Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
  21
  22#include "e1000.h"
  23
  24static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  25static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
  26					  u16 *data, bool read, bool page_set);
  27static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  28static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  29					  u16 *data, bool read);
  30
  31/* Cable length tables */
  32static const u16 e1000_m88_cable_length_table[] = {
  33	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
  34};
  35
  36#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  37		ARRAY_SIZE(e1000_m88_cable_length_table)
  38
  39static const u16 e1000_igp_2_cable_length_table[] = {
  40	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  41	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  42	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  43	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  44	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  45	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  46	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  47	124
  48};
  49
  50#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  51		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  52
  53/**
  54 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
  55 *  @hw: pointer to the HW structure
  56 *
  57 *  Read the PHY management control register and check whether a PHY reset
  58 *  is blocked.  If a reset is not blocked return 0, otherwise
  59 *  return E1000_BLK_PHY_RESET (12).
  60 **/
  61s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  62{
  63	u32 manc;
  64
  65	manc = er32(MANC);
  66
  67	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
  68}
  69
  70/**
  71 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
  72 *  @hw: pointer to the HW structure
  73 *
  74 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  75 *  revision in the hardware structure.
  76 **/
  77s32 e1000e_get_phy_id(struct e1000_hw *hw)
  78{
  79	struct e1000_phy_info *phy = &hw->phy;
  80	s32 ret_val = 0;
  81	u16 phy_id;
  82	u16 retry_count = 0;
  83
  84	if (!phy->ops.read_reg)
  85		return 0;
  86
  87	while (retry_count < 2) {
  88		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
  89		if (ret_val)
  90			return ret_val;
  91
  92		phy->id = (u32)(phy_id << 16);
  93		usleep_range(20, 40);
  94		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
  95		if (ret_val)
  96			return ret_val;
  97
  98		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  99		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 100
 101		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
 102			return 0;
 103
 104		retry_count++;
 105	}
 106
 107	return 0;
 108}
 109
 110/**
 111 *  e1000e_phy_reset_dsp - Reset PHY DSP
 112 *  @hw: pointer to the HW structure
 113 *
 114 *  Reset the digital signal processor.
 115 **/
 116s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
 117{
 118	s32 ret_val;
 119
 120	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 121	if (ret_val)
 122		return ret_val;
 123
 124	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 125}
 126
 127/**
 128 *  e1000e_read_phy_reg_mdic - Read MDI control register
 129 *  @hw: pointer to the HW structure
 130 *  @offset: register offset to be read
 131 *  @data: pointer to the read data
 132 *
 133 *  Reads the MDI control register in the PHY at offset and stores the
 134 *  information read to data.
 135 **/
 136s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 137{
 138	struct e1000_phy_info *phy = &hw->phy;
 139	u32 i, mdic = 0;
 140
 141	if (offset > MAX_PHY_REG_ADDRESS) {
 142		e_dbg("PHY Address %d is out of range\n", offset);
 143		return -E1000_ERR_PARAM;
 144	}
 145
 146	/* Set up Op-code, Phy Address, and register offset in the MDI
 147	 * Control register.  The MAC will take care of interfacing with the
 148	 * PHY to retrieve the desired data.
 149	 */
 150	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 151		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 152		(E1000_MDIC_OP_READ));
 153
 154	ew32(MDIC, mdic);
 155
 156	/* Poll the ready bit to see if the MDI read completed
 157	 * Increasing the time out as testing showed failures with
 158	 * the lower time out
 159	 */
 160	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 161		udelay(50);
 162		mdic = er32(MDIC);
 163		if (mdic & E1000_MDIC_READY)
 164			break;
 165	}
 166	if (!(mdic & E1000_MDIC_READY)) {
 167		e_dbg("MDI Read did not complete\n");
 168		return -E1000_ERR_PHY;
 169	}
 170	if (mdic & E1000_MDIC_ERROR) {
 171		e_dbg("MDI Error\n");
 172		return -E1000_ERR_PHY;
 173	}
 174	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 175		e_dbg("MDI Read offset error - requested %d, returned %d\n",
 176		      offset,
 177		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 178		return -E1000_ERR_PHY;
 179	}
 180	*data = (u16)mdic;
 181
 182	/* Allow some time after each MDIC transaction to avoid
 183	 * reading duplicate data in the next MDIC transaction.
 184	 */
 185	if (hw->mac.type == e1000_pch2lan)
 186		udelay(100);
 187
 188	return 0;
 189}
 190
 191/**
 192 *  e1000e_write_phy_reg_mdic - Write MDI control register
 193 *  @hw: pointer to the HW structure
 194 *  @offset: register offset to write to
 195 *  @data: data to write to register at offset
 196 *
 197 *  Writes data to MDI control register in the PHY at offset.
 198 **/
 199s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 200{
 201	struct e1000_phy_info *phy = &hw->phy;
 202	u32 i, mdic = 0;
 203
 204	if (offset > MAX_PHY_REG_ADDRESS) {
 205		e_dbg("PHY Address %d is out of range\n", offset);
 206		return -E1000_ERR_PARAM;
 207	}
 208
 209	/* Set up Op-code, Phy Address, and register offset in the MDI
 210	 * Control register.  The MAC will take care of interfacing with the
 211	 * PHY to retrieve the desired data.
 212	 */
 213	mdic = (((u32)data) |
 214		(offset << E1000_MDIC_REG_SHIFT) |
 215		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 216		(E1000_MDIC_OP_WRITE));
 217
 218	ew32(MDIC, mdic);
 219
 220	/* Poll the ready bit to see if the MDI read completed
 221	 * Increasing the time out as testing showed failures with
 222	 * the lower time out
 223	 */
 224	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 225		udelay(50);
 226		mdic = er32(MDIC);
 227		if (mdic & E1000_MDIC_READY)
 228			break;
 229	}
 230	if (!(mdic & E1000_MDIC_READY)) {
 231		e_dbg("MDI Write did not complete\n");
 232		return -E1000_ERR_PHY;
 233	}
 234	if (mdic & E1000_MDIC_ERROR) {
 235		e_dbg("MDI Error\n");
 236		return -E1000_ERR_PHY;
 237	}
 238	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 239		e_dbg("MDI Write offset error - requested %d, returned %d\n",
 240		      offset,
 241		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 242		return -E1000_ERR_PHY;
 243	}
 244
 245	/* Allow some time after each MDIC transaction to avoid
 246	 * reading duplicate data in the next MDIC transaction.
 247	 */
 248	if (hw->mac.type == e1000_pch2lan)
 249		udelay(100);
 250
 251	return 0;
 252}
 253
 254/**
 255 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 256 *  @hw: pointer to the HW structure
 257 *  @offset: register offset to be read
 258 *  @data: pointer to the read data
 259 *
 260 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 261 *  and storing the retrieved information in data.  Release any acquired
 262 *  semaphores before exiting.
 263 **/
 264s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 265{
 266	s32 ret_val;
 267
 268	ret_val = hw->phy.ops.acquire(hw);
 269	if (ret_val)
 270		return ret_val;
 271
 272	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 273					   data);
 274
 275	hw->phy.ops.release(hw);
 276
 277	return ret_val;
 278}
 279
 280/**
 281 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 282 *  @hw: pointer to the HW structure
 283 *  @offset: register offset to write to
 284 *  @data: data to write at register offset
 285 *
 286 *  Acquires semaphore, if necessary, then writes the data to PHY register
 287 *  at the offset.  Release any acquired semaphores before exiting.
 288 **/
 289s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 290{
 291	s32 ret_val;
 292
 293	ret_val = hw->phy.ops.acquire(hw);
 294	if (ret_val)
 295		return ret_val;
 296
 297	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 298					    data);
 299
 300	hw->phy.ops.release(hw);
 301
 302	return ret_val;
 303}
 304
 305/**
 306 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 307 *  @hw: pointer to the HW structure
 308 *  @page: page to set (shifted left when necessary)
 309 *
 310 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 311 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 312 *  must set it appropriately (if necessary) after this function returns.
 313 **/
 314s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 315{
 316	e_dbg("Setting page 0x%x\n", page);
 317
 318	hw->phy.addr = 1;
 319
 320	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 321}
 322
 323/**
 324 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 325 *  @hw: pointer to the HW structure
 326 *  @offset: register offset to be read
 327 *  @data: pointer to the read data
 328 *  @locked: semaphore has already been acquired or not
 329 *
 330 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 331 *  and stores the retrieved information in data.  Release any acquired
 332 *  semaphores before exiting.
 333 **/
 334static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 335				     bool locked)
 336{
 337	s32 ret_val = 0;
 338
 339	if (!locked) {
 340		if (!hw->phy.ops.acquire)
 341			return 0;
 342
 343		ret_val = hw->phy.ops.acquire(hw);
 344		if (ret_val)
 345			return ret_val;
 346	}
 347
 348	if (offset > MAX_PHY_MULTI_PAGE_REG)
 349		ret_val = e1000e_write_phy_reg_mdic(hw,
 350						    IGP01E1000_PHY_PAGE_SELECT,
 351						    (u16)offset);
 352	if (!ret_val)
 353		ret_val = e1000e_read_phy_reg_mdic(hw,
 354						   MAX_PHY_REG_ADDRESS & offset,
 355						   data);
 356	if (!locked)
 357		hw->phy.ops.release(hw);
 358
 359	return ret_val;
 360}
 361
 362/**
 363 *  e1000e_read_phy_reg_igp - Read igp PHY register
 364 *  @hw: pointer to the HW structure
 365 *  @offset: register offset to be read
 366 *  @data: pointer to the read data
 367 *
 368 *  Acquires semaphore then reads the PHY register at offset and stores the
 369 *  retrieved information in data.
 370 *  Release the acquired semaphore before exiting.
 371 **/
 372s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 373{
 374	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 375}
 376
 377/**
 378 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 379 *  @hw: pointer to the HW structure
 380 *  @offset: register offset to be read
 381 *  @data: pointer to the read data
 382 *
 383 *  Reads the PHY register at offset and stores the retrieved information
 384 *  in data.  Assumes semaphore already acquired.
 385 **/
 386s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 387{
 388	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 389}
 390
 391/**
 392 *  e1000e_write_phy_reg_igp - Write igp PHY register
 393 *  @hw: pointer to the HW structure
 394 *  @offset: register offset to write to
 395 *  @data: data to write at register offset
 396 *  @locked: semaphore has already been acquired or not
 397 *
 398 *  Acquires semaphore, if necessary, then writes the data to PHY register
 399 *  at the offset.  Release any acquired semaphores before exiting.
 400 **/
 401static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 402				      bool locked)
 403{
 404	s32 ret_val = 0;
 405
 406	if (!locked) {
 407		if (!hw->phy.ops.acquire)
 408			return 0;
 409
 410		ret_val = hw->phy.ops.acquire(hw);
 411		if (ret_val)
 412			return ret_val;
 413	}
 414
 415	if (offset > MAX_PHY_MULTI_PAGE_REG)
 416		ret_val = e1000e_write_phy_reg_mdic(hw,
 417						    IGP01E1000_PHY_PAGE_SELECT,
 418						    (u16)offset);
 419	if (!ret_val)
 420		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 421						    offset, data);
 422	if (!locked)
 423		hw->phy.ops.release(hw);
 424
 425	return ret_val;
 426}
 427
 428/**
 429 *  e1000e_write_phy_reg_igp - Write igp PHY register
 430 *  @hw: pointer to the HW structure
 431 *  @offset: register offset to write to
 432 *  @data: data to write at register offset
 433 *
 434 *  Acquires semaphore then writes the data to PHY register
 435 *  at the offset.  Release any acquired semaphores before exiting.
