Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Copyright 2011, Siemens AG
  3 * written by Alexander Smirnov <alex.bluesman.smirnov@gmail.com>
  4 */
  5
  6/*
  7 * Based on patches from Jon Smirl <jonsmirl@gmail.com>
  8 * Copyright (c) 2011 Jon Smirl <jonsmirl@gmail.com>
  9 *
 10 * This program is free software; you can redistribute it and/or modify
 11 * it under the terms of the GNU General Public License version 2
 12 * as published by the Free Software Foundation.
 13 *
 14 * This program is distributed in the hope that it will be useful,
 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 17 * GNU General Public License for more details.
 18 *
 19 * You should have received a copy of the GNU General Public License along
 20 * with this program; if not, write to the Free Software Foundation, Inc.,
 21 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 22 */
 23
 24/* Jon's code is based on 6lowpan implementation for Contiki which is:
 25 * Copyright (c) 2008, Swedish Institute of Computer Science.
 26 * All rights reserved.
 27 *
 28 * Redistribution and use in source and binary forms, with or without
 29 * modification, are permitted provided that the following conditions
 30 * are met:
 31 * 1. Redistributions of source code must retain the above copyright
 32 *    notice, this list of conditions and the following disclaimer.
 33 * 2. Redistributions in binary form must reproduce the above copyright
 34 *    notice, this list of conditions and the following disclaimer in the
 35 *    documentation and/or other materials provided with the distribution.
 36 * 3. Neither the name of the Institute nor the names of its contributors
 37 *    may be used to endorse or promote products derived from this software
 38 *    without specific prior written permission.
 39 *
 40 * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
 41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 43 * ARE DISCLAIMED.  IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
 44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 50 * SUCH DAMAGE.
 51 */
 52
 53#ifndef __6LOWPAN_H__
 54#define __6LOWPAN_H__
 55
 56#include <net/ipv6.h>
 57
 58#define UIP_802154_SHORTADDR_LEN	2  /* compressed ipv6 address length */
 59#define UIP_IPH_LEN			40 /* ipv6 fixed header size */
 60#define UIP_PROTO_UDP			17 /* ipv6 next header value for UDP */
 61#define UIP_FRAGH_LEN			8  /* ipv6 fragment header size */
 62
 63/*
 64 * ipv6 address based on mac
 65 * second bit-flip (Universe/Local) is done according RFC2464
 66 */
 67#define is_addr_mac_addr_based(a, m) \
 68	((((a)->s6_addr[8])  == (((m)[0]) ^ 0x02)) &&	\
 69	 (((a)->s6_addr[9])  == (m)[1]) &&		\
 70	 (((a)->s6_addr[10]) == (m)[2]) &&		\
 71	 (((a)->s6_addr[11]) == (m)[3]) &&		\
 72	 (((a)->s6_addr[12]) == (m)[4]) &&		\
 73	 (((a)->s6_addr[13]) == (m)[5]) &&		\
 74	 (((a)->s6_addr[14]) == (m)[6]) &&		\
 75	 (((a)->s6_addr[15]) == (m)[7]))
 76
 77/* ipv6 address is unspecified */
 78#define is_addr_unspecified(a)		\
 79	((((a)->s6_addr32[0]) == 0) &&	\
 80	 (((a)->s6_addr32[1]) == 0) &&	\
 81	 (((a)->s6_addr32[2]) == 0) &&	\
 82	 (((a)->s6_addr32[3]) == 0))
 83
 84/* compare ipv6 addresses prefixes */
 85#define ipaddr_prefixcmp(addr1, addr2, length) \
 86	(memcmp(addr1, addr2, length >> 3) == 0)
 87
 88/* local link, i.e. FE80::/10 */
 89#define is_addr_link_local(a) (((a)->s6_addr16[0]) == htons(0xFE80))
 90
 91/*
 92 * check whether we can compress the IID to 16 bits,
 93 * it's possible for unicast adresses with first 49 bits are zero only.
