Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * SPI driver for NVIDIA's Tegra114 SPI Controller.
   3 *
   4 * Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19#include <linux/clk.h>
  20#include <linux/completion.h>
  21#include <linux/delay.h>
  22#include <linux/dmaengine.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/dmapool.h>
  25#include <linux/err.h>
  26#include <linux/interrupt.h>
  27#include <linux/io.h>
  28#include <linux/kernel.h>
  29#include <linux/kthread.h>
  30#include <linux/module.h>
  31#include <linux/platform_device.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/of.h>
  34#include <linux/of_device.h>
  35#include <linux/reset.h>
  36#include <linux/spi/spi.h>
  37
  38#define SPI_COMMAND1				0x000
  39#define SPI_BIT_LENGTH(x)			(((x) & 0x1f) << 0)
  40#define SPI_PACKED				(1 << 5)
  41#define SPI_TX_EN				(1 << 11)
  42#define SPI_RX_EN				(1 << 12)
  43#define SPI_BOTH_EN_BYTE			(1 << 13)
  44#define SPI_BOTH_EN_BIT				(1 << 14)
  45#define SPI_LSBYTE_FE				(1 << 15)
  46#define SPI_LSBIT_FE				(1 << 16)
  47#define SPI_BIDIROE				(1 << 17)
  48#define SPI_IDLE_SDA_DRIVE_LOW			(0 << 18)
  49#define SPI_IDLE_SDA_DRIVE_HIGH			(1 << 18)
  50#define SPI_IDLE_SDA_PULL_LOW			(2 << 18)
  51#define SPI_IDLE_SDA_PULL_HIGH			(3 << 18)
  52#define SPI_IDLE_SDA_MASK			(3 << 18)
  53#define SPI_CS_SS_VAL				(1 << 20)
  54#define SPI_CS_SW_HW				(1 << 21)
  55/* SPI_CS_POL_INACTIVE bits are default high */
  56						/* n from 0 to 3 */
  57#define SPI_CS_POL_INACTIVE(n)			(1 << (22 + (n)))
  58#define SPI_CS_POL_INACTIVE_MASK		(0xF << 22)
  59
  60#define SPI_CS_SEL_0				(0 << 26)
  61#define SPI_CS_SEL_1				(1 << 26)
  62#define SPI_CS_SEL_2				(2 << 26)
  63#define SPI_CS_SEL_3				(3 << 26)
  64#define SPI_CS_SEL_MASK				(3 << 26)
  65#define SPI_CS_SEL(x)				(((x) & 0x3) << 26)
  66#define SPI_CONTROL_MODE_0			(0 << 28)
  67#define SPI_CONTROL_MODE_1			(1 << 28)
  68#define SPI_CONTROL_MODE_2			(2 << 28)
  69#define SPI_CONTROL_MODE_3			(3 << 28)
  70#define SPI_CONTROL_MODE_MASK			(3 << 28)
  71#define SPI_MODE_SEL(x)				(((x) & 0x3) << 28)
  72#define SPI_M_S					(1 << 30)
  73#define SPI_PIO					(1 << 31)
  74
  75#define SPI_COMMAND2				0x004
  76#define SPI_TX_TAP_DELAY(x)			(((x) & 0x3F) << 6)
  77#define SPI_RX_TAP_DELAY(x)			(((x) & 0x3F) << 0)
  78
  79#define SPI_CS_TIMING1				0x008
  80#define SPI_SETUP_HOLD(setup, hold)		(((setup) << 4) | (hold))
  81#define SPI_CS_SETUP_HOLD(reg, cs, val)			\
  82		((((val) & 0xFFu) << ((cs) * 8)) |	\
  83		((reg) & ~(0xFFu << ((cs) * 8))))
  84
  85#define SPI_CS_TIMING2				0x00C
  86#define CYCLES_BETWEEN_PACKETS_0(x)		(((x) & 0x1F) << 0)
  87#define CS_ACTIVE_BETWEEN_PACKETS_0		(1 << 5)
  88#define CYCLES_BETWEEN_PACKETS_1(x)		(((x) & 0x1F) << 8)
  89#define CS_ACTIVE_BETWEEN_PACKETS_1		(1 << 13)
  90#define CYCLES_BETWEEN_PACKETS_2(x)		(((x) & 0x1F) << 16)
  91#define CS_ACTIVE_BETWEEN_PACKETS_2		(1 << 21)
  92#define CYCLES_BETWEEN_PACKETS_3(x)		(((x) & 0x1F) << 24)
  93#define CS_ACTIVE_BETWEEN_PACKETS_3		(1 << 29)
  94#define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val)		\
  95		(reg = (((val) & 0x1) << ((cs) * 8 + 5)) |	\
  96			((reg) & ~(1 << ((cs) * 8 + 5))))
  97#define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val)		\
  98		(reg = (((val) & 0xF) << ((cs) * 8)) |		\
  99			((reg) & ~(0xF << ((cs) * 8))))
 100
 101#define SPI_TRANS_STATUS			0x010
 102#define SPI_BLK_CNT(val)			(((val) >> 0) & 0xFFFF)
 103#define SPI_SLV_IDLE_COUNT(val)			(((val) >> 16) & 0xFF)
 104#define SPI_RDY					(1 << 30)
 105
 106#define SPI_FIFO_STATUS				0x014
 107#define SPI_RX_FIFO_EMPTY			(1 << 0)
 108#define SPI_RX_FIFO_FULL			(1 << 1)
 109#define SPI_TX_FIFO_EMPTY			(1 << 2)
 110#define SPI_TX_FIFO_FULL			(1 << 3)
 111#define SPI_RX_FIFO_UNF				(1 << 4)
 112#define SPI_RX_FIFO_OVF				(1 << 5)
 113#define SPI_TX_FIFO_UNF				(1 << 6)
 114#define SPI_TX_FIFO_OVF				(1 << 7)
 115#define SPI_ERR					(1 << 8)
 116#define SPI_TX_FIFO_FLUSH			(1 << 14)
 117#define SPI_RX_FIFO_FLUSH			(1 << 15)
 118#define SPI_TX_FIFO_EMPTY_COUNT(val)		(((val) >> 16) & 0x7F)
 119#define SPI_RX_FIFO_FULL_COUNT(val)		(((val) >> 23) & 0x7F)
 120#define SPI_FRAME_END				(1 << 30)
 121#define SPI_CS_INACTIVE				(1 << 31)
 122
 123#define SPI_FIFO_ERROR				(SPI_RX_FIFO_UNF | \
 124			SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
 125#define SPI_FIFO_EMPTY			(SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
 126
 127#define SPI_TX_DATA				0x018
 128#define SPI_RX_DATA				0x01C
 129
 130#define SPI_DMA_CTL				0x020
 131#define SPI_TX_TRIG_1				(0 << 15)
 132#define SPI_TX_TRIG_4				(1 << 15)
 133#define SPI_TX_TRIG_8				(2 << 15)
 134#define SPI_TX_TRIG_16				(3 << 15)
 135#define SPI_TX_TRIG_MASK			(3 << 15)
