Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *		Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *		(Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/module.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
  53#include <linux/writeback.h>
  54#include <linux/memcontrol.h>
  55#include <linux/mmu_notifier.h>
  56#include <linux/kallsyms.h>
  57#include <linux/swapops.h>
  58#include <linux/elf.h>
  59#include <linux/gfp.h>
 
 
 
 
  60
  61#include <asm/io.h>
  62#include <asm/pgalloc.h>
  63#include <asm/uaccess.h>
  64#include <asm/tlb.h>
  65#include <asm/tlbflush.h>
  66#include <asm/pgtable.h>
  67
  68#include "internal.h"
  69
 
 
 
 
  70#ifndef CONFIG_NEED_MULTIPLE_NODES
  71/* use the per-pgdat data instead for discontigmem - mbligh */
  72unsigned long max_mapnr;
  73struct page *mem_map;
  74
  75EXPORT_SYMBOL(max_mapnr);
  76EXPORT_SYMBOL(mem_map);
  77#endif
  78
  79unsigned long num_physpages;
  80/*
  81 * A number of key systems in x86 including ioremap() rely on the assumption
  82 * that high_memory defines the upper bound on direct map memory, then end
  83 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  85 * and ZONE_HIGHMEM.
  86 */
  87void * high_memory;
  88
  89EXPORT_SYMBOL(num_physpages);
  90EXPORT_SYMBOL(high_memory);
  91
  92/*
  93 * Randomize the address space (stacks, mmaps, brk, etc.).
  94 *
  95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  96 *   as ancient (libc5 based) binaries can segfault. )
  97 */
  98int randomize_va_space __read_mostly =
  99#ifdef CONFIG_COMPAT_BRK
 100					1;
 101#else
 102					2;
 103#endif
 104
 105static int __init disable_randmaps(char *s)
 106{
 107	randomize_va_space = 0;
 108	return 1;
 109}
 110__setup("norandmaps", disable_randmaps);
 111
 112unsigned long zero_pfn __read_mostly;
 113unsigned long highest_memmap_pfn __read_mostly;
 114
 115/*
 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 117 */
 118static int __init init_zero_pfn(void)
 119{
 120	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 121	return 0;
 122}
 123core_initcall(init_zero_pfn);
 124
 125
 126#if defined(SPLIT_RSS_COUNTING)
 127
 128static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
 129{
 130	int i;
 131
 132	for (i = 0; i < NR_MM_COUNTERS; i++) {
 133		if (task->rss_stat.count[i]) {
 134			add_mm_counter(mm, i, task->rss_stat.count[i]);
 135			task->rss_stat.count[i] = 0;
 136		}
 137	}
 138	task->rss_stat.events = 0;
 139}
 140
 141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 142{
 143	struct task_struct *task = current;
 144
 145	if (likely(task->mm == mm))
 146		task->rss_stat.count[member] += val;
 147	else
 148		add_mm_counter(mm, member, val);
 149}
 150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 152
 153/* sync counter once per 64 page faults */
 154#define TASK_RSS_EVENTS_THRESH	(64)
 155static void check_sync_rss_stat(struct task_struct *task)
 156{
 157	if (unlikely(task != current))
 158		return;
 159	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 160		__sync_task_rss_stat(task, task->mm);
 161}
 162
 163unsigned long get_mm_counter(struct mm_struct *mm, int member)
 164{
 165	long val = 0;
 166
 167	/*
 168	 * Don't use task->mm here...for avoiding to use task_get_mm()..
 169	 * The caller must guarantee task->mm is not invalid.
 170	 */
 171	val = atomic_long_read(&mm->rss_stat.count[member]);
 172	/*
 173	 * counter is updated in asynchronous manner and may go to minus.
 174	 * But it's never be expected number for users.
 175	 */
 176	if (val < 0)
 177		return 0;
 178	return (unsigned long)val;
 179}
 180
 181void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
 182{
 183	__sync_task_rss_stat(task, mm);
 184}
 185#else /* SPLIT_RSS_COUNTING */
 186
 187#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 188#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 189
 190static void check_sync_rss_stat(struct task_struct *task)
 191{
 192}
 193
 194#endif /* SPLIT_RSS_COUNTING */
 195
 196#ifdef HAVE_GENERIC_MMU_GATHER
 197
 198static int tlb_next_batch(struct mmu_gather *tlb)
 199{
 200	struct mmu_gather_batch *batch;
 201
 202	batch = tlb->active;
 203	if (batch->next) {
 204		tlb->active = batch->next;
 205		return 1;
 206	}
 207
 
 
 
 208	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 209	if (!batch)
 210		return 0;
 211
 
 212	batch->next = NULL;
 213	batch->nr   = 0;
 214	batch->max  = MAX_GATHER_BATCH;
 215
 216	tlb->active->next = batch;
 217	tlb->active = batch;
 218
 219	return 1;
 220}
 221
 222/* tlb_gather_mmu
 223 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 224 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 225 *	users and we're going to destroy the full address space (exit/execve).
 226 */
 227void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
 228{
 229	tlb->mm = mm;
 230
 231	tlb->fullmm     = fullmm;
 
 
 
 
 232	tlb->need_flush = 0;
 233	tlb->fast_mode  = (num_possible_cpus() == 1);
 234	tlb->local.next = NULL;
 235	tlb->local.nr   = 0;
 236	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 237	tlb->active     = &tlb->local;
 
 238
 239#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 240	tlb->batch = NULL;
 241#endif
 242}
 243
 244void tlb_flush_mmu(struct mmu_gather *tlb)
 245{
 246	struct mmu_gather_batch *batch;
 247
 248	if (!tlb->need_flush)
 249		return;
 250	tlb->need_flush = 0;
 251	tlb_flush(tlb);
 252#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 253	tlb_table_flush(tlb);
 254#endif
 
 255
 256	if (tlb_fast_mode(tlb))
 257		return;
 
 258
 259	for (batch = &tlb->local; batch; batch = batch->next) {
 260		free_pages_and_swap_cache(batch->pages, batch->nr);
 261		batch->nr = 0;
 262	}
 263	tlb->active = &tlb->local;
 264}
 265
 
 
 
 
 
 
 
 
 266/* tlb_finish_mmu
 267 *	Called at the end of the shootdown operation to free up any resources
 268 *	that were required.
 269 */
 270void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
 271{
 272	struct mmu_gather_batch *batch, *next;
 273
 274	tlb_flush_mmu(tlb);
 275
 276	/* keep the page table cache within bounds */
 277	check_pgt_cache();
 278
 279	for (batch = tlb->local.next; batch; batch = next) {
 280		next = batch->next;
 281		free_pages((unsigned long)batch, 0);
 282	}
 283	tlb->local.next = NULL;
 284}
 285
 286/* __tlb_remove_page
 287 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 288 *	handling the additional races in SMP caused by other CPUs caching valid
 289 *	mappings in their TLBs. Returns the number of free page slots left.
 290 *	When out of page slots we must call tlb_flush_mmu().
 291 */
 292int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
 293{
 294	struct mmu_gather_batch *batch;
 295
 296	tlb->need_flush = 1;
 297
 298	if (tlb_fast_mode(tlb)) {
 299		free_page_and_swap_cache(page);
 300		return 1; /* avoid calling tlb_flush_mmu() */
 301	}
 302
 303	batch = tlb->active;
 304	batch->pages[batch->nr++] = page;
 305	if (batch->nr == batch->max) {
 306		if (!tlb_next_batch(tlb))
 307			return 0;
 308		batch = tlb->active;
 309	}
 310	VM_BUG_ON(batch->nr > batch->max);
 311
 312	return batch->max - batch->nr;
 313}
 314
 315#endif /* HAVE_GENERIC_MMU_GATHER */
 316
 317#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 318
 319/*
 320 * See the comment near struct mmu_table_batch.
 321 */
 322
 323static void tlb_remove_table_smp_sync(void *arg)
 324{
 325	/* Simply deliver the interrupt */
 326}
 327
 328static void tlb_remove_table_one(void *table)
 329{
 330	/*
 331	 * This isn't an RCU grace period and hence the page-tables cannot be
 332	 * assumed to be actually RCU-freed.
 333	 *
 334	 * It is however sufficient for software page-table walkers that rely on
 335	 * IRQ disabling. See the comment near struct mmu_table_batch.
 336	 */
 337	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 338	__tlb_remove_table(table);
 339}
 340
 341static void tlb_remove_table_rcu(struct rcu_head *head)
 342{
 343	struct mmu_table_batch *batch;
 344	int i;
 345
 346	batch = container_of(head, struct mmu_table_batch, rcu);
 347
 348	for (i = 0; i < batch->nr; i++)
 349		__tlb_remove_table(batch->tables[i]);
 350
 351	free_page((unsigned long)batch);
 352}
 353
 354void tlb_table_flush(struct mmu_gather *tlb)
 355{
 356	struct mmu_table_batch **batch = &tlb->batch;
 357
 358	if (*batch) {
 359		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 360		*batch = NULL;
 361	}
 362}
 363
 364void tlb_remove_table(struct mmu_gather *tlb, void *table)
 365{
 366	struct mmu_table_batch **batch = &tlb->batch;
 367
 368	tlb->need_flush = 1;
 369
 370	/*
 371	 * When there's less then two users of this mm there cannot be a
 372	 * concurrent page-table walk.
 373	 */
 374	if (atomic_read(&tlb->mm->mm_users) < 2) {
 375		__tlb_remove_table(table);
 376		return;
 377	}
 378
 379	if (*batch == NULL) {
 380		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 381		if (*batch == NULL) {
 382			tlb_remove_table_one(table);
 383			return;
 384		}
 385		(*batch)->nr = 0;
 386	}
 387	(*batch)->tables[(*batch)->nr++] = table;
 388	if ((*batch)->nr == MAX_TABLE_BATCH)
 389		tlb_table_flush(tlb);
 390}
 391
 392#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 393
 394/*
 395 * If a p?d_bad entry is found while walking page tables, report
 396 * the error, before resetting entry to p?d_none.  Usually (but
 397 * very seldom) called out from the p?d_none_or_clear_bad macros.
 398 */
 399
 400void pgd_clear_bad(pgd_t *pgd)
 401{
 402	pgd_ERROR(*pgd);
 403	pgd_clear(pgd);
 404}
 405
 406void pud_clear_bad(pud_t *pud)
 407{
 408	pud_ERROR(*pud);
 409	pud_clear(pud);
 410}
 411
 412void pmd_clear_bad(pmd_t *pmd)
 413{
 414	pmd_ERROR(*pmd);
 415	pmd_clear(pmd);
 416}
 417
 418/*
 419 * Note: this doesn't free the actual pages themselves. That
 420 * has been handled earlier when unmapping all the memory regions.
 421 */
 422static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 423			   unsigned long addr)
 424{
 425	pgtable_t token = pmd_pgtable(*pmd);
 426	pmd_clear(pmd);
 427	pte_free_tlb(tlb, token, addr);
 428	tlb->mm->nr_ptes--;
 429}
 430
 431static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 432				unsigned long addr, unsigned long end,
 433				unsigned long floor, unsigned long ceiling)
 434{
 435	pmd_t *pmd;
 436	unsigned long next;
 437	unsigned long start;
 438
 439	start = addr;
 440	pmd = pmd_offset(pud, addr);
 441	do {
 442		next = pmd_addr_end(addr, end);
 443		if (pmd_none_or_clear_bad(pmd))
 444			continue;
 445		free_pte_range(tlb, pmd, addr);
 446	} while (pmd++, addr = next, addr != end);
 447
 448	start &= PUD_MASK;
 449	if (start < floor)
 450		return;
 451	if (ceiling) {
 452		ceiling &= PUD_MASK;
 453		if (!ceiling)
 454			return;
 455	}
 456	if (end - 1 > ceiling - 1)
 457		return;
 458
 459	pmd = pmd_offset(pud, start);
 460	pud_clear(pud);
 461	pmd_free_tlb(tlb, pmd, start);
 462}
 463
 464static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 465				unsigned long addr, unsigned long end,
 466				unsigned long floor, unsigned long ceiling)
 467{
 468	pud_t *pud;
 469	unsigned long next;
 470	unsigned long start;
 471
 472	start = addr;
 473	pud = pud_offset(pgd, addr);
 474	do {
 475		next = pud_addr_end(addr, end);
 476		if (pud_none_or_clear_bad(pud))
 477			continue;
 478		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 479	} while (pud++, addr = next, addr != end);
 480
 481	start &= PGDIR_MASK;
 482	if (start < floor)
 483		return;
 484	if (ceiling) {
 485		ceiling &= PGDIR_MASK;
 486		if (!ceiling)
 487			return;
 488	}
 489	if (end - 1 > ceiling - 1)
 490		return;
 491
 492	pud = pud_offset(pgd, start);
 493	pgd_clear(pgd);
 494	pud_free_tlb(tlb, pud, start);
 495}
 496
 497/*
 498 * This function frees user-level page tables of a process.
 499 *
 500 * Must be called with pagetable lock held.
 501 */
 502void free_pgd_range(struct mmu_gather *tlb,
 503			unsigned long addr, unsigned long end,
 504			unsigned long floor, unsigned long ceiling)
 505{
 506	pgd_t *pgd;
 507	unsigned long next;
 508
 509	/*
 510	 * The next few lines have given us lots of grief...
 511	 *
 512	 * Why are we testing PMD* at this top level?  Because often
 513	 * there will be no work to do at all, and we'd prefer not to
 514	 * go all the way down to the bottom just to discover that.
 515	 *
 516	 * Why all these "- 1"s?  Because 0 represents both the bottom
 517	 * of the address space and the top of it (using -1 for the
 518	 * top wouldn't help much: the masks would do the wrong thing).
 519	 * The rule is that addr 0 and floor 0 refer to the bottom of
 520	 * the address space, but end 0 and ceiling 0 refer to the top
 521	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 522	 * that end 0 case should be mythical).
 523	 *
 524	 * Wherever addr is brought up or ceiling brought down, we must
 525	 * be careful to reject "the opposite 0" before it confuses the
 526	 * subsequent tests.  But what about where end is brought down
 527	 * by PMD_SIZE below? no, end can't go down to 0 there.
 528	 *
 529	 * Whereas we round start (addr) and ceiling down, by different
 530	 * masks at different levels, in order to test whether a table
 531	 * now has no other vmas using it, so can be freed, we don't
 532	 * bother to round floor or end up - the tests don't need that.
 533	 */
 534
 535	addr &= PMD_MASK;
 536	if (addr < floor) {
 537		addr += PMD_SIZE;
 538		if (!addr)
 539			return;
 540	}
 541	if (ceiling) {
 542		ceiling &= PMD_MASK;
 543		if (!ceiling)
 544			return;
 545	}
 546	if (end - 1 > ceiling - 1)
 547		end -= PMD_SIZE;
 548	if (addr > end - 1)
 549		return;
 550
 551	pgd = pgd_offset(tlb->mm, addr);
 552	do {
 553		next = pgd_addr_end(addr, end);
 554		if (pgd_none_or_clear_bad(pgd))
 555			continue;
 556		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 557	} while (pgd++, addr = next, addr != end);
 558}
 559
 560void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 561		unsigned long floor, unsigned long ceiling)
 562{
 563	while (vma) {
 564		struct vm_area_struct *next = vma->vm_next;
 565		unsigned long addr = vma->vm_start;
 566
 567		/*
 568		 * Hide vma from rmap and truncate_pagecache before freeing
 569		 * pgtables
 570		 */
 571		unlink_anon_vmas(vma);
 572		unlink_file_vma(vma);
 573
 574		if (is_vm_hugetlb_page(vma)) {
 575			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 576				floor, next? next->vm_start: ceiling);
 577		} else {
 578			/*
 579			 * Optimization: gather nearby vmas into one call down
 580			 */
 581			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 582			       && !is_vm_hugetlb_page(next)) {
 583				vma = next;
 584				next = vma->vm_next;
 585				unlink_anon_vmas(vma);
 586				unlink_file_vma(vma);
 587			}
 588			free_pgd_range(tlb, addr, vma->vm_end,
 589				floor, next? next->vm_start: ceiling);
 590		}
 591		vma = next;
 592	}
 593}
 594
 595int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
 596		pmd_t *pmd, unsigned long address)
 597{
 
 598	pgtable_t new = pte_alloc_one(mm, address);
 599	int wait_split_huge_page;
 600	if (!new)
 601		return -ENOMEM;
 602
 603	/*
 604	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 605	 * visible before the pte is made visible to other CPUs by being
 606	 * put into page tables.
 607	 *
 608	 * The other side of the story is the pointer chasing in the page
 609	 * table walking code (when walking the page table without locking;
 610	 * ie. most of the time). Fortunately, these data accesses consist
 611	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 612	 * being the notable exception) will already guarantee loads are
 613	 * seen in-order. See the alpha page table accessors for the
 614	 * smp_read_barrier_depends() barriers in page table walking code.
 615	 */
 616	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 617
 618	spin_lock(&mm->page_table_lock);
 619	wait_split_huge_page = 0;
 620	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 621		mm->nr_ptes++;
 622		pmd_populate(mm, pmd, new);
 623		new = NULL;
 624	} else if (unlikely(pmd_trans_splitting(*pmd)))
 625		wait_split_huge_page = 1;
 626	spin_unlock(&mm->page_table_lock);
 627	if (new)
 628		pte_free(mm, new);
 629	if (wait_split_huge_page)
 630		wait_split_huge_page(vma->anon_vma, pmd);
 631	return 0;
 632}
 633
 634int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 635{
 636	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 637	if (!new)
 638		return -ENOMEM;
 639
 640	smp_wmb(); /* See comment in __pte_alloc */
 641
 642	spin_lock(&init_mm.page_table_lock);
 643	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 644		pmd_populate_kernel(&init_mm, pmd, new);
 645		new = NULL;
 646	} else
 647		VM_BUG_ON(pmd_trans_splitting(*pmd));
 648	spin_unlock(&init_mm.page_table_lock);
 649	if (new)
 650		pte_free_kernel(&init_mm, new);
 651	return 0;
 652}
 653
 654static inline void init_rss_vec(int *rss)
 655{
 656	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 657}
 658
 659static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 660{
 661	int i;
 662
 663	if (current->mm == mm)
 664		sync_mm_rss(current, mm);
 665	for (i = 0; i < NR_MM_COUNTERS; i++)
 666		if (rss[i])
 667			add_mm_counter(mm, i, rss[i]);
 668}
 669
 670/*
 671 * This function is called to print an error when a bad pte
 672 * is found. For example, we might have a PFN-mapped pte in
 673 * a region that doesn't allow it.
 674 *
 675 * The calling function must still handle the error.
 676 */
 677static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 678			  pte_t pte, struct page *page)
 679{
 680	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 681	pud_t *pud = pud_offset(pgd, addr);
 682	pmd_t *pmd = pmd_offset(pud, addr);
 683	struct address_space *mapping;
 684	pgoff_t index;
 685	static unsigned long resume;
 686	static unsigned long nr_shown;
 687	static unsigned long nr_unshown;
 688
 689	/*
 690	 * Allow a burst of 60 reports, then keep quiet for that minute;
 691	 * or allow a steady drip of one report per second.
 692	 */
 693	if (nr_shown == 60) {
 694		if (time_before(jiffies, resume)) {
 695			nr_unshown++;
 696			return;
 697		}
 698		if (nr_unshown) {
 699			printk(KERN_ALERT
 700				"BUG: Bad page map: %lu messages suppressed\n",
 701				nr_unshown);
 702			nr_unshown = 0;
 703		}
 704		nr_shown = 0;
 705	}
 706	if (nr_shown++ == 0)
 707		resume = jiffies + 60 * HZ;
 708
 709	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 710	index = linear_page_index(vma, addr);
 711
 712	printk(KERN_ALERT
 713		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 714		current->comm,
 715		(long long)pte_val(pte), (long long)pmd_val(*pmd));
 716	if (page)
 717		dump_page(page);
 718	printk(KERN_ALERT
 719		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 720		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 721	/*
 722	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 723	 */
 724	if (vma->vm_ops)
 725		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
 726				(unsigned long)vma->vm_ops->fault);
 727	if (vma->vm_file && vma->vm_file->f_op)
 728		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
 729				(unsigned long)vma->vm_file->f_op->mmap);
 730	dump_stack();
 731	add_taint(TAINT_BAD_PAGE);
 732}
 733
 734static inline int is_cow_mapping(vm_flags_t flags)
 735{
 736	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
 737}
 738
 739#ifndef is_zero_pfn
 740static inline int is_zero_pfn(unsigned long pfn)
 741{
 742	return pfn == zero_pfn;
 743}
 744#endif
 745
 746#ifndef my_zero_pfn
 747static inline unsigned long my_zero_pfn(unsigned long addr)
 748{
 749	return zero_pfn;
 750}
 751#endif
 752
 753/*
 754 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 755 *
 756 * "Special" mappings do not wish to be associated with a "struct page" (either
 757 * it doesn't exist, or it exists but they don't want to touch it). In this
 758 * case, NULL is returned here. "Normal" mappings do have a struct page.
 759 *
 760 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 761 * pte bit, in which case this function is trivial. Secondly, an architecture
 762 * may not have a spare pte bit, which requires a more complicated scheme,
 763 * described below.
 764 *
 765 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 766 * special mapping (even if there are underlying and valid "struct pages").
 767 * COWed pages of a VM_PFNMAP are always normal.
 768 *
 769 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 770 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 771 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 772 * mapping will always honor the rule
 773 *
 774 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 775 *
 776 * And for normal mappings this is false.
 777 *
 778 * This restricts such mappings to be a linear translation from virtual address
 779 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 780 * as the vma is not a COW mapping; in that case, we know that all ptes are
 781 * special (because none can have been COWed).
 782 *
 783 *
 784 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 785 *
 786 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 787 * page" backing, however the difference is that _all_ pages with a struct
 788 * page (that is, those where pfn_valid is true) are refcounted and considered
 789 * normal pages by the VM. The disadvantage is that pages are refcounted
 790 * (which can be slower and simply not an option for some PFNMAP users). The
 791 * advantage is that we don't have to follow the strict linearity rule of
 792 * PFNMAP mappings in order to support COWable mappings.
 793 *
 794 */
 795#ifdef __HAVE_ARCH_PTE_SPECIAL
 796# define HAVE_PTE_SPECIAL 1
 797#else
 798# define HAVE_PTE_SPECIAL 0
 799#endif
 800struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 801				pte_t pte)
 802{
 803	unsigned long pfn = pte_pfn(pte);
 804
 805	if (HAVE_PTE_SPECIAL) {
 806		if (likely(!pte_special(pte)))
 807			goto check_pfn;
 808		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 809			return NULL;
 810		if (!is_zero_pfn(pfn))
 811			print_bad_pte(vma, addr, pte, NULL);
 812		return NULL;
 813	}
 814
 815	/* !HAVE_PTE_SPECIAL case follows: */
 816
 817	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 818		if (vma->vm_flags & VM_MIXEDMAP) {
 819			if (!pfn_valid(pfn))
 820				return NULL;
 821			goto out;
 822		} else {
 823			unsigned long off;
 824			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 825			if (pfn == vma->vm_pgoff + off)
 826				return NULL;
 827			if (!is_cow_mapping(vma->vm_flags))
 828				return NULL;
 829		}
 830	}
 831
 832	if (is_zero_pfn(pfn))
 833		return NULL;
 834check_pfn:
 835	if (unlikely(pfn > highest_memmap_pfn)) {
 836		print_bad_pte(vma, addr, pte, NULL);
 837		return NULL;
 838	}
 839
 840	/*
 841	 * NOTE! We still have PageReserved() pages in the page tables.
 842	 * eg. VDSO mappings can cause them to exist.
 843	 */
 844out:
 845	return pfn_to_page(pfn);
 846}
 847
 848/*
 849 * copy one vm_area from one task to the other. Assumes the page tables
 850 * already present in the new task to be cleared in the whole range
 851 * covered by this vma.
 852 */
 853
 854static inline unsigned long
 855copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 856		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 857		unsigned long addr, int *rss)
 858{
 859	unsigned long vm_flags = vma->vm_flags;
 860	pte_t pte = *src_pte;
 861	struct page *page;
 862
 863	/* pte contains position in swap or file, so copy. */
 864	if (unlikely(!pte_present(pte))) {
 865		if (!pte_file(pte)) {
 866			swp_entry_t entry = pte_to_swp_entry(pte);
 867
 868			if (swap_duplicate(entry) < 0)
 869				return entry.val;
 870
 871			/* make sure dst_mm is on swapoff's mmlist. */
 872			if (unlikely(list_empty(&dst_mm->mmlist))) {
 873				spin_lock(&mmlist_lock);
 874				if (list_empty(&dst_mm->mmlist))
 875					list_add(&dst_mm->mmlist,
 876						 &src_mm->mmlist);
 877				spin_unlock(&mmlist_lock);
 878			}
 879			if (likely(!non_swap_entry(entry)))
 880				rss[MM_SWAPENTS]++;
 881			else if (is_write_migration_entry(entry) &&
 882					is_cow_mapping(vm_flags)) {
 883				/*
 884				 * COW mappings require pages in both parent
 885				 * and child to be set to read.
 886				 */
 887				make_migration_entry_read(&entry);
 888				pte = swp_entry_to_pte(entry);
 889				set_pte_at(src_mm, addr, src_pte, pte);
 
 
 
 
 
 
 
 
 
 
 
 890			}
 891		}
 892		goto out_set_pte;
 893	}
 894
 895	/*
 896	 * If it's a COW mapping, write protect it both
 897	 * in the parent and the child
 898	 */
 899	if (is_cow_mapping(vm_flags)) {
 900		ptep_set_wrprotect(src_mm, addr, src_pte);
 901		pte = pte_wrprotect(pte);
 902	}
 903
 904	/*
 905	 * If it's a shared mapping, mark it clean in
 906	 * the child
 907	 */
 908	if (vm_flags & VM_SHARED)
 909		pte = pte_mkclean(pte);
 910	pte = pte_mkold(pte);
 911
 912	page = vm_normal_page(vma, addr, pte);
 913	if (page) {
 914		get_page(page);
 915		page_dup_rmap(page);
 916		if (PageAnon(page))
 917			rss[MM_ANONPAGES]++;
 918		else
 919			rss[MM_FILEPAGES]++;
 920	}
 921
 922out_set_pte:
 923	set_pte_at(dst_mm, addr, dst_pte, pte);
 924	return 0;
 925}
 926
 927int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 928		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 929		   unsigned long addr, unsigned long end)
 930{
 931	pte_t *orig_src_pte, *orig_dst_pte;
 932	pte_t *src_pte, *dst_pte;
 933	spinlock_t *src_ptl, *dst_ptl;
 934	int progress = 0;
 935	int rss[NR_MM_COUNTERS];
 936	swp_entry_t entry = (swp_entry_t){0};
 937
 938again:
 939	init_rss_vec(rss);
 940
 941	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 942	if (!dst_pte)
 943		return -ENOMEM;
 944	src_pte = pte_offset_map(src_pmd, addr);
 945	src_ptl = pte_lockptr(src_mm, src_pmd);
 946	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 947	orig_src_pte = src_pte;
 948	orig_dst_pte = dst_pte;
 949	arch_enter_lazy_mmu_mode();
 950
 951	do {
 952		/*
 953		 * We are holding two locks at this point - either of them
 954		 * could generate latencies in another task on another CPU.
 955		 */
 956		if (progress >= 32) {
 957			progress = 0;
 958			if (need_resched() ||
 959			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 960				break;
 961		}
 962		if (pte_none(*src_pte)) {
 963			progress++;
 964			continue;
 965		}
 966		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 967							vma, addr, rss);
 968		if (entry.val)
 969			break;
 970		progress += 8;
 971	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 972
 973	arch_leave_lazy_mmu_mode();
 974	spin_unlock(src_ptl);
 975	pte_unmap(orig_src_pte);
 976	add_mm_rss_vec(dst_mm, rss);
 977	pte_unmap_unlock(orig_dst_pte, dst_ptl);
 978	cond_resched();
 979
 980	if (entry.val) {
 981		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 982			return -ENOMEM;
 983		progress = 0;
 984	}
 985	if (addr != end)
 986		goto again;
 987	return 0;
 988}
 989
 990static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 991		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 992		unsigned long addr, unsigned long end)
 993{
 994	pmd_t *src_pmd, *dst_pmd;
 995	unsigned long next;
 996
 997	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 998	if (!dst_pmd)
 999		return -ENOMEM;
1000	src_pmd = pmd_offset(src_pud, addr);
1001	do {
1002		next = pmd_addr_end(addr, end);
1003		if (pmd_trans_huge(*src_pmd)) {
1004			int err;
1005			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1006			err = copy_huge_pmd(dst_mm, src_mm,
1007					    dst_pmd, src_pmd, addr, vma);
1008			if (err == -ENOMEM)
1009				return -ENOMEM;
1010			if (!err)
1011				continue;
1012			/* fall through */
1013		}
1014		if (pmd_none_or_clear_bad(src_pmd))
1015			continue;
1016		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1017						vma, addr, next))
1018			return -ENOMEM;
1019	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1020	return 0;
1021}
1022
1023static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1024		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1025		unsigned long addr, unsigned long end)
1026{
1027	pud_t *src_pud, *dst_pud;
1028	unsigned long next;
1029
1030	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1031	if (!dst_pud)
1032		return -ENOMEM;
1033	src_pud = pud_offset(src_pgd, addr);
1034	do {
1035		next = pud_addr_end(addr, end);
1036		if (pud_none_or_clear_bad(src_pud))
1037			continue;
1038		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1039						vma, addr, next))
1040			return -ENOMEM;
1041	} while (dst_pud++, src_pud++, addr = next, addr != end);
1042	return 0;
1043}
1044
1045int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1046		struct vm_area_struct *vma)
1047{
1048	pgd_t *src_pgd, *dst_pgd;
1049	unsigned long next;
1050	unsigned long addr = vma->vm_start;
1051	unsigned long end = vma->vm_end;
 
 
 
1052	int ret;
1053
1054	/*
1055	 * Don't copy ptes where a page fault will fill them correctly.
1056	 * Fork becomes much lighter when there are big shared or private
1057	 * readonly mappings. The tradeoff is that copy_page_range is more
1058	 * efficient than faulting.
1059	 */
1060	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
 
1061		if (!vma->anon_vma)
1062			return 0;
1063	}
1064
1065	if (is_vm_hugetlb_page(vma))
1066		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1067
1068	if (unlikely(is_pfn_mapping(vma))) {
1069		/*
1070		 * We do not free on error cases below as remove_vma
1071		 * gets called on error from higher level routine
1072		 */
1073		ret = track_pfn_vma_copy(vma);
1074		if (ret)
1075			return ret;
1076	}
1077
1078	/*
1079	 * We need to invalidate the secondary MMU mappings only when
1080	 * there could be a permission downgrade on the ptes of the
1081	 * parent mm. And a permission downgrade will only happen if
1082	 * is_cow_mapping() returns true.
1083	 */
1084	if (is_cow_mapping(vma->vm_flags))
1085		mmu_notifier_invalidate_range_start(src_mm, addr, end);
 
 
 
 
1086
1087	ret = 0;
1088	dst_pgd = pgd_offset(dst_mm, addr);
1089	src_pgd = pgd_offset(src_mm, addr);
1090	do {
1091		next = pgd_addr_end(addr, end);
1092		if (pgd_none_or_clear_bad(src_pgd))
1093			continue;
1094		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1095					    vma, addr, next))) {
1096			ret = -ENOMEM;
1097			break;
1098		}
1099	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1100
1101	if (is_cow_mapping(vma->vm_flags))
1102		mmu_notifier_invalidate_range_end(src_mm,
1103						  vma->vm_start, end);
1104	return ret;
1105}
1106
1107static unsigned long zap_pte_range(struct mmu_gather *tlb,
1108				struct vm_area_struct *vma, pmd_t *pmd,
1109				unsigned long addr, unsigned long end,
1110				struct zap_details *details)
1111{
1112	struct mm_struct *mm = tlb->mm;
1113	int force_flush = 0;
1114	int rss[NR_MM_COUNTERS];
1115	spinlock_t *ptl;
1116	pte_t *start_pte;
1117	pte_t *pte;
1118
1119again:
1120	init_rss_vec(rss);
1121	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1122	pte = start_pte;
1123	arch_enter_lazy_mmu_mode();
1124	do {
1125		pte_t ptent = *pte;
1126		if (pte_none(ptent)) {
1127			continue;
1128		}
1129
1130		if (pte_present(ptent)) {
1131			struct page *page;
1132
1133			page = vm_normal_page(vma, addr, ptent);
1134			if (unlikely(details) && page) {
1135				/*
1136				 * unmap_shared_mapping_pages() wants to
1137				 * invalidate cache without truncating:
1138				 * unmap shared but keep private pages.
1139				 */
1140				if (details->check_mapping &&
1141				    details->check_mapping != page->mapping)
1142					continue;
1143				/*
1144				 * Each page->index must be checked when
1145				 * invalidating or truncating nonlinear.
1146				 */
1147				if (details->nonlinear_vma &&
1148				    (page->index < details->first_index ||
1149				     page->index > details->last_index))
1150					continue;
1151			}
1152			ptent = ptep_get_and_clear_full(mm, addr, pte,
1153							tlb->fullmm);
1154			tlb_remove_tlb_entry(tlb, pte, addr);
1155			if (unlikely(!page))
1156				continue;
1157			if (unlikely(details) && details->nonlinear_vma
1158			    && linear_page_index(details->nonlinear_vma,
1159						addr) != page->index)
1160				set_pte_at(mm, addr, pte,
1161					   pgoff_to_pte(page->index));
 
 
 
1162			if (PageAnon(page))
1163				rss[MM_ANONPAGES]--;
1164			else {
1165				if (pte_dirty(ptent))
 
1166					set_page_dirty(page);
 
1167				if (pte_young(ptent) &&
1168				    likely(!VM_SequentialReadHint(vma)))
1169					mark_page_accessed(page);
1170				rss[MM_FILEPAGES]--;
1171			}
1172			page_remove_rmap(page);
1173			if (unlikely(page_mapcount(page) < 0))
1174				print_bad_pte(vma, addr, ptent, page);
1175			force_flush = !__tlb_remove_page(tlb, page);
1176			if (force_flush)
1177				break;
 
1178			continue;
1179		}
1180		/*
1181		 * If details->check_mapping, we leave swap entries;
1182		 * if details->nonlinear_vma, we leave file entries.
1183		 */
1184		if (unlikely(details))
1185			continue;
1186		if (pte_file(ptent)) {
1187			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1188				print_bad_pte(vma, addr, ptent, NULL);
1189		} else {
1190			swp_entry_t entry = pte_to_swp_entry(ptent);
1191
1192			if (!non_swap_entry(entry))
1193				rss[MM_SWAPENTS]--;
 
 
 
 
 
 
 
 
 
 
1194			if (unlikely(!free_swap_and_cache(entry)))
1195				print_bad_pte(vma, addr, ptent, NULL);
1196		}
1197		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198	} while (pte++, addr += PAGE_SIZE, addr != end);
1199
1200	add_mm_rss_vec(mm, rss);
1201	arch_leave_lazy_mmu_mode();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1202	pte_unmap_unlock(start_pte, ptl);
1203
1204	/*
1205	 * mmu_gather ran out of room to batch pages, we break out of
1206	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1207	 * and page-free while holding it.
 
