Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * net/sched/sch_netem.c	Network emulator
  3 *
  4 * 		This program is free software; you can redistribute it and/or
  5 * 		modify it under the terms of the GNU General Public License
  6 * 		as published by the Free Software Foundation; either version
  7 * 		2 of the License.
  8 *
  9 *  		Many of the algorithms and ideas for this came from
 10 *		NIST Net which is not copyrighted.
 11 *
 12 * Authors:	Stephen Hemminger <shemminger@osdl.org>
 13 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
 14 */
 15
 16#include <linux/mm.h>
 17#include <linux/module.h>
 18#include <linux/slab.h>
 19#include <linux/types.h>
 20#include <linux/kernel.h>
 21#include <linux/errno.h>
 22#include <linux/skbuff.h>
 23#include <linux/vmalloc.h>
 24#include <linux/rtnetlink.h>
 
 
 25
 26#include <net/netlink.h>
 27#include <net/pkt_sched.h>
 
 28
 29#define VERSION "1.3"
 30
 31/*	Network Emulation Queuing algorithm.
 32	====================================
 33
 34	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
 35		 Network Emulation Tool
 36		 [2] Luigi Rizzo, DummyNet for FreeBSD
 37
 38	 ----------------------------------------------------------------
 39
 40	 This started out as a simple way to delay outgoing packets to
 41	 test TCP but has grown to include most of the functionality
 42	 of a full blown network emulator like NISTnet. It can delay
 43	 packets and add random jitter (and correlation). The random
 44	 distribution can be loaded from a table as well to provide
 45	 normal, Pareto, or experimental curves. Packet loss,
 46	 duplication, and reordering can also be emulated.
 47
 48	 This qdisc does not do classification that can be handled in
 49	 layering other disciplines.  It does not need to do bandwidth
 50	 control either since that can be handled by using token
 51	 bucket or other rate control.
 52
 53     Correlated Loss Generator models
 54
 55	Added generation of correlated loss according to the
 56	"Gilbert-Elliot" model, a 4-state markov model.
 57
 58	References:
 59	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
 60	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
 61	and intuitive loss model for packet networks and its implementation
 62	in the Netem module in the Linux kernel", available in [1]
 63
 64	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
 65		 Fabio Ludovici <fabio.ludovici at yahoo.it>
 66*/
 67
 68struct netem_sched_data {
 
 
 
 
 69	struct Qdisc	*qdisc;
 
 70	struct qdisc_watchdog watchdog;
 71
 72	psched_tdiff_t latency;
 73	psched_tdiff_t jitter;
 74
 75	u32 loss;
 
 76	u32 limit;
 77	u32 counter;
 78	u32 gap;
 79	u32 duplicate;
 80	u32 reorder;
 81	u32 corrupt;
 
 
 
 
 
 82
 83	struct crndstate {
 84		u32 last;
 85		u32 rho;
 86	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
 87
 88	struct disttable {
 89		u32  size;
 90		s16 table[0];
 91	} *delay_dist;
 92
 93	enum  {
 94		CLG_RANDOM,
 95		CLG_4_STATES,
 96		CLG_GILB_ELL,
 97	} loss_model;
 98
 
 
 
 
 
 
 
 
 
 
 
 
 99	/* Correlated Loss Generation models */
100	struct clgstate {
101		/* state of the Markov chain */
102		u8 state;
103
104		/* 4-states and Gilbert-Elliot models */
105		u32 a1;	/* p13 for 4-states or p for GE */
106		u32 a2;	/* p31 for 4-states or r for GE */
107		u32 a3;	/* p32 for 4-states or h for GE */
108		u32 a4;	/* p14 for 4-states or 1-k for GE */
109		u32 a5; /* p23 used only in 4-states */
110	} clg;
111
112};
113
114/* Time stamp put into socket buffer control block */
 
 
115struct netem_skb_cb {
116	psched_time_t	time_to_send;
 
117};
118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
120{
121	BUILD_BUG_ON(sizeof(skb->cb) <
122		sizeof(struct qdisc_skb_cb) + sizeof(struct netem_skb_cb));
123	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
124}
125
126/* init_crandom - initialize correlated random number generator
127 * Use entropy source for initial seed.
128 */
129static void init_crandom(struct crndstate *state, unsigned long rho)
130{
131	state->rho = rho;
132	state->last = net_random();
133}
134
135/* get_crandom - correlated random number generator
136 * Next number depends on last value.
137 * rho is scaled to avoid floating point.
138 */
139static u32 get_crandom(struct crndstate *state)
140{
141	u64 value, rho;
142	unsigned long answer;
143
144	if (state->rho == 0)	/* no correlation */
145		return net_random();
146
147	value = net_random();
148	rho = (u64)state->rho + 1;
149	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
150	state->last = answer;
151	return answer;
152}
153
154/* loss_4state - 4-state model loss generator
155 * Generates losses according to the 4-state Markov chain adopted in
156 * the GI (General and Intuitive) loss model.
157 */
158static bool loss_4state(struct netem_sched_data *q)
159{
160	struct clgstate *clg = &q->clg;
161	u32 rnd = net_random();
162
163	/*
164	 * Makes a comparison between rnd and the transition
165	 * probabilities outgoing from the current state, then decides the
166	 * next state and if the next packet has to be transmitted or lost.
167	 * The four states correspond to:
168	 *   1 => successfully transmitted packets within a gap period
169	 *   4 => isolated losses within a gap period
170	 *   3 => lost packets within a burst period
171	 *   2 => successfully transmitted packets within a burst period
172	 */
173	switch (clg->state) {
174	case 1:
175		if (rnd < clg->a4) {
176			clg->state = 4;
177			return true;
178		} else if (clg->a4 < rnd && rnd < clg->a1) {
179			clg->state = 3;
180			return true;
181		} else if (clg->a1 < rnd)
182			clg->state = 1;
 
183
184		break;
185	case 2:
186		if (rnd < clg->a5) {
187			clg->state = 3;
188			return true;
189		} else
190			clg->state = 2;
 
191
192		break;
193	case 3:
194		if (rnd < clg->a3)
195			clg->state = 2;
196		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
197			clg->state = 1;
198			return true;
199		} else if (clg->a2 + clg->a3 < rnd) {
200			clg->state = 3;
201			return true;
202		}
203		break;
204	case 4:
205		clg->state = 1;
206		break;
207	}
208
209	return false;
210}
211
212/* loss_gilb_ell - Gilbert-Elliot model loss generator
213 * Generates losses according to the Gilbert-Elliot loss model or
214 * its special cases  (Gilbert or Simple Gilbert)
215 *
216 * Makes a comparison between random number and the transition
217 * probabilities outgoing from the current state, then decides the
218 * next state. A second random number is extracted and the comparison
219 * with the loss probability of the current state decides if the next
220 * packet will be transmitted or lost.
221 */
222static bool loss_gilb_ell(struct netem_sched_data *q)
223{
224	struct clgstate *clg = &q->clg;
225
226	switch (clg->state) {
227	case 1:
228		if (net_random() < clg->a1)
229			clg->state = 2;
230		if (net_random() < clg->a4)
231			return true;
232	case 2:
233		if (net_random() < clg->a2)
234			clg->state = 1;
235		if (clg->a3 > net_random())
 