 136#define SPI_RX_TRIG_1				(0 << 19)
 137#define SPI_RX_TRIG_4				(1 << 19)
 138#define SPI_RX_TRIG_8				(2 << 19)
 139#define SPI_RX_TRIG_16				(3 << 19)
 140#define SPI_RX_TRIG_MASK			(3 << 19)
 141#define SPI_IE_TX				(1 << 28)
 142#define SPI_IE_RX				(1 << 29)
 143#define SPI_CONT				(1 << 30)
 144#define SPI_DMA					(1 << 31)
 145#define SPI_DMA_EN				SPI_DMA
 146
 147#define SPI_DMA_BLK				0x024
 148#define SPI_DMA_BLK_SET(x)			(((x) & 0xFFFF) << 0)
 149
 150#define SPI_TX_FIFO				0x108
 151#define SPI_RX_FIFO				0x188
 152#define MAX_CHIP_SELECT				4
 153#define SPI_FIFO_DEPTH				64
 154#define DATA_DIR_TX				(1 << 0)
 155#define DATA_DIR_RX				(1 << 1)
 156
 157#define SPI_DMA_TIMEOUT				(msecs_to_jiffies(1000))
 158#define DEFAULT_SPI_DMA_BUF_LEN			(16*1024)
 159#define TX_FIFO_EMPTY_COUNT_MAX			SPI_TX_FIFO_EMPTY_COUNT(0x40)
 160#define RX_FIFO_FULL_COUNT_ZERO			SPI_RX_FIFO_FULL_COUNT(0)
 161#define MAX_HOLD_CYCLES				16
 162#define SPI_DEFAULT_SPEED			25000000
 163
 164struct tegra_spi_data {
 165	struct device				*dev;
 166	struct spi_master			*master;
 167	spinlock_t				lock;
 168
 169	struct clk				*clk;
 170	struct reset_control			*rst;
 171	void __iomem				*base;
 172	phys_addr_t				phys;
 173	unsigned				irq;
 174	u32					cur_speed;
 175
 176	struct spi_device			*cur_spi;
 177	struct spi_device			*cs_control;
 178	unsigned				cur_pos;
 179	unsigned				words_per_32bit;
 180	unsigned				bytes_per_word;
 181	unsigned				curr_dma_words;
 182	unsigned				cur_direction;
 183
 184	unsigned				cur_rx_pos;
 185	unsigned				cur_tx_pos;
 186
 187	unsigned				dma_buf_size;
 188	unsigned				max_buf_size;
 189	bool					is_curr_dma_xfer;
 190
 191	struct completion			rx_dma_complete;
 192	struct completion			tx_dma_complete;
 193
 194	u32					tx_status;
 195	u32					rx_status;
 196	u32					status_reg;
 197	bool					is_packed;
 198
 199	u32					command1_reg;
 200	u32					dma_control_reg;
 201	u32					def_command1_reg;
 202
 203	struct completion			xfer_completion;
 204	struct spi_transfer			*curr_xfer;
 205	struct dma_chan				*rx_dma_chan;
 206	u32					*rx_dma_buf;
 207	dma_addr_t				rx_dma_phys;
 208	struct dma_async_tx_descriptor		*rx_dma_desc;
 209
 210	struct dma_chan				*tx_dma_chan;
 211	u32					*tx_dma_buf;
 212	dma_addr_t				tx_dma_phys;
 213	struct dma_async_tx_descriptor		*tx_dma_desc;
 214};
 215
 216static int tegra_spi_runtime_suspend(struct device *dev);
 217static int tegra_spi_runtime_resume(struct device *dev);
 218
 219static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
 220		unsigned long reg)
 221{
 222	return readl(tspi->base + reg);
 223}
 224
 225static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
 226		u32 val, unsigned long reg)
 227{
 228	writel(val, tspi->base + reg);
 229
 230	/* Read back register to make sure that register writes completed */
 231	if (reg != SPI_TX_FIFO)
 232		readl(tspi->base + SPI_COMMAND1);
 233}
 234
 235static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
 236{
 237	u32 val;
 238
 239	/* Write 1 to clear status register */
 240	val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
 241	tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
 242
 243	/* Clear fifo status error if any */
 244	val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
 245	if (val & SPI_ERR)
 246		tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
 247				SPI_FIFO_STATUS);
 248}
 249
 250static unsigned tegra_spi_calculate_curr_xfer_param(
 251	struct spi_device *spi, struct tegra_spi_data *tspi,
 252	struct spi_transfer *t)
 253{
 254	unsigned remain_len = t->len - tspi->cur_pos;
 255	unsigned max_word;
 256	unsigned bits_per_word = t->bits_per_word;
 257	unsigned max_len;
 258	unsigned total_fifo_words;
 259
 260	tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
 261
 262	if (bits_per_word == 8 || bits_per_word == 16) {
 263		tspi->is_packed = 1;
 264		tspi->words_per_32bit = 32/bits_per_word;
 265	} else {
 266		tspi->is_packed = 0;
 267		tspi->words_per_32bit = 1;
 268	}
 269
 270	if (tspi->is_packed) {
 271		max_len = min(remain_len, tspi->max_buf_size);
 272		tspi->curr_dma_words = max_len/tspi->bytes_per_word;
 273		total_fifo_words = (max_len + 3) / 4;
 274	} else {
 275		max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
 276		max_word = min(max_word, tspi->max_buf_size/4);
 277		tspi->curr_dma_words = max_word;
 278		total_fifo_words = max_word;
 279	}
 280	return total_fifo_words;
 281}
 282
 283static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
 284	struct tegra_spi_data *tspi, struct spi_transfer *t)
 285{
 286	unsigned nbytes;
 287	unsigned tx_empty_count;
 288	u32 fifo_status;
 289	unsigned max_n_32bit;
 290	unsigned i, count;
 291	unsigned int written_words;
 292	unsigned fifo_words_left;