 436 **/
 437s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 438{
 439	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 440}
 441
 442/**
 443 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 444 *  @hw: pointer to the HW structure
 445 *  @offset: register offset to write to
 446 *  @data: data to write at register offset
 447 *
 448 *  Writes the data to PHY register at the offset.
 449 *  Assumes semaphore already acquired.
 450 **/
 451s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 452{
 453	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 454}
 455
 456/**
 457 *  __e1000_read_kmrn_reg - Read kumeran register
 458 *  @hw: pointer to the HW structure
 459 *  @offset: register offset to be read
 460 *  @data: pointer to the read data
 461 *  @locked: semaphore has already been acquired or not
 462 *
 463 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 464 *  using the kumeran interface.  The information retrieved is stored in data.
 465 *  Release any acquired semaphores before exiting.
 466 **/
 467static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 468				 bool locked)
 469{
 470	u32 kmrnctrlsta;
 471
 472	if (!locked) {
 473		s32 ret_val = 0;
 474
 475		if (!hw->phy.ops.acquire)
 476			return 0;
 477
 478		ret_val = hw->phy.ops.acquire(hw);
 479		if (ret_val)
 480			return ret_val;
 481	}
 482
 483	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 484		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
 485	ew32(KMRNCTRLSTA, kmrnctrlsta);
 486	e1e_flush();
 487
 488	udelay(2);
 489
 490	kmrnctrlsta = er32(KMRNCTRLSTA);
 491	*data = (u16)kmrnctrlsta;
 492
 493	if (!locked)
 494		hw->phy.ops.release(hw);
 495
 496	return 0;
 497}
 498
 499/**
 500 *  e1000e_read_kmrn_reg -  Read kumeran register
 501 *  @hw: pointer to the HW structure
 502 *  @offset: register offset to be read
 503 *  @data: pointer to the read data
 504 *
 505 *  Acquires semaphore then reads the PHY register at offset using the
 506 *  kumeran interface.  The information retrieved is stored in data.
 507 *  Release the acquired semaphore before exiting.
 508 **/
 509s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 510{
 511	return __e1000_read_kmrn_reg(hw, offset, data, false);
 512}
 513
 514/**
 515 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 516 *  @hw: pointer to the HW structure
 517 *  @offset: register offset to be read
 518 *  @data: pointer to the read data
 519 *
 520 *  Reads the PHY register at offset using the kumeran interface.  The
 521 *  information retrieved is stored in data.
 522 *  Assumes semaphore already acquired.
 523 **/
 524s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 525{
 526	return __e1000_read_kmrn_reg(hw, offset, data, true);
 527}
 528
 529/**
 530 *  __e1000_write_kmrn_reg - Write kumeran register
 531 *  @hw: pointer to the HW structure
 532 *  @offset: register offset to write to
 533 *  @data: data to write at register offset
 534 *  @locked: semaphore has already been acquired or not
 535 *
 536 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 537 *  at the offset using the kumeran interface.  Release any acquired semaphores
 538 *  before exiting.
 539 **/
 540static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 541				  bool locked)
 542{
 543	u32 kmrnctrlsta;
 544
 545	if (!locked) {
 546		s32 ret_val = 0;
 547
 548		if (!hw->phy.ops.acquire)
 549			return 0;
 550
 551		ret_val = hw->phy.ops.acquire(hw);
 552		if (ret_val)
 553			return ret_val;
 554	}
 555
 556	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 557		       E1000_KMRNCTRLSTA_OFFSET) | data;
 558	ew32(KMRNCTRLSTA, kmrnctrlsta);
 559	e1e_flush();
 560
 561	udelay(2);
 562
 563	if (!locked)
 564		hw->phy.ops.release(hw);
 565
 566	return 0;
 567}
 568
 569/**
 570 *  e1000e_write_kmrn_reg -  Write kumeran register
 571 *  @hw: pointer to the HW structure
 572 *  @offset: register offset to write to
 573 *  @data: data to write at register offset
 574 *
 575 *  Acquires semaphore then writes the data to the PHY register at the offset
 576 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 577 **/
 578s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 579{
 580	return __e1000_write_kmrn_reg(hw, offset, data, false);
 581}
 582
 583/**
 584 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 585 *  @hw: pointer to the HW structure
 586 *  @offset: register offset to write to
 587 *  @data: data to write at register offset
 588 *
 589 *  Write the data to PHY register at the offset using the kumeran interface.
 590 *  Assumes semaphore already acquired.
 591 **/
 592s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 593{
 594	return __e1000_write_kmrn_reg(hw, offset, data, true);
 595}
 596
 597/**
 598 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 599 *  @hw: pointer to the HW structure
 600 *
 601 *  Sets up Master/slave mode
 602 **/
 603static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 604{
 605	s32 ret_val;
 606	u16 phy_data;
 607
 608	/* Resolve Master/Slave mode */
 609	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
 610	if (ret_val)
 611		return ret_val;
 612
 613	/* load defaults for future use */
 614	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
 615	    ((phy_data & CTL1000_AS_MASTER) ?
 616	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 617
 618	switch (hw->phy.ms_type) {
 619	case e1000_ms_force_master:
 620		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
 621		break;
 622	case e1000_ms_force_slave:
 623		phy_data |= CTL1000_ENABLE_MASTER;
 624		phy_data &= ~(CTL1000_AS_MASTER);
 625		break;
 626	case e1000_ms_auto:
 627		phy_data &= ~CTL1000_ENABLE_MASTER;
 628		/* fall-through */
 629	default:
 630		break;
 631	}
 632
 633	return e1e_wphy(hw, MII_CTRL1000, phy_data);
 634}
 635
 636/**
 637 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 638 *  @hw: pointer to the HW structure
 639 *
 640 *  Sets up Carrier-sense on Transmit and downshift values.
 641 **/
 642s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 643{
 644	s32 ret_val;
 645	u16 phy_data;
 646
 647	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 648	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 649	if (ret_val)
 650		return ret_val;
 651
 652	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 653
 654	/* Enable downshift */
 655	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 656
 657	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 658	if (ret_val)
 659		return ret_val;
 660
 661	/* Set MDI/MDIX mode */
 662	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
 663	if (ret_val)
 664		return ret_val;
 665	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
 666	/* Options:
 667	 *   0 - Auto (default)
 668	 *   1 - MDI mode
 669	 *   2 - MDI-X mode
 670	 */
 671	switch (hw->phy.mdix) {
 672	case 1:
 673		break;
 674	case 2:
 675		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
 676		break;
 677	case 0:
 678	default:
 679		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
 680		break;
 681	}
 682	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
 683	if (ret_val)
 684		return ret_val;
 685
 686	return e1000_set_master_slave_mode(hw);
 687}
 688
 689/**
 690 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 691 *  @hw: pointer to the HW structure
 692 *
 693 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 694 *  and downshift values are set also.
 695 **/
 696s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 697{
 698	struct e1000_phy_info *phy = &hw->phy;
 699	s32 ret_val;
 700	u16 phy_data;
 701
 702	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 703	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 704	if (ret_val)
 705		return ret_val;
 706
 707	/* For BM PHY this bit is downshift enable */
 708	if (phy->type != e1000_phy_bm)
 709		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 710
 711	/* Options:
 712	 *   MDI/MDI-X = 0 (default)
 713	 *   0 - Auto for all speeds
 714	 *   1 - MDI mode
 715	 *   2 - MDI-X mode
 716	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 717	 */
 718	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 719
 720	switch (phy->mdix) {
 721	case 1:
 722		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 723		break;
 724	case 2:
 725		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 726		break;
 727	case 3:
 728		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 729		break;
 730	case 0:
 731	default:
 732		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 733		break;
 734	}
 735
 736	/* Options:
 737	 *   disable_polarity_correction = 0 (default)
 738	 *       Automatic Correction for Reversed Cable Polarity
 739	 *   0 - Disabled
 740	 *   1 - Enabled
 741	 */
 742	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 743	if (phy->disable_polarity_correction)
 744		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 745
 746	/* Enable downshift on BM (disabled by default) */
 747	if (phy->type == e1000_phy_bm) {
 748		/* For 82574/82583, first disable then enable downshift */
 749		if (phy->id == BME1000_E_PHY_ID_R2) {
 750			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 751			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 752					   phy_data);
 753			if (ret_val)
 754				return ret_val;
 755			/* Commit the changes. */
 756			ret_val = phy->ops.commit(hw);
 757			if (ret_val) {
 758				e_dbg("Error committing the PHY changes\n");
 759				return ret_val;
 760			}
 761		}
 762
 763		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 764	}
 765
 766	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 767	if (ret_val)
 768		return ret_val;
 769
 770	if ((phy->type == e1000_phy_m88) &&
 771	    (phy->revision < E1000_REVISION_4) &&
 772	    (phy->id != BME1000_E_PHY_ID_R2)) {
 773		/* Force TX_CLK in the Extended PHY Specific Control Register
 774		 * to 25MHz clock.
 775		 */
 776		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 777		if (ret_val)
 778			return ret_val;
 779
 780		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 781
 782		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
 783			/* 82573L PHY - set the downshift counter to 5x. */
 784			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 785			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 786		} else {
 787			/* Configure Master and Slave downshift values */
 788			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 789				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 790			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 791				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 792		}
 793		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 794		if (ret_val)
 795			return ret_val;
 796	}
 797
 798	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 799		/* Set PHY page 0, register 29 to 0x0003 */
 800		ret_val = e1e_wphy(hw, 29, 0x0003);
 801		if (ret_val)
 802			return ret_val;
 803
 804		/* Set PHY page 0, register 30 to 0x0000 */
 805		ret_val = e1e_wphy(hw, 30, 0x0000);
 806		if (ret_val)
 807			return ret_val;
 808	}
 809
 810	/* Commit the changes. */
 811	if (phy->ops.commit) {
 812		ret_val = phy->ops.commit(hw);
 813		if (ret_val) {
 814			e_dbg("Error committing the PHY changes\n");
 815			return ret_val;
 816		}
 817	}
 818
 819	if (phy->type == e1000_phy_82578) {
 820		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 821		if (ret_val)
 822			return ret_val;
 823
 824		/* 82578 PHY - set the downshift count to 1x. */
 825		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 826		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 827		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 828		if (ret_val)
 829			return ret_val;
 830	}
 831
 832	return 0;
 833}
 834
 835/**
 836 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 837 *  @hw: pointer to the HW structure
 838 *
 839 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 840 *  igp PHY's.
 841 **/
 842s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 843{
 844	struct e1000_phy_info *phy = &hw->phy;
 845	s32 ret_val;
 846	u16 data;
 847
 848	ret_val = e1000_phy_hw_reset(hw);
 849	if (ret_val) {
 850		e_dbg("Error resetting the PHY.\n");
 851		return ret_val;
 852	}
 853
 854	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 855	 * timeout issues when LFS is enabled.
