Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * xfrm algorithm interface
  3 *
  4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License as published by the Free
  8 * Software Foundation; either version 2 of the License, or (at your option)
  9 * any later version.
 10 */
 11
 12#include <linux/module.h>
 13#include <linux/kernel.h>
 14#include <linux/pfkeyv2.h>
 15#include <linux/crypto.h>
 16#include <linux/scatterlist.h>
 17#include <net/xfrm.h>
 18#if defined(CONFIG_INET_AH) || defined(CONFIG_INET_AH_MODULE) || defined(CONFIG_INET6_AH) || defined(CONFIG_INET6_AH_MODULE)
 19#include <net/ah.h>
 20#endif
 21#if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
 22#include <net/esp.h>
 23#endif
 24
 25/*
 26 * Algorithms supported by IPsec.  These entries contain properties which
 27 * are used in key negotiation and xfrm processing, and are used to verify
 28 * that instantiated crypto transforms have correct parameters for IPsec
 29 * purposes.
 30 */
 31static struct xfrm_algo_desc aead_list[] = {
 32{
 33	.name = "rfc4106(gcm(aes))",
 34
 35	.uinfo = {
 36		.aead = {
 37			.icv_truncbits = 64,
 38		}
 39	},
 40
 
 
 41	.desc = {
 42		.sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
 43		.sadb_alg_ivlen = 8,
 44		.sadb_alg_minbits = 128,
 45		.sadb_alg_maxbits = 256
 46	}
 47},
 48{
 49	.name = "rfc4106(gcm(aes))",
 50
 51	.uinfo = {
 52		.aead = {
 53			.icv_truncbits = 96,
 54		}
 55	},
 56
 
 
 57	.desc = {
 58		.sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
 59		.sadb_alg_ivlen = 8,
 60		.sadb_alg_minbits = 128,
 61		.sadb_alg_maxbits = 256
 62	}
 63},
 64{
 65	.name = "rfc4106(gcm(aes))",
 66
 67	.uinfo = {
 68		.aead = {
 69			.icv_truncbits = 128,
 70		}
 71	},
 72
 
 
 73	.desc = {
 74		.sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
 75		.sadb_alg_ivlen = 8,
 76		.sadb_alg_minbits = 128,
 77		.sadb_alg_maxbits = 256
 78	}
 79},
 80{
 81	.name = "rfc4309(ccm(aes))",
 82
 83	.uinfo = {
 84		.aead = {
 85			.icv_truncbits = 64,
 86		}
 87	},
 88
 
 
 89	.desc = {
 90		.sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
 91		.sadb_alg_ivlen = 8,
 92		.sadb_alg_minbits = 128,
 93		.sadb_alg_maxbits = 256
 94	}
 95},
 96{
 97	.name = "rfc4309(ccm(aes))",
 98
 99	.uinfo = {
100		.aead = {
101			.icv_truncbits = 96,
102		}
103	},
104
 
 
105	.desc = {
106		.sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
107		.sadb_alg_ivlen = 8,
108		.sadb_alg_minbits = 128,
109		.sadb_alg_maxbits = 256
110	}
111},
112{
113	.name = "rfc4309(ccm(aes))",
114
115	.uinfo = {
116		.aead = {
117			.icv_truncbits = 128,
118		}
119	},
120
 
 
121	.desc = {
122		.sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
123		.sadb_alg_ivlen = 8,
124		.sadb_alg_minbits = 128,
125		.sadb_alg_maxbits = 256
126	}
127},
128{
129	.name = "rfc4543(gcm(aes))",
130
131	.uinfo = {
132		.aead = {
133			.icv_truncbits = 128,
134		}
135	},
136
 
 
137	.desc = {
138		.sadb_alg_id = SADB_X_EALG_NULL_AES_GMAC,
139		.sadb_alg_ivlen = 8,
140		.sadb_alg_minbits = 128,
141		.sadb_alg_maxbits = 256
142	}
143},
144};
145
146static struct xfrm_algo_desc aalg_list[] = {
147{
148	.name = "digest_null",
149
150	.uinfo = {
151		.auth = {
152			.icv_truncbits = 0,
153			.icv_fullbits = 0,
154		}
155	},
156
 
 
157	.desc = {
158		.sadb_alg_id = SADB_X_AALG_NULL,
159		.sadb_alg_ivlen = 0,
160		.sadb_alg_minbits = 0,
161		.sadb_alg_maxbits = 0
162	}
163},
164{
165	.name = "hmac(md5)",
166	.compat = "md5",
167
168	.uinfo = {
169		.auth = {
170			.icv_truncbits = 96,
171			.icv_fullbits = 128,
172		}
173	},
174
 
 
175	.desc = {
176		.sadb_alg_id = SADB_AALG_MD5HMAC,
177		.sadb_alg_ivlen = 0,
178		.sadb_alg_minbits = 128,
179		.sadb_alg_maxbits = 128
180	}
181},
182{
183	.name = "hmac(sha1)",
184	.compat = "sha1",
185
186	.uinfo = {
187		.auth = {
188			.icv_truncbits = 96,
189			.icv_fullbits = 160,
190		}
191	},
192
 