236			return true;
237	}
238
239	return false;
240}
241
242static bool loss_event(struct netem_sched_data *q)
243{
244	switch (q->loss_model) {
245	case CLG_RANDOM:
246		/* Random packet drop 0 => none, ~0 => all */
247		return q->loss && q->loss >= get_crandom(&q->loss_cor);
248
249	case CLG_4_STATES:
250		/* 4state loss model algorithm (used also for GI model)
251		* Extracts a value from the markov 4 state loss generator,
252		* if it is 1 drops a packet and if needed writes the event in
253		* the kernel logs
254		*/
255		return loss_4state(q);
256
257	case CLG_GILB_ELL:
258		/* Gilbert-Elliot loss model algorithm
259		* Extracts a value from the Gilbert-Elliot loss generator,
260		* if it is 1 drops a packet and if needed writes the event in
261		* the kernel logs
262		*/
263		return loss_gilb_ell(q);
264	}
265
266	return false;	/* not reached */
267}
268
269
270/* tabledist - return a pseudo-randomly distributed value with mean mu and
271 * std deviation sigma.  Uses table lookup to approximate the desired
272 * distribution, and a uniformly-distributed pseudo-random source.
273 */
274static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
275				struct crndstate *state,
276				const struct disttable *dist)
277{
278	psched_tdiff_t x;
279	long t;
280	u32 rnd;
281
282	if (sigma == 0)
283		return mu;
284
285	rnd = get_crandom(state);
286
287	/* default uniform distribution */
288	if (dist == NULL)
289		return (rnd % (2*sigma)) - sigma + mu;
290
291	t = dist->table[rnd % dist->size];
292	x = (sigma % NETEM_DIST_SCALE) * t;
293	if (x >= 0)
294		x += NETEM_DIST_SCALE/2;
295	else
296		x -= NETEM_DIST_SCALE/2;
297
298	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
299}
300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301/*
302 * Insert one skb into qdisc.
303 * Note: parent depends on return value to account for queue length.
304 * 	NET_XMIT_DROP: queue length didn't change.
305 *      NET_XMIT_SUCCESS: one skb was queued.
306 */
307static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
308{
309	struct netem_sched_data *q = qdisc_priv(sch);
310	/* We don't fill cb now as skb_unshare() may invalidate it */
311	struct netem_skb_cb *cb;
312	struct sk_buff *skb2;
313	int ret;
314	int count = 1;
315
316	/* Random duplication */
317	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
318		++count;
319
320	/* Drop packet? */
321	if (loss_event(q))
322		--count;
323
 
 
 
324	if (count == 0) {
325		sch->qstats.drops++;
326		kfree_skb(skb);
327		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
328	}
329
330	skb_orphan(skb);
 
 
 
 
331
332	/*
333	 * If we need to duplicate packet, then re-insert at top of the
334	 * qdisc tree, since parent queuer expects that only one
335	 * skb will be queued.
336	 */
337	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
338		struct Qdisc *rootq = qdisc_root(sch);
339		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
340		q->duplicate = 0;
341
342		qdisc_enqueue_root(skb2, rootq);
343		q->duplicate = dupsave;
344	}
345
346	/*
347	 * Randomized packet corruption.
348	 * Make copy if needed since we are modifying
349	 * If packet is going to be hardware checksummed, then
350	 * do it now in software before we mangle it.
351	 */
352	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
353		if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
354		    (skb->ip_summed == CHECKSUM_PARTIAL &&
355		     skb_checksum_help(skb))) {
356			sch->qstats.drops++;
357			return NET_XMIT_DROP;
358		}
359
360		skb->data[net_random() % skb_headlen(skb)] ^= 1<<(net_random() % 8);
 
361	}
362
 
 
 
 
 
363	cb = netem_skb_cb(skb);
364	if (q->gap == 0 ||		/* not doing reordering */
365	    q->counter < q->gap ||	/* inside last reordering gap */
366	    q->reorder < get_crandom(&q->reorder_cor)) {
367		psched_time_t now;
368		psched_tdiff_t delay;
369
370		delay = tabledist(q->latency, q->jitter,
371				  &q->delay_cor, q->delay_dist);
372
373		now = psched_get_time();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374		cb->time_to_send = now + delay;
 
375		++q->counter;
376		ret = qdisc_enqueue(skb, q->qdisc);
377	} else {
378		/*
379		 * Do re-ordering by putting one out of N packets at the front
380		 * of the queue.
381		 */
382		cb->time_to_send = psched_get_time();
383		q->counter = 0;
384
385		__skb_queue_head(&q->qdisc->q, skb);
386		q->qdisc->qstats.backlog += qdisc_pkt_len(skb);
387		q->qdisc->qstats.requeues++;
388		ret = NET_XMIT_SUCCESS;
389	}
390
391	if (ret != NET_XMIT_SUCCESS) {
392		if (net_xmit_drop_count(ret)) {
393			sch->qstats.drops++;
394			return ret;
395		}
396	}
397
398	sch->q.qlen++;
399	return NET_XMIT_SUCCESS;
400}
401
402static unsigned int netem_drop(struct Qdisc *sch)
403{
404	struct netem_sched_data *q = qdisc_priv(sch);
405	unsigned int len = 0;
406
407	if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
408		sch->q.qlen--;
409		sch->qstats.drops++;
 
 
 
 
 
 
 
 
 
 
 
 
 
410	}
 
 
 
 
 
411	return len;
412}
413
414static struct sk_buff *netem_dequeue(struct Qdisc *sch)
415{
416	struct netem_sched_data *q = qdisc_priv(sch);
417	struct sk_buff *skb;
 
418
419	if (qdisc_is_throttled(sch))
420		return NULL;
421
422	skb = q->qdisc->ops->peek(q->qdisc);
 
423	if (skb) {
424		const struct netem_skb_cb *cb = netem_skb_cb(skb);
425		psched_time_t now = psched_get_time();
 
 
 
 
 
 
 
 
 
426
427		/* if more time remaining? */
428		if (cb->time_to_send <= now) {
429			skb = qdisc_dequeue_peeked(q->qdisc);
430			if (unlikely(!skb))
431				return NULL;
 
 
 
 
432
433#ifdef CONFIG_NET_CLS_ACT
434			/*
435			 * If it's at ingress let's pretend the delay is
436			 * from the network (tstamp will be updated).
437			 */
438			if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
439				skb->tstamp.tv64 = 0;
440#endif
441
442			sch->q.qlen--;
443			qdisc_unthrottled(sch);
444			qdisc_bstats_update(sch, skb);
445			return skb;
 
 
 
 
 
 
 
 
446		}
447
448		qdisc_watchdog_schedule(&q->watchdog, cb->time_to_send);
 
 
 
 
 
449	}
450
 
 
 
 
 
451	return NULL;
452}
453
454static void netem_reset(struct Qdisc *sch)
455{
456	struct netem_sched_data *q = qdisc_priv(sch);
457
458	qdisc_reset(q->qdisc);
459	sch->q.qlen = 0;
 
 
460	qdisc_watchdog_cancel(&q->watchdog);
461}
462
463static void dist_free(struct disttable *d)
464{
465	if (d) {
466		if (is_vmalloc_addr(d))
467			vfree(d);
468		else
469			kfree(d);
470	}
471}
472
473/*
474 * Distribution data is a variable size payload containing
475 * signed 16 bit values.
476 */
477static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
478{
479	struct netem_sched_data *q = qdisc_priv(sch);
480	size_t n = nla_len(attr)/sizeof(__s16);
481	const __s16 *data = nla_data(attr);
482	spinlock_t *root_lock;
483	struct disttable *d;
484	int i;
485	size_t s;
486
487	if (n > NETEM_DIST_MAX)
488		return -EINVAL;
489
490	s = sizeof(struct disttable) + n * sizeof(s16);
491	d = kmalloc(s, GFP_KERNEL);
492	if (!d)
493		d = vmalloc(s);
494	if (!d)
495		return -ENOMEM;
496
497	d->size = n;
498	for (i = 0; i < n; i++)
499		d->table[i] = data[i];
500
501	root_lock = qdisc_root_sleeping_lock(sch);
502
503	spin_lock_bh(root_lock);
504	dist_free(q->delay_dist);
505	q->delay_dist = d;
506	spin_unlock_bh(root_lock);
 