 293	u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
 294
 295	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
 296	tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
 297
 298	if (tspi->is_packed) {
 299		fifo_words_left = tx_empty_count * tspi->words_per_32bit;
 300		written_words = min(fifo_words_left, tspi->curr_dma_words);
 301		nbytes = written_words * tspi->bytes_per_word;
 302		max_n_32bit = DIV_ROUND_UP(nbytes, 4);
 303		for (count = 0; count < max_n_32bit; count++) {
 304			u32 x = 0;
 305			for (i = 0; (i < 4) && nbytes; i++, nbytes--)
 306				x |= (u32)(*tx_buf++) << (i * 8);
 307			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
 308		}
 309	} else {
 310		max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
 311		written_words = max_n_32bit;
 312		nbytes = written_words * tspi->bytes_per_word;
 313		for (count = 0; count < max_n_32bit; count++) {
 314			u32 x = 0;
 315			for (i = 0; nbytes && (i < tspi->bytes_per_word);
 316							i++, nbytes--)
 317				x |= (u32)(*tx_buf++) << (i * 8);
 318			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
 319		}
 320	}
 321	tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
 322	return written_words;
 323}
 324
 325static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
 326		struct tegra_spi_data *tspi, struct spi_transfer *t)
 327{
 328	unsigned rx_full_count;
 329	u32 fifo_status;
 330	unsigned i, count;
 331	unsigned int read_words = 0;
 332	unsigned len;
 333	u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
 334
 335	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
 336	rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
 337	if (tspi->is_packed) {
 338		len = tspi->curr_dma_words * tspi->bytes_per_word;
 339		for (count = 0; count < rx_full_count; count++) {
 340			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
 341			for (i = 0; len && (i < 4); i++, len--)
 342				*rx_buf++ = (x >> i*8) & 0xFF;
 343		}
 344		tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
 345		read_words += tspi->curr_dma_words;
 346	} else {
 347		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
 348		for (count = 0; count < rx_full_count; count++) {
 349			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
 350			for (i = 0; (i < tspi->bytes_per_word); i++)
 351				*rx_buf++ = (x >> (i*8)) & 0xFF;
 352		}
 353		tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
 354		read_words += rx_full_count;
 355	}
 356	return read_words;
 357}
 358
 359static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
 360		struct tegra_spi_data *tspi, struct spi_transfer *t)
 361{
 362	/* Make the dma buffer to read by cpu */
 363	dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
 364				tspi->dma_buf_size, DMA_TO_DEVICE);
 365
 366	if (tspi->is_packed) {
 367		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
 368		memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
 369	} else {
 370		unsigned int i;
 371		unsigned int count;
 372		u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
 373		unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
 374
 375		for (count = 0; count < tspi->curr_dma_words; count++) {
 376			u32 x = 0;
 377			for (i = 0; consume && (i < tspi->bytes_per_word);
 378							i++, consume--)
 379				x |= (u32)(*tx_buf++) << (i * 8);
 380			tspi->tx_dma_buf[count] = x;
 381		}
 382	}
 383	tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
 384
 385	/* Make the dma buffer to read by dma */
 386	dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
 387				tspi->dma_buf_size, DMA_TO_DEVICE);
 388}
 389
 390static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
 391		struct tegra_spi_data *tspi, struct spi_transfer *t)
 392{
 393	/* Make the dma buffer to read by cpu */
 394	dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
 395		tspi->dma_buf_size, DMA_FROM_DEVICE);
 396
 397	if (tspi->is_packed) {
 398		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
 399		memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
 400	} else {
 401		unsigned int i;
 402		unsigned int count;
 403		unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
 404		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
 405
 406		for (count = 0; count < tspi->curr_dma_words; count++) {
 407			u32 x = tspi->rx_dma_buf[count] & rx_mask;
 408			for (i = 0; (i < tspi->bytes_per_word); i++)
 409				*rx_buf++ = (x >> (i*8)) & 0xFF;
 410		}
 411	}
 412	tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
 413
 414	/* Make the dma buffer to read by dma */
 415	dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
 416		tspi->dma_buf_size, DMA_FROM_DEVICE);
 417}
 418
 419static void tegra_spi_dma_complete(void *args)
 420{
 421	struct completion *dma_complete = args;
 422
 423	complete(dma_complete);
