Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * linux/mm/compaction.c
  3 *
  4 * Memory compaction for the reduction of external fragmentation. Note that
  5 * this heavily depends upon page migration to do all the real heavy
  6 * lifting
  7 *
  8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  9 */
 10#include <linux/swap.h>
 11#include <linux/migrate.h>
 12#include <linux/compaction.h>
 13#include <linux/mm_inline.h>
 14#include <linux/backing-dev.h>
 15#include <linux/sysctl.h>
 16#include <linux/sysfs.h>
 
 
 17#include "internal.h"
 18
 19#define CREATE_TRACE_POINTS
 20#include <trace/events/compaction.h>
 
 
 
 21
 22/*
 23 * compact_control is used to track pages being migrated and the free pages
 24 * they are being migrated to during memory compaction. The free_pfn starts
 25 * at the end of a zone and migrate_pfn begins at the start. Movable pages
 26 * are moved to the end of a zone during a compaction run and the run
 27 * completes when free_pfn <= migrate_pfn
 28 */
 29struct compact_control {
 30	struct list_head freepages;	/* List of free pages to migrate to */
 31	struct list_head migratepages;	/* List of pages being migrated */
 32	unsigned long nr_freepages;	/* Number of isolated free pages */
 33	unsigned long nr_migratepages;	/* Number of pages to migrate */
 34	unsigned long free_pfn;		/* isolate_freepages search base */
 35	unsigned long migrate_pfn;	/* isolate_migratepages search base */
 36	bool sync;			/* Synchronous migration */
 37
 38	/* Account for isolated anon and file pages */
 39	unsigned long nr_anon;
 40	unsigned long nr_file;
 41
 42	unsigned int order;		/* order a direct compactor needs */
 43	int migratetype;		/* MOVABLE, RECLAIMABLE etc */
 44	struct zone *zone;
 45};
 46
 47static unsigned long release_freepages(struct list_head *freelist)
 48{
 49	struct page *page, *next;
 50	unsigned long count = 0;
 51
 52	list_for_each_entry_safe(page, next, freelist, lru) {
 53		list_del(&page->lru);
 54		__free_page(page);
 55		count++;
 56	}
 57
 58	return count;
 59}
 60
 61/* Isolate free pages onto a private freelist. Must hold zone->lock */
 62static unsigned long isolate_freepages_block(struct zone *zone,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 63				unsigned long blockpfn,
 64				struct list_head *freelist)
 
 
 65{
 66	unsigned long zone_end_pfn, end_pfn;
 67	int nr_scanned = 0, total_isolated = 0;
 68	struct page *cursor;
 
 
 
 69
 70	/* Get the last PFN we should scan for free pages at */
 71	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
 72	end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
 73
 74	/* Find the first usable PFN in the block to initialse page cursor */
 75	for (; blockpfn < end_pfn; blockpfn++) {
 76		if (pfn_valid_within(blockpfn))
 77			break;
 78	}
 79	cursor = pfn_to_page(blockpfn);
 80
 81	/* Isolate free pages. This assumes the block is valid */
 82	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
 83		int isolated, i;
 84		struct page *page = cursor;
 85
 86		if (!pfn_valid_within(blockpfn))
 87			continue;
 88		nr_scanned++;
 
 
 89
 
 
 90		if (!PageBuddy(page))
 91			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 92
 93		/* Found a free page, break it into order-0 pages */
 94		isolated = split_free_page(page);
 95		total_isolated += isolated;
 96		for (i = 0; i < isolated; i++) {
 97			list_add(&page->lru, freelist);
 98			page++;
 99		}
100
101		/* If a page was split, advance to the end of it */
102		if (isolated) {
103			blockpfn += isolated - 1;
104			cursor += isolated - 1;
 
105		}
106	}
107
108	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
109	return total_isolated;
110}
111
112/* Returns true if the page is within a block suitable for migration to */
113static bool suitable_migration_target(struct page *page)
114{
115
116	int migratetype = get_pageblock_migratetype(page);
117
118	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
119	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
120		return false;
121
122	/* If the page is a large free page, then allow migration */
123	if (PageBuddy(page) && page_order(page) >= pageblock_order)
124		return true;
 
 
 
 
125
126	/* If the block is MIGRATE_MOVABLE, allow migration */
127	if (migratetype == MIGRATE_MOVABLE)
128		return true;
129
130	/* Otherwise skip the block */
131	return false;
 
 
 
 
 
 
132}
133
134/*
135 * Based on information in the current compact_control, find blocks
136 * suitable for isolating free pages from and then isolate them.
 
 
 
 
 
 
 
 
 
137 */
138static void isolate_freepages(struct zone *zone,
139				struct compact_control *cc)
 
140{
141	struct page *page;
142	unsigned long high_pfn, low_pfn, pfn;
143	unsigned long flags;
144	int nr_freepages = cc->nr_freepages;
145	struct list_head *freelist = &cc->freepages;
146
147	/*
148	 * Initialise the free scanner. The starting point is where we last
149	 * scanned from (or the end of the zone if starting). The low point
150	 * is the end of the pageblock the migration scanner is using.
151	 */
152	pfn = cc->free_pfn;
153	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
154
155	/*
156	 * Take care that if the migration scanner is at the end of the zone
157	 * that the free scanner does not accidentally move to the next zone
158	 * in the next isolation cycle.
159	 */
160	high_pfn = min(low_pfn, pfn);
161
162	/*
163	 * Isolate free pages until enough are available to migrate the
164	 * pages on cc->migratepages. We stop searching if the migrate
165	 * and free page scanners meet or enough free pages are isolated.
166	 */
167	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
168					pfn -= pageblock_nr_pages) {
169		unsigned long isolated;
170
171		if (!pfn_valid(pfn))
172			continue;
173
174		/*
175		 * Check for overlapping nodes/zones. It's possible on some
176		 * configurations to have a setup like
177		 * node0 node1 node0
178		 * i.e. it's possible that all pages within a zones range of
179		 * pages do not belong to a single zone.
180		 */
181		page = pfn_to_page(pfn);
182		if (page_zone(page) != zone)
183			continue;
184
185		/* Check the block is suitable for migration */
186		if (!suitable_migration_target(page))
187			continue;
188
189		/*
190		 * Found a block suitable for isolating free pages from. Now
191		 * we disabled interrupts, double check things are ok and
192		 * isolate the pages. This is to minimise the time IRQs
193		 * are disabled
194		 */
195		isolated = 0;
196		spin_lock_irqsave(&zone->lock, flags);
197		if (suitable_migration_target(page)) {
198			isolated = isolate_freepages_block(zone, pfn, freelist);
199			nr_freepages += isolated;
200		}
201		spin_unlock_irqrestore(&zone->lock, flags);
202
203		/*
204		 * Record the highest PFN we isolated pages from. When next
205		 * looking for free pages, the search will restart here as
206		 * page migration may have returned some pages to the allocator
207		 */
208		if (isolated)
209			high_pfn = max(high_pfn, pfn);
210	}
211
212	/* split_free_page does not map the pages */
213	list_for_each_entry(page, freelist, lru) {
214		arch_alloc_page(page, 0);
215		kernel_map_pages(page, 1, 1);
 
 
 
216	}
217
218	cc->free_pfn = high_pfn;
219	cc->nr_freepages = nr_freepages;
220}
221
222/* Update the number of anon and file isolated pages in the zone */
223static void acct_isolated(struct zone *zone, struct compact_control *cc)
224{
225	struct page *page;
226	unsigned int count[NR_LRU_LISTS] = { 0, };
227
228	list_for_each_entry(page, &cc->migratepages, lru) {
229		int lru = page_lru_base_type(page);
230		count[lru]++;
231	}
232
233	cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
234	cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
235	__mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon);
236	__mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file);
 
 
 
 
237}
238
239/* Similar to reclaim, but different enough that they don't share logic */
240static bool too_many_isolated(struct zone *zone)
241{
242	unsigned long active, inactive, isolated;
243
244	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
245					zone_page_state(zone, NR_INACTIVE_ANON);
246	active = zone_page_state(zone, NR_ACTIVE_FILE) +
247					zone_page_state(zone, NR_ACTIVE_ANON);
248	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
249					zone_page_state(zone, NR_ISOLATED_ANON);
250
251	return isolated > (inactive + active) / 2;
252}
253
254/* possible outcome of isolate_migratepages */
255typedef enum {
256	ISOLATE_ABORT,		/* Abort compaction now */
257	ISOLATE_NONE,		/* No pages isolated, continue scanning */
258	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
259} isolate_migrate_t;
260
261/*
262 * Isolate all pages that can be migrated from the block pointed to by
263 * the migrate scanner within compact_control.
 