 
193	.desc = {
194		.sadb_alg_id = SADB_AALG_SHA1HMAC,
195		.sadb_alg_ivlen = 0,
196		.sadb_alg_minbits = 160,
197		.sadb_alg_maxbits = 160
198	}
199},
200{
201	.name = "hmac(sha256)",
202	.compat = "sha256",
203
204	.uinfo = {
205		.auth = {
206			.icv_truncbits = 96,
207			.icv_fullbits = 256,
208		}
209	},
210
 
 
211	.desc = {
212		.sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
213		.sadb_alg_ivlen = 0,
214		.sadb_alg_minbits = 256,
215		.sadb_alg_maxbits = 256
216	}
217},
218{
219	.name = "hmac(sha384)",
220
221	.uinfo = {
222		.auth = {
223			.icv_truncbits = 192,
224			.icv_fullbits = 384,
225		}
226	},
227
 
 
228	.desc = {
229		.sadb_alg_id = SADB_X_AALG_SHA2_384HMAC,
230		.sadb_alg_ivlen = 0,
231		.sadb_alg_minbits = 384,
232		.sadb_alg_maxbits = 384
233	}
234},
235{
236	.name = "hmac(sha512)",
237
238	.uinfo = {
239		.auth = {
240			.icv_truncbits = 256,
241			.icv_fullbits = 512,
242		}
243	},
244
 
 
245	.desc = {
246		.sadb_alg_id = SADB_X_AALG_SHA2_512HMAC,
247		.sadb_alg_ivlen = 0,
248		.sadb_alg_minbits = 512,
249		.sadb_alg_maxbits = 512
250	}
251},
252{
253	.name = "hmac(rmd160)",
254	.compat = "rmd160",
255
256	.uinfo = {
257		.auth = {
258			.icv_truncbits = 96,
259			.icv_fullbits = 160,
260		}
261	},
262
 
 
263	.desc = {
264		.sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
265		.sadb_alg_ivlen = 0,
266		.sadb_alg_minbits = 160,
267		.sadb_alg_maxbits = 160
268	}
269},
270{
271	.name = "xcbc(aes)",
272
273	.uinfo = {
274		.auth = {
275			.icv_truncbits = 96,
276			.icv_fullbits = 128,
277		}
278	},
279
 
 
280	.desc = {
281		.sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
282		.sadb_alg_ivlen = 0,
283		.sadb_alg_minbits = 128,
284		.sadb_alg_maxbits = 128
285	}
286},
 
 
 
 
 
 
 
 
 
 
 
 
 
287};
288
289static struct xfrm_algo_desc ealg_list[] = {
290{
291	.name = "ecb(cipher_null)",
292	.compat = "cipher_null",
293
294	.uinfo = {
295		.encr = {
296			.blockbits = 8,
297			.defkeybits = 0,
298		}
299	},
300
 
 
301	.desc = {
302		.sadb_alg_id =	SADB_EALG_NULL,
303		.sadb_alg_ivlen = 0,
304		.sadb_alg_minbits = 0,
305		.sadb_alg_maxbits = 0
306	}
307},
308{
309	.name = "cbc(des)",
310	.compat = "des",
311
312	.uinfo = {
313		.encr = {
314			.blockbits = 64,
315			.defkeybits = 64,
316		}
317	},
318
 
 
319	.desc = {
320		.sadb_alg_id = SADB_EALG_DESCBC,
321		.sadb_alg_ivlen = 8,
322		.sadb_alg_minbits = 64,
323		.sadb_alg_maxbits = 64
324	}
325},
326{
327	.name = "cbc(des3_ede)",
328	.compat = "des3_ede",
329
330	.uinfo = {
331		.encr = {
332			.blockbits = 64,
333			.defkeybits = 192,
334		}
335	},
336
 
 
337	.desc = {
338		.sadb_alg_id = SADB_EALG_3DESCBC,
339		.sadb_alg_ivlen = 8,
340		.sadb_alg_minbits = 192,
341		.sadb_alg_maxbits = 192
342	}
343},
344{
345	.name = "cbc(cast5)",
346	.compat = "cast5",
347
348	.uinfo = {
349		.encr = {
350			.blockbits = 64,
351			.defkeybits = 128,
352		}
353	},
354
 
 
355	.desc = {
356		.sadb_alg_id = SADB_X_EALG_CASTCBC,
357		.sadb_alg_ivlen = 8,
358		.sadb_alg_minbits = 40,
359		.sadb_alg_maxbits = 128
360	}
361},
362{
363	.name = "cbc(blowfish)",
364	.compat = "blowfish",
365
366	.uinfo = {
367		.encr = {
368			.blockbits = 64,
369			.defkeybits = 128,
370		}
371	},
372
 
