Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Copyright (C) 2012 - 2014 Allwinner Tech
  3 * Pan Nan <pannan@allwinnertech.com>
  4 *
  5 * Copyright (C) 2014 Maxime Ripard
  6 * Maxime Ripard <maxime.ripard@free-electrons.com>
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License as
 10 * published by the Free Software Foundation; either version 2 of
 11 * the License, or (at your option) any later version.
 12 */
 13
 14#include <linux/clk.h>
 15#include <linux/delay.h>
 16#include <linux/device.h>
 17#include <linux/interrupt.h>
 18#include <linux/io.h>
 19#include <linux/module.h>
 20#include <linux/platform_device.h>
 21#include <linux/pm_runtime.h>
 22#include <linux/reset.h>
 23#include <linux/workqueue.h>
 24
 25#include <linux/spi/spi.h>
 26
 27#define SUN6I_FIFO_DEPTH		128
 28
 29#define SUN6I_GBL_CTL_REG		0x04
 30#define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
 31#define SUN6I_GBL_CTL_MASTER			BIT(1)
 32#define SUN6I_GBL_CTL_TP			BIT(7)
 33#define SUN6I_GBL_CTL_RST			BIT(31)
 34
 35#define SUN6I_TFR_CTL_REG		0x08
 36#define SUN6I_TFR_CTL_CPHA			BIT(0)
 37#define SUN6I_TFR_CTL_CPOL			BIT(1)
 38#define SUN6I_TFR_CTL_SPOL			BIT(2)
 39#define SUN6I_TFR_CTL_CS_MASK			0x30
 40#define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
 41#define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
 42#define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
 43#define SUN6I_TFR_CTL_DHB			BIT(8)
 44#define SUN6I_TFR_CTL_FBS			BIT(12)
 45#define SUN6I_TFR_CTL_XCH			BIT(31)
 46
 47#define SUN6I_INT_CTL_REG		0x10
 48#define SUN6I_INT_CTL_RF_OVF			BIT(8)
 49#define SUN6I_INT_CTL_TC			BIT(12)
 50
 51#define SUN6I_INT_STA_REG		0x14
 52
 53#define SUN6I_FIFO_CTL_REG		0x18
 54#define SUN6I_FIFO_CTL_RF_RST			BIT(15)
 55#define SUN6I_FIFO_CTL_TF_RST			BIT(31)
 56
 57#define SUN6I_FIFO_STA_REG		0x1c
 58#define SUN6I_FIFO_STA_RF_CNT_MASK		0x7f
 59#define SUN6I_FIFO_STA_RF_CNT_BITS		0
 60#define SUN6I_FIFO_STA_TF_CNT_MASK		0x7f
 61#define SUN6I_FIFO_STA_TF_CNT_BITS		16
 62
 63#define SUN6I_CLK_CTL_REG		0x24
 64#define SUN6I_CLK_CTL_CDR2_MASK			0xff
 65#define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
 66#define SUN6I_CLK_CTL_CDR1_MASK			0xf
 67#define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
 68#define SUN6I_CLK_CTL_DRS			BIT(12)
 69
 70#define SUN6I_BURST_CNT_REG		0x30
 71#define SUN6I_BURST_CNT(cnt)			((cnt) & 0xffffff)
 72
 73#define SUN6I_XMIT_CNT_REG		0x34
 74#define SUN6I_XMIT_CNT(cnt)			((cnt) & 0xffffff)
 75
 76#define SUN6I_BURST_CTL_CNT_REG		0x38
 77#define SUN6I_BURST_CTL_CNT_STC(cnt)		((cnt) & 0xffffff)
 78
 79#define SUN6I_TXDATA_REG		0x200
 80#define SUN6I_RXDATA_REG		0x300
 81
 82struct sun6i_spi {
 83	struct spi_master	*master;
 84	void __iomem		*base_addr;
 85	struct clk		*hclk;
 86	struct clk		*mclk;
 87	struct reset_control	*rstc;
 88
 89	struct completion	done;
 90
 91	const u8		*tx_buf;
 92	u8			*rx_buf;
 93	int			len;
 94};
 95
 96static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
 97{
 98	return readl(sspi->base_addr + reg);
 99}
100
101static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
102{
103	writel(value, sspi->base_addr + reg);
104}
105
106static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
107{
108	u32 reg, cnt;
109	u8 byte;
110
111	/* See how much data is available */
112	reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
113	reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
114	cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
115
116	if (len > cnt)
117		len = cnt;
118
119	while (len--) {
120		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
121		if (sspi->rx_buf)
122			*sspi->rx_buf++ = byte;
123	}
124}
125
126static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
127{
128	u8 byte;
129
130	if (len > sspi->len)
131		len = sspi->len;
132
133	while (len--) {
134		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
135		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
136		sspi->len--;
137	}
138}
139
140static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
141{
142	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
143	u32 reg;
144
145	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
146	reg &= ~SUN6I_TFR_CTL_CS_MASK;
147	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
148
149	if (enable)
150		reg |= SUN6I_TFR_CTL_CS_LEVEL;
151	else
152		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
153
154	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
155}
156
157
158static int sun6i_spi_transfer_one(struct spi_master *master,
159				  struct spi_device *spi,
160				  struct spi_transfer *tfr)
161{
162	struct sun6i_spi *sspi = spi_master_get_devdata(master);
163	unsigned int mclk_rate, div, timeout;
164	unsigned int tx_len = 0;
165	int ret = 0;
166	u32 reg;
167
168	/* We don't support transfer larger than the FIFO */
169	if (tfr->len > SUN6I_FIFO_DEPTH)
170		return -EINVAL;
171
172	reinit_completion(&sspi->done);
173	sspi->tx_buf = tfr->tx_buf;
174	sspi->rx_buf = tfr->rx_buf;
175	sspi->len = tfr->len;
176
177	/* Clear pending interrupts */
178	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
179
180	/* Reset FIFO */
181	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
182			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
183
184	/*
185	 * Setup the transfer control register: Chip Select,
186	 * polarities, etc.