 
 
 
 
 
 
 
 
264 */
265static isolate_migrate_t isolate_migratepages(struct zone *zone,
266					struct compact_control *cc)
 
267{
268	unsigned long low_pfn, end_pfn;
269	unsigned long last_pageblock_nr = 0, pageblock_nr;
270	unsigned long nr_scanned = 0, nr_isolated = 0;
271	struct list_head *migratelist = &cc->migratepages;
272
273	/* Do not scan outside zone boundaries */
274	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
275
276	/* Only scan within a pageblock boundary */
277	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
278
279	/* Do not cross the free scanner or scan within a memory hole */
280	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
281		cc->migrate_pfn = end_pfn;
282		return ISOLATE_NONE;
283	}
284
285	/*
286	 * Ensure that there are not too many pages isolated from the LRU
287	 * list by either parallel reclaimers or compaction. If there are,
288	 * delay for some time until fewer pages are isolated
289	 */
290	while (unlikely(too_many_isolated(zone))) {
291		/* async migration should just abort */
292		if (!cc->sync)
293			return ISOLATE_ABORT;
294
295		congestion_wait(BLK_RW_ASYNC, HZ/10);
296
297		if (fatal_signal_pending(current))
298			return ISOLATE_ABORT;
299	}
300
301	/* Time to isolate some pages for migration */
302	cond_resched();
303	spin_lock_irq(&zone->lru_lock);
304	for (; low_pfn < end_pfn; low_pfn++) {
305		struct page *page;
306		bool locked = true;
307
308		/* give a chance to irqs before checking need_resched() */
309		if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
310			spin_unlock_irq(&zone->lru_lock);
311			locked = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312		}
313		if (need_resched() || spin_is_contended(&zone->lru_lock)) {
314			if (locked)
315				spin_unlock_irq(&zone->lru_lock);
316			cond_resched();
317			spin_lock_irq(&zone->lru_lock);
318			if (fatal_signal_pending(current))
319				break;
320		} else if (!locked)
321			spin_lock_irq(&zone->lru_lock);
322
323		if (!pfn_valid_within(low_pfn))
324			continue;
325		nr_scanned++;
326
327		/* Get the page and skip if free */
 
 
 
 
 
328		page = pfn_to_page(low_pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
329		if (PageBuddy(page))
330			continue;
331
332		/*
333		 * For async migration, also only scan in MOVABLE blocks. Async
334		 * migration is optimistic to see if the minimum amount of work
335		 * satisfies the allocation
336		 */
337		pageblock_nr = low_pfn >> pageblock_order;
338		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
339				get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
340			low_pfn += pageblock_nr_pages;
341			low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
342			last_pageblock_nr = pageblock_nr;
 
343			continue;
344		}
345
346		if (!PageLRU(page))
 
 
 
 
 
 
 
 
 
 
 
 
 
347			continue;
 
348
349		/*
350		 * PageLRU is set, and lru_lock excludes isolation,
351		 * splitting and collapsing (collapsing has already
352		 * happened if PageLRU is set).
353		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
354		if (PageTransHuge(page)) {
355			low_pfn += (1 << compound_order(page)) - 1;
356			continue;
357		}
358
 
 
359		/* Try isolate the page */
360		if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0)
361			continue;
362
363		VM_BUG_ON(PageTransCompound(page));
364
365		/* Successfully isolated */
366		del_page_from_lru_list(zone, page, page_lru(page));
 
 
 
367		list_add(&page->lru, migratelist);
368		cc->nr_migratepages++;
369		nr_isolated++;
370
371		/* Avoid isolating too much */
372		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
 
373			break;
 
 
 
 
 
 
374	}
375
376	acct_isolated(zone, cc);
377
378	spin_unlock_irq(&zone->lru_lock);
379	cc->migrate_pfn = low_pfn;
 
 
 
 
 
 
 
 
 
380
381	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
382
383	return ISOLATE_SUCCESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384}
385
386/*
387 * This is a migrate-callback that "allocates" freepages by taking pages
388 * from the isolated freelists in the block we are migrating to.
389 */
390static struct page *compaction_alloc(struct page *migratepage,
391					unsigned long data,
392					int **result)
393{
394	struct compact_control *cc = (struct compact_control *)data;
395	struct page *freepage;
396
397	/* Isolate free pages if necessary */
398	if (list_empty(&cc->freepages)) {
399		isolate_freepages(cc->zone, cc);
400
401		if (list_empty(&cc->freepages))
402			return NULL;
403	}
404
405	freepage = list_entry(cc->freepages.next, struct page, lru);
406	list_del(&freepage->lru);
407	cc->nr_freepages--;
408
409	return freepage;
410}
411
412/*
413 * We cannot control nr_migratepages and nr_freepages fully when migration is
414 * running as migrate_pages() has no knowledge of compact_control. When
415 * migration is complete, we count the number of pages on the lists by hand.
416 */
417static void update_nr_listpages(struct compact_control *cc)
418{
419	int nr_migratepages = 0;
420	int nr_freepages = 0;
421	struct page *page;
422
423	list_for_each_entry(page, &cc->migratepages, lru)
424		nr_migratepages++;
425	list_for_each_entry(page, &cc->freepages, lru)
426		nr_freepages++;
427
428	cc->nr_migratepages = nr_migratepages;
429	cc->nr_freepages = nr_freepages;
430}
431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432static int compact_finished(struct zone *zone,
433			    struct compact_control *cc)
434{
435	unsigned int order;
436	unsigned long watermark;
437
438	if (fatal_signal_pending(current))
439		return COMPACT_PARTIAL;
440
441	/* Compaction run completes if the migrate and free scanner meet */
442	if (cc->free_pfn <= cc->migrate_pfn)
 
 
 
 
 
 
 
 
 
 
 
 
 
443		return COMPACT_COMPLETE;
 
444
445	/*
446	 * order == -1 is expected when compacting via
447	 * /proc/sys/vm/compact_memory
448	 */
449	if (cc->order == -1)
450		return COMPACT_CONTINUE;
451
452	/* Compaction run is not finished if the watermark is not met */
453	watermark = low_wmark_pages(zone);
454	watermark += (1 << cc->order);
455
456	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
457		return COMPACT_CONTINUE;
458
459	/* Direct compactor: Is a suitable page free? */
460	for (order = cc->order; order < MAX_ORDER; order++) {
 
 
461		/* Job done if page is free of the right migratetype */
462		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
463			return COMPACT_PARTIAL;
464
465		/* Job done if allocation would set block type */
466		if (order >= pageblock_order && zone->free_area[order].nr_free)
467			return COMPACT_PARTIAL;
468	}
469
470	return COMPACT_CONTINUE;
471}
472
473/*
474 * compaction_suitable: Is this suitable to run compaction on this zone now?
475 * Returns
476 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
477 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
478 *   COMPACT_CONTINUE - If compaction should run now
479 */
480unsigned long compaction_suitable(struct zone *zone, int order)
481{
482	int fragindex;
483	unsigned long watermark;
484
485	/*
486	 * order == -1 is expected when compacting via
487	 * /proc/sys/vm/compact_memory
488	 */
489	if (order == -1)
490		return COMPACT_CONTINUE;
491
492	/*
493	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
494	 * This is because during migration, copies of pages need to be
495	 * allocated and for a short time, the footprint is higher
496	 */
497	watermark = low_wmark_pages(zone) + (2UL << order);
498	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
499		return COMPACT_SKIPPED;
500
501	/*
502	 * fragmentation index determines if allocation failures are due to
503	 * low memory or external fragmentation
504	 *
505	 * index of -1000 implies allocations might succeed depending on
506	 * watermarks
507	 * index towards 0 implies failure is due to lack of memory
508	 * index towards 1000 implies failure is due to fragmentation
509	 *
510	 * Only compact if a failure would be due to fragmentation.
511	 */
512	fragindex = fragmentation_index(zone, order);
513	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
514		return COMPACT_SKIPPED;
515
516	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
517	    0, 0))
518		return COMPACT_PARTIAL;
519
520	return COMPACT_CONTINUE;
521}
522
523static int compact_zone(struct zone *zone, struct compact_control *cc)
524{
525	int ret;
 