 
373	.desc = {
374		.sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
375		.sadb_alg_ivlen = 8,
376		.sadb_alg_minbits = 40,
377		.sadb_alg_maxbits = 448
378	}
379},
380{
381	.name = "cbc(aes)",
382	.compat = "aes",
383
384	.uinfo = {
385		.encr = {
386			.blockbits = 128,
387			.defkeybits = 128,
388		}
389	},
390
 
 
391	.desc = {
392		.sadb_alg_id = SADB_X_EALG_AESCBC,
393		.sadb_alg_ivlen = 8,
394		.sadb_alg_minbits = 128,
395		.sadb_alg_maxbits = 256
396	}
397},
398{
399	.name = "cbc(serpent)",
400	.compat = "serpent",
401
402	.uinfo = {
403		.encr = {
404			.blockbits = 128,
405			.defkeybits = 128,
406		}
407	},
408
 
 
409	.desc = {
410		.sadb_alg_id = SADB_X_EALG_SERPENTCBC,
411		.sadb_alg_ivlen = 8,
412		.sadb_alg_minbits = 128,
413		.sadb_alg_maxbits = 256,
414	}
415},
416{
417	.name = "cbc(camellia)",
418	.compat = "camellia",
419
420	.uinfo = {
421		.encr = {
422			.blockbits = 128,
423			.defkeybits = 128,
424		}
425	},
426
 
 
427	.desc = {
428		.sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
429		.sadb_alg_ivlen = 8,
430		.sadb_alg_minbits = 128,
431		.sadb_alg_maxbits = 256
432	}
433},
434{
435	.name = "cbc(twofish)",
436	.compat = "twofish",
437
438	.uinfo = {
439		.encr = {
440			.blockbits = 128,
441			.defkeybits = 128,
442		}
443	},
444
 
 
445	.desc = {
446		.sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
447		.sadb_alg_ivlen = 8,
448		.sadb_alg_minbits = 128,
449		.sadb_alg_maxbits = 256
450	}
451},
452{
453	.name = "rfc3686(ctr(aes))",
454
455	.uinfo = {
456		.encr = {
457			.blockbits = 128,
458			.defkeybits = 160, /* 128-bit key + 32-bit nonce */
459		}
460	},
461
 
 
462	.desc = {
463		.sadb_alg_id = SADB_X_EALG_AESCTR,
464		.sadb_alg_ivlen	= 8,
465		.sadb_alg_minbits = 160,
466		.sadb_alg_maxbits = 288
467	}
468},
469};
470
471static struct xfrm_algo_desc calg_list[] = {
472{
473	.name = "deflate",
474	.uinfo = {
475		.comp = {
476			.threshold = 90,
477		}
478	},
 
479	.desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
480},
481{
482	.name = "lzs",
483	.uinfo = {
484		.comp = {
485			.threshold = 90,
486		}
487	},
 
488	.desc = { .sadb_alg_id = SADB_X_CALG_LZS }
489},
490{
491	.name = "lzjh",
492	.uinfo = {
493		.comp = {
494			.threshold = 50,
495		}
496	},
 