 856	 */
 857	msleep(100);
 858
 859	/* disable lplu d0 during driver init */
 860	if (hw->phy.ops.set_d0_lplu_state) {
 861		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
 862		if (ret_val) {
 863			e_dbg("Error Disabling LPLU D0\n");
 864			return ret_val;
 865		}
 866	}
 867	/* Configure mdi-mdix settings */
 868	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 869	if (ret_val)
 870		return ret_val;
 871
 872	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 873
 874	switch (phy->mdix) {
 875	case 1:
 876		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 877		break;
 878	case 2:
 879		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 880		break;
 881	case 0:
 882	default:
 883		data |= IGP01E1000_PSCR_AUTO_MDIX;
 884		break;
 885	}
 886	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 887	if (ret_val)
 888		return ret_val;
 889
 890	/* set auto-master slave resolution settings */
 891	if (hw->mac.autoneg) {
 892		/* when autonegotiation advertisement is only 1000Mbps then we
 893		 * should disable SmartSpeed and enable Auto MasterSlave
 894		 * resolution as hardware default.
 895		 */
 896		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 897			/* Disable SmartSpeed */
 898			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 899					   &data);
 900			if (ret_val)
 901				return ret_val;
 902
 903			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 904			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 905					   data);
 906			if (ret_val)
 907				return ret_val;
 908
 909			/* Set auto Master/Slave resolution process */
 910			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
 911			if (ret_val)
 912				return ret_val;
 913
 914			data &= ~CTL1000_ENABLE_MASTER;
 915			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
 916			if (ret_val)
 917				return ret_val;
 918		}
 919
 920		ret_val = e1000_set_master_slave_mode(hw);
 921	}
 922
 923	return ret_val;
 924}
 925
 926/**
 927 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 928 *  @hw: pointer to the HW structure
 929 *
 930 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 931 *  register and if the PHY is already setup for auto-negotiation, then
 932 *  return successful.  Otherwise, setup advertisement and flow control to
 933 *  the appropriate values for the wanted auto-negotiation.
 934 **/
 935static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 936{
 937	struct e1000_phy_info *phy = &hw->phy;
 938	s32 ret_val;
 939	u16 mii_autoneg_adv_reg;
 940	u16 mii_1000t_ctrl_reg = 0;
 941
 942	phy->autoneg_advertised &= phy->autoneg_mask;
 943
 944	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 945	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
 946	if (ret_val)
 947		return ret_val;
 948
 949	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 950		/* Read the MII 1000Base-T Control Register (Address 9). */
 951		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
 952		if (ret_val)
 953			return ret_val;
 954	}
 955
 956	/* Need to parse both autoneg_advertised and fc and set up
 957	 * the appropriate PHY registers.  First we will parse for
 958	 * autoneg_advertised software override.  Since we can advertise
 959	 * a plethora of combinations, we need to check each bit
 960	 * individually.
 961	 */
 962
 963	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 964	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 965	 * the  1000Base-T Control Register (Address 9).
 966	 */
 967	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
 968				 ADVERTISE_100HALF |
 969				 ADVERTISE_10FULL | ADVERTISE_10HALF);
 970	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
 971
 972	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 973
 974	/* Do we want to advertise 10 Mb Half Duplex? */
 975	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 976		e_dbg("Advertise 10mb Half duplex\n");
 977		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
 978	}
 979
 980	/* Do we want to advertise 10 Mb Full Duplex? */
 981	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 982		e_dbg("Advertise 10mb Full duplex\n");
 983		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
 984	}
 985
 986	/* Do we want to advertise 100 Mb Half Duplex? */
 987	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 988		e_dbg("Advertise 100mb Half duplex\n");
 989		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
 990	}
 991
 992	/* Do we want to advertise 100 Mb Full Duplex? */
 993	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 994		e_dbg("Advertise 100mb Full duplex\n");
 995		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
 996	}
 997
 998	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
 999	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1000		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1001
1002	/* Do we want to advertise 1000 Mb Full Duplex? */
1003	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1004		e_dbg("Advertise 1000mb Full duplex\n");
1005		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
1006	}
1007
1008	/* Check for a software override of the flow control settings, and
1009	 * setup the PHY advertisement registers accordingly.  If
1010	 * auto-negotiation is enabled, then software will have to set the
1011	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1012	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1013	 * negotiation.
1014	 *
1015	 * The possible values of the "fc" parameter are:
1016	 *      0:  Flow control is completely disabled
1017	 *      1:  Rx flow control is enabled (we can receive pause frames
1018	 *          but not send pause frames).
1019	 *      2:  Tx flow control is enabled (we can send pause frames
1020	 *          but we do not support receiving pause frames).
1021	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1022	 *  other:  No software override.  The flow control configuration
1023	 *          in the EEPROM is used.
1024	 */
1025	switch (hw->fc.current_mode) {
1026	case e1000_fc_none:
1027		/* Flow control (Rx & Tx) is completely disabled by a
1028		 * software over-ride.
1029		 */
1030		mii_autoneg_adv_reg &=
1031		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1032		break;
1033	case e1000_fc_rx_pause:
1034		/* Rx Flow control is enabled, and Tx Flow control is
1035		 * disabled, by a software over-ride.
1036		 *
1037		 * Since there really isn't a way to advertise that we are
1038		 * capable of Rx Pause ONLY, we will advertise that we
1039		 * support both symmetric and asymmetric Rx PAUSE.  Later
1040		 * (in e1000e_config_fc_after_link_up) we will disable the
1041		 * hw's ability to send PAUSE frames.
1042		 */
1043		mii_autoneg_adv_reg |=
1044		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1045		break;
1046	case e1000_fc_tx_pause:
1047		/* Tx Flow control is enabled, and Rx Flow control is
1048		 * disabled, by a software over-ride.
1049		 */
1050		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1051		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1052		break;
1053	case e1000_fc_full:
1054		/* Flow control (both Rx and Tx) is enabled by a software
1055		 * over-ride.
1056		 */
1057		mii_autoneg_adv_reg |=
1058		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1059		break;
1060	default:
1061		e_dbg("Flow control param set incorrectly\n");
1062		return -E1000_ERR_CONFIG;
1063	}
1064
1065	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1066	if (ret_val)
1067		return ret_val;
1068
1069	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1070
1071	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1072		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1073
1074	return ret_val;
1075}
1076
1077/**
1078 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1079 *  @hw: pointer to the HW structure
1080 *
1081 *  Performs initial bounds checking on autoneg advertisement parameter, then
1082 *  configure to advertise the full capability.  Setup the PHY to autoneg
1083 *  and restart the negotiation process between the link partner.  If
1084 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1085 **/
1086static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1087{
1088	struct e1000_phy_info *phy = &hw->phy;
1089	s32 ret_val;
1090	u16 phy_ctrl;
1091
1092	/* Perform some bounds checking on the autoneg advertisement
1093	 * parameter.
1094	 */
1095	phy->autoneg_advertised &= phy->autoneg_mask;
1096
1097	/* If autoneg_advertised is zero, we assume it was not defaulted
1098	 * by the calling code so we set to advertise full capability.
1099	 */
1100	if (!phy->autoneg_advertised)
1101		phy->autoneg_advertised = phy->autoneg_mask;
1102
1103	e_dbg("Reconfiguring auto-neg advertisement params\n");
1104	ret_val = e1000_phy_setup_autoneg(hw);
1105	if (ret_val) {
1106		e_dbg("Error Setting up Auto-Negotiation\n");
1107		return ret_val;
1108	}
1109	e_dbg("Restarting Auto-Neg\n");
1110
1111	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1112	 * the Auto Neg Restart bit in the PHY control register.
1113	 */
1114	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1115	if (ret_val)
1116		return ret_val;
1117
1118	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1119	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1120	if (ret_val)
1121		return ret_val;
1122
1123	/* Does the user want to wait for Auto-Neg to complete here, or
1124	 * check at a later time (for example, callback routine).
1125	 */
1126	if (phy->autoneg_wait_to_complete) {
1127		ret_val = e1000_wait_autoneg(hw);
1128		if (ret_val) {
1129			e_dbg("Error while waiting for autoneg to complete\n");
1130			return ret_val;
1131		}
1132	}
1133
1134	hw->mac.get_link_status = true;
1135
1136	return ret_val;
1137}
1138
1139/**
1140 *  e1000e_setup_copper_link - Configure copper link settings
1141 *  @hw: pointer to the HW structure
1142 *
1143 *  Calls the appropriate function to configure the link for auto-neg or forced
1144 *  speed and duplex.  Then we check for link, once link is established calls
1145 *  to configure collision distance and flow control are called.  If link is
1146 *  not established, we return -E1000_ERR_PHY (-2).
1147 **/
1148s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1149{
1150	s32 ret_val;
1151	bool link;
1152
1153	if (hw->mac.autoneg) {
1154		/* Setup autoneg and flow control advertisement and perform
1155		 * autonegotiation.
1156		 */
1157		ret_val = e1000_copper_link_autoneg(hw);
1158		if (ret_val)
1159			return ret_val;
1160	} else {
1161		/* PHY will be set to 10H, 10F, 100H or 100F
1162		 * depending on user settings.
1163		 */
1164		e_dbg("Forcing Speed and Duplex\n");
1165		ret_val = hw->phy.ops.force_speed_duplex(hw);
1166		if (ret_val) {
1167			e_dbg("Error Forcing Speed and Duplex\n");
1168			return ret_val;
1169		}
1170	}
1171
1172	/* Check link status. Wait up to 100 microseconds for link to become
1173	 * valid.
1174	 */
1175	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1176					      &link);
1177	if (ret_val)
1178		return ret_val;
1179
1180	if (link) {
1181		e_dbg("Valid link established!!!\n");
1182		hw->mac.ops.config_collision_dist(hw);
1183		ret_val = e1000e_config_fc_after_link_up(hw);
1184	} else {
1185		e_dbg("Unable to establish link!!!\n");
1186	}
1187
1188	return ret_val;
1189}
1190
1191/**
1192 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1193 *  @hw: pointer to the HW structure
1194 *
1195 *  Calls the PHY setup function to force speed and duplex.  Clears the
1196 *  auto-crossover to force MDI manually.  Waits for link and returns
1197 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1198 **/
1199s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1200{
1201	struct e1000_phy_info *phy = &hw->phy;
1202	s32 ret_val;
1203	u16 phy_data;
1204	bool link;
1205
1206	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1207	if (ret_val)
1208		return ret_val;
1209
1210	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1211
1212	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1213	if (ret_val)
1214		return ret_val;
1215
1216	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1217	 * forced whenever speed and duplex are forced.
1218	 */
1219	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1220	if (ret_val)
1221		return ret_val;
1222
1223	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1224	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1225
1226	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1227	if (ret_val)
1228		return ret_val;
1229
1230	e_dbg("IGP PSCR: %X\n", phy_data);
1231
1232	udelay(1);
1233
1234	if (phy->autoneg_wait_to_complete) {
1235		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1236
1237		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1238						      100000, &link);
1239		if (ret_val)
1240			return ret_val;
1241
1242		if (!link)
1243			e_dbg("Link taking longer than expected.\n");
1244
1245		/* Try once more */
1246		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1247						      100000, &link);
1248	}
1249
1250	return ret_val;
1251}
1252
1253/**
1254 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1255 *  @hw: pointer to the HW structure
1256 *
1257 *  Calls the PHY setup function to force speed and duplex.  Clears the
1258 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1259 *  changes.  If time expires while waiting for link up, we reset the DSP.