1208	 */
1209	if (force_flush) {
1210		force_flush = 0;
1211		tlb_flush_mmu(tlb);
 
1212		if (addr != end)
1213			goto again;
1214	}
1215
1216	return addr;
1217}
1218
1219static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1220				struct vm_area_struct *vma, pud_t *pud,
1221				unsigned long addr, unsigned long end,
1222				struct zap_details *details)
1223{
1224	pmd_t *pmd;
1225	unsigned long next;
1226
1227	pmd = pmd_offset(pud, addr);
1228	do {
1229		next = pmd_addr_end(addr, end);
1230		if (pmd_trans_huge(*pmd)) {
1231			if (next-addr != HPAGE_PMD_SIZE) {
1232				VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1233				split_huge_page_pmd(vma->vm_mm, pmd);
1234			} else if (zap_huge_pmd(tlb, vma, pmd))
1235				continue;
 
 
 
 
 
 
 
 
1236			/* fall through */
1237		}
1238		if (pmd_none_or_clear_bad(pmd))
1239			continue;
 
 
 
 
 
 
 
1240		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
 
1241		cond_resched();
1242	} while (pmd++, addr = next, addr != end);
1243
1244	return addr;
1245}
1246
1247static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1248				struct vm_area_struct *vma, pgd_t *pgd,
1249				unsigned long addr, unsigned long end,
1250				struct zap_details *details)
1251{
1252	pud_t *pud;
1253	unsigned long next;
1254
1255	pud = pud_offset(pgd, addr);
1256	do {
1257		next = pud_addr_end(addr, end);
1258		if (pud_none_or_clear_bad(pud))
1259			continue;
1260		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1261	} while (pud++, addr = next, addr != end);
1262
1263	return addr;
1264}
1265
1266static unsigned long unmap_page_range(struct mmu_gather *tlb,
1267				struct vm_area_struct *vma,
1268				unsigned long addr, unsigned long end,
1269				struct zap_details *details)
1270{
1271	pgd_t *pgd;
1272	unsigned long next;
1273
1274	if (details && !details->check_mapping && !details->nonlinear_vma)
1275		details = NULL;
1276
1277	BUG_ON(addr >= end);
1278	mem_cgroup_uncharge_start();
1279	tlb_start_vma(tlb, vma);
1280	pgd = pgd_offset(vma->vm_mm, addr);
1281	do {
1282		next = pgd_addr_end(addr, end);
1283		if (pgd_none_or_clear_bad(pgd))
1284			continue;
1285		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1286	} while (pgd++, addr = next, addr != end);
1287	tlb_end_vma(tlb, vma);
1288	mem_cgroup_uncharge_end();
 
1289
1290	return addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1291}
1292
1293/**
1294 * unmap_vmas - unmap a range of memory covered by a list of vma's
1295 * @tlb: address of the caller's struct mmu_gather
1296 * @vma: the starting vma
1297 * @start_addr: virtual address at which to start unmapping
1298 * @end_addr: virtual address at which to end unmapping
1299 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1300 * @details: details of nonlinear truncation or shared cache invalidation
1301 *
1302 * Returns the end address of the unmapping (restart addr if interrupted).
1303 *
1304 * Unmap all pages in the vma list.
1305 *
1306 * Only addresses between `start' and `end' will be unmapped.
1307 *
1308 * The VMA list must be sorted in ascending virtual address order.
1309 *
1310 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1311 * range after unmap_vmas() returns.  So the only responsibility here is to
1312 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1313 * drops the lock and schedules.
1314 */
1315unsigned long unmap_vmas(struct mmu_gather *tlb,
1316		struct vm_area_struct *vma, unsigned long start_addr,
1317		unsigned long end_addr, unsigned long *nr_accounted,
1318		struct zap_details *details)
1319{
1320	unsigned long start = start_addr;
1321	struct mm_struct *mm = vma->vm_mm;
1322
1323	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1324	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1325		unsigned long end;
1326
1327		start = max(vma->vm_start, start_addr);
1328		if (start >= vma->vm_end)
1329			continue;
1330		end = min(vma->vm_end, end_addr);
1331		if (end <= vma->vm_start)
1332			continue;
1333
1334		if (vma->vm_flags & VM_ACCOUNT)
1335			*nr_accounted += (end - start) >> PAGE_SHIFT;
1336
1337		if (unlikely(is_pfn_mapping(vma)))
1338			untrack_pfn_vma(vma, 0, 0);
1339
1340		while (start != end) {
1341			if (unlikely(is_vm_hugetlb_page(vma))) {
1342				/*
1343				 * It is undesirable to test vma->vm_file as it
1344				 * should be non-null for valid hugetlb area.
1345				 * However, vm_file will be NULL in the error
1346				 * cleanup path of do_mmap_pgoff. When
1347				 * hugetlbfs ->mmap method fails,
1348				 * do_mmap_pgoff() nullifies vma->vm_file
1349				 * before calling this function to clean up.
1350				 * Since no pte has actually been setup, it is
1351				 * safe to do nothing in this case.
1352				 */
1353				if (vma->vm_file)
1354					unmap_hugepage_range(vma, start, end, NULL);
1355
1356				start = end;
1357			} else
1358				start = unmap_page_range(tlb, vma, start, end, details);
1359		}
1360	}
1361
1362	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1363	return start;	/* which is now the end (or restart) address */
1364}
1365
1366/**
1367 * zap_page_range - remove user pages in a given range
1368 * @vma: vm_area_struct holding the applicable pages
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1369 * @address: starting address of pages to zap
1370 * @size: number of bytes to zap
1371 * @details: details of nonlinear truncation or shared cache invalidation
 
 
1372 */
1373unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1374		unsigned long size, struct zap_details *details)
1375{
1376	struct mm_struct *mm = vma->vm_mm;
1377	struct mmu_gather tlb;
1378	unsigned long end = address + size;
1379	unsigned long nr_accounted = 0;
1380
1381	lru_add_drain();
1382	tlb_gather_mmu(&tlb, mm, 0);
1383	update_hiwater_rss(mm);
1384	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
 
 
1385	tlb_finish_mmu(&tlb, address, end);
1386	return end;
1387}
1388
1389/**
1390 * zap_vma_ptes - remove ptes mapping the vma
1391 * @vma: vm_area_struct holding ptes to be zapped
1392 * @address: starting address of pages to zap
1393 * @size: number of bytes to zap
1394 *
1395 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1396 *
1397 * The entire address range must be fully contained within the vma.
1398 *
1399 * Returns 0 if successful.
1400 */
1401int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1402		unsigned long size)
1403{
1404	if (address < vma->vm_start || address + size > vma->vm_end ||
1405	    		!(vma->vm_flags & VM_PFNMAP))
1406		return -1;
1407	zap_page_range(vma, address, size, NULL);
1408	return 0;
1409}
1410EXPORT_SYMBOL_GPL(zap_vma_ptes);
1411
1412/**
1413 * follow_page - look up a page descriptor from a user-virtual address
1414 * @vma: vm_area_struct mapping @address
1415 * @address: virtual address to look up
1416 * @flags: flags modifying lookup behaviour
 
1417 *
1418 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1419 *
1420 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1421 * an error pointer if there is a mapping to something not represented
1422 * by a page descriptor (see also vm_normal_page()).
1423 */
1424struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1425			unsigned int flags)
 
1426{
1427	pgd_t *pgd;
1428	pud_t *pud;
1429	pmd_t *pmd;
1430	pte_t *ptep, pte;
1431	spinlock_t *ptl;
1432	struct page *page;
1433	struct mm_struct *mm = vma->vm_mm;
1434
 
 
1435	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1436	if (!IS_ERR(page)) {
1437		BUG_ON(flags & FOLL_GET);
1438		goto out;
1439	}
1440
1441	page = NULL;
1442	pgd = pgd_offset(mm, address);
1443	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1444		goto no_page_table;
1445
1446	pud = pud_offset(pgd, address);
1447	if (pud_none(*pud))
1448		goto no_page_table;
1449	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1450		BUG_ON(flags & FOLL_GET);
 
1451		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1452		goto out;
1453	}
1454	if (unlikely(pud_bad(*pud)))
1455		goto no_page_table;
1456
1457	pmd = pmd_offset(pud, address);
1458	if (pmd_none(*pmd))
1459		goto no_page_table;
1460	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1461		BUG_ON(flags & FOLL_GET);
1462		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
 
 
 
 
 
 
 
 
 
 
 
 
 
1463		goto out;
1464	}
 
 
1465	if (pmd_trans_huge(*pmd)) {
1466		if (flags & FOLL_SPLIT) {
1467			split_huge_page_pmd(mm, pmd);
1468			goto split_fallthrough;
1469		}
1470		spin_lock(&mm->page_table_lock);
1471		if (likely(pmd_trans_huge(*pmd))) {
1472			if (unlikely(pmd_trans_splitting(*pmd))) {
1473				spin_unlock(&mm->page_table_lock);
1474				wait_split_huge_page(vma->anon_vma, pmd);
1475			} else {
1476				page = follow_trans_huge_pmd(mm, address,
1477							     pmd, flags);
1478				spin_unlock(&mm->page_table_lock);
 
1479				goto out;
1480			}
1481		} else
1482			spin_unlock(&mm->page_table_lock);
1483		/* fall through */
1484	}
1485split_fallthrough:
1486	if (unlikely(pmd_bad(*pmd)))
1487		goto no_page_table;
1488
1489	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1490
1491	pte = *ptep;
1492	if (!pte_present(pte))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1493		goto no_page;
1494	if ((flags & FOLL_WRITE) && !pte_write(pte))
1495		goto unlock;
1496
1497	page = vm_normal_page(vma, address, pte);
1498	if (unlikely(!page)) {
1499		if ((flags & FOLL_DUMP) ||
1500		    !is_zero_pfn(pte_pfn(pte)))
1501			goto bad_page;
1502		page = pte_page(pte);
1503	}
1504
1505	if (flags & FOLL_GET)
1506		get_page(page);
1507	if (flags & FOLL_TOUCH) {
1508		if ((flags & FOLL_WRITE) &&
1509		    !pte_dirty(pte) && !PageDirty(page))
1510			set_page_dirty(page);
1511		/*
1512		 * pte_mkyoung() would be more correct here, but atomic care
1513		 * is needed to avoid losing the dirty bit: it is easier to use
1514		 * mark_page_accessed().
1515		 */
1516		mark_page_accessed(page);
1517	}
1518	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1519		/*
1520		 * The preliminary mapping check is mainly to avoid the
1521		 * pointless overhead of lock_page on the ZERO_PAGE
1522		 * which might bounce very badly if there is contention.
1523		 *
1524		 * If the page is already locked, we don't need to
1525		 * handle it now - vmscan will handle it later if and
1526		 * when it attempts to reclaim the page.
1527		 */
1528		if (page->mapping && trylock_page(page)) {
1529			lru_add_drain();  /* push cached pages to LRU */
1530			/*
1531			 * Because we lock page here and migration is
1532			 * blocked by the pte's page reference, we need
1533			 * only check for file-cache page truncation.
 
1534			 */
1535			if (page->mapping)
1536				mlock_vma_page(page);
1537			unlock_page(page);
1538		}
1539	}
1540unlock:
1541	pte_unmap_unlock(ptep, ptl);
1542out:
1543	return page;
1544
1545bad_page:
1546	pte_unmap_unlock(ptep, ptl);
1547	return ERR_PTR(-EFAULT);
1548
1549no_page:
1550	pte_unmap_unlock(ptep, ptl);
1551	if (!pte_none(pte))
1552		return page;
1553
1554no_page_table:
1555	/*
1556	 * When core dumping an enormous anonymous area that nobody
1557	 * has touched so far, we don't want to allocate unnecessary pages or
1558	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1559	 * then get_dump_page() will return NULL to leave a hole in the dump.
1560	 * But we can only make this optimization where a hole would surely
1561	 * be zero-filled if handle_mm_fault() actually did handle it.
1562	 */
1563	if ((flags & FOLL_DUMP) &&
1564	    (!vma->vm_ops || !vma->vm_ops->fault))
1565		return ERR_PTR(-EFAULT);
1566	return page;
1567}
1568
1569static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1570{
1571	return stack_guard_page_start(vma, addr) ||
1572	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1573}
1574
1575/**
1576 * __get_user_pages() - pin user pages in memory
1577 * @tsk:	task_struct of target task
1578 * @mm:		mm_struct of target mm
1579 * @start:	starting user address
1580 * @nr_pages:	number of pages from start to pin
1581 * @gup_flags:	flags modifying pin behaviour
1582 * @pages:	array that receives pointers to the pages pinned.
1583 *		Should be at least nr_pages long. Or NULL, if caller
1584 *		only intends to ensure the pages are faulted in.
1585 * @vmas:	array of pointers to vmas corresponding to each page.
1586 *		Or NULL if the caller does not require them.
1587 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1588 *
1589 * Returns number of pages pinned. This may be fewer than the number
1590 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1591 * were pinned, returns -errno. Each page returned must be released
1592 * with a put_page() call when it is finished with. vmas will only
1593 * remain valid while mmap_sem is held.
1594 *
1595 * Must be called with mmap_sem held for read or write.
1596 *
1597 * __get_user_pages walks a process's page tables and takes a reference to
1598 * each struct page that each user address corresponds to at a given
1599 * instant. That is, it takes the page that would be accessed if a user
1600 * thread accesses the given user virtual address at that instant.
1601 *
1602 * This does not guarantee that the page exists in the user mappings when
1603 * __get_user_pages returns, and there may even be a completely different
1604 * page there in some cases (eg. if mmapped pagecache has been invalidated
1605 * and subsequently re faulted). However it does guarantee that the page
1606 * won't be freed completely. And mostly callers simply care that the page
1607 * contains data that was valid *at some point in time*. Typically, an IO
1608 * or similar operation cannot guarantee anything stronger anyway because
1609 * locks can't be held over the syscall boundary.
1610 *
1611 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1612 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1613 * appropriate) must be called after the page is finished with, and
1614 * before put_page is called.
1615 *
1616 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1617 * or mmap_sem contention, and if waiting is needed to pin all pages,
1618 * *@nonblocking will be set to 0.
1619 *
1620 * In most cases, get_user_pages or get_user_pages_fast should be used
1621 * instead of __get_user_pages. __get_user_pages should be used only if
1622 * you need some special @gup_flags.
1623 */
1624int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1625		     unsigned long start, int nr_pages, unsigned int gup_flags,
1626		     struct page **pages, struct vm_area_struct **vmas,
1627		     int *nonblocking)
1628{
1629	int i;
1630	unsigned long vm_flags;
 
1631
1632	if (nr_pages <= 0)
1633		return 0;
1634
1635	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1636
1637	/* 
1638	 * Require read or write permissions.
1639	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1640	 */
1641	vm_flags  = (gup_flags & FOLL_WRITE) ?
1642			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1643	vm_flags &= (gup_flags & FOLL_FORCE) ?
1644			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
 
 
 
 
1645	i = 0;
1646
1647	do {
1648		struct vm_area_struct *vma;
1649
1650		vma = find_extend_vma(mm, start);
1651		if (!vma && in_gate_area(mm, start)) {
1652			unsigned long pg = start & PAGE_MASK;
1653			pgd_t *pgd;
1654			pud_t *pud;
1655			pmd_t *pmd;
1656			pte_t *pte;
1657
1658			/* user gate pages are read-only */
1659			if (gup_flags & FOLL_WRITE)
1660				return i ? : -EFAULT;
1661			if (pg > TASK_SIZE)
1662				pgd = pgd_offset_k(pg);
1663			else
1664				pgd = pgd_offset_gate(mm, pg);
1665			BUG_ON(pgd_none(*pgd));
1666			pud = pud_offset(pgd, pg);
1667			BUG_ON(pud_none(*pud));
1668			pmd = pmd_offset(pud, pg);
1669			if (pmd_none(*pmd))
1670				return i ? : -EFAULT;
1671			VM_BUG_ON(pmd_trans_huge(*pmd));
1672			pte = pte_offset_map(pmd, pg);
1673			if (pte_none(*pte)) {
1674				pte_unmap(pte);
1675				return i ? : -EFAULT;
1676			}
1677			vma = get_gate_vma(mm);
1678			if (pages) {
1679				struct page *page;
1680
1681				page = vm_normal_page(vma, start, *pte);
1682				if (!page) {
1683					if (!(gup_flags & FOLL_DUMP) &&
1684					     is_zero_pfn(pte_pfn(*pte)))
1685						page = pte_page(*pte);
1686					else {
1687						pte_unmap(pte);
1688						return i ? : -EFAULT;
1689					}
1690				}
1691				pages[i] = page;
1692				get_page(page);
1693			}
1694			pte_unmap(pte);
 
1695			goto next_page;
1696		}
1697
1698		if (!vma ||
1699		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1700		    !(vm_flags & vma->vm_flags))
1701			return i ? : -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1702
1703		if (is_vm_hugetlb_page(vma)) {
1704			i = follow_hugetlb_page(mm, vma, pages, vmas,
1705					&start, &nr_pages, i, gup_flags);
1706			continue;
1707		}
1708
1709		do {
1710			struct page *page;
1711			unsigned int foll_flags = gup_flags;
 
1712
1713			/*
1714			 * If we have a pending SIGKILL, don't keep faulting
1715			 * pages and potentially allocating memory.
1716			 */
1717			if (unlikely(fatal_signal_pending(current)))
1718				return i ? i : -ERESTARTSYS;
1719
1720			cond_resched();
1721			while (!(page = follow_page(vma, start, foll_flags))) {
 
1722				int ret;
1723				unsigned int fault_flags = 0;
1724
1725				/* For mlock, just skip the stack guard page. */
1726				if (foll_flags & FOLL_MLOCK) {
1727					if (stack_guard_page(vma, start))
1728						goto next_page;
1729				}
1730				if (foll_flags & FOLL_WRITE)
1731					fault_flags |= FAULT_FLAG_WRITE;
1732				if (nonblocking)
1733					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1734				if (foll_flags & FOLL_NOWAIT)
1735					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1736
1737				ret = handle_mm_fault(mm, vma, start,
1738							fault_flags);
1739
1740				if (ret & VM_FAULT_ERROR) {
1741					if (ret & VM_FAULT_OOM)
1742						return i ? i : -ENOMEM;
1743					if (ret & (VM_FAULT_HWPOISON |
1744						   VM_FAULT_HWPOISON_LARGE)) {
1745						if (i)
1746							return i;
1747						else if (gup_flags & FOLL_HWPOISON)
1748							return -EHWPOISON;
1749						else
1750							return -EFAULT;
1751					}
1752					if (ret & VM_FAULT_SIGBUS)
1753						return i ? i : -EFAULT;
1754					BUG();
1755				}
1756
1757				if (tsk) {
1758					if (ret & VM_FAULT_MAJOR)
1759						tsk->maj_flt++;
1760					else
1761						tsk->min_flt++;
1762				}
1763
1764				if (ret & VM_FAULT_RETRY) {
1765					if (nonblocking)
1766						*nonblocking = 0;
1767					return i;
1768				}
1769
1770				/*
1771				 * The VM_FAULT_WRITE bit tells us that
1772				 * do_wp_page has broken COW when necessary,
1773				 * even if maybe_mkwrite decided not to set
1774				 * pte_write. We can thus safely do subsequent
1775				 * page lookups as if they were reads. But only
1776				 * do so when looping for pte_write is futile:
1777				 * in some cases userspace may also be wanting
1778				 * to write to the gotten user page, which a
1779				 * read fault here might prevent (a readonly
1780				 * page might get reCOWed by userspace write).
1781				 */
1782				if ((ret & VM_FAULT_WRITE) &&
1783				    !(vma->vm_flags & VM_WRITE))
1784					foll_flags &= ~FOLL_WRITE;
1785
1786				cond_resched();
1787			}
1788			if (IS_ERR(page))
1789				return i ? i : PTR_ERR(page);
1790			if (pages) {
1791				pages[i] = page;
1792
1793				flush_anon_page(vma, page, start);
1794				flush_dcache_page(page);
 
1795			}
1796next_page:
1797			if (vmas)
1798				vmas[i] = vma;
1799			i++;
1800			start += PAGE_SIZE;
1801			nr_pages--;
 
 
 
 
 
1802		} while (nr_pages && start < vma->vm_end);
1803	} while (nr_pages);
1804	return i;
 
 
1805}
1806EXPORT_SYMBOL(__get_user_pages);
1807
1808/*
1809 * fixup_user_fault() - manually resolve a user page fault
1810 * @tsk:	the task_struct to use for page fault accounting, or
1811 *		NULL if faults are not to be recorded.
1812 * @mm:		mm_struct of target mm
1813 * @address:	user address
1814 * @fault_flags:flags to pass down to handle_mm_fault()
1815 *
1816 * This is meant to be called in the specific scenario where for locking reasons
1817 * we try to access user memory in atomic context (within a pagefault_disable()
1818 * section), this returns -EFAULT, and we want to resolve the user fault before
1819 * trying again.
1820 *
1821 * Typically this is meant to be used by the futex code.
1822 *
1823 * The main difference with get_user_pages() is that this function will
1824 * unconditionally call handle_mm_fault() which will in turn perform all the
1825 * necessary SW fixup of the dirty and young bits in the PTE, while
1826 * handle_mm_fault() only guarantees to update these in the struct page.
1827 *
1828 * This is important for some architectures where those bits also gate the
1829 * access permission to the page because they are maintained in software.  On
1830 * such architectures, gup() will not be enough to make a subsequent access
1831 * succeed.
1832 *
1833 * This should be called with the mm_sem held for read.
1834 */
1835int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1836		     unsigned long address, unsigned int fault_flags)
1837{
1838	struct vm_area_struct *vma;
 
1839	int ret;
1840
1841	vma = find_extend_vma(mm, address);
1842	if (!vma || address < vma->vm_start)
1843		return -EFAULT;
1844
 
 
 
 
1845	ret = handle_mm_fault(mm, vma, address, fault_flags);
1846	if (ret & VM_FAULT_ERROR) {
1847		if (ret & VM_FAULT_OOM)
1848			return -ENOMEM;
1849		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1850			return -EHWPOISON;
1851		if (ret & VM_FAULT_SIGBUS)
1852			return -EFAULT;
1853		BUG();
1854	}
1855	if (tsk) {
1856		if (ret & VM_FAULT_MAJOR)
1857			tsk->maj_flt++;
1858		else
1859			tsk->min_flt++;
1860	}
1861	return 0;
1862}
1863
1864/*
1865 * get_user_pages() - pin user pages in memory
1866 * @tsk:	the task_struct to use for page fault accounting, or
1867 *		NULL if faults are not to be recorded.
1868 * @mm:		mm_struct of target mm
1869 * @start:	starting user address
1870 * @nr_pages:	number of pages from start to pin
1871 * @write:	whether pages will be written to by the caller
1872 * @force:	whether to force write access even if user mapping is
1873 *		readonly. This will result in the page being COWed even
1874 *		in MAP_SHARED mappings. You do not want this.
1875 * @pages:	array that receives pointers to the pages pinned.
1876 *		Should be at least nr_pages long. Or NULL, if caller
1877 *		only intends to ensure the pages are faulted in.
1878 * @vmas:	array of pointers to vmas corresponding to each page.
1879 *		Or NULL if the caller does not require them.
1880 *
1881 * Returns number of pages pinned. This may be fewer than the number
1882 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1883 * were pinned, returns -errno. Each page returned must be released
1884 * with a put_page() call when it is finished with. vmas will only
1885 * remain valid while mmap_sem is held.
1886 *
1887 * Must be called with mmap_sem held for read or write.
1888 *
1889 * get_user_pages walks a process's page tables and takes a reference to
1890 * each struct page that each user address corresponds to at a given
1891 * instant. That is, it takes the page that would be accessed if a user
1892 * thread accesses the given user virtual address at that instant.
1893 *
1894 * This does not guarantee that the page exists in the user mappings when
1895 * get_user_pages returns, and there may even be a completely different
1896 * page there in some cases (eg. if mmapped pagecache has been invalidated
1897 * and subsequently re faulted). However it does guarantee that the page
1898 * won't be freed completely. And mostly callers simply care that the page
1899 * contains data that was valid *at some point in time*. Typically, an IO
1900 * or similar operation cannot guarantee anything stronger anyway because
1901 * locks can't be held over the syscall boundary.
1902 *
1903 * If write=0, the page must not be written to. If the page is written to,
1904 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1905 * after the page is finished with, and before put_page is called.
1906 *
1907 * get_user_pages is typically used for fewer-copy IO operations, to get a
1908 * handle on the memory by some means other than accesses via the user virtual
1909 * addresses. The pages may be submitted for DMA to devices or accessed via
1910 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1911 * use the correct cache flushing APIs.
1912 *
1913 * See also get_user_pages_fast, for performance critical applications.
1914 */
1915int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1916		unsigned long start, int nr_pages, int write, int force,
1917		struct page **pages, struct vm_area_struct **vmas)
1918{
1919	int flags = FOLL_TOUCH;
1920
1921	if (pages)
1922		flags |= FOLL_GET;
1923	if (write)
1924		flags |= FOLL_WRITE;
1925	if (force)
1926		flags |= FOLL_FORCE;
1927
1928	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1929				NULL);
1930}
1931EXPORT_SYMBOL(get_user_pages);
1932
1933/**
1934 * get_dump_page() - pin user page in memory while writing it to core dump
1935 * @addr: user address
1936 *
1937 * Returns struct page pointer of user page pinned for dump,
1938 * to be freed afterwards by page_cache_release() or put_page().
1939 *
1940 * Returns NULL on any kind of failure - a hole must then be inserted into
1941 * the corefile, to preserve alignment with its headers; and also returns
1942 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1943 * allowing a hole to be left in the corefile to save diskspace.
1944 *
1945 * Called without mmap_sem, but after all other threads have been killed.
1946 */
1947#ifdef CONFIG_ELF_CORE
1948struct page *get_dump_page(unsigned long addr)
1949{
1950	struct vm_area_struct *vma;
1951	struct page *page;
1952
1953	if (__get_user_pages(current, current->mm, addr, 1,
1954			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1955			     NULL) < 1)
1956		return NULL;
1957	flush_cache_page(vma, addr, page_to_pfn(page));
1958	return page;
1959}
1960#endif /* CONFIG_ELF_CORE */
1961
1962pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1963			spinlock_t **ptl)
1964{
1965	pgd_t * pgd = pgd_offset(mm, addr);
1966	pud_t * pud = pud_alloc(mm, pgd, addr);
1967	if (pud) {
1968		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1969		if (pmd) {
1970			VM_BUG_ON(pmd_trans_huge(*pmd));
1971			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1972		}
1973	}
1974	return NULL;
1975}
1976
1977/*
1978 * This is the old fallback for page remapping.
1979 *
1980 * For historical reasons, it only allows reserved pages. Only
1981 * old drivers should use this, and they needed to mark their
1982 * pages reserved for the old functions anyway.
1983 */
1984static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1985			struct page *page, pgprot_t prot)
1986{
1987	struct mm_struct *mm = vma->vm_mm;
1988	int retval;
1989	pte_t *pte;
1990	spinlock_t *ptl;
1991
1992	retval = -EINVAL;
1993	if (PageAnon(page))
1994		goto out;
1995	retval = -ENOMEM;
1996	flush_dcache_page(page);
1997	pte = get_locked_pte(mm, addr, &ptl);
1998	if (!pte)
1999		goto out;
2000	retval = -EBUSY;
2001	if (!pte_none(*pte))
2002		goto out_unlock;
2003
2004	/* Ok, finally just insert the thing.. */
2005	get_page(page);
2006	inc_mm_counter_fast(mm, MM_FILEPAGES);
2007	page_add_file_rmap(page);
2008	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2009
2010	retval = 0;
2011	pte_unmap_unlock(pte, ptl);
2012	return retval;
2013out_unlock:
2014	pte_unmap_unlock(pte, ptl);
2015out:
2016	return retval;
2017}
2018
2019/**
2020 * vm_insert_page - insert single page into user vma
2021 * @vma: user vma to map to
2022 * @addr: target user address of this page
2023 * @page: source kernel page
2024 *
2025 * This allows drivers to insert individual pages they've allocated
2026 * into a user vma.
2027 *
2028 * The page has to be a nice clean _individual_ kernel allocation.
2029 * If you allocate a compound page, you need to have marked it as
2030 * such (__GFP_COMP), or manually just split the page up yourself
2031 * (see split_page()).
2032 *
2033 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2034 * took an arbitrary page protection parameter. This doesn't allow
2035 * that. Your vma protection will have to be set up correctly, which
2036 * means that if you want a shared writable mapping, you'd better
2037 * ask for a shared writable mapping!
2038 *
2039 * The page does not need to be reserved.
 