497	.desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
498},
499};
500
501static inline int aead_entries(void)
502{
503	return ARRAY_SIZE(aead_list);
504}
505
506static inline int aalg_entries(void)
507{
508	return ARRAY_SIZE(aalg_list);
509}
510
511static inline int ealg_entries(void)
512{
513	return ARRAY_SIZE(ealg_list);
514}
515
516static inline int calg_entries(void)
517{
518	return ARRAY_SIZE(calg_list);
519}
520
521struct xfrm_algo_list {
522	struct xfrm_algo_desc *algs;
523	int entries;
524	u32 type;
525	u32 mask;
526};
527
528static const struct xfrm_algo_list xfrm_aead_list = {
529	.algs = aead_list,
530	.entries = ARRAY_SIZE(aead_list),
531	.type = CRYPTO_ALG_TYPE_AEAD,
532	.mask = CRYPTO_ALG_TYPE_MASK,
533};
534
535static const struct xfrm_algo_list xfrm_aalg_list = {
536	.algs = aalg_list,
537	.entries = ARRAY_SIZE(aalg_list),
538	.type = CRYPTO_ALG_TYPE_HASH,
539	.mask = CRYPTO_ALG_TYPE_HASH_MASK,
540};
541
542static const struct xfrm_algo_list xfrm_ealg_list = {
543	.algs = ealg_list,
544	.entries = ARRAY_SIZE(ealg_list),
545	.type = CRYPTO_ALG_TYPE_BLKCIPHER,
546	.mask = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
547};
548
549static const struct xfrm_algo_list xfrm_calg_list = {
550	.algs = calg_list,
551	.entries = ARRAY_SIZE(calg_list),
552	.type = CRYPTO_ALG_TYPE_COMPRESS,
553	.mask = CRYPTO_ALG_TYPE_MASK,
554};
555
556static struct xfrm_algo_desc *xfrm_find_algo(
557	const struct xfrm_algo_list *algo_list,
558	int match(const struct xfrm_algo_desc *entry, const void *data),
559	const void *data, int probe)
560{
561	struct xfrm_algo_desc *list = algo_list->algs;
562	int i, status;
563
564	for (i = 0; i < algo_list->entries; i++) {
565		if (!match(list + i, data))
566			continue;
567
568		if (list[i].available)
569			return &list[i];
570
571		if (!probe)
572			break;
573
574		status = crypto_has_alg(list[i].name, algo_list->type,
575					algo_list->mask);
576		if (!status)
577			break;
578
579		list[i].available = status;
580		return &list[i];
581	}
582	return NULL;
583}
584
585static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
586			     const void *data)
587{
588	return entry->desc.sadb_alg_id == (unsigned long)data;
589}
590
591struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
592{
593	return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
594			      (void *)(unsigned long)alg_id, 1);
595}
596EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
597
598struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
599{
600	return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
601			      (void *)(unsigned long)alg_id, 1);
602}
603EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
604
605struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
606{
607	return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
608			      (void *)(unsigned long)alg_id, 1);
609}
610EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
611
612static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
613			       const void *data)
614{
615	const char *name = data;
616
617	return name && (!strcmp(name, entry->name) ||
618			(entry->compat && !strcmp(name, entry->compat)));
619}
620
621struct xfrm_algo_desc *xfrm_aalg_get_byname(const char *name, int probe)
622{
623	return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
624			      probe);
625}
626EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
627
628struct xfrm_algo_desc *xfrm_ealg_get_byname(const char *name, int probe)
629{
630	return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
631			      probe);
632}
633EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
634
635struct xfrm_algo_desc *xfrm_calg_get_byname(const char *name, int probe)
636{
637	return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
638			      probe);
639}
640EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
641
642struct xfrm_aead_name {
643	const char *name;
644	int icvbits;
645};
646
647static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
648				const void *data)
649{
650	const struct xfrm_aead_name *aead = data;
651	const char *name = aead->name;
652
653	return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
654	       !strcmp(name, entry->name);
655}
656
657struct xfrm_algo_desc *xfrm_aead_get_byname(const char *name, int icv_len, int probe)
658{
659	struct xfrm_aead_name data = {
660		.name = name,
661		.icvbits = icv_len,
662	};
663
664	return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
665			      probe);
666}
667EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
668
669struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
670{
671	if (idx >= aalg_entries())
672		return NULL;
673
674	return &aalg_list[idx];
675}
676EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
677
678struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
679{
680	if (idx >= ealg_entries())
681		return NULL;
682
683	return &ealg_list[idx];
684}
685EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
686
687/*
688 * Probe for the availability of crypto algorithms, and set the available
689 * flag for any algorithms found on the system.  This is typically called by
690 * pfkey during userspace SA add, update or register.
691 */
692void xfrm_probe_algs(void)
693{
694	int i, status;
695
696	BUG_ON(in_softirq());
697
698	for (i = 0; i < aalg_entries(); i++) {
699		status = crypto_has_hash(aalg_list[i].name, 0,
700					 CRYPTO_ALG_ASYNC);
701		if (aalg_list[i].available != status)
702			aalg_list[i].available = status;
703	}
704
705	for (i = 0; i < ealg_entries(); i++) {
706		status = crypto_has_blkcipher(ealg_list[i].name, 0,
707					      CRYPTO_ALG_ASYNC);
708		if (ealg_list[i].available != status)
709			ealg_list[i].available = status;
710	}
711
712	for (i = 0; i < calg_entries(); i++) {
713		status = crypto_has_comp(calg_list[i].name, 0,
714					 CRYPTO_ALG_ASYNC);
715		if (calg_list[i].available != status)
716			calg_list[i].available = status;
717	}
718}
719EXPORT_SYMBOL_GPL(xfrm_probe_algs);
720
721int xfrm_count_auth_supported(void)
722{
723	int i, n;
724
725	for (i = 0, n = 0; i < aalg_entries(); i++)
726		if (aalg_list[i].available)
727			n++;
728	return n;
729}
730EXPORT_SYMBOL_GPL(xfrm_count_auth_supported);
731
732int xfrm_count_enc_supported(void)
733{
734	int i, n;
735
736	for (i = 0, n = 0; i < ealg_entries(); i++)
737		if (ealg_list[i].available)
738			n++;
739	return n;
740}
741EXPORT_SYMBOL_GPL(xfrm_count_enc_supported);
742
743#if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
744
745void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
746{
747	if (tail != skb) {
748		skb->data_len += len;
749		skb->len += len;
750	}
751	return skb_put(tail, len);
752}
753EXPORT_SYMBOL_GPL(pskb_put);
754#endif
v3.15
  1/*
  2 * xfrm algorithm interface
  3 *
  4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License as published by the Free
  8 * Software Foundation; either version 2 of the License, or (at your option)
  9 * any later version.
 10 */
 11
 12#include <linux/module.h>
 13#include <linux/kernel.h>
 14#include <linux/pfkeyv2.h>
 15#include <linux/crypto.h>
 16#include <linux/scatterlist.h>
 17#include <net/xfrm.h>
 