1260 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1261 *  successful completion, else return corresponding error code.
1262 **/
1263s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1264{
1265	struct e1000_phy_info *phy = &hw->phy;
1266	s32 ret_val;
1267	u16 phy_data;
1268	bool link;
1269
1270	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1271	 * forced whenever speed and duplex are forced.
1272	 */
1273	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1274	if (ret_val)
1275		return ret_val;
1276
1277	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1278	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1279	if (ret_val)
1280		return ret_val;
1281
1282	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1283
1284	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1285	if (ret_val)
1286		return ret_val;
1287
1288	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1289
1290	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1291	if (ret_val)
1292		return ret_val;
1293
1294	/* Reset the phy to commit changes. */
1295	if (hw->phy.ops.commit) {
1296		ret_val = hw->phy.ops.commit(hw);
1297		if (ret_val)
1298			return ret_val;
1299	}
1300
1301	if (phy->autoneg_wait_to_complete) {
1302		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1303
1304		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1305						      100000, &link);
1306		if (ret_val)
1307			return ret_val;
1308
1309		if (!link) {
1310			if (hw->phy.type != e1000_phy_m88) {
1311				e_dbg("Link taking longer than expected.\n");
1312			} else {
1313				/* We didn't get link.
1314				 * Reset the DSP and cross our fingers.
1315				 */
1316				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1317						   0x001d);
1318				if (ret_val)
1319					return ret_val;
1320				ret_val = e1000e_phy_reset_dsp(hw);
1321				if (ret_val)
1322					return ret_val;
1323			}
1324		}
1325
1326		/* Try once more */
1327		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1328						      100000, &link);
1329		if (ret_val)
1330			return ret_val;
1331	}
1332
1333	if (hw->phy.type != e1000_phy_m88)
1334		return 0;
1335
1336	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1337	if (ret_val)
1338		return ret_val;
1339
1340	/* Resetting the phy means we need to re-force TX_CLK in the
1341	 * Extended PHY Specific Control Register to 25MHz clock from
1342	 * the reset value of 2.5MHz.
1343	 */
1344	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1345	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1346	if (ret_val)
1347		return ret_val;
1348
1349	/* In addition, we must re-enable CRS on Tx for both half and full
1350	 * duplex.
1351	 */
1352	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1353	if (ret_val)
1354		return ret_val;
1355
1356	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1357	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1358
1359	return ret_val;
1360}
1361
1362/**
1363 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1364 *  @hw: pointer to the HW structure
1365 *
1366 *  Forces the speed and duplex settings of the PHY.
1367 *  This is a function pointer entry point only called by
1368 *  PHY setup routines.
1369 **/
1370s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1371{
1372	struct e1000_phy_info *phy = &hw->phy;
1373	s32 ret_val;
1374	u16 data;
1375	bool link;
1376
1377	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1378	if (ret_val)
1379		return ret_val;
1380
1381	e1000e_phy_force_speed_duplex_setup(hw, &data);
1382
1383	ret_val = e1e_wphy(hw, MII_BMCR, data);
1384	if (ret_val)
1385		return ret_val;
1386
1387	/* Disable MDI-X support for 10/100 */
1388	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1389	if (ret_val)
1390		return ret_val;
1391
1392	data &= ~IFE_PMC_AUTO_MDIX;
1393	data &= ~IFE_PMC_FORCE_MDIX;
1394
1395	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1396	if (ret_val)
1397		return ret_val;
1398
1399	e_dbg("IFE PMC: %X\n", data);
1400
1401	udelay(1);
1402
1403	if (phy->autoneg_wait_to_complete) {
1404		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1405
1406		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1407						      100000, &link);
1408		if (ret_val)
1409			return ret_val;
1410
1411		if (!link)
1412			e_dbg("Link taking longer than expected.\n");
1413
1414		/* Try once more */
1415		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1416						      100000, &link);
1417		if (ret_val)
1418			return ret_val;
1419	}
1420
1421	return 0;
1422}
1423
1424/**
1425 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1426 *  @hw: pointer to the HW structure
1427 *  @phy_ctrl: pointer to current value of MII_BMCR
1428 *
1429 *  Forces speed and duplex on the PHY by doing the following: disable flow
1430 *  control, force speed/duplex on the MAC, disable auto speed detection,
1431 *  disable auto-negotiation, configure duplex, configure speed, configure
1432 *  the collision distance, write configuration to CTRL register.  The
1433 *  caller must write to the MII_BMCR register for these settings to
1434 *  take affect.
1435 **/
1436void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1437{
1438	struct e1000_mac_info *mac = &hw->mac;
1439	u32 ctrl;
1440
1441	/* Turn off flow control when forcing speed/duplex */
1442	hw->fc.current_mode = e1000_fc_none;
1443
1444	/* Force speed/duplex on the mac */
1445	ctrl = er32(CTRL);
1446	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1447	ctrl &= ~E1000_CTRL_SPD_SEL;
1448
1449	/* Disable Auto Speed Detection */
1450	ctrl &= ~E1000_CTRL_ASDE;
1451
1452	/* Disable autoneg on the phy */
1453	*phy_ctrl &= ~BMCR_ANENABLE;
1454
1455	/* Forcing Full or Half Duplex? */
1456	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1457		ctrl &= ~E1000_CTRL_FD;
1458		*phy_ctrl &= ~BMCR_FULLDPLX;
1459		e_dbg("Half Duplex\n");
1460	} else {
1461		ctrl |= E1000_CTRL_FD;
1462		*phy_ctrl |= BMCR_FULLDPLX;
1463		e_dbg("Full Duplex\n");
1464	}
1465
1466	/* Forcing 10mb or 100mb? */
1467	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1468		ctrl |= E1000_CTRL_SPD_100;
1469		*phy_ctrl |= BMCR_SPEED100;
1470		*phy_ctrl &= ~BMCR_SPEED1000;
1471		e_dbg("Forcing 100mb\n");
1472	} else {
1473		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1474		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1475		e_dbg("Forcing 10mb\n");
1476	}
1477
1478	hw->mac.ops.config_collision_dist(hw);
1479
1480	ew32(CTRL, ctrl);
1481}
1482
1483/**
1484 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1485 *  @hw: pointer to the HW structure
1486 *  @active: boolean used to enable/disable lplu
1487 *
1488 *  Success returns 0, Failure returns 1
1489 *
1490 *  The low power link up (lplu) state is set to the power management level D3
1491 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1492 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1493 *  is used during Dx states where the power conservation is most important.
1494 *  During driver activity, SmartSpeed should be enabled so performance is
1495 *  maintained.
1496 **/
1497s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1498{
1499	struct e1000_phy_info *phy = &hw->phy;
1500	s32 ret_val;
1501	u16 data;
1502
1503	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1504	if (ret_val)
1505		return ret_val;
1506
1507	if (!active) {
1508		data &= ~IGP02E1000_PM_D3_LPLU;
1509		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1510		if (ret_val)
1511			return ret_val;
1512		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1513		 * during Dx states where the power conservation is most
1514		 * important.  During driver activity we should enable
1515		 * SmartSpeed, so performance is maintained.
1516		 */
1517		if (phy->smart_speed == e1000_smart_speed_on) {
1518			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1519					   &data);
1520			if (ret_val)
1521				return ret_val;
1522
1523			data |= IGP01E1000_PSCFR_SMART_SPEED;
1524			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1525					   data);
1526			if (ret_val)
1527				return ret_val;
1528		} else if (phy->smart_speed == e1000_smart_speed_off) {
1529			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1530					   &data);
1531			if (ret_val)
1532				return ret_val;
1533
1534			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1535			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1536					   data);
1537			if (ret_val)
1538				return ret_val;
1539		}
1540	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1541		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1542		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1543		data |= IGP02E1000_PM_D3_LPLU;
1544		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1545		if (ret_val)
1546			return ret_val;
1547
1548		/* When LPLU is enabled, we should disable SmartSpeed */
1549		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1550		if (ret_val)
1551			return ret_val;
1552
1553		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1554		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1555	}
1556
1557	return ret_val;
1558}
1559
1560/**
1561 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1562 *  @hw: pointer to the HW structure
1563 *
1564 *  Success returns 0, Failure returns 1
1565 *
1566 *  A downshift is detected by querying the PHY link health.
1567 **/
1568s32 e1000e_check_downshift(struct e1000_hw *hw)
1569{
1570	struct e1000_phy_info *phy = &hw->phy;
1571	s32 ret_val;
1572	u16 phy_data, offset, mask;
1573
1574	switch (phy->type) {
1575	case e1000_phy_m88:
1576	case e1000_phy_gg82563:
1577	case e1000_phy_bm:
1578	case e1000_phy_82578:
1579		offset = M88E1000_PHY_SPEC_STATUS;
1580		mask = M88E1000_PSSR_DOWNSHIFT;
1581		break;
1582	case e1000_phy_igp_2:
1583	case e1000_phy_igp_3:
1584		offset = IGP01E1000_PHY_LINK_HEALTH;
1585		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1586		break;
1587	default:
1588		/* speed downshift not supported */
1589		phy->speed_downgraded = false;
1590		return 0;
1591	}
1592
1593	ret_val = e1e_rphy(hw, offset, &phy_data);
1594
1595	if (!ret_val)
1596		phy->speed_downgraded = !!(phy_data & mask);
1597
1598	return ret_val;
1599}
1600
1601/**
1602 *  e1000_check_polarity_m88 - Checks the polarity.
1603 *  @hw: pointer to the HW structure
1604 *
1605 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1606 *
1607 *  Polarity is determined based on the PHY specific status register.
1608 **/
1609s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1610{
1611	struct e1000_phy_info *phy = &hw->phy;
1612	s32 ret_val;
1613	u16 data;
1614
1615	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1616
1617	if (!ret_val)
1618		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1619				       ? e1000_rev_polarity_reversed
1620				       : e1000_rev_polarity_normal);
1621
1622	return ret_val;
1623}
1624
1625/**
1626 *  e1000_check_polarity_igp - Checks the polarity.
1627 *  @hw: pointer to the HW structure
1628 *
1629 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1630 *
1631 *  Polarity is determined based on the PHY port status register, and the
1632 *  current speed (since there is no polarity at 100Mbps).
1633 **/
1634s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1635{
1636	struct e1000_phy_info *phy = &hw->phy;
1637	s32 ret_val;
1638	u16 data, offset, mask;
1639
1640	/* Polarity is determined based on the speed of
1641	 * our connection.
1642	 */
1643	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1644	if (ret_val)
1645		return ret_val;
1646
1647	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1648	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1649		offset = IGP01E1000_PHY_PCS_INIT_REG;
1650		mask = IGP01E1000_PHY_POLARITY_MASK;
1651	} else {
1652		/* This really only applies to 10Mbps since
1653		 * there is no polarity for 100Mbps (always 0).