 
 
 
 
2040 */
2041int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2042			struct page *page)
2043{
2044	if (addr < vma->vm_start || addr >= vma->vm_end)
2045		return -EFAULT;
2046	if (!page_count(page))
2047		return -EINVAL;
2048	vma->vm_flags |= VM_INSERTPAGE;
 
 
 
 
2049	return insert_page(vma, addr, page, vma->vm_page_prot);
2050}
2051EXPORT_SYMBOL(vm_insert_page);
2052
2053static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2054			unsigned long pfn, pgprot_t prot)
2055{
2056	struct mm_struct *mm = vma->vm_mm;
2057	int retval;
2058	pte_t *pte, entry;
2059	spinlock_t *ptl;
2060
2061	retval = -ENOMEM;
2062	pte = get_locked_pte(mm, addr, &ptl);
2063	if (!pte)
2064		goto out;
2065	retval = -EBUSY;
2066	if (!pte_none(*pte))
2067		goto out_unlock;
2068
2069	/* Ok, finally just insert the thing.. */
2070	entry = pte_mkspecial(pfn_pte(pfn, prot));
2071	set_pte_at(mm, addr, pte, entry);
2072	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2073
2074	retval = 0;
2075out_unlock:
2076	pte_unmap_unlock(pte, ptl);
2077out:
2078	return retval;
2079}
2080
2081/**
2082 * vm_insert_pfn - insert single pfn into user vma
2083 * @vma: user vma to map to
2084 * @addr: target user address of this page
2085 * @pfn: source kernel pfn
2086 *
2087 * Similar to vm_inert_page, this allows drivers to insert individual pages
2088 * they've allocated into a user vma. Same comments apply.
2089 *
2090 * This function should only be called from a vm_ops->fault handler, and
2091 * in that case the handler should return NULL.
2092 *
2093 * vma cannot be a COW mapping.
2094 *
2095 * As this is called only for pages that do not currently exist, we
2096 * do not need to flush old virtual caches or the TLB.
2097 */
2098int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2099			unsigned long pfn)
2100{
2101	int ret;
2102	pgprot_t pgprot = vma->vm_page_prot;
2103	/*
2104	 * Technically, architectures with pte_special can avoid all these
2105	 * restrictions (same for remap_pfn_range).  However we would like
2106	 * consistency in testing and feature parity among all, so we should
2107	 * try to keep these invariants in place for everybody.
2108	 */
2109	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2110	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2111						(VM_PFNMAP|VM_MIXEDMAP));
2112	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2113	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2114
2115	if (addr < vma->vm_start || addr >= vma->vm_end)
2116		return -EFAULT;
2117	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2118		return -EINVAL;
2119
2120	ret = insert_pfn(vma, addr, pfn, pgprot);
2121
2122	if (ret)
2123		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2124
2125	return ret;
2126}
2127EXPORT_SYMBOL(vm_insert_pfn);
2128
2129int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2130			unsigned long pfn)
2131{
2132	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2133
2134	if (addr < vma->vm_start || addr >= vma->vm_end)
2135		return -EFAULT;
2136
2137	/*
2138	 * If we don't have pte special, then we have to use the pfn_valid()
2139	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2140	 * refcount the page if pfn_valid is true (hence insert_page rather
2141	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2142	 * without pte special, it would there be refcounted as a normal page.
2143	 */
2144	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2145		struct page *page;
2146
2147		page = pfn_to_page(pfn);
2148		return insert_page(vma, addr, page, vma->vm_page_prot);
2149	}
2150	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2151}
2152EXPORT_SYMBOL(vm_insert_mixed);
2153
2154/*
2155 * maps a range of physical memory into the requested pages. the old
2156 * mappings are removed. any references to nonexistent pages results
2157 * in null mappings (currently treated as "copy-on-access")
2158 */
2159static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2160			unsigned long addr, unsigned long end,
2161			unsigned long pfn, pgprot_t prot)
2162{
2163	pte_t *pte;
2164	spinlock_t *ptl;
2165
2166	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2167	if (!pte)
2168		return -ENOMEM;
2169	arch_enter_lazy_mmu_mode();
2170	do {
2171		BUG_ON(!pte_none(*pte));
2172		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2173		pfn++;
2174	} while (pte++, addr += PAGE_SIZE, addr != end);
2175	arch_leave_lazy_mmu_mode();
2176	pte_unmap_unlock(pte - 1, ptl);
2177	return 0;
2178}
2179
2180static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2181			unsigned long addr, unsigned long end,
2182			unsigned long pfn, pgprot_t prot)
2183{
2184	pmd_t *pmd;
2185	unsigned long next;
2186
2187	pfn -= addr >> PAGE_SHIFT;
2188	pmd = pmd_alloc(mm, pud, addr);
2189	if (!pmd)
2190		return -ENOMEM;
2191	VM_BUG_ON(pmd_trans_huge(*pmd));
2192	do {
2193		next = pmd_addr_end(addr, end);
2194		if (remap_pte_range(mm, pmd, addr, next,
2195				pfn + (addr >> PAGE_SHIFT), prot))
2196			return -ENOMEM;
2197	} while (pmd++, addr = next, addr != end);
2198	return 0;
2199}
2200
2201static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2202			unsigned long addr, unsigned long end,
2203			unsigned long pfn, pgprot_t prot)
2204{
2205	pud_t *pud;
2206	unsigned long next;
2207
2208	pfn -= addr >> PAGE_SHIFT;
2209	pud = pud_alloc(mm, pgd, addr);
2210	if (!pud)
2211		return -ENOMEM;
2212	do {
2213		next = pud_addr_end(addr, end);
2214		if (remap_pmd_range(mm, pud, addr, next,
2215				pfn + (addr >> PAGE_SHIFT), prot))
2216			return -ENOMEM;
2217	} while (pud++, addr = next, addr != end);
2218	return 0;
2219}
2220
2221/**
2222 * remap_pfn_range - remap kernel memory to userspace
2223 * @vma: user vma to map to
2224 * @addr: target user address to start at
2225 * @pfn: physical address of kernel memory
2226 * @size: size of map area
2227 * @prot: page protection flags for this mapping
2228 *
2229 *  Note: this is only safe if the mm semaphore is held when called.
2230 */
2231int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2232		    unsigned long pfn, unsigned long size, pgprot_t prot)
2233{
2234	pgd_t *pgd;
2235	unsigned long next;
2236	unsigned long end = addr + PAGE_ALIGN(size);
2237	struct mm_struct *mm = vma->vm_mm;
2238	int err;
2239
2240	/*
2241	 * Physically remapped pages are special. Tell the
2242	 * rest of the world about it:
2243	 *   VM_IO tells people not to look at these pages
2244	 *	(accesses can have side effects).
2245	 *   VM_RESERVED is specified all over the place, because
2246	 *	in 2.4 it kept swapout's vma scan off this vma; but
2247	 *	in 2.6 the LRU scan won't even find its pages, so this
2248	 *	flag means no more than count its pages in reserved_vm,
2249	 * 	and omit it from core dump, even when VM_IO turned off.
2250	 *   VM_PFNMAP tells the core MM that the base pages are just
2251	 *	raw PFN mappings, and do not have a "struct page" associated
2252	 *	with them.
 
 
 
 
2253	 *
2254	 * There's a horrible special case to handle copy-on-write
2255	 * behaviour that some programs depend on. We mark the "original"
2256	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
 
2257	 */
2258	if (addr == vma->vm_start && end == vma->vm_end) {
 
 
2259		vma->vm_pgoff = pfn;
2260		vma->vm_flags |= VM_PFN_AT_MMAP;
2261	} else if (is_cow_mapping(vma->vm_flags))
2262		return -EINVAL;
2263
2264	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2265
2266	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2267	if (err) {
2268		/*
2269		 * To indicate that track_pfn related cleanup is not
2270		 * needed from higher level routine calling unmap_vmas
2271		 */
2272		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2273		vma->vm_flags &= ~VM_PFN_AT_MMAP;
2274		return -EINVAL;
2275	}
 
2276
2277	BUG_ON(addr >= end);
2278	pfn -= addr >> PAGE_SHIFT;
2279	pgd = pgd_offset(mm, addr);
2280	flush_cache_range(vma, addr, end);
2281	do {
2282		next = pgd_addr_end(addr, end);
2283		err = remap_pud_range(mm, pgd, addr, next,
2284				pfn + (addr >> PAGE_SHIFT), prot);
2285		if (err)
2286			break;
2287	} while (pgd++, addr = next, addr != end);
2288
2289	if (err)
2290		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2291
2292	return err;
2293}
2294EXPORT_SYMBOL(remap_pfn_range);
2295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2296static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2297				     unsigned long addr, unsigned long end,
2298				     pte_fn_t fn, void *data)
2299{
2300	pte_t *pte;
2301	int err;
2302	pgtable_t token;
2303	spinlock_t *uninitialized_var(ptl);
2304
2305	pte = (mm == &init_mm) ?
2306		pte_alloc_kernel(pmd, addr) :
2307		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2308	if (!pte)
2309		return -ENOMEM;
2310
2311	BUG_ON(pmd_huge(*pmd));
2312
2313	arch_enter_lazy_mmu_mode();
2314
2315	token = pmd_pgtable(*pmd);
2316
2317	do {
2318		err = fn(pte++, token, addr, data);
2319		if (err)
2320			break;
2321	} while (addr += PAGE_SIZE, addr != end);
2322
2323	arch_leave_lazy_mmu_mode();
2324
2325	if (mm != &init_mm)
2326		pte_unmap_unlock(pte-1, ptl);
2327	return err;
2328}
2329
2330static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2331				     unsigned long addr, unsigned long end,
2332				     pte_fn_t fn, void *data)
2333{
2334	pmd_t *pmd;
2335	unsigned long next;
2336	int err;
2337
2338	BUG_ON(pud_huge(*pud));
2339
2340	pmd = pmd_alloc(mm, pud, addr);
2341	if (!pmd)
2342		return -ENOMEM;
2343	do {
2344		next = pmd_addr_end(addr, end);
2345		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2346		if (err)
2347			break;
2348	} while (pmd++, addr = next, addr != end);
2349	return err;
2350}
2351
2352static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2353				     unsigned long addr, unsigned long end,
2354				     pte_fn_t fn, void *data)
2355{
2356	pud_t *pud;
2357	unsigned long next;
2358	int err;
2359
2360	pud = pud_alloc(mm, pgd, addr);
2361	if (!pud)
2362		return -ENOMEM;
2363	do {
2364		next = pud_addr_end(addr, end);
2365		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2366		if (err)
2367			break;
2368	} while (pud++, addr = next, addr != end);
2369	return err;
2370}
2371
2372/*
2373 * Scan a region of virtual memory, filling in page tables as necessary
2374 * and calling a provided function on each leaf page table.
2375 */
2376int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2377			unsigned long size, pte_fn_t fn, void *data)
2378{
2379	pgd_t *pgd;
2380	unsigned long next;
2381	unsigned long end = addr + size;
2382	int err;
2383
2384	BUG_ON(addr >= end);
2385	pgd = pgd_offset(mm, addr);
2386	do {
2387		next = pgd_addr_end(addr, end);
2388		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2389		if (err)
2390			break;
2391	} while (pgd++, addr = next, addr != end);
2392
2393	return err;
2394}
2395EXPORT_SYMBOL_GPL(apply_to_page_range);
2396
2397/*
2398 * handle_pte_fault chooses page fault handler according to an entry
2399 * which was read non-atomically.  Before making any commitment, on
2400 * those architectures or configurations (e.g. i386 with PAE) which
2401 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2402 * must check under lock before unmapping the pte and proceeding
2403 * (but do_wp_page is only called after already making such a check;
2404 * and do_anonymous_page can safely check later on).
2405 */
2406static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2407				pte_t *page_table, pte_t orig_pte)
2408{
2409	int same = 1;
2410#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2411	if (sizeof(pte_t) > sizeof(unsigned long)) {
2412		spinlock_t *ptl = pte_lockptr(mm, pmd);
2413		spin_lock(ptl);
2414		same = pte_same(*page_table, orig_pte);
2415		spin_unlock(ptl);
2416	}
2417#endif
2418	pte_unmap(page_table);
2419	return same;
2420}
2421
2422static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2423{
 
 
2424	/*
2425	 * If the source page was a PFN mapping, we don't have
2426	 * a "struct page" for it. We do a best-effort copy by
2427	 * just copying from the original user address. If that
2428	 * fails, we just zero-fill it. Live with it.
2429	 */
2430	if (unlikely(!src)) {
2431		void *kaddr = kmap_atomic(dst, KM_USER0);
2432		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2433
2434		/*
2435		 * This really shouldn't fail, because the page is there
2436		 * in the page tables. But it might just be unreadable,
2437		 * in which case we just give up and fill the result with
2438		 * zeroes.
2439		 */
2440		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2441			clear_page(kaddr);
2442		kunmap_atomic(kaddr, KM_USER0);
2443		flush_dcache_page(dst);
2444	} else
2445		copy_user_highpage(dst, src, va, vma);
2446}
2447
2448/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2449 * This routine handles present pages, when users try to write
2450 * to a shared page. It is done by copying the page to a new address
2451 * and decrementing the shared-page counter for the old page.
2452 *
2453 * Note that this routine assumes that the protection checks have been
2454 * done by the caller (the low-level page fault routine in most cases).
2455 * Thus we can safely just mark it writable once we've done any necessary
2456 * COW.
2457 *
2458 * We also mark the page dirty at this point even though the page will
2459 * change only once the write actually happens. This avoids a few races,
2460 * and potentially makes it more efficient.
2461 *
2462 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2463 * but allow concurrent faults), with pte both mapped and locked.
2464 * We return with mmap_sem still held, but pte unmapped and unlocked.
2465 */
2466static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2467		unsigned long address, pte_t *page_table, pmd_t *pmd,
2468		spinlock_t *ptl, pte_t orig_pte)
2469	__releases(ptl)
2470{
2471	struct page *old_page, *new_page;
2472	pte_t entry;
2473	int ret = 0;
2474	int page_mkwrite = 0;
2475	struct page *dirty_page = NULL;
 
 
2476
2477	old_page = vm_normal_page(vma, address, orig_pte);
2478	if (!old_page) {
2479		/*
2480		 * VM_MIXEDMAP !pfn_valid() case
2481		 *
2482		 * We should not cow pages in a shared writeable mapping.
2483		 * Just mark the pages writable as we can't do any dirty
2484		 * accounting on raw pfn maps.
2485		 */
2486		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2487				     (VM_WRITE|VM_SHARED))
2488			goto reuse;
2489		goto gotten;
2490	}
2491
2492	/*
2493	 * Take out anonymous pages first, anonymous shared vmas are
2494	 * not dirty accountable.
2495	 */
2496	if (PageAnon(old_page) && !PageKsm(old_page)) {
2497		if (!trylock_page(old_page)) {
2498			page_cache_get(old_page);
2499			pte_unmap_unlock(page_table, ptl);
2500			lock_page(old_page);
2501			page_table = pte_offset_map_lock(mm, pmd, address,
2502							 &ptl);
2503			if (!pte_same(*page_table, orig_pte)) {
2504				unlock_page(old_page);
2505				goto unlock;
2506			}
2507			page_cache_release(old_page);
2508		}
2509		if (reuse_swap_page(old_page)) {
2510			/*
2511			 * The page is all ours.  Move it to our anon_vma so
2512			 * the rmap code will not search our parent or siblings.
2513			 * Protected against the rmap code by the page lock.
2514			 */
2515			page_move_anon_rmap(old_page, vma, address);
2516			unlock_page(old_page);
2517			goto reuse;
2518		}
2519		unlock_page(old_page);
2520	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2521					(VM_WRITE|VM_SHARED))) {
2522		/*
2523		 * Only catch write-faults on shared writable pages,
2524		 * read-only shared pages can get COWed by
2525		 * get_user_pages(.write=1, .force=1).
2526		 */
2527		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2528			struct vm_fault vmf;
2529			int tmp;
2530
2531			vmf.virtual_address = (void __user *)(address &
2532								PAGE_MASK);
2533			vmf.pgoff = old_page->index;
2534			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2535			vmf.page = old_page;
2536
2537			/*
2538			 * Notify the address space that the page is about to
2539			 * become writable so that it can prohibit this or wait
2540			 * for the page to get into an appropriate state.
2541			 *
2542			 * We do this without the lock held, so that it can
2543			 * sleep if it needs to.
2544			 */
2545			page_cache_get(old_page);
2546			pte_unmap_unlock(page_table, ptl);
2547
2548			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2549			if (unlikely(tmp &
2550					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2551				ret = tmp;
2552				goto unwritable_page;
2553			}
2554			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2555				lock_page(old_page);
2556				if (!old_page->mapping) {
2557					ret = 0; /* retry the fault */
2558					unlock_page(old_page);
2559					goto unwritable_page;
2560				}
2561			} else
2562				VM_BUG_ON(!PageLocked(old_page));
2563
2564			/*
2565			 * Since we dropped the lock we need to revalidate
2566			 * the PTE as someone else may have changed it.  If
2567			 * they did, we just return, as we can count on the
2568			 * MMU to tell us if they didn't also make it writable.
2569			 */
2570			page_table = pte_offset_map_lock(mm, pmd, address,
2571							 &ptl);
2572			if (!pte_same(*page_table, orig_pte)) {
2573				unlock_page(old_page);
2574				goto unlock;
2575			}
2576
2577			page_mkwrite = 1;
2578		}
2579		dirty_page = old_page;
2580		get_page(dirty_page);
2581
2582reuse:
 
 
 
 
 
 
 
 
2583		flush_cache_page(vma, address, pte_pfn(orig_pte));
2584		entry = pte_mkyoung(orig_pte);
2585		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2586		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2587			update_mmu_cache(vma, address, page_table);
2588		pte_unmap_unlock(page_table, ptl);
2589		ret |= VM_FAULT_WRITE;
2590
2591		if (!dirty_page)
2592			return ret;
2593
2594		/*
2595		 * Yes, Virginia, this is actually required to prevent a race
2596		 * with clear_page_dirty_for_io() from clearing the page dirty
2597		 * bit after it clear all dirty ptes, but before a racing
2598		 * do_wp_page installs a dirty pte.
2599		 *
2600		 * __do_fault is protected similarly.
2601		 */
2602		if (!page_mkwrite) {
2603			wait_on_page_locked(dirty_page);
2604			set_page_dirty_balance(dirty_page, page_mkwrite);
 
 
 
2605		}
2606		put_page(dirty_page);
2607		if (page_mkwrite) {
2608			struct address_space *mapping = dirty_page->mapping;
2609
2610			set_page_dirty(dirty_page);
2611			unlock_page(dirty_page);
2612			page_cache_release(dirty_page);
2613			if (mapping)	{
2614				/*
2615				 * Some device drivers do not set page.mapping
2616				 * but still dirty their pages
2617				 */
2618				balance_dirty_pages_ratelimited(mapping);
2619			}
2620		}
2621
2622		/* file_update_time outside page_lock */
2623		if (vma->vm_file)
2624			file_update_time(vma->vm_file);
2625
2626		return ret;
2627	}
2628
2629	/*
2630	 * Ok, we need to copy. Oh, well..
2631	 */
2632	page_cache_get(old_page);
2633gotten:
2634	pte_unmap_unlock(page_table, ptl);
2635
2636	if (unlikely(anon_vma_prepare(vma)))
2637		goto oom;
2638
2639	if (is_zero_pfn(pte_pfn(orig_pte))) {
2640		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2641		if (!new_page)
2642			goto oom;
2643	} else {
2644		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2645		if (!new_page)
2646			goto oom;
2647		cow_user_page(new_page, old_page, address, vma);
2648	}
2649	__SetPageUptodate(new_page);
2650
2651	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2652		goto oom_free_new;
2653
 
 
 
 
2654	/*
2655	 * Re-check the pte - we dropped the lock
2656	 */
2657	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2658	if (likely(pte_same(*page_table, orig_pte))) {
2659		if (old_page) {
2660			if (!PageAnon(old_page)) {
2661				dec_mm_counter_fast(mm, MM_FILEPAGES);
2662				inc_mm_counter_fast(mm, MM_ANONPAGES);
2663			}
2664		} else
2665			inc_mm_counter_fast(mm, MM_ANONPAGES);
2666		flush_cache_page(vma, address, pte_pfn(orig_pte));
2667		entry = mk_pte(new_page, vma->vm_page_prot);
2668		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2669		/*
2670		 * Clear the pte entry and flush it first, before updating the
2671		 * pte with the new entry. This will avoid a race condition
2672		 * seen in the presence of one thread doing SMC and another
2673		 * thread doing COW.
2674		 */
2675		ptep_clear_flush(vma, address, page_table);
2676		page_add_new_anon_rmap(new_page, vma, address);
2677		/*
2678		 * We call the notify macro here because, when using secondary
2679		 * mmu page tables (such as kvm shadow page tables), we want the
2680		 * new page to be mapped directly into the secondary page table.
2681		 */
2682		set_pte_at_notify(mm, address, page_table, entry);
2683		update_mmu_cache(vma, address, page_table);
2684		if (old_page) {
2685			/*
2686			 * Only after switching the pte to the new page may
2687			 * we remove the mapcount here. Otherwise another
2688			 * process may come and find the rmap count decremented
2689			 * before the pte is switched to the new page, and
2690			 * "reuse" the old page writing into it while our pte
2691			 * here still points into it and can be read by other
2692			 * threads.
2693			 *
2694			 * The critical issue is to order this
2695			 * page_remove_rmap with the ptp_clear_flush above.
2696			 * Those stores are ordered by (if nothing else,)
2697			 * the barrier present in the atomic_add_negative
2698			 * in page_remove_rmap.
2699			 *
2700			 * Then the TLB flush in ptep_clear_flush ensures that
2701			 * no process can access the old page before the
2702			 * decremented mapcount is visible. And the old page
2703			 * cannot be reused until after the decremented
2704			 * mapcount is visible. So transitively, TLBs to
2705			 * old page will be flushed before it can be reused.
2706			 */
2707			page_remove_rmap(old_page);
2708		}
2709
2710		/* Free the old page.. */
2711		new_page = old_page;
2712		ret |= VM_FAULT_WRITE;
2713	} else
2714		mem_cgroup_uncharge_page(new_page);
2715
2716	if (new_page)
2717		page_cache_release(new_page);
2718unlock:
2719	pte_unmap_unlock(page_table, ptl);
 
 
2720	if (old_page) {
2721		/*
2722		 * Don't let another task, with possibly unlocked vma,
2723		 * keep the mlocked page.
2724		 */
2725		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2726			lock_page(old_page);	/* LRU manipulation */
2727			munlock_vma_page(old_page);
2728			unlock_page(old_page);
2729		}
2730		page_cache_release(old_page);
2731	}
2732	return ret;
2733oom_free_new:
2734	page_cache_release(new_page);
2735oom:
2736	if (old_page) {
2737		if (page_mkwrite) {
2738			unlock_page(old_page);
2739			page_cache_release(old_page);
2740		}
2741		page_cache_release(old_page);
2742	}
2743	return VM_FAULT_OOM;
2744
2745unwritable_page:
2746	page_cache_release(old_page);
2747	return ret;
2748}
2749
2750static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2751		unsigned long start_addr, unsigned long end_addr,
2752		struct zap_details *details)
2753{
2754	zap_page_range(vma, start_addr, end_addr - start_addr, details);
2755}
2756
2757static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2758					    struct zap_details *details)
2759{
2760	struct vm_area_struct *vma;
2761	struct prio_tree_iter iter;
2762	pgoff_t vba, vea, zba, zea;
2763
2764	vma_prio_tree_foreach(vma, &iter, root,
2765			details->first_index, details->last_index) {
2766
2767		vba = vma->vm_pgoff;
2768		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2769		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2770		zba = details->first_index;
2771		if (zba < vba)
2772			zba = vba;
2773		zea = details->last_index;
2774		if (zea > vea)
2775			zea = vea;
2776
2777		unmap_mapping_range_vma(vma,
2778			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2779			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2780				details);
2781	}
2782}
2783
2784static inline void unmap_mapping_range_list(struct list_head *head,
2785					    struct zap_details *details)
2786{
2787	struct vm_area_struct *vma;
2788
2789	/*
2790	 * In nonlinear VMAs there is no correspondence between virtual address
2791	 * offset and file offset.  So we must perform an exhaustive search
2792	 * across *all* the pages in each nonlinear VMA, not just the pages
2793	 * whose virtual address lies outside the file truncation point.
2794	 */
2795	list_for_each_entry(vma, head, shared.vm_set.list) {
2796		details->nonlinear_vma = vma;
2797		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2798	}
2799}
2800
2801/**
2802 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2803 * @mapping: the address space containing mmaps to be unmapped.
2804 * @holebegin: byte in first page to unmap, relative to the start of
2805 * the underlying file.  This will be rounded down to a PAGE_SIZE
2806 * boundary.  Note that this is different from truncate_pagecache(), which
2807 * must keep the partial page.  In contrast, we must get rid of
2808 * partial pages.
2809 * @holelen: size of prospective hole in bytes.  This will be rounded
2810 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2811 * end of the file.
2812 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2813 * but 0 when invalidating pagecache, don't throw away private data.
2814 */
2815void unmap_mapping_range(struct address_space *mapping,
2816		loff_t const holebegin, loff_t const holelen, int even_cows)
2817{
2818	struct zap_details details;
2819	pgoff_t hba = holebegin >> PAGE_SHIFT;
2820	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2821
2822	/* Check for overflow. */
2823	if (sizeof(holelen) > sizeof(hlen)) {
2824		long long holeend =
2825			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2826		if (holeend & ~(long long)ULONG_MAX)
2827			hlen = ULONG_MAX - hba + 1;
2828	}
2829
2830	details.check_mapping = even_cows? NULL: mapping;
2831	details.nonlinear_vma = NULL;
2832	details.first_index = hba;
2833	details.last_index = hba + hlen - 1;
2834	if (details.last_index < details.first_index)
2835		details.last_index = ULONG_MAX;
2836
2837
2838	mutex_lock(&mapping->i_mmap_mutex);
2839	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2840		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2841	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2842		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2843	mutex_unlock(&mapping->i_mmap_mutex);
2844}
2845EXPORT_SYMBOL(unmap_mapping_range);
2846
2847/*
2848 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2849 * but allow concurrent faults), and pte mapped but not yet locked.
2850 * We return with mmap_sem still held, but pte unmapped and unlocked.
2851 */
2852static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2853		unsigned long address, pte_t *page_table, pmd_t *pmd,
2854		unsigned int flags, pte_t orig_pte)
2855{
2856	spinlock_t *ptl;
2857	struct page *page, *swapcache = NULL;
2858	swp_entry_t entry;
2859	pte_t pte;
2860	int locked;
2861	struct mem_cgroup *ptr;
2862	int exclusive = 0;
2863	int ret = 0;
2864
2865	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2866		goto out;
2867
2868	entry = pte_to_swp_entry(orig_pte);
2869	if (unlikely(non_swap_entry(entry))) {
2870		if (is_migration_entry(entry)) {
2871			migration_entry_wait(mm, pmd, address);
2872		} else if (is_hwpoison_entry(entry)) {
2873			ret = VM_FAULT_HWPOISON;
2874		} else {
2875			print_bad_pte(vma, address, orig_pte, NULL);
2876			ret = VM_FAULT_SIGBUS;
2877		}
2878		goto out;
2879	}
2880	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2881	page = lookup_swap_cache(entry);
2882	if (!page) {
2883		grab_swap_token(mm); /* Contend for token _before_ read-in */
2884		page = swapin_readahead(entry,
2885					GFP_HIGHUSER_MOVABLE, vma, address);
2886		if (!page) {
2887			/*
2888			 * Back out if somebody else faulted in this pte
2889			 * while we released the pte lock.
2890			 */
2891			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2892			if (likely(pte_same(*page_table, orig_pte)))
2893				ret = VM_FAULT_OOM;
2894			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2895			goto unlock;
2896		}
2897
2898		/* Had to read the page from swap area: Major fault */
2899		ret = VM_FAULT_MAJOR;
2900		count_vm_event(PGMAJFAULT);
2901		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2902	} else if (PageHWPoison(page)) {
2903		/*
2904		 * hwpoisoned dirty swapcache pages are kept for killing
2905		 * owner processes (which may be unknown at hwpoison time)
2906		 */
2907		ret = VM_FAULT_HWPOISON;
2908		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
 
2909		goto out_release;
2910	}
2911
 
2912	locked = lock_page_or_retry(page, mm, flags);
 
2913	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2914	if (!locked) {
2915		ret |= VM_FAULT_RETRY;
2916		goto out_release;
2917	}
2918
2919	/*
2920	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2921	 * release the swapcache from under us.  The page pin, and pte_same
2922	 * test below, are not enough to exclude that.  Even if it is still
2923	 * swapcache, we need to check that the page's swap has not changed.
2924	 */
2925	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2926		goto out_page;
2927
2928	if (ksm_might_need_to_copy(page, vma, address)) {
2929		swapcache = page;
2930		page = ksm_does_need_to_copy(page, vma, address);
2931
2932		if (unlikely(!page)) {
2933			ret = VM_FAULT_OOM;
2934			page = swapcache;
2935			swapcache = NULL;
2936			goto out_page;
2937		}
2938	}
2939
2940	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2941		ret = VM_FAULT_OOM;
2942		goto out_page;
2943	}
2944
2945	/*
2946	 * Back out if somebody else already faulted in this pte.
2947	 */
2948	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2949	if (unlikely(!pte_same(*page_table, orig_pte)))
2950		goto out_nomap;
2951
2952	if (unlikely(!PageUptodate(page))) {
2953		ret = VM_FAULT_SIGBUS;
2954		goto out_nomap;
2955	}
2956
2957	/*
2958	 * The page isn't present yet, go ahead with the fault.
2959	 *
2960	 * Be careful about the sequence of operations here.
2961	 * To get its accounting right, reuse_swap_page() must be called
2962	 * while the page is counted on swap but not yet in mapcount i.e.
2963	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2964	 * must be called after the swap_free(), or it will never succeed.
2965	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2966	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2967	 * in page->private. In this case, a record in swap_cgroup  is silently
2968	 * discarded at swap_free().
2969	 */
2970
2971	inc_mm_counter_fast(mm, MM_ANONPAGES);
2972	dec_mm_counter_fast(mm, MM_SWAPENTS);
2973	pte = mk_pte(page, vma->vm_page_prot);
2974	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2975		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2976		flags &= ~FAULT_FLAG_WRITE;
2977		ret |= VM_FAULT_WRITE;
2978		exclusive = 1;
2979	}
2980	flush_icache_page(vma, page);
 
 
2981	set_pte_at(mm, address, page_table, pte);
2982	do_page_add_anon_rmap(page, vma, address, exclusive);
 
 
 
2983	/* It's better to call commit-charge after rmap is established */
2984	mem_cgroup_commit_charge_swapin(page, ptr);
2985
2986	swap_free(entry);
2987	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2988		try_to_free_swap(page);
2989	unlock_page(page);
2990	if (swapcache) {
2991		/*
2992		 * Hold the lock to avoid the swap entry to be reused
2993		 * until we take the PT lock for the pte_same() check
2994		 * (to avoid false positives from pte_same). For
2995		 * further safety release the lock after the swap_free
2996		 * so that the swap count won't change under a
2997		 * parallel locked swapcache.
2998		 */
2999		unlock_page(swapcache);
3000		page_cache_release(swapcache);
3001	}
3002
3003	if (flags & FAULT_FLAG_WRITE) {
3004		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3005		if (ret & VM_FAULT_ERROR)
3006			ret &= VM_FAULT_ERROR;
3007		goto out;
3008	}
3009
3010	/* No need to invalidate - it was non-present before */
3011	update_mmu_cache(vma, address, page_table);
3012unlock:
3013	pte_unmap_unlock(page_table, ptl);
3014out:
3015	return ret;
3016out_nomap:
3017	mem_cgroup_cancel_charge_swapin(ptr);
3018	pte_unmap_unlock(page_table, ptl);
3019out_page:
3020	unlock_page(page);
3021out_release:
3022	page_cache_release(page);
3023	if (swapcache) {
3024		unlock_page(swapcache);
3025		page_cache_release(swapcache);
3026	}
3027	return ret;
3028}
3029
3030/*
3031 * This is like a special single-page "expand_{down|up}wards()",
3032 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3033 * doesn't hit another vma.
3034 */
3035static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3036{
3037	address &= PAGE_MASK;
3038	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3039		struct vm_area_struct *prev = vma->vm_prev;
3040
3041		/*
3042		 * Is there a mapping abutting this one below?
3043		 *
3044		 * That's only ok if it's the same stack mapping
3045		 * that has gotten split..
3046		 */
3047		if (prev && prev->vm_end == address)
3048			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3049
3050		expand_downwards(vma, address - PAGE_SIZE);
3051	}
3052	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3053		struct vm_area_struct *next = vma->vm_next;
3054
3055		/* As VM_GROWSDOWN but s/below/above/ */
3056		if (next && next->vm_start == address + PAGE_SIZE)
3057			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3058
3059		expand_upwards(vma, address + PAGE_SIZE);
3060	}
3061	return 0;
3062}
3063
3064/*
3065 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3066 * but allow concurrent faults), and pte mapped but not yet locked.
3067 * We return with mmap_sem still held, but pte unmapped and unlocked.
3068 */
3069static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3070		unsigned long address, pte_t *page_table, pmd_t *pmd,
3071		unsigned int flags)
3072{
3073	struct page *page;
3074	spinlock_t *ptl;
3075	pte_t entry;
3076
3077	pte_unmap(page_table);
3078
3079	/* Check if we need to add a guard page to the stack */
3080	if (check_stack_guard_page(vma, address) < 0)
3081		return VM_FAULT_SIGBUS;
3082
3083	/* Use the zero-page for reads */
3084	if (!(flags & FAULT_FLAG_WRITE)) {
3085		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3086						vma->vm_page_prot));
3087		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3088		if (!pte_none(*page_table))
3089			goto unlock;
3090		goto setpte;
3091	}
3092
3093	/* Allocate our own private page. */
3094	if (unlikely(anon_vma_prepare(vma)))
3095		goto oom;
3096	page = alloc_zeroed_user_highpage_movable(vma, address);
3097	if (!page)
3098		goto oom;
 
 
 
 
 
