Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * SPI bus driver for CSR SiRFprimaII
  3 *
  4 * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
  5 *
  6 * Licensed under GPLv2 or later.
  7 */
  8
  9#include <linux/module.h>
 10#include <linux/kernel.h>
 11#include <linux/slab.h>
 12#include <linux/clk.h>
 13#include <linux/interrupt.h>
 14#include <linux/io.h>
 15#include <linux/of.h>
 16#include <linux/bitops.h>
 17#include <linux/err.h>
 18#include <linux/platform_device.h>
 19#include <linux/of_gpio.h>
 20#include <linux/spi/spi.h>
 21#include <linux/spi/spi_bitbang.h>
 22#include <linux/dmaengine.h>
 23#include <linux/dma-direction.h>
 24#include <linux/dma-mapping.h>
 25
 26#define DRIVER_NAME "sirfsoc_spi"
 27
 28#define SIRFSOC_SPI_CTRL		0x0000
 29#define SIRFSOC_SPI_CMD			0x0004
 30#define SIRFSOC_SPI_TX_RX_EN		0x0008
 31#define SIRFSOC_SPI_INT_EN		0x000C
 32#define SIRFSOC_SPI_INT_STATUS		0x0010
 33#define SIRFSOC_SPI_TX_DMA_IO_CTRL	0x0100
 34#define SIRFSOC_SPI_TX_DMA_IO_LEN	0x0104
 35#define SIRFSOC_SPI_TXFIFO_CTRL		0x0108
 36#define SIRFSOC_SPI_TXFIFO_LEVEL_CHK	0x010C
 37#define SIRFSOC_SPI_TXFIFO_OP		0x0110
 38#define SIRFSOC_SPI_TXFIFO_STATUS	0x0114
 39#define SIRFSOC_SPI_TXFIFO_DATA		0x0118
 40#define SIRFSOC_SPI_RX_DMA_IO_CTRL	0x0120
 41#define SIRFSOC_SPI_RX_DMA_IO_LEN	0x0124
 42#define SIRFSOC_SPI_RXFIFO_CTRL		0x0128
 43#define SIRFSOC_SPI_RXFIFO_LEVEL_CHK	0x012C
 44#define SIRFSOC_SPI_RXFIFO_OP		0x0130
 45#define SIRFSOC_SPI_RXFIFO_STATUS	0x0134
 46#define SIRFSOC_SPI_RXFIFO_DATA		0x0138
 47#define SIRFSOC_SPI_DUMMY_DELAY_CTL	0x0144
 48
 49/* SPI CTRL register defines */
 50#define SIRFSOC_SPI_SLV_MODE		BIT(16)
 51#define SIRFSOC_SPI_CMD_MODE		BIT(17)
 52#define SIRFSOC_SPI_CS_IO_OUT		BIT(18)
 53#define SIRFSOC_SPI_CS_IO_MODE		BIT(19)
 54#define SIRFSOC_SPI_CLK_IDLE_STAT	BIT(20)
 55#define SIRFSOC_SPI_CS_IDLE_STAT	BIT(21)
 56#define SIRFSOC_SPI_TRAN_MSB		BIT(22)
 57#define SIRFSOC_SPI_DRV_POS_EDGE	BIT(23)
 58#define SIRFSOC_SPI_CS_HOLD_TIME	BIT(24)
 59#define SIRFSOC_SPI_CLK_SAMPLE_MODE	BIT(25)
 60#define SIRFSOC_SPI_TRAN_DAT_FORMAT_8	(0 << 26)
 61#define SIRFSOC_SPI_TRAN_DAT_FORMAT_12	(1 << 26)
 62#define SIRFSOC_SPI_TRAN_DAT_FORMAT_16	(2 << 26)
 63#define SIRFSOC_SPI_TRAN_DAT_FORMAT_32	(3 << 26)
 64#define SIRFSOC_SPI_CMD_BYTE_NUM(x)		((x & 3) << 28)
 65#define SIRFSOC_SPI_ENA_AUTO_CLR		BIT(30)
 66#define SIRFSOC_SPI_MUL_DAT_MODE		BIT(31)
 67
 68/* Interrupt Enable */
 69#define SIRFSOC_SPI_RX_DONE_INT_EN		BIT(0)
 70#define SIRFSOC_SPI_TX_DONE_INT_EN		BIT(1)
 71#define SIRFSOC_SPI_RX_OFLOW_INT_EN		BIT(2)
 72#define SIRFSOC_SPI_TX_UFLOW_INT_EN		BIT(3)
 73#define SIRFSOC_SPI_RX_IO_DMA_INT_EN	BIT(4)
 74#define SIRFSOC_SPI_TX_IO_DMA_INT_EN	BIT(5)
 75#define SIRFSOC_SPI_RXFIFO_FULL_INT_EN	BIT(6)
 76#define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN	BIT(7)
 77#define SIRFSOC_SPI_RXFIFO_THD_INT_EN	BIT(8)
 78#define SIRFSOC_SPI_TXFIFO_THD_INT_EN	BIT(9)
 79#define SIRFSOC_SPI_FRM_END_INT_EN	BIT(10)
 80
 81#define SIRFSOC_SPI_INT_MASK_ALL		0x1FFF
 82