 94 */
 95#define lowpan_is_iid_16_bit_compressable(a)	\
 96	((((a)->s6_addr16[4]) == 0) &&		\
 97	 (((a)->s6_addr[10]) == 0) &&		\
 98	 (((a)->s6_addr[11]) == 0xff) &&	\
 99	 (((a)->s6_addr[12]) == 0xfe) &&	\
100	 (((a)->s6_addr[13]) == 0))
101
102/* multicast address */
103#define is_addr_mcast(a) (((a)->s6_addr[0]) == 0xFF)
104
105/* check whether the 112-bit gid of the multicast address is mappable to: */
106
107/* 9 bits, for FF02::1 (all nodes) and FF02::2 (all routers) addresses only. */
108#define lowpan_is_mcast_addr_compressable(a)	\
109	((((a)->s6_addr16[1]) == 0) &&		\
110	 (((a)->s6_addr16[2]) == 0) &&		\
111	 (((a)->s6_addr16[3]) == 0) &&		\
112	 (((a)->s6_addr16[4]) == 0) &&		\
113	 (((a)->s6_addr16[5]) == 0) &&		\
114	 (((a)->s6_addr16[6]) == 0) &&		\
115	 (((a)->s6_addr[14])  == 0) &&		\
116	 ((((a)->s6_addr[15]) == 1) || (((a)->s6_addr[15]) == 2)))
117
118/* 48 bits, FFXX::00XX:XXXX:XXXX */
119#define lowpan_is_mcast_addr_compressable48(a)	\
120	((((a)->s6_addr16[1]) == 0) &&		\
121	 (((a)->s6_addr16[2]) == 0) &&		\
122	 (((a)->s6_addr16[3]) == 0) &&		\
123	 (((a)->s6_addr16[4]) == 0) &&		\
124	 (((a)->s6_addr[10]) == 0))
125
126/* 32 bits, FFXX::00XX:XXXX */
127#define lowpan_is_mcast_addr_compressable32(a)	\
128	((((a)->s6_addr16[1]) == 0) &&		\
129	 (((a)->s6_addr16[2]) == 0) &&		\
130	 (((a)->s6_addr16[3]) == 0) &&		\
131	 (((a)->s6_addr16[4]) == 0) &&		\
132	 (((a)->s6_addr16[5]) == 0) &&		\
133	 (((a)->s6_addr[12]) == 0))
134
135/* 8 bits, FF02::00XX */
136#define lowpan_is_mcast_addr_compressable8(a)	\
137	((((a)->s6_addr[1])  == 2) &&		\
138	 (((a)->s6_addr16[1]) == 0) &&		\
139	 (((a)->s6_addr16[2]) == 0) &&		\
140	 (((a)->s6_addr16[3]) == 0) &&		\
141	 (((a)->s6_addr16[4]) == 0) &&		\
142	 (((a)->s6_addr16[5]) == 0) &&		\
143	 (((a)->s6_addr16[6]) == 0) &&		\
144	 (((a)->s6_addr[14]) == 0))
145
146#define lowpan_is_addr_broadcast(a)	\
147	((((a)[0]) == 0xFF) &&	\
148	 (((a)[1]) == 0xFF) &&	\
149	 (((a)[2]) == 0xFF) &&	\
150	 (((a)[3]) == 0xFF) &&	\
151	 (((a)[4]) == 0xFF) &&	\
152	 (((a)[5]) == 0xFF) &&	\
153	 (((a)[6]) == 0xFF) &&	\
154	 (((a)[7]) == 0xFF))
155
156#define LOWPAN_DISPATCH_IPV6	0x41 /* 01000001 = 65 */
157#define LOWPAN_DISPATCH_HC1	0x42 /* 01000010 = 66 */
158#define LOWPAN_DISPATCH_IPHC	0x60 /* 011xxxxx = ... */
159#define LOWPAN_DISPATCH_FRAG1	0xc0 /* 11000xxx */
160#define LOWPAN_DISPATCH_FRAGN	0xe0 /* 11100xxx */
161
162#define LOWPAN_DISPATCH_MASK	0xf8 /* 11111000 */
163
164#define LOWPAN_FRAG_TIMEOUT	(HZ * 60)	/* time-out 60 sec */
165
166#define LOWPAN_FRAG1_HEAD_SIZE	0x4
167#define LOWPAN_FRAGN_HEAD_SIZE	0x5
168
169/*
170 * According IEEE802.15.4 standard:
171 *   - MTU is 127 octets
172 *   - maximum MHR size is 37 octets
173 *   - MFR size is 2 octets
174 *
175 * so minimal payload size that we may guarantee is:
176 *   MTU - MHR - MFR = 88 octets
177 */
178#define LOWPAN_FRAG_SIZE	88
179
180/*
181 * Values of fields within the IPHC encoding first byte
182 * (C stands for compressed and I for inline)
183 */
184#define LOWPAN_IPHC_TF		0x18
185
186#define LOWPAN_IPHC_FL_C	0x10
187#define LOWPAN_IPHC_TC_C	0x08
188#define LOWPAN_IPHC_NH_C	0x04
189#define LOWPAN_IPHC_TTL_1	0x01
190#define LOWPAN_IPHC_TTL_64	0x02