 
507	return 0;
508}
509
510static void get_correlation(struct Qdisc *sch, const struct nlattr *attr)
511{
512	struct netem_sched_data *q = qdisc_priv(sch);
513	const struct tc_netem_corr *c = nla_data(attr);
514
515	init_crandom(&q->delay_cor, c->delay_corr);
516	init_crandom(&q->loss_cor, c->loss_corr);
517	init_crandom(&q->dup_cor, c->dup_corr);
518}
519
520static void get_reorder(struct Qdisc *sch, const struct nlattr *attr)
521{
522	struct netem_sched_data *q = qdisc_priv(sch);
523	const struct tc_netem_reorder *r = nla_data(attr);
524
525	q->reorder = r->probability;
526	init_crandom(&q->reorder_cor, r->correlation);
527}
528
529static void get_corrupt(struct Qdisc *sch, const struct nlattr *attr)
530{
531	struct netem_sched_data *q = qdisc_priv(sch);
532	const struct tc_netem_corrupt *r = nla_data(attr);
533
534	q->corrupt = r->probability;
535	init_crandom(&q->corrupt_cor, r->correlation);
536}
537
538static int get_loss_clg(struct Qdisc *sch, const struct nlattr *attr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
539{
540	struct netem_sched_data *q = qdisc_priv(sch);
541	const struct nlattr *la;
542	int rem;
543
544	nla_for_each_nested(la, attr, rem) {
545		u16 type = nla_type(la);
546
547		switch(type) {
548		case NETEM_LOSS_GI: {
549			const struct tc_netem_gimodel *gi = nla_data(la);
550
551			if (nla_len(la) != sizeof(struct tc_netem_gimodel)) {
552				pr_info("netem: incorrect gi model size\n");
553				return -EINVAL;
554			}
555
556			q->loss_model = CLG_4_STATES;
557
558			q->clg.state = 1;
559			q->clg.a1 = gi->p13;
560			q->clg.a2 = gi->p31;
561			q->clg.a3 = gi->p32;
562			q->clg.a4 = gi->p14;
563			q->clg.a5 = gi->p23;
564			break;
565		}
566
567		case NETEM_LOSS_GE: {
568			const struct tc_netem_gemodel *ge = nla_data(la);
569
570			if (nla_len(la) != sizeof(struct tc_netem_gemodel)) {
571				pr_info("netem: incorrect gi model size\n");
572				return -EINVAL;
573			}
574
575			q->loss_model = CLG_GILB_ELL;
576			q->clg.state = 1;
577			q->clg.a1 = ge->p;
578			q->clg.a2 = ge->r;
579			q->clg.a3 = ge->h;
580			q->clg.a4 = ge->k1;
581			break;
582		}
583
584		default:
585			pr_info("netem: unknown loss type %u\n", type);
586			return -EINVAL;
587		}
588	}
589
590	return 0;
591}
592
593static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
594	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
595	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
596	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
 
597	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
 
 
598};
599
600static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
601		      const struct nla_policy *policy, int len)
602{
603	int nested_len = nla_len(nla) - NLA_ALIGN(len);
604
605	if (nested_len < 0) {
606		pr_info("netem: invalid attributes len %d\n", nested_len);
607		return -EINVAL;
608	}
609
610	if (nested_len >= nla_attr_size(0))
611		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
612				 nested_len, policy);
613
614	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
615	return 0;
616}
617
618/* Parse netlink message to set options */
619static int netem_change(struct Qdisc *sch, struct nlattr *opt)
620{
621	struct netem_sched_data *q = qdisc_priv(sch);
622	struct nlattr *tb[TCA_NETEM_MAX + 1];
623	struct tc_netem_qopt *qopt;
 
 
624	int ret;
625
626	if (opt == NULL)
627		return -EINVAL;
628
629	qopt = nla_data(opt);
630	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
631	if (ret < 0)
632		return ret;
633
634	ret = fifo_set_limit(q->qdisc, qopt->limit);
635	if (ret) {
636		pr_info("netem: can't set fifo limit\n");
637		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
638	}
639
 
 
640	q->latency = qopt->latency;
641	q->jitter = qopt->jitter;
642	q->limit = qopt->limit;
643	q->gap = qopt->gap;
644	q->counter = 0;
645	q->loss = qopt->loss;
646	q->duplicate = qopt->duplicate;
647
648	/* for compatibility with earlier versions.
649	 * if gap is set, need to assume 100% probability
650	 */
651	if (q->gap)
652		q->reorder = ~0;
653
654	if (tb[TCA_NETEM_CORR])
655		get_correlation(sch, tb[TCA_NETEM_CORR]);
656
657	if (tb[TCA_NETEM_DELAY_DIST]) {
658		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
659		if (ret)
660			return ret;
661	}
662
663	if (tb[TCA_NETEM_REORDER])
664		get_reorder(sch, tb[TCA_NETEM_REORDER]);
665
666	if (tb[TCA_NETEM_CORRUPT])
667		get_corrupt(sch, tb[TCA_NETEM_CORRUPT]);
668
669	q->loss_model = CLG_RANDOM;
670	if (tb[TCA_NETEM_LOSS])
671		ret = get_loss_clg(sch, tb[TCA_NETEM_LOSS]);
672
673	return ret;
674}
675
676/*
677 * Special case version of FIFO queue for use by netem.
678 * It queues in order based on timestamps in skb's
679 */
680struct fifo_sched_data {
681	u32 limit;
682	psched_time_t oldest;
683};
684
685static int tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
686{
687	struct fifo_sched_data *q = qdisc_priv(sch);
688	struct sk_buff_head *list = &sch->q;
689	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
690	struct sk_buff *skb;
691
692	if (likely(skb_queue_len(list) < q->limit)) {
693		/* Optimize for add at tail */
694		if (likely(skb_queue_empty(list) || tnext >= q->oldest)) {
695			q->oldest = tnext;
696			return qdisc_enqueue_tail(nskb, sch);
697		}
698
699		skb_queue_reverse_walk(list, skb) {
700			const struct netem_skb_cb *cb = netem_skb_cb(skb);
 
701
702			if (tnext >= cb->time_to_send)
703				break;
704		}
705
706		__skb_queue_after(list, skb, nskb);
707
708		sch->qstats.backlog += qdisc_pkt_len(nskb);
709
710		return NET_XMIT_SUCCESS;
711	}
712
713	return qdisc_reshape_fail(nskb, sch);
714}
715
716static int tfifo_init(struct Qdisc *sch, struct nlattr *opt)
717{
718	struct fifo_sched_data *q = qdisc_priv(sch);
719
720	if (opt) {
721		struct tc_fifo_qopt *ctl = nla_data(opt);
722		if (nla_len(opt) < sizeof(*ctl))
723			return -EINVAL;
724
725		q->limit = ctl->limit;
726	} else
727		q->limit = max_t(u32, qdisc_dev(sch)->tx_queue_len, 1);
728
729	q->oldest = PSCHED_PASTPERFECT;
730	return 0;
731}
732
733static int tfifo_dump(struct Qdisc *sch, struct sk_buff *skb)
734{
735	struct fifo_sched_data *q = qdisc_priv(sch);
736	struct tc_fifo_qopt opt = { .limit = q->limit };
737
738	NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
739	return skb->len;
740
741nla_put_failure:
742	return -1;
743}
744
745static struct Qdisc_ops tfifo_qdisc_ops __read_mostly = {
746	.id		=	"tfifo",
747	.priv_size	=	sizeof(struct fifo_sched_data),
748	.enqueue	=	tfifo_enqueue,
749	.dequeue	=	qdisc_dequeue_head,
750	.peek		=	qdisc_peek_head,
751	.drop		=	qdisc_queue_drop,
752	.init		=	tfifo_init,
753	.reset		=	qdisc_reset_queue,
754	.change		=	tfifo_init,
755	.dump		=	tfifo_dump,
756};
757
758static int netem_init(struct Qdisc *sch, struct nlattr *opt)
759{
760	struct netem_sched_data *q = qdisc_priv(sch);
761	int ret;
762
763	if (!opt)
764		return -EINVAL;
765
766	qdisc_watchdog_init(&q->watchdog, sch);
767
768	q->loss_model = CLG_RANDOM;
769	q->qdisc = qdisc_create_dflt(sch->dev_queue, &tfifo_qdisc_ops,
770				     TC_H_MAKE(sch->handle, 1));
771	if (!q->qdisc) {
772		pr_notice("netem: qdisc create tfifo qdisc failed\n");
773		return -ENOMEM;
774	}
775
776	ret = netem_change(sch, opt);
777	if (ret) {
778		pr_info("netem: change failed\n");
779		qdisc_destroy(q->qdisc);
780	}
781	return ret;
782}
783
784static void netem_destroy(struct Qdisc *sch)
785{
786	struct netem_sched_data *q = qdisc_priv(sch);
787
788	qdisc_watchdog_cancel(&q->watchdog);
789	qdisc_destroy(q->qdisc);
 