187	 */
188	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
189
190	if (spi->mode & SPI_CPOL)
191		reg |= SUN6I_TFR_CTL_CPOL;
192	else
193		reg &= ~SUN6I_TFR_CTL_CPOL;
194
195	if (spi->mode & SPI_CPHA)
196		reg |= SUN6I_TFR_CTL_CPHA;
197	else
198		reg &= ~SUN6I_TFR_CTL_CPHA;
199
200	if (spi->mode & SPI_LSB_FIRST)
201		reg |= SUN6I_TFR_CTL_FBS;
202	else
203		reg &= ~SUN6I_TFR_CTL_FBS;
204
205	/*
206	 * If it's a TX only transfer, we don't want to fill the RX
207	 * FIFO with bogus data
208	 */
209	if (sspi->rx_buf)
210		reg &= ~SUN6I_TFR_CTL_DHB;
211	else
212		reg |= SUN6I_TFR_CTL_DHB;
213
214	/* We want to control the chip select manually */
215	reg |= SUN6I_TFR_CTL_CS_MANUAL;
216
217	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
218
219	/* Ensure that we have a parent clock fast enough */
220	mclk_rate = clk_get_rate(sspi->mclk);
221	if (mclk_rate < (2 * spi->max_speed_hz)) {
222		clk_set_rate(sspi->mclk, 2 * spi->max_speed_hz);
223		mclk_rate = clk_get_rate(sspi->mclk);
224	}
225
226	/*
227	 * Setup clock divider.
228	 *
229	 * We have two choices there. Either we can use the clock
230	 * divide rate 1, which is calculated thanks to this formula:
231	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
232	 * Or we can use CDR2, which is calculated with the formula:
233	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
234	 * Wether we use the former or the latter is set through the
235	 * DRS bit.
236	 *
237	 * First try CDR2, and if we can't reach the expected
238	 * frequency, fall back to CDR1.
239	 */
240	div = mclk_rate / (2 * spi->max_speed_hz);
241	if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
242		if (div > 0)
243			div--;
244
245		reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
246	} else {
247		div = ilog2(mclk_rate) - ilog2(spi->max_speed_hz);
248		reg = SUN6I_CLK_CTL_CDR1(div);
249	}
250
251	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
252
253	/* Setup the transfer now... */
254	if (sspi->tx_buf)
255		tx_len = tfr->len;
256
257	/* Setup the counters */
258	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
259	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
260	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
261			SUN6I_BURST_CTL_CNT_STC(tx_len));
262
263	/* Fill the TX FIFO */
264	sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
265
266	/* Enable the interrupts */
267	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
268
269	/* Start the transfer */
270	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
271	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
272
273	timeout = wait_for_completion_timeout(&sspi->done,
274					      msecs_to_jiffies(1000));
275	if (!timeout) {
276		ret = -ETIMEDOUT;
277		goto out;
278	}
279
280	sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
281
282out:
283	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
284
285	return ret;
286}
287
288static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
289{
290	struct sun6i_spi *sspi = dev_id;
291	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
292
293	/* Transfer complete */
294	if (status & SUN6I_INT_CTL_TC) {
295		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
296		complete(&sspi->done);
297		return IRQ_HANDLED;
298	}
299
300	return IRQ_NONE;
301}
302
303static int sun6i_spi_runtime_resume(struct device *dev)
304{
305	struct spi_master *master = dev_get_drvdata(dev);
306	struct sun6i_spi *sspi = spi_master_get_devdata(master);
307	int ret;
308
309	ret = clk_prepare_enable(sspi->hclk);
310	if (ret) {
311		dev_err(dev, "Couldn't enable AHB clock\n");
312		goto out;
313	}
314
315	ret = clk_prepare_enable(sspi->mclk);
316	if (ret) {
317		dev_err(dev, "Couldn't enable module clock\n");
318		goto err;
319	}
320
321	ret = reset_control_deassert(sspi->rstc);
322	if (ret) {
323		dev_err(dev, "Couldn't deassert the device from reset\n");
324		goto err2;
325	}
326
327	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
328			SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
329
330	return 0;
331
332err2:
333	clk_disable_unprepare(sspi->mclk);
334err:
335	clk_disable_unprepare(sspi->hclk);