1654		 */
1655		offset = IGP01E1000_PHY_PORT_STATUS;
1656		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1657	}
1658
1659	ret_val = e1e_rphy(hw, offset, &data);
1660
1661	if (!ret_val)
1662		phy->cable_polarity = ((data & mask)
1663				       ? e1000_rev_polarity_reversed
1664				       : e1000_rev_polarity_normal);
1665
1666	return ret_val;
1667}
1668
1669/**
1670 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1671 *  @hw: pointer to the HW structure
1672 *
1673 *  Polarity is determined on the polarity reversal feature being enabled.
1674 **/
1675s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1676{
1677	struct e1000_phy_info *phy = &hw->phy;
1678	s32 ret_val;
1679	u16 phy_data, offset, mask;
1680
1681	/* Polarity is determined based on the reversal feature being enabled.
1682	 */
1683	if (phy->polarity_correction) {
1684		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1685		mask = IFE_PESC_POLARITY_REVERSED;
1686	} else {
1687		offset = IFE_PHY_SPECIAL_CONTROL;
1688		mask = IFE_PSC_FORCE_POLARITY;
1689	}
1690
1691	ret_val = e1e_rphy(hw, offset, &phy_data);
1692
1693	if (!ret_val)
1694		phy->cable_polarity = ((phy_data & mask)
1695				       ? e1000_rev_polarity_reversed
1696				       : e1000_rev_polarity_normal);
1697
1698	return ret_val;
1699}
1700
1701/**
1702 *  e1000_wait_autoneg - Wait for auto-neg completion
1703 *  @hw: pointer to the HW structure
1704 *
1705 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1706 *  limit to expire, which ever happens first.
1707 **/
1708static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1709{
1710	s32 ret_val = 0;
1711	u16 i, phy_status;
1712
1713	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1714	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1715		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1716		if (ret_val)
1717			break;
1718		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1719		if (ret_val)
1720			break;
1721		if (phy_status & BMSR_ANEGCOMPLETE)
1722			break;
1723		msleep(100);
1724	}
1725
1726	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1727	 * has completed.
1728	 */
1729	return ret_val;
1730}
1731
1732/**
1733 *  e1000e_phy_has_link_generic - Polls PHY for link
1734 *  @hw: pointer to the HW structure
1735 *  @iterations: number of times to poll for link
1736 *  @usec_interval: delay between polling attempts
1737 *  @success: pointer to whether polling was successful or not
1738 *
1739 *  Polls the PHY status register for link, 'iterations' number of times.
1740 **/
1741s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1742				u32 usec_interval, bool *success)
1743{
1744	s32 ret_val = 0;
1745	u16 i, phy_status;
1746
1747	for (i = 0; i < iterations; i++) {
1748		/* Some PHYs require the MII_BMSR register to be read
1749		 * twice due to the link bit being sticky.  No harm doing
1750		 * it across the board.
1751		 */
1752		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1753		if (ret_val) {
1754			/* If the first read fails, another entity may have
1755			 * ownership of the resources, wait and try again to
1756			 * see if they have relinquished the resources yet.
1757			 */
1758			if (usec_interval >= 1000)
1759				msleep(usec_interval / 1000);
1760			else
1761				udelay(usec_interval);
1762		}
1763		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1764		if (ret_val)
1765			break;
1766		if (phy_status & BMSR_LSTATUS)
1767			break;
1768		if (usec_interval >= 1000)
1769			msleep(usec_interval / 1000);
1770		else
1771			udelay(usec_interval);
1772	}
1773
1774	*success = (i < iterations);
1775
1776	return ret_val;
1777}
1778
1779/**
1780 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1781 *  @hw: pointer to the HW structure
1782 *
1783 *  Reads the PHY specific status register to retrieve the cable length
1784 *  information.  The cable length is determined by averaging the minimum and
1785 *  maximum values to get the "average" cable length.  The m88 PHY has four
1786 *  possible cable length values, which are:
1787 *	Register Value		Cable Length
1788 *	0			< 50 meters
1789 *	1			50 - 80 meters
1790 *	2			80 - 110 meters
1791 *	3			110 - 140 meters
1792 *	4			> 140 meters
1793 **/
1794s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1795{
1796	struct e1000_phy_info *phy = &hw->phy;
1797	s32 ret_val;
1798	u16 phy_data, index;
1799
1800	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1801	if (ret_val)
1802		return ret_val;
1803
1804	index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1805		 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
1806
1807	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1808		return -E1000_ERR_PHY;
1809
1810	phy->min_cable_length = e1000_m88_cable_length_table[index];
1811	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1812
1813	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1814
1815	return 0;
1816}
1817
1818/**
1819 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1820 *  @hw: pointer to the HW structure
1821 *
1822 *  The automatic gain control (agc) normalizes the amplitude of the
1823 *  received signal, adjusting for the attenuation produced by the
1824 *  cable.  By reading the AGC registers, which represent the
1825 *  combination of coarse and fine gain value, the value can be put
1826 *  into a lookup table to obtain the approximate cable length
1827 *  for each channel.
1828 **/
1829s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1830{
1831	struct e1000_phy_info *phy = &hw->phy;
1832	s32 ret_val;
1833	u16 phy_data, i, agc_value = 0;
1834	u16 cur_agc_index, max_agc_index = 0;
1835	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1836	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1837		IGP02E1000_PHY_AGC_A,
1838		IGP02E1000_PHY_AGC_B,
1839		IGP02E1000_PHY_AGC_C,
1840		IGP02E1000_PHY_AGC_D
1841	};
1842
1843	/* Read the AGC registers for all channels */
1844	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1845		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1846		if (ret_val)
1847			return ret_val;
1848
1849		/* Getting bits 15:9, which represent the combination of
1850		 * coarse and fine gain values.  The result is a number
1851		 * that can be put into the lookup table to obtain the
1852		 * approximate cable length.
1853		 */
1854		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1855				 IGP02E1000_AGC_LENGTH_MASK);
1856
1857		/* Array index bound check. */
1858		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1859		    (cur_agc_index == 0))
1860			return -E1000_ERR_PHY;
1861
1862		/* Remove min & max AGC values from calculation. */
1863		if (e1000_igp_2_cable_length_table[min_agc_index] >
1864		    e1000_igp_2_cable_length_table[cur_agc_index])
1865			min_agc_index = cur_agc_index;
1866		if (e1000_igp_2_cable_length_table[max_agc_index] <
1867		    e1000_igp_2_cable_length_table[cur_agc_index])
1868			max_agc_index = cur_agc_index;
1869
1870		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1871	}
1872
1873	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1874		      e1000_igp_2_cable_length_table[max_agc_index]);
1875	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1876
1877	/* Calculate cable length with the error range of +/- 10 meters. */
1878	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1879				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1880	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1881
1882	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1883
1884	return 0;
1885}
1886
1887/**
1888 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1889 *  @hw: pointer to the HW structure
1890 *
1891 *  Valid for only copper links.  Read the PHY status register (sticky read)
1892 *  to verify that link is up.  Read the PHY special control register to
1893 *  determine the polarity and 10base-T extended distance.  Read the PHY
1894 *  special status register to determine MDI/MDIx and current speed.  If
1895 *  speed is 1000, then determine cable length, local and remote receiver.
1896 **/
1897s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1898{
1899	struct e1000_phy_info *phy = &hw->phy;
1900	s32 ret_val;
1901	u16 phy_data;
1902	bool link;
1903
1904	if (phy->media_type != e1000_media_type_copper) {
1905		e_dbg("Phy info is only valid for copper media\n");
1906		return -E1000_ERR_CONFIG;
1907	}
1908
1909	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1910	if (ret_val)
1911		return ret_val;
1912
1913	if (!link) {
1914		e_dbg("Phy info is only valid if link is up\n");
1915		return -E1000_ERR_CONFIG;
1916	}
1917
1918	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1919	if (ret_val)
1920		return ret_val;
1921
1922	phy->polarity_correction = !!(phy_data &
1923				      M88E1000_PSCR_POLARITY_REVERSAL);
1924
1925	ret_val = e1000_check_polarity_m88(hw);
1926	if (ret_val)
1927		return ret_val;
1928
1929	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1930	if (ret_val)
1931		return ret_val;
1932
1933	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1934
1935	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1936		ret_val = hw->phy.ops.get_cable_length(hw);
1937		if (ret_val)
1938			return ret_val;
1939
1940		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1941		if (ret_val)
1942			return ret_val;
1943
1944		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1945		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1946
1947		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1948		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1949	} else {
1950		/* Set values to "undefined" */
1951		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1952		phy->local_rx = e1000_1000t_rx_status_undefined;
1953		phy->remote_rx = e1000_1000t_rx_status_undefined;
1954	}
1955
1956	return ret_val;
1957}
1958
1959/**
1960 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1961 *  @hw: pointer to the HW structure
1962 *
1963 *  Read PHY status to determine if link is up.  If link is up, then
1964 *  set/determine 10base-T extended distance and polarity correction.  Read
1965 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1966 *  determine on the cable length, local and remote receiver.
1967 **/
1968s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1969{
1970	struct e1000_phy_info *phy = &hw->phy;
1971	s32 ret_val;
1972	u16 data;
1973	bool link;
1974
1975	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1976	if (ret_val)
1977		return ret_val;
1978
1979	if (!link) {
1980		e_dbg("Phy info is only valid if link is up\n");
1981		return -E1000_ERR_CONFIG;
1982	}
1983
1984	phy->polarity_correction = true;
1985
1986	ret_val = e1000_check_polarity_igp(hw);
1987	if (ret_val)
1988		return ret_val;
1989
1990	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1991	if (ret_val)
1992		return ret_val;
1993
1994	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1995
1996	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1997	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1998		ret_val = phy->ops.get_cable_length(hw);
1999		if (ret_val)
2000			return ret_val;
2001
2002		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
2003		if (ret_val)
2004			return ret_val;
2005
2006		phy->local_rx = (data & LPA_1000LOCALRXOK)
2007		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2008
2009		phy->remote_rx = (data & LPA_1000REMRXOK)
2010		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2011	} else {
2012		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2013		phy->local_rx = e1000_1000t_rx_status_undefined;
2014		phy->remote_rx = e1000_1000t_rx_status_undefined;
2015	}
2016
2017	return ret_val;
2018}
2019
2020/**
2021 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2022 *  @hw: pointer to the HW structure
2023 *
2024 *  Populates "phy" structure with various feature states.
2025 **/
2026s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2027{
2028	struct e1000_phy_info *phy = &hw->phy;
2029	s32 ret_val;
2030	u16 data;
2031	bool link;
2032
2033	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2034	if (ret_val)
2035		return ret_val;
2036
2037	if (!link) {
2038		e_dbg("Phy info is only valid if link is up\n");
2039		return -E1000_ERR_CONFIG;
2040	}
2041
2042	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2043	if (ret_val)
2044		return ret_val;
2045	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2046
2047	if (phy->polarity_correction) {
2048		ret_val = e1000_check_polarity_ife(hw);
2049		if (ret_val)
2050			return ret_val;
2051	} else {
2052		/* Polarity is forced */
2053		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2054				       ? e1000_rev_polarity_reversed
2055				       : e1000_rev_polarity_normal);
2056	}
2057
2058	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2059	if (ret_val)
2060		return ret_val;
2061
2062	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2063
2064	/* The following parameters are undefined for 10/100 operation. */
2065	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2066	phy->local_rx = e1000_1000t_rx_status_undefined;
2067	phy->remote_rx = e1000_1000t_rx_status_undefined;
2068
2069	return 0;
2070}
2071
2072/**
2073 *  e1000e_phy_sw_reset - PHY software reset
2074 *  @hw: pointer to the HW structure
2075 *
2076 *  Does a software reset of the PHY by reading the PHY control register and
2077 *  setting/write the control register reset bit to the PHY.