790	dist_free(q->delay_dist);
791}
792
793static int dump_loss_model(const struct netem_sched_data *q,
794			   struct sk_buff *skb)
795{
796	struct nlattr *nest;
797
798	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
799	if (nest == NULL)
800		goto nla_put_failure;
801
802	switch (q->loss_model) {
803	case CLG_RANDOM:
804		/* legacy loss model */
805		nla_nest_cancel(skb, nest);
806		return 0;	/* no data */
807
808	case CLG_4_STATES: {
809		struct tc_netem_gimodel gi = {
810			.p13 = q->clg.a1,
811			.p31 = q->clg.a2,
812			.p32 = q->clg.a3,
813			.p14 = q->clg.a4,
814			.p23 = q->clg.a5,
815		};
816
817		NLA_PUT(skb, NETEM_LOSS_GI, sizeof(gi), &gi);
 
818		break;
819	}
820	case CLG_GILB_ELL: {
821		struct tc_netem_gemodel ge = {
822			.p = q->clg.a1,
823			.r = q->clg.a2,
824			.h = q->clg.a3,
825			.k1 = q->clg.a4,
826		};
827
828		NLA_PUT(skb, NETEM_LOSS_GE, sizeof(ge), &ge);
 
829		break;
830	}
831	}
832
833	nla_nest_end(skb, nest);
834	return 0;
835
836nla_put_failure:
837	nla_nest_cancel(skb, nest);
838	return -1;
839}
840
841static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
842{
843	const struct netem_sched_data *q = qdisc_priv(sch);
844	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
845	struct tc_netem_qopt qopt;
846	struct tc_netem_corr cor;
847	struct tc_netem_reorder reorder;
848	struct tc_netem_corrupt corrupt;
 
849
850	qopt.latency = q->latency;
851	qopt.jitter = q->jitter;
852	qopt.limit = q->limit;
853	qopt.loss = q->loss;
854	qopt.gap = q->gap;
855	qopt.duplicate = q->duplicate;
856	NLA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt);
 
857
858	cor.delay_corr = q->delay_cor.rho;
859	cor.loss_corr = q->loss_cor.rho;
860	cor.dup_corr = q->dup_cor.rho;
861	NLA_PUT(skb, TCA_NETEM_CORR, sizeof(cor), &cor);
 
862
863	reorder.probability = q->reorder;
864	reorder.correlation = q->reorder_cor.rho;
865	NLA_PUT(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder);
 
866
867	corrupt.probability = q->corrupt;
868	corrupt.correlation = q->corrupt_cor.rho;
869	NLA_PUT(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
870
871	if (dump_loss_model(q, skb) != 0)
872		goto nla_put_failure;
873
874	return nla_nest_end(skb, nla);
875
876nla_put_failure:
877	nlmsg_trim(skb, nla);
878	return -1;
879}
880
881static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
882			  struct sk_buff *skb, struct tcmsg *tcm)
883{
884	struct netem_sched_data *q = qdisc_priv(sch);
885
886	if (cl != 1) 	/* only one class */
887		return -ENOENT;
888
889	tcm->tcm_handle |= TC_H_MIN(1);
890	tcm->tcm_info = q->qdisc->handle;
891
892	return 0;
893}
894
895static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
896		     struct Qdisc **old)
897{
898	struct netem_sched_data *q = qdisc_priv(sch);
899
900	if (new == NULL)
901		new = &noop_qdisc;
902
903	sch_tree_lock(sch);
904	*old = q->qdisc;
905	q->qdisc = new;
906	qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
907	qdisc_reset(*old);
 