191#define LOWPAN_IPHC_TTL_255	0x03
192#define LOWPAN_IPHC_TTL_I	0x00
193
194
195/* Values of fields within the IPHC encoding second byte */
196#define LOWPAN_IPHC_CID		0x80
197
198#define LOWPAN_IPHC_ADDR_00	0x00
199#define LOWPAN_IPHC_ADDR_01	0x01
200#define LOWPAN_IPHC_ADDR_02	0x02
201#define LOWPAN_IPHC_ADDR_03	0x03
202
203#define LOWPAN_IPHC_SAC		0x40
204#define LOWPAN_IPHC_SAM		0x30
205
206#define LOWPAN_IPHC_SAM_BIT	4
207
208#define LOWPAN_IPHC_M		0x08
209#define LOWPAN_IPHC_DAC		0x04
210#define LOWPAN_IPHC_DAM_00	0x00
211#define LOWPAN_IPHC_DAM_01	0x01
212#define LOWPAN_IPHC_DAM_10	0x02
213#define LOWPAN_IPHC_DAM_11	0x03
214
215#define LOWPAN_IPHC_DAM_BIT	0
216/*
217 * LOWPAN_UDP encoding (works together with IPHC)
218 */
219#define LOWPAN_NHC_UDP_MASK		0xF8
220#define LOWPAN_NHC_UDP_ID		0xF0
221#define LOWPAN_NHC_UDP_CHECKSUMC	0x04
222#define LOWPAN_NHC_UDP_CHECKSUMI	0x00
223
224#define LOWPAN_NHC_UDP_4BIT_PORT	0xF0B0
225#define LOWPAN_NHC_UDP_4BIT_MASK	0xFFF0
226#define LOWPAN_NHC_UDP_8BIT_PORT	0xF000
227#define LOWPAN_NHC_UDP_8BIT_MASK	0xFF00
228
229/* values for port compression, _with checksum_ ie bit 5 set to 0 */
230#define LOWPAN_NHC_UDP_CS_P_00	0xF0 /* all inline */
231#define LOWPAN_NHC_UDP_CS_P_01	0xF1 /* source 16bit inline,
232					dest = 0xF0 + 8 bit inline */
233#define LOWPAN_NHC_UDP_CS_P_10	0xF2 /* source = 0xF0 + 8bit inline,
234					dest = 16 bit inline */
235#define LOWPAN_NHC_UDP_CS_P_11	0xF3 /* source & dest = 0xF0B + 4bit inline */
236#define LOWPAN_NHC_UDP_CS_C	0x04 /* checksum elided */
237
238#ifdef DEBUG
239/* print data in line */
240static inline void raw_dump_inline(const char *caller, char *msg,
241				   unsigned char *buf, int len)
242{
243	if (msg)
244		pr_debug("%s():%s: ", caller, msg);
245
246	print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, buf, len, false);
247}
248
249/* print data in a table format:
250 *
251 * addr: xx xx xx xx xx xx
252 * addr: xx xx xx xx xx xx
253 * ...
254 */
255static inline void raw_dump_table(const char *caller, char *msg,
256				  unsigned char *buf, int len)
257{
258	if (msg)
259		pr_debug("%s():%s:\n", caller, msg);
260
261	print_hex_dump_debug("\t", DUMP_PREFIX_OFFSET, 16, 1, buf, len, false);
262}
263#else
264static inline void raw_dump_table(const char *caller, char *msg,
265				  unsigned char *buf, int len) { }
266static inline void raw_dump_inline(const char *caller, char *msg,
267				   unsigned char *buf, int len) { }
268#endif
269
270static inline int lowpan_fetch_skb_u8(struct sk_buff *skb, u8 *val)
271{
272	if (unlikely(!pskb_may_pull(skb, 1)))
273		return -EINVAL;
274
275	*val = skb->data[0];
276	skb_pull(skb, 1);
277
278	return 0;
279}
280
281static inline int lowpan_fetch_skb_u16(struct sk_buff *skb, u16 *val)
282{
283	if (unlikely(!pskb_may_pull(skb, 2)))
284		return -EINVAL;
285
286	*val = (skb->data[0] << 8) | skb->data[1];
287	skb_pull(skb, 2);
288
289	return 0;
290}
291
292static inline bool lowpan_fetch_skb(struct sk_buff *skb,
293		void *data, const unsigned int len)
294{
295	if (unlikely(!pskb_may_pull(skb, len)))
296		return true;
297
298	skb_copy_from_linear_data(skb, data, len);
299	skb_pull(skb, len);
300
301	return false;
302}
303
304static inline void lowpan_push_hc_data(u8 **hc_ptr, const void *data,