 424}
 425
 426static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
 427{
 428	reinit_completion(&tspi->tx_dma_complete);
 429	tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
 430				tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
 431				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
 432	if (!tspi->tx_dma_desc) {
 433		dev_err(tspi->dev, "Not able to get desc for Tx\n");
 434		return -EIO;
 435	}
 436
 437	tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
 438	tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
 439
 440	dmaengine_submit(tspi->tx_dma_desc);
 441	dma_async_issue_pending(tspi->tx_dma_chan);
 442	return 0;
 443}
 444
 445static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
 446{
 447	reinit_completion(&tspi->rx_dma_complete);
 448	tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
 449				tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
 450				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
 451	if (!tspi->rx_dma_desc) {
 452		dev_err(tspi->dev, "Not able to get desc for Rx\n");
 453		return -EIO;
 454	}
 455
 456	tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
 457	tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
 458
 459	dmaengine_submit(tspi->rx_dma_desc);
 460	dma_async_issue_pending(tspi->rx_dma_chan);
 461	return 0;
 462}
 463
 464static int tegra_spi_start_dma_based_transfer(
 465		struct tegra_spi_data *tspi, struct spi_transfer *t)
 466{
 467	u32 val;
 468	unsigned int len;
 469	int ret = 0;
 470	u32 status;
 471
 472	/* Make sure that Rx and Tx fifo are empty */
 473	status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
 474	if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
 475		dev_err(tspi->dev, "Rx/Tx fifo are not empty status 0x%08x\n",
 476			(unsigned)status);
 477		return -EIO;
 478	}
 479
 480	val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
 481	tegra_spi_writel(tspi, val, SPI_DMA_BLK);
 482
 483	if (tspi->is_packed)
 484		len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
 485					4) * 4;
 486	else
 487		len = tspi->curr_dma_words * 4;
 488
 489	/* Set attention level based on length of transfer */
 490	if (len & 0xF)
 491		val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
 492	else if (((len) >> 4) & 0x1)
 493		val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
 494	else
 495		val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
 496
 497	if (tspi->cur_direction & DATA_DIR_TX)
 498		val |= SPI_IE_TX;
 499
 500	if (tspi->cur_direction & DATA_DIR_RX)
 501		val |= SPI_IE_RX;
 502
 503	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
 504	tspi->dma_control_reg = val;
 505
 506	if (tspi->cur_direction & DATA_DIR_TX) {
 507		tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
 508		ret = tegra_spi_start_tx_dma(tspi, len);
 509		if (ret < 0) {
 510			dev_err(tspi->dev,
 511				"Starting tx dma failed, err %d\n", ret);
 512			return ret;
 513		}
 514	}
 515
 516	if (tspi->cur_direction & DATA_DIR_RX) {
 517		/* Make the dma buffer to read by dma */
 518		dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
 519				tspi->dma_buf_size, DMA_FROM_DEVICE);
 520
 521		ret = tegra_spi_start_rx_dma(tspi, len);
 522		if (ret < 0) {
 523			dev_err(tspi->dev,
 524				"Starting rx dma failed, err %d\n", ret);
 525			if (tspi->cur_direction & DATA_DIR_TX)
 526				dmaengine_terminate_all(tspi->tx_dma_chan);
 527			return ret;
 528		}
 529	}
 530	tspi->is_curr_dma_xfer = true;
 531	tspi->dma_control_reg = val;
 532
 533	val |= SPI_DMA_EN;
 534	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
 535	return ret;
 536}
 537
 538static int tegra_spi_start_cpu_based_transfer(
 539		struct tegra_spi_data *tspi, struct spi_transfer *t)
 540{
 541	u32 val;
 542	unsigned cur_words;
 543
 544	if (tspi->cur_direction & DATA_DIR_TX)
 545		cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
 546	else
 547		cur_words = tspi->curr_dma_words;
 548
 549	val = SPI_DMA_BLK_SET(cur_words - 1);
 550	tegra_spi_writel(tspi, val, SPI_DMA_BLK);
 551
 552	val = 0;
 553	if (tspi->cur_direction & DATA_DIR_TX)
 554		val |= SPI_IE_TX;
 555
 556	if (tspi->cur_direction & DATA_DIR_RX)
 557		val |= SPI_IE_RX;
 558
 559	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
 560	tspi->dma_control_reg = val;
 561
 562	tspi->is_curr_dma_xfer = false;
 563
 564	val |= SPI_DMA_EN;
 565	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
 566	return 0;
 567}
 568
 569static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
 570			bool dma_to_memory)
 571{
 572	struct dma_chan *dma_chan;
 573	u32 *dma_buf;
 574	dma_addr_t dma_phys;
 575	int ret;
 576	struct dma_slave_config dma_sconfig;
 577
 578	dma_chan = dma_request_slave_channel_reason(tspi->dev,
 579					dma_to_memory ? "rx" : "tx");