2078 **/
2079s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2080{
2081	s32 ret_val;
2082	u16 phy_ctrl;
2083
2084	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2085	if (ret_val)
2086		return ret_val;
2087
2088	phy_ctrl |= BMCR_RESET;
2089	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2090	if (ret_val)
2091		return ret_val;
2092
2093	udelay(1);
2094
2095	return ret_val;
2096}
2097
2098/**
2099 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2100 *  @hw: pointer to the HW structure
2101 *
2102 *  Verify the reset block is not blocking us from resetting.  Acquire
2103 *  semaphore (if necessary) and read/set/write the device control reset
2104 *  bit in the PHY.  Wait the appropriate delay time for the device to
2105 *  reset and release the semaphore (if necessary).
2106 **/
2107s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2108{
2109	struct e1000_phy_info *phy = &hw->phy;
2110	s32 ret_val;
2111	u32 ctrl;
2112
2113	if (phy->ops.check_reset_block) {
2114		ret_val = phy->ops.check_reset_block(hw);
2115		if (ret_val)
2116			return 0;
2117	}
2118
2119	ret_val = phy->ops.acquire(hw);
2120	if (ret_val)
2121		return ret_val;
2122
2123	ctrl = er32(CTRL);
2124	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2125	e1e_flush();
2126
2127	udelay(phy->reset_delay_us);
2128
2129	ew32(CTRL, ctrl);
2130	e1e_flush();
2131
2132	usleep_range(150, 300);
2133
2134	phy->ops.release(hw);
2135
2136	return phy->ops.get_cfg_done(hw);
2137}
2138
2139/**
2140 *  e1000e_get_cfg_done_generic - Generic configuration done
2141 *  @hw: pointer to the HW structure
2142 *
2143 *  Generic function to wait 10 milli-seconds for configuration to complete
2144 *  and return success.
2145 **/
2146s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2147{
2148	mdelay(10);
2149
2150	return 0;
2151}
2152
2153/**
2154 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2155 *  @hw: pointer to the HW structure
2156 *
2157 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2158 **/
2159s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2160{
2161	e_dbg("Running IGP 3 PHY init script\n");
2162
2163	/* PHY init IGP 3 */
2164	/* Enable rise/fall, 10-mode work in class-A */
2165	e1e_wphy(hw, 0x2F5B, 0x9018);
2166	/* Remove all caps from Replica path filter */
2167	e1e_wphy(hw, 0x2F52, 0x0000);
2168	/* Bias trimming for ADC, AFE and Driver (Default) */
2169	e1e_wphy(hw, 0x2FB1, 0x8B24);
2170	/* Increase Hybrid poly bias */
2171	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2172	/* Add 4% to Tx amplitude in Gig mode */
2173	e1e_wphy(hw, 0x2010, 0x10B0);
2174	/* Disable trimming (TTT) */
2175	e1e_wphy(hw, 0x2011, 0x0000);
2176	/* Poly DC correction to 94.6% + 2% for all channels */
2177	e1e_wphy(hw, 0x20DD, 0x249A);
2178	/* ABS DC correction to 95.9% */
2179	e1e_wphy(hw, 0x20DE, 0x00D3);
2180	/* BG temp curve trim */
2181	e1e_wphy(hw, 0x28B4, 0x04CE);
2182	/* Increasing ADC OPAMP stage 1 currents to max */
2183	e1e_wphy(hw, 0x2F70, 0x29E4);
2184	/* Force 1000 ( required for enabling PHY regs configuration) */
2185	e1e_wphy(hw, 0x0000, 0x0140);
2186	/* Set upd_freq to 6 */
2187	e1e_wphy(hw, 0x1F30, 0x1606);
2188	/* Disable NPDFE */
2189	e1e_wphy(hw, 0x1F31, 0xB814);
2190	/* Disable adaptive fixed FFE (Default) */
2191	e1e_wphy(hw, 0x1F35, 0x002A);
2192	/* Enable FFE hysteresis */
2193	e1e_wphy(hw, 0x1F3E, 0x0067);
2194	/* Fixed FFE for short cable lengths */
2195	e1e_wphy(hw, 0x1F54, 0x0065);
2196	/* Fixed FFE for medium cable lengths */
2197	e1e_wphy(hw, 0x1F55, 0x002A);
2198	/* Fixed FFE for long cable lengths */
2199	e1e_wphy(hw, 0x1F56, 0x002A);
2200	/* Enable Adaptive Clip Threshold */
2201	e1e_wphy(hw, 0x1F72, 0x3FB0);
2202	/* AHT reset limit to 1 */
2203	e1e_wphy(hw, 0x1F76, 0xC0FF);
2204	/* Set AHT master delay to 127 msec */
2205	e1e_wphy(hw, 0x1F77, 0x1DEC);
2206	/* Set scan bits for AHT */
2207	e1e_wphy(hw, 0x1F78, 0xF9EF);
2208	/* Set AHT Preset bits */
2209	e1e_wphy(hw, 0x1F79, 0x0210);
2210	/* Change integ_factor of channel A to 3 */
2211	e1e_wphy(hw, 0x1895, 0x0003);
2212	/* Change prop_factor of channels BCD to 8 */
2213	e1e_wphy(hw, 0x1796, 0x0008);
2214	/* Change cg_icount + enable integbp for channels BCD */
2215	e1e_wphy(hw, 0x1798, 0xD008);
2216	/* Change cg_icount + enable integbp + change prop_factor_master
2217	 * to 8 for channel A
2218	 */
2219	e1e_wphy(hw, 0x1898, 0xD918);
2220	/* Disable AHT in Slave mode on channel A */
2221	e1e_wphy(hw, 0x187A, 0x0800);
2222	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2223	 * Enable SPD+B2B
2224	 */
2225	e1e_wphy(hw, 0x0019, 0x008D);
2226	/* Enable restart AN on an1000_dis change */
2227	e1e_wphy(hw, 0x001B, 0x2080);
2228	/* Enable wh_fifo read clock in 10/100 modes */
2229	e1e_wphy(hw, 0x0014, 0x0045);
2230	/* Restart AN, Speed selection is 1000 */
2231	e1e_wphy(hw, 0x0000, 0x1340);
2232
2233	return 0;
2234}
2235
2236/**
2237 *  e1000e_get_phy_type_from_id - Get PHY type from id
2238 *  @phy_id: phy_id read from the phy
2239 *
2240 *  Returns the phy type from the id.
2241 **/
2242enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2243{
2244	enum e1000_phy_type phy_type = e1000_phy_unknown;
2245
2246	switch (phy_id) {
2247	case M88E1000_I_PHY_ID:
2248	case M88E1000_E_PHY_ID:
2249	case M88E1111_I_PHY_ID:
2250	case M88E1011_I_PHY_ID:
2251		phy_type = e1000_phy_m88;
2252		break;
2253	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2254		phy_type = e1000_phy_igp_2;
2255		break;
2256	case GG82563_E_PHY_ID:
2257		phy_type = e1000_phy_gg82563;
2258		break;
2259	case IGP03E1000_E_PHY_ID:
2260		phy_type = e1000_phy_igp_3;
2261		break;
2262	case IFE_E_PHY_ID:
2263	case IFE_PLUS_E_PHY_ID:
2264	case IFE_C_E_PHY_ID:
2265		phy_type = e1000_phy_ife;
2266		break;
2267	case BME1000_E_PHY_ID:
2268	case BME1000_E_PHY_ID_R2:
2269		phy_type = e1000_phy_bm;
2270		break;
2271	case I82578_E_PHY_ID:
2272		phy_type = e1000_phy_82578;
2273		break;
2274	case I82577_E_PHY_ID:
2275		phy_type = e1000_phy_82577;
2276		break;
2277	case I82579_E_PHY_ID:
2278		phy_type = e1000_phy_82579;
2279		break;
2280	case I217_E_PHY_ID:
2281		phy_type = e1000_phy_i217;
2282		break;
2283	default:
2284		phy_type = e1000_phy_unknown;
2285		break;
2286	}
2287	return phy_type;
2288}
2289
2290/**
2291 *  e1000e_determine_phy_address - Determines PHY address.
2292 *  @hw: pointer to the HW structure
2293 *
2294 *  This uses a trial and error method to loop through possible PHY
2295 *  addresses. It tests each by reading the PHY ID registers and
2296 *  checking for a match.
2297 **/
2298s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2299{
2300	u32 phy_addr = 0;
2301	u32 i;
2302	enum e1000_phy_type phy_type = e1000_phy_unknown;
2303
2304	hw->phy.id = phy_type;
2305
2306	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2307		hw->phy.addr = phy_addr;
2308		i = 0;
2309
2310		do {
2311			e1000e_get_phy_id(hw);
2312			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2313
2314			/* If phy_type is valid, break - we found our
2315			 * PHY address
2316			 */
2317			if (phy_type != e1000_phy_unknown)
2318				return 0;
2319
2320			usleep_range(1000, 2000);
2321			i++;
2322		} while (i < 10);
2323	}
2324
2325	return -E1000_ERR_PHY_TYPE;
2326}
2327
2328/**
2329 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2330 *  @page: page to access
2331 *
2332 *  Returns the phy address for the page requested.
2333 **/
2334static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2335{
2336	u32 phy_addr = 2;
2337
2338	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2339		phy_addr = 1;
2340
2341	return phy_addr;
2342}
2343
2344/**
2345 *  e1000e_write_phy_reg_bm - Write BM PHY register
2346 *  @hw: pointer to the HW structure
2347 *  @offset: register offset to write to
2348 *  @data: data to write at register offset
2349 *
2350 *  Acquires semaphore, if necessary, then writes the data to PHY register
2351 *  at the offset.  Release any acquired semaphores before exiting.
2352 **/
2353s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2354{
2355	s32 ret_val;
2356	u32 page = offset >> IGP_PAGE_SHIFT;
2357
2358	ret_val = hw->phy.ops.acquire(hw);
2359	if (ret_val)
2360		return ret_val;
2361
2362	/* Page 800 works differently than the rest so it has its own func */
2363	if (page == BM_WUC_PAGE) {
2364		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2365							 false, false);
2366		goto release;
2367	}
2368
2369	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2370
2371	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2372		u32 page_shift, page_select;
2373
2374		/* Page select is register 31 for phy address 1 and 22 for
2375		 * phy address 2 and 3. Page select is shifted only for
2376		 * phy address 1.