 
 
 18#if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
 19#include <net/esp.h>
 20#endif
 21
 22/*
 23 * Algorithms supported by IPsec.  These entries contain properties which
 24 * are used in key negotiation and xfrm processing, and are used to verify
 25 * that instantiated crypto transforms have correct parameters for IPsec
 26 * purposes.
 27 */
 28static struct xfrm_algo_desc aead_list[] = {
 29{
 30	.name = "rfc4106(gcm(aes))",
 31
 32	.uinfo = {
 33		.aead = {
 34			.icv_truncbits = 64,
 35		}
 36	},
 37
 38	.pfkey_supported = 1,
 39
 40	.desc = {
 41		.sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
 42		.sadb_alg_ivlen = 8,
 43		.sadb_alg_minbits = 128,
 44		.sadb_alg_maxbits = 256
 45	}
 46},
 47{
 48	.name = "rfc4106(gcm(aes))",
 49
 50	.uinfo = {
 51		.aead = {
 52			.icv_truncbits = 96,
 53		}
 54	},
 55
 56	.pfkey_supported = 1,
 57
 58	.desc = {
 59		.sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
 60		.sadb_alg_ivlen = 8,
 61		.sadb_alg_minbits = 128,
 62		.sadb_alg_maxbits = 256
 63	}
 64},
 65{
 66	.name = "rfc4106(gcm(aes))",
 67
 68	.uinfo = {
 69		.aead = {
 70			.icv_truncbits = 128,
 71		}
 72	},
 73
 74	.pfkey_supported = 1,
 75
 76	.desc = {
 77		.sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
 78		.sadb_alg_ivlen = 8,
 79		.sadb_alg_minbits = 128,
 80		.sadb_alg_maxbits = 256
 81	}
 82},
 83{
 84	.name = "rfc4309(ccm(aes))",
 85
 86	.uinfo = {
 87		.aead = {
 88			.icv_truncbits = 64,
 89		}
 90	},
 91
 92	.pfkey_supported = 1,
 93
 94	.desc = {
 95		.sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
 96		.sadb_alg_ivlen = 8,
 97		.sadb_alg_minbits = 128,
 98		.sadb_alg_maxbits = 256
 99	}
100},
101{
102	.name = "rfc4309(ccm(aes))",
103
104	.uinfo = {
105		.aead = {
106			.icv_truncbits = 96,
107		}
108	},
109
110	.pfkey_supported = 1,
111
112	.desc = {
113		.sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
114		.sadb_alg_ivlen = 8,
115		.sadb_alg_minbits = 128,
116		.sadb_alg_maxbits = 256
117	}
118},
119{
120	.name = "rfc4309(ccm(aes))",
121
122	.uinfo = {
123		.aead = {
124			.icv_truncbits = 128,
125		}
126	},
127
128	.pfkey_supported = 1,
129
130	.desc = {
131		.sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
132		.sadb_alg_ivlen = 8,
133		.sadb_alg_minbits = 128,
134		.sadb_alg_maxbits = 256
135	}
136},
137{
138	.name = "rfc4543(gcm(aes))",
139
140	.uinfo = {
141		.aead = {
142			.icv_truncbits = 128,
143		}
144	},
145
146	.pfkey_supported = 1,
147
148	.desc = {
149		.sadb_alg_id = SADB_X_EALG_NULL_AES_GMAC,
150		.sadb_alg_ivlen = 8,
151		.sadb_alg_minbits = 128,
152		.sadb_alg_maxbits = 256
153	}
154},
155};
156
157static struct xfrm_algo_desc aalg_list[] = {
158{
159	.name = "digest_null",
160
161	.uinfo = {
162		.auth = {
163			.icv_truncbits = 0,
164			.icv_fullbits = 0,
165		}
166	},
167
168	.pfkey_supported = 1,
169
170	.desc = {
171		.sadb_alg_id = SADB_X_AALG_NULL,
172		.sadb_alg_ivlen = 0,
173		.sadb_alg_minbits = 0,
174		.sadb_alg_maxbits = 0
175	}
176},
177{
178	.name = "hmac(md5)",
179	.compat = "md5",
180
181	.uinfo = {
182		.auth = {
183			.icv_truncbits = 96,
184			.icv_fullbits = 128,
185		}
186	},
187
188	.pfkey_supported = 1,
189
190	.desc = {
191		.sadb_alg_id = SADB_AALG_MD5HMAC,
192		.sadb_alg_ivlen = 0,
193		.sadb_alg_minbits = 128,
194		.sadb_alg_maxbits = 128
195	}
196},
197{
198	.name = "hmac(sha1)",
199	.compat = "sha1",
200
201	.uinfo = {
202		.auth = {
203			.icv_truncbits = 96,
204			.icv_fullbits = 160,
205		}
206	},
207
208	.pfkey_supported = 1,
209
210	.desc = {
211		.sadb_alg_id = SADB_AALG_SHA1HMAC,
212		.sadb_alg_ivlen = 0,
213		.sadb_alg_minbits = 160,
214		.sadb_alg_maxbits = 160
215	}
216},
217{
218	.name = "hmac(sha256)",
219	.compat = "sha256",
220
221	.uinfo = {
222		.auth = {
223			.icv_truncbits = 96,
224			.icv_fullbits = 256,
225		}
226	},
227
228	.pfkey_supported = 1,
229
230	.desc = {
231		.sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
232		.sadb_alg_ivlen = 0,
233		.sadb_alg_minbits = 256,
234		.sadb_alg_maxbits = 256
235	}
236},
237{
