Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/* Intel PRO/1000 Linux driver
  2 * Copyright(c) 1999 - 2014 Intel Corporation.
  3 *
  4 * This program is free software; you can redistribute it and/or modify it
  5 * under the terms and conditions of the GNU General Public License,
  6 * version 2, as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope it will be useful, but WITHOUT
  9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 11 * more details.
 12 *
 13 * The full GNU General Public License is included in this distribution in
 14 * the file called "COPYING".
 15 *
 16 * Contact Information:
 17 * Linux NICS <linux.nics@intel.com>
 18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 20 */
 21
 22#include "e1000.h"
 23
 24/**
 25 *  e1000_raise_eec_clk - Raise EEPROM clock
 26 *  @hw: pointer to the HW structure
 27 *  @eecd: pointer to the EEPROM
 28 *
 29 *  Enable/Raise the EEPROM clock bit.
 30 **/
 31static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
 32{
 33	*eecd = *eecd | E1000_EECD_SK;
 34	ew32(EECD, *eecd);
 35	e1e_flush();
 36	udelay(hw->nvm.delay_usec);
 37}
 38
 39/**
 40 *  e1000_lower_eec_clk - Lower EEPROM clock
 41 *  @hw: pointer to the HW structure
 42 *  @eecd: pointer to the EEPROM
 43 *
 44 *  Clear/Lower the EEPROM clock bit.
 45 **/
 46static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
 47{
 48	*eecd = *eecd & ~E1000_EECD_SK;
 49	ew32(EECD, *eecd);
 50	e1e_flush();
 51	udelay(hw->nvm.delay_usec);
 52}
 53
 54/**
 55 *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
 56 *  @hw: pointer to the HW structure
 57 *  @data: data to send to the EEPROM
 58 *  @count: number of bits to shift out
 59 *
 60 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
 61 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
 62 *  In order to do this, "data" must be broken down into bits.
 63 **/
 64static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
 65{
 66	struct e1000_nvm_info *nvm = &hw->nvm;
 67	u32 eecd = er32(EECD);
 68	u32 mask;
 69
 70	mask = 0x01 << (count - 1);
 71	if (nvm->type == e1000_nvm_eeprom_spi)
 72		eecd |= E1000_EECD_DO;
 73
 74	do {
 75		eecd &= ~E1000_EECD_DI;
 76
 77		if (data & mask)
 78			eecd |= E1000_EECD_DI;
 79
 80		ew32(EECD, eecd);
 81		e1e_flush();
 82
 83		udelay(nvm->delay_usec);
 84
 85		e1000_raise_eec_clk(hw, &eecd);
 86		e1000_lower_eec_clk(hw, &eecd);
 87
 88		mask >>= 1;
 89	} while (mask);
 90
 91	eecd &= ~E1000_EECD_DI;
 92	ew32(EECD, eecd);
 93}
 94
 95/**
 96 *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
 97 *  @hw: pointer to the HW structure
 98 *  @count: number of bits to shift in
 99 *
100 *  In order to read a register from the EEPROM, we need to shift 'count' bits
101 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
102 *  the EEPROM (setting the SK bit), and then reading the value of the data out
103 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
104 *  always be clear.
105 **/
106static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
107{
108	u32 eecd;
109	u32 i;
110	u16 data;
111
112	eecd = er32(EECD);
113	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
114	data = 0;
115
116	for (i = 0; i < count; i++) {
117		data <<= 1;
118		e1000_raise_eec_clk(hw, &eecd);
119
120		eecd = er32(EECD);
121
122		eecd &= ~E1000_EECD_DI;
123		if (eecd & E1000_EECD_DO)
124			data |= 1;
125
126		e1000_lower_eec_clk(hw, &eecd);
127	}
128
129	return data;
130}
131
132/**
133 *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
134 *  @hw: pointer to the HW structure
135 *  @ee_reg: EEPROM flag for polling
136 *
137 *  Polls the EEPROM status bit for either read or write completion based
138 *  upon the value of 'ee_reg'.