3099	__SetPageUptodate(page);
3100
3101	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3102		goto oom_free_page;
3103
3104	entry = mk_pte(page, vma->vm_page_prot);
3105	if (vma->vm_flags & VM_WRITE)
3106		entry = pte_mkwrite(pte_mkdirty(entry));
3107
3108	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3109	if (!pte_none(*page_table))
3110		goto release;
3111
3112	inc_mm_counter_fast(mm, MM_ANONPAGES);
3113	page_add_new_anon_rmap(page, vma, address);
3114setpte:
3115	set_pte_at(mm, address, page_table, entry);
3116
3117	/* No need to invalidate - it was non-present before */
3118	update_mmu_cache(vma, address, page_table);
3119unlock:
3120	pte_unmap_unlock(page_table, ptl);
3121	return 0;
3122release:
3123	mem_cgroup_uncharge_page(page);
3124	page_cache_release(page);
3125	goto unlock;
3126oom_free_page:
3127	page_cache_release(page);
3128oom:
3129	return VM_FAULT_OOM;
3130}
3131
3132/*
3133 * __do_fault() tries to create a new page mapping. It aggressively
3134 * tries to share with existing pages, but makes a separate copy if
3135 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3136 * the next page fault.
3137 *
3138 * As this is called only for pages that do not currently exist, we
3139 * do not need to flush old virtual caches or the TLB.
3140 *
3141 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3142 * but allow concurrent faults), and pte neither mapped nor locked.
3143 * We return with mmap_sem still held, but pte unmapped and unlocked.
3144 */
3145static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3146		unsigned long address, pmd_t *pmd,
3147		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3148{
3149	pte_t *page_table;
3150	spinlock_t *ptl;
3151	struct page *page;
3152	struct page *cow_page;
3153	pte_t entry;
3154	int anon = 0;
3155	struct page *dirty_page = NULL;
3156	struct vm_fault vmf;
3157	int ret;
3158	int page_mkwrite = 0;
3159
3160	/*
3161	 * If we do COW later, allocate page befor taking lock_page()
3162	 * on the file cache page. This will reduce lock holding time.
3163	 */
3164	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3165
3166		if (unlikely(anon_vma_prepare(vma)))
3167			return VM_FAULT_OOM;
3168
3169		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3170		if (!cow_page)
3171			return VM_FAULT_OOM;
3172
3173		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3174			page_cache_release(cow_page);
3175			return VM_FAULT_OOM;
3176		}
3177	} else
3178		cow_page = NULL;
3179
3180	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3181	vmf.pgoff = pgoff;
3182	vmf.flags = flags;
3183	vmf.page = NULL;
3184
3185	ret = vma->vm_ops->fault(vma, &vmf);
3186	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3187			    VM_FAULT_RETRY)))
3188		goto uncharge_out;
3189
3190	if (unlikely(PageHWPoison(vmf.page))) {
3191		if (ret & VM_FAULT_LOCKED)
3192			unlock_page(vmf.page);
3193		ret = VM_FAULT_HWPOISON;
3194		goto uncharge_out;
3195	}
3196
3197	/*
3198	 * For consistency in subsequent calls, make the faulted page always
3199	 * locked.
3200	 */
3201	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3202		lock_page(vmf.page);
3203	else
3204		VM_BUG_ON(!PageLocked(vmf.page));
3205
3206	/*
3207	 * Should we do an early C-O-W break?
3208	 */
3209	page = vmf.page;
3210	if (flags & FAULT_FLAG_WRITE) {
3211		if (!(vma->vm_flags & VM_SHARED)) {
3212			page = cow_page;
3213			anon = 1;
3214			copy_user_highpage(page, vmf.page, address, vma);
3215			__SetPageUptodate(page);
3216		} else {
3217			/*
3218			 * If the page will be shareable, see if the backing
3219			 * address space wants to know that the page is about
3220			 * to become writable
3221			 */
3222			if (vma->vm_ops->page_mkwrite) {
3223				int tmp;
3224
3225				unlock_page(page);
3226				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3227				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3228				if (unlikely(tmp &
3229					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3230					ret = tmp;
3231					goto unwritable_page;
3232				}
3233				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3234					lock_page(page);
3235					if (!page->mapping) {
3236						ret = 0; /* retry the fault */
3237						unlock_page(page);
3238						goto unwritable_page;
3239					}
3240				} else
3241					VM_BUG_ON(!PageLocked(page));
3242				page_mkwrite = 1;
3243			}
3244		}
3245
 
 
 
 
 
 
 
 
 
 
 
 
3246	}
 
3247
3248	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3249
3250	/*
3251	 * This silly early PAGE_DIRTY setting removes a race
3252	 * due to the bad i386 page protection. But it's valid
3253	 * for other architectures too.
3254	 *
3255	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3256	 * an exclusive copy of the page, or this is a shared mapping,
3257	 * so we can make it writable and dirty to avoid having to
3258	 * handle that later.
3259	 */
3260	/* Only go through if we didn't race with anybody else... */
3261	if (likely(pte_same(*page_table, orig_pte))) {
3262		flush_icache_page(vma, page);
3263		entry = mk_pte(page, vma->vm_page_prot);
3264		if (flags & FAULT_FLAG_WRITE)
3265			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3266		if (anon) {
3267			inc_mm_counter_fast(mm, MM_ANONPAGES);
3268			page_add_new_anon_rmap(page, vma, address);
3269		} else {
3270			inc_mm_counter_fast(mm, MM_FILEPAGES);
3271			page_add_file_rmap(page);
3272			if (flags & FAULT_FLAG_WRITE) {
3273				dirty_page = page;
3274				get_page(dirty_page);
3275			}
3276		}
3277		set_pte_at(mm, address, page_table, entry);
3278
3279		/* no need to invalidate: a not-present page won't be cached */
3280		update_mmu_cache(vma, address, page_table);
3281	} else {
3282		if (cow_page)
3283			mem_cgroup_uncharge_page(cow_page);
3284		if (anon)
3285			page_cache_release(page);
3286		else
3287			anon = 1; /* no anon but release faulted_page */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3288	}
3289
3290	pte_unmap_unlock(page_table, ptl);
 
 
3291
3292	if (dirty_page) {
3293		struct address_space *mapping = page->mapping;
 
 
 
 
 
 
 
 
 
 
 
3294
3295		if (set_page_dirty(dirty_page))
3296			page_mkwrite = 1;
3297		unlock_page(dirty_page);
3298		put_page(dirty_page);
3299		if (page_mkwrite && mapping) {
3300			/*
3301			 * Some device drivers do not set page.mapping but still
3302			 * dirty their pages
3303			 */
3304			balance_dirty_pages_ratelimited(mapping);
3305		}
3306
3307		/* file_update_time outside page_lock */
3308		if (vma->vm_file)
3309			file_update_time(vma->vm_file);
3310	} else {
3311		unlock_page(vmf.page);
3312		if (anon)
3313			page_cache_release(vmf.page);
 
 
 
3314	}
3315
3316	return ret;
 
 
3317
3318unwritable_page:
3319	page_cache_release(page);
 
 
 
 
 
 
 
 
 
 
 
 
3320	return ret;
3321uncharge_out:
3322	/* fs's fault handler get error */
3323	if (cow_page) {
3324		mem_cgroup_uncharge_page(cow_page);
3325		page_cache_release(cow_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3326	}
 
 
 
 
 
3327	return ret;
3328}
3329
3330static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3331		unsigned long address, pte_t *page_table, pmd_t *pmd,
3332		unsigned int flags, pte_t orig_pte)
3333{
3334	pgoff_t pgoff = (((address & PAGE_MASK)
3335			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3336
3337	pte_unmap(page_table);
3338	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
 
 
 
 
 
 
3339}
3340
3341/*
3342 * Fault of a previously existing named mapping. Repopulate the pte
3343 * from the encoded file_pte if possible. This enables swappable
3344 * nonlinear vmas.
3345 *
3346 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3347 * but allow concurrent faults), and pte mapped but not yet locked.
3348 * We return with mmap_sem still held, but pte unmapped and unlocked.
3349 */
3350static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3351		unsigned long address, pte_t *page_table, pmd_t *pmd,
3352		unsigned int flags, pte_t orig_pte)
3353{
3354	pgoff_t pgoff;
3355
3356	flags |= FAULT_FLAG_NONLINEAR;
3357
3358	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3359		return 0;
3360
3361	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3362		/*
3363		 * Page table corrupted: show pte and kill process.
3364		 */
3365		print_bad_pte(vma, address, orig_pte, NULL);
3366		return VM_FAULT_SIGBUS;
3367	}
3368
3369	pgoff = pte_to_pgoff(orig_pte);
3370	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3371}
3372
3373/*
3374 * These routines also need to handle stuff like marking pages dirty
3375 * and/or accessed for architectures that don't do it in hardware (most
3376 * RISC architectures).  The early dirtying is also good on the i386.
3377 *
3378 * There is also a hook called "update_mmu_cache()" that architectures
3379 * with external mmu caches can use to update those (ie the Sparc or
3380 * PowerPC hashed page tables that act as extended TLBs).
3381 *
3382 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3383 * but allow concurrent faults), and pte mapped but not yet locked.
3384 * We return with mmap_sem still held, but pte unmapped and unlocked.
3385 */
3386int handle_pte_fault(struct mm_struct *mm,
3387		     struct vm_area_struct *vma, unsigned long address,
3388		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3389{
3390	pte_t entry;
3391	spinlock_t *ptl;
3392
3393	entry = *pte;
3394	if (!pte_present(entry)) {
3395		if (pte_none(entry)) {
3396			if (vma->vm_ops) {
3397				if (likely(vma->vm_ops->fault))
3398					return do_linear_fault(mm, vma, address,
3399						pte, pmd, flags, entry);
3400			}
3401			return do_anonymous_page(mm, vma, address,
3402						 pte, pmd, flags);
3403		}
3404		if (pte_file(entry))
3405			return do_nonlinear_fault(mm, vma, address,
3406					pte, pmd, flags, entry);
3407		return do_swap_page(mm, vma, address,
3408					pte, pmd, flags, entry);
3409	}
3410
 
 
 
3411	ptl = pte_lockptr(mm, pmd);
3412	spin_lock(ptl);
3413	if (unlikely(!pte_same(*pte, entry)))
3414		goto unlock;
3415	if (flags & FAULT_FLAG_WRITE) {
3416		if (!pte_write(entry))
3417			return do_wp_page(mm, vma, address,
3418					pte, pmd, ptl, entry);
3419		entry = pte_mkdirty(entry);
3420	}
3421	entry = pte_mkyoung(entry);
3422	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3423		update_mmu_cache(vma, address, pte);
3424	} else {
3425		/*
3426		 * This is needed only for protection faults but the arch code
3427		 * is not yet telling us if this is a protection fault or not.
3428		 * This still avoids useless tlb flushes for .text page faults
3429		 * with threads.
3430		 */
3431		if (flags & FAULT_FLAG_WRITE)
3432			flush_tlb_fix_spurious_fault(vma, address);
3433	}
3434unlock:
3435	pte_unmap_unlock(pte, ptl);
3436	return 0;
3437}
3438
3439/*
3440 * By the time we get here, we already hold the mm semaphore
3441 */
3442int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3443		unsigned long address, unsigned int flags)
3444{
3445	pgd_t *pgd;
3446	pud_t *pud;
3447	pmd_t *pmd;
3448	pte_t *pte;
3449
3450	__set_current_state(TASK_RUNNING);
3451
3452	count_vm_event(PGFAULT);
3453	mem_cgroup_count_vm_event(mm, PGFAULT);
3454
3455	/* do counter updates before entering really critical section. */
3456	check_sync_rss_stat(current);
3457
3458	if (unlikely(is_vm_hugetlb_page(vma)))
3459		return hugetlb_fault(mm, vma, address, flags);
3460
3461	pgd = pgd_offset(mm, address);
3462	pud = pud_alloc(mm, pgd, address);
3463	if (!pud)
3464		return VM_FAULT_OOM;
3465	pmd = pmd_alloc(mm, pud, address);
3466	if (!pmd)
3467		return VM_FAULT_OOM;
3468	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
 
3469		if (!vma->vm_ops)
3470			return do_huge_pmd_anonymous_page(mm, vma, address,
3471							  pmd, flags);
 
 
3472	} else {
3473		pmd_t orig_pmd = *pmd;
 
 
3474		barrier();
3475		if (pmd_trans_huge(orig_pmd)) {
3476			if (flags & FAULT_FLAG_WRITE &&
3477			    !pmd_write(orig_pmd) &&
3478			    !pmd_trans_splitting(orig_pmd))
3479				return do_huge_pmd_wp_page(mm, vma, address,
3480							   pmd, orig_pmd);
3481			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3482		}
3483	}
3484
 
 
 
3485	/*
3486	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3487	 * run pte_offset_map on the pmd, if an huge pmd could
3488	 * materialize from under us from a different thread.
3489	 */
3490	if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
 
3491		return VM_FAULT_OOM;
3492	/* if an huge pmd materialized from under us just retry later */
3493	if (unlikely(pmd_trans_huge(*pmd)))
3494		return 0;
3495	/*
3496	 * A regular pmd is established and it can't morph into a huge pmd
3497	 * from under us anymore at this point because we hold the mmap_sem
3498	 * read mode and khugepaged takes it in write mode. So now it's
3499	 * safe to run pte_offset_map().
3500	 */
3501	pte = pte_offset_map(pmd, address);
3502
3503	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3504}
3505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3506#ifndef __PAGETABLE_PUD_FOLDED
3507/*
3508 * Allocate page upper directory.
3509 * We've already handled the fast-path in-line.
3510 */
3511int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3512{
3513	pud_t *new = pud_alloc_one(mm, address);
3514	if (!new)
3515		return -ENOMEM;
3516
3517	smp_wmb(); /* See comment in __pte_alloc */
3518
3519	spin_lock(&mm->page_table_lock);
3520	if (pgd_present(*pgd))		/* Another has populated it */
3521		pud_free(mm, new);
3522	else
3523		pgd_populate(mm, pgd, new);
3524	spin_unlock(&mm->page_table_lock);
3525	return 0;
3526}
3527#endif /* __PAGETABLE_PUD_FOLDED */
3528
3529#ifndef __PAGETABLE_PMD_FOLDED
3530/*
3531 * Allocate page middle directory.
3532 * We've already handled the fast-path in-line.
3533 */
3534int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3535{
3536	pmd_t *new = pmd_alloc_one(mm, address);
3537	if (!new)
3538		return -ENOMEM;
3539
3540	smp_wmb(); /* See comment in __pte_alloc */
3541
3542	spin_lock(&mm->page_table_lock);
3543#ifndef __ARCH_HAS_4LEVEL_HACK
3544	if (pud_present(*pud))		/* Another has populated it */
3545		pmd_free(mm, new);
3546	else
3547		pud_populate(mm, pud, new);
3548#else
3549	if (pgd_present(*pud))		/* Another has populated it */
3550		pmd_free(mm, new);
3551	else
3552		pgd_populate(mm, pud, new);
3553#endif /* __ARCH_HAS_4LEVEL_HACK */
3554	spin_unlock(&mm->page_table_lock);
3555	return 0;
3556}
3557#endif /* __PAGETABLE_PMD_FOLDED */
3558
3559int make_pages_present(unsigned long addr, unsigned long end)
3560{
3561	int ret, len, write;
3562	struct vm_area_struct * vma;
3563
3564	vma = find_vma(current->mm, addr);
3565	if (!vma)
3566		return -ENOMEM;
3567	/*
3568	 * We want to touch writable mappings with a write fault in order
3569	 * to break COW, except for shared mappings because these don't COW
3570	 * and we would not want to dirty them for nothing.
3571	 */
3572	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3573	BUG_ON(addr >= end);
3574	BUG_ON(end > vma->vm_end);
3575	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3576	ret = get_user_pages(current, current->mm, addr,
3577			len, write, 0, NULL, NULL);
3578	if (ret < 0)
3579		return ret;
3580	return ret == len ? 0 : -EFAULT;
3581}
3582
3583#if !defined(__HAVE_ARCH_GATE_AREA)
3584
3585#if defined(AT_SYSINFO_EHDR)
3586static struct vm_area_struct gate_vma;
3587
3588static int __init gate_vma_init(void)
3589{
3590	gate_vma.vm_mm = NULL;
3591	gate_vma.vm_start = FIXADDR_USER_START;
3592	gate_vma.vm_end = FIXADDR_USER_END;
3593	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3594	gate_vma.vm_page_prot = __P101;
3595	/*
3596	 * Make sure the vDSO gets into every core dump.
3597	 * Dumping its contents makes post-mortem fully interpretable later
3598	 * without matching up the same kernel and hardware config to see
3599	 * what PC values meant.
3600	 */
3601	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3602	return 0;
3603}
3604__initcall(gate_vma_init);
3605#endif
3606
3607struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3608{
3609#ifdef AT_SYSINFO_EHDR
3610	return &gate_vma;
3611#else
3612	return NULL;
3613#endif
3614}
3615
3616int in_gate_area_no_mm(unsigned long addr)
3617{
3618#ifdef AT_SYSINFO_EHDR
3619	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3620		return 1;
3621#endif
3622	return 0;
3623}
3624
3625#endif	/* __HAVE_ARCH_GATE_AREA */
3626
3627static int __follow_pte(struct mm_struct *mm, unsigned long address,
3628		pte_t **ptepp, spinlock_t **ptlp)
3629{
3630	pgd_t *pgd;
3631	pud_t *pud;
3632	pmd_t *pmd;
3633	pte_t *ptep;
3634
3635	pgd = pgd_offset(mm, address);
3636	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3637		goto out;
3638
3639	pud = pud_offset(pgd, address);
3640	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3641		goto out;
3642
3643	pmd = pmd_offset(pud, address);
3644	VM_BUG_ON(pmd_trans_huge(*pmd));
3645	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3646		goto out;
3647
3648	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3649	if (pmd_huge(*pmd))
3650		goto out;
3651
3652	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3653	if (!ptep)
3654		goto out;
3655	if (!pte_present(*ptep))
3656		goto unlock;
3657	*ptepp = ptep;
3658	return 0;
3659unlock:
3660	pte_unmap_unlock(ptep, *ptlp);
3661out:
3662	return -EINVAL;
3663}
3664
3665static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3666			     pte_t **ptepp, spinlock_t **ptlp)
3667{
3668	int res;
3669
3670	/* (void) is needed to make gcc happy */
3671	(void) __cond_lock(*ptlp,
3672			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3673	return res;
3674}
3675
3676/**
3677 * follow_pfn - look up PFN at a user virtual address
3678 * @vma: memory mapping
3679 * @address: user virtual address
3680 * @pfn: location to store found PFN
3681 *
3682 * Only IO mappings and raw PFN mappings are allowed.
3683 *
3684 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3685 */
3686int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3687	unsigned long *pfn)
3688{
3689	int ret = -EINVAL;
3690	spinlock_t *ptl;
3691	pte_t *ptep;
3692
3693	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3694		return ret;
3695
3696	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3697	if (ret)
3698		return ret;
3699	*pfn = pte_pfn(*ptep);
3700	pte_unmap_unlock(ptep, ptl);
3701	return 0;
3702}
3703EXPORT_SYMBOL(follow_pfn);
3704
3705#ifdef CONFIG_HAVE_IOREMAP_PROT
3706int follow_phys(struct vm_area_struct *vma,
3707		unsigned long address, unsigned int flags,
3708		unsigned long *prot, resource_size_t *phys)
3709{
3710	int ret = -EINVAL;
3711	pte_t *ptep, pte;
3712	spinlock_t *ptl;
3713
3714	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3715		goto out;
3716
3717	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3718		goto out;
3719	pte = *ptep;
3720
3721	if ((flags & FOLL_WRITE) && !pte_write(pte))
3722		goto unlock;
3723
3724	*prot = pgprot_val(pte_pgprot(pte));
3725	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3726
3727	ret = 0;
3728unlock:
3729	pte_unmap_unlock(ptep, ptl);
3730out:
3731	return ret;
3732}
3733
3734int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3735			void *buf, int len, int write)
3736{
3737	resource_size_t phys_addr;
3738	unsigned long prot = 0;
3739	void __iomem *maddr;
3740	int offset = addr & (PAGE_SIZE-1);
3741
3742	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3743		return -EINVAL;
3744
3745	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3746	if (write)
3747		memcpy_toio(maddr + offset, buf, len);
3748	else
3749		memcpy_fromio(buf, maddr + offset, len);
3750	iounmap(maddr);
3751
3752	return len;
3753}
 
3754#endif
3755
3756/*
3757 * Access another process' address space as given in mm.  If non-NULL, use the
3758 * given task for page fault accounting.
3759 */
3760static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3761		unsigned long addr, void *buf, int len, int write)
3762{
3763	struct vm_area_struct *vma;
3764	void *old_buf = buf;
3765
3766	down_read(&mm->mmap_sem);
3767	/* ignore errors, just check how much was successfully transferred */
3768	while (len) {
3769		int bytes, ret, offset;
3770		void *maddr;
3771		struct page *page = NULL;
3772
3773		ret = get_user_pages(tsk, mm, addr, 1,
3774				write, 1, &page, &vma);
3775		if (ret <= 0) {
3776			/*
3777			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3778			 * we can access using slightly different code.
3779			 */
3780#ifdef CONFIG_HAVE_IOREMAP_PROT
3781			vma = find_vma(mm, addr);
3782			if (!vma || vma->vm_start > addr)
3783				break;
3784			if (vma->vm_ops && vma->vm_ops->access)
3785				ret = vma->vm_ops->access(vma, addr, buf,
3786							  len, write);
3787			if (ret <= 0)
3788#endif
3789				break;
3790			bytes = ret;
3791		} else {
3792			bytes = len;
3793			offset = addr & (PAGE_SIZE-1);
3794			if (bytes > PAGE_SIZE-offset)
3795				bytes = PAGE_SIZE-offset;
3796
3797			maddr = kmap(page);
3798			if (write) {
3799				copy_to_user_page(vma, page, addr,
3800						  maddr + offset, buf, bytes);
3801				set_page_dirty_lock(page);
3802			} else {
3803				copy_from_user_page(vma, page, addr,
3804						    buf, maddr + offset, bytes);
3805			}
3806			kunmap(page);
3807			page_cache_release(page);
3808		}
3809		len -= bytes;
3810		buf += bytes;
3811		addr += bytes;
3812	}
3813	up_read(&mm->mmap_sem);
3814
3815	return buf - old_buf;
3816}
3817
3818/**
3819 * access_remote_vm - access another process' address space
3820 * @mm:		the mm_struct of the target address space
3821 * @addr:	start address to access
3822 * @buf:	source or destination buffer
3823 * @len:	number of bytes to transfer
3824 * @write:	whether the access is a write
3825 *
3826 * The caller must hold a reference on @mm.
3827 */
3828int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3829		void *buf, int len, int write)
3830{
3831	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3832}
3833
3834/*
3835 * Access another process' address space.
3836 * Source/target buffer must be kernel space,
3837 * Do not walk the page table directly, use get_user_pages
3838 */
3839int access_process_vm(struct task_struct *tsk, unsigned long addr,
3840		void *buf, int len, int write)
3841{
3842	struct mm_struct *mm;
3843	int ret;
3844
3845	mm = get_task_mm(tsk);
3846	if (!mm)
3847		return 0;
3848
3849	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3850	mmput(mm);
3851
3852	return ret;
3853}
3854
3855/*
3856 * Print the name of a VMA.
3857 */
3858void print_vma_addr(char *prefix, unsigned long ip)
3859{
3860	struct mm_struct *mm = current->mm;
3861	struct vm_area_struct *vma;
3862
3863	/*
3864	 * Do not print if we are in atomic
3865	 * contexts (in exception stacks, etc.):
3866	 */
3867	if (preempt_count())
3868		return;
3869
3870	down_read(&mm->mmap_sem);
3871	vma = find_vma(mm, ip);
3872	if (vma && vma->vm_file) {
3873		struct file *f = vma->vm_file;
3874		char *buf = (char *)__get_free_page(GFP_KERNEL);
3875		if (buf) {
3876			char *p, *s;
3877
3878			p = d_path(&f->f_path, buf, PAGE_SIZE);
3879			if (IS_ERR(p))
3880				p = "?";
3881			s = strrchr(p, '/');
3882			if (s)
3883				p = s+1;
3884			printk("%s%s[%lx+%lx]", prefix, p,
3885					vma->vm_start,
3886					vma->vm_end - vma->vm_start);
3887			free_page((unsigned long)buf);
3888		}
3889	}
3890	up_read(&current->mm->mmap_sem);
3891}
3892
3893#ifdef CONFIG_PROVE_LOCKING
3894void might_fault(void)
3895{
3896	/*
3897	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3898	 * holding the mmap_sem, this is safe because kernel memory doesn't
3899	 * get paged out, therefore we'll never actually fault, and the
3900	 * below annotations will generate false positives.
3901	 */
3902	if (segment_eq(get_fs(), KERNEL_DS))
3903		return;
3904
3905	might_sleep();
3906	/*
3907	 * it would be nicer only to annotate paths which are not under
3908	 * pagefault_disable, however that requires a larger audit and
3909	 * providing helpers like get_user_atomic.
3910	 */
3911	if (!in_atomic() && current->mm)
 
 
 
 
 
3912		might_lock_read(&current->mm->mmap_sem);
3913}
3914EXPORT_SYMBOL(might_fault);
3915#endif
3916
3917#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3918static void clear_gigantic_page(struct page *page,
3919				unsigned long addr,
3920				unsigned int pages_per_huge_page)
3921{
3922	int i;
3923	struct page *p = page;
3924
3925	might_sleep();
3926	for (i = 0; i < pages_per_huge_page;
3927	     i++, p = mem_map_next(p, page, i)) {
3928		cond_resched();
3929		clear_user_highpage(p, addr + i * PAGE_SIZE);
3930	}
3931}
3932void clear_huge_page(struct page *page,
3933		     unsigned long addr, unsigned int pages_per_huge_page)
3934{
3935	int i;
3936
3937	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3938		clear_gigantic_page(page, addr, pages_per_huge_page);
3939		return;
3940	}
3941
3942	might_sleep();
3943	for (i = 0; i < pages_per_huge_page; i++) {
3944		cond_resched();
3945		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3946	}
3947}
3948
3949static void copy_user_gigantic_page(struct page *dst, struct page *src,
3950				    unsigned long addr,
3951				    struct vm_area_struct *vma,
3952				    unsigned int pages_per_huge_page)
3953{
3954	int i;
3955	struct page *dst_base = dst;
3956	struct page *src_base = src;
3957
3958	for (i = 0; i < pages_per_huge_page; ) {
3959		cond_resched();
3960		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3961
3962		i++;
3963		dst = mem_map_next(dst, dst_base, i);
3964		src = mem_map_next(src, src_base, i);
3965	}
3966}
3967
3968void copy_user_huge_page(struct page *dst, struct page *src,
3969			 unsigned long addr, struct vm_area_struct *vma,
3970			 unsigned int pages_per_huge_page)
3971{
3972	int i;
3973
3974	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3975		copy_user_gigantic_page(dst, src, addr, vma,
3976					pages_per_huge_page);
3977		return;
3978	}
3979
3980	might_sleep();
3981	for (i = 0; i < pages_per_huge_page; i++) {
3982		cond_resched();
3983		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3984	}
3985}
3986#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
v3.15
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *		Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *		(Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/export.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
  53#include <linux/writeback.h>
  54#include <linux/memcontrol.h>
  55#include <linux/mmu_notifier.h>
  56#include <linux/kallsyms.h>
  57#include <linux/swapops.h>
  58#include <linux/elf.h>
  59#include <linux/gfp.h>
  60#include <linux/migrate.h>
  61#include <linux/string.h>
  62#include <linux/dma-debug.h>
  63#include <linux/debugfs.h>
  64
  65#include <asm/io.h>
  66#include <asm/pgalloc.h>
  67#include <asm/uaccess.h>
  68#include <asm/tlb.h>
  69#include <asm/tlbflush.h>
  70#include <asm/pgtable.h>
  71
  72#include "internal.h"
  73
  74#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  75#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  76#endif
  77
  78#ifndef CONFIG_NEED_MULTIPLE_NODES
  79/* use the per-pgdat data instead for discontigmem - mbligh */
  80unsigned long max_mapnr;
  81struct page *mem_map;
  82
  83EXPORT_SYMBOL(max_mapnr);
  84EXPORT_SYMBOL(mem_map);
  85#endif
  86
 
  87/*
  88 * A number of key systems in x86 including ioremap() rely on the assumption
  89 * that high_memory defines the upper bound on direct map memory, then end
  90 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  92 * and ZONE_HIGHMEM.
  93 */
  94void * high_memory;
  95
 
  96EXPORT_SYMBOL(high_memory);
  97
  98/*
  99 * Randomize the address space (stacks, mmaps, brk, etc.).
 100 *
 101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 102 *   as ancient (libc5 based) binaries can segfault. )
 103 */
 104int randomize_va_space __read_mostly =
 105#ifdef CONFIG_COMPAT_BRK
 106					1;
 107#else
 108					2;
 109#endif
 110
 111static int __init disable_randmaps(char *s)
 112{
 113	randomize_va_space = 0;
 114	return 1;
 115}
 116__setup("norandmaps", disable_randmaps);
 117
 118unsigned long zero_pfn __read_mostly;
 119unsigned long highest_memmap_pfn __read_mostly;
 120
 121/*
 122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 123 */
 124static int __init init_zero_pfn(void)
 125{
 126	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 127	return 0;
 128}
 129core_initcall(init_zero_pfn);
 130
 131
 132#if defined(SPLIT_RSS_COUNTING)
 133
 134void sync_mm_rss(struct mm_struct *mm)
 135{
 136	int i;
 137
 138	for (i = 0; i < NR_MM_COUNTERS; i++) {
 139		if (current->rss_stat.count[i]) {
 140			add_mm_counter(mm, i, current->rss_stat.count[i]);
 141			current->rss_stat.count[i] = 0;
 142		}
 143	}
 144	current->rss_stat.events = 0;
 145}
 146
 147static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 148{
 149	struct task_struct *task = current;
 150
 151	if (likely(task->mm == mm))
 152		task->rss_stat.count[member] += val;
 153	else
 154		add_mm_counter(mm, member, val);
 155}
 156#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 157#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 158
 159/* sync counter once per 64 page faults */
 160#define TASK_RSS_EVENTS_THRESH	(64)
 161static void check_sync_rss_stat(struct task_struct *task)
 162{
 163	if (unlikely(task != current))
 164		return;
 165	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 166		sync_mm_rss(task->mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167}
 168#else /* SPLIT_RSS_COUNTING */
 169
 170#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 171#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 172
 173static void check_sync_rss_stat(struct task_struct *task)
 174{
 175}
 176
 177#endif /* SPLIT_RSS_COUNTING */
 178
 179#ifdef HAVE_GENERIC_MMU_GATHER
 180
 181static int tlb_next_batch(struct mmu_gather *tlb)
 182{
 183	struct mmu_gather_batch *batch;
 184
 185	batch = tlb->active;
 186	if (batch->next) {
 187		tlb->active = batch->next;
 188		return 1;
 189	}
 190
 191	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 192		return 0;
 193
 194	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 195	if (!batch)
 196		return 0;
 197
 198	tlb->batch_count++;
 199	batch->next = NULL;
 200	batch->nr   = 0;
 201	batch->max  = MAX_GATHER_BATCH;
 202
 203	tlb->active->next = batch;
 204	tlb->active = batch;
 205
 206	return 1;
 207}
 208
 209/* tlb_gather_mmu
 210 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 211 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 212 *	users and we're going to destroy the full address space (exit/execve).
 213 */
 214void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
 215{
 216	tlb->mm = mm;
 217
 218	/* Is it from 0 to ~0? */
 219	tlb->fullmm     = !(start | (end+1));
 220	tlb->need_flush_all = 0;
 221	tlb->start	= start;
 222	tlb->end	= end;
 223	tlb->need_flush = 0;
 
 224	tlb->local.next = NULL;
 225	tlb->local.nr   = 0;
 226	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 227	tlb->active     = &tlb->local;
 228	tlb->batch_count = 0;
 229
 230#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 231	tlb->batch = NULL;
 232#endif
 233}
 234
 235static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
 236{
 
 
 
 
 237	tlb->need_flush = 0;
 238	tlb_flush(tlb);
 239#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 240	tlb_table_flush(tlb);
 241#endif
 242}
 243
 244static void tlb_flush_mmu_free(struct mmu_gather *tlb)
 245{
 246	struct mmu_gather_batch *batch;
 247
 248	for (batch = &tlb->local; batch; batch = batch->next) {
 249		free_pages_and_swap_cache(batch->pages, batch->nr);
 250		batch->nr = 0;
 251	}
 252	tlb->active = &tlb->local;
 253}
 254
 255void tlb_flush_mmu(struct mmu_gather *tlb)
 256{
 257	if (!tlb->need_flush)
 258		return;
 259	tlb_flush_mmu_tlbonly(tlb);
 260	tlb_flush_mmu_free(tlb);
 261}
 262
 263/* tlb_finish_mmu
 264 *	Called at the end of the shootdown operation to free up any resources
 265 *	that were required.
 266 */
 267void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
 268{
 269	struct mmu_gather_batch *batch, *next;
 270
 271	tlb_flush_mmu(tlb);
 272
 273	/* keep the page table cache within bounds */
 274	check_pgt_cache();
 275
 276	for (batch = tlb->local.next; batch; batch = next) {
 277		next = batch->next;
 278		free_pages((unsigned long)batch, 0);
 279	}
 280	tlb->local.next = NULL;
 281}
 282
 283/* __tlb_remove_page
 284 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 285 *	handling the additional races in SMP caused by other CPUs caching valid
 286 *	mappings in their TLBs. Returns the number of free page slots left.
 287 *	When out of page slots we must call tlb_flush_mmu().
 288 */
 289int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
 290{
 291	struct mmu_gather_batch *batch;
 292
 293	VM_BUG_ON(!tlb->need_flush);
 
 
 
 
 
 294
 295	batch = tlb->active;
 296	batch->pages[batch->nr++] = page;
 297	if (batch->nr == batch->max) {
 298		if (!tlb_next_batch(tlb))
 299			return 0;
 300		batch = tlb->active;
 301	}
 302	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
 303
 304	return batch->max - batch->nr;
 305}
 306
 307#endif /* HAVE_GENERIC_MMU_GATHER */
 308
 309#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 310
 311/*
 312 * See the comment near struct mmu_table_batch.
 313 */
 314
 315static void tlb_remove_table_smp_sync(void *arg)
 316{
 317	/* Simply deliver the interrupt */
 318}
 319
 320static void tlb_remove_table_one(void *table)
 321{
 322	/*
 323	 * This isn't an RCU grace period and hence the page-tables cannot be
 324	 * assumed to be actually RCU-freed.
 325	 *
 326	 * It is however sufficient for software page-table walkers that rely on
 327	 * IRQ disabling. See the comment near struct mmu_table_batch.
 328	 */
 329	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 330	__tlb_remove_table(table);
 331}
 332
 333static void tlb_remove_table_rcu(struct rcu_head *head)
 334{
 335	struct mmu_table_batch *batch;
 336	int i;
 337
 338	batch = container_of(head, struct mmu_table_batch, rcu);
 339
 340	for (i = 0; i < batch->nr; i++)
 341		__tlb_remove_table(batch->tables[i]);
 342
 343	free_page((unsigned long)batch);
 344}
 345
 346void tlb_table_flush(struct mmu_gather *tlb)
 347{
 348	struct mmu_table_batch **batch = &tlb->batch;
 349
 350	if (*batch) {
 351		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 352		*batch = NULL;
 353	}
 354}
 355
 356void tlb_remove_table(struct mmu_gather *tlb, void *table)
 357{
 358	struct mmu_table_batch **batch = &tlb->batch;
 359
 360	tlb->need_flush = 1;
 361
 362	/*
 363	 * When there's less then two users of this mm there cannot be a
 364	 * concurrent page-table walk.
 365	 */
 366	if (atomic_read(&tlb->mm->mm_users) < 2) {
 367		__tlb_remove_table(table);
 368		return;
 369	}
 370
 371	if (*batch == NULL) {
 372		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 373		if (*batch == NULL) {
 374			tlb_remove_table_one(table);
 375			return;
 376		}
 377		(*batch)->nr = 0;
 378	}
 379	(*batch)->tables[(*batch)->nr++] = table;
 380	if ((*batch)->nr == MAX_TABLE_BATCH)
 381		tlb_table_flush(tlb);
 382}
 383
 384#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 385
 386/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 387 * Note: this doesn't free the actual pages themselves. That
 388 * has been handled earlier when unmapping all the memory regions.
 389 */
 390static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 391			   unsigned long addr)
 392{
 393	pgtable_t token = pmd_pgtable(*pmd);
 394	pmd_clear(pmd);
 395	pte_free_tlb(tlb, token, addr);
 396	atomic_long_dec(&tlb->mm->nr_ptes);
 397}
 398
 399static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 400				unsigned long addr, unsigned long end,
 401				unsigned long floor, unsigned long ceiling)
 402{
 403	pmd_t *pmd;
 404	unsigned long next;
 405	unsigned long start;
 406
 407	start = addr;
 408	pmd = pmd_offset(pud, addr);
 409	do {
 410		next = pmd_addr_end(addr, end);
 411		if (pmd_none_or_clear_bad(pmd))
 412			continue;
 413		free_pte_range(tlb, pmd, addr);
 414	} while (pmd++, addr = next, addr != end);
 415
 416	start &= PUD_MASK;
 417	if (start < floor)
 418		return;
 419	if (ceiling) {
 420		ceiling &= PUD_MASK;
 421		if (!ceiling)
 422			return;
 423	}
 424	if (end - 1 > ceiling - 1)
 425		return;
 426
 427	pmd = pmd_offset(pud, start);
 428	pud_clear(pud);
 429	pmd_free_tlb(tlb, pmd, start);
 430}
 431
 432static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 433				unsigned long addr, unsigned long end,
 434				unsigned long floor, unsigned long ceiling)
 435{
 436	pud_t *pud;
 437	unsigned long next;
 438	unsigned long start;
 439
 440	start = addr;
 441	pud = pud_offset(pgd, addr);
 442	do {
 443		next = pud_addr_end(addr, end);
 444		if (pud_none_or_clear_bad(pud))
 445			continue;
 446		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 447	} while (pud++, addr = next, addr != end);
 448
 449	start &= PGDIR_MASK;
 450	if (start < floor)
 451		return;
 452	if (ceiling) {
 453		ceiling &= PGDIR_MASK;
 454		if (!ceiling)
 455			return;
 456	}
 457	if (end - 1 > ceiling - 1)
 458		return;
 459
 460	pud = pud_offset(pgd, start);
 461	pgd_clear(pgd);
 462	pud_free_tlb(tlb, pud, start);
 463}
 464
 465/*
 466 * This function frees user-level page tables of a process.
 