305				       const size_t len)
306{
307	memcpy(*hc_ptr, data, len);
308	*hc_ptr += len;
309}
310
311static inline u8 lowpan_addr_mode_size(const u8 addr_mode)
312{
313	static const u8 addr_sizes[] = {
314		[LOWPAN_IPHC_ADDR_00] = 16,
315		[LOWPAN_IPHC_ADDR_01] = 8,
316		[LOWPAN_IPHC_ADDR_02] = 2,
317		[LOWPAN_IPHC_ADDR_03] = 0,
318	};
319	return addr_sizes[addr_mode];
320}
321
322static inline u8 lowpan_next_hdr_size(const u8 h_enc, u16 *uncomp_header)
323{
324	u8 ret = 1;
325
326	if ((h_enc & LOWPAN_NHC_UDP_MASK) == LOWPAN_NHC_UDP_ID) {
327		*uncomp_header += sizeof(struct udphdr);
328
329		switch (h_enc & LOWPAN_NHC_UDP_CS_P_11) {
330		case LOWPAN_NHC_UDP_CS_P_00:
331			ret += 4;
332			break;
333		case LOWPAN_NHC_UDP_CS_P_01:
334		case LOWPAN_NHC_UDP_CS_P_10:
335			ret += 3;
336			break;
337		case LOWPAN_NHC_UDP_CS_P_11:
338			ret++;
339			break;
340		default:
341			break;
342		}
343
344		if (!(h_enc & LOWPAN_NHC_UDP_CS_C))
345			ret += 2;
346	}
347
348	return ret;
349}
350
351/**
352 *	lowpan_uncompress_size - returns skb->len size with uncompressed header
353 *	@skb: sk_buff with 6lowpan header inside
354 *	@datagram_offset: optional to get the datagram_offset value
355 *
356 *	Returns the skb->len with uncompressed header
357 */
358static inline u16
359lowpan_uncompress_size(const struct sk_buff *skb, u16 *dgram_offset)
360{
361	u16 ret = 2, uncomp_header = sizeof(struct ipv6hdr);
362	u8 iphc0, iphc1, h_enc;
363
364	iphc0 = skb_network_header(skb)[0];
365	iphc1 = skb_network_header(skb)[1];
366
367	switch ((iphc0 & LOWPAN_IPHC_TF) >> 3) {
368	case 0:
369		ret += 4;
370		break;
371	case 1:
372		ret += 3;
373		break;
374	case 2:
375		ret++;
376		break;
377	default:
378		break;
379	}
380
381	if (!(iphc0 & LOWPAN_IPHC_NH_C))
382		ret++;
383
384	if (!(iphc0 & 0x03))
385		ret++;
386
387	ret += lowpan_addr_mode_size((iphc1 & LOWPAN_IPHC_SAM) >>
388				     LOWPAN_IPHC_SAM_BIT);
389
390	if (iphc1 & LOWPAN_IPHC_M) {
391		switch ((iphc1 & LOWPAN_IPHC_DAM_11) >>
392			LOWPAN_IPHC_DAM_BIT) {
393		case LOWPAN_IPHC_DAM_00:
394			ret += 16;
395			break;
396		case LOWPAN_IPHC_DAM_01:
397			ret += 6;
398			break;
399		case LOWPAN_IPHC_DAM_10:
400			ret += 4;
401			break;
402		case LOWPAN_IPHC_DAM_11:
403			ret++;
404			break;
405		default:
406			break;
407		}
408	} else {
409		ret += lowpan_addr_mode_size((iphc1 & LOWPAN_IPHC_DAM_11) >>
410					     LOWPAN_IPHC_DAM_BIT);
411	}
412
413	if (iphc0 & LOWPAN_IPHC_NH_C) {
414		h_enc = skb_network_header(skb)[ret];
415		ret += lowpan_next_hdr_size(h_enc, &uncomp_header);
416	}
417
418	if (dgram_offset)
419		*dgram_offset = uncomp_header;
420
421	return skb->len + uncomp_header - ret;
422}
423
424typedef int (*skb_delivery_cb)(struct sk_buff *skb, struct net_device *dev);
425
426int lowpan_process_data(struct sk_buff *skb, struct net_device *dev,
427		const u8 *saddr, const u8 saddr_type, const u8 saddr_len,
428		const u8 *daddr, const u8 daddr_type, const u8 daddr_len,
429		u8 iphc0, u8 iphc1, skb_delivery_cb skb_deliver);
430int lowpan_header_compress(struct sk_buff *skb, struct net_device *dev,
431			unsigned short type, const void *_daddr,
432			const void *_saddr, unsigned int len);
433
434#endif /* __6LOWPAN_H__ */