 
526
527	ret = compaction_suitable(zone, cc->order);
528	switch (ret) {
529	case COMPACT_PARTIAL:
530	case COMPACT_SKIPPED:
531		/* Compaction is likely to fail */
532		return ret;
533	case COMPACT_CONTINUE:
534		/* Fall through to compaction */
535		;
536	}
537
538	/* Setup to move all movable pages to the end of the zone */
539	cc->migrate_pfn = zone->zone_start_pfn;
540	cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
541	cc->free_pfn &= ~(pageblock_nr_pages-1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542
543	migrate_prep_local();
544
545	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
546		unsigned long nr_migrate, nr_remaining;
547		int err;
548
549		switch (isolate_migratepages(zone, cc)) {
550		case ISOLATE_ABORT:
551			ret = COMPACT_PARTIAL;
 
 
552			goto out;
553		case ISOLATE_NONE:
554			continue;
555		case ISOLATE_SUCCESS:
556			;
557		}
558
559		nr_migrate = cc->nr_migratepages;
560		err = migrate_pages(&cc->migratepages, compaction_alloc,
561				(unsigned long)cc, false,
562				cc->sync);
 
563		update_nr_listpages(cc);
564		nr_remaining = cc->nr_migratepages;
565
566		count_vm_event(COMPACTBLOCKS);
567		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
568		if (nr_remaining)
569			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
570		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
571						nr_remaining);
572
573		/* Release LRU pages not migrated */
574		if (err) {
575			putback_lru_pages(&cc->migratepages);
576			cc->nr_migratepages = 0;
 
 
 
 
 
 
 
 
577		}
578
579	}
580
581out:
582	/* Release free pages and check accounting */
583	cc->nr_freepages -= release_freepages(&cc->freepages);
584	VM_BUG_ON(cc->nr_freepages != 0);
585
 
 
586	return ret;
587}
588
589unsigned long compact_zone_order(struct zone *zone,
590				 int order, gfp_t gfp_mask,
591				 bool sync)
592{
 
593	struct compact_control cc = {
594		.nr_freepages = 0,
595		.nr_migratepages = 0,
596		.order = order,
597		.migratetype = allocflags_to_migratetype(gfp_mask),
598		.zone = zone,
599		.sync = sync,
600	};
601	INIT_LIST_HEAD(&cc.freepages);
602	INIT_LIST_HEAD(&cc.migratepages);
603
604	return compact_zone(zone, &cc);
 
 
 
 
 
 
605}
606
607int sysctl_extfrag_threshold = 500;
608
609/**
610 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
611 * @zonelist: The zonelist used for the current allocation
612 * @order: The order of the current allocation
613 * @gfp_mask: The GFP mask of the current allocation
614 * @nodemask: The allowed nodes to allocate from
615 * @sync: Whether migration is synchronous or not
 
 
616 *
617 * This is the main entry point for direct page compaction.
618 */
619unsigned long try_to_compact_pages(struct zonelist *zonelist,
620			int order, gfp_t gfp_mask, nodemask_t *nodemask,
621			bool sync)
622{
623	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
624	int may_enter_fs = gfp_mask & __GFP_FS;
625	int may_perform_io = gfp_mask & __GFP_IO;
626	struct zoneref *z;
627	struct zone *zone;
628	int rc = COMPACT_SKIPPED;
 
629
630	/*
631	 * Check whether it is worth even starting compaction. The order check is
632	 * made because an assumption is made that the page allocator can satisfy
633	 * the "cheaper" orders without taking special steps
634	 */
635	if (!order || !may_enter_fs || !may_perform_io)
636		return rc;
637
638	count_vm_event(COMPACTSTALL);
639
 
 
 
 
640	/* Compact each zone in the list */
641	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
642								nodemask) {
643		int status;
644
645		status = compact_zone_order(zone, order, gfp_mask, sync);
 
646		rc = max(status, rc);
647
648		/* If a normal allocation would succeed, stop compacting */
649		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
 
650			break;
651	}
652
653	return rc;
654}
655
656
657/* Compact all zones within a node */
658static int compact_node(int nid)
659{
660	int zoneid;
661	pg_data_t *pgdat;
662	struct zone *zone;
663
664	if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
665		return -EINVAL;
666	pgdat = NODE_DATA(nid);
667
668	/* Flush pending updates to the LRU lists */
669	lru_add_drain_all();
670
671	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
672		struct compact_control cc = {
673			.nr_freepages = 0,
674			.nr_migratepages = 0,
675			.order = -1,
676		};
677
678		zone = &pgdat->node_zones[zoneid];
679		if (!populated_zone(zone))
680			continue;
681
682		cc.zone = zone;
683		INIT_LIST_HEAD(&cc.freepages);
684		INIT_LIST_HEAD(&cc.migratepages);
685
686		compact_zone(zone, &cc);
 
 
 
 
 
 
 
 
 
 
 
 
687
688		VM_BUG_ON(!list_empty(&cc.freepages));
689		VM_BUG_ON(!list_empty(&cc.migratepages));
690	}
 
691
692	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
693}
694
695/* Compact all nodes in the system */
696static int compact_nodes(void)
697{
698	int nid;
699
 
 
 
700	for_each_online_node(nid)
701		compact_node(nid);
702
703	return COMPACT_COMPLETE;
704}
705
706/* The written value is actually unused, all memory is compacted */
707int sysctl_compact_memory;
708
709/* This is the entry point for compacting all nodes via /proc/sys/vm */
710int sysctl_compaction_handler(struct ctl_table *table, int write,
711			void __user *buffer, size_t *length, loff_t *ppos)
712{
713	if (write)
714		return compact_nodes();
715
716	return 0;
717}
718
719int sysctl_extfrag_handler(struct ctl_table *table, int write,
720			void __user *buffer, size_t *length, loff_t *ppos)
721{
722	proc_dointvec_minmax(table, write, buffer, length, ppos);
723
724	return 0;
725}
726
727#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
728ssize_t sysfs_compact_node(struct sys_device *dev,
729			struct sysdev_attribute *attr,
730			const char *buf, size_t count)
731{
732	compact_node(dev->id);
 
 
 
 
 
 
 
733
734	return count;
735}
736static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
737
738int compaction_register_node(struct node *node)
739{
740	return sysdev_create_file(&node->sysdev, &attr_compact);
741}
742
743void compaction_unregister_node(struct node *node)
744{
745	return sysdev_remove_file(&node->sysdev, &attr_compact);
746}
747#endif /* CONFIG_SYSFS && CONFIG_NUMA */
v3.15
   1/*
   2 * linux/mm/compaction.c
   3 *
   4 * Memory compaction for the reduction of external fragmentation. Note that
   5 * this heavily depends upon page migration to do all the real heavy
   6 * lifting
   7 *
   8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
   9 */
  10#include <linux/swap.h>
  11#include <linux/migrate.h>
  12#include <linux/compaction.h>
  13#include <linux/mm_inline.h>
  14#include <linux/backing-dev.h>
  15#include <linux/sysctl.h>
  16#include <linux/sysfs.h>
  17#include <linux/balloon_compaction.h>
  18#include <linux/page-isolation.h>
  19#include "internal.h"
  20
  21#ifdef CONFIG_COMPACTION
  22static inline void count_compact_event(enum vm_event_item item)
  23{
  24	count_vm_event(item);
  25}
  26
  27static inline void count_compact_events(enum vm_event_item item, long delta)
  28{
  29	count_vm_events(item, delta);
  30}
  31#else
  32#define count_compact_event(item) do { } while (0)
  33#define count_compact_events(item, delta) do { } while (0)
  34#endif
 