 580	if (IS_ERR(dma_chan)) {
 581		ret = PTR_ERR(dma_chan);
 582		if (ret != -EPROBE_DEFER)
 583			dev_err(tspi->dev,
 584				"Dma channel is not available: %d\n", ret);
 585		return ret;
 586	}
 587
 588	dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
 589				&dma_phys, GFP_KERNEL);
 590	if (!dma_buf) {
 591		dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
 592		dma_release_channel(dma_chan);
 593		return -ENOMEM;
 594	}
 595
 596	if (dma_to_memory) {
 597		dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
 598		dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 599		dma_sconfig.src_maxburst = 0;
 600	} else {
 601		dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
 602		dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 603		dma_sconfig.dst_maxburst = 0;
 604	}
 605
 606	ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
 607	if (ret)
 608		goto scrub;
 609	if (dma_to_memory) {
 610		tspi->rx_dma_chan = dma_chan;
 611		tspi->rx_dma_buf = dma_buf;
 612		tspi->rx_dma_phys = dma_phys;
 613	} else {
 614		tspi->tx_dma_chan = dma_chan;
 615		tspi->tx_dma_buf = dma_buf;
 616		tspi->tx_dma_phys = dma_phys;
 617	}
 618	return 0;
 619
 620scrub:
 621	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
 622	dma_release_channel(dma_chan);
 623	return ret;
 624}
 625
 626static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
 627	bool dma_to_memory)
 628{
 629	u32 *dma_buf;
 630	dma_addr_t dma_phys;
 631	struct dma_chan *dma_chan;
 632
 633	if (dma_to_memory) {
 634		dma_buf = tspi->rx_dma_buf;
 635		dma_chan = tspi->rx_dma_chan;
 636		dma_phys = tspi->rx_dma_phys;
 637		tspi->rx_dma_chan = NULL;
 638		tspi->rx_dma_buf = NULL;
 639	} else {
 640		dma_buf = tspi->tx_dma_buf;
 641		dma_chan = tspi->tx_dma_chan;
 642		dma_phys = tspi->tx_dma_phys;
 643		tspi->tx_dma_buf = NULL;
 644		tspi->tx_dma_chan = NULL;
 645	}
 646	if (!dma_chan)
 647		return;
 648
 649	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
 650	dma_release_channel(dma_chan);
 651}
 652
 653static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
 654		struct spi_transfer *t, bool is_first_of_msg)
 655{
 656	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
 657	u32 speed = t->speed_hz;
 658	u8 bits_per_word = t->bits_per_word;
 659	u32 command1;
 660	int req_mode;
 661
 662	if (speed != tspi->cur_speed) {
 663		clk_set_rate(tspi->clk, speed);
 664		tspi->cur_speed = speed;
 665	}
 666
 667	tspi->cur_spi = spi;
 668	tspi->cur_pos = 0;
 669	tspi->cur_rx_pos = 0;
 670	tspi->cur_tx_pos = 0;
 671	tspi->curr_xfer = t;
 672
 673	if (is_first_of_msg) {
 674		tegra_spi_clear_status(tspi);
 675
 676		command1 = tspi->def_command1_reg;
 677		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
 678
 679		command1 &= ~SPI_CONTROL_MODE_MASK;
 680		req_mode = spi->mode & 0x3;
 681		if (req_mode == SPI_MODE_0)
 682			command1 |= SPI_CONTROL_MODE_0;
 683		else if (req_mode == SPI_MODE_1)
 684			command1 |= SPI_CONTROL_MODE_1;
 685		else if (req_mode == SPI_MODE_2)
 686			command1 |= SPI_CONTROL_MODE_2;
 687		else if (req_mode == SPI_MODE_3)
 688			command1 |= SPI_CONTROL_MODE_3;
 689
 690		if (tspi->cs_control) {
 691			if (tspi->cs_control != spi)
 692				tegra_spi_writel(tspi, command1, SPI_COMMAND1);
 693			tspi->cs_control = NULL;
 694		} else
 695			tegra_spi_writel(tspi, command1, SPI_COMMAND1);
 696
 697		command1 |= SPI_CS_SW_HW;
 698		if (spi->mode & SPI_CS_HIGH)
 699			command1 |= SPI_CS_SS_VAL;
 700		else
 701			command1 &= ~SPI_CS_SS_VAL;
 702
 703		tegra_spi_writel(tspi, 0, SPI_COMMAND2);
 704	} else {
 705		command1 = tspi->command1_reg;
 706		command1 &= ~SPI_BIT_LENGTH(~0);
 707		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
 708	}
 709
 710	return command1;
 711}
 712
 713static int tegra_spi_start_transfer_one(struct spi_device *spi,
 714		struct spi_transfer *t, u32 command1)
 715{
 716	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
 717	unsigned total_fifo_words;
 718	int ret;
 719
 720	total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
 721
 722	if (tspi->is_packed)
 723		command1 |= SPI_PACKED;
 724
 725	command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
 726	tspi->cur_direction = 0;
 727	if (t->rx_buf) {
 728		command1 |= SPI_RX_EN;
 729		tspi->cur_direction |= DATA_DIR_RX;
 730	}
 731	if (t->tx_buf) {
 732		command1 |= SPI_TX_EN;
 733		tspi->cur_direction |= DATA_DIR_TX;
 734	}
 735	command1 |= SPI_CS_SEL(spi->chip_select);
 736	tegra_spi_writel(tspi, command1, SPI_COMMAND1);
 737	tspi->command1_reg = command1;
 738
 739	dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
 740		tspi->def_command1_reg, (unsigned)command1);
 741
 742	if (total_fifo_words > SPI_FIFO_DEPTH)
 743		ret = tegra_spi_start_dma_based_transfer(tspi, t);