2377		 */
2378		if (hw->phy.addr == 1) {
2379			page_shift = IGP_PAGE_SHIFT;
2380			page_select = IGP01E1000_PHY_PAGE_SELECT;
2381		} else {
2382			page_shift = 0;
2383			page_select = BM_PHY_PAGE_SELECT;
2384		}
2385
2386		/* Page is shifted left, PHY expects (page x 32) */
2387		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2388						    (page << page_shift));
2389		if (ret_val)
2390			goto release;
2391	}
2392
2393	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2394					    data);
2395
2396release:
2397	hw->phy.ops.release(hw);
2398	return ret_val;
2399}
2400
2401/**
2402 *  e1000e_read_phy_reg_bm - Read BM PHY register
2403 *  @hw: pointer to the HW structure
2404 *  @offset: register offset to be read
2405 *  @data: pointer to the read data
2406 *
2407 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2408 *  and storing the retrieved information in data.  Release any acquired
2409 *  semaphores before exiting.
2410 **/
2411s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2412{
2413	s32 ret_val;
2414	u32 page = offset >> IGP_PAGE_SHIFT;
2415
2416	ret_val = hw->phy.ops.acquire(hw);
2417	if (ret_val)
2418		return ret_val;
2419
2420	/* Page 800 works differently than the rest so it has its own func */
2421	if (page == BM_WUC_PAGE) {
2422		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2423							 true, false);
2424		goto release;
2425	}
2426
2427	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2428
2429	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2430		u32 page_shift, page_select;
2431
2432		/* Page select is register 31 for phy address 1 and 22 for
2433		 * phy address 2 and 3. Page select is shifted only for
2434		 * phy address 1.
2435		 */
2436		if (hw->phy.addr == 1) {
2437			page_shift = IGP_PAGE_SHIFT;
2438			page_select = IGP01E1000_PHY_PAGE_SELECT;
2439		} else {
2440			page_shift = 0;
2441			page_select = BM_PHY_PAGE_SELECT;
2442		}
2443
2444		/* Page is shifted left, PHY expects (page x 32) */
2445		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2446						    (page << page_shift));
2447		if (ret_val)
2448			goto release;
2449	}
2450
2451	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2452					   data);
2453release:
2454	hw->phy.ops.release(hw);
2455	return ret_val;
2456}
2457
2458/**
2459 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2460 *  @hw: pointer to the HW structure
2461 *  @offset: register offset to be read
2462 *  @data: pointer to the read data
2463 *
2464 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2465 *  and storing the retrieved information in data.  Release any acquired
2466 *  semaphores before exiting.
2467 **/
2468s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2469{
2470	s32 ret_val;
2471	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2472
2473	ret_val = hw->phy.ops.acquire(hw);
2474	if (ret_val)
2475		return ret_val;
2476
2477	/* Page 800 works differently than the rest so it has its own func */
2478	if (page == BM_WUC_PAGE) {
2479		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2480							 true, false);
2481		goto release;
2482	}
2483
2484	hw->phy.addr = 1;
2485
2486	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2487		/* Page is shifted left, PHY expects (page x 32) */
2488		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2489						    page);
2490
2491		if (ret_val)
2492			goto release;
2493	}
2494
2495	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2496					   data);
2497release:
2498	hw->phy.ops.release(hw);
2499	return ret_val;
2500}
2501
2502/**
2503 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2504 *  @hw: pointer to the HW structure
2505 *  @offset: register offset to write to
2506 *  @data: data to write at register offset
2507 *
2508 *  Acquires semaphore, if necessary, then writes the data to PHY register
2509 *  at the offset.  Release any acquired semaphores before exiting.
2510 **/
2511s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2512{
2513	s32 ret_val;
2514	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2515
2516	ret_val = hw->phy.ops.acquire(hw);
2517	if (ret_val)
2518		return ret_val;
2519
2520	/* Page 800 works differently than the rest so it has its own func */
2521	if (page == BM_WUC_PAGE) {
2522		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2523							 false, false);
2524		goto release;
2525	}
2526
2527	hw->phy.addr = 1;
2528
2529	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2530		/* Page is shifted left, PHY expects (page x 32) */
2531		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2532						    page);
2533
2534		if (ret_val)
2535			goto release;
2536	}
2537
2538	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2539					    data);
2540
2541release:
2542	hw->phy.ops.release(hw);
2543	return ret_val;
2544}
2545
2546/**
2547 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2548 *  @hw: pointer to the HW structure
2549 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2550 *
2551 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2552 *  address to store contents of the BM_WUC_ENABLE_REG register.
2553 **/
2554s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2555{
2556	s32 ret_val;
2557	u16 temp;
2558
2559	/* All page select, port ctrl and wakeup registers use phy address 1 */
2560	hw->phy.addr = 1;
2561
2562	/* Select Port Control Registers page */
2563	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2564	if (ret_val) {
2565		e_dbg("Could not set Port Control page\n");
2566		return ret_val;
2567	}
2568
2569	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2570	if (ret_val) {
2571		e_dbg("Could not read PHY register %d.%d\n",
2572		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2573		return ret_val;
2574	}
2575
2576	/* Enable both PHY wakeup mode and Wakeup register page writes.
2577	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2578	 */
2579	temp = *phy_reg;
2580	temp |= BM_WUC_ENABLE_BIT;
2581	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2582
2583	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2584	if (ret_val) {
2585		e_dbg("Could not write PHY register %d.%d\n",
2586		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2587		return ret_val;
2588	}
2589
2590	/* Select Host Wakeup Registers page - caller now able to write
2591	 * registers on the Wakeup registers page
2592	 */
2593	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2594}
2595
2596/**
2597 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2598 *  @hw: pointer to the HW structure
2599 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2600 *
2601 *  Restore BM_WUC_ENABLE_REG to its original value.
2602 *
2603 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2604 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2605 *  caller.
2606 **/
2607s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2608{
2609	s32 ret_val;
2610
2611	/* Select Port Control Registers page */
2612	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2613	if (ret_val) {
2614		e_dbg("Could not set Port Control page\n");
2615		return ret_val;
2616	}
2617
2618	/* Restore 769.17 to its original value */
2619	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2620	if (ret_val)
2621		e_dbg("Could not restore PHY register %d.%d\n",
2622		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2623
2624	return ret_val;
2625}
2626
2627/**
2628 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2629 *  @hw: pointer to the HW structure
2630 *  @offset: register offset to be read or written
2631 *  @data: pointer to the data to read or write
2632 *  @read: determines if operation is read or write
2633 *  @page_set: BM_WUC_PAGE already set and access enabled
2634 *
2635 *  Read the PHY register at offset and store the retrieved information in
2636 *  data, or write data to PHY register at offset.  Note the procedure to
2637 *  access the PHY wakeup registers is different than reading the other PHY
2638 *  registers. It works as such:
2639 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2640 *  2) Set page to 800 for host (801 if we were manageability)
2641 *  3) Write the address using the address opcode (0x11)
2642 *  4) Read or write the data using the data opcode (0x12)
2643 *  5) Restore 769.17.2 to its original value
2644 *
2645 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2646 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2647 *
2648 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2649 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2650 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2651 **/
2652static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2653					  u16 *data, bool read, bool page_set)
2654{
2655	s32 ret_val;
2656	u16 reg = BM_PHY_REG_NUM(offset);
2657	u16 page = BM_PHY_REG_PAGE(offset);
2658	u16 phy_reg = 0;
2659
2660	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2661	if ((hw->mac.type == e1000_pchlan) &&
2662	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2663		e_dbg("Attempting to access page %d while gig enabled.\n",
2664		      page);
2665
2666	if (!page_set) {
2667		/* Enable access to PHY wakeup registers */
2668		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2669		if (ret_val) {
2670			e_dbg("Could not enable PHY wakeup reg access\n");
2671			return ret_val;
2672		}
2673	}
2674
2675	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2676
2677	/* Write the Wakeup register page offset value using opcode 0x11 */
2678	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2679	if (ret_val) {
2680		e_dbg("Could not write address opcode to page %d\n", page);
2681		return ret_val;
2682	}
2683
2684	if (read) {
2685		/* Read the Wakeup register page value using opcode 0x12 */
2686		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2687						   data);
2688	} else {
2689		/* Write the Wakeup register page value using opcode 0x12 */
2690		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2691						    *data);
2692	}
2693
2694	if (ret_val) {
2695		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2696		return ret_val;
2697	}
2698
2699	if (!page_set)
2700		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2701
2702	return ret_val;
2703}
2704
2705/**
2706 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2707 * @hw: pointer to the HW structure
2708 *
2709 * In the case of a PHY power down to save power, or to turn off link during a
2710 * driver unload, or wake on lan is not enabled, restore the link to previous
2711 * settings.
2712 **/
2713void e1000_power_up_phy_copper(struct e1000_hw *hw)
2714{
2715	u16 mii_reg = 0;
2716
2717	/* The PHY will retain its settings across a power down/up cycle */
2718	e1e_rphy(hw, MII_BMCR, &mii_reg);
2719	mii_reg &= ~BMCR_PDOWN;
2720	e1e_wphy(hw, MII_BMCR, mii_reg);
2721}
2722
2723/**
2724 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2725 * @hw: pointer to the HW structure
2726 *
2727 * In the case of a PHY power down to save power, or to turn off link during a
2728 * driver unload, or wake on lan is not enabled, restore the link to previous
2729 * settings.
2730 **/
2731void e1000_power_down_phy_copper(struct e1000_hw *hw)
2732{
2733	u16 mii_reg = 0;
2734
2735	/* The PHY will retain its settings across a power down/up cycle */
2736	e1e_rphy(hw, MII_BMCR, &mii_reg);
2737	mii_reg |= BMCR_PDOWN;
2738	e1e_wphy(hw, MII_BMCR, mii_reg);
2739	usleep_range(1000, 2000);
2740}
2741
2742/**
2743 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2744 *  @hw: pointer to the HW structure
2745 *  @offset: register offset to be read
2746 *  @data: pointer to the read data
2747 *  @locked: semaphore has already been acquired or not
2748 *
2749 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2750 *  and stores the retrieved information in data.  Release any acquired
2751 *  semaphore before exiting.
2752 **/
2753static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2754				   bool locked, bool page_set)
2755{
2756	s32 ret_val;
2757	u16 page = BM_PHY_REG_PAGE(offset);
2758	u16 reg = BM_PHY_REG_NUM(offset);
2759	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2760
2761	if (!locked) {
2762		ret_val = hw->phy.ops.acquire(hw);
2763		if (ret_val)
2764			return ret_val;
2765	}
2766
2767	/* Page 800 works differently than the rest so it has its own func */
2768	if (page == BM_WUC_PAGE) {
2769		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2770							 true, page_set);
2771		goto out;
2772	}
2773
2774	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2775		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2776							 data, true);
2777		goto out;
2778	}
2779
2780	if (!page_set) {
2781		if (page == HV_INTC_FC_PAGE_START)
2782			page = 0;
2783
2784		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2785			/* Page is shifted left, PHY expects (page x 32) */
2786			ret_val = e1000_set_page_igp(hw,
2787						     (page << IGP_PAGE_SHIFT));
2788
2789			hw->phy.addr = phy_addr;
2790
2791			if (ret_val)
2792				goto out;
2793		}
2794	}
2795
2796	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2797	      page << IGP_PAGE_SHIFT, reg);
2798
2799	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2800out:
2801	if (!locked)
2802		hw->phy.ops.release(hw);
2803
2804	return ret_val;
2805}
2806
2807/**
2808 *  e1000_read_phy_reg_hv -  Read HV PHY register
2809 *  @hw: pointer to the HW structure
2810 *  @offset: register offset to be read
2811 *  @data: pointer to the read data
2812 *
2813 *  Acquires semaphore then reads the PHY register at offset and stores
2814 *  the retrieved information in data.  Release the acquired semaphore
2815 *  before exiting.