 
 467 */
 468void free_pgd_range(struct mmu_gather *tlb,
 469			unsigned long addr, unsigned long end,
 470			unsigned long floor, unsigned long ceiling)
 471{
 472	pgd_t *pgd;
 473	unsigned long next;
 474
 475	/*
 476	 * The next few lines have given us lots of grief...
 477	 *
 478	 * Why are we testing PMD* at this top level?  Because often
 479	 * there will be no work to do at all, and we'd prefer not to
 480	 * go all the way down to the bottom just to discover that.
 481	 *
 482	 * Why all these "- 1"s?  Because 0 represents both the bottom
 483	 * of the address space and the top of it (using -1 for the
 484	 * top wouldn't help much: the masks would do the wrong thing).
 485	 * The rule is that addr 0 and floor 0 refer to the bottom of
 486	 * the address space, but end 0 and ceiling 0 refer to the top
 487	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 488	 * that end 0 case should be mythical).
 489	 *
 490	 * Wherever addr is brought up or ceiling brought down, we must
 491	 * be careful to reject "the opposite 0" before it confuses the
 492	 * subsequent tests.  But what about where end is brought down
 493	 * by PMD_SIZE below? no, end can't go down to 0 there.
 494	 *
 495	 * Whereas we round start (addr) and ceiling down, by different
 496	 * masks at different levels, in order to test whether a table
 497	 * now has no other vmas using it, so can be freed, we don't
 498	 * bother to round floor or end up - the tests don't need that.
 499	 */
 500
 501	addr &= PMD_MASK;
 502	if (addr < floor) {
 503		addr += PMD_SIZE;
 504		if (!addr)
 505			return;
 506	}
 507	if (ceiling) {
 508		ceiling &= PMD_MASK;
 509		if (!ceiling)
 510			return;
 511	}
 512	if (end - 1 > ceiling - 1)
 513		end -= PMD_SIZE;
 514	if (addr > end - 1)
 515		return;
 516
 517	pgd = pgd_offset(tlb->mm, addr);
 518	do {
 519		next = pgd_addr_end(addr, end);
 520		if (pgd_none_or_clear_bad(pgd))
 521			continue;
 522		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 523	} while (pgd++, addr = next, addr != end);
 524}
 525
 526void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 527		unsigned long floor, unsigned long ceiling)
 528{
 529	while (vma) {
 530		struct vm_area_struct *next = vma->vm_next;
 531		unsigned long addr = vma->vm_start;
 532
 533		/*
 534		 * Hide vma from rmap and truncate_pagecache before freeing
 535		 * pgtables
 536		 */
 537		unlink_anon_vmas(vma);
 538		unlink_file_vma(vma);
 539
 540		if (is_vm_hugetlb_page(vma)) {
 541			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 542				floor, next? next->vm_start: ceiling);
 543		} else {
 544			/*
 545			 * Optimization: gather nearby vmas into one call down
 546			 */
 547			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 548			       && !is_vm_hugetlb_page(next)) {
 549				vma = next;
 550				next = vma->vm_next;
 551				unlink_anon_vmas(vma);
 552				unlink_file_vma(vma);
 553			}
 554			free_pgd_range(tlb, addr, vma->vm_end,
 555				floor, next? next->vm_start: ceiling);
 556		}
 557		vma = next;
 558	}
 559}
 560
 561int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
 562		pmd_t *pmd, unsigned long address)
 563{
 564	spinlock_t *ptl;
 565	pgtable_t new = pte_alloc_one(mm, address);
 566	int wait_split_huge_page;
 567	if (!new)
 568		return -ENOMEM;
 569
 570	/*
 571	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 572	 * visible before the pte is made visible to other CPUs by being
 573	 * put into page tables.
 574	 *
 575	 * The other side of the story is the pointer chasing in the page
 576	 * table walking code (when walking the page table without locking;
 577	 * ie. most of the time). Fortunately, these data accesses consist
 578	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 579	 * being the notable exception) will already guarantee loads are
 580	 * seen in-order. See the alpha page table accessors for the
 581	 * smp_read_barrier_depends() barriers in page table walking code.
 582	 */
 583	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 584
 585	ptl = pmd_lock(mm, pmd);
 586	wait_split_huge_page = 0;
 587	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 588		atomic_long_inc(&mm->nr_ptes);
 589		pmd_populate(mm, pmd, new);
 590		new = NULL;
 591	} else if (unlikely(pmd_trans_splitting(*pmd)))
 592		wait_split_huge_page = 1;
 593	spin_unlock(ptl);
 594	if (new)
 595		pte_free(mm, new);
 596	if (wait_split_huge_page)
 597		wait_split_huge_page(vma->anon_vma, pmd);
 598	return 0;
 599}
 600
 601int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 602{
 603	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 604	if (!new)
 605		return -ENOMEM;
 606
 607	smp_wmb(); /* See comment in __pte_alloc */
 608
 609	spin_lock(&init_mm.page_table_lock);
 610	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 611		pmd_populate_kernel(&init_mm, pmd, new);
 612		new = NULL;
 613	} else
 614		VM_BUG_ON(pmd_trans_splitting(*pmd));
 615	spin_unlock(&init_mm.page_table_lock);
 616	if (new)
 617		pte_free_kernel(&init_mm, new);
 618	return 0;
 619}
 620
 621static inline void init_rss_vec(int *rss)
 622{
 623	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 624}
 625
 626static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 627{
 628	int i;
 629
 630	if (current->mm == mm)
 631		sync_mm_rss(mm);
 632	for (i = 0; i < NR_MM_COUNTERS; i++)
 633		if (rss[i])
 634			add_mm_counter(mm, i, rss[i]);
 635}
 636
 637/*
 638 * This function is called to print an error when a bad pte
 639 * is found. For example, we might have a PFN-mapped pte in
 640 * a region that doesn't allow it.
 641 *
 642 * The calling function must still handle the error.
 643 */
 644static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 645			  pte_t pte, struct page *page)
 646{
 647	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 648	pud_t *pud = pud_offset(pgd, addr);
 649	pmd_t *pmd = pmd_offset(pud, addr);
 650	struct address_space *mapping;
 651	pgoff_t index;
 652	static unsigned long resume;
 653	static unsigned long nr_shown;
 654	static unsigned long nr_unshown;
 655
 656	/*
 657	 * Allow a burst of 60 reports, then keep quiet for that minute;
 658	 * or allow a steady drip of one report per second.
 659	 */
 660	if (nr_shown == 60) {
 661		if (time_before(jiffies, resume)) {
 662			nr_unshown++;
 663			return;
 664		}
 665		if (nr_unshown) {
 666			printk(KERN_ALERT
 667				"BUG: Bad page map: %lu messages suppressed\n",
 668				nr_unshown);
 669			nr_unshown = 0;
 670		}
 671		nr_shown = 0;
 672	}
 673	if (nr_shown++ == 0)
 674		resume = jiffies + 60 * HZ;
 675
 676	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 677	index = linear_page_index(vma, addr);
 678
 679	printk(KERN_ALERT
 680		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 681		current->comm,
 682		(long long)pte_val(pte), (long long)pmd_val(*pmd));
 683	if (page)
 684		dump_page(page, "bad pte");
 685	printk(KERN_ALERT
 686		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 687		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 688	/*
 689	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 690	 */
 691	if (vma->vm_ops)
 692		printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
 693		       vma->vm_ops->fault);
 694	if (vma->vm_file)
 695		printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
 696		       vma->vm_file->f_op->mmap);
 697	dump_stack();
 698	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 699}
 700
 701static inline bool is_cow_mapping(vm_flags_t flags)
 702{
 703	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
 704}
 705
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 706/*
 707 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 708 *
 709 * "Special" mappings do not wish to be associated with a "struct page" (either
 710 * it doesn't exist, or it exists but they don't want to touch it). In this
 711 * case, NULL is returned here. "Normal" mappings do have a struct page.
 712 *
 713 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 714 * pte bit, in which case this function is trivial. Secondly, an architecture
 715 * may not have a spare pte bit, which requires a more complicated scheme,
 716 * described below.
 717 *
 718 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 719 * special mapping (even if there are underlying and valid "struct pages").
 720 * COWed pages of a VM_PFNMAP are always normal.
 721 *
 722 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 723 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 724 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 725 * mapping will always honor the rule
 726 *
 727 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 728 *
 729 * And for normal mappings this is false.
 730 *
 731 * This restricts such mappings to be a linear translation from virtual address
 732 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 733 * as the vma is not a COW mapping; in that case, we know that all ptes are
 734 * special (because none can have been COWed).
 735 *
 736 *
 737 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 738 *
 739 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 740 * page" backing, however the difference is that _all_ pages with a struct
 741 * page (that is, those where pfn_valid is true) are refcounted and considered
 742 * normal pages by the VM. The disadvantage is that pages are refcounted
 743 * (which can be slower and simply not an option for some PFNMAP users). The
 744 * advantage is that we don't have to follow the strict linearity rule of
 745 * PFNMAP mappings in order to support COWable mappings.
 746 *
 747 */
 748#ifdef __HAVE_ARCH_PTE_SPECIAL
 749# define HAVE_PTE_SPECIAL 1
 750#else
 751# define HAVE_PTE_SPECIAL 0
 752#endif
 753struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 754				pte_t pte)
 755{
 756	unsigned long pfn = pte_pfn(pte);
 757
 758	if (HAVE_PTE_SPECIAL) {
 759		if (likely(!pte_special(pte)))
 760			goto check_pfn;
 761		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 762			return NULL;
 763		if (!is_zero_pfn(pfn))
 764			print_bad_pte(vma, addr, pte, NULL);
 765		return NULL;
 766	}
 767
 768	/* !HAVE_PTE_SPECIAL case follows: */
 769
 770	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 771		if (vma->vm_flags & VM_MIXEDMAP) {
 772			if (!pfn_valid(pfn))
 773				return NULL;
 774			goto out;
 775		} else {
 776			unsigned long off;
 777			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 778			if (pfn == vma->vm_pgoff + off)
 779				return NULL;
 780			if (!is_cow_mapping(vma->vm_flags))
 781				return NULL;
 782		}
 783	}
 784
 785	if (is_zero_pfn(pfn))
 786		return NULL;
 787check_pfn:
 788	if (unlikely(pfn > highest_memmap_pfn)) {
 789		print_bad_pte(vma, addr, pte, NULL);
 790		return NULL;
 791	}
 792
 793	/*
 794	 * NOTE! We still have PageReserved() pages in the page tables.
 795	 * eg. VDSO mappings can cause them to exist.
 796	 */
 797out:
 798	return pfn_to_page(pfn);
 799}
 800
 801/*
 802 * copy one vm_area from one task to the other. Assumes the page tables
 803 * already present in the new task to be cleared in the whole range
 804 * covered by this vma.
 805 */
 806
 807static inline unsigned long
 808copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 809		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 810		unsigned long addr, int *rss)
 811{
 812	unsigned long vm_flags = vma->vm_flags;
 813	pte_t pte = *src_pte;
 814	struct page *page;
 815
 816	/* pte contains position in swap or file, so copy. */
 817	if (unlikely(!pte_present(pte))) {
 818		if (!pte_file(pte)) {
 819			swp_entry_t entry = pte_to_swp_entry(pte);
 820
 821			if (swap_duplicate(entry) < 0)
 822				return entry.val;
 823
 824			/* make sure dst_mm is on swapoff's mmlist. */
 825			if (unlikely(list_empty(&dst_mm->mmlist))) {
 826				spin_lock(&mmlist_lock);
 827				if (list_empty(&dst_mm->mmlist))
 828					list_add(&dst_mm->mmlist,
 829						 &src_mm->mmlist);
 830				spin_unlock(&mmlist_lock);
 831			}
 832			if (likely(!non_swap_entry(entry)))
 833				rss[MM_SWAPENTS]++;
 834			else if (is_migration_entry(entry)) {
 835				page = migration_entry_to_page(entry);
 836
 837				if (PageAnon(page))
 838					rss[MM_ANONPAGES]++;
 839				else
 840					rss[MM_FILEPAGES]++;
 841
 842				if (is_write_migration_entry(entry) &&
 843				    is_cow_mapping(vm_flags)) {
 844					/*
 845					 * COW mappings require pages in both
 846					 * parent and child to be set to read.
 847					 */
 848					make_migration_entry_read(&entry);
 849					pte = swp_entry_to_pte(entry);
 850					if (pte_swp_soft_dirty(*src_pte))
 851						pte = pte_swp_mksoft_dirty(pte);
 852					set_pte_at(src_mm, addr, src_pte, pte);
 853				}
 854			}
 855		}
 856		goto out_set_pte;
 857	}
 858
 859	/*
 860	 * If it's a COW mapping, write protect it both
 861	 * in the parent and the child
 862	 */
 863	if (is_cow_mapping(vm_flags)) {
 864		ptep_set_wrprotect(src_mm, addr, src_pte);
 865		pte = pte_wrprotect(pte);
 866	}
 867
 868	/*
 869	 * If it's a shared mapping, mark it clean in
 870	 * the child
 871	 */
 872	if (vm_flags & VM_SHARED)
 873		pte = pte_mkclean(pte);
 874	pte = pte_mkold(pte);
 875
 876	page = vm_normal_page(vma, addr, pte);
 877	if (page) {
 878		get_page(page);
 879		page_dup_rmap(page);
 880		if (PageAnon(page))
 881			rss[MM_ANONPAGES]++;
 882		else
 883			rss[MM_FILEPAGES]++;
 884	}
 885
 886out_set_pte:
 887	set_pte_at(dst_mm, addr, dst_pte, pte);
 888	return 0;
 889}
 890
 891int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 892		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 893		   unsigned long addr, unsigned long end)
 894{
 895	pte_t *orig_src_pte, *orig_dst_pte;
 896	pte_t *src_pte, *dst_pte;
 897	spinlock_t *src_ptl, *dst_ptl;
 898	int progress = 0;
 899	int rss[NR_MM_COUNTERS];
 900	swp_entry_t entry = (swp_entry_t){0};
 901
 902again:
 903	init_rss_vec(rss);
 904
 905	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 906	if (!dst_pte)
 907		return -ENOMEM;
 908	src_pte = pte_offset_map(src_pmd, addr);
 909	src_ptl = pte_lockptr(src_mm, src_pmd);
 910	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 911	orig_src_pte = src_pte;
 912	orig_dst_pte = dst_pte;
 913	arch_enter_lazy_mmu_mode();
 914
 915	do {
 916		/*
 917		 * We are holding two locks at this point - either of them
 918		 * could generate latencies in another task on another CPU.
 919		 */
 920		if (progress >= 32) {
 921			progress = 0;
 922			if (need_resched() ||
 923			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 924				break;
 925		}
 926		if (pte_none(*src_pte)) {
 927			progress++;
 928			continue;
 929		}
 930		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 931							vma, addr, rss);
 932		if (entry.val)
 933			break;
 934		progress += 8;
 935	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 936
 937	arch_leave_lazy_mmu_mode();
 938	spin_unlock(src_ptl);
 939	pte_unmap(orig_src_pte);
 940	add_mm_rss_vec(dst_mm, rss);
 941	pte_unmap_unlock(orig_dst_pte, dst_ptl);
 942	cond_resched();
 943
 944	if (entry.val) {
 945		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 946			return -ENOMEM;
 947		progress = 0;
 948	}
 949	if (addr != end)
 950		goto again;
 951	return 0;
 952}
 953
 954static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 955		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 956		unsigned long addr, unsigned long end)
 957{
 958	pmd_t *src_pmd, *dst_pmd;
 959	unsigned long next;
 960
 961	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 962	if (!dst_pmd)
 963		return -ENOMEM;
 964	src_pmd = pmd_offset(src_pud, addr);
 965	do {
 966		next = pmd_addr_end(addr, end);
 967		if (pmd_trans_huge(*src_pmd)) {
 968			int err;
 969			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
 970			err = copy_huge_pmd(dst_mm, src_mm,
 971					    dst_pmd, src_pmd, addr, vma);
 972			if (err == -ENOMEM)
 973				return -ENOMEM;
 974			if (!err)
 975				continue;
 976			/* fall through */
 977		}
 978		if (pmd_none_or_clear_bad(src_pmd))
 979			continue;
 980		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
 981						vma, addr, next))
 982			return -ENOMEM;
 983	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
 984	return 0;
 985}
 986
 987static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 988		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
 989		unsigned long addr, unsigned long end)
 990{
 991	pud_t *src_pud, *dst_pud;
 992	unsigned long next;
 993
 994	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
 995	if (!dst_pud)
 996		return -ENOMEM;
 997	src_pud = pud_offset(src_pgd, addr);
 998	do {
 999		next = pud_addr_end(addr, end);
1000		if (pud_none_or_clear_bad(src_pud))
1001			continue;
1002		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1003						vma, addr, next))
1004			return -ENOMEM;
1005	} while (dst_pud++, src_pud++, addr = next, addr != end);
1006	return 0;
1007}
1008
1009int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1010		struct vm_area_struct *vma)
1011{
1012	pgd_t *src_pgd, *dst_pgd;
1013	unsigned long next;
1014	unsigned long addr = vma->vm_start;
1015	unsigned long end = vma->vm_end;
1016	unsigned long mmun_start;	/* For mmu_notifiers */
1017	unsigned long mmun_end;		/* For mmu_notifiers */
1018	bool is_cow;
1019	int ret;
1020
1021	/*
1022	 * Don't copy ptes where a page fault will fill them correctly.
1023	 * Fork becomes much lighter when there are big shared or private
1024	 * readonly mappings. The tradeoff is that copy_page_range is more
1025	 * efficient than faulting.
1026	 */
1027	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1028			       VM_PFNMAP | VM_MIXEDMAP))) {
1029		if (!vma->anon_vma)
1030			return 0;
1031	}
1032
1033	if (is_vm_hugetlb_page(vma))
1034		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1035
1036	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1037		/*
1038		 * We do not free on error cases below as remove_vma
1039		 * gets called on error from higher level routine
1040		 */
1041		ret = track_pfn_copy(vma);
1042		if (ret)
1043			return ret;
1044	}
1045
1046	/*
1047	 * We need to invalidate the secondary MMU mappings only when
1048	 * there could be a permission downgrade on the ptes of the
1049	 * parent mm. And a permission downgrade will only happen if
1050	 * is_cow_mapping() returns true.
1051	 */
1052	is_cow = is_cow_mapping(vma->vm_flags);
1053	mmun_start = addr;
1054	mmun_end   = end;
1055	if (is_cow)
1056		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1057						    mmun_end);
1058
1059	ret = 0;
1060	dst_pgd = pgd_offset(dst_mm, addr);
1061	src_pgd = pgd_offset(src_mm, addr);
1062	do {
1063		next = pgd_addr_end(addr, end);
1064		if (pgd_none_or_clear_bad(src_pgd))
1065			continue;
1066		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1067					    vma, addr, next))) {
1068			ret = -ENOMEM;
1069			break;
1070		}
1071	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1072
1073	if (is_cow)
1074		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
 
1075	return ret;
1076}
1077
1078static unsigned long zap_pte_range(struct mmu_gather *tlb,
1079				struct vm_area_struct *vma, pmd_t *pmd,
1080				unsigned long addr, unsigned long end,
1081				struct zap_details *details)
1082{
1083	struct mm_struct *mm = tlb->mm;
1084	int force_flush = 0;
1085	int rss[NR_MM_COUNTERS];
1086	spinlock_t *ptl;
1087	pte_t *start_pte;
1088	pte_t *pte;
1089
1090again:
1091	init_rss_vec(rss);
1092	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1093	pte = start_pte;
1094	arch_enter_lazy_mmu_mode();
1095	do {
1096		pte_t ptent = *pte;
1097		if (pte_none(ptent)) {
1098			continue;
1099		}
1100
1101		if (pte_present(ptent)) {
1102			struct page *page;
1103
1104			page = vm_normal_page(vma, addr, ptent);
1105			if (unlikely(details) && page) {
1106				/*
1107				 * unmap_shared_mapping_pages() wants to
1108				 * invalidate cache without truncating:
1109				 * unmap shared but keep private pages.
1110				 */
1111				if (details->check_mapping &&
1112				    details->check_mapping != page->mapping)
1113					continue;
1114				/*
1115				 * Each page->index must be checked when
1116				 * invalidating or truncating nonlinear.
1117				 */
1118				if (details->nonlinear_vma &&
1119				    (page->index < details->first_index ||
1120				     page->index > details->last_index))
1121					continue;
1122			}
1123			ptent = ptep_get_and_clear_full(mm, addr, pte,
1124							tlb->fullmm);
1125			tlb_remove_tlb_entry(tlb, pte, addr);
1126			if (unlikely(!page))
1127				continue;
1128			if (unlikely(details) && details->nonlinear_vma
1129			    && linear_page_index(details->nonlinear_vma,
1130						addr) != page->index) {
1131				pte_t ptfile = pgoff_to_pte(page->index);
1132				if (pte_soft_dirty(ptent))
1133					pte_file_mksoft_dirty(ptfile);
1134				set_pte_at(mm, addr, pte, ptfile);
1135			}
1136			if (PageAnon(page))
1137				rss[MM_ANONPAGES]--;
1138			else {
1139				if (pte_dirty(ptent)) {
1140					force_flush = 1;
1141					set_page_dirty(page);
1142				}
1143				if (pte_young(ptent) &&
1144				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1145					mark_page_accessed(page);
1146				rss[MM_FILEPAGES]--;
1147			}
1148			page_remove_rmap(page);
1149			if (unlikely(page_mapcount(page) < 0))
1150				print_bad_pte(vma, addr, ptent, page);
1151			if (unlikely(!__tlb_remove_page(tlb, page))) {
1152				force_flush = 1;
1153				break;
1154			}
1155			continue;
1156		}
1157		/*
1158		 * If details->check_mapping, we leave swap entries;
1159		 * if details->nonlinear_vma, we leave file entries.
1160		 */
1161		if (unlikely(details))
1162			continue;
1163		if (pte_file(ptent)) {
1164			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1165				print_bad_pte(vma, addr, ptent, NULL);
1166		} else {
1167			swp_entry_t entry = pte_to_swp_entry(ptent);
1168
1169			if (!non_swap_entry(entry))
1170				rss[MM_SWAPENTS]--;
1171			else if (is_migration_entry(entry)) {
1172				struct page *page;
1173
1174				page = migration_entry_to_page(entry);
1175
1176				if (PageAnon(page))
1177					rss[MM_ANONPAGES]--;
1178				else
1179					rss[MM_FILEPAGES]--;
1180			}
1181			if (unlikely(!free_swap_and_cache(entry)))
1182				print_bad_pte(vma, addr, ptent, NULL);
1183		}
1184		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1185	} while (pte++, addr += PAGE_SIZE, addr != end);
1186
1187	add_mm_rss_vec(mm, rss);
1188	arch_leave_lazy_mmu_mode();
1189
1190	/* Do the actual TLB flush before dropping ptl */
1191	if (force_flush) {
1192		unsigned long old_end;
1193
1194		/*
1195		 * Flush the TLB just for the previous segment,
1196		 * then update the range to be the remaining
1197		 * TLB range.
1198		 */
1199		old_end = tlb->end;
1200		tlb->end = addr;
1201		tlb_flush_mmu_tlbonly(tlb);
1202		tlb->start = addr;
1203		tlb->end = old_end;
1204	}
1205	pte_unmap_unlock(start_pte, ptl);
1206
1207	/*
1208	 * If we forced a TLB flush (either due to running out of
1209	 * batch buffers or because we needed to flush dirty TLB
1210	 * entries before releasing the ptl), free the batched
1211	 * memory too. Restart if we didn't do everything.
1212	 */
1213	if (force_flush) {
1214		force_flush = 0;
1215		tlb_flush_mmu_free(tlb);
1216
1217		if (addr != end)
1218			goto again;
1219	}
1220
1221	return addr;
1222}
1223
1224static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1225				struct vm_area_struct *vma, pud_t *pud,
1226				unsigned long addr, unsigned long end,
1227				struct zap_details *details)
1228{
1229	pmd_t *pmd;
1230	unsigned long next;
1231
1232	pmd = pmd_offset(pud, addr);
1233	do {
1234		next = pmd_addr_end(addr, end);
1235		if (pmd_trans_huge(*pmd)) {
1236			if (next - addr != HPAGE_PMD_SIZE) {
1237#ifdef CONFIG_DEBUG_VM
1238				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1239					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1240						__func__, addr, end,
1241						vma->vm_start,
1242						vma->vm_end);
1243					BUG();
1244				}
1245#endif
1246				split_huge_page_pmd(vma, addr, pmd);
1247			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1248				goto next;
1249			/* fall through */
1250		}
1251		/*
1252		 * Here there can be other concurrent MADV_DONTNEED or
1253		 * trans huge page faults running, and if the pmd is
1254		 * none or trans huge it can change under us. This is
1255		 * because MADV_DONTNEED holds the mmap_sem in read
1256		 * mode.
1257		 */
1258		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1259			goto next;
1260		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1261next:
1262		cond_resched();
1263	} while (pmd++, addr = next, addr != end);
1264
1265	return addr;
1266}
1267
1268static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1269				struct vm_area_struct *vma, pgd_t *pgd,
1270				unsigned long addr, unsigned long end,
1271				struct zap_details *details)
1272{
1273	pud_t *pud;
1274	unsigned long next;
1275
1276	pud = pud_offset(pgd, addr);
1277	do {
1278		next = pud_addr_end(addr, end);
1279		if (pud_none_or_clear_bad(pud))
1280			continue;
1281		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1282	} while (pud++, addr = next, addr != end);
1283
1284	return addr;
1285}
1286
1287static void unmap_page_range(struct mmu_gather *tlb,
1288			     struct vm_area_struct *vma,
1289			     unsigned long addr, unsigned long end,
1290			     struct zap_details *details)
1291{
1292	pgd_t *pgd;
1293	unsigned long next;
1294
1295	if (details && !details->check_mapping && !details->nonlinear_vma)
1296		details = NULL;
1297
1298	BUG_ON(addr >= end);
1299	mem_cgroup_uncharge_start();
1300	tlb_start_vma(tlb, vma);
1301	pgd = pgd_offset(vma->vm_mm, addr);
1302	do {
1303		next = pgd_addr_end(addr, end);
1304		if (pgd_none_or_clear_bad(pgd))
1305			continue;
1306		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1307	} while (pgd++, addr = next, addr != end);
1308	tlb_end_vma(tlb, vma);
1309	mem_cgroup_uncharge_end();
1310}
1311
1312
1313static void unmap_single_vma(struct mmu_gather *tlb,
1314		struct vm_area_struct *vma, unsigned long start_addr,
1315		unsigned long end_addr,
1316		struct zap_details *details)
1317{
1318	unsigned long start = max(vma->vm_start, start_addr);
1319	unsigned long end;
1320
1321	if (start >= vma->vm_end)
1322		return;
1323	end = min(vma->vm_end, end_addr);
1324	if (end <= vma->vm_start)
1325		return;
1326
1327	if (vma->vm_file)
1328		uprobe_munmap(vma, start, end);
1329
1330	if (unlikely(vma->vm_flags & VM_PFNMAP))
1331		untrack_pfn(vma, 0, 0);
1332
1333	if (start != end) {
1334		if (unlikely(is_vm_hugetlb_page(vma))) {
1335			/*
1336			 * It is undesirable to test vma->vm_file as it
1337			 * should be non-null for valid hugetlb area.
1338			 * However, vm_file will be NULL in the error
1339			 * cleanup path of mmap_region. When
1340			 * hugetlbfs ->mmap method fails,
1341			 * mmap_region() nullifies vma->vm_file
1342			 * before calling this function to clean up.
1343			 * Since no pte has actually been setup, it is
1344			 * safe to do nothing in this case.
1345			 */
1346			if (vma->vm_file) {
1347				mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1348				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1349				mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1350			}
1351		} else
1352			unmap_page_range(tlb, vma, start, end, details);
1353	}
1354}
1355
1356/**
1357 * unmap_vmas - unmap a range of memory covered by a list of vma's
1358 * @tlb: address of the caller's struct mmu_gather
1359 * @vma: the starting vma
1360 * @start_addr: virtual address at which to start unmapping
1361 * @end_addr: virtual address at which to end unmapping
 
 
 
 
1362 *
1363 * Unmap all pages in the vma list.
1364 *
1365 * Only addresses between `start' and `end' will be unmapped.
1366 *
1367 * The VMA list must be sorted in ascending virtual address order.
1368 *
1369 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1370 * range after unmap_vmas() returns.  So the only responsibility here is to
1371 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1372 * drops the lock and schedules.
1373 */
1374void unmap_vmas(struct mmu_gather *tlb,
1375		struct vm_area_struct *vma, unsigned long start_addr,
1376		unsigned long end_addr)
 