 83/* Interrupt status */
 84#define SIRFSOC_SPI_RX_DONE		BIT(0)
 85#define SIRFSOC_SPI_TX_DONE		BIT(1)
 86#define SIRFSOC_SPI_RX_OFLOW		BIT(2)
 87#define SIRFSOC_SPI_TX_UFLOW		BIT(3)
 88#define SIRFSOC_SPI_RX_FIFO_FULL	BIT(6)
 89#define SIRFSOC_SPI_TXFIFO_EMPTY	BIT(7)
 90#define SIRFSOC_SPI_RXFIFO_THD_REACH	BIT(8)
 91#define SIRFSOC_SPI_TXFIFO_THD_REACH	BIT(9)
 92#define SIRFSOC_SPI_FRM_END		BIT(10)
 93
 94/* TX RX enable */
 95#define SIRFSOC_SPI_RX_EN		BIT(0)
 96#define SIRFSOC_SPI_TX_EN		BIT(1)
 97#define SIRFSOC_SPI_CMD_TX_EN		BIT(2)
 98
 99#define SIRFSOC_SPI_IO_MODE_SEL		BIT(0)
100#define SIRFSOC_SPI_RX_DMA_FLUSH	BIT(2)
101
102/* FIFO OPs */
103#define SIRFSOC_SPI_FIFO_RESET		BIT(0)
104#define SIRFSOC_SPI_FIFO_START		BIT(1)
105
106/* FIFO CTRL */
107#define SIRFSOC_SPI_FIFO_WIDTH_BYTE	(0 << 0)
108#define SIRFSOC_SPI_FIFO_WIDTH_WORD	(1 << 0)
109#define SIRFSOC_SPI_FIFO_WIDTH_DWORD	(2 << 0)
110
111/* FIFO Status */
112#define	SIRFSOC_SPI_FIFO_LEVEL_MASK	0xFF
113#define SIRFSOC_SPI_FIFO_FULL		BIT(8)
114#define SIRFSOC_SPI_FIFO_EMPTY		BIT(9)
115
116/* 256 bytes rx/tx FIFO */
117#define SIRFSOC_SPI_FIFO_SIZE		256
118#define SIRFSOC_SPI_DAT_FRM_LEN_MAX	(64 * 1024)
119
120#define SIRFSOC_SPI_FIFO_SC(x)		((x) & 0x3F)
121#define SIRFSOC_SPI_FIFO_LC(x)		(((x) & 0x3F) << 10)
122#define SIRFSOC_SPI_FIFO_HC(x)		(((x) & 0x3F) << 20)
123#define SIRFSOC_SPI_FIFO_THD(x)		(((x) & 0xFF) << 2)
124
125/*
126 * only if the rx/tx buffer and transfer size are 4-bytes aligned, we use dma
127 * due to the limitation of dma controller
128 */
129
130#define ALIGNED(x) (!((u32)x & 0x3))
131#define IS_DMA_VALID(x) (x && ALIGNED(x->tx_buf) && ALIGNED(x->rx_buf) && \
132	ALIGNED(x->len) && (x->len < 2 * PAGE_SIZE))
133
134#define SIRFSOC_MAX_CMD_BYTES	4
135
136struct sirfsoc_spi {
137	struct spi_bitbang bitbang;
138	struct completion rx_done;
139	struct completion tx_done;
140
141	void __iomem *base;
142	u32 ctrl_freq;  /* SPI controller clock speed */
143	struct clk *clk;
144
145	/* rx & tx bufs from the spi_transfer */
146	const void *tx;
147	void *rx;
148
149	/* place received word into rx buffer */
150	void (*rx_word) (struct sirfsoc_spi *);
151	/* get word from tx buffer for sending */
152	void (*tx_word) (struct sirfsoc_spi *);
153
154	/* number of words left to be tranmitted/received */
155	unsigned int left_tx_word;
156	unsigned int left_rx_word;
157
158	/* rx & tx DMA channels */
159	struct dma_chan *rx_chan;
160	struct dma_chan *tx_chan;
161	dma_addr_t src_start;
162	dma_addr_t dst_start;
163	void *dummypage;
164	int word_width; /* in bytes */
165
166	/*
167	 * if tx size is not more than 4 and rx size is NULL, use
168	 * command model
169	 */
170	bool	tx_by_cmd;
171
172	int chipselect[0];
173};
174
175static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
176{
177	u32 data;
178	u8 *rx = sspi->rx;
179
180	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
181
182	if (rx) {
183		*rx++ = (u8) data;
184		sspi->rx = rx;
185	}
186
187	sspi->left_rx_word--;
188}
189
190static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