 
908	sch_tree_unlock(sch);
909
910	return 0;
911}
912
913static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
914{
915	struct netem_sched_data *q = qdisc_priv(sch);
916	return q->qdisc;
917}
918
919static unsigned long netem_get(struct Qdisc *sch, u32 classid)
920{
921	return 1;
922}
923
924static void netem_put(struct Qdisc *sch, unsigned long arg)
925{
926}
927
928static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
929{
930	if (!walker->stop) {
931		if (walker->count >= walker->skip)
932			if (walker->fn(sch, 1, walker) < 0) {
933				walker->stop = 1;
934				return;
935			}
936		walker->count++;
937	}
938}
939
940static const struct Qdisc_class_ops netem_class_ops = {
941	.graft		=	netem_graft,
942	.leaf		=	netem_leaf,
943	.get		=	netem_get,
944	.put		=	netem_put,
945	.walk		=	netem_walk,
946	.dump		=	netem_dump_class,
947};
948
949static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
950	.id		=	"netem",
951	.cl_ops		=	&netem_class_ops,
952	.priv_size	=	sizeof(struct netem_sched_data),
953	.enqueue	=	netem_enqueue,
954	.dequeue	=	netem_dequeue,
955	.peek		=	qdisc_peek_dequeued,
956	.drop		=	netem_drop,
957	.init		=	netem_init,
958	.reset		=	netem_reset,
959	.destroy	=	netem_destroy,
960	.change		=	netem_change,
961	.dump		=	netem_dump,
962	.owner		=	THIS_MODULE,
963};
964
965
966static int __init netem_module_init(void)
967{
968	pr_info("netem: version " VERSION "\n");
969	return register_qdisc(&netem_qdisc_ops);
970}
971static void __exit netem_module_exit(void)
972{
973	unregister_qdisc(&netem_qdisc_ops);
974}
975module_init(netem_module_init)
976module_exit(netem_module_exit)
977MODULE_LICENSE("GPL");
v3.15
   1/*
   2 * net/sched/sch_netem.c	Network emulator
   3 *
   4 * 		This program is free software; you can redistribute it and/or
   5 * 		modify it under the terms of the GNU General Public License
   6 * 		as published by the Free Software Foundation; either version
   7 * 		2 of the License.
   8 *
   9 *  		Many of the algorithms and ideas for this came from
  10 *		NIST Net which is not copyrighted.
  11 *
  12 * Authors:	Stephen Hemminger <shemminger@osdl.org>
  13 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
  14 */
  15
  16#include <linux/mm.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/types.h>
  20#include <linux/kernel.h>
  21#include <linux/errno.h>
  22#include <linux/skbuff.h>
  23#include <linux/vmalloc.h>
  24#include <linux/rtnetlink.h>
  25#include <linux/reciprocal_div.h>
  26#include <linux/rbtree.h>
  27
  28#include <net/netlink.h>
  29#include <net/pkt_sched.h>
  30#include <net/inet_ecn.h>
  31
  32#define VERSION "1.3"
  33
  34/*	Network Emulation Queuing algorithm.
  35	====================================
  36
  37	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
  38		 Network Emulation Tool
  39		 [2] Luigi Rizzo, DummyNet for FreeBSD
  40
  41	 ----------------------------------------------------------------
  42
  43	 This started out as a simple way to delay outgoing packets to
  44	 test TCP but has grown to include most of the functionality
  45	 of a full blown network emulator like NISTnet. It can delay
  46	 packets and add random jitter (and correlation). The random
  47	 distribution can be loaded from a table as well to provide
  48	 normal, Pareto, or experimental curves. Packet loss,
  49	 duplication, and reordering can also be emulated.
  50
  51	 This qdisc does not do classification that can be handled in
  52	 layering other disciplines.  It does not need to do bandwidth
  53	 control either since that can be handled by using token
  54	 bucket or other rate control.
  55
  56     Correlated Loss Generator models
  57
  58	Added generation of correlated loss according to the
  59	"Gilbert-Elliot" model, a 4-state markov model.
  60
  61	References:
  62	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
  63	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
  64	and intuitive loss model for packet networks and its implementation
  65	in the Netem module in the Linux kernel", available in [1]
  66
  67	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
  68		 Fabio Ludovici <fabio.ludovici at yahoo.it>
  69*/
  70
  71struct netem_sched_data {
  72	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
  73	struct rb_root t_root;
  74
  75	/* optional qdisc for classful handling (NULL at netem init) */
  76	struct Qdisc	*qdisc;
  77
  78	struct qdisc_watchdog watchdog;
  79
  80	psched_tdiff_t latency;
  81	psched_tdiff_t jitter;
  82
  83	u32 loss;
  84	u32 ecn;
  85	u32 limit;
  86	u32 counter;
  87	u32 gap;
  88	u32 duplicate;
  89	u32 reorder;
  90	u32 corrupt;
  91	u64 rate;
  92	s32 packet_overhead;
  93	u32 cell_size;
  94	struct reciprocal_value cell_size_reciprocal;
  95	s32 cell_overhead;
  96
  97	struct crndstate {
  98		u32 last;
  99		u32 rho;
 100	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
 101
 102	struct disttable {
 103		u32  size;
 104		s16 table[0];
 105	} *delay_dist;
 106
 107	enum  {
 108		CLG_RANDOM,
 109		CLG_4_STATES,
 110		CLG_GILB_ELL,
 111	} loss_model;
 112
 113	enum {
 114		TX_IN_GAP_PERIOD = 1,
 115		TX_IN_BURST_PERIOD,
 116		LOST_IN_GAP_PERIOD,
 117		LOST_IN_BURST_PERIOD,
 118	} _4_state_model;
 119
 120	enum {
 121		GOOD_STATE = 1,
 122		BAD_STATE,
 123	} GE_state_model;
 124
 125	/* Correlated Loss Generation models */
 126	struct clgstate {
 127		/* state of the Markov chain */
 128		u8 state;
 129
 130		/* 4-states and Gilbert-Elliot models */
 131		u32 a1;	/* p13 for 4-states or p for GE */
 132		u32 a2;	/* p31 for 4-states or r for GE */
 133		u32 a3;	/* p32 for 4-states or h for GE */
 134		u32 a4;	/* p14 for 4-states or 1-k for GE */
 135		u32 a5; /* p23 used only in 4-states */
 136	} clg;
 137
 138};
 139
 140/* Time stamp put into socket buffer control block
 141 * Only valid when skbs are in our internal t(ime)fifo queue.
 142 */
 143struct netem_skb_cb {
 144	psched_time_t	time_to_send;
 145	ktime_t		tstamp_save;
 146};
 147
 148/* Because space in skb->cb[] is tight, netem overloads skb->next/prev/tstamp
 149 * to hold a rb_node structure.
 150 *
 151 * If struct sk_buff layout is changed, the following checks will complain.
 152 */
 153static struct rb_node *netem_rb_node(struct sk_buff *skb)
 154{
 155	BUILD_BUG_ON(offsetof(struct sk_buff, next) != 0);
 156	BUILD_BUG_ON(offsetof(struct sk_buff, prev) !=
 157		     offsetof(struct sk_buff, next) + sizeof(skb->next));
 158	BUILD_BUG_ON(offsetof(struct sk_buff, tstamp) !=
 159		     offsetof(struct sk_buff, prev) + sizeof(skb->prev));
 160	BUILD_BUG_ON(sizeof(struct rb_node) > sizeof(skb->next) +
 161					      sizeof(skb->prev) +
 162					      sizeof(skb->tstamp));
 163	return (struct rb_node *)&skb->next;
 164}
 165
 166static struct sk_buff *netem_rb_to_skb(struct rb_node *rb)
 167{
 168	return (struct sk_buff *)rb;
 169}
 170
 171static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
 172{
 173	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
 174	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
 175	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
 176}
 177
 178/* init_crandom - initialize correlated random number generator
 179 * Use entropy source for initial seed.
 180 */
 181static void init_crandom(struct crndstate *state, unsigned long rho)
 182{
 183	state->rho = rho;
 184	state->last = prandom_u32();
 185}
 186
 187/* get_crandom - correlated random number generator
 188 * Next number depends on last value.
 189 * rho is scaled to avoid floating point.
 190 */
 191static u32 get_crandom(struct crndstate *state)
 192{
 193	u64 value, rho;
 194	unsigned long answer;
 195
 196	if (state->rho == 0)	/* no correlation */
 197		return prandom_u32();
 198
 199	value = prandom_u32();
 200	rho = (u64)state->rho + 1;
 201	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
 202	state->last = answer;
 203	return answer;
 204}
 205
 206/* loss_4state - 4-state model loss generator
 207 * Generates losses according to the 4-state Markov chain adopted in
 208 * the GI (General and Intuitive) loss model.
 209 */
 210static bool loss_4state(struct netem_sched_data *q)
 211{
 212	struct clgstate *clg = &q->clg;
 213	u32 rnd = prandom_u32();
 214
 215	/*
 216	 * Makes a comparison between rnd and the transition
 217	 * probabilities outgoing from the current state, then decides the
 218	 * next state and if the next packet has to be transmitted or lost.
 219	 * The four states correspond to:
 220	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
 221	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
 222	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
 223	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
 224	 */
 225	switch (clg->state) {
 226	case TX_IN_GAP_PERIOD:
 227		if (rnd < clg->a4) {
 228			clg->state = LOST_IN_BURST_PERIOD;
 229			return true;
 230		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
 231			clg->state = LOST_IN_GAP_PERIOD;
 232			return true;
 233		} else if (clg->a1 + clg->a4 < rnd) {
 234			clg->state = TX_IN_GAP_PERIOD;
 235		}
 236
 237		break;
 238	case TX_IN_BURST_PERIOD:
 239		if (rnd < clg->a5) {
 240			clg->state = LOST_IN_GAP_PERIOD;
 241			return true;
 242		} else {
 243			clg->state = TX_IN_BURST_PERIOD;
 244		}
 245
 246		break;
 247	case LOST_IN_GAP_PERIOD:
 248		if (rnd < clg->a3)
 249			clg->state = TX_IN_BURST_PERIOD;
 250		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
 251			clg->state = TX_IN_GAP_PERIOD;
 
 252		} else if (clg->a2 + clg->a3 < rnd) {
 253			clg->state = LOST_IN_GAP_PERIOD;
 254			return true;
 255		}
 256		break;
 257	case LOST_IN_BURST_PERIOD:
 258		clg->state = TX_IN_GAP_PERIOD;
 259		break;
 260	}
 261
 262	return false;
 263}
 264
 265/* loss_gilb_ell - Gilbert-Elliot model loss generator
 266 * Generates losses according to the Gilbert-Elliot loss model or
 267 * its special cases  (Gilbert or Simple Gilbert)
 268 *
 269 * Makes a comparison between random number and the transition
 270 * probabilities outgoing from the current state, then decides the
 271 * next state. A second random number is extracted and the comparison
 272 * with the loss probability of the current state decides if the next
 273 * packet will be transmitted or lost.
 274 */
 275static bool loss_gilb_ell(struct netem_sched_data *q)
 276{
 277	struct clgstate *clg = &q->clg;
 278
 279	switch (clg->state) {
 280	case GOOD_STATE:
 281		if (prandom_u32() < clg->a1)
 282			clg->state = BAD_STATE;
 283		if (prandom_u32() < clg->a4)
 284			return true;
 285		break;
 286	case BAD_STATE:
 287		if (prandom_u32() < clg->a2)
 288			clg->state = GOOD_STATE;
 289		if (prandom_u32() > clg->a3)
 290			return true;
 291	}
 292
 293	return false;
 294}
 295
 296static bool loss_event(struct netem_sched_data *q)
 297{
 298	switch (q->loss_model) {
 299	case CLG_RANDOM:
 300		/* Random packet drop 0 => none, ~0 => all */
 301		return q->loss && q->loss >= get_crandom(&q->loss_cor);
 302
 303	case CLG_4_STATES:
 304		/* 4state loss model algorithm (used also for GI model)
 305		* Extracts a value from the markov 4 state loss generator,
 306		* if it is 1 drops a packet and if needed writes the event in
 307		* the kernel logs
 308		*/
 309		return loss_4state(q);
 310
 311	case CLG_GILB_ELL:
 312		/* Gilbert-Elliot loss model algorithm
 313		* Extracts a value from the Gilbert-Elliot loss generator,
 314		* if it is 1 drops a packet and if needed writes the event in
 315		* the kernel logs
 316		*/
 317		return loss_gilb_ell(q);
 318	}
 319
 320	return false;	/* not reached */
 321}
 322
 323
 324/* tabledist - return a pseudo-randomly distributed value with mean mu and
 325 * std deviation sigma.  Uses table lookup to approximate the desired
 326 * distribution, and a uniformly-distributed pseudo-random source.
 327 */
 328static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
 329				struct crndstate *state,
 330				const struct disttable *dist)
 331{
 332	psched_tdiff_t x;
 333	long t;
 334	u32 rnd;
 335
 336	if (sigma == 0)
 337		return mu;
 338
 339	rnd = get_crandom(state);
 340
 341	/* default uniform distribution */
 342	if (dist == NULL)
 343		return (rnd % (2*sigma)) - sigma + mu;
 344
 345	t = dist->table[rnd % dist->size];
 346	x = (sigma % NETEM_DIST_SCALE) * t;
 347	if (x >= 0)
 348		x += NETEM_DIST_SCALE/2;
 349	else
 350		x -= NETEM_DIST_SCALE/2;
 351
 352	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
 353}
 354
 355static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
 356{
 357	u64 ticks;
 358
 359	len += q->packet_overhead;
 360
 361	if (q->cell_size) {
 362		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
 363
 364		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
 365			cells++;
 366		len = cells * (q->cell_size + q->cell_overhead);
 367	}
 368
 369	ticks = (u64)len * NSEC_PER_SEC;
 370
 371	do_div(ticks, q->rate);
 372	return PSCHED_NS2TICKS(ticks);
 373}
 374
 375static void tfifo_reset(struct Qdisc *sch)
 376{
 377	struct netem_sched_data *q = qdisc_priv(sch);
 378	struct rb_node *p;
 379
 380	while ((p = rb_first(&q->t_root))) {
 381		struct sk_buff *skb = netem_rb_to_skb(p);
 382
 383		rb_erase(p, &q->t_root);
 384		skb->next = NULL;
 385		skb->prev = NULL;
 386		kfree_skb(skb);
 387	}
 388}
 389
 390static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
 391{
 392	struct netem_sched_data *q = qdisc_priv(sch);
 393	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
 394	struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
 395
 396	while (*p) {
 397		struct sk_buff *skb;
 398
 399		parent = *p;
 400		skb = netem_rb_to_skb(parent);
 401		if (tnext >= netem_skb_cb(skb)->time_to_send)
 402			p = &parent->rb_right;
 403		else
 404			p = &parent->rb_left;
 405	}
 406	rb_link_node(netem_rb_node(nskb), parent, p);
 407	rb_insert_color(netem_rb_node(nskb), &q->t_root);
 408	sch->q.qlen++;
 409}
 410
 411/*
 412 * Insert one skb into qdisc.
 413 * Note: parent depends on return value to account for queue length.
 414 * 	NET_XMIT_DROP: queue length didn't change.
 415 *      NET_XMIT_SUCCESS: one skb was queued.
 416 */
 417static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
 418{
 419	struct netem_sched_data *q = qdisc_priv(sch);
 420	/* We don't fill cb now as skb_unshare() may invalidate it */
 421	struct netem_skb_cb *cb;
 422	struct sk_buff *skb2;
 