 
 
 
 
 
 
 
 
 
 
  35
  36#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/compaction.h>
  40
  41static unsigned long release_freepages(struct list_head *freelist)
  42{
  43	struct page *page, *next;
  44	unsigned long count = 0;
  45
  46	list_for_each_entry_safe(page, next, freelist, lru) {
  47		list_del(&page->lru);
  48		__free_page(page);
  49		count++;
  50	}
  51
  52	return count;
  53}
  54
  55static void map_pages(struct list_head *list)
  56{
  57	struct page *page;
  58
  59	list_for_each_entry(page, list, lru) {
  60		arch_alloc_page(page, 0);
  61		kernel_map_pages(page, 1, 1);
  62	}
  63}
  64
  65static inline bool migrate_async_suitable(int migratetype)
  66{
  67	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
  68}
  69
  70#ifdef CONFIG_COMPACTION
  71/* Returns true if the pageblock should be scanned for pages to isolate. */
  72static inline bool isolation_suitable(struct compact_control *cc,
  73					struct page *page)
  74{
  75	if (cc->ignore_skip_hint)
  76		return true;
  77
  78	return !get_pageblock_skip(page);
  79}
  80
  81/*
  82 * This function is called to clear all cached information on pageblocks that
  83 * should be skipped for page isolation when the migrate and free page scanner
  84 * meet.
  85 */
  86static void __reset_isolation_suitable(struct zone *zone)
  87{
  88	unsigned long start_pfn = zone->zone_start_pfn;
  89	unsigned long end_pfn = zone_end_pfn(zone);
  90	unsigned long pfn;
  91
  92	zone->compact_cached_migrate_pfn = start_pfn;
  93	zone->compact_cached_free_pfn = end_pfn;
  94	zone->compact_blockskip_flush = false;
  95
  96	/* Walk the zone and mark every pageblock as suitable for isolation */
  97	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  98		struct page *page;
  99
 100		cond_resched();
 101
 102		if (!pfn_valid(pfn))
 103			continue;
 104
 105		page = pfn_to_page(pfn);
 106		if (zone != page_zone(page))
 107			continue;
 108
 109		clear_pageblock_skip(page);
 110	}
 111}
 112
 113void reset_isolation_suitable(pg_data_t *pgdat)
 114{
 115	int zoneid;
 116
 117	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 118		struct zone *zone = &pgdat->node_zones[zoneid];
 119		if (!populated_zone(zone))
 120			continue;
 121
 122		/* Only flush if a full compaction finished recently */
 123		if (zone->compact_blockskip_flush)
 124			__reset_isolation_suitable(zone);
 125	}
 126}
 127
 128/*
 129 * If no pages were isolated then mark this pageblock to be skipped in the
 130 * future. The information is later cleared by __reset_isolation_suitable().
 131 */
 132static void update_pageblock_skip(struct compact_control *cc,
 133			struct page *page, unsigned long nr_isolated,
 134			bool migrate_scanner)
 135{
 136	struct zone *zone = cc->zone;
 137
 138	if (cc->ignore_skip_hint)
 139		return;
 140
 141	if (!page)
 142		return;
 143
 144	if (!nr_isolated) {
 145		unsigned long pfn = page_to_pfn(page);
 146		set_pageblock_skip(page);
 147
 148		/* Update where compaction should restart */
 149		if (migrate_scanner) {
 150			if (!cc->finished_update_migrate &&
 151			    pfn > zone->compact_cached_migrate_pfn)
 152				zone->compact_cached_migrate_pfn = pfn;
 153		} else {
 154			if (!cc->finished_update_free &&
 155			    pfn < zone->compact_cached_free_pfn)
 156				zone->compact_cached_free_pfn = pfn;
 157		}
 158	}
 159}
 160#else
 161static inline bool isolation_suitable(struct compact_control *cc,
 162					struct page *page)
 163{
 164	return true;
 165}
 166
 167static void update_pageblock_skip(struct compact_control *cc,
 168			struct page *page, unsigned long nr_isolated,
 169			bool migrate_scanner)
 170{
 171}
 172#endif /* CONFIG_COMPACTION */
 173
 174static inline bool should_release_lock(spinlock_t *lock)
 175{
 176	return need_resched() || spin_is_contended(lock);
 177}
 178
 179/*
 180 * Compaction requires the taking of some coarse locks that are potentially
 181 * very heavily contended. Check if the process needs to be scheduled or
 182 * if the lock is contended. For async compaction, back out in the event
 183 * if contention is severe. For sync compaction, schedule.
 184 *
 185 * Returns true if the lock is held.
 186 * Returns false if the lock is released and compaction should abort
 187 */
 188static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
 189				      bool locked, struct compact_control *cc)
 190{
 191	if (should_release_lock(lock)) {
 192		if (locked) {
 193			spin_unlock_irqrestore(lock, *flags);
 194			locked = false;
 195		}
 196
 197		/* async aborts if taking too long or contended */
 198		if (!cc->sync) {
 199			cc->contended = true;
 200			return false;
 201		}
 202
 203		cond_resched();
 204	}
 205
 206	if (!locked)
 207		spin_lock_irqsave(lock, *flags);
 208	return true;
 209}
 210
 211static inline bool compact_trylock_irqsave(spinlock_t *lock,
 212			unsigned long *flags, struct compact_control *cc)
 213{
 214	return compact_checklock_irqsave(lock, flags, false, cc);
 215}
 216
 217/* Returns true if the page is within a block suitable for migration to */
 218static bool suitable_migration_target(struct page *page)
 219{
 220	/* If the page is a large free page, then disallow migration */
 221	if (PageBuddy(page) && page_order(page) >= pageblock_order)
 222		return false;
 223
 224	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
 225	if (migrate_async_suitable(get_pageblock_migratetype(page)))
 226		return true;
 227
 228	/* Otherwise skip the block */
 229	return false;
 230}
 231
 232/*
 233 * Isolate free pages onto a private freelist. If @strict is true, will abort
 234 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 235 * (even though it may still end up isolating some pages).
 236 */
 237static unsigned long isolate_freepages_block(struct compact_control *cc,
 238				unsigned long blockpfn,
 239				unsigned long end_pfn,
 240				struct list_head *freelist,
 241				bool strict)
 242{
 
 243	int nr_scanned = 0, total_isolated = 0;
 244	struct page *cursor, *valid_page = NULL;
 245	unsigned long flags;
 246	bool locked = false;
 247	bool checked_pageblock = false;
 248
 
 
 
 
 
 
 
 
 
 249	cursor = pfn_to_page(blockpfn);
 250
 251	/* Isolate free pages. */
 252	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
 253		int isolated, i;
 254		struct page *page = cursor;
 255
 
 
 256		nr_scanned++;
 257		if (!pfn_valid_within(blockpfn))
 258			goto isolate_fail;
 259
 260		if (!valid_page)
 261			valid_page = page;
 262		if (!PageBuddy(page))
 263			goto isolate_fail;
 264
 265		/*
 266		 * The zone lock must be held to isolate freepages.
 267		 * Unfortunately this is a very coarse lock and can be
 268		 * heavily contended if there are parallel allocations
 269		 * or parallel compactions. For async compaction do not
 270		 * spin on the lock and we acquire the lock as late as
 271		 * possible.
 272		 */
 273		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
 274								locked, cc);
 275		if (!locked)
 276			break;
 277
 278		/* Recheck this is a suitable migration target under lock */
 279		if (!strict && !checked_pageblock) {
 280			/*
 281			 * We need to check suitability of pageblock only once
 282			 * and this isolate_freepages_block() is called with
 283			 * pageblock range, so just check once is sufficient.
 284			 */
 285			checked_pageblock = true;
 286			if (!suitable_migration_target(page))
 287				break;
 288		}
 289
 290		/* Recheck this is a buddy page under lock */
 291		if (!PageBuddy(page))
 292			goto isolate_fail;
 293
 294		/* Found a free page, break it into order-0 pages */
 295		isolated = split_free_page(page);
 296		total_isolated += isolated;
 297		for (i = 0; i < isolated; i++) {
 298			list_add(&page->lru, freelist);
 299			page++;
 300		}
 301
 302		/* If a page was split, advance to the end of it */
 303		if (isolated) {
 304			blockpfn += isolated - 1;
 305			cursor += isolated - 1;
 306			continue;
 307		}
 