238	.name = "hmac(sha384)",
239
240	.uinfo = {
241		.auth = {
242			.icv_truncbits = 192,
243			.icv_fullbits = 384,
244		}
245	},
246
247	.pfkey_supported = 1,
248
249	.desc = {
250		.sadb_alg_id = SADB_X_AALG_SHA2_384HMAC,
251		.sadb_alg_ivlen = 0,
252		.sadb_alg_minbits = 384,
253		.sadb_alg_maxbits = 384
254	}
255},
256{
257	.name = "hmac(sha512)",
258
259	.uinfo = {
260		.auth = {
261			.icv_truncbits = 256,
262			.icv_fullbits = 512,
263		}
264	},
265
266	.pfkey_supported = 1,
267
268	.desc = {
269		.sadb_alg_id = SADB_X_AALG_SHA2_512HMAC,
270		.sadb_alg_ivlen = 0,
271		.sadb_alg_minbits = 512,
272		.sadb_alg_maxbits = 512
273	}
274},
275{
276	.name = "hmac(rmd160)",
277	.compat = "rmd160",
278
279	.uinfo = {
280		.auth = {
281			.icv_truncbits = 96,
282			.icv_fullbits = 160,
283		}
284	},
285
286	.pfkey_supported = 1,
287
288	.desc = {
289		.sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
290		.sadb_alg_ivlen = 0,
291		.sadb_alg_minbits = 160,
292		.sadb_alg_maxbits = 160
293	}
294},
295{
296	.name = "xcbc(aes)",
297
298	.uinfo = {
299		.auth = {
300			.icv_truncbits = 96,
301			.icv_fullbits = 128,
302		}
303	},
304
305	.pfkey_supported = 1,
306
307	.desc = {
308		.sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
309		.sadb_alg_ivlen = 0,
310		.sadb_alg_minbits = 128,
311		.sadb_alg_maxbits = 128
312	}
313},
314{
315	/* rfc4494 */
316	.name = "cmac(aes)",
317
318	.uinfo = {
319		.auth = {
320			.icv_truncbits = 96,
321			.icv_fullbits = 128,
322		}
323	},
324
325	.pfkey_supported = 0,
326},
327};
328
329static struct xfrm_algo_desc ealg_list[] = {
330{
331	.name = "ecb(cipher_null)",
332	.compat = "cipher_null",
333
334	.uinfo = {
335		.encr = {
336			.blockbits = 8,
337			.defkeybits = 0,
338		}
339	},
340
341	.pfkey_supported = 1,
342
343	.desc = {
344		.sadb_alg_id =	SADB_EALG_NULL,
345		.sadb_alg_ivlen = 0,
346		.sadb_alg_minbits = 0,
347		.sadb_alg_maxbits = 0
348	}
349},
350{
351	.name = "cbc(des)",
352	.compat = "des",
353
354	.uinfo = {
355		.encr = {
356			.blockbits = 64,
357			.defkeybits = 64,
358		}
359	},
360
361	.pfkey_supported = 1,
362
363	.desc = {
364		.sadb_alg_id = SADB_EALG_DESCBC,
365		.sadb_alg_ivlen = 8,
366		.sadb_alg_minbits = 64,
367		.sadb_alg_maxbits = 64
368	}
369},
370{
371	.name = "cbc(des3_ede)",
372	.compat = "des3_ede",
373
374	.uinfo = {
375		.encr = {
376			.blockbits = 64,
377			.defkeybits = 192,
378		}
379	},
380
381	.pfkey_supported = 1,
382
383	.desc = {
384		.sadb_alg_id = SADB_EALG_3DESCBC,
385		.sadb_alg_ivlen = 8,
386		.sadb_alg_minbits = 192,
387		.sadb_alg_maxbits = 192
388	}
389},
390{
391	.name = "cbc(cast5)",
392	.compat = "cast5",
393
394	.uinfo = {
395		.encr = {
396			.blockbits = 64,
397			.defkeybits = 128,
398		}
399	},
400
401	.pfkey_supported = 1,
402
403	.desc = {
404		.sadb_alg_id = SADB_X_EALG_CASTCBC,
405		.sadb_alg_ivlen = 8,
406		.sadb_alg_minbits = 40,
407		.sadb_alg_maxbits = 128
408	}
409},
410{
411	.name = "cbc(blowfish)",
412	.compat = "blowfish",
413
414	.uinfo = {
415		.encr = {
416			.blockbits = 64,
417			.defkeybits = 128,
418		}
419	},
420
421	.pfkey_supported = 1,
422
423	.desc = {
424		.sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
425		.sadb_alg_ivlen = 8,
426		.sadb_alg_minbits = 40,
427		.sadb_alg_maxbits = 448
428	}
429},
430{
431	.name = "cbc(aes)",
432	.compat = "aes",
433
434	.uinfo = {
435		.encr = {
436			.blockbits = 128,
437			.defkeybits = 128,
438		}
439	},
440
441	.pfkey_supported = 1,
442
443	.desc = {
444		.sadb_alg_id = SADB_X_EALG_AESCBC,
445		.sadb_alg_ivlen = 8,
446		.sadb_alg_minbits = 128,
447		.sadb_alg_maxbits = 256
448	}
449},
450{
451	.name = "cbc(serpent)",
452	.compat = "serpent",
453
454	.uinfo = {
455		.encr = {
456			.blockbits = 128,
457			.defkeybits = 128,
458		}
459	},
460
461	.pfkey_supported = 1,
462
463	.desc = {
464		.sadb_alg_id = SADB_X_EALG_SERPENTCBC,
465		.sadb_alg_ivlen = 8,
466		.sadb_alg_minbits = 128,
467		.sadb_alg_maxbits = 256,
468	}
469},
470{
471	.name = "cbc(camellia)",
472	.compat = "camellia",
473
474	.uinfo = {