 423	int count = 1;
 424
 425	/* Random duplication */
 426	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
 427		++count;
 428
 429	/* Drop packet? */
 430	if (loss_event(q)) {
 431		if (q->ecn && INET_ECN_set_ce(skb))
 432			sch->qstats.drops++; /* mark packet */
 433		else
 434			--count;
 435	}
 436	if (count == 0) {
 437		sch->qstats.drops++;
 438		kfree_skb(skb);
 439		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 440	}
 441
 442	/* If a delay is expected, orphan the skb. (orphaning usually takes
 443	 * place at TX completion time, so _before_ the link transit delay)
 444	 */
 445	if (q->latency || q->jitter)
 446		skb_orphan_partial(skb);
 447
 448	/*
 449	 * If we need to duplicate packet, then re-insert at top of the
 450	 * qdisc tree, since parent queuer expects that only one
 451	 * skb will be queued.
 452	 */
 453	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
 454		struct Qdisc *rootq = qdisc_root(sch);
 455		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
 456		q->duplicate = 0;
 457
 458		qdisc_enqueue_root(skb2, rootq);
 459		q->duplicate = dupsave;
 460	}
 461
 462	/*
 463	 * Randomized packet corruption.
 464	 * Make copy if needed since we are modifying
 465	 * If packet is going to be hardware checksummed, then
 466	 * do it now in software before we mangle it.
 467	 */
 468	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
 469		if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
 470		    (skb->ip_summed == CHECKSUM_PARTIAL &&
 471		     skb_checksum_help(skb)))
 472			return qdisc_drop(skb, sch);
 
 
 473
 474		skb->data[prandom_u32() % skb_headlen(skb)] ^=
 475			1<<(prandom_u32() % 8);
 476	}
 477
 478	if (unlikely(skb_queue_len(&sch->q) >= sch->limit))
 479		return qdisc_reshape_fail(skb, sch);
 480
 481	sch->qstats.backlog += qdisc_pkt_len(skb);
 482
 483	cb = netem_skb_cb(skb);
 484	if (q->gap == 0 ||		/* not doing reordering */
 485	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
 486	    q->reorder < get_crandom(&q->reorder_cor)) {
 487		psched_time_t now;
 488		psched_tdiff_t delay;
 489
 490		delay = tabledist(q->latency, q->jitter,
 491				  &q->delay_cor, q->delay_dist);
 492
 493		now = psched_get_time();
 494
 495		if (q->rate) {
 496			struct sk_buff *last;
 497
 498			if (!skb_queue_empty(&sch->q))
 499				last = skb_peek_tail(&sch->q);
 500			else
 501				last = netem_rb_to_skb(rb_last(&q->t_root));
 502			if (last) {
 503				/*
 504				 * Last packet in queue is reference point (now),
 505				 * calculate this time bonus and subtract
 506				 * from delay.
 507				 */
 508				delay -= netem_skb_cb(last)->time_to_send - now;
 509				delay = max_t(psched_tdiff_t, 0, delay);
 510				now = netem_skb_cb(last)->time_to_send;
 511			}
 512
 513			delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q);
 514		}
 515
 516		cb->time_to_send = now + delay;
 517		cb->tstamp_save = skb->tstamp;
 518		++q->counter;
 519		tfifo_enqueue(skb, sch);
 520	} else {
 521		/*
 522		 * Do re-ordering by putting one out of N packets at the front
 523		 * of the queue.
 524		 */
 525		cb->time_to_send = psched_get_time();
 526		q->counter = 0;
 527
 528		__skb_queue_head(&sch->q, skb);
 529		sch->qstats.requeues++;
 
 
 530	}
 531
 
 
 
 
 
 
 