 308
 309isolate_fail:
 310		if (strict)
 311			break;
 312		else
 313			continue;
 
 
 314
 315	}
 316
 317	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
 
 
 318
 319	/*
 320	 * If strict isolation is requested by CMA then check that all the
 321	 * pages requested were isolated. If there were any failures, 0 is
 322	 * returned and CMA will fail.
 323	 */
 324	if (strict && blockpfn < end_pfn)
 325		total_isolated = 0;
 326
 327	if (locked)
 328		spin_unlock_irqrestore(&cc->zone->lock, flags);
 
 329
 330	/* Update the pageblock-skip if the whole pageblock was scanned */
 331	if (blockpfn == end_pfn)
 332		update_pageblock_skip(cc, valid_page, total_isolated, false);
 333
 334	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
 335	if (total_isolated)
 336		count_compact_events(COMPACTISOLATED, total_isolated);
 337	return total_isolated;
 338}
 339
 340/**
 341 * isolate_freepages_range() - isolate free pages.
 342 * @start_pfn: The first PFN to start isolating.
 343 * @end_pfn:   The one-past-last PFN.
 344 *
 345 * Non-free pages, invalid PFNs, or zone boundaries within the
 346 * [start_pfn, end_pfn) range are considered errors, cause function to
 347 * undo its actions and return zero.
 348 *
 349 * Otherwise, function returns one-past-the-last PFN of isolated page
 350 * (which may be greater then end_pfn if end fell in a middle of
 351 * a free page).
 352 */
 353unsigned long
 354isolate_freepages_range(struct compact_control *cc,
 355			unsigned long start_pfn, unsigned long end_pfn)
 356{
 357	unsigned long isolated, pfn, block_end_pfn;
 358	LIST_HEAD(freelist);
 
 
 
 359
 360	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
 361		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
 362			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 363
 364		/*
 365		 * On subsequent iterations ALIGN() is actually not needed,
 366		 * but we keep it that we not to complicate the code.
 
 
 
 367		 */
 368		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
 369		block_end_pfn = min(block_end_pfn, end_pfn);
 
 370
 371		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
 372						   &freelist, true);
 
 373
 374		/*
 375		 * In strict mode, isolate_freepages_block() returns 0 if
 376		 * there are any holes in the block (ie. invalid PFNs or
 377		 * non-free pages).
 
 378		 */
 379		if (!isolated)
 380			break;
 
 
 
 
 
 381
 382		/*
 383		 * If we managed to isolate pages, it is always (1 << n) *
 384		 * pageblock_nr_pages for some non-negative n.  (Max order
 385		 * page may span two pageblocks).
 386		 */
 
 
 387	}
 388
 389	/* split_free_page does not map the pages */
 390	map_pages(&freelist);
 391
 392	if (pfn < end_pfn) {
 393		/* Loop terminated early, cleanup. */
 394		release_freepages(&freelist);
 395		return 0;
 396	}
 397
 398	/* We don't use freelists for anything. */
 399	return pfn;
 400}
 401
 402/* Update the number of anon and file isolated pages in the zone */
 403static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
 404{
 405	struct page *page;
 406	unsigned int count[2] = { 0, };
 407
 408	list_for_each_entry(page, &cc->migratepages, lru)
 409		count[!!page_is_file_cache(page)]++;
 
 
 410
 411	/* If locked we can use the interrupt unsafe versions */
 412	if (locked) {
 413		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
 414		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
 415	} else {
 416		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
 417		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
 418	}
 419}
 420
 421/* Similar to reclaim, but different enough that they don't share logic */
 422static bool too_many_isolated(struct zone *zone)
 423{
 424	unsigned long active, inactive, isolated;
 425
 426	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
 427					zone_page_state(zone, NR_INACTIVE_ANON);
 428	active = zone_page_state(zone, NR_ACTIVE_FILE) +
 429					zone_page_state(zone, NR_ACTIVE_ANON);
 430	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
 431					zone_page_state(zone, NR_ISOLATED_ANON);
 432
 433	return isolated > (inactive + active) / 2;
 434}
 435
 436/**
 437 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 438 * @zone:	Zone pages are in.
 439 * @cc:		Compaction control structure.
 440 * @low_pfn:	The first PFN of the range.
 441 * @end_pfn:	The one-past-the-last PFN of the range.
 442 * @unevictable: true if it allows to isolate unevictable pages
 443 *
 444 * Isolate all pages that can be migrated from the range specified by
 445 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 446 * pending), otherwise PFN of the first page that was not scanned
 447 * (which may be both less, equal to or more then end_pfn).
 448 *
 449 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 450 * zero.
 451 *
 452 * Apart from cc->migratepages and cc->nr_migratetypes this function
 453 * does not modify any cc's fields, in particular it does not modify
 454 * (or read for that matter) cc->migrate_pfn.
 455 */
 456unsigned long
 457isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
 458		unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
 459{
 
 460	unsigned long last_pageblock_nr = 0, pageblock_nr;
 461	unsigned long nr_scanned = 0, nr_isolated = 0;
 462	struct list_head *migratelist = &cc->migratepages;
 463	struct lruvec *lruvec;
 464	unsigned long flags;
 465	bool locked = false;
 466	struct page *page = NULL, *valid_page = NULL;
 467	bool skipped_async_unsuitable = false;
 468	const isolate_mode_t mode = (!cc->sync ? ISOLATE_ASYNC_MIGRATE : 0) |
 469				    (unevictable ? ISOLATE_UNEVICTABLE : 0);
 
 
 
 
 
 470
 471	/*
 472	 * Ensure that there are not too many pages isolated from the LRU
 473	 * list by either parallel reclaimers or compaction. If there are,
 474	 * delay for some time until fewer pages are isolated
 475	 */
 476	while (unlikely(too_many_isolated(zone))) {
 477		/* async migration should just abort */
 478		if (!cc->sync)
 479			return 0;
 480
 481		congestion_wait(BLK_RW_ASYNC, HZ/10);
 482
 483		if (fatal_signal_pending(current))
 484			return 0;
 485	}
 486
 487	/* Time to isolate some pages for migration */
 488	cond_resched();
 
 489	for (; low_pfn < end_pfn; low_pfn++) {
 
 
 
 490		/* give a chance to irqs before checking need_resched() */
 491		if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) {
 492			if (should_release_lock(&zone->lru_lock)) {
 493				spin_unlock_irqrestore(&zone->lru_lock, flags);
 494				locked = false;
 495			}
 496		}
 497
 498		/*
 499		 * migrate_pfn does not necessarily start aligned to a
 500		 * pageblock. Ensure that pfn_valid is called when moving
 501		 * into a new MAX_ORDER_NR_PAGES range in case of large
 502		 * memory holes within the zone
 503		 */
 504		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
 505			if (!pfn_valid(low_pfn)) {
 506				low_pfn += MAX_ORDER_NR_PAGES - 1;
 507				continue;
 508			}
 509		}
 
 
 
 
 
 
 
 
 