 744	else
 745		ret = tegra_spi_start_cpu_based_transfer(tspi, t);
 746	return ret;
 747}
 748
 749static int tegra_spi_setup(struct spi_device *spi)
 750{
 751	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
 752	u32 val;
 753	unsigned long flags;
 754	int ret;
 755
 756	dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
 757		spi->bits_per_word,
 758		spi->mode & SPI_CPOL ? "" : "~",
 759		spi->mode & SPI_CPHA ? "" : "~",
 760		spi->max_speed_hz);
 761
 762	ret = pm_runtime_get_sync(tspi->dev);
 763	if (ret < 0) {
 764		dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
 765		return ret;
 766	}
 767
 768	spin_lock_irqsave(&tspi->lock, flags);
 769	val = tspi->def_command1_reg;
 770	if (spi->mode & SPI_CS_HIGH)
 771		val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
 772	else
 773		val |= SPI_CS_POL_INACTIVE(spi->chip_select);
 774	tspi->def_command1_reg = val;
 775	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
 776	spin_unlock_irqrestore(&tspi->lock, flags);
 777
 778	pm_runtime_put(tspi->dev);
 779	return 0;
 780}
 781
 782static void tegra_spi_transfer_delay(int delay)
 783{
 784	if (!delay)
 785		return;
 786
 787	if (delay >= 1000)
 788		mdelay(delay / 1000);
 789
 790	udelay(delay % 1000);
 791}
 792
 793static int tegra_spi_transfer_one_message(struct spi_master *master,
 794			struct spi_message *msg)
 795{
 796	bool is_first_msg = true;
 797	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
 798	struct spi_transfer *xfer;
 799	struct spi_device *spi = msg->spi;
 800	int ret;
 801	bool skip = false;
 802
 803	msg->status = 0;
 804	msg->actual_length = 0;
 805
 806	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 807		u32 cmd1;
 808
 809		reinit_completion(&tspi->xfer_completion);
 810
 811		cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);
 812
 813		if (!xfer->len) {
 814			ret = 0;
 815			skip = true;
 816			goto complete_xfer;
 817		}
 818
 819		ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
 820		if (ret < 0) {
 821			dev_err(tspi->dev,
 822				"spi can not start transfer, err %d\n", ret);
 823			goto complete_xfer;
 824		}
 825
 826		is_first_msg = false;
 827		ret = wait_for_completion_timeout(&tspi->xfer_completion,
 828						SPI_DMA_TIMEOUT);
 829		if (WARN_ON(ret == 0)) {
 830			dev_err(tspi->dev,
 831				"spi trasfer timeout, err %d\n", ret);
 832			ret = -EIO;
 833			goto complete_xfer;
 834		}
 835
 836		if (tspi->tx_status ||  tspi->rx_status) {
 837			dev_err(tspi->dev, "Error in Transfer\n");
 838			ret = -EIO;
 839			goto complete_xfer;
 840		}
 841		msg->actual_length += xfer->len;
 842
 843complete_xfer:
 844		if (ret < 0 || skip) {
 845			tegra_spi_writel(tspi, tspi->def_command1_reg,
 846					SPI_COMMAND1);
 847			tegra_spi_transfer_delay(xfer->delay_usecs);
 848			goto exit;
 849		} else if (list_is_last(&xfer->transfer_list,
 850					&msg->transfers)) {
 851			if (xfer->cs_change)
 852				tspi->cs_control = spi;
 853			else {
 854				tegra_spi_writel(tspi, tspi->def_command1_reg,
 855						SPI_COMMAND1);
 856				tegra_spi_transfer_delay(xfer->delay_usecs);
 857			}
 858		} else if (xfer->cs_change) {
 859			tegra_spi_writel(tspi, tspi->def_command1_reg,
 860					SPI_COMMAND1);
 861			tegra_spi_transfer_delay(xfer->delay_usecs);
 862		}
 863
 864	}
 865	ret = 0;
 866exit:
 867	msg->status = ret;
 868	spi_finalize_current_message(master);
 869	return ret;
 870}
 871
 872static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
 873{
 874	struct spi_transfer *t = tspi->curr_xfer;
 875	unsigned long flags;
 876
 877	spin_lock_irqsave(&tspi->lock, flags);
 878	if (tspi->tx_status ||  tspi->rx_status) {
 879		dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
 880			tspi->status_reg);
 881		dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
 882			tspi->command1_reg, tspi->dma_control_reg);
 883		reset_control_assert(tspi->rst);
 884		udelay(2);
 885		reset_control_deassert(tspi->rst);
 886		complete(&tspi->xfer_completion);
 887		goto exit;
 888	}
 889
 890	if (tspi->cur_direction & DATA_DIR_RX)
 891		tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
 892
 893	if (tspi->cur_direction & DATA_DIR_TX)
 894		tspi->cur_pos = tspi->cur_tx_pos;
 895	else
 896		tspi->cur_pos = tspi->cur_rx_pos;
 897
 898	if (tspi->cur_pos == t->len) {
 899		complete(&tspi->xfer_completion);
 900		goto exit;
 901	}
 902
 903	tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
 904	tegra_spi_start_cpu_based_transfer(tspi, t);
 905exit:
 906	spin_unlock_irqrestore(&tspi->lock, flags);
 907	return IRQ_HANDLED;
 908}
 909
 910static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
 911{
 912	struct spi_transfer *t = tspi->curr_xfer;
 913	long wait_status;
 914	int err = 0;
 915	unsigned total_fifo_words;
 916	unsigned long flags;