191{
192	u32 data = 0;
193	const u8 *tx = sspi->tx;
194
195	if (tx) {
196		data = *tx++;
197		sspi->tx = tx;
198	}
199
200	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
201	sspi->left_tx_word--;
202}
203
204static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
205{
206	u32 data;
207	u16 *rx = sspi->rx;
208
209	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
210
211	if (rx) {
212		*rx++ = (u16) data;
213		sspi->rx = rx;
214	}
215
216	sspi->left_rx_word--;
217}
218
219static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
220{
221	u32 data = 0;
222	const u16 *tx = sspi->tx;
223
224	if (tx) {
225		data = *tx++;
226		sspi->tx = tx;
227	}
228
229	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
230	sspi->left_tx_word--;
231}
232
233static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
234{
235	u32 data;
236	u32 *rx = sspi->rx;
237
238	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
239
240	if (rx) {
241		*rx++ = (u32) data;
242		sspi->rx = rx;
243	}
244
245	sspi->left_rx_word--;
246
247}
248
249static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
250{
251	u32 data = 0;
252	const u32 *tx = sspi->tx;
253
254	if (tx) {
255		data = *tx++;
256		sspi->tx = tx;
257	}
258
259	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
260	sspi->left_tx_word--;
261}
262
263static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
264{
265	struct sirfsoc_spi *sspi = dev_id;
266	u32 spi_stat = readl(sspi->base + SIRFSOC_SPI_INT_STATUS);
267
268	writel(spi_stat, sspi->base + SIRFSOC_SPI_INT_STATUS);
269
270	if (sspi->tx_by_cmd && (spi_stat & SIRFSOC_SPI_FRM_END)) {
271		complete(&sspi->tx_done);
272		writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
273		return IRQ_HANDLED;
274	}
275
276	/* Error Conditions */
277	if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
278			spi_stat & SIRFSOC_SPI_TX_UFLOW) {
279		complete(&sspi->rx_done);
280		writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
281	}
282
283	if (spi_stat & (SIRFSOC_SPI_FRM_END
284			| SIRFSOC_SPI_RXFIFO_THD_REACH))
285		while (!((readl(sspi->base + SIRFSOC_SPI_RXFIFO_STATUS)
286				& SIRFSOC_SPI_FIFO_EMPTY)) &&
287				sspi->left_rx_word)
288			sspi->rx_word(sspi);
289
290	if (spi_stat & (SIRFSOC_SPI_TXFIFO_EMPTY |
291			SIRFSOC_SPI_TXFIFO_THD_REACH))
292		while (!((readl(sspi->base + SIRFSOC_SPI_TXFIFO_STATUS)
293				& SIRFSOC_SPI_FIFO_FULL)) &&
294				sspi->left_tx_word)
295			sspi->tx_word(sspi);
296
297	/* Received all words */
298	if ((sspi->left_rx_word == 0) && (sspi->left_tx_word == 0)) {
299		complete(&sspi->rx_done);
300		writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
301	}
302	return IRQ_HANDLED;
303}
304
305static void spi_sirfsoc_dma_fini_callback(void *data)
306{
307	struct completion *dma_complete = data;
308
309	complete(dma_complete);
310}
311
312static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
313{
314	struct sirfsoc_spi *sspi;
315	int timeout = t->len * 10;
316	sspi = spi_master_get_devdata(spi->master);
317
318	sspi->tx = t->tx_buf ? t->tx_buf : sspi->dummypage;