 
 532	return NET_XMIT_SUCCESS;
 533}
 534
 535static unsigned int netem_drop(struct Qdisc *sch)
 536{
 537	struct netem_sched_data *q = qdisc_priv(sch);
 538	unsigned int len;
 539
 540	len = qdisc_queue_drop(sch);
 541
 542	if (!len) {
 543		struct rb_node *p = rb_first(&q->t_root);
 544
 545		if (p) {
 546			struct sk_buff *skb = netem_rb_to_skb(p);
 547
 548			rb_erase(p, &q->t_root);
 549			sch->q.qlen--;
 550			skb->next = NULL;
 551			skb->prev = NULL;
 552			len = qdisc_pkt_len(skb);
 553			sch->qstats.backlog -= len;
 554			kfree_skb(skb);
 555		}
 556	}
 557	if (!len && q->qdisc && q->qdisc->ops->drop)
 558	    len = q->qdisc->ops->drop(q->qdisc);
 559	if (len)
 560		sch->qstats.drops++;
 561
 562	return len;
 563}
 564
 565static struct sk_buff *netem_dequeue(struct Qdisc *sch)
 566{
 567	struct netem_sched_data *q = qdisc_priv(sch);
 568	struct sk_buff *skb;
 569	struct rb_node *p;
 570
 571	if (qdisc_is_throttled(sch))
 572		return NULL;
 573
 574tfifo_dequeue:
 575	skb = __skb_dequeue(&sch->q);
 576	if (skb) {
 577deliver:
 578		sch->qstats.backlog -= qdisc_pkt_len(skb);
 579		qdisc_unthrottled(sch);
 580		qdisc_bstats_update(sch, skb);
 581		return skb;
 582	}
 583	p = rb_first(&q->t_root);
 584	if (p) {
 585		psched_time_t time_to_send;
 586
 587		skb = netem_rb_to_skb(p);
 588
 589		/* if more time remaining? */
 590		time_to_send = netem_skb_cb(skb)->time_to_send;
 591		if (time_to_send <= psched_get_time()) {
 592			rb_erase(p, &q->t_root);
 593
 594			sch->q.qlen--;
 595			skb->next = NULL;
 596			skb->prev = NULL;
 597			skb->tstamp = netem_skb_cb(skb)->tstamp_save;
 598
 599#ifdef CONFIG_NET_CLS_ACT
 600			/*
 601			 * If it's at ingress let's pretend the delay is
 602			 * from the network (tstamp will be updated).
 603			 */
 604			if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
 605				skb->tstamp.tv64 = 0;
 606#endif
 607
 608			if (q->qdisc) {
 609				int err = qdisc_enqueue(skb, q->qdisc);
 610
 611				if (unlikely(err != NET_XMIT_SUCCESS)) {
 612					if (net_xmit_drop_count(err)) {
 613						sch->qstats.drops++;
 614						qdisc_tree_decrease_qlen(sch, 1);
 615					}
 616				}
 617				goto tfifo_dequeue;
 618			}
 619			goto deliver;
 620		}
 621
 622		if (q->qdisc) {
 623			skb = q->qdisc->ops->dequeue(q->qdisc);
 624			if (skb)
 625				goto deliver;
 626		}
 627		qdisc_watchdog_schedule(&q->watchdog, time_to_send);
 628	}
 629
 630	if (q->qdisc) {
 631		skb = q->qdisc->ops->dequeue(q->qdisc);
 632		if (skb)
 633			goto deliver;
 634	}
 635	return NULL;
 636}
 637
 638static void netem_reset(struct Qdisc *sch)
 639{
 640	struct netem_sched_data *q = qdisc_priv(sch);
 641
 642	qdisc_reset_queue(sch);
 643	tfifo_reset(sch);
 644	if (q->qdisc)
 645		qdisc_reset(q->qdisc);
 646	qdisc_watchdog_cancel(&q->watchdog);
 647}
 648
 649static void dist_free(struct disttable *d)
 650{
 651	if (d) {
 652		if (is_vmalloc_addr(d))
 653			vfree(d);
 654		else
 655			kfree(d);
 656	}
 657}
 658
 659/*
 660 * Distribution data is a variable size payload containing
 661 * signed 16 bit values.
 662 */
 663static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
 664{
 665	struct netem_sched_data *q = qdisc_priv(sch);
 666	size_t n = nla_len(attr)/sizeof(__s16);
 667	const __s16 *data = nla_data(attr);
 668	spinlock_t *root_lock;
 669	struct disttable *d;
 670	int i;
 671	size_t s;
 672
 673	if (n > NETEM_DIST_MAX)
 674		return -EINVAL;
 675
 676	s = sizeof(struct disttable) + n * sizeof(s16);
 677	d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
 678	if (!d)
 679		d = vmalloc(s);
 680	if (!d)
 681		return -ENOMEM;
 682
 683	d->size = n;
 684	for (i = 0; i < n; i++)
 685		d->table[i] = data[i];
 686
 687	root_lock = qdisc_root_sleeping_lock(sch);
 688
 689	spin_lock_bh(root_lock);
 690	swap(q->delay_dist, d);
 
 691	spin_unlock_bh(root_lock);
 692
 693	dist_free(d);
 694	return 0;
 695}
 696
 697static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
 698{
 
 699	const struct tc_netem_corr *c = nla_data(attr);
 700
 701	init_crandom(&q->delay_cor, c->delay_corr);
 702	init_crandom(&q->loss_cor, c->loss_corr);
 703	init_crandom(&q->dup_cor, c->dup_corr);
 704}
 705
 706static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
 707{
 
 708	const struct tc_netem_reorder *r = nla_data(attr);
 709
 710	q->reorder = r->probability;
 711	init_crandom(&q->reorder_cor, r->correlation);
 712}
 713
 714static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
 715{
 
 716	const struct tc_netem_corrupt *r = nla_data(attr);
 717
 718	q->corrupt = r->probability;
 719	init_crandom(&q->corrupt_cor, r->correlation);
 720}
 721
 722static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
 723{
 724	const struct tc_netem_rate *r = nla_data(attr);
 725
 726	q->rate = r->rate;
 727	q->packet_overhead = r->packet_overhead;
 728	q->cell_size = r->cell_size;
 729	q->cell_overhead = r->cell_overhead;
 730	if (q->cell_size)
 731		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
 732	else
 733		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
 734}
 735
 736static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
 737{
 
 738	const struct nlattr *la;
 739	int rem;
 740
 741	nla_for_each_nested(la, attr, rem) {
 742		u16 type = nla_type(la);
 743
 744		switch (type) {
 745		case NETEM_LOSS_GI: {
 746			const struct tc_netem_gimodel *gi = nla_data(la);
 747
 748			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
 749				pr_info("netem: incorrect gi model size\n");
 750				return -EINVAL;
 751			}
 752
 753			q->loss_model = CLG_4_STATES;
 754
 755			q->clg.state = TX_IN_GAP_PERIOD;
 756			q->clg.a1 = gi->p13;
 757			q->clg.a2 = gi->p31;
 758			q->clg.a3 = gi->p32;
 759			q->clg.a4 = gi->p14;
 760			q->clg.a5 = gi->p23;
 761			break;
 762		}
 763
 764		case NETEM_LOSS_GE: {
 765			const struct tc_netem_gemodel *ge = nla_data(la);
 766
 767			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
 768				pr_info("netem: incorrect ge model size\n");
 769				return -EINVAL;
 770			}
 771
 772			q->loss_model = CLG_GILB_ELL;
 773			q->clg.state = GOOD_STATE;
 774			q->clg.a1 = ge->p;
 775			q->clg.a2 = ge->r;
 776			q->clg.a3 = ge->h;
 777			q->clg.a4 = ge->k1;
 778			break;
 779		}
 780
 781		default:
 782			pr_info("netem: unknown loss type %u\n", type);
 783			return -EINVAL;
 784		}
 785	}
 786
 787	return 0;
 788}
 789
 790static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
 791	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
 792	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
 793	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
 794	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
 795	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
 796	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
 797	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
 798};
 799
 800static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
 801		      const struct nla_policy *policy, int len)
 802{
 803	int nested_len = nla_len(nla) - NLA_ALIGN(len);
 804
 805	if (nested_len < 0) {
 806		pr_info("netem: invalid attributes len %d\n", nested_len);
 807		return -EINVAL;
 808	}
 809
 810	if (nested_len >= nla_attr_size(0))
 811		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
 812				 nested_len, policy);
 813
 814	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
 815	return 0;
 816}
 817
 818/* Parse netlink message to set options */
 819static int netem_change(struct Qdisc *sch, struct nlattr *opt)
 820{
 821	struct netem_sched_data *q = qdisc_priv(sch);
 822	struct nlattr *tb[TCA_NETEM_MAX + 1];
 823	struct tc_netem_qopt *qopt;
 824	struct clgstate old_clg;
 825	int old_loss_model = CLG_RANDOM;
 826	int ret;
 827
 828	if (opt == NULL)
 829		return -EINVAL;
 830
 831	qopt = nla_data(opt);
 832	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
 833	if (ret < 0)
 834		return ret;
 835
 836	/* backup q->clg and q->loss_model */
 837	old_clg = q->clg;
 838	old_loss_model = q->loss_model;
 839
 840	if (tb[TCA_NETEM_LOSS]) {
 841		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
 842		if (ret) {
 843			q->loss_model = old_loss_model;
 844			return ret;
 845		}
 846	} else {
 847		q->loss_model = CLG_RANDOM;
 848	}
 849
 850	if (tb[TCA_NETEM_DELAY_DIST]) {
 851		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
 852		if (ret) {
 853			/* recover clg and loss_model, in case of
 854			 * q->clg and q->loss_model were modified
 855			 * in get_loss_clg()
 856			 */
 857			q->clg = old_clg;
 858			q->loss_model = old_loss_model;
 859			return ret;
 860		}
 861	}
 862
 863	sch->limit = qopt->limit;
 864
 865	q->latency = qopt->latency;
 866	q->jitter = qopt->jitter;
 867	q->limit = qopt->limit;
 868	q->gap = qopt->gap;
 869	q->counter = 0;
 870	q->loss = qopt->loss;
 871	q->duplicate = qopt->duplicate;
 872
 873	/* for compatibility with earlier versions.
 874	 * if gap is set, need to assume 100% probability
 875	 */
 876	if (q->gap)
 877		q->reorder = ~0;
 878
 879	if (tb[TCA_NETEM_CORR])
 880		get_correlation(q, tb[TCA_NETEM_CORR]);
 