 917
 918	/* Abort dmas if any error */
 919	if (tspi->cur_direction & DATA_DIR_TX) {
 920		if (tspi->tx_status) {
 921			dmaengine_terminate_all(tspi->tx_dma_chan);
 922			err += 1;
 923		} else {
 924			wait_status = wait_for_completion_interruptible_timeout(
 925				&tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
 926			if (wait_status <= 0) {
 927				dmaengine_terminate_all(tspi->tx_dma_chan);
 928				dev_err(tspi->dev, "TxDma Xfer failed\n");
 929				err += 1;
 930			}
 931		}
 932	}
 933
 934	if (tspi->cur_direction & DATA_DIR_RX) {
 935		if (tspi->rx_status) {
 936			dmaengine_terminate_all(tspi->rx_dma_chan);
 937			err += 2;
 938		} else {
 939			wait_status = wait_for_completion_interruptible_timeout(
 940				&tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
 941			if (wait_status <= 0) {
 942				dmaengine_terminate_all(tspi->rx_dma_chan);
 943				dev_err(tspi->dev, "RxDma Xfer failed\n");
 944				err += 2;
 945			}
 946		}
 947	}
 948
 949	spin_lock_irqsave(&tspi->lock, flags);
 950	if (err) {
 951		dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
 952			tspi->status_reg);
 953		dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
 954			tspi->command1_reg, tspi->dma_control_reg);
 955		reset_control_assert(tspi->rst);
 956		udelay(2);
 957		reset_control_deassert(tspi->rst);
 958		complete(&tspi->xfer_completion);
 959		spin_unlock_irqrestore(&tspi->lock, flags);
 960		return IRQ_HANDLED;
 961	}
 962
 963	if (tspi->cur_direction & DATA_DIR_RX)
 964		tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
 965
 966	if (tspi->cur_direction & DATA_DIR_TX)
 967		tspi->cur_pos = tspi->cur_tx_pos;
 968	else
 969		tspi->cur_pos = tspi->cur_rx_pos;
 970
 971	if (tspi->cur_pos == t->len) {
 972		complete(&tspi->xfer_completion);
 973		goto exit;
 974	}
 975
 976	/* Continue transfer in current message */
 977	total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
 978							tspi, t);
 979	if (total_fifo_words > SPI_FIFO_DEPTH)
 980		err = tegra_spi_start_dma_based_transfer(tspi, t);
 981	else
 982		err = tegra_spi_start_cpu_based_transfer(tspi, t);
 983
 984exit:
 985	spin_unlock_irqrestore(&tspi->lock, flags);
 986	return IRQ_HANDLED;
 987}
 988
 989static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
 990{
 991	struct tegra_spi_data *tspi = context_data;
 992
 993	if (!tspi->is_curr_dma_xfer)
 994		return handle_cpu_based_xfer(tspi);
 995	return handle_dma_based_xfer(tspi);
 996}
 997
 998static irqreturn_t tegra_spi_isr(int irq, void *context_data)
 999{
1000	struct tegra_spi_data *tspi = context_data;
1001
1002	tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1003	if (tspi->cur_direction & DATA_DIR_TX)
1004		tspi->tx_status = tspi->status_reg &
1005					(SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1006
1007	if (tspi->cur_direction & DATA_DIR_RX)
1008		tspi->rx_status = tspi->status_reg &
1009					(SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1010	tegra_spi_clear_status(tspi);
1011
1012	return IRQ_WAKE_THREAD;
1013}
1014
1015static struct of_device_id tegra_spi_of_match[] = {
1016	{ .compatible = "nvidia,tegra114-spi", },
1017	{}
1018};
1019MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1020
1021static int tegra_spi_probe(struct platform_device *pdev)
1022{
1023	struct spi_master	*master;
1024	struct tegra_spi_data	*tspi;
1025	struct resource		*r;
1026	int ret, spi_irq;
1027
1028	master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1029	if (!master) {
1030		dev_err(&pdev->dev, "master allocation failed\n");
1031		return -ENOMEM;
1032	}
1033	platform_set_drvdata(pdev, master);
1034	tspi = spi_master_get_devdata(master);
1035
1036	if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1037				 &master->max_speed_hz))
1038		master->max_speed_hz = 25000000; /* 25MHz */
1039
1040	/* the spi->mode bits understood by this driver: */
1041	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1042	master->setup = tegra_spi_setup;
1043	master->transfer_one_message = tegra_spi_transfer_one_message;
1044	master->num_chipselect = MAX_CHIP_SELECT;
1045	master->auto_runtime_pm = true;
1046
1047	tspi->master = master;
1048	tspi->dev = &pdev->dev;
1049	spin_lock_init(&tspi->lock);
1050
1051	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1052	tspi->base = devm_ioremap_resource(&pdev->dev, r);
1053	if (IS_ERR(tspi->base)) {
1054		ret = PTR_ERR(tspi->base);
1055		goto exit_free_master;
1056	}
1057	tspi->phys = r->start;
1058
1059	spi_irq = platform_get_irq(pdev, 0);
1060	tspi->irq = spi_irq;
1061	ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1062			tegra_spi_isr_thread, IRQF_ONESHOT,
1063			dev_name(&pdev->dev), tspi);
1064	if (ret < 0) {
1065		dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1066					tspi->irq);