319	sspi->rx = t->rx_buf ? t->rx_buf : sspi->dummypage;
320	sspi->left_tx_word = sspi->left_rx_word = t->len / sspi->word_width;
321	reinit_completion(&sspi->rx_done);
322	reinit_completion(&sspi->tx_done);
323
324	writel(SIRFSOC_SPI_INT_MASK_ALL, sspi->base + SIRFSOC_SPI_INT_STATUS);
325
326	/*
327	 * fill tx_buf into command register and wait for its completion
328	 */
329	if (sspi->tx_by_cmd) {
330		u32 cmd;
331		memcpy(&cmd, sspi->tx, t->len);
332
333		if (sspi->word_width == 1 && !(spi->mode & SPI_LSB_FIRST))
334			cmd = cpu_to_be32(cmd) >>
335				((SIRFSOC_MAX_CMD_BYTES - t->len) * 8);
336		if (sspi->word_width == 2 && t->len == 4 &&
337				(!(spi->mode & SPI_LSB_FIRST)))
338			cmd = ((cmd & 0xffff) << 16) | (cmd >> 16);
339
340		writel(cmd, sspi->base + SIRFSOC_SPI_CMD);
341		writel(SIRFSOC_SPI_FRM_END_INT_EN,
342			sspi->base + SIRFSOC_SPI_INT_EN);
343		writel(SIRFSOC_SPI_CMD_TX_EN,
344			sspi->base + SIRFSOC_SPI_TX_RX_EN);
345
346		if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
347			dev_err(&spi->dev, "transfer timeout\n");
348			return 0;
349		}
350
351		return t->len;
352	}
353
354	if (sspi->left_tx_word == 1) {
355		writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
356			SIRFSOC_SPI_ENA_AUTO_CLR,
357			sspi->base + SIRFSOC_SPI_CTRL);
358		writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
359		writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
360	} else if ((sspi->left_tx_word > 1) && (sspi->left_tx_word <
361				SIRFSOC_SPI_DAT_FRM_LEN_MAX)) {
362		writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
363				SIRFSOC_SPI_MUL_DAT_MODE |
364				SIRFSOC_SPI_ENA_AUTO_CLR,
365			sspi->base + SIRFSOC_SPI_CTRL);
366		writel(sspi->left_tx_word - 1,
367				sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
368		writel(sspi->left_tx_word - 1,
369				sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
370	} else {
371		writel(readl(sspi->base + SIRFSOC_SPI_CTRL),
372			sspi->base + SIRFSOC_SPI_CTRL);
373		writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
374		writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
375	}
376
377	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
378	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
379	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
380	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
381
382	if (IS_DMA_VALID(t)) {
383		struct dma_async_tx_descriptor *rx_desc, *tx_desc;
384
385		sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len, DMA_FROM_DEVICE);
386		rx_desc = dmaengine_prep_slave_single(sspi->rx_chan,
387			sspi->dst_start, t->len, DMA_DEV_TO_MEM,
388			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
389		rx_desc->callback = spi_sirfsoc_dma_fini_callback;
390		rx_desc->callback_param = &sspi->rx_done;
391
392		sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len, DMA_TO_DEVICE);
393		tx_desc = dmaengine_prep_slave_single(sspi->tx_chan,
394			sspi->src_start, t->len, DMA_MEM_TO_DEV,
395			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