 510
 511		if (!pfn_valid_within(low_pfn))
 512			continue;
 513		nr_scanned++;
 514
 515		/*
 516		 * Get the page and ensure the page is within the same zone.
 517		 * See the comment in isolate_freepages about overlapping
 518		 * nodes. It is deliberate that the new zone lock is not taken
 519		 * as memory compaction should not move pages between nodes.
 520		 */
 521		page = pfn_to_page(low_pfn);
 522		if (page_zone(page) != zone)
 523			continue;
 524
 525		if (!valid_page)
 526			valid_page = page;
 527
 528		/* If isolation recently failed, do not retry */
 529		pageblock_nr = low_pfn >> pageblock_order;
 530		if (last_pageblock_nr != pageblock_nr) {
 531			int mt;
 532
 533			last_pageblock_nr = pageblock_nr;
 534			if (!isolation_suitable(cc, page))
 535				goto next_pageblock;
 536
 537			/*
 538			 * For async migration, also only scan in MOVABLE
 539			 * blocks. Async migration is optimistic to see if
 540			 * the minimum amount of work satisfies the allocation
 541			 */
 542			mt = get_pageblock_migratetype(page);
 543			if (!cc->sync && !migrate_async_suitable(mt)) {
 544				cc->finished_update_migrate = true;
 545				skipped_async_unsuitable = true;
 546				goto next_pageblock;
 547			}
 548		}
 549
 550		/*
 551		 * Skip if free. page_order cannot be used without zone->lock
 552		 * as nothing prevents parallel allocations or buddy merging.
 553		 */
 554		if (PageBuddy(page))
 555			continue;
 556
 557		/*
 558		 * Check may be lockless but that's ok as we recheck later.
 559		 * It's possible to migrate LRU pages and balloon pages
 560		 * Skip any other type of page
 561		 */
 562		if (!PageLRU(page)) {
 563			if (unlikely(balloon_page_movable(page))) {
 564				if (locked && balloon_page_isolate(page)) {
 565					/* Successfully isolated */
 566					goto isolate_success;
 567				}
 568			}
 569			continue;
 570		}
 571
 572		/*
 573		 * PageLRU is set. lru_lock normally excludes isolation
 574		 * splitting and collapsing (collapsing has already happened
 575		 * if PageLRU is set) but the lock is not necessarily taken
 576		 * here and it is wasteful to take it just to check transhuge.
 577		 * Check TransHuge without lock and skip the whole pageblock if
 578		 * it's either a transhuge or hugetlbfs page, as calling
 579		 * compound_order() without preventing THP from splitting the
 580		 * page underneath us may return surprising results.
 581		 */
 582		if (PageTransHuge(page)) {
 583			if (!locked)
 584				goto next_pageblock;
 585			low_pfn += (1 << compound_order(page)) - 1;
 586			continue;
 587		}
 588
 589		/*
 590		 * Migration will fail if an anonymous page is pinned in memory,
 591		 * so avoid taking lru_lock and isolating it unnecessarily in an
 592		 * admittedly racy check.
 593		 */
 594		if (!page_mapping(page) &&
 595		    page_count(page) > page_mapcount(page))
 596			continue;
 597
 598		/* Check if it is ok to still hold the lock */
 599		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
 600								locked, cc);
 601		if (!locked || fatal_signal_pending(current))
 602			break;
 603
 604		/* Recheck PageLRU and PageTransHuge under lock */
 605		if (!PageLRU(page))
 606			continue;
 607		if (PageTransHuge(page)) {
 608			low_pfn += (1 << compound_order(page)) - 1;
 609			continue;
 610		}
 611
 612		lruvec = mem_cgroup_page_lruvec(page, zone);
 613
 614		/* Try isolate the page */
 615		if (__isolate_lru_page(page, mode) != 0)
 616			continue;
 617
 618		VM_BUG_ON_PAGE(PageTransCompound(page), page);
 619
 620		/* Successfully isolated */
 621		del_page_from_lru_list(page, lruvec, page_lru(page));
 622
 623isolate_success:
 624		cc->finished_update_migrate = true;
 625		list_add(&page->lru, migratelist);
 626		cc->nr_migratepages++;
 627		nr_isolated++;
 628
 629		/* Avoid isolating too much */
 630		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
 631			++low_pfn;
 632			break;
 633		}
 634
 635		continue;
 636
 637next_pageblock:
 638		low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
 639	}
 640
 641	acct_isolated(zone, locked, cc);
 642
 643	if (locked)
 644		spin_unlock_irqrestore(&zone->lru_lock, flags);
 645
 646	/*
 647	 * Update the pageblock-skip information and cached scanner pfn,
 648	 * if the whole pageblock was scanned without isolating any page.
 649	 * This is not done when pageblock was skipped due to being unsuitable
 650	 * for async compaction, so that eventual sync compaction can try.
 651	 */
 652	if (low_pfn == end_pfn && !skipped_async_unsuitable)
 653		update_pageblock_skip(cc, valid_page, nr_isolated, true);
 654
 655	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
 656
 657	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
 658	if (nr_isolated)
 659		count_compact_events(COMPACTISOLATED, nr_isolated);
 660
 661	return low_pfn;
 662}
 663
 664#endif /* CONFIG_COMPACTION || CONFIG_CMA */
 665#ifdef CONFIG_COMPACTION
 666/*
 667 * Based on information in the current compact_control, find blocks
 668 * suitable for isolating free pages from and then isolate them.
 669 */
 670static void isolate_freepages(struct zone *zone,
 671				struct compact_control *cc)
 672{
 673	struct page *page;
 674	unsigned long high_pfn, low_pfn, pfn, z_end_pfn;
 675	int nr_freepages = cc->nr_freepages;
 676	struct list_head *freelist = &cc->freepages;
 677
 678	/*
 679	 * Initialise the free scanner. The starting point is where we last
 680	 * successfully isolated from, zone-cached value, or the end of the
 681	 * zone when isolating for the first time. We need this aligned to
 682	 * the pageblock boundary, because we do pfn -= pageblock_nr_pages
 683	 * in the for loop.
 684	 * The low boundary is the end of the pageblock the migration scanner
 685	 * is using.
 686	 */
 687	pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
 688	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
 689
 690	/*
 691	 * Take care that if the migration scanner is at the end of the zone
 692	 * that the free scanner does not accidentally move to the next zone
 693	 * in the next isolation cycle.
 694	 */
 695	high_pfn = min(low_pfn, pfn);
 696
 697	z_end_pfn = zone_end_pfn(zone);
 698
 699	/*
 700	 * Isolate free pages until enough are available to migrate the
 701	 * pages on cc->migratepages. We stop searching if the migrate
 702	 * and free page scanners meet or enough free pages are isolated.
 703	 */
 704	for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
 705					pfn -= pageblock_nr_pages) {
 706		unsigned long isolated;
 707		unsigned long end_pfn;
 708
 709		/*
 710		 * This can iterate a massively long zone without finding any
 711		 * suitable migration targets, so periodically check if we need
 712		 * to schedule.
 713		 */
 714		cond_resched();
 715
 716		if (!pfn_valid(pfn))
 717			continue;
 718
 719		/*
 720		 * Check for overlapping nodes/zones. It's possible on some
 721		 * configurations to have a setup like
 722		 * node0 node1 node0
 723		 * i.e. it's possible that all pages within a zones range of
 724		 * pages do not belong to a single zone.
 725		 */
 726		page = pfn_to_page(pfn);
 727		if (page_zone(page) != zone)
 728			continue;
 729
 730		/* Check the block is suitable for migration */
 731		if (!suitable_migration_target(page))
 732			continue;
 733
 734		/* If isolation recently failed, do not retry */
 735		if (!isolation_suitable(cc, page))
 736			continue;
 737
 738		/* Found a block suitable for isolating free pages from */
 739		isolated = 0;
 740
 741		/*
 742		 * Take care when isolating in last pageblock of a zone which
 743		 * ends in the middle of a pageblock.
 744		 */
 745		end_pfn = min(pfn + pageblock_nr_pages, z_end_pfn);
 746		isolated = isolate_freepages_block(cc, pfn, end_pfn,
 747						   freelist, false);
 748		nr_freepages += isolated;
 749
 750		/*
 751		 * Record the highest PFN we isolated pages from. When next
 752		 * looking for free pages, the search will restart here as
 753		 * page migration may have returned some pages to the allocator
 754		 */
 755		if (isolated) {
 756			cc->finished_update_free = true;
 757			high_pfn = max(high_pfn, pfn);
 758		}
 759	}
 760
 761	/* split_free_page does not map the pages */
 762	map_pages(freelist);
 763
 764	/*
 765	 * If we crossed the migrate scanner, we want to keep it that way
 766	 * so that compact_finished() may detect this
 767	 */
 768	if (pfn < low_pfn)
 769		cc->free_pfn = max(pfn, zone->zone_start_pfn);
 770	else
 771		cc->free_pfn = high_pfn;