2816 **/
2817s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2818{
2819	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2820}
2821
2822/**
2823 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2824 *  @hw: pointer to the HW structure
2825 *  @offset: register offset to be read
2826 *  @data: pointer to the read data
2827 *
2828 *  Reads the PHY register at offset and stores the retrieved information
2829 *  in data.  Assumes semaphore already acquired.
2830 **/
2831s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2832{
2833	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2834}
2835
2836/**
2837 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2838 *  @hw: pointer to the HW structure
2839 *  @offset: register offset to write to
2840 *  @data: data to write at register offset
2841 *
2842 *  Reads the PHY register at offset and stores the retrieved information
2843 *  in data.  Assumes semaphore already acquired and page already set.
2844 **/
2845s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2846{
2847	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2848}
2849
2850/**
2851 *  __e1000_write_phy_reg_hv - Write HV PHY register
2852 *  @hw: pointer to the HW structure
2853 *  @offset: register offset to write to
2854 *  @data: data to write at register offset
2855 *  @locked: semaphore has already been acquired or not
2856 *
2857 *  Acquires semaphore, if necessary, then writes the data to PHY register
2858 *  at the offset.  Release any acquired semaphores before exiting.
2859 **/
2860static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2861				    bool locked, bool page_set)
2862{
2863	s32 ret_val;
2864	u16 page = BM_PHY_REG_PAGE(offset);
2865	u16 reg = BM_PHY_REG_NUM(offset);
2866	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2867
2868	if (!locked) {
2869		ret_val = hw->phy.ops.acquire(hw);
2870		if (ret_val)
2871			return ret_val;
2872	}
2873
2874	/* Page 800 works differently than the rest so it has its own func */
2875	if (page == BM_WUC_PAGE) {
2876		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2877							 false, page_set);
2878		goto out;
2879	}
2880
2881	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2882		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2883							 &data, false);
2884		goto out;
2885	}
2886
2887	if (!page_set) {
2888		if (page == HV_INTC_FC_PAGE_START)
2889			page = 0;
2890
2891		/* Workaround MDIO accesses being disabled after entering IEEE
2892		 * Power Down (when bit 11 of the PHY Control register is set)
2893		 */
2894		if ((hw->phy.type == e1000_phy_82578) &&
2895		    (hw->phy.revision >= 1) &&
2896		    (hw->phy.addr == 2) &&
2897		    !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
2898			u16 data2 = 0x7EFF;
2899			ret_val = e1000_access_phy_debug_regs_hv(hw,
2900								 (1 << 6) | 0x3,
2901								 &data2, false);
2902			if (ret_val)
2903				goto out;
2904		}
2905
2906		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2907			/* Page is shifted left, PHY expects (page x 32) */
2908			ret_val = e1000_set_page_igp(hw,
2909						     (page << IGP_PAGE_SHIFT));
2910
2911			hw->phy.addr = phy_addr;
2912
2913			if (ret_val)
2914				goto out;
2915		}
2916	}
2917
2918	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2919	      page << IGP_PAGE_SHIFT, reg);
2920
2921	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2922					    data);
2923
2924out:
2925	if (!locked)
2926		hw->phy.ops.release(hw);
2927
2928	return ret_val;
2929}
2930
2931/**
2932 *  e1000_write_phy_reg_hv - Write HV PHY register
2933 *  @hw: pointer to the HW structure
2934 *  @offset: register offset to write to
2935 *  @data: data to write at register offset
2936 *
2937 *  Acquires semaphore then writes the data to PHY register at the offset.
2938 *  Release the acquired semaphores before exiting.
2939 **/
2940s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2941{
2942	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2943}
2944
2945/**
2946 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2947 *  @hw: pointer to the HW structure
2948 *  @offset: register offset to write to
2949 *  @data: data to write at register offset
2950 *
2951 *  Writes the data to PHY register at the offset.  Assumes semaphore
2952 *  already acquired.
2953 **/
2954s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2955{
2956	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2957}
2958
2959/**
2960 *  e1000_write_phy_reg_page_hv - Write HV PHY register
2961 *  @hw: pointer to the HW structure
2962 *  @offset: register offset to write to
2963 *  @data: data to write at register offset
2964 *
2965 *  Writes the data to PHY register at the offset.  Assumes semaphore
2966 *  already acquired and page already set.
2967 **/
2968s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2969{
2970	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2971}
2972
2973/**
2974 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2975 *  @page: page to be accessed
2976 **/
2977static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2978{
2979	u32 phy_addr = 2;
2980
2981	if (page >= HV_INTC_FC_PAGE_START)
2982		phy_addr = 1;
2983
2984	return phy_addr;
2985}
2986
2987/**
2988 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2989 *  @hw: pointer to the HW structure
2990 *  @offset: register offset to be read or written
2991 *  @data: pointer to the data to be read or written
2992 *  @read: determines if operation is read or write
2993 *
2994 *  Reads the PHY register at offset and stores the retreived information
2995 *  in data.  Assumes semaphore already acquired.  Note that the procedure
2996 *  to access these regs uses the address port and data port to read/write.
2997 *  These accesses done with PHY address 2 and without using pages.
2998 **/
2999static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3000					  u16 *data, bool read)
3001{
3002	s32 ret_val;
3003	u32 addr_reg;
3004	u32 data_reg;
3005
3006	/* This takes care of the difference with desktop vs mobile phy */
3007	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3008		    I82578_ADDR_REG : I82577_ADDR_REG);
3009	data_reg = addr_reg + 1;
3010
3011	/* All operations in this function are phy address 2 */
3012	hw->phy.addr = 2;
3013
3014	/* masking with 0x3F to remove the page from offset */
3015	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3016	if (ret_val) {
3017		e_dbg("Could not write the Address Offset port register\n");
3018		return ret_val;
3019	}
3020
3021	/* Read or write the data value next */
3022	if (read)
3023		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3024	else
3025		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3026
3027	if (ret_val)
3028		e_dbg("Could not access the Data port register\n");
3029
3030	return ret_val;
3031}
3032
3033/**
3034 *  e1000_link_stall_workaround_hv - Si workaround
3035 *  @hw: pointer to the HW structure
3036 *
3037 *  This function works around a Si bug where the link partner can get
3038 *  a link up indication before the PHY does.  If small packets are sent
3039 *  by the link partner they can be placed in the packet buffer without
3040 *  being properly accounted for by the PHY and will stall preventing
3041 *  further packets from being received.  The workaround is to clear the
3042 *  packet buffer after the PHY detects link up.
3043 **/
3044s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3045{
3046	s32 ret_val = 0;
3047	u16 data;
3048
3049	if (hw->phy.type != e1000_phy_82578)
3050		return 0;
3051
3052	/* Do not apply workaround if in PHY loopback bit 14 set */
3053	e1e_rphy(hw, MII_BMCR, &data);
3054	if (data & BMCR_LOOPBACK)
3055		return 0;
3056
3057	/* check if link is up and at 1Gbps */
3058	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3059	if (ret_val)
3060		return ret_val;
3061
3062	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3063		 BM_CS_STATUS_SPEED_MASK);
3064
3065	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3066		     BM_CS_STATUS_SPEED_1000))
3067		return 0;
3068
3069	msleep(200);
3070
3071	/* flush the packets in the fifo buffer */
3072	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3073			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3074			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3075	if (ret_val)
3076		return ret_val;
3077
3078	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3079}
3080
3081/**
3082 *  e1000_check_polarity_82577 - Checks the polarity.
3083 *  @hw: pointer to the HW structure
3084 *
3085 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3086 *
3087 *  Polarity is determined based on the PHY specific status register.
3088 **/
3089s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3090{
3091	struct e1000_phy_info *phy = &hw->phy;
3092	s32 ret_val;
3093	u16 data;
3094
3095	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3096
3097	if (!ret_val)
3098		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3099				       ? e1000_rev_polarity_reversed
3100				       : e1000_rev_polarity_normal);
3101
3102	return ret_val;
3103}
3104
3105/**
3106 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3107 *  @hw: pointer to the HW structure
3108 *
3109 *  Calls the PHY setup function to force speed and duplex.
3110 **/
3111s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3112{
3113	struct e1000_phy_info *phy = &hw->phy;
3114	s32 ret_val;
3115	u16 phy_data;
3116	bool link;
3117
3118	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3119	if (ret_val)
3120		return ret_val;
3121
3122	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3123
3124	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3125	if (ret_val)
3126		return ret_val;
3127
3128	udelay(1);
3129
3130	if (phy->autoneg_wait_to_complete) {
3131		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3132
3133		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3134						      100000, &link);
3135		if (ret_val)
3136			return ret_val;
3137
3138		if (!link)
3139			e_dbg("Link taking longer than expected.\n");
3140
3141		/* Try once more */
3142		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3143						      100000, &link);
3144	}
3145
3146	return ret_val;
3147}
3148
3149/**
3150 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3151 *  @hw: pointer to the HW structure
3152 *
3153 *  Read PHY status to determine if link is up.  If link is up, then
3154 *  set/determine 10base-T extended distance and polarity correction.  Read
3155 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3156 *  determine on the cable length, local and remote receiver.
3157 **/
3158s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3159{
3160	struct e1000_phy_info *phy = &hw->phy;
3161	s32 ret_val;
3162	u16 data;
3163	bool link;
3164
3165	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3166	if (ret_val)
3167		return ret_val;
3168
3169	if (!link) {
3170		e_dbg("Phy info is only valid if link is up\n");
3171		return -E1000_ERR_CONFIG;
3172	}
3173
3174	phy->polarity_correction = true;
3175
3176	ret_val = e1000_check_polarity_82577(hw);
3177	if (ret_val)
3178		return ret_val;
3179
3180	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3181	if (ret_val)
3182		return ret_val;
3183
3184	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3185
3186	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3187	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3188		ret_val = hw->phy.ops.get_cable_length(hw);
3189		if (ret_val)
3190			return ret_val;
3191
3192		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3193		if (ret_val)
3194			return ret_val;
3195
3196		phy->local_rx = (data & LPA_1000LOCALRXOK)
3197		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3198
3199		phy->remote_rx = (data & LPA_1000REMRXOK)
3200		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3201	} else {
3202		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3203		phy->local_rx = e1000_1000t_rx_status_undefined;
3204		phy->remote_rx = e1000_1000t_rx_status_undefined;
3205	}
3206
3207	return 0;
3208}
3209
3210/**
3211 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3212 *  @hw: pointer to the HW structure
3213 *
3214 * Reads the diagnostic status register and verifies result is valid before
3215 * placing it in the phy_cable_length field.
3216 **/
3217s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3218{
3219	struct e1000_phy_info *phy = &hw->phy;
3220	s32 ret_val;
3221	u16 phy_data, length;
3222
3223	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3224	if (ret_val)
3225		return ret_val;
3226
3227	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3228		  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3229
3230	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3231		return -E1000_ERR_PHY;
3232
3233	phy->cable_length = length;
3234
3235	return 0;
3236}