396		tx_desc->callback = spi_sirfsoc_dma_fini_callback;
397		tx_desc->callback_param = &sspi->tx_done;
398
399		dmaengine_submit(tx_desc);
400		dmaengine_submit(rx_desc);
401		dma_async_issue_pending(sspi->tx_chan);
402		dma_async_issue_pending(sspi->rx_chan);
403	} else {
404		/* Send the first word to trigger the whole tx/rx process */
405		sspi->tx_word(sspi);
406
407		writel(SIRFSOC_SPI_RX_OFLOW_INT_EN | SIRFSOC_SPI_TX_UFLOW_INT_EN |
408			SIRFSOC_SPI_RXFIFO_THD_INT_EN | SIRFSOC_SPI_TXFIFO_THD_INT_EN |
409			SIRFSOC_SPI_FRM_END_INT_EN | SIRFSOC_SPI_RXFIFO_FULL_INT_EN |
410			SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN, sspi->base + SIRFSOC_SPI_INT_EN);
411	}
412
413	writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN, sspi->base + SIRFSOC_SPI_TX_RX_EN);
414
415	if (!IS_DMA_VALID(t)) { /* for PIO */
416		if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0)
417			dev_err(&spi->dev, "transfer timeout\n");
418	} else if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) {
419		dev_err(&spi->dev, "transfer timeout\n");
420		dmaengine_terminate_all(sspi->rx_chan);
421	} else
422		sspi->left_rx_word = 0;
423
424	/*
425	 * we only wait tx-done event if transferring by DMA. for PIO,
426	 * we get rx data by writing tx data, so if rx is done, tx has
427	 * done earlier
428	 */
429	if (IS_DMA_VALID(t)) {
430		if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
431			dev_err(&spi->dev, "transfer timeout\n");
432			dmaengine_terminate_all(sspi->tx_chan);
433		}
434	}
435
436	if (IS_DMA_VALID(t)) {
437		dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE);
438		dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE);
439	}
440
441	/* TX, RX FIFO stop */
442	writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
443	writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
444	writel(0, sspi->base + SIRFSOC_SPI_TX_RX_EN);
445	writel(0, sspi->base + SIRFSOC_SPI_INT_EN);
446
447	return t->len - sspi->left_rx_word * sspi->word_width;
448}
449
450static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
451{
452	struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);
453
454	if (sspi->chipselect[spi->chip_select] == 0) {
455		u32 regval = readl(sspi->base + SIRFSOC_SPI_CTRL);
456		switch (value) {
457		case BITBANG_CS_ACTIVE:
458			if (spi->mode & SPI_CS_HIGH)
459				regval |= SIRFSOC_SPI_CS_IO_OUT;
460			else
461				regval &= ~SIRFSOC_SPI_CS_IO_OUT;
462			break;
463		case BITBANG_CS_INACTIVE:
464			if (spi->mode & SPI_CS_HIGH)
465				regval &= ~SIRFSOC_SPI_CS_IO_OUT;
466			else
467				regval |= SIRFSOC_SPI_CS_IO_OUT;
468			break;
469		}
470		writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
471	} else {
472		int gpio = sspi->chipselect[spi->chip_select];
473		switch (value) {
474		case BITBANG_CS_ACTIVE:
475			gpio_direction_output(gpio,
476					spi->mode & SPI_CS_HIGH ? 1 : 0);
477			break;
478		case BITBANG_CS_INACTIVE:
479			gpio_direction_output(gpio,
480					spi->mode & SPI_CS_HIGH ? 0 : 1);
481			break;
482		}
483	}
484}
485
486static int
487spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
488{
489	struct sirfsoc_spi *sspi;
490	u8 bits_per_word = 0;
491	int hz = 0;
492	u32 regval;
493	u32 txfifo_ctrl, rxfifo_ctrl;
494	u32 fifo_size = SIRFSOC_SPI_FIFO_SIZE / 4;
495
496	sspi = spi_master_get_devdata(spi->master);
497
498	bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
499	hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;
500
501	regval = (sspi->ctrl_freq / (2 * hz)) - 1;
502	if (regval > 0xFFFF || regval < 0) {
503		dev_err(&spi->dev, "Speed %d not supported\n", hz);
504		return -EINVAL;
505	}
506
507	switch (bits_per_word) {
508	case 8:
509		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
510		sspi->rx_word = spi_sirfsoc_rx_word_u8;
511		sspi->tx_word = spi_sirfsoc_tx_word_u8;
512		break;
513	case 12:
514	case 16:
515		regval |= (bits_per_word ==  12) ? SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
516			SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
517		sspi->rx_word = spi_sirfsoc_rx_word_u16;
518		sspi->tx_word = spi_sirfsoc_tx_word_u16;
519		break;
520	case 32:
521		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
522		sspi->rx_word = spi_sirfsoc_rx_word_u32;
523		sspi->tx_word = spi_sirfsoc_tx_word_u32;
524		break;
525	default:
526		BUG();
527	}
528
529	sspi->word_width = DIV_ROUND_UP(bits_per_word, 8);
530	txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
531					   sspi->word_width;
532	rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
533					   sspi->word_width;
534
535	if (!(spi->mode & SPI_CS_HIGH))
536		regval |= SIRFSOC_SPI_CS_IDLE_STAT;
537	if (!(spi->mode & SPI_LSB_FIRST))
538		regval |= SIRFSOC_SPI_TRAN_MSB;
539	if (spi->mode & SPI_CPOL)
540		regval |= SIRFSOC_SPI_CLK_IDLE_STAT;
541
542	/*
543	 * Data should be driven at least 1/2 cycle before the fetch edge to make
544	 * sure that data gets stable at the fetch edge.
545	 */
546	if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
547	    (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA)))
548		regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
549	else
550		regval |= SIRFSOC_SPI_DRV_POS_EDGE;
551
552	writel(SIRFSOC_SPI_FIFO_SC(fifo_size - 2) |
553			SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
554			SIRFSOC_SPI_FIFO_HC(2),
555		sspi->base + SIRFSOC_SPI_TXFIFO_LEVEL_CHK);
556	writel(SIRFSOC_SPI_FIFO_SC(2) |
557			SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
558			SIRFSOC_SPI_FIFO_HC(fifo_size - 2),
559		sspi->base + SIRFSOC_SPI_RXFIFO_LEVEL_CHK);
560	writel(txfifo_ctrl, sspi->base + SIRFSOC_SPI_TXFIFO_CTRL);
561	writel(rxfifo_ctrl, sspi->base + SIRFSOC_SPI_RXFIFO_CTRL);
562
563	if (t && t->tx_buf && !t->rx_buf && (t->len <= SIRFSOC_MAX_CMD_BYTES)) {
564		regval |= (SIRFSOC_SPI_CMD_BYTE_NUM((t->len - 1)) |
565				SIRFSOC_SPI_CMD_MODE);
566		sspi->tx_by_cmd = true;
567	} else {
568		regval &= ~SIRFSOC_SPI_CMD_MODE;
569		sspi->tx_by_cmd = false;
570	}
571	/*
572	 * set spi controller in RISC chipselect mode, we are controlling CS by
573	 * software BITBANG_CS_ACTIVE and BITBANG_CS_INACTIVE.