1067		goto exit_free_master;
1068	}
1069
1070	tspi->clk = devm_clk_get(&pdev->dev, "spi");
1071	if (IS_ERR(tspi->clk)) {
1072		dev_err(&pdev->dev, "can not get clock\n");
1073		ret = PTR_ERR(tspi->clk);
1074		goto exit_free_irq;
1075	}
1076
1077	tspi->rst = devm_reset_control_get(&pdev->dev, "spi");
1078	if (IS_ERR(tspi->rst)) {
1079		dev_err(&pdev->dev, "can not get reset\n");
1080		ret = PTR_ERR(tspi->rst);
1081		goto exit_free_irq;
1082	}
1083
1084	tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1085	tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1086
1087	ret = tegra_spi_init_dma_param(tspi, true);
1088	if (ret < 0)
1089		goto exit_free_irq;
1090	ret = tegra_spi_init_dma_param(tspi, false);
1091	if (ret < 0)
1092		goto exit_rx_dma_free;
1093	tspi->max_buf_size = tspi->dma_buf_size;
1094	init_completion(&tspi->tx_dma_complete);
1095	init_completion(&tspi->rx_dma_complete);
1096
1097	init_completion(&tspi->xfer_completion);
1098
1099	pm_runtime_enable(&pdev->dev);
1100	if (!pm_runtime_enabled(&pdev->dev)) {
1101		ret = tegra_spi_runtime_resume(&pdev->dev);
1102		if (ret)
1103			goto exit_pm_disable;
1104	}
1105
1106	ret = pm_runtime_get_sync(&pdev->dev);
1107	if (ret < 0) {
1108		dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1109		goto exit_pm_disable;
1110	}
1111	tspi->def_command1_reg  = SPI_M_S;
1112	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1113	pm_runtime_put(&pdev->dev);
1114
1115	master->dev.of_node = pdev->dev.of_node;
1116	ret = devm_spi_register_master(&pdev->dev, master);
1117	if (ret < 0) {
1118		dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1119		goto exit_pm_disable;
1120	}
1121	return ret;
1122
1123exit_pm_disable:
1124	pm_runtime_disable(&pdev->dev);
1125	if (!pm_runtime_status_suspended(&pdev->dev))
1126		tegra_spi_runtime_suspend(&pdev->dev);
1127	tegra_spi_deinit_dma_param(tspi, false);
1128exit_rx_dma_free:
1129	tegra_spi_deinit_dma_param(tspi, true);
1130exit_free_irq:
1131	free_irq(spi_irq, tspi);
1132exit_free_master:
1133	spi_master_put(master);
1134	return ret;
1135}
1136
1137static int tegra_spi_remove(struct platform_device *pdev)
1138{
1139	struct spi_master *master = platform_get_drvdata(pdev);
1140	struct tegra_spi_data	*tspi = spi_master_get_devdata(master);
1141
1142	free_irq(tspi->irq, tspi);
1143
1144	if (tspi->tx_dma_chan)
1145		tegra_spi_deinit_dma_param(tspi, false);
1146
1147	if (tspi->rx_dma_chan)
1148		tegra_spi_deinit_dma_param(tspi, true);
1149
1150	pm_runtime_disable(&pdev->dev);
1151	if (!pm_runtime_status_suspended(&pdev->dev))
1152		tegra_spi_runtime_suspend(&pdev->dev);
1153
1154	return 0;
1155}
1156
1157#ifdef CONFIG_PM_SLEEP
1158static int tegra_spi_suspend(struct device *dev)
1159{
1160	struct spi_master *master = dev_get_drvdata(dev);
1161
1162	return spi_master_suspend(master);
1163}
1164
1165static int tegra_spi_resume(struct device *dev)
1166{
1167	struct spi_master *master = dev_get_drvdata(dev);
1168	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1169	int ret;
1170
1171	ret = pm_runtime_get_sync(dev);
1172	if (ret < 0) {
1173		dev_err(dev, "pm runtime failed, e = %d\n", ret);
1174		return ret;
1175	}
1176	tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1177	pm_runtime_put(dev);
1178
1179	return spi_master_resume(master);
1180}
1181#endif
1182
1183static int tegra_spi_runtime_suspend(struct device *dev)
1184{
1185	struct spi_master *master = dev_get_drvdata(dev);
1186	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1187
1188	/* Flush all write which are in PPSB queue by reading back */
1189	tegra_spi_readl(tspi, SPI_COMMAND1);
1190
1191	clk_disable_unprepare(tspi->clk);
1192	return 0;
1193}
1194
1195static int tegra_spi_runtime_resume(struct device *dev)
1196{
1197	struct spi_master *master = dev_get_drvdata(dev);
1198	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1199	int ret;
1200
1201	ret = clk_prepare_enable(tspi->clk);
1202	if (ret < 0) {
1203		dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1204		return ret;
1205	}
1206	return 0;
1207}
1208
1209static const struct dev_pm_ops tegra_spi_pm_ops = {
1210	SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1211		tegra_spi_runtime_resume, NULL)
1212	SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1213};
1214static struct platform_driver tegra_spi_driver = {
1215	.driver = {
1216		.name		= "spi-tegra114",
1217		.owner		= THIS_MODULE,
1218		.pm		= &tegra_spi_pm_ops,
1219		.of_match_table	= tegra_spi_of_match,
1220	},
1221	.probe =	tegra_spi_probe,
1222	.remove =	tegra_spi_remove,
1223};
1224module_platform_driver(tegra_spi_driver);
1225
1226MODULE_ALIAS("platform:spi-tegra114");
1227MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1228MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1229MODULE_LICENSE("GPL v2");