 
 
 
 
 
 881
 882	if (tb[TCA_NETEM_REORDER])
 883		get_reorder(q, tb[TCA_NETEM_REORDER]);
 884
 885	if (tb[TCA_NETEM_CORRUPT])
 886		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 887
 888	if (tb[TCA_NETEM_RATE])
 889		get_rate(q, tb[TCA_NETEM_RATE]);
 
 
 
 
 890
 891	if (tb[TCA_NETEM_RATE64])
 892		q->rate = max_t(u64, q->rate,
 893				nla_get_u64(tb[TCA_NETEM_RATE64]));
 894
 895	if (tb[TCA_NETEM_ECN])
 896		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
 
 897
 898	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899}
 900
 
 
 
 
 
 
 
 
 
 
 
 
 
 901static int netem_init(struct Qdisc *sch, struct nlattr *opt)
 902{
 903	struct netem_sched_data *q = qdisc_priv(sch);
 904	int ret;
 905
 906	if (!opt)
 907		return -EINVAL;
 908
 909	qdisc_watchdog_init(&q->watchdog, sch);
 910
 911	q->loss_model = CLG_RANDOM;
 
 
 
 
 
 
 
 912	ret = netem_change(sch, opt);
 913	if (ret)
 914		pr_info("netem: change failed\n");
 
 
 915	return ret;
 916}
 917
 918static void netem_destroy(struct Qdisc *sch)
 919{
 920	struct netem_sched_data *q = qdisc_priv(sch);
 921
 922	qdisc_watchdog_cancel(&q->watchdog);
 923	if (q->qdisc)
 924		qdisc_destroy(q->qdisc);
 925	dist_free(q->delay_dist);
 926}
 927
 928static int dump_loss_model(const struct netem_sched_data *q,
 929			   struct sk_buff *skb)
 930{
 931	struct nlattr *nest;
 932
 933	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
 934	if (nest == NULL)
 935		goto nla_put_failure;
 936
 937	switch (q->loss_model) {
 938	case CLG_RANDOM:
 939		/* legacy loss model */
 940		nla_nest_cancel(skb, nest);
 941		return 0;	/* no data */
 942
 943	case CLG_4_STATES: {
 944		struct tc_netem_gimodel gi = {
 945			.p13 = q->clg.a1,
 946			.p31 = q->clg.a2,
 947			.p32 = q->clg.a3,
 948			.p14 = q->clg.a4,
 949			.p23 = q->clg.a5,
 950		};
 951
 952		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
 953			goto nla_put_failure;
 954		break;
 955	}
 956	case CLG_GILB_ELL: {
 957		struct tc_netem_gemodel ge = {
 958			.p = q->clg.a1,
 959			.r = q->clg.a2,
 960			.h = q->clg.a3,
 961			.k1 = q->clg.a4,
 962		};
 963
 964		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
 965			goto nla_put_failure;
 966		break;
 967	}
 968	}
 969
 970	nla_nest_end(skb, nest);
 971	return 0;
 972
 973nla_put_failure:
 974	nla_nest_cancel(skb, nest);
 975	return -1;
 976}
 977
 978static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
 979{
 980	const struct netem_sched_data *q = qdisc_priv(sch);
 981	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
 982	struct tc_netem_qopt qopt;
 983	struct tc_netem_corr cor;
 984	struct tc_netem_reorder reorder;
 985	struct tc_netem_corrupt corrupt;
 986	struct tc_netem_rate rate;
 987
 988	qopt.latency = q->latency;
 989	qopt.jitter = q->jitter;
 990	qopt.limit = q->limit;
 991	qopt.loss = q->loss;
 992	qopt.gap = q->gap;
 993	qopt.duplicate = q->duplicate;
 994	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
 995		goto nla_put_failure;
 996
 997	cor.delay_corr = q->delay_cor.rho;
 998	cor.loss_corr = q->loss_cor.rho;
 999	cor.dup_corr = q->dup_cor.rho;
1000	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1001		goto nla_put_failure;
1002
1003	reorder.probability = q->reorder;
1004	reorder.correlation = q->reorder_cor.rho;
1005	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1006		goto nla_put_failure;
1007
1008	corrupt.probability = q->corrupt;
1009	corrupt.correlation = q->corrupt_cor.rho;
1010	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1011		goto nla_put_failure;
1012
1013	if (q->rate >= (1ULL << 32)) {
1014		if (nla_put_u64(skb, TCA_NETEM_RATE64, q->rate))
1015			goto nla_put_failure;
1016		rate.rate = ~0U;
1017	} else {
1018		rate.rate = q->rate;
1019	}
1020	rate.packet_overhead = q->packet_overhead;
1021	rate.cell_size = q->cell_size;
1022	rate.cell_overhead = q->cell_overhead;
1023	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1024		goto nla_put_failure;
1025
1026	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1027		goto nla_put_failure;
1028
1029	if (dump_loss_model(q, skb) != 0)
1030		goto nla_put_failure;
1031
1032	return nla_nest_end(skb, nla);
1033
1034nla_put_failure:
1035	nlmsg_trim(skb, nla);
1036	return -1;
1037}
1038
1039static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1040			  struct sk_buff *skb, struct tcmsg *tcm)
1041{
1042	struct netem_sched_data *q = qdisc_priv(sch);
1043
1044	if (cl != 1 || !q->qdisc) 	/* only one class */
1045		return -ENOENT;
1046
1047	tcm->tcm_handle |= TC_H_MIN(1);
1048	tcm->tcm_info = q->qdisc->handle;
1049
1050	return 0;
1051}
1052
1053static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1054		     struct Qdisc **old)
1055{
1056	struct netem_sched_data *q = qdisc_priv(sch);
1057
 
 
 
1058	sch_tree_lock(sch);
1059	*old = q->qdisc;
1060	q->qdisc = new;
1061	if (*old) {
1062		qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
1063		qdisc_reset(*old);
1064	}
1065	sch_tree_unlock(sch);
1066
1067	return 0;
1068}
1069
1070static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1071{
1072	struct netem_sched_data *q = qdisc_priv(sch);
1073	return q->qdisc;
1074}
1075
1076static unsigned long netem_get(struct Qdisc *sch, u32 classid)
1077{
1078	return 1;
1079}
1080
1081static void netem_put(struct Qdisc *sch, unsigned long arg)
1082{
1083}
1084
1085static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1086{
1087	if (!walker->stop) {
1088		if (walker->count >= walker->skip)
1089			if (walker->fn(sch, 1, walker) < 0) {
1090				walker->stop = 1;
1091				return;
1092			}
1093		walker->count++;
1094	}
1095}
1096
1097static const struct Qdisc_class_ops netem_class_ops = {
1098	.graft		=	netem_graft,
1099	.leaf		=	netem_leaf,
1100	.get		=	netem_get,
1101	.put		=	netem_put,
1102	.walk		=	netem_walk,
1103	.dump		=	netem_dump_class,
1104};
1105
1106static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1107	.id		=	"netem",
1108	.cl_ops		=	&netem_class_ops,
1109	.priv_size	=	sizeof(struct netem_sched_data),
1110	.enqueue	=	netem_enqueue,
1111	.dequeue	=	netem_dequeue,
1112	.peek		=	qdisc_peek_dequeued,
1113	.drop		=	netem_drop,
1114	.init		=	netem_init,
1115	.reset		=	netem_reset,
1116	.destroy	=	netem_destroy,
1117	.change		=	netem_change,
1118	.dump		=	netem_dump,
1119	.owner		=	THIS_MODULE,
1120};
1121
1122
1123static int __init netem_module_init(void)
1124{
1125	pr_info("netem: version " VERSION "\n");
1126	return register_qdisc(&netem_qdisc_ops);
1127}
1128static void __exit netem_module_exit(void)
1129{
1130	unregister_qdisc(&netem_qdisc_ops);
1131}
1132module_init(netem_module_init)
1133module_exit(netem_module_exit)
1134MODULE_LICENSE("GPL");