, 'mflags' is the value of
1735 flags associated with mark which are tracked separately from events
1736 mask. 'ino', 'sdev' are target inode and device, 'mask' is the events
1737 mask and 'ignored_mask' is the mask of events which are to be ignored.
1738 All in hex format. Incorporation of 'mflags', 'mask' and 'ignored_mask'
1739 does provide information about flags and mask used in fanotify_mark
1740 call [see fsnotify manpage for details].
1741
1742 While the first three lines are mandatory and always printed, the rest is
1743 optional and may be omitted if no marks created yet.
1744
1745
1746------------------------------------------------------------------------------
1747Configuring procfs
1748------------------------------------------------------------------------------
1749
17504.1 Mount options
1751---------------------
1752
1753The following mount options are supported:
1754
1755 hidepid= Set /proc/<pid>/ access mode.
1756 gid= Set the group authorized to learn processes information.
1757
1758hidepid=0 means classic mode - everybody may access all /proc/<pid>/ directories
1759(default).
1760
1761hidepid=1 means users may not access any /proc/<pid>/ directories but their
1762own. Sensitive files like cmdline, sched*, status are now protected against
1763other users. This makes it impossible to learn whether any user runs
1764specific program (given the program doesn't reveal itself by its behaviour).
1765As an additional bonus, as /proc/<pid>/cmdline is unaccessible for other users,
1766poorly written programs passing sensitive information via program arguments are
1767now protected against local eavesdroppers.
1768
1769hidepid=2 means hidepid=1 plus all /proc/<pid>/ will be fully invisible to other
1770users. It doesn't mean that it hides a fact whether a process with a specific
1771pid value exists (it can be learned by other means, e.g. by "kill -0 $PID"),
1772but it hides process' uid and gid, which may be learned by stat()'ing
1773/proc/<pid>/ otherwise. It greatly complicates an intruder's task of gathering
1774information about running processes, whether some daemon runs with elevated
1775privileges, whether other user runs some sensitive program, whether other users
1776run any program at all, etc.
1777
1778gid= defines a group authorized to learn processes information otherwise
1779prohibited by hidepid=. If you use some daemon like identd which needs to learn
1780information about processes information, just add identd to this group.