 772	cc->nr_freepages = nr_freepages;
 773}
 774
 775/*
 776 * This is a migrate-callback that "allocates" freepages by taking pages
 777 * from the isolated freelists in the block we are migrating to.
 778 */
 779static struct page *compaction_alloc(struct page *migratepage,
 780					unsigned long data,
 781					int **result)
 782{
 783	struct compact_control *cc = (struct compact_control *)data;
 784	struct page *freepage;
 785
 786	/* Isolate free pages if necessary */
 787	if (list_empty(&cc->freepages)) {
 788		isolate_freepages(cc->zone, cc);
 789
 790		if (list_empty(&cc->freepages))
 791			return NULL;
 792	}
 793
 794	freepage = list_entry(cc->freepages.next, struct page, lru);
 795	list_del(&freepage->lru);
 796	cc->nr_freepages--;
 797
 798	return freepage;
 799}
 800
 801/*
 802 * We cannot control nr_migratepages and nr_freepages fully when migration is
 803 * running as migrate_pages() has no knowledge of compact_control. When
 804 * migration is complete, we count the number of pages on the lists by hand.
 805 */
 806static void update_nr_listpages(struct compact_control *cc)
 807{
 808	int nr_migratepages = 0;
 809	int nr_freepages = 0;
 810	struct page *page;
 811
 812	list_for_each_entry(page, &cc->migratepages, lru)
 813		nr_migratepages++;
 814	list_for_each_entry(page, &cc->freepages, lru)
 815		nr_freepages++;
 816
 817	cc->nr_migratepages = nr_migratepages;
 818	cc->nr_freepages = nr_freepages;
 819}
 820
 821/* possible outcome of isolate_migratepages */
 822typedef enum {
 823	ISOLATE_ABORT,		/* Abort compaction now */
 824	ISOLATE_NONE,		/* No pages isolated, continue scanning */
 825	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
 826} isolate_migrate_t;
 827
 828/*
 829 * Isolate all pages that can be migrated from the block pointed to by
 830 * the migrate scanner within compact_control.
 831 */
 832static isolate_migrate_t isolate_migratepages(struct zone *zone,
 833					struct compact_control *cc)
 834{
 835	unsigned long low_pfn, end_pfn;
 836
 837	/* Do not scan outside zone boundaries */
 838	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
 839
 840	/* Only scan within a pageblock boundary */
 841	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
 842
 843	/* Do not cross the free scanner or scan within a memory hole */
 844	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
 845		cc->migrate_pfn = end_pfn;
 846		return ISOLATE_NONE;
 847	}
 848
 849	/* Perform the isolation */
 850	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
 851	if (!low_pfn || cc->contended)
 852		return ISOLATE_ABORT;
 853
 854	cc->migrate_pfn = low_pfn;
 855
 856	return ISOLATE_SUCCESS;
 857}
 858
 859static int compact_finished(struct zone *zone,
 860			    struct compact_control *cc)
 861{
 862	unsigned int order;
 863	unsigned long watermark;
 864
 865	if (fatal_signal_pending(current))
 866		return COMPACT_PARTIAL;
 867
 868	/* Compaction run completes if the migrate and free scanner meet */
 869	if (cc->free_pfn <= cc->migrate_pfn) {
 870		/* Let the next compaction start anew. */
 871		zone->compact_cached_migrate_pfn = zone->zone_start_pfn;
 872		zone->compact_cached_free_pfn = zone_end_pfn(zone);
 873
 874		/*
 875		 * Mark that the PG_migrate_skip information should be cleared
 876		 * by kswapd when it goes to sleep. kswapd does not set the
 877		 * flag itself as the decision to be clear should be directly
 878		 * based on an allocation request.
 879		 */
 880		if (!current_is_kswapd())
 881			zone->compact_blockskip_flush = true;
 882
 883		return COMPACT_COMPLETE;
 884	}
 885
 886	/*
 887	 * order == -1 is expected when compacting via
 888	 * /proc/sys/vm/compact_memory
 889	 */
 890	if (cc->order == -1)
 891		return COMPACT_CONTINUE;
 892
 893	/* Compaction run is not finished if the watermark is not met */
 894	watermark = low_wmark_pages(zone);
 895	watermark += (1 << cc->order);
 896
 897	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
 898		return COMPACT_CONTINUE;
 899
 900	/* Direct compactor: Is a suitable page free? */
 901	for (order = cc->order; order < MAX_ORDER; order++) {
 902		struct free_area *area = &zone->free_area[order];
 903
 904		/* Job done if page is free of the right migratetype */
 905		if (!list_empty(&area->free_list[cc->migratetype]))
 906			return COMPACT_PARTIAL;
 907
 908		/* Job done if allocation would set block type */
 909		if (cc->order >= pageblock_order && area->nr_free)
 910			return COMPACT_PARTIAL;
 911	}
 912
 913	return COMPACT_CONTINUE;
 914}
 915
 916/*
 917 * compaction_suitable: Is this suitable to run compaction on this zone now?
 918 * Returns
 919 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 920 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 921 *   COMPACT_CONTINUE - If compaction should run now
 922 */
 923unsigned long compaction_suitable(struct zone *zone, int order)
 924{
 925	int fragindex;
 926	unsigned long watermark;
 927
 928	/*
 929	 * order == -1 is expected when compacting via
 930	 * /proc/sys/vm/compact_memory
 931	 */
 932	if (order == -1)
 933		return COMPACT_CONTINUE;
 934
 935	/*
 936	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
 937	 * This is because during migration, copies of pages need to be
 938	 * allocated and for a short time, the footprint is higher
 939	 */
 940	watermark = low_wmark_pages(zone) + (2UL << order);
 941	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
 942		return COMPACT_SKIPPED;
 943
 944	/*
 945	 * fragmentation index determines if allocation failures are due to
 946	 * low memory or external fragmentation
 947	 *
 948	 * index of -1000 implies allocations might succeed depending on
 949	 * watermarks
 950	 * index towards 0 implies failure is due to lack of memory
 951	 * index towards 1000 implies failure is due to fragmentation
 952	 *
 953	 * Only compact if a failure would be due to fragmentation.
 954	 */
 955	fragindex = fragmentation_index(zone, order);
 956	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
 957		return COMPACT_SKIPPED;
 958
 959	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
 960	    0, 0))
 961		return COMPACT_PARTIAL;
 962
 963	return COMPACT_CONTINUE;
 964}
 965
 966static int compact_zone(struct zone *zone, struct compact_control *cc)
 967{
 968	int ret;
 969	unsigned long start_pfn = zone->zone_start_pfn;
 970	unsigned long end_pfn = zone_end_pfn(zone);
 971
 972	ret = compaction_suitable(zone, cc->order);
 973	switch (ret) {
 974	case COMPACT_PARTIAL:
 975	case COMPACT_SKIPPED:
 976		/* Compaction is likely to fail */
 977		return ret;
 978	case COMPACT_CONTINUE:
 979		/* Fall through to compaction */
 980		;
 981	}
 982
 983	/*
 984	 * Clear pageblock skip if there were failures recently and compaction
 985	 * is about to be retried after being deferred. kswapd does not do
 986	 * this reset as it'll reset the cached information when going to sleep.
 987	 */
 988	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
 989		__reset_isolation_suitable(zone);
 990
 991	/*
 992	 * Setup to move all movable pages to the end of the zone. Used cached
 993	 * information on where the scanners should start but check that it
 994	 * is initialised by ensuring the values are within zone boundaries.
 995	 */
 996	cc->migrate_pfn = zone->compact_cached_migrate_pfn;
 997	cc->free_pfn = zone->compact_cached_free_pfn;
 998	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
 999		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1000		zone->compact_cached_free_pfn = cc->free_pfn;
1001	}
1002	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1003		cc->migrate_pfn = start_pfn;
1004		zone->compact_cached_migrate_pfn = cc->migrate_pfn;
1005	}
1006
1007	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
1008
1009	migrate_prep_local();
1010
1011	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1012		unsigned long nr_migrate, nr_remaining;
1013		int err;
1014
1015		switch (isolate_migratepages(zone, cc)) {
1016		case ISOLATE_ABORT:
1017			ret = COMPACT_PARTIAL;
1018			putback_movable_pages(&cc->migratepages);
1019			cc->nr_migratepages = 0;
1020			goto out;
1021		case ISOLATE_NONE:
1022			continue;
1023		case ISOLATE_SUCCESS:
1024			;
1025		}
1026
1027		nr_migrate = cc->nr_migratepages;
1028		err = migrate_pages(&cc->migratepages, compaction_alloc,
1029				(unsigned long)cc,
1030				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
1031				MR_COMPACTION);
1032		update_nr_listpages(cc);
1033		nr_remaining = cc->nr_migratepages;
1034
 