1377{
 
1378	struct mm_struct *mm = vma->vm_mm;
1379
1380	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1381	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1382		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1383	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
 
1384}
1385
1386/**
1387 * zap_page_range - remove user pages in a given range
1388 * @vma: vm_area_struct holding the applicable pages
1389 * @start: starting address of pages to zap
1390 * @size: number of bytes to zap
1391 * @details: details of nonlinear truncation or shared cache invalidation
1392 *
1393 * Caller must protect the VMA list
1394 */
1395void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1396		unsigned long size, struct zap_details *details)
1397{
1398	struct mm_struct *mm = vma->vm_mm;
1399	struct mmu_gather tlb;
1400	unsigned long end = start + size;
1401
1402	lru_add_drain();
1403	tlb_gather_mmu(&tlb, mm, start, end);
1404	update_hiwater_rss(mm);
1405	mmu_notifier_invalidate_range_start(mm, start, end);
1406	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1407		unmap_single_vma(&tlb, vma, start, end, details);
1408	mmu_notifier_invalidate_range_end(mm, start, end);
1409	tlb_finish_mmu(&tlb, start, end);
1410}
1411
1412/**
1413 * zap_page_range_single - remove user pages in a given range
1414 * @vma: vm_area_struct holding the applicable pages
1415 * @address: starting address of pages to zap
1416 * @size: number of bytes to zap
1417 * @details: details of nonlinear truncation or shared cache invalidation
1418 *
1419 * The range must fit into one VMA.
1420 */
1421static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1422		unsigned long size, struct zap_details *details)
1423{
1424	struct mm_struct *mm = vma->vm_mm;
1425	struct mmu_gather tlb;
1426	unsigned long end = address + size;
 
1427
1428	lru_add_drain();
1429	tlb_gather_mmu(&tlb, mm, address, end);
1430	update_hiwater_rss(mm);
1431	mmu_notifier_invalidate_range_start(mm, address, end);
1432	unmap_single_vma(&tlb, vma, address, end, details);
1433	mmu_notifier_invalidate_range_end(mm, address, end);
1434	tlb_finish_mmu(&tlb, address, end);
 
1435}
1436
1437/**
1438 * zap_vma_ptes - remove ptes mapping the vma
1439 * @vma: vm_area_struct holding ptes to be zapped
1440 * @address: starting address of pages to zap
1441 * @size: number of bytes to zap
1442 *
1443 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1444 *
1445 * The entire address range must be fully contained within the vma.
1446 *
1447 * Returns 0 if successful.
1448 */
1449int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1450		unsigned long size)
1451{
1452	if (address < vma->vm_start || address + size > vma->vm_end ||
1453	    		!(vma->vm_flags & VM_PFNMAP))
1454		return -1;
1455	zap_page_range_single(vma, address, size, NULL);
1456	return 0;
1457}
1458EXPORT_SYMBOL_GPL(zap_vma_ptes);
1459
1460/**
1461 * follow_page_mask - look up a page descriptor from a user-virtual address
1462 * @vma: vm_area_struct mapping @address
1463 * @address: virtual address to look up
1464 * @flags: flags modifying lookup behaviour
1465 * @page_mask: on output, *page_mask is set according to the size of the page
1466 *
1467 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1468 *
1469 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1470 * an error pointer if there is a mapping to something not represented
1471 * by a page descriptor (see also vm_normal_page()).
1472 */
1473struct page *follow_page_mask(struct vm_area_struct *vma,
1474			      unsigned long address, unsigned int flags,
1475			      unsigned int *page_mask)
1476{
1477	pgd_t *pgd;
1478	pud_t *pud;
1479	pmd_t *pmd;
1480	pte_t *ptep, pte;
1481	spinlock_t *ptl;
1482	struct page *page;
1483	struct mm_struct *mm = vma->vm_mm;
1484
1485	*page_mask = 0;
1486
1487	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1488	if (!IS_ERR(page)) {
1489		BUG_ON(flags & FOLL_GET);
1490		goto out;
1491	}
1492
1493	page = NULL;
1494	pgd = pgd_offset(mm, address);
1495	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1496		goto no_page_table;
1497
1498	pud = pud_offset(pgd, address);
1499	if (pud_none(*pud))
1500		goto no_page_table;
1501	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1502		if (flags & FOLL_GET)
1503			goto out;
1504		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1505		goto out;
1506	}
1507	if (unlikely(pud_bad(*pud)))
1508		goto no_page_table;
1509
1510	pmd = pmd_offset(pud, address);
1511	if (pmd_none(*pmd))
1512		goto no_page_table;
1513	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
 
1514		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1515		if (flags & FOLL_GET) {
1516			/*
1517			 * Refcount on tail pages are not well-defined and
1518			 * shouldn't be taken. The caller should handle a NULL
1519			 * return when trying to follow tail pages.
1520			 */
1521			if (PageHead(page))
1522				get_page(page);
1523			else {
1524				page = NULL;
1525				goto out;
1526			}
1527		}
1528		goto out;
1529	}
1530	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1531		goto no_page_table;
1532	if (pmd_trans_huge(*pmd)) {
1533		if (flags & FOLL_SPLIT) {
1534			split_huge_page_pmd(vma, address, pmd);
1535			goto split_fallthrough;
1536		}
1537		ptl = pmd_lock(mm, pmd);
1538		if (likely(pmd_trans_huge(*pmd))) {
1539			if (unlikely(pmd_trans_splitting(*pmd))) {
1540				spin_unlock(ptl);
1541				wait_split_huge_page(vma->anon_vma, pmd);
1542			} else {
1543				page = follow_trans_huge_pmd(vma, address,
1544							     pmd, flags);
1545				spin_unlock(ptl);
1546				*page_mask = HPAGE_PMD_NR - 1;
1547				goto out;
1548			}
1549		} else
1550			spin_unlock(ptl);
1551		/* fall through */
1552	}
1553split_fallthrough:
1554	if (unlikely(pmd_bad(*pmd)))
1555		goto no_page_table;
1556
1557	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1558
1559	pte = *ptep;
1560	if (!pte_present(pte)) {
1561		swp_entry_t entry;
1562		/*
1563		 * KSM's break_ksm() relies upon recognizing a ksm page
1564		 * even while it is being migrated, so for that case we
1565		 * need migration_entry_wait().
1566		 */
1567		if (likely(!(flags & FOLL_MIGRATION)))
1568			goto no_page;
1569		if (pte_none(pte) || pte_file(pte))
1570			goto no_page;
1571		entry = pte_to_swp_entry(pte);
1572		if (!is_migration_entry(entry))
1573			goto no_page;
1574		pte_unmap_unlock(ptep, ptl);
1575		migration_entry_wait(mm, pmd, address);
1576		goto split_fallthrough;
1577	}
1578	if ((flags & FOLL_NUMA) && pte_numa(pte))
1579		goto no_page;
1580	if ((flags & FOLL_WRITE) && !pte_write(pte))
1581		goto unlock;
1582
1583	page = vm_normal_page(vma, address, pte);
1584	if (unlikely(!page)) {
1585		if ((flags & FOLL_DUMP) ||
1586		    !is_zero_pfn(pte_pfn(pte)))
1587			goto bad_page;
1588		page = pte_page(pte);
1589	}
1590
1591	if (flags & FOLL_GET)
1592		get_page_foll(page);
1593	if (flags & FOLL_TOUCH) {
1594		if ((flags & FOLL_WRITE) &&
1595		    !pte_dirty(pte) && !PageDirty(page))
1596			set_page_dirty(page);
1597		/*
1598		 * pte_mkyoung() would be more correct here, but atomic care
1599		 * is needed to avoid losing the dirty bit: it is easier to use
1600		 * mark_page_accessed().
1601		 */
1602		mark_page_accessed(page);
1603	}
1604	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1605		/*
1606		 * The preliminary mapping check is mainly to avoid the
1607		 * pointless overhead of lock_page on the ZERO_PAGE
1608		 * which might bounce very badly if there is contention.
1609		 *
1610		 * If the page is already locked, we don't need to
1611		 * handle it now - vmscan will handle it later if and
1612		 * when it attempts to reclaim the page.
1613		 */
1614		if (page->mapping && trylock_page(page)) {
1615			lru_add_drain();  /* push cached pages to LRU */
1616			/*
1617			 * Because we lock page here, and migration is
1618			 * blocked by the pte's page reference, and we
1619			 * know the page is still mapped, we don't even
1620			 * need to check for file-cache page truncation.
1621			 */
1622			mlock_vma_page(page);
 
1623			unlock_page(page);
1624		}
1625	}
1626unlock:
1627	pte_unmap_unlock(ptep, ptl);
1628out:
1629	return page;
1630
1631bad_page:
1632	pte_unmap_unlock(ptep, ptl);
1633	return ERR_PTR(-EFAULT);
1634
1635no_page:
1636	pte_unmap_unlock(ptep, ptl);
1637	if (!pte_none(pte))
1638		return page;
1639
1640no_page_table:
1641	/*
1642	 * When core dumping an enormous anonymous area that nobody
1643	 * has touched so far, we don't want to allocate unnecessary pages or
1644	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1645	 * then get_dump_page() will return NULL to leave a hole in the dump.
1646	 * But we can only make this optimization where a hole would surely
1647	 * be zero-filled if handle_mm_fault() actually did handle it.
1648	 */
1649	if ((flags & FOLL_DUMP) &&
1650	    (!vma->vm_ops || !vma->vm_ops->fault))
1651		return ERR_PTR(-EFAULT);
1652	return page;
1653}
1654
1655static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1656{
1657	return stack_guard_page_start(vma, addr) ||
1658	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1659}
1660
1661/**
1662 * __get_user_pages() - pin user pages in memory
1663 * @tsk:	task_struct of target task
1664 * @mm:		mm_struct of target mm
1665 * @start:	starting user address
1666 * @nr_pages:	number of pages from start to pin
1667 * @gup_flags:	flags modifying pin behaviour
1668 * @pages:	array that receives pointers to the pages pinned.
1669 *		Should be at least nr_pages long. Or NULL, if caller
1670 *		only intends to ensure the pages are faulted in.
1671 * @vmas:	array of pointers to vmas corresponding to each page.
1672 *		Or NULL if the caller does not require them.
1673 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1674 *
1675 * Returns number of pages pinned. This may be fewer than the number
1676 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1677 * were pinned, returns -errno. Each page returned must be released
1678 * with a put_page() call when it is finished with. vmas will only
1679 * remain valid while mmap_sem is held.
1680 *
1681 * Must be called with mmap_sem held for read or write.
1682 *
1683 * __get_user_pages walks a process's page tables and takes a reference to
1684 * each struct page that each user address corresponds to at a given
1685 * instant. That is, it takes the page that would be accessed if a user
1686 * thread accesses the given user virtual address at that instant.
1687 *
1688 * This does not guarantee that the page exists in the user mappings when
1689 * __get_user_pages returns, and there may even be a completely different
1690 * page there in some cases (eg. if mmapped pagecache has been invalidated
1691 * and subsequently re faulted). However it does guarantee that the page
1692 * won't be freed completely. And mostly callers simply care that the page
1693 * contains data that was valid *at some point in time*. Typically, an IO
1694 * or similar operation cannot guarantee anything stronger anyway because
1695 * locks can't be held over the syscall boundary.
1696 *
1697 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1698 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1699 * appropriate) must be called after the page is finished with, and
1700 * before put_page is called.
1701 *
1702 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1703 * or mmap_sem contention, and if waiting is needed to pin all pages,
1704 * *@nonblocking will be set to 0.
1705 *
1706 * In most cases, get_user_pages or get_user_pages_fast should be used
1707 * instead of __get_user_pages. __get_user_pages should be used only if
1708 * you need some special @gup_flags.
1709 */
1710long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1711		unsigned long start, unsigned long nr_pages,
1712		unsigned int gup_flags, struct page **pages,
1713		struct vm_area_struct **vmas, int *nonblocking)
1714{
1715	long i;
1716	unsigned long vm_flags;
1717	unsigned int page_mask;
1718
1719	if (!nr_pages)
1720		return 0;
1721
1722	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1723
1724	/*
1725	 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1726	 * would be called on PROT_NONE ranges. We must never invoke
1727	 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1728	 * page faults would unprotect the PROT_NONE ranges if
1729	 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1730	 * bitflag. So to avoid that, don't set FOLL_NUMA if
1731	 * FOLL_FORCE is set.
1732	 */
1733	if (!(gup_flags & FOLL_FORCE))
1734		gup_flags |= FOLL_NUMA;
1735
1736	i = 0;
1737
1738	do {
1739		struct vm_area_struct *vma;
1740
1741		vma = find_extend_vma(mm, start);
1742		if (!vma && in_gate_area(mm, start)) {
1743			unsigned long pg = start & PAGE_MASK;
1744			pgd_t *pgd;
1745			pud_t *pud;
1746			pmd_t *pmd;
1747			pte_t *pte;
1748
1749			/* user gate pages are read-only */
1750			if (gup_flags & FOLL_WRITE)
1751				goto efault;
1752			if (pg > TASK_SIZE)
1753				pgd = pgd_offset_k(pg);
1754			else
1755				pgd = pgd_offset_gate(mm, pg);
1756			BUG_ON(pgd_none(*pgd));
1757			pud = pud_offset(pgd, pg);
1758			BUG_ON(pud_none(*pud));
1759			pmd = pmd_offset(pud, pg);
1760			if (pmd_none(*pmd))
1761				goto efault;
1762			VM_BUG_ON(pmd_trans_huge(*pmd));
1763			pte = pte_offset_map(pmd, pg);
1764			if (pte_none(*pte)) {
1765				pte_unmap(pte);
1766				goto efault;
1767			}
1768			vma = get_gate_vma(mm);
1769			if (pages) {
1770				struct page *page;
1771
1772				page = vm_normal_page(vma, start, *pte);
1773				if (!page) {
1774					if (!(gup_flags & FOLL_DUMP) &&
1775					     is_zero_pfn(pte_pfn(*pte)))
1776						page = pte_page(*pte);
1777					else {
1778						pte_unmap(pte);
1779						goto efault;
1780					}
1781				}
1782				pages[i] = page;
1783				get_page(page);
1784			}
1785			pte_unmap(pte);
1786			page_mask = 0;
1787			goto next_page;
1788		}
1789
1790		if (!vma)
1791			goto efault;
1792		vm_flags = vma->vm_flags;
1793		if (vm_flags & (VM_IO | VM_PFNMAP))
1794			goto efault;
1795
1796		if (gup_flags & FOLL_WRITE) {
1797			if (!(vm_flags & VM_WRITE)) {
1798				if (!(gup_flags & FOLL_FORCE))
1799					goto efault;
1800				/*
1801				 * We used to let the write,force case do COW
1802				 * in a VM_MAYWRITE VM_SHARED !VM_WRITE vma, so
1803				 * ptrace could set a breakpoint in a read-only
1804				 * mapping of an executable, without corrupting
1805				 * the file (yet only when that file had been
1806				 * opened for writing!).  Anon pages in shared
1807				 * mappings are surprising: now just reject it.
1808				 */
1809				if (!is_cow_mapping(vm_flags)) {
1810					WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
1811					goto efault;
1812				}
1813			}
1814		} else {
1815			if (!(vm_flags & VM_READ)) {
1816				if (!(gup_flags & FOLL_FORCE))
1817					goto efault;
1818				/*
1819				 * Is there actually any vma we can reach here
1820				 * which does not have VM_MAYREAD set?
1821				 */
1822				if (!(vm_flags & VM_MAYREAD))
1823					goto efault;
1824			}
1825		}
1826
1827		if (is_vm_hugetlb_page(vma)) {
1828			i = follow_hugetlb_page(mm, vma, pages, vmas,
1829					&start, &nr_pages, i, gup_flags);
1830			continue;
1831		}
1832
1833		do {
1834			struct page *page;
1835			unsigned int foll_flags = gup_flags;
1836			unsigned int page_increm;
1837
1838			/*
1839			 * If we have a pending SIGKILL, don't keep faulting
1840			 * pages and potentially allocating memory.
1841			 */
1842			if (unlikely(fatal_signal_pending(current)))
1843				return i ? i : -ERESTARTSYS;
1844
1845			cond_resched();
1846			while (!(page = follow_page_mask(vma, start,
1847						foll_flags, &page_mask))) {
1848				int ret;
1849				unsigned int fault_flags = 0;
1850
1851				/* For mlock, just skip the stack guard page. */
1852				if (foll_flags & FOLL_MLOCK) {
1853					if (stack_guard_page(vma, start))
1854						goto next_page;
1855				}
1856				if (foll_flags & FOLL_WRITE)
1857					fault_flags |= FAULT_FLAG_WRITE;
1858				if (nonblocking)
1859					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1860				if (foll_flags & FOLL_NOWAIT)
1861					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1862
1863				ret = handle_mm_fault(mm, vma, start,
1864							fault_flags);
1865
1866				if (ret & VM_FAULT_ERROR) {
1867					if (ret & VM_FAULT_OOM)
1868						return i ? i : -ENOMEM;
1869					if (ret & (VM_FAULT_HWPOISON |
1870						   VM_FAULT_HWPOISON_LARGE)) {
1871						if (i)
1872							return i;
1873						else if (gup_flags & FOLL_HWPOISON)
1874							return -EHWPOISON;
1875						else
1876							return -EFAULT;
1877					}
1878					if (ret & VM_FAULT_SIGBUS)
1879						goto efault;
1880					BUG();
1881				}
1882
1883				if (tsk) {
1884					if (ret & VM_FAULT_MAJOR)
1885						tsk->maj_flt++;
1886					else
1887						tsk->min_flt++;
1888				}
1889
1890				if (ret & VM_FAULT_RETRY) {
1891					if (nonblocking)
1892						*nonblocking = 0;
1893					return i;
1894				}
1895
1896				/*
1897				 * The VM_FAULT_WRITE bit tells us that
1898				 * do_wp_page has broken COW when necessary,
1899				 * even if maybe_mkwrite decided not to set
1900				 * pte_write. We can thus safely do subsequent
1901				 * page lookups as if they were reads. But only
1902				 * do so when looping for pte_write is futile:
1903				 * in some cases userspace may also be wanting
1904				 * to write to the gotten user page, which a
1905				 * read fault here might prevent (a readonly
1906				 * page might get reCOWed by userspace write).
1907				 */
1908				if ((ret & VM_FAULT_WRITE) &&
1909				    !(vma->vm_flags & VM_WRITE))
1910					foll_flags &= ~FOLL_WRITE;
1911
1912				cond_resched();
1913			}
1914			if (IS_ERR(page))
1915				return i ? i : PTR_ERR(page);
1916			if (pages) {
1917				pages[i] = page;
1918
1919				flush_anon_page(vma, page, start);
1920				flush_dcache_page(page);
1921				page_mask = 0;
1922			}
1923next_page:
1924			if (vmas) {
1925				vmas[i] = vma;
1926				page_mask = 0;
1927			}
1928			page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1929			if (page_increm > nr_pages)
1930				page_increm = nr_pages;
1931			i += page_increm;
1932			start += page_increm * PAGE_SIZE;
1933			nr_pages -= page_increm;
1934		} while (nr_pages && start < vma->vm_end);
1935	} while (nr_pages);
1936	return i;
1937efault:
1938	return i ? : -EFAULT;
1939}
1940EXPORT_SYMBOL(__get_user_pages);
1941
1942/*
1943 * fixup_user_fault() - manually resolve a user page fault
1944 * @tsk:	the task_struct to use for page fault accounting, or
1945 *		NULL if faults are not to be recorded.
1946 * @mm:		mm_struct of target mm
1947 * @address:	user address
1948 * @fault_flags:flags to pass down to handle_mm_fault()
1949 *
1950 * This is meant to be called in the specific scenario where for locking reasons
1951 * we try to access user memory in atomic context (within a pagefault_disable()
1952 * section), this returns -EFAULT, and we want to resolve the user fault before
1953 * trying again.
1954 *
1955 * Typically this is meant to be used by the futex code.
1956 *
1957 * The main difference with get_user_pages() is that this function will
1958 * unconditionally call handle_mm_fault() which will in turn perform all the
1959 * necessary SW fixup of the dirty and young bits in the PTE, while
1960 * handle_mm_fault() only guarantees to update these in the struct page.
1961 *
1962 * This is important for some architectures where those bits also gate the
1963 * access permission to the page because they are maintained in software.  On
1964 * such architectures, gup() will not be enough to make a subsequent access
1965 * succeed.
1966 *
1967 * This should be called with the mm_sem held for read.
1968 */
1969int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1970		     unsigned long address, unsigned int fault_flags)
1971{
1972	struct vm_area_struct *vma;
1973	vm_flags_t vm_flags;
1974	int ret;
1975
1976	vma = find_extend_vma(mm, address);
1977	if (!vma || address < vma->vm_start)
1978		return -EFAULT;
1979
1980	vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1981	if (!(vm_flags & vma->vm_flags))
1982		return -EFAULT;
1983
1984	ret = handle_mm_fault(mm, vma, address, fault_flags);
1985	if (ret & VM_FAULT_ERROR) {
1986		if (ret & VM_FAULT_OOM)
1987			return -ENOMEM;
1988		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1989			return -EHWPOISON;
1990		if (ret & VM_FAULT_SIGBUS)
1991			return -EFAULT;
1992		BUG();
1993	}
1994	if (tsk) {
1995		if (ret & VM_FAULT_MAJOR)
1996			tsk->maj_flt++;
1997		else
1998			tsk->min_flt++;
1999	}
2000	return 0;
2001}
2002
2003/*
2004 * get_user_pages() - pin user pages in memory
2005 * @tsk:	the task_struct to use for page fault accounting, or
2006 *		NULL if faults are not to be recorded.
2007 * @mm:		mm_struct of target mm
2008 * @start:	starting user address
2009 * @nr_pages:	number of pages from start to pin
2010 * @write:	whether pages will be written to by the caller
2011 * @force:	whether to force access even when user mapping is currently
2012 *		protected (but never forces write access to shared mapping).
 
2013 * @pages:	array that receives pointers to the pages pinned.
2014 *		Should be at least nr_pages long. Or NULL, if caller
2015 *		only intends to ensure the pages are faulted in.
2016 * @vmas:	array of pointers to vmas corresponding to each page.
2017 *		Or NULL if the caller does not require them.
2018 *
2019 * Returns number of pages pinned. This may be fewer than the number
2020 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2021 * were pinned, returns -errno. Each page returned must be released
2022 * with a put_page() call when it is finished with. vmas will only
2023 * remain valid while mmap_sem is held.
2024 *
2025 * Must be called with mmap_sem held for read or write.
2026 *
2027 * get_user_pages walks a process's page tables and takes a reference to
2028 * each struct page that each user address corresponds to at a given
2029 * instant. That is, it takes the page that would be accessed if a user
2030 * thread accesses the given user virtual address at that instant.
2031 *
2032 * This does not guarantee that the page exists in the user mappings when
2033 * get_user_pages returns, and there may even be a completely different
2034 * page there in some cases (eg. if mmapped pagecache has been invalidated
2035 * and subsequently re faulted). However it does guarantee that the page
2036 * won't be freed completely. And mostly callers simply care that the page
2037 * contains data that was valid *at some point in time*. Typically, an IO
2038 * or similar operation cannot guarantee anything stronger anyway because
2039 * locks can't be held over the syscall boundary.
2040 *
2041 * If write=0, the page must not be written to. If the page is written to,
2042 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2043 * after the page is finished with, and before put_page is called.
2044 *
2045 * get_user_pages is typically used for fewer-copy IO operations, to get a
2046 * handle on the memory by some means other than accesses via the user virtual
2047 * addresses. The pages may be submitted for DMA to devices or accessed via
2048 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2049 * use the correct cache flushing APIs.
2050 *
2051 * See also get_user_pages_fast, for performance critical applications.
2052 */
2053long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2054		unsigned long start, unsigned long nr_pages, int write,
2055		int force, struct page **pages, struct vm_area_struct **vmas)
2056{
2057	int flags = FOLL_TOUCH;
2058
2059	if (pages)
2060		flags |= FOLL_GET;
2061	if (write)
2062		flags |= FOLL_WRITE;
2063	if (force)
2064		flags |= FOLL_FORCE;
2065
2066	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2067				NULL);
2068}
2069EXPORT_SYMBOL(get_user_pages);
2070
2071/**
2072 * get_dump_page() - pin user page in memory while writing it to core dump
2073 * @addr: user address
2074 *
2075 * Returns struct page pointer of user page pinned for dump,
2076 * to be freed afterwards by page_cache_release() or put_page().
2077 *
2078 * Returns NULL on any kind of failure - a hole must then be inserted into
2079 * the corefile, to preserve alignment with its headers; and also returns
2080 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2081 * allowing a hole to be left in the corefile to save diskspace.
2082 *
2083 * Called without mmap_sem, but after all other threads have been killed.
2084 */
2085#ifdef CONFIG_ELF_CORE
2086struct page *get_dump_page(unsigned long addr)
2087{
2088	struct vm_area_struct *vma;
2089	struct page *page;
2090
2091	if (__get_user_pages(current, current->mm, addr, 1,
2092			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2093			     NULL) < 1)
2094		return NULL;
2095	flush_cache_page(vma, addr, page_to_pfn(page));
2096	return page;
2097}
2098#endif /* CONFIG_ELF_CORE */
2099
2100pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2101			spinlock_t **ptl)
2102{
2103	pgd_t * pgd = pgd_offset(mm, addr);
2104	pud_t * pud = pud_alloc(mm, pgd, addr);
2105	if (pud) {
2106		pmd_t * pmd = pmd_alloc(mm, pud, addr);
2107		if (pmd) {
2108			VM_BUG_ON(pmd_trans_huge(*pmd));
2109			return pte_alloc_map_lock(mm, pmd, addr, ptl);
2110		}
2111	}
2112	return NULL;
2113}
2114
2115/*
2116 * This is the old fallback for page remapping.
2117 *
2118 * For historical reasons, it only allows reserved pages. Only
2119 * old drivers should use this, and they needed to mark their
2120 * pages reserved for the old functions anyway.
2121 */
2122static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2123			struct page *page, pgprot_t prot)
2124{
2125	struct mm_struct *mm = vma->vm_mm;
2126	int retval;
2127	pte_t *pte;
2128	spinlock_t *ptl;
2129
2130	retval = -EINVAL;
2131	if (PageAnon(page))
2132		goto out;
2133	retval = -ENOMEM;
2134	flush_dcache_page(page);
2135	pte = get_locked_pte(mm, addr, &ptl);
2136	if (!pte)
2137		goto out;
2138	retval = -EBUSY;
2139	if (!pte_none(*pte))
2140		goto out_unlock;
2141
2142	/* Ok, finally just insert the thing.. */
2143	get_page(page);
2144	inc_mm_counter_fast(mm, MM_FILEPAGES);
2145	page_add_file_rmap(page);
2146	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2147
2148	retval = 0;
2149	pte_unmap_unlock(pte, ptl);
2150	return retval;
2151out_unlock:
2152	pte_unmap_unlock(pte, ptl);
2153out:
2154	return retval;
2155}
2156
2157/**
2158 * vm_insert_page - insert single page into user vma
2159 * @vma: user vma to map to
2160 * @addr: target user address of this page
2161 * @page: source kernel page
2162 *
2163 * This allows drivers to insert individual pages they've allocated
2164 * into a user vma.
2165 *
2166 * The page has to be a nice clean _individual_ kernel allocation.
2167 * If you allocate a compound page, you need to have marked it as
2168 * such (__GFP_COMP), or manually just split the page up yourself
2169 * (see split_page()).
2170 *
2171 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2172 * took an arbitrary page protection parameter. This doesn't allow
2173 * that. Your vma protection will have to be set up correctly, which
2174 * means that if you want a shared writable mapping, you'd better
2175 * ask for a shared writable mapping!
2176 *
2177 * The page does not need to be reserved.
2178 *
2179 * Usually this function is called from f_op->mmap() handler
2180 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2181 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2182 * function from other places, for example from page-fault handler.
2183 */
2184int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2185			struct page *page)
2186{
2187	if (addr < vma->vm_start || addr >= vma->vm_end)
2188		return -EFAULT;
2189	if (!page_count(page))
2190		return -EINVAL;
2191	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2192		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2193		BUG_ON(vma->vm_flags & VM_PFNMAP);
2194		vma->vm_flags |= VM_MIXEDMAP;
2195	}
2196	return insert_page(vma, addr, page, vma->vm_page_prot);
2197}
2198EXPORT_SYMBOL(vm_insert_page);
2199
2200static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2201			unsigned long pfn, pgprot_t prot)
2202{
2203	struct mm_struct *mm = vma->vm_mm;
2204	int retval;
2205	pte_t *pte, entry;
2206	spinlock_t *ptl;
2207
2208	retval = -ENOMEM;
2209	pte = get_locked_pte(mm, addr, &ptl);
2210	if (!pte)
2211		goto out;
2212	retval = -EBUSY;
2213	if (!pte_none(*pte))
2214		goto out_unlock;
2215
2216	/* Ok, finally just insert the thing.. */
2217	entry = pte_mkspecial(pfn_pte(pfn, prot));
2218	set_pte_at(mm, addr, pte, entry);
2219	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2220
2221	retval = 0;
2222out_unlock:
2223	pte_unmap_unlock(pte, ptl);
2224out:
2225	return retval;
2226}
2227
2228/**
2229 * vm_insert_pfn - insert single pfn into user vma
2230 * @vma: user vma to map to
2231 * @addr: target user address of this page
2232 * @pfn: source kernel pfn
2233 *
2234 * Similar to vm_insert_page, this allows drivers to insert individual pages
2235 * they've allocated into a user vma. Same comments apply.
2236 *
2237 * This function should only be called from a vm_ops->fault handler, and
2238 * in that case the handler should return NULL.
2239 *
2240 * vma cannot be a COW mapping.
2241 *
2242 * As this is called only for pages that do not currently exist, we
2243 * do not need to flush old virtual caches or the TLB.
2244 */
2245int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2246			unsigned long pfn)
2247{
2248	int ret;
2249	pgprot_t pgprot = vma->vm_page_prot;
2250	/*
2251	 * Technically, architectures with pte_special can avoid all these
2252	 * restrictions (same for remap_pfn_range).  However we would like
2253	 * consistency in testing and feature parity among all, so we should
2254	 * try to keep these invariants in place for everybody.
2255	 */
2256	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2257	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2258						(VM_PFNMAP|VM_MIXEDMAP));
2259	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2260	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2261
2262	if (addr < vma->vm_start || addr >= vma->vm_end)
2263		return -EFAULT;
2264	if (track_pfn_insert(vma, &pgprot, pfn))
2265		return -EINVAL;
2266
2267	ret = insert_pfn(vma, addr, pfn, pgprot);
2268
 
 
 
2269	return ret;
2270}
2271EXPORT_SYMBOL(vm_insert_pfn);
2272
2273int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2274			unsigned long pfn)
2275{
2276	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2277
2278	if (addr < vma->vm_start || addr >= vma->vm_end)
2279		return -EFAULT;
2280
2281	/*
2282	 * If we don't have pte special, then we have to use the pfn_valid()
2283	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2284	 * refcount the page if pfn_valid is true (hence insert_page rather
2285	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2286	 * without pte special, it would there be refcounted as a normal page.
2287	 */
2288	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2289		struct page *page;
2290
2291		page = pfn_to_page(pfn);
2292		return insert_page(vma, addr, page, vma->vm_page_prot);
2293	}
2294	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2295}
2296EXPORT_SYMBOL(vm_insert_mixed);
2297
2298/*
2299 * maps a range of physical memory into the requested pages. the old
2300 * mappings are removed. any references to nonexistent pages results
2301 * in null mappings (currently treated as "copy-on-access")
2302 */
2303static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2304			unsigned long addr, unsigned long end,
2305			unsigned long pfn, pgprot_t prot)
2306{
2307	pte_t *pte;
2308	spinlock_t *ptl;
2309
2310	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2311	if (!pte)
2312		return -ENOMEM;
2313	arch_enter_lazy_mmu_mode();
2314	do {
2315		BUG_ON(!pte_none(*pte));
2316		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2317		pfn++;
2318	} while (pte++, addr += PAGE_SIZE, addr != end);
2319	arch_leave_lazy_mmu_mode();
2320	pte_unmap_unlock(pte - 1, ptl);
2321	return 0;
2322}
2323
2324static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2325			unsigned long addr, unsigned long end,
2326			unsigned long pfn, pgprot_t prot)
2327{
2328	pmd_t *pmd;
2329	unsigned long next;
2330
2331	pfn -= addr >> PAGE_SHIFT;
2332	pmd = pmd_alloc(mm, pud, addr);
2333	if (!pmd)
2334		return -ENOMEM;
2335	VM_BUG_ON(pmd_trans_huge(*pmd));
2336	do {
2337		next = pmd_addr_end(addr, end);
2338		if (remap_pte_range(mm, pmd, addr, next,
2339				pfn + (addr >> PAGE_SHIFT), prot))
2340			return -ENOMEM;
2341	} while (pmd++, addr = next, addr != end);
2342	return 0;
2343}
2344
2345static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2346			unsigned long addr, unsigned long end,
2347			unsigned long pfn, pgprot_t prot)
2348{
2349	pud_t *pud;
2350	unsigned long next;
2351
2352	pfn -= addr >> PAGE_SHIFT;
2353	pud = pud_alloc(mm, pgd, addr);
2354	if (!pud)
2355		return -ENOMEM;
2356	do {
2357		next = pud_addr_end(addr, end);
2358		if (remap_pmd_range(mm, pud, addr, next,
2359				pfn + (addr >> PAGE_SHIFT), prot))
2360			return -ENOMEM;
2361	} while (pud++, addr = next, addr != end);
2362	return 0;
2363}
2364
2365/**
2366 * remap_pfn_range - remap kernel memory to userspace
2367 * @vma: user vma to map to
2368 * @addr: target user address to start at
2369 * @pfn: physical address of kernel memory
2370 * @size: size of map area
2371 * @prot: page protection flags for this mapping
2372 *
2373 *  Note: this is only safe if the mm semaphore is held when called.
2374 */
2375int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2376		    unsigned long pfn, unsigned long size, pgprot_t prot)
2377{
2378	pgd_t *pgd;
2379	unsigned long next;
2380	unsigned long end = addr + PAGE_ALIGN(size);
2381	struct mm_struct *mm = vma->vm_mm;
2382	int err;
2383
2384	/*
2385	 * Physically remapped pages are special. Tell the
2386	 * rest of the world about it:
2387	 *   VM_IO tells people not to look at these pages
2388	 *	(accesses can have side effects).
 