475		.encr = {
476			.blockbits = 128,
477			.defkeybits = 128,
478		}
479	},
480
481	.pfkey_supported = 1,
482
483	.desc = {
484		.sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
485		.sadb_alg_ivlen = 8,
486		.sadb_alg_minbits = 128,
487		.sadb_alg_maxbits = 256
488	}
489},
490{
491	.name = "cbc(twofish)",
492	.compat = "twofish",
493
494	.uinfo = {
495		.encr = {
496			.blockbits = 128,
497			.defkeybits = 128,
498		}
499	},
500
501	.pfkey_supported = 1,
502
503	.desc = {
504		.sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
505		.sadb_alg_ivlen = 8,
506		.sadb_alg_minbits = 128,
507		.sadb_alg_maxbits = 256
508	}
509},
510{
511	.name = "rfc3686(ctr(aes))",
512
513	.uinfo = {
514		.encr = {
515			.blockbits = 128,
516			.defkeybits = 160, /* 128-bit key + 32-bit nonce */
517		}
518	},
519
520	.pfkey_supported = 1,
521
522	.desc = {
523		.sadb_alg_id = SADB_X_EALG_AESCTR,
524		.sadb_alg_ivlen	= 8,
525		.sadb_alg_minbits = 160,
526		.sadb_alg_maxbits = 288
527	}
528},
529};
530
531static struct xfrm_algo_desc calg_list[] = {
532{
533	.name = "deflate",
534	.uinfo = {
535		.comp = {
536			.threshold = 90,
537		}
538	},
539	.pfkey_supported = 1,
540	.desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
541},
542{
543	.name = "lzs",
544	.uinfo = {
545		.comp = {
546			.threshold = 90,
547		}
548	},
549	.pfkey_supported = 1,
550	.desc = { .sadb_alg_id = SADB_X_CALG_LZS }
551},
552{
553	.name = "lzjh",
554	.uinfo = {
555		.comp = {
556			.threshold = 50,
557		}
558	},
559	.pfkey_supported = 1,
560	.desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
561},
562};
563
564static inline int aead_entries(void)
565{
566	return ARRAY_SIZE(aead_list);
567}
568
569static inline int aalg_entries(void)
570{
571	return ARRAY_SIZE(aalg_list);
572}
573
574static inline int ealg_entries(void)
575{
576	return ARRAY_SIZE(ealg_list);
577}
578
579static inline int calg_entries(void)
580{
581	return ARRAY_SIZE(calg_list);
582}
583
584struct xfrm_algo_list {
585	struct xfrm_algo_desc *algs;
586	int entries;
587	u32 type;
588	u32 mask;
589};
590
591static const struct xfrm_algo_list xfrm_aead_list = {
592	.algs = aead_list,
593	.entries = ARRAY_SIZE(aead_list),
594	.type = CRYPTO_ALG_TYPE_AEAD,
595	.mask = CRYPTO_ALG_TYPE_MASK,
596};
597
598static const struct xfrm_algo_list xfrm_aalg_list = {
599	.algs = aalg_list,
600	.entries = ARRAY_SIZE(aalg_list),
601	.type = CRYPTO_ALG_TYPE_HASH,
602	.mask = CRYPTO_ALG_TYPE_HASH_MASK,
603};
604
605static const struct xfrm_algo_list xfrm_ealg_list = {
606	.algs = ealg_list,
607	.entries = ARRAY_SIZE(ealg_list),
608	.type = CRYPTO_ALG_TYPE_BLKCIPHER,
609	.mask = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
610};
611
612static const struct xfrm_algo_list xfrm_calg_list = {
613	.algs = calg_list,
614	.entries = ARRAY_SIZE(calg_list),
615	.type = CRYPTO_ALG_TYPE_COMPRESS,
616	.mask = CRYPTO_ALG_TYPE_MASK,
617};
618
619static struct xfrm_algo_desc *xfrm_find_algo(
620	const struct xfrm_algo_list *algo_list,
621	int match(const struct xfrm_algo_desc *entry, const void *data),
622	const void *data, int probe)
623{
624	struct xfrm_algo_desc *list = algo_list->algs;
625	int i, status;
626
627	for (i = 0; i < algo_list->entries; i++) {
628		if (!match(list + i, data))
629			continue;
630
631		if (list[i].available)
632			return &list[i];
633
634		if (!probe)
635			break;
636
637		status = crypto_has_alg(list[i].name, algo_list->type,
638					algo_list->mask);
639		if (!status)
640			break;
641
642		list[i].available = status;
643		return &list[i];
644	}
645	return NULL;
646}
647
648static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
649			     const void *data)
650{
651	return entry->desc.sadb_alg_id == (unsigned long)data;
652}
653
654struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
655{
656	return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
657			      (void *)(unsigned long)alg_id, 1);
658}
659EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
660
661struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
662{