574	 */
575	regval |= SIRFSOC_SPI_CS_IO_MODE;
576	writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
577
578	if (IS_DMA_VALID(t)) {
579		/* Enable DMA mode for RX, TX */
580		writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
581		writel(SIRFSOC_SPI_RX_DMA_FLUSH, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
582	} else {
583		/* Enable IO mode for RX, TX */
584		writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
585		writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
586	}
587
588	return 0;
589}
590
591static int spi_sirfsoc_setup(struct spi_device *spi)
592{
593	if (!spi->max_speed_hz)
594		return -EINVAL;
595
596	return spi_sirfsoc_setup_transfer(spi, NULL);
597}
598
599static int spi_sirfsoc_probe(struct platform_device *pdev)
600{
601	struct sirfsoc_spi *sspi;
602	struct spi_master *master;
603	struct resource *mem_res;
604	int num_cs, cs_gpio, irq;
605	int i;
606	int ret;
607
608	ret = of_property_read_u32(pdev->dev.of_node,
609			"sirf,spi-num-chipselects", &num_cs);
610	if (ret < 0) {
611		dev_err(&pdev->dev, "Unable to get chip select number\n");
612		goto err_cs;
613	}
614
615	master = spi_alloc_master(&pdev->dev, sizeof(*sspi) + sizeof(int) * num_cs);
616	if (!master) {
617		dev_err(&pdev->dev, "Unable to allocate SPI master\n");
618		return -ENOMEM;
619	}
620	platform_set_drvdata(pdev, master);
621	sspi = spi_master_get_devdata(master);
622
623	master->num_chipselect = num_cs;
624
625	for (i = 0; i < master->num_chipselect; i++) {
626		cs_gpio = of_get_named_gpio(pdev->dev.of_node, "cs-gpios", i);
627		if (cs_gpio < 0) {
628			dev_err(&pdev->dev, "can't get cs gpio from DT\n");
629			ret = -ENODEV;
630			goto free_master;
631		}
632
633		sspi->chipselect[i] = cs_gpio;
634		if (cs_gpio == 0)
635			continue; /* use cs from spi controller */
636
637		ret = gpio_request(cs_gpio, DRIVER_NAME);
638		if (ret) {
639			while (i > 0) {
640				i--;
641				if (sspi->chipselect[i] > 0)
642					gpio_free(sspi->chipselect[i]);
643			}
644			dev_err(&pdev->dev, "fail to request cs gpios\n");
645			goto free_master;
646		}
647	}
648
649	mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
650	sspi->base = devm_ioremap_resource(&pdev->dev, mem_res);
651	if (IS_ERR(sspi->base)) {
652		ret = PTR_ERR(sspi->base);
653		goto free_master;
654	}
655
656	irq = platform_get_irq(pdev, 0);
657	if (irq < 0) {
658		ret = -ENXIO;
659		goto free_master;
660	}
661	ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
662				DRIVER_NAME, sspi);
663	if (ret)
664		goto free_master;
665
666	sspi->bitbang.master = master;
667	sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
668	sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
669	sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
670	sspi->bitbang.master->setup = spi_sirfsoc_setup;
671	master->bus_num = pdev->id;
672	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH;
673	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(12) |
674					SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
675	sspi->bitbang.master->dev.of_node = pdev->dev.of_node;
676
677	/* request DMA channels */
678	sspi->rx_chan = dma_request_slave_channel(&pdev->dev, "rx");
679	if (!sspi->rx_chan) {
680		dev_err(&pdev->dev, "can not allocate rx dma channel\n");
681		ret = -ENODEV;
682		goto free_master;
683	}
684	sspi->tx_chan = dma_request_slave_channel(&pdev->dev, "tx");
685	if (!sspi->tx_chan) {
686		dev_err(&pdev->dev, "can not allocate tx dma channel\n");
687		ret = -ENODEV;
688		goto free_rx_dma;
689	}
690
691	sspi->clk = clk_get(&pdev->dev, NULL);