 
 
 
1035		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
1036						nr_remaining);
1037
1038		/* Release isolated pages not migrated */
1039		if (err) {
1040			putback_movable_pages(&cc->migratepages);
1041			cc->nr_migratepages = 0;
1042			/*
1043			 * migrate_pages() may return -ENOMEM when scanners meet
1044			 * and we want compact_finished() to detect it
1045			 */
1046			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1047				ret = COMPACT_PARTIAL;
1048				goto out;
1049			}
1050		}
 
1051	}
1052
1053out:
1054	/* Release free pages and check accounting */
1055	cc->nr_freepages -= release_freepages(&cc->freepages);
1056	VM_BUG_ON(cc->nr_freepages != 0);
1057
1058	trace_mm_compaction_end(ret);
1059
1060	return ret;
1061}
1062
1063static unsigned long compact_zone_order(struct zone *zone,
1064				 int order, gfp_t gfp_mask,
1065				 bool sync, bool *contended)
1066{
1067	unsigned long ret;
1068	struct compact_control cc = {
1069		.nr_freepages = 0,
1070		.nr_migratepages = 0,
1071		.order = order,
1072		.migratetype = allocflags_to_migratetype(gfp_mask),
1073		.zone = zone,
1074		.sync = sync,
1075	};
1076	INIT_LIST_HEAD(&cc.freepages);
1077	INIT_LIST_HEAD(&cc.migratepages);
1078
1079	ret = compact_zone(zone, &cc);
1080
1081	VM_BUG_ON(!list_empty(&cc.freepages));
1082	VM_BUG_ON(!list_empty(&cc.migratepages));
1083
1084	*contended = cc.contended;
1085	return ret;
1086}
1087
1088int sysctl_extfrag_threshold = 500;
1089
1090/**
1091 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1092 * @zonelist: The zonelist used for the current allocation
1093 * @order: The order of the current allocation
1094 * @gfp_mask: The GFP mask of the current allocation
1095 * @nodemask: The allowed nodes to allocate from
1096 * @sync: Whether migration is synchronous or not
1097 * @contended: Return value that is true if compaction was aborted due to lock contention
1098 * @page: Optionally capture a free page of the requested order during compaction
1099 *
1100 * This is the main entry point for direct page compaction.
1101 */
1102unsigned long try_to_compact_pages(struct zonelist *zonelist,
1103			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1104			bool sync, bool *contended)
1105{
1106	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1107	int may_enter_fs = gfp_mask & __GFP_FS;
1108	int may_perform_io = gfp_mask & __GFP_IO;
1109	struct zoneref *z;
1110	struct zone *zone;
1111	int rc = COMPACT_SKIPPED;
1112	int alloc_flags = 0;
1113
1114	/* Check if the GFP flags allow compaction */
 
 
 
 
1115	if (!order || !may_enter_fs || !may_perform_io)
1116		return rc;
1117
1118	count_compact_event(COMPACTSTALL);
1119
1120#ifdef CONFIG_CMA
1121	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1122		alloc_flags |= ALLOC_CMA;
1123#endif
1124	/* Compact each zone in the list */
1125	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1126								nodemask) {
1127		int status;
1128
1129		status = compact_zone_order(zone, order, gfp_mask, sync,
1130						contended);
1131		rc = max(status, rc);
1132
1133		/* If a normal allocation would succeed, stop compacting */
1134		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1135				      alloc_flags))
1136			break;
1137	}
1138
1139	return rc;
1140}
1141
1142
1143/* Compact all zones within a node */
1144static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1145{
1146	int zoneid;
 
1147	struct zone *zone;
1148
 
 
 
 
 
 
 
1149	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 
 
 
 
 
1150
1151		zone = &pgdat->node_zones[zoneid];
1152		if (!populated_zone(zone))
1153			continue;
1154
1155		cc->nr_freepages = 0;
1156		cc->nr_migratepages = 0;
1157		cc->zone = zone;
1158		INIT_LIST_HEAD(&cc->freepages);
1159		INIT_LIST_HEAD(&cc->migratepages);
1160
1161		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1162			compact_zone(zone, cc);
1163
1164		if (cc->order > 0) {
1165			if (zone_watermark_ok(zone, cc->order,
1166						low_wmark_pages(zone), 0, 0))
1167				compaction_defer_reset(zone, cc->order, false);
1168			/* Currently async compaction is never deferred. */
1169			else if (cc->sync)
1170				defer_compaction(zone, cc->order);
1171		}
1172
1173		VM_BUG_ON(!list_empty(&cc->freepages));
1174		VM_BUG_ON(!list_empty(&cc->migratepages));
1175	}
1176}
1177
1178void compact_pgdat(pg_data_t *pgdat, int order)
1179{
1180	struct compact_control cc = {
1181		.order = order,
1182		.sync = false,
1183	};
1184
1185	if (!order)
1186		return;
1187
1188	__compact_pgdat(pgdat, &cc);
1189}
1190
1191static void compact_node(int nid)
1192{
1193	struct compact_control cc = {
1194		.order = -1,
1195		.sync = true,
1196		.ignore_skip_hint = true,
1197	};
1198
1199	__compact_pgdat(NODE_DATA(nid), &cc);
1200}
1201
1202/* Compact all nodes in the system */
1203static void compact_nodes(void)
1204{
1205	int nid;
1206
1207	/* Flush pending updates to the LRU lists */
1208	lru_add_drain_all();
1209
1210	for_each_online_node(nid)
1211		compact_node(nid);
 
 
1212}
1213
1214/* The written value is actually unused, all memory is compacted */
1215int sysctl_compact_memory;
1216
1217/* This is the entry point for compacting all nodes via /proc/sys/vm */
1218int sysctl_compaction_handler(struct ctl_table *table, int write,
1219			void __user *buffer, size_t *length, loff_t *ppos)
1220{
1221	if (write)
1222		compact_nodes();
1223
1224	return 0;
1225}
1226
1227int sysctl_extfrag_handler(struct ctl_table *table, int write,
1228			void __user *buffer, size_t *length, loff_t *ppos)
1229{
1230	proc_dointvec_minmax(table, write, buffer, length, ppos);
1231
1232	return 0;
1233}
1234
1235#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1236static ssize_t sysfs_compact_node(struct device *dev,
1237			struct device_attribute *attr,
1238			const char *buf, size_t count)
1239{
1240	int nid = dev->id;
1241
1242	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1243		/* Flush pending updates to the LRU lists */
1244		lru_add_drain_all();
1245
1246		compact_node(nid);
1247	}
1248
1249	return count;
1250}
1251static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1252
1253int compaction_register_node(struct node *node)
1254{
1255	return device_create_file(&node->dev, &dev_attr_compact);
1256}
1257
1258void compaction_unregister_node(struct node *node)
1259{
1260	return device_remove_file(&node->dev, &dev_attr_compact);
1261}
1262#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1263
1264#endif /* CONFIG_COMPACTION */