 
 
 
 
2389	 *   VM_PFNMAP tells the core MM that the base pages are just
2390	 *	raw PFN mappings, and do not have a "struct page" associated
2391	 *	with them.
2392	 *   VM_DONTEXPAND
2393	 *      Disable vma merging and expanding with mremap().
2394	 *   VM_DONTDUMP
2395	 *      Omit vma from core dump, even when VM_IO turned off.
2396	 *
2397	 * There's a horrible special case to handle copy-on-write
2398	 * behaviour that some programs depend on. We mark the "original"
2399	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2400	 * See vm_normal_page() for details.
2401	 */
2402	if (is_cow_mapping(vma->vm_flags)) {
2403		if (addr != vma->vm_start || end != vma->vm_end)
2404			return -EINVAL;
2405		vma->vm_pgoff = pfn;
2406	}
 
 
 
 
2407
2408	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2409	if (err)
 
 
 
 
 
 
2410		return -EINVAL;
2411
2412	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2413
2414	BUG_ON(addr >= end);
2415	pfn -= addr >> PAGE_SHIFT;
2416	pgd = pgd_offset(mm, addr);
2417	flush_cache_range(vma, addr, end);
2418	do {
2419		next = pgd_addr_end(addr, end);
2420		err = remap_pud_range(mm, pgd, addr, next,
2421				pfn + (addr >> PAGE_SHIFT), prot);
2422		if (err)
2423			break;
2424	} while (pgd++, addr = next, addr != end);
2425
2426	if (err)
2427		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2428
2429	return err;
2430}
2431EXPORT_SYMBOL(remap_pfn_range);
2432
2433/**
2434 * vm_iomap_memory - remap memory to userspace
2435 * @vma: user vma to map to
2436 * @start: start of area
2437 * @len: size of area
2438 *
2439 * This is a simplified io_remap_pfn_range() for common driver use. The
2440 * driver just needs to give us the physical memory range to be mapped,
2441 * we'll figure out the rest from the vma information.
2442 *
2443 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2444 * whatever write-combining details or similar.
2445 */
2446int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2447{
2448	unsigned long vm_len, pfn, pages;
2449
2450	/* Check that the physical memory area passed in looks valid */
2451	if (start + len < start)
2452		return -EINVAL;
2453	/*
2454	 * You *really* shouldn't map things that aren't page-aligned,
2455	 * but we've historically allowed it because IO memory might
2456	 * just have smaller alignment.
2457	 */
2458	len += start & ~PAGE_MASK;
2459	pfn = start >> PAGE_SHIFT;
2460	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2461	if (pfn + pages < pfn)
2462		return -EINVAL;
2463
2464	/* We start the mapping 'vm_pgoff' pages into the area */
2465	if (vma->vm_pgoff > pages)
2466		return -EINVAL;
2467	pfn += vma->vm_pgoff;
2468	pages -= vma->vm_pgoff;
2469
2470	/* Can we fit all of the mapping? */
2471	vm_len = vma->vm_end - vma->vm_start;
2472	if (vm_len >> PAGE_SHIFT > pages)
2473		return -EINVAL;
2474
2475	/* Ok, let it rip */
2476	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2477}
2478EXPORT_SYMBOL(vm_iomap_memory);
2479
2480static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2481				     unsigned long addr, unsigned long end,
2482				     pte_fn_t fn, void *data)
2483{
2484	pte_t *pte;
2485	int err;
2486	pgtable_t token;
2487	spinlock_t *uninitialized_var(ptl);
2488
2489	pte = (mm == &init_mm) ?
2490		pte_alloc_kernel(pmd, addr) :
2491		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2492	if (!pte)
2493		return -ENOMEM;
2494
2495	BUG_ON(pmd_huge(*pmd));
2496
2497	arch_enter_lazy_mmu_mode();
2498
2499	token = pmd_pgtable(*pmd);
2500
2501	do {
2502		err = fn(pte++, token, addr, data);
2503		if (err)
2504			break;
2505	} while (addr += PAGE_SIZE, addr != end);
2506
2507	arch_leave_lazy_mmu_mode();
2508
2509	if (mm != &init_mm)
2510		pte_unmap_unlock(pte-1, ptl);
2511	return err;
2512}
2513
2514static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2515				     unsigned long addr, unsigned long end,
2516				     pte_fn_t fn, void *data)
2517{
2518	pmd_t *pmd;
2519	unsigned long next;
2520	int err;
2521
2522	BUG_ON(pud_huge(*pud));
2523
2524	pmd = pmd_alloc(mm, pud, addr);
2525	if (!pmd)
2526		return -ENOMEM;
2527	do {
2528		next = pmd_addr_end(addr, end);
2529		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2530		if (err)
2531			break;
2532	} while (pmd++, addr = next, addr != end);
2533	return err;
2534}
2535
2536static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2537				     unsigned long addr, unsigned long end,
2538				     pte_fn_t fn, void *data)
2539{
2540	pud_t *pud;
2541	unsigned long next;
2542	int err;
2543
2544	pud = pud_alloc(mm, pgd, addr);
2545	if (!pud)
2546		return -ENOMEM;
2547	do {
2548		next = pud_addr_end(addr, end);
2549		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2550		if (err)
2551			break;
2552	} while (pud++, addr = next, addr != end);
2553	return err;
2554}
2555
2556/*
2557 * Scan a region of virtual memory, filling in page tables as necessary
2558 * and calling a provided function on each leaf page table.
2559 */
2560int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2561			unsigned long size, pte_fn_t fn, void *data)
2562{
2563	pgd_t *pgd;
2564	unsigned long next;
2565	unsigned long end = addr + size;
2566	int err;
2567
2568	BUG_ON(addr >= end);
2569	pgd = pgd_offset(mm, addr);
2570	do {
2571		next = pgd_addr_end(addr, end);
2572		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2573		if (err)
2574			break;
2575	} while (pgd++, addr = next, addr != end);
2576
2577	return err;
2578}
2579EXPORT_SYMBOL_GPL(apply_to_page_range);
2580
2581/*
2582 * handle_pte_fault chooses page fault handler according to an entry
2583 * which was read non-atomically.  Before making any commitment, on
2584 * those architectures or configurations (e.g. i386 with PAE) which
2585 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2586 * must check under lock before unmapping the pte and proceeding
2587 * (but do_wp_page is only called after already making such a check;
2588 * and do_anonymous_page can safely check later on).
2589 */
2590static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2591				pte_t *page_table, pte_t orig_pte)
2592{
2593	int same = 1;
2594#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2595	if (sizeof(pte_t) > sizeof(unsigned long)) {
2596		spinlock_t *ptl = pte_lockptr(mm, pmd);
2597		spin_lock(ptl);
2598		same = pte_same(*page_table, orig_pte);
2599		spin_unlock(ptl);
2600	}
2601#endif
2602	pte_unmap(page_table);
2603	return same;
2604}
2605
2606static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2607{
2608	debug_dma_assert_idle(src);
2609
2610	/*
2611	 * If the source page was a PFN mapping, we don't have
2612	 * a "struct page" for it. We do a best-effort copy by
2613	 * just copying from the original user address. If that
2614	 * fails, we just zero-fill it. Live with it.
2615	 */
2616	if (unlikely(!src)) {
2617		void *kaddr = kmap_atomic(dst);
2618		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2619
2620		/*
2621		 * This really shouldn't fail, because the page is there
2622		 * in the page tables. But it might just be unreadable,
2623		 * in which case we just give up and fill the result with
2624		 * zeroes.
2625		 */
2626		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2627			clear_page(kaddr);
2628		kunmap_atomic(kaddr);
2629		flush_dcache_page(dst);
2630	} else
2631		copy_user_highpage(dst, src, va, vma);
2632}
2633
2634/*
2635 * Notify the address space that the page is about to become writable so that
2636 * it can prohibit this or wait for the page to get into an appropriate state.
2637 *
2638 * We do this without the lock held, so that it can sleep if it needs to.
2639 */
2640static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2641	       unsigned long address)
2642{
2643	struct vm_fault vmf;
2644	int ret;
2645
2646	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2647	vmf.pgoff = page->index;
2648	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2649	vmf.page = page;
2650
2651	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2652	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2653		return ret;
2654	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2655		lock_page(page);
2656		if (!page->mapping) {
2657			unlock_page(page);
2658			return 0; /* retry */
2659		}
2660		ret |= VM_FAULT_LOCKED;
2661	} else
2662		VM_BUG_ON_PAGE(!PageLocked(page), page);
2663	return ret;
2664}
2665
2666/*
2667 * This routine handles present pages, when users try to write
2668 * to a shared page. It is done by copying the page to a new address
2669 * and decrementing the shared-page counter for the old page.
2670 *
2671 * Note that this routine assumes that the protection checks have been
2672 * done by the caller (the low-level page fault routine in most cases).
2673 * Thus we can safely just mark it writable once we've done any necessary
2674 * COW.
2675 *
2676 * We also mark the page dirty at this point even though the page will
2677 * change only once the write actually happens. This avoids a few races,
2678 * and potentially makes it more efficient.
2679 *
2680 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2681 * but allow concurrent faults), with pte both mapped and locked.
2682 * We return with mmap_sem still held, but pte unmapped and unlocked.
2683 */
2684static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2685		unsigned long address, pte_t *page_table, pmd_t *pmd,
2686		spinlock_t *ptl, pte_t orig_pte)
2687	__releases(ptl)
2688{
2689	struct page *old_page, *new_page = NULL;
2690	pte_t entry;
2691	int ret = 0;
2692	int page_mkwrite = 0;
2693	struct page *dirty_page = NULL;
2694	unsigned long mmun_start = 0;	/* For mmu_notifiers */
2695	unsigned long mmun_end = 0;	/* For mmu_notifiers */
2696
2697	old_page = vm_normal_page(vma, address, orig_pte);
2698	if (!old_page) {
2699		/*
2700		 * VM_MIXEDMAP !pfn_valid() case
2701		 *
2702		 * We should not cow pages in a shared writeable mapping.
2703		 * Just mark the pages writable as we can't do any dirty
2704		 * accounting on raw pfn maps.
2705		 */
2706		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2707				     (VM_WRITE|VM_SHARED))
2708			goto reuse;
2709		goto gotten;
2710	}
2711
2712	/*
2713	 * Take out anonymous pages first, anonymous shared vmas are
2714	 * not dirty accountable.
2715	 */
2716	if (PageAnon(old_page) && !PageKsm(old_page)) {
2717		if (!trylock_page(old_page)) {
2718			page_cache_get(old_page);
2719			pte_unmap_unlock(page_table, ptl);
2720			lock_page(old_page);
2721			page_table = pte_offset_map_lock(mm, pmd, address,
2722							 &ptl);
2723			if (!pte_same(*page_table, orig_pte)) {
2724				unlock_page(old_page);
2725				goto unlock;
2726			}
2727			page_cache_release(old_page);
2728		}
2729		if (reuse_swap_page(old_page)) {
2730			/*
2731			 * The page is all ours.  Move it to our anon_vma so
2732			 * the rmap code will not search our parent or siblings.
2733			 * Protected against the rmap code by the page lock.
2734			 */
2735			page_move_anon_rmap(old_page, vma, address);
2736			unlock_page(old_page);
2737			goto reuse;
2738		}
2739		unlock_page(old_page);
2740	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2741					(VM_WRITE|VM_SHARED))) {
2742		/*
2743		 * Only catch write-faults on shared writable pages,
2744		 * read-only shared pages can get COWed by
2745		 * get_user_pages(.write=1, .force=1).
2746		 */
2747		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
 
2748			int tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2749			page_cache_get(old_page);
2750			pte_unmap_unlock(page_table, ptl);
2751			tmp = do_page_mkwrite(vma, old_page, address);
2752			if (unlikely(!tmp || (tmp &
2753					(VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2754				page_cache_release(old_page);
2755				return tmp;
2756			}
 
 
 
 
 
 
 
 
 
 
 
2757			/*
2758			 * Since we dropped the lock we need to revalidate
2759			 * the PTE as someone else may have changed it.  If
2760			 * they did, we just return, as we can count on the
2761			 * MMU to tell us if they didn't also make it writable.
2762			 */
2763			page_table = pte_offset_map_lock(mm, pmd, address,
2764							 &ptl);
2765			if (!pte_same(*page_table, orig_pte)) {
2766				unlock_page(old_page);
2767				goto unlock;
2768			}
2769
2770			page_mkwrite = 1;
2771		}
2772		dirty_page = old_page;
2773		get_page(dirty_page);
2774
2775reuse:
2776		/*
2777		 * Clear the pages cpupid information as the existing
2778		 * information potentially belongs to a now completely
2779		 * unrelated process.
2780		 */
2781		if (old_page)
2782			page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2783
2784		flush_cache_page(vma, address, pte_pfn(orig_pte));
2785		entry = pte_mkyoung(orig_pte);
2786		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2787		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2788			update_mmu_cache(vma, address, page_table);
2789		pte_unmap_unlock(page_table, ptl);
2790		ret |= VM_FAULT_WRITE;
2791
2792		if (!dirty_page)
2793			return ret;
2794
2795		/*
2796		 * Yes, Virginia, this is actually required to prevent a race
2797		 * with clear_page_dirty_for_io() from clearing the page dirty
2798		 * bit after it clear all dirty ptes, but before a racing
2799		 * do_wp_page installs a dirty pte.
2800		 *
2801		 * do_shared_fault is protected similarly.
2802		 */
2803		if (!page_mkwrite) {
2804			wait_on_page_locked(dirty_page);
2805			set_page_dirty_balance(dirty_page);
2806			/* file_update_time outside page_lock */
2807			if (vma->vm_file)
2808				file_update_time(vma->vm_file);
2809		}
2810		put_page(dirty_page);
2811		if (page_mkwrite) {
2812			struct address_space *mapping = dirty_page->mapping;
2813
2814			set_page_dirty(dirty_page);
2815			unlock_page(dirty_page);
2816			page_cache_release(dirty_page);
2817			if (mapping)	{
2818				/*
2819				 * Some device drivers do not set page.mapping
2820				 * but still dirty their pages
2821				 */
2822				balance_dirty_pages_ratelimited(mapping);
2823			}
2824		}
2825
 
 
 
 
2826		return ret;
2827	}
2828
2829	/*
2830	 * Ok, we need to copy. Oh, well..
2831	 */
2832	page_cache_get(old_page);
2833gotten:
2834	pte_unmap_unlock(page_table, ptl);
2835
2836	if (unlikely(anon_vma_prepare(vma)))
2837		goto oom;
2838
2839	if (is_zero_pfn(pte_pfn(orig_pte))) {
2840		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2841		if (!new_page)
2842			goto oom;
2843	} else {
2844		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2845		if (!new_page)
2846			goto oom;
2847		cow_user_page(new_page, old_page, address, vma);
2848	}
2849	__SetPageUptodate(new_page);
2850
2851	if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
2852		goto oom_free_new;
2853
2854	mmun_start  = address & PAGE_MASK;
2855	mmun_end    = mmun_start + PAGE_SIZE;
2856	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2857
2858	/*
2859	 * Re-check the pte - we dropped the lock
2860	 */
2861	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2862	if (likely(pte_same(*page_table, orig_pte))) {
2863		if (old_page) {
2864			if (!PageAnon(old_page)) {
2865				dec_mm_counter_fast(mm, MM_FILEPAGES);
2866				inc_mm_counter_fast(mm, MM_ANONPAGES);
2867			}
2868		} else
2869			inc_mm_counter_fast(mm, MM_ANONPAGES);
2870		flush_cache_page(vma, address, pte_pfn(orig_pte));
2871		entry = mk_pte(new_page, vma->vm_page_prot);
2872		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2873		/*
2874		 * Clear the pte entry and flush it first, before updating the
2875		 * pte with the new entry. This will avoid a race condition
2876		 * seen in the presence of one thread doing SMC and another
2877		 * thread doing COW.
2878		 */
2879		ptep_clear_flush(vma, address, page_table);
2880		page_add_new_anon_rmap(new_page, vma, address);
2881		/*
2882		 * We call the notify macro here because, when using secondary
2883		 * mmu page tables (such as kvm shadow page tables), we want the
2884		 * new page to be mapped directly into the secondary page table.
2885		 */
2886		set_pte_at_notify(mm, address, page_table, entry);
2887		update_mmu_cache(vma, address, page_table);
2888		if (old_page) {
2889			/*
2890			 * Only after switching the pte to the new page may
2891			 * we remove the mapcount here. Otherwise another
2892			 * process may come and find the rmap count decremented
2893			 * before the pte is switched to the new page, and
2894			 * "reuse" the old page writing into it while our pte
2895			 * here still points into it and can be read by other
2896			 * threads.
2897			 *
2898			 * The critical issue is to order this
2899			 * page_remove_rmap with the ptp_clear_flush above.
2900			 * Those stores are ordered by (if nothing else,)
2901			 * the barrier present in the atomic_add_negative
2902			 * in page_remove_rmap.
2903			 *
2904			 * Then the TLB flush in ptep_clear_flush ensures that
2905			 * no process can access the old page before the
2906			 * decremented mapcount is visible. And the old page
2907			 * cannot be reused until after the decremented
2908			 * mapcount is visible. So transitively, TLBs to
2909			 * old page will be flushed before it can be reused.
2910			 */
2911			page_remove_rmap(old_page);
2912		}
2913
2914		/* Free the old page.. */
2915		new_page = old_page;
2916		ret |= VM_FAULT_WRITE;
2917	} else
2918		mem_cgroup_uncharge_page(new_page);
2919
2920	if (new_page)
2921		page_cache_release(new_page);
2922unlock:
2923	pte_unmap_unlock(page_table, ptl);
2924	if (mmun_end > mmun_start)
2925		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2926	if (old_page) {
2927		/*
2928		 * Don't let another task, with possibly unlocked vma,
2929		 * keep the mlocked page.
2930		 */
2931		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2932			lock_page(old_page);	/* LRU manipulation */
2933			munlock_vma_page(old_page);
2934			unlock_page(old_page);
2935		}
2936		page_cache_release(old_page);
2937	}
2938	return ret;
2939oom_free_new:
2940	page_cache_release(new_page);
2941oom:
2942	if (old_page)
 
 
 
 
2943		page_cache_release(old_page);
 
2944	return VM_FAULT_OOM;
 
 
 
 
2945}
2946
2947static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2948		unsigned long start_addr, unsigned long end_addr,
2949		struct zap_details *details)
2950{
2951	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2952}
2953
2954static inline void unmap_mapping_range_tree(struct rb_root *root,
2955					    struct zap_details *details)
2956{
2957	struct vm_area_struct *vma;
 
2958	pgoff_t vba, vea, zba, zea;
2959
2960	vma_interval_tree_foreach(vma, root,
2961			details->first_index, details->last_index) {
2962
2963		vba = vma->vm_pgoff;
2964		vea = vba + vma_pages(vma) - 1;
2965		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2966		zba = details->first_index;
2967		if (zba < vba)
2968			zba = vba;
2969		zea = details->last_index;
2970		if (zea > vea)
2971			zea = vea;
2972
2973		unmap_mapping_range_vma(vma,
2974			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2975			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2976				details);
2977	}
2978}
2979
2980static inline void unmap_mapping_range_list(struct list_head *head,
2981					    struct zap_details *details)
2982{
2983	struct vm_area_struct *vma;
2984
2985	/*
2986	 * In nonlinear VMAs there is no correspondence between virtual address
2987	 * offset and file offset.  So we must perform an exhaustive search
2988	 * across *all* the pages in each nonlinear VMA, not just the pages
2989	 * whose virtual address lies outside the file truncation point.
2990	 */
2991	list_for_each_entry(vma, head, shared.nonlinear) {
2992		details->nonlinear_vma = vma;
2993		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2994	}
2995}
2996
2997/**
2998 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2999 * @mapping: the address space containing mmaps to be unmapped.
3000 * @holebegin: byte in first page to unmap, relative to the start of
3001 * the underlying file.  This will be rounded down to a PAGE_SIZE
3002 * boundary.  Note that this is different from truncate_pagecache(), which
3003 * must keep the partial page.  In contrast, we must get rid of
3004 * partial pages.
3005 * @holelen: size of prospective hole in bytes.  This will be rounded
3006 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3007 * end of the file.
3008 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3009 * but 0 when invalidating pagecache, don't throw away private data.
3010 */
3011void unmap_mapping_range(struct address_space *mapping,
3012		loff_t const holebegin, loff_t const holelen, int even_cows)
3013{
3014	struct zap_details details;
3015	pgoff_t hba = holebegin >> PAGE_SHIFT;
3016	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3017
3018	/* Check for overflow. */
3019	if (sizeof(holelen) > sizeof(hlen)) {
3020		long long holeend =
3021			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3022		if (holeend & ~(long long)ULONG_MAX)
3023			hlen = ULONG_MAX - hba + 1;
3024	}
3025
3026	details.check_mapping = even_cows? NULL: mapping;
3027	details.nonlinear_vma = NULL;
3028	details.first_index = hba;
3029	details.last_index = hba + hlen - 1;
3030	if (details.last_index < details.first_index)
3031		details.last_index = ULONG_MAX;
3032
3033
3034	mutex_lock(&mapping->i_mmap_mutex);
3035	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
3036		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3037	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
3038		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3039	mutex_unlock(&mapping->i_mmap_mutex);
3040}
3041EXPORT_SYMBOL(unmap_mapping_range);
3042
3043/*
3044 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3045 * but allow concurrent faults), and pte mapped but not yet locked.
3046 * We return with mmap_sem still held, but pte unmapped and unlocked.
3047 */
3048static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3049		unsigned long address, pte_t *page_table, pmd_t *pmd,
3050		unsigned int flags, pte_t orig_pte)
3051{
3052	spinlock_t *ptl;
3053	struct page *page, *swapcache;
3054	swp_entry_t entry;
3055	pte_t pte;
3056	int locked;
3057	struct mem_cgroup *ptr;
3058	int exclusive = 0;
3059	int ret = 0;
3060
3061	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3062		goto out;
3063
3064	entry = pte_to_swp_entry(orig_pte);
3065	if (unlikely(non_swap_entry(entry))) {
3066		if (is_migration_entry(entry)) {
3067			migration_entry_wait(mm, pmd, address);
3068		} else if (is_hwpoison_entry(entry)) {
3069			ret = VM_FAULT_HWPOISON;
3070		} else {
3071			print_bad_pte(vma, address, orig_pte, NULL);
3072			ret = VM_FAULT_SIGBUS;
3073		}
3074		goto out;
3075	}
3076	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3077	page = lookup_swap_cache(entry);
3078	if (!page) {
 
3079		page = swapin_readahead(entry,
3080					GFP_HIGHUSER_MOVABLE, vma, address);
3081		if (!page) {
3082			/*
3083			 * Back out if somebody else faulted in this pte
3084			 * while we released the pte lock.
3085			 */
3086			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3087			if (likely(pte_same(*page_table, orig_pte)))
3088				ret = VM_FAULT_OOM;
3089			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3090			goto unlock;
3091		}
3092
3093		/* Had to read the page from swap area: Major fault */
3094		ret = VM_FAULT_MAJOR;
3095		count_vm_event(PGMAJFAULT);
3096		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3097	} else if (PageHWPoison(page)) {
3098		/*
3099		 * hwpoisoned dirty swapcache pages are kept for killing
3100		 * owner processes (which may be unknown at hwpoison time)
3101		 */
3102		ret = VM_FAULT_HWPOISON;
3103		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3104		swapcache = page;
3105		goto out_release;
3106	}
3107
3108	swapcache = page;
3109	locked = lock_page_or_retry(page, mm, flags);
3110
3111	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3112	if (!locked) {
3113		ret |= VM_FAULT_RETRY;
3114		goto out_release;
3115	}
3116
3117	/*
3118	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3119	 * release the swapcache from under us.  The page pin, and pte_same
3120	 * test below, are not enough to exclude that.  Even if it is still
3121	 * swapcache, we need to check that the page's swap has not changed.
3122	 */
3123	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3124		goto out_page;
3125
3126	page = ksm_might_need_to_copy(page, vma, address);
3127	if (unlikely(!page)) {
3128		ret = VM_FAULT_OOM;
3129		page = swapcache;
3130		goto out_page;
 
 
 
 
 
3131	}
3132
3133	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3134		ret = VM_FAULT_OOM;
3135		goto out_page;
3136	}
3137
3138	/*
3139	 * Back out if somebody else already faulted in this pte.
3140	 */
3141	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3142	if (unlikely(!pte_same(*page_table, orig_pte)))
3143		goto out_nomap;
3144
3145	if (unlikely(!PageUptodate(page))) {
3146		ret = VM_FAULT_SIGBUS;
3147		goto out_nomap;
3148	}
3149
3150	/*
3151	 * The page isn't present yet, go ahead with the fault.
3152	 *
3153	 * Be careful about the sequence of operations here.
3154	 * To get its accounting right, reuse_swap_page() must be called
3155	 * while the page is counted on swap but not yet in mapcount i.e.
3156	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3157	 * must be called after the swap_free(), or it will never succeed.
3158	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3159	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3160	 * in page->private. In this case, a record in swap_cgroup  is silently
3161	 * discarded at swap_free().
3162	 */
3163
3164	inc_mm_counter_fast(mm, MM_ANONPAGES);
3165	dec_mm_counter_fast(mm, MM_SWAPENTS);
3166	pte = mk_pte(page, vma->vm_page_prot);
3167	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3168		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3169		flags &= ~FAULT_FLAG_WRITE;
3170		ret |= VM_FAULT_WRITE;
3171		exclusive = 1;
3172	}
3173	flush_icache_page(vma, page);
3174	if (pte_swp_soft_dirty(orig_pte))
3175		pte = pte_mksoft_dirty(pte);
3176	set_pte_at(mm, address, page_table, pte);
3177	if (page == swapcache)
3178		do_page_add_anon_rmap(page, vma, address, exclusive);
3179	else /* ksm created a completely new copy */
3180		page_add_new_anon_rmap(page, vma, address);
3181	/* It's better to call commit-charge after rmap is established */
3182	mem_cgroup_commit_charge_swapin(page, ptr);
3183
3184	swap_free(entry);
3185	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3186		try_to_free_swap(page);
3187	unlock_page(page);
3188	if (page != swapcache) {
3189		/*
3190		 * Hold the lock to avoid the swap entry to be reused
3191		 * until we take the PT lock for the pte_same() check
3192		 * (to avoid false positives from pte_same). For
3193		 * further safety release the lock after the swap_free
3194		 * so that the swap count won't change under a
3195		 * parallel locked swapcache.
3196		 */
3197		unlock_page(swapcache);
3198		page_cache_release(swapcache);
3199	}
3200
3201	if (flags & FAULT_FLAG_WRITE) {
3202		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3203		if (ret & VM_FAULT_ERROR)
3204			ret &= VM_FAULT_ERROR;
3205		goto out;
3206	}
3207
3208	/* No need to invalidate - it was non-present before */
3209	update_mmu_cache(vma, address, page_table);
3210unlock:
3211	pte_unmap_unlock(page_table, ptl);
3212out:
3213	return ret;
3214out_nomap:
3215	mem_cgroup_cancel_charge_swapin(ptr);
3216	pte_unmap_unlock(page_table, ptl);
3217out_page:
3218	unlock_page(page);
3219out_release:
3220	page_cache_release(page);
3221	if (page != swapcache) {
3222		unlock_page(swapcache);
3223		page_cache_release(swapcache);
3224	}
3225	return ret;
3226}
3227
3228/*
3229 * This is like a special single-page "expand_{down|up}wards()",
3230 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3231 * doesn't hit another vma.
3232 */
3233static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3234{
3235	address &= PAGE_MASK;
3236	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3237		struct vm_area_struct *prev = vma->vm_prev;
3238
3239		/*
3240		 * Is there a mapping abutting this one below?
3241		 *
3242		 * That's only ok if it's the same stack mapping
3243		 * that has gotten split..
3244		 */
3245		if (prev && prev->vm_end == address)
3246			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3247
3248		expand_downwards(vma, address - PAGE_SIZE);
3249	}
3250	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3251		struct vm_area_struct *next = vma->vm_next;
3252
3253		/* As VM_GROWSDOWN but s/below/above/ */
3254		if (next && next->vm_start == address + PAGE_SIZE)
3255			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3256
3257		expand_upwards(vma, address + PAGE_SIZE);
3258	}
3259	return 0;
3260}
3261
3262/*
3263 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3264 * but allow concurrent faults), and pte mapped but not yet locked.
3265 * We return with mmap_sem still held, but pte unmapped and unlocked.
3266 */
3267static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3268		unsigned long address, pte_t *page_table, pmd_t *pmd,
3269		unsigned int flags)
3270{
3271	struct page *page;
3272	spinlock_t *ptl;
3273	pte_t entry;
3274
3275	pte_unmap(page_table);
3276
3277	/* Check if we need to add a guard page to the stack */
3278	if (check_stack_guard_page(vma, address) < 0)
3279		return VM_FAULT_SIGBUS;
3280
3281	/* Use the zero-page for reads */
3282	if (!(flags & FAULT_FLAG_WRITE)) {
3283		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3284						vma->vm_page_prot));
3285		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3286		if (!pte_none(*page_table))
3287			goto unlock;
3288		goto setpte;
3289	}
3290
3291	/* Allocate our own private page. */
3292	if (unlikely(anon_vma_prepare(vma)))
3293		goto oom;
3294	page = alloc_zeroed_user_highpage_movable(vma, address);
3295	if (!page)
3296		goto oom;
3297	/*
3298	 * The memory barrier inside __SetPageUptodate makes sure that
3299	 * preceeding stores to the page contents become visible before
3300	 * the set_pte_at() write.
3301	 */
3302	__SetPageUptodate(page);
3303
3304	if (mem_cgroup_charge_anon(page, mm, GFP_KERNEL))
3305		goto oom_free_page;
3306
3307	entry = mk_pte(page, vma->vm_page_prot);
3308	if (vma->vm_flags & VM_WRITE)
3309		entry = pte_mkwrite(pte_mkdirty(entry));
3310
3311	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3312	if (!pte_none(*page_table))
3313		goto release;
3314
3315	inc_mm_counter_fast(mm, MM_ANONPAGES);
3316	page_add_new_anon_rmap(page, vma, address);
3317setpte:
3318	set_pte_at(mm, address, page_table, entry);
3319
3320	/* No need to invalidate - it was non-present before */
3321	update_mmu_cache(vma, address, page_table);
3322unlock:
3323	pte_unmap_unlock(page_table, ptl);
3324	return 0;
3325release:
3326	mem_cgroup_uncharge_page(page);
3327	page_cache_release(page);
3328	goto unlock;
3329oom_free_page:
3330	page_cache_release(page);
3331oom:
3332	return VM_FAULT_OOM;
3333}
3334
3335static int __do_fault(struct vm_area_struct *vma, unsigned long address,
3336		pgoff_t pgoff, unsigned int flags, struct page **page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3337{
 
 
 
 
 
 
 
3338	struct vm_fault vmf;
3339	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3340
3341	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3342	vmf.pgoff = pgoff;
3343	vmf.flags = flags;
3344	vmf.page = NULL;
3345
3346	ret = vma->vm_ops->fault(vma, &vmf);
3347	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3348		return ret;
 
3349
3350	if (unlikely(PageHWPoison(vmf.page))) {
3351		if (ret & VM_FAULT_LOCKED)
3352			unlock_page(vmf.page);
3353		page_cache_release(vmf.page);
3354		return VM_FAULT_HWPOISON;
3355	}
3356
 
 
 
 
3357	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3358		lock_page(vmf.page);
3359	else
3360		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
3361
3362	*page = vmf.page;
3363	return ret;
3364}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3365
3366/**
3367 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
3368 *
3369 * @vma: virtual memory area
3370 * @address: user virtual address
3371 * @page: page to map
3372 * @pte: pointer to target page table entry
3373 * @write: true, if new entry is writable
3374 * @anon: true, if it's anonymous page
3375 *
3376 * Caller must hold page table lock relevant for @pte.
3377 *
3378 * Target users are page handler itself and implementations of
3379 * vm_ops->map_pages.
3380 */
3381void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3382		struct page *page, pte_t *pte, bool write, bool anon)
3383{
3384	pte_t entry;
 
3385
3386	flush_icache_page(vma, page);
3387	entry = mk_pte(page, vma->vm_page_prot);
3388	if (write)
3389		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3390	else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
3391		pte_mksoft_dirty(entry);
3392	if (anon) {
3393		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3394		page_add_new_anon_rmap(page, vma, address);
3395	} else {
3396		inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
3397		page_add_file_rmap(page);
3398	}
3399	set_pte_at(vma->vm_mm, address, pte, entry);
3400
3401	/* no need to invalidate: a not-present page won't be cached */
3402	update_mmu_cache(vma, address, pte);
3403}
3404
3405#define FAULT_AROUND_ORDER 4
3406
3407#ifdef CONFIG_DEBUG_FS
3408static unsigned int fault_around_order = FAULT_AROUND_ORDER;
3409
3410static int fault_around_order_get(void *data, u64 *val)
3411{
3412	*val = fault_around_order;
3413	return 0;
3414}
3415
3416static int fault_around_order_set(void *data, u64 val)
3417{
3418	BUILD_BUG_ON((1UL << FAULT_AROUND_ORDER) > PTRS_PER_PTE);
3419	if (1UL << val > PTRS_PER_PTE)
3420		return -EINVAL;
3421	fault_around_order = val;
3422	return 0;
3423}
3424DEFINE_SIMPLE_ATTRIBUTE(fault_around_order_fops,
3425		fault_around_order_get, fault_around_order_set, "%llu\n");
3426
3427static int __init fault_around_debugfs(void)
3428{
3429	void *ret;
3430
3431	ret = debugfs_create_file("fault_around_order",	0644, NULL, NULL,
3432			&fault_around_order_fops);
3433	if (!ret)
3434		pr_warn("Failed to create fault_around_order in debugfs");
3435	return 0;
3436}
3437late_initcall(fault_around_debugfs);
3438
3439static inline unsigned long fault_around_pages(void)
3440{
3441	return 1UL << fault_around_order;
3442}
3443
3444static inline unsigned long fault_around_mask(void)
3445{
3446	return ~((1UL << (PAGE_SHIFT + fault_around_order)) - 1);
3447}
3448#else
3449static inline unsigned long fault_around_pages(void)
3450{
3451	unsigned long nr_pages;
3452
3453	nr_pages = 1UL << FAULT_AROUND_ORDER;
3454	BUILD_BUG_ON(nr_pages > PTRS_PER_PTE);
3455	return nr_pages;
3456}
3457
3458static inline unsigned long fault_around_mask(void)
3459{
3460	return ~((1UL << (PAGE_SHIFT + FAULT_AROUND_ORDER)) - 1);
3461}
3462#endif
3463
3464static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
3465		pte_t *pte, pgoff_t pgoff, unsigned int flags)
3466{
3467	unsigned long start_addr;
3468	pgoff_t max_pgoff;
3469	struct vm_fault vmf;
3470	int off;
3471
3472	start_addr = max(address & fault_around_mask(), vma->vm_start);
3473	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3474	pte -= off;
3475	pgoff -= off;
3476
3477	/*
3478	 *  max_pgoff is either end of page table or end of vma
3479	 *  or fault_around_pages() from pgoff, depending what is neast.
 