692	if (IS_ERR(sspi->clk)) {
693		ret = PTR_ERR(sspi->clk);
694		goto free_tx_dma;
695	}
696	clk_prepare_enable(sspi->clk);
697	sspi->ctrl_freq = clk_get_rate(sspi->clk);
698
699	init_completion(&sspi->rx_done);
700	init_completion(&sspi->tx_done);
701
702	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
703	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
704	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
705	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
706	/* We are not using dummy delay between command and data */
707	writel(0, sspi->base + SIRFSOC_SPI_DUMMY_DELAY_CTL);
708
709	sspi->dummypage = kmalloc(2 * PAGE_SIZE, GFP_KERNEL);
710	if (!sspi->dummypage) {
711		ret = -ENOMEM;
712		goto free_clk;
713	}
714
715	ret = spi_bitbang_start(&sspi->bitbang);
716	if (ret)
717		goto free_dummypage;
718
719	dev_info(&pdev->dev, "registerred, bus number = %d\n", master->bus_num);
720
721	return 0;
722free_dummypage:
723	kfree(sspi->dummypage);
724free_clk:
725	clk_disable_unprepare(sspi->clk);
726	clk_put(sspi->clk);
727free_tx_dma:
728	dma_release_channel(sspi->tx_chan);
729free_rx_dma:
730	dma_release_channel(sspi->rx_chan);
731free_master:
732	spi_master_put(master);
733err_cs:
734	return ret;
735}
736
737static int  spi_sirfsoc_remove(struct platform_device *pdev)
738{
739	struct spi_master *master;
740	struct sirfsoc_spi *sspi;
741	int i;
742
743	master = platform_get_drvdata(pdev);
744	sspi = spi_master_get_devdata(master);
745
746	spi_bitbang_stop(&sspi->bitbang);
747	for (i = 0; i < master->num_chipselect; i++) {
748		if (sspi->chipselect[i] > 0)
749			gpio_free(sspi->chipselect[i]);
750	}
751	kfree(sspi->dummypage);
752	clk_disable_unprepare(sspi->clk);
753	clk_put(sspi->clk);
754	dma_release_channel(sspi->rx_chan);
755	dma_release_channel(sspi->tx_chan);
756	spi_master_put(master);
757	return 0;
758}
759
760#ifdef CONFIG_PM_SLEEP
761static int spi_sirfsoc_suspend(struct device *dev)
762{
763	struct spi_master *master = dev_get_drvdata(dev);
764	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
765	int ret;
766
767	ret = spi_master_suspend(master);
768	if (ret)
769		return ret;
770
771	clk_disable(sspi->clk);
772	return 0;
773}
774
775static int spi_sirfsoc_resume(struct device *dev)
776{
777	struct spi_master *master = dev_get_drvdata(dev);
778	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
779
780	clk_enable(sspi->clk);
781	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
782	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
783	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
784	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
785
786	return spi_master_resume(master);
787}
788#endif
789
790static SIMPLE_DEV_PM_OPS(spi_sirfsoc_pm_ops, spi_sirfsoc_suspend,
791			 spi_sirfsoc_resume);
792
793static const struct of_device_id spi_sirfsoc_of_match[] = {
794	{ .compatible = "sirf,prima2-spi", },
795	{ .compatible = "sirf,marco-spi", },
796	{}
797};
798MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match);
799
800static struct platform_driver spi_sirfsoc_driver = {
801	.driver = {
802		.name = DRIVER_NAME,
803		.owner = THIS_MODULE,
804		.pm     = &spi_sirfsoc_pm_ops,
805		.of_match_table = spi_sirfsoc_of_match,
806	},
807	.probe = spi_sirfsoc_probe,
808	.remove = spi_sirfsoc_remove,
809};
810module_platform_driver(spi_sirfsoc_driver);
811
812MODULE_DESCRIPTION("SiRF SoC SPI master driver");
813MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>, "
814		"Barry Song <Baohua.Song@csr.com>");
815MODULE_LICENSE("GPL v2");