663	return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
664			      (void *)(unsigned long)alg_id, 1);
665}
666EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
667
668struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
669{
670	return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
671			      (void *)(unsigned long)alg_id, 1);
672}
673EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
674
675static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
676			       const void *data)
677{
678	const char *name = data;
679
680	return name && (!strcmp(name, entry->name) ||
681			(entry->compat && !strcmp(name, entry->compat)));
682}
683
684struct xfrm_algo_desc *xfrm_aalg_get_byname(const char *name, int probe)
685{
686	return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
687			      probe);
688}
689EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
690
691struct xfrm_algo_desc *xfrm_ealg_get_byname(const char *name, int probe)
692{
693	return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
694			      probe);
695}
696EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
697
698struct xfrm_algo_desc *xfrm_calg_get_byname(const char *name, int probe)
699{
700	return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
701			      probe);
702}
703EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
704
705struct xfrm_aead_name {
706	const char *name;
707	int icvbits;
708};
709
710static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
711				const void *data)
712{
713	const struct xfrm_aead_name *aead = data;
714	const char *name = aead->name;
715
716	return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
717	       !strcmp(name, entry->name);
718}
719
720struct xfrm_algo_desc *xfrm_aead_get_byname(const char *name, int icv_len, int probe)
721{
722	struct xfrm_aead_name data = {
723		.name = name,
724		.icvbits = icv_len,
725	};
726
727	return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
728			      probe);
729}
730EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
731
732struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
733{
734	if (idx >= aalg_entries())
735		return NULL;
736
737	return &aalg_list[idx];
738}
739EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
740
741struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
742{
743	if (idx >= ealg_entries())
744		return NULL;
745
746	return &ealg_list[idx];
747}
748EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
749
750/*
751 * Probe for the availability of crypto algorithms, and set the available
752 * flag for any algorithms found on the system.  This is typically called by
753 * pfkey during userspace SA add, update or register.
754 */
755void xfrm_probe_algs(void)
756{
757	int i, status;
758
759	BUG_ON(in_softirq());
760
761	for (i = 0; i < aalg_entries(); i++) {
762		status = crypto_has_hash(aalg_list[i].name, 0,
763					 CRYPTO_ALG_ASYNC);
764		if (aalg_list[i].available != status)
765			aalg_list[i].available = status;
766	}
767
768	for (i = 0; i < ealg_entries(); i++) {
769		status = crypto_has_ablkcipher(ealg_list[i].name, 0, 0);
 
770		if (ealg_list[i].available != status)
771			ealg_list[i].available = status;
772	}
773
774	for (i = 0; i < calg_entries(); i++) {
775		status = crypto_has_comp(calg_list[i].name, 0,
776					 CRYPTO_ALG_ASYNC);
777		if (calg_list[i].available != status)
778			calg_list[i].available = status;
779	}
780}
781EXPORT_SYMBOL_GPL(xfrm_probe_algs);
782
783int xfrm_count_pfkey_auth_supported(void)
784{
785	int i, n;
786
787	for (i = 0, n = 0; i < aalg_entries(); i++)
788		if (aalg_list[i].available && aalg_list[i].pfkey_supported)
789			n++;
790	return n;
791}
792EXPORT_SYMBOL_GPL(xfrm_count_pfkey_auth_supported);
793
794int xfrm_count_pfkey_enc_supported(void)
795{
796	int i, n;
797
798	for (i = 0, n = 0; i < ealg_entries(); i++)
799		if (ealg_list[i].available && ealg_list[i].pfkey_supported)
800			n++;
801	return n;
802}
803EXPORT_SYMBOL_GPL(xfrm_count_pfkey_enc_supported);
 
 
804
805MODULE_LICENSE("GPL");