 
 
 
 
 
3480	 */
3481	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3482		PTRS_PER_PTE - 1;
3483	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
3484			pgoff + fault_around_pages() - 1);
3485
3486	/* Check if it makes any sense to call ->map_pages */
3487	while (!pte_none(*pte)) {
3488		if (++pgoff > max_pgoff)
3489			return;
3490		start_addr += PAGE_SIZE;
3491		if (start_addr >= vma->vm_end)
3492			return;
3493		pte++;
3494	}
 
 
 
 
3495
3496	vmf.virtual_address = (void __user *) start_addr;
3497	vmf.pte = pte;
3498	vmf.pgoff = pgoff;
3499	vmf.max_pgoff = max_pgoff;
3500	vmf.flags = flags;
3501	vma->vm_ops->map_pages(vma, &vmf);
3502}
3503
3504static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3505		unsigned long address, pmd_t *pmd,
3506		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3507{
3508	struct page *fault_page;
3509	spinlock_t *ptl;
3510	pte_t *pte;
3511	int ret = 0;
3512
3513	/*
3514	 * Let's call ->map_pages() first and use ->fault() as fallback
3515	 * if page by the offset is not ready to be mapped (cold cache or
3516	 * something).
3517	 */
3518	if (vma->vm_ops->map_pages) {
3519		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3520		do_fault_around(vma, address, pte, pgoff, flags);
3521		if (!pte_same(*pte, orig_pte))
3522			goto unlock_out;
3523		pte_unmap_unlock(pte, ptl);
3524	}
3525
3526	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3527	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3528		return ret;
3529
3530	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3531	if (unlikely(!pte_same(*pte, orig_pte))) {
3532		pte_unmap_unlock(pte, ptl);
3533		unlock_page(fault_page);
3534		page_cache_release(fault_page);
3535		return ret;
3536	}
3537	do_set_pte(vma, address, fault_page, pte, false, false);
3538	unlock_page(fault_page);
3539unlock_out:
3540	pte_unmap_unlock(pte, ptl);
3541	return ret;
3542}
3543
3544static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3545		unsigned long address, pmd_t *pmd,
3546		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3547{
3548	struct page *fault_page, *new_page;
3549	spinlock_t *ptl;
3550	pte_t *pte;
3551	int ret;
 
 
 
3552
3553	if (unlikely(anon_vma_prepare(vma)))
3554		return VM_FAULT_OOM;
3555
3556	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3557	if (!new_page)
3558		return VM_FAULT_OOM;
3559
3560	if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)) {
3561		page_cache_release(new_page);
3562		return VM_FAULT_OOM;
3563	}
3564
3565	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3566	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3567		goto uncharge_out;
3568
3569	copy_user_highpage(new_page, fault_page, address, vma);
3570	__SetPageUptodate(new_page);
3571
3572	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3573	if (unlikely(!pte_same(*pte, orig_pte))) {
3574		pte_unmap_unlock(pte, ptl);
3575		unlock_page(fault_page);
3576		page_cache_release(fault_page);
3577		goto uncharge_out;
3578	}
3579	do_set_pte(vma, address, new_page, pte, true, true);
3580	pte_unmap_unlock(pte, ptl);
3581	unlock_page(fault_page);
3582	page_cache_release(fault_page);
3583	return ret;
3584uncharge_out:
3585	mem_cgroup_uncharge_page(new_page);
3586	page_cache_release(new_page);
3587	return ret;
3588}
3589
3590static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3591		unsigned long address, pmd_t *pmd,
3592		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3593{
3594	struct page *fault_page;
3595	struct address_space *mapping;
3596	spinlock_t *ptl;
3597	pte_t *pte;
3598	int dirtied = 0;
3599	int ret, tmp;
3600
3601	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3602	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3603		return ret;
3604
3605	/*
3606	 * Check if the backing address space wants to know that the page is
3607	 * about to become writable
3608	 */
3609	if (vma->vm_ops->page_mkwrite) {
3610		unlock_page(fault_page);
3611		tmp = do_page_mkwrite(vma, fault_page, address);
3612		if (unlikely(!tmp ||
3613				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3614			page_cache_release(fault_page);
3615			return tmp;
3616		}
3617	}
3618
3619	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3620	if (unlikely(!pte_same(*pte, orig_pte))) {
3621		pte_unmap_unlock(pte, ptl);
3622		unlock_page(fault_page);
3623		page_cache_release(fault_page);
3624		return ret;
3625	}
3626	do_set_pte(vma, address, fault_page, pte, true, false);
3627	pte_unmap_unlock(pte, ptl);
3628
3629	if (set_page_dirty(fault_page))
3630		dirtied = 1;
3631	mapping = fault_page->mapping;
3632	unlock_page(fault_page);
3633	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3634		/*
3635		 * Some device drivers do not set page.mapping but still
3636		 * dirty their pages
3637		 */
3638		balance_dirty_pages_ratelimited(mapping);
3639	}
3640
3641	/* file_update_time outside page_lock */
3642	if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3643		file_update_time(vma->vm_file);
3644
3645	return ret;
3646}
3647
3648static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3649		unsigned long address, pte_t *page_table, pmd_t *pmd,
3650		unsigned int flags, pte_t orig_pte)
3651{
3652	pgoff_t pgoff = (((address & PAGE_MASK)
3653			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3654
3655	pte_unmap(page_table);
3656	if (!(flags & FAULT_FLAG_WRITE))
3657		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3658				orig_pte);
3659	if (!(vma->vm_flags & VM_SHARED))
3660		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3661				orig_pte);
3662	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3663}
3664
3665/*
3666 * Fault of a previously existing named mapping. Repopulate the pte
3667 * from the encoded file_pte if possible. This enables swappable
3668 * nonlinear vmas.
3669 *
3670 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3671 * but allow concurrent faults), and pte mapped but not yet locked.
3672 * We return with mmap_sem still held, but pte unmapped and unlocked.
3673 */
3674static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3675		unsigned long address, pte_t *page_table, pmd_t *pmd,
3676		unsigned int flags, pte_t orig_pte)
3677{
3678	pgoff_t pgoff;
3679
3680	flags |= FAULT_FLAG_NONLINEAR;
3681
3682	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3683		return 0;
3684
3685	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3686		/*
3687		 * Page table corrupted: show pte and kill process.
3688		 */
3689		print_bad_pte(vma, address, orig_pte, NULL);
3690		return VM_FAULT_SIGBUS;
3691	}
3692
3693	pgoff = pte_to_pgoff(orig_pte);
3694	if (!(flags & FAULT_FLAG_WRITE))
3695		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3696				orig_pte);
3697	if (!(vma->vm_flags & VM_SHARED))
3698		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3699				orig_pte);
3700	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3701}
3702
3703static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3704				unsigned long addr, int page_nid,
3705				int *flags)
3706{
3707	get_page(page);
3708
3709	count_vm_numa_event(NUMA_HINT_FAULTS);
3710	if (page_nid == numa_node_id()) {
3711		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3712		*flags |= TNF_FAULT_LOCAL;
3713	}
3714
3715	return mpol_misplaced(page, vma, addr);
3716}
3717
3718static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3719		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3720{
3721	struct page *page = NULL;
3722	spinlock_t *ptl;
3723	int page_nid = -1;
3724	int last_cpupid;
3725	int target_nid;
3726	bool migrated = false;
3727	int flags = 0;
3728
3729	/*
3730	* The "pte" at this point cannot be used safely without
3731	* validation through pte_unmap_same(). It's of NUMA type but
3732	* the pfn may be screwed if the read is non atomic.
3733	*
3734	* ptep_modify_prot_start is not called as this is clearing
3735	* the _PAGE_NUMA bit and it is not really expected that there
3736	* would be concurrent hardware modifications to the PTE.
3737	*/
3738	ptl = pte_lockptr(mm, pmd);
3739	spin_lock(ptl);
3740	if (unlikely(!pte_same(*ptep, pte))) {
3741		pte_unmap_unlock(ptep, ptl);
3742		goto out;
3743	}
3744
3745	pte = pte_mknonnuma(pte);
3746	set_pte_at(mm, addr, ptep, pte);
3747	update_mmu_cache(vma, addr, ptep);
3748
3749	page = vm_normal_page(vma, addr, pte);
3750	if (!page) {
3751		pte_unmap_unlock(ptep, ptl);
3752		return 0;
3753	}
3754	BUG_ON(is_zero_pfn(page_to_pfn(page)));
3755
3756	/*
3757	 * Avoid grouping on DSO/COW pages in specific and RO pages
3758	 * in general, RO pages shouldn't hurt as much anyway since
3759	 * they can be in shared cache state.
3760	 */
3761	if (!pte_write(pte))
3762		flags |= TNF_NO_GROUP;
3763
3764	/*
3765	 * Flag if the page is shared between multiple address spaces. This
3766	 * is later used when determining whether to group tasks together
3767	 */
3768	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3769		flags |= TNF_SHARED;
3770
3771	last_cpupid = page_cpupid_last(page);
3772	page_nid = page_to_nid(page);
3773	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3774	pte_unmap_unlock(ptep, ptl);
3775	if (target_nid == -1) {
3776		put_page(page);
3777		goto out;
3778	}
3779
3780	/* Migrate to the requested node */
3781	migrated = migrate_misplaced_page(page, vma, target_nid);
3782	if (migrated) {
3783		page_nid = target_nid;
3784		flags |= TNF_MIGRATED;
3785	}
3786
3787out:
3788	if (page_nid != -1)
3789		task_numa_fault(last_cpupid, page_nid, 1, flags);
3790	return 0;
3791}
3792
3793/*
3794 * These routines also need to handle stuff like marking pages dirty
3795 * and/or accessed for architectures that don't do it in hardware (most
3796 * RISC architectures).  The early dirtying is also good on the i386.
3797 *
3798 * There is also a hook called "update_mmu_cache()" that architectures
3799 * with external mmu caches can use to update those (ie the Sparc or
3800 * PowerPC hashed page tables that act as extended TLBs).
3801 *
3802 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3803 * but allow concurrent faults), and pte mapped but not yet locked.
3804 * We return with mmap_sem still held, but pte unmapped and unlocked.
3805 */
3806static int handle_pte_fault(struct mm_struct *mm,
3807		     struct vm_area_struct *vma, unsigned long address,
3808		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3809{
3810	pte_t entry;
3811	spinlock_t *ptl;
3812
3813	entry = *pte;
3814	if (!pte_present(entry)) {
3815		if (pte_none(entry)) {
3816			if (vma->vm_ops) {
3817				if (likely(vma->vm_ops->fault))
3818					return do_linear_fault(mm, vma, address,
3819						pte, pmd, flags, entry);
3820			}
3821			return do_anonymous_page(mm, vma, address,
3822						 pte, pmd, flags);
3823		}
3824		if (pte_file(entry))
3825			return do_nonlinear_fault(mm, vma, address,
3826					pte, pmd, flags, entry);
3827		return do_swap_page(mm, vma, address,
3828					pte, pmd, flags, entry);
3829	}
3830
3831	if (pte_numa(entry))
3832		return do_numa_page(mm, vma, address, entry, pte, pmd);
3833
3834	ptl = pte_lockptr(mm, pmd);
3835	spin_lock(ptl);
3836	if (unlikely(!pte_same(*pte, entry)))
3837		goto unlock;
3838	if (flags & FAULT_FLAG_WRITE) {
3839		if (!pte_write(entry))
3840			return do_wp_page(mm, vma, address,
3841					pte, pmd, ptl, entry);
3842		entry = pte_mkdirty(entry);
3843	}
3844	entry = pte_mkyoung(entry);
3845	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3846		update_mmu_cache(vma, address, pte);
3847	} else {
3848		/*
3849		 * This is needed only for protection faults but the arch code
3850		 * is not yet telling us if this is a protection fault or not.
3851		 * This still avoids useless tlb flushes for .text page faults
3852		 * with threads.
3853		 */
3854		if (flags & FAULT_FLAG_WRITE)
3855			flush_tlb_fix_spurious_fault(vma, address);
3856	}
3857unlock:
3858	pte_unmap_unlock(pte, ptl);
3859	return 0;
3860}
3861
3862/*
3863 * By the time we get here, we already hold the mm semaphore
3864 */
3865static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3866			     unsigned long address, unsigned int flags)
3867{
3868	pgd_t *pgd;
3869	pud_t *pud;
3870	pmd_t *pmd;
3871	pte_t *pte;
3872
 
 
 
 
 
 
 
 
3873	if (unlikely(is_vm_hugetlb_page(vma)))
3874		return hugetlb_fault(mm, vma, address, flags);
3875
3876	pgd = pgd_offset(mm, address);
3877	pud = pud_alloc(mm, pgd, address);
3878	if (!pud)
3879		return VM_FAULT_OOM;
3880	pmd = pmd_alloc(mm, pud, address);
3881	if (!pmd)
3882		return VM_FAULT_OOM;
3883	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3884		int ret = VM_FAULT_FALLBACK;
3885		if (!vma->vm_ops)
3886			ret = do_huge_pmd_anonymous_page(mm, vma, address,
3887					pmd, flags);
3888		if (!(ret & VM_FAULT_FALLBACK))
3889			return ret;
3890	} else {
3891		pmd_t orig_pmd = *pmd;
3892		int ret;
3893
3894		barrier();
3895		if (pmd_trans_huge(orig_pmd)) {
3896			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3897
3898			/*
3899			 * If the pmd is splitting, return and retry the
3900			 * the fault.  Alternative: wait until the split
3901			 * is done, and goto retry.
3902			 */
3903			if (pmd_trans_splitting(orig_pmd))
3904				return 0;
3905
3906			if (pmd_numa(orig_pmd))
3907				return do_huge_pmd_numa_page(mm, vma, address,
3908							     orig_pmd, pmd);
3909
3910			if (dirty && !pmd_write(orig_pmd)) {
3911				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3912							  orig_pmd);
3913				if (!(ret & VM_FAULT_FALLBACK))
3914					return ret;
3915			} else {
3916				huge_pmd_set_accessed(mm, vma, address, pmd,
3917						      orig_pmd, dirty);
3918				return 0;
3919			}
3920		}
3921	}
3922
3923	/* THP should already have been handled */
3924	BUG_ON(pmd_numa(*pmd));
3925
3926	/*
3927	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3928	 * run pte_offset_map on the pmd, if an huge pmd could
3929	 * materialize from under us from a different thread.
3930	 */
3931	if (unlikely(pmd_none(*pmd)) &&
3932	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3933		return VM_FAULT_OOM;
3934	/* if an huge pmd materialized from under us just retry later */
3935	if (unlikely(pmd_trans_huge(*pmd)))
3936		return 0;
3937	/*
3938	 * A regular pmd is established and it can't morph into a huge pmd
3939	 * from under us anymore at this point because we hold the mmap_sem
3940	 * read mode and khugepaged takes it in write mode. So now it's
3941	 * safe to run pte_offset_map().
3942	 */
3943	pte = pte_offset_map(pmd, address);
3944
3945	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3946}
3947
3948int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3949		    unsigned long address, unsigned int flags)
3950{
3951	int ret;
3952
3953	__set_current_state(TASK_RUNNING);
3954
3955	count_vm_event(PGFAULT);
3956	mem_cgroup_count_vm_event(mm, PGFAULT);
3957
3958	/* do counter updates before entering really critical section. */
3959	check_sync_rss_stat(current);
3960
3961	/*
3962	 * Enable the memcg OOM handling for faults triggered in user
3963	 * space.  Kernel faults are handled more gracefully.
3964	 */
3965	if (flags & FAULT_FLAG_USER)
3966		mem_cgroup_oom_enable();
3967
3968	ret = __handle_mm_fault(mm, vma, address, flags);
3969
3970	if (flags & FAULT_FLAG_USER) {
3971		mem_cgroup_oom_disable();
3972                /*
3973                 * The task may have entered a memcg OOM situation but
3974                 * if the allocation error was handled gracefully (no
3975                 * VM_FAULT_OOM), there is no need to kill anything.
3976                 * Just clean up the OOM state peacefully.
3977                 */
3978                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3979                        mem_cgroup_oom_synchronize(false);
3980	}
3981
3982	return ret;
3983}
3984
3985#ifndef __PAGETABLE_PUD_FOLDED
3986/*
3987 * Allocate page upper directory.
3988 * We've already handled the fast-path in-line.
3989 */
3990int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3991{
3992	pud_t *new = pud_alloc_one(mm, address);
3993	if (!new)
3994		return -ENOMEM;
3995
3996	smp_wmb(); /* See comment in __pte_alloc */
3997
3998	spin_lock(&mm->page_table_lock);
3999	if (pgd_present(*pgd))		/* Another has populated it */
4000		pud_free(mm, new);
4001	else
4002		pgd_populate(mm, pgd, new);
4003	spin_unlock(&mm->page_table_lock);
4004	return 0;
4005}
4006#endif /* __PAGETABLE_PUD_FOLDED */
4007
4008#ifndef __PAGETABLE_PMD_FOLDED
4009/*
4010 * Allocate page middle directory.
4011 * We've already handled the fast-path in-line.
4012 */
4013int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4014{
4015	pmd_t *new = pmd_alloc_one(mm, address);
4016	if (!new)
4017		return -ENOMEM;
4018
4019	smp_wmb(); /* See comment in __pte_alloc */
4020
4021	spin_lock(&mm->page_table_lock);
4022#ifndef __ARCH_HAS_4LEVEL_HACK
4023	if (pud_present(*pud))		/* Another has populated it */
4024		pmd_free(mm, new);
4025	else
4026		pud_populate(mm, pud, new);
4027#else
4028	if (pgd_present(*pud))		/* Another has populated it */
4029		pmd_free(mm, new);
4030	else
4031		pgd_populate(mm, pud, new);
4032#endif /* __ARCH_HAS_4LEVEL_HACK */
4033	spin_unlock(&mm->page_table_lock);
4034	return 0;
4035}
4036#endif /* __PAGETABLE_PMD_FOLDED */
4037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4038#if !defined(__HAVE_ARCH_GATE_AREA)
4039
4040#if defined(AT_SYSINFO_EHDR)
4041static struct vm_area_struct gate_vma;
4042
4043static int __init gate_vma_init(void)
4044{
4045	gate_vma.vm_mm = NULL;
4046	gate_vma.vm_start = FIXADDR_USER_START;
4047	gate_vma.vm_end = FIXADDR_USER_END;
4048	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
4049	gate_vma.vm_page_prot = __P101;
4050
 
 
 
 
 
 
4051	return 0;
4052}
4053__initcall(gate_vma_init);
4054#endif
4055
4056struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
4057{
4058#ifdef AT_SYSINFO_EHDR
4059	return &gate_vma;
4060#else
4061	return NULL;
4062#endif
4063}
4064
4065int in_gate_area_no_mm(unsigned long addr)
4066{
4067#ifdef AT_SYSINFO_EHDR
4068	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
4069		return 1;
4070#endif
4071	return 0;
4072}
4073
4074#endif	/* __HAVE_ARCH_GATE_AREA */
4075
4076static int __follow_pte(struct mm_struct *mm, unsigned long address,
4077		pte_t **ptepp, spinlock_t **ptlp)
4078{
4079	pgd_t *pgd;
4080	pud_t *pud;
4081	pmd_t *pmd;
4082	pte_t *ptep;
4083
4084	pgd = pgd_offset(mm, address);
4085	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4086		goto out;
4087
4088	pud = pud_offset(pgd, address);
4089	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4090		goto out;
4091
4092	pmd = pmd_offset(pud, address);
4093	VM_BUG_ON(pmd_trans_huge(*pmd));
4094	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4095		goto out;
4096
4097	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
4098	if (pmd_huge(*pmd))
4099		goto out;
4100
4101	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4102	if (!ptep)
4103		goto out;
4104	if (!pte_present(*ptep))
4105		goto unlock;
4106	*ptepp = ptep;
4107	return 0;
4108unlock:
4109	pte_unmap_unlock(ptep, *ptlp);
4110out:
4111	return -EINVAL;
4112}
4113
4114static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4115			     pte_t **ptepp, spinlock_t **ptlp)
4116{
4117	int res;
4118
4119	/* (void) is needed to make gcc happy */
4120	(void) __cond_lock(*ptlp,
4121			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
4122	return res;
4123}
4124
4125/**
4126 * follow_pfn - look up PFN at a user virtual address
4127 * @vma: memory mapping
4128 * @address: user virtual address
4129 * @pfn: location to store found PFN
4130 *
4131 * Only IO mappings and raw PFN mappings are allowed.
4132 *
4133 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4134 */
4135int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4136	unsigned long *pfn)
4137{
4138	int ret = -EINVAL;
4139	spinlock_t *ptl;
4140	pte_t *ptep;
4141
4142	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4143		return ret;
4144
4145	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4146	if (ret)
4147		return ret;
4148	*pfn = pte_pfn(*ptep);
4149	pte_unmap_unlock(ptep, ptl);
4150	return 0;
4151}
4152EXPORT_SYMBOL(follow_pfn);
4153
4154#ifdef CONFIG_HAVE_IOREMAP_PROT
4155int follow_phys(struct vm_area_struct *vma,
4156		unsigned long address, unsigned int flags,
4157		unsigned long *prot, resource_size_t *phys)
4158{
4159	int ret = -EINVAL;
4160	pte_t *ptep, pte;
4161	spinlock_t *ptl;
4162
4163	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4164		goto out;
4165
4166	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4167		goto out;
4168	pte = *ptep;
4169
4170	if ((flags & FOLL_WRITE) && !pte_write(pte))
4171		goto unlock;
4172
4173	*prot = pgprot_val(pte_pgprot(pte));
4174	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4175
4176	ret = 0;
4177unlock:
4178	pte_unmap_unlock(ptep, ptl);
4179out:
4180	return ret;
4181}
4182
4183int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4184			void *buf, int len, int write)
4185{
4186	resource_size_t phys_addr;
4187	unsigned long prot = 0;
4188	void __iomem *maddr;
4189	int offset = addr & (PAGE_SIZE-1);
4190
4191	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4192		return -EINVAL;
4193
4194	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4195	if (write)
4196		memcpy_toio(maddr + offset, buf, len);
4197	else
4198		memcpy_fromio(buf, maddr + offset, len);
4199	iounmap(maddr);
4200
4201	return len;
4202}
4203EXPORT_SYMBOL_GPL(generic_access_phys);
4204#endif
4205
4206/*
4207 * Access another process' address space as given in mm.  If non-NULL, use the
4208 * given task for page fault accounting.
4209 */
4210static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4211		unsigned long addr, void *buf, int len, int write)
4212{
4213	struct vm_area_struct *vma;
4214	void *old_buf = buf;
4215
4216	down_read(&mm->mmap_sem);
4217	/* ignore errors, just check how much was successfully transferred */
4218	while (len) {
4219		int bytes, ret, offset;
4220		void *maddr;
4221		struct page *page = NULL;
4222
4223		ret = get_user_pages(tsk, mm, addr, 1,
4224				write, 1, &page, &vma);
4225		if (ret <= 0) {
4226			/*
4227			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4228			 * we can access using slightly different code.
4229			 */
4230#ifdef CONFIG_HAVE_IOREMAP_PROT
4231			vma = find_vma(mm, addr);
4232			if (!vma || vma->vm_start > addr)
4233				break;
4234			if (vma->vm_ops && vma->vm_ops->access)
4235				ret = vma->vm_ops->access(vma, addr, buf,
4236							  len, write);
4237			if (ret <= 0)
4238#endif
4239				break;
4240			bytes = ret;
4241		} else {
4242			bytes = len;
4243			offset = addr & (PAGE_SIZE-1);
4244			if (bytes > PAGE_SIZE-offset)
4245				bytes = PAGE_SIZE-offset;
4246
4247			maddr = kmap(page);
4248			if (write) {
4249				copy_to_user_page(vma, page, addr,
4250						  maddr + offset, buf, bytes);
4251				set_page_dirty_lock(page);
4252			} else {
4253				copy_from_user_page(vma, page, addr,
4254						    buf, maddr + offset, bytes);
4255			}
4256			kunmap(page);
4257			page_cache_release(page);
4258		}
4259		len -= bytes;
4260		buf += bytes;
4261		addr += bytes;
4262	}
4263	up_read(&mm->mmap_sem);
4264
4265	return buf - old_buf;
4266}
4267
4268/**
4269 * access_remote_vm - access another process' address space
4270 * @mm:		the mm_struct of the target address space
4271 * @addr:	start address to access
4272 * @buf:	source or destination buffer
4273 * @len:	number of bytes to transfer
4274 * @write:	whether the access is a write
4275 *
4276 * The caller must hold a reference on @mm.
4277 */
4278int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4279		void *buf, int len, int write)
4280{
4281	return __access_remote_vm(NULL, mm, addr, buf, len, write);
4282}
4283
4284/*
4285 * Access another process' address space.
4286 * Source/target buffer must be kernel space,
4287 * Do not walk the page table directly, use get_user_pages
4288 */
4289int access_process_vm(struct task_struct *tsk, unsigned long addr,
4290		void *buf, int len, int write)
4291{
4292	struct mm_struct *mm;
4293	int ret;
4294
4295	mm = get_task_mm(tsk);
4296	if (!mm)
4297		return 0;
4298
4299	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4300	mmput(mm);
4301
4302	return ret;
4303}
4304
4305/*
4306 * Print the name of a VMA.
4307 */
4308void print_vma_addr(char *prefix, unsigned long ip)
4309{
4310	struct mm_struct *mm = current->mm;
4311	struct vm_area_struct *vma;
4312
4313	/*
4314	 * Do not print if we are in atomic
4315	 * contexts (in exception stacks, etc.):
4316	 */
4317	if (preempt_count())
4318		return;
4319
4320	down_read(&mm->mmap_sem);
4321	vma = find_vma(mm, ip);
4322	if (vma && vma->vm_file) {
4323		struct file *f = vma->vm_file;
4324		char *buf = (char *)__get_free_page(GFP_KERNEL);
4325		if (buf) {
4326			char *p;
4327
4328			p = d_path(&f->f_path, buf, PAGE_SIZE);
4329			if (IS_ERR(p))
4330				p = "?";
4331			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
 
 
 
4332					vma->vm_start,
4333					vma->vm_end - vma->vm_start);
4334			free_page((unsigned long)buf);
4335		}
4336	}
4337	up_read(&mm->mmap_sem);
4338}
4339
4340#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4341void might_fault(void)
4342{
4343	/*
4344	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4345	 * holding the mmap_sem, this is safe because kernel memory doesn't
4346	 * get paged out, therefore we'll never actually fault, and the
4347	 * below annotations will generate false positives.
4348	 */
4349	if (segment_eq(get_fs(), KERNEL_DS))
4350		return;
4351
 
4352	/*
4353	 * it would be nicer only to annotate paths which are not under
4354	 * pagefault_disable, however that requires a larger audit and
4355	 * providing helpers like get_user_atomic.
4356	 */
4357	if (in_atomic())
4358		return;
4359
4360	__might_sleep(__FILE__, __LINE__, 0);
4361
4362	if (current->mm)
4363		might_lock_read(&current->mm->mmap_sem);
4364}
4365EXPORT_SYMBOL(might_fault);
4366#endif
4367
4368#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4369static void clear_gigantic_page(struct page *page,
4370				unsigned long addr,
4371				unsigned int pages_per_huge_page)
4372{
4373	int i;
4374	struct page *p = page;
4375
4376	might_sleep();
4377	for (i = 0; i < pages_per_huge_page;
4378	     i++, p = mem_map_next(p, page, i)) {
4379		cond_resched();
4380		clear_user_highpage(p, addr + i * PAGE_SIZE);
4381	}
4382}
4383void clear_huge_page(struct page *page,
4384		     unsigned long addr, unsigned int pages_per_huge_page)
4385{
4386	int i;
4387
4388	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4389		clear_gigantic_page(page, addr, pages_per_huge_page);
4390		return;
4391	}
4392
4393	might_sleep();
4394	for (i = 0; i < pages_per_huge_page; i++) {
4395		cond_resched();
4396		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4397	}
4398}
4399
4400static void copy_user_gigantic_page(struct page *dst, struct page *src,
4401				    unsigned long addr,
4402				    struct vm_area_struct *vma,
4403				    unsigned int pages_per_huge_page)
4404{
4405	int i;
4406	struct page *dst_base = dst;
4407	struct page *src_base = src;
4408
4409	for (i = 0; i < pages_per_huge_page; ) {
4410		cond_resched();
4411		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4412
4413		i++;
4414		dst = mem_map_next(dst, dst_base, i);
4415		src = mem_map_next(src, src_base, i);
4416	}
4417}
4418
4419void copy_user_huge_page(struct page *dst, struct page *src,
4420			 unsigned long addr, struct vm_area_struct *vma,
4421			 unsigned int pages_per_huge_page)
4422{
4423	int i;
4424
4425	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4426		copy_user_gigantic_page(dst, src, addr, vma,
4427					pages_per_huge_page);
4428		return;
4429	}
4430
4431	might_sleep();
4432	for (i = 0; i < pages_per_huge_page; i++) {
4433		cond_resched();
4434		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4435	}
4436}
4437#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4438
4439#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4440
4441static struct kmem_cache *page_ptl_cachep;
4442
4443void __init ptlock_cache_init(void)
4444{
4445	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4446			SLAB_PANIC, NULL);
4447}
4448
4449bool ptlock_alloc(struct page *page)
4450{
4451	spinlock_t *ptl;
4452
4453	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4454	if (!ptl)
4455		return false;
4456	page->ptl = ptl;
4457	return true;
4458}
4459
4460void ptlock_free(struct page *page)
4461{
4462	kmem_cache_free(page_ptl_cachep, page->ptl);
4463}
4464#endif