336out:
337	return ret;
338}
339
340static int sun6i_spi_runtime_suspend(struct device *dev)
341{
342	struct spi_master *master = dev_get_drvdata(dev);
343	struct sun6i_spi *sspi = spi_master_get_devdata(master);
344
345	reset_control_assert(sspi->rstc);
346	clk_disable_unprepare(sspi->mclk);
347	clk_disable_unprepare(sspi->hclk);
348
349	return 0;
350}
351
352static int sun6i_spi_probe(struct platform_device *pdev)
353{
354	struct spi_master *master;
355	struct sun6i_spi *sspi;
356	struct resource	*res;
357	int ret = 0, irq;
358
359	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
360	if (!master) {
361		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
362		return -ENOMEM;
363	}
364
365	platform_set_drvdata(pdev, master);
366	sspi = spi_master_get_devdata(master);
367
368	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
369	sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
370	if (IS_ERR(sspi->base_addr)) {
371		ret = PTR_ERR(sspi->base_addr);
372		goto err_free_master;
373	}
374
375	irq = platform_get_irq(pdev, 0);
376	if (irq < 0) {
377		dev_err(&pdev->dev, "No spi IRQ specified\n");
378		ret = -ENXIO;
379		goto err_free_master;
380	}
381
382	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
383			       0, "sun6i-spi", sspi);
384	if (ret) {
385		dev_err(&pdev->dev, "Cannot request IRQ\n");
386		goto err_free_master;
387	}
388
389	sspi->master = master;
390	master->set_cs = sun6i_spi_set_cs;
391	master->transfer_one = sun6i_spi_transfer_one;
392	master->num_chipselect = 4;
393	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
394	master->bits_per_word_mask = SPI_BPW_MASK(8);
395	master->dev.of_node = pdev->dev.of_node;
396	master->auto_runtime_pm = true;
397
398	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
399	if (IS_ERR(sspi->hclk)) {
400		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
401		ret = PTR_ERR(sspi->hclk);
402		goto err_free_master;
403	}
404
405	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
406	if (IS_ERR(sspi->mclk)) {
407		dev_err(&pdev->dev, "Unable to acquire module clock\n");
408		ret = PTR_ERR(sspi->mclk);
409		goto err_free_master;
410	}
411
412	init_completion(&sspi->done);
413
414	sspi->rstc = devm_reset_control_get(&pdev->dev, NULL);
415	if (IS_ERR(sspi->rstc)) {
416		dev_err(&pdev->dev, "Couldn't get reset controller\n");
417		ret = PTR_ERR(sspi->rstc);
418		goto err_free_master;
419	}
420
421	/*
422	 * This wake-up/shutdown pattern is to be able to have the
423	 * device woken up, even if runtime_pm is disabled
424	 */
425	ret = sun6i_spi_runtime_resume(&pdev->dev);
426	if (ret) {
427		dev_err(&pdev->dev, "Couldn't resume the device\n");
428		goto err_free_master;
429	}
430
431	pm_runtime_set_active(&pdev->dev);
432	pm_runtime_enable(&pdev->dev);
433	pm_runtime_idle(&pdev->dev);
434
435	ret = devm_spi_register_master(&pdev->dev, master);
436	if (ret) {
437		dev_err(&pdev->dev, "cannot register SPI master\n");
438		goto err_pm_disable;
439	}
440
441	return 0;
442
443err_pm_disable:
444	pm_runtime_disable(&pdev->dev);
445	sun6i_spi_runtime_suspend(&pdev->dev);
446err_free_master:
447	spi_master_put(master);
448	return ret;
449}
450
451static int sun6i_spi_remove(struct platform_device *pdev)
452{
453	pm_runtime_disable(&pdev->dev);
454
455	return 0;
456}
457
458static const struct of_device_id sun6i_spi_match[] = {
459	{ .compatible = "allwinner,sun6i-a31-spi", },
460	{}
461};
462MODULE_DEVICE_TABLE(of, sun6i_spi_match);
463
464static const struct dev_pm_ops sun6i_spi_pm_ops = {
465	.runtime_resume		= sun6i_spi_runtime_resume,
466	.runtime_suspend	= sun6i_spi_runtime_suspend,
467};
468
469static struct platform_driver sun6i_spi_driver = {
470	.probe	= sun6i_spi_probe,
471	.remove	= sun6i_spi_remove,
472	.driver	= {
473		.name		= "sun6i-spi",
474		.owner		= THIS_MODULE,
475		.of_match_table	= sun6i_spi_match,
476		.pm		= &sun6i_spi_pm_ops,
477	},
478};
479module_platform_driver(sun6i_spi_driver);
480
481MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
482MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
483MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
484MODULE_LICENSE("GPL");