139 **/
140s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
141{
142	u32 attempts = 100000;
143	u32 i, reg = 0;
144
145	for (i = 0; i < attempts; i++) {
146		if (ee_reg == E1000_NVM_POLL_READ)
147			reg = er32(EERD);
148		else
149			reg = er32(EEWR);
150
151		if (reg & E1000_NVM_RW_REG_DONE)
152			return 0;
153
154		udelay(5);
155	}
156
157	return -E1000_ERR_NVM;
158}
159
160/**
161 *  e1000e_acquire_nvm - Generic request for access to EEPROM
162 *  @hw: pointer to the HW structure
163 *
164 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
165 *  Return successful if access grant bit set, else clear the request for
166 *  EEPROM access and return -E1000_ERR_NVM (-1).
167 **/
168s32 e1000e_acquire_nvm(struct e1000_hw *hw)
169{
170	u32 eecd = er32(EECD);
171	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
172
173	ew32(EECD, eecd | E1000_EECD_REQ);
174	eecd = er32(EECD);
175
176	while (timeout) {
177		if (eecd & E1000_EECD_GNT)
178			break;
179		udelay(5);
180		eecd = er32(EECD);
181		timeout--;
182	}
183
184	if (!timeout) {
185		eecd &= ~E1000_EECD_REQ;
186		ew32(EECD, eecd);
187		e_dbg("Could not acquire NVM grant\n");
188		return -E1000_ERR_NVM;
189	}
190
191	return 0;
192}
193
194/**
195 *  e1000_standby_nvm - Return EEPROM to standby state
196 *  @hw: pointer to the HW structure
197 *
198 *  Return the EEPROM to a standby state.
199 **/
200static void e1000_standby_nvm(struct e1000_hw *hw)
201{
202	struct e1000_nvm_info *nvm = &hw->nvm;
203	u32 eecd = er32(EECD);
204
205	if (nvm->type == e1000_nvm_eeprom_spi) {
206		/* Toggle CS to flush commands */
207		eecd |= E1000_EECD_CS;
208		ew32(EECD, eecd);
209		e1e_flush();
210		udelay(nvm->delay_usec);
211		eecd &= ~E1000_EECD_CS;
212		ew32(EECD, eecd);
213		e1e_flush();
214		udelay(nvm->delay_usec);
215	}
216}
217
218/**
219 *  e1000_stop_nvm - Terminate EEPROM command
220 *  @hw: pointer to the HW structure
221 *
222 *  Terminates the current command by inverting the EEPROM's chip select pin.
223 **/
224static void e1000_stop_nvm(struct e1000_hw *hw)
225{
226	u32 eecd;
227
228	eecd = er32(EECD);
229	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
230		/* Pull CS high */
231		eecd |= E1000_EECD_CS;
232		e1000_lower_eec_clk(hw, &eecd);
233	}
234}
235
236/**
237 *  e1000e_release_nvm - Release exclusive access to EEPROM
238 *  @hw: pointer to the HW structure
239 *
240 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
241 **/
242void e1000e_release_nvm(struct e1000_hw *hw)
243{
244	u32 eecd;
245
246	e1000_stop_nvm(hw);
247
248	eecd = er32(EECD);
249	eecd &= ~E1000_EECD_REQ;
250	ew32(EECD, eecd);
251}
252
253/**
254 *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
255 *  @hw: pointer to the HW structure
256 *
257 *  Setups the EEPROM for reading and writing.
258 **/
259static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
260{
261	struct e1000_nvm_info *nvm = &hw->nvm;
262	u32 eecd = er32(EECD);
263	u8 spi_stat_reg;
264
265	if (nvm->type == e1000_nvm_eeprom_spi) {
266		u16 timeout = NVM_MAX_RETRY_SPI;
267
268		/* Clear SK and CS */
269		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
270		ew32(EECD, eecd);
271		e1e_flush();
272		udelay(1);
273
274		/* Read "Status Register" repeatedly until the LSB is cleared.
275		 * The EEPROM will signal that the command has been completed
276		 * by clearing bit 0 of the internal status register.  If it's
277		 * not cleared within 'timeout', then error out.
278		 */
279		while (timeout) {
280			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
281						 hw->nvm.opcode_bits);
282			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
283			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
284				break;
285
286			udelay(5);
287			e1000_standby_nvm(hw);
288			timeout--;
289		}
290
291		if (!timeout) {
292			e_dbg("SPI NVM Status error\n");
293			return -E1000_ERR_NVM;
294		}
295	}
296
297	return 0;
298}
299
300/**
301 *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
302 *  @hw: pointer to the HW structure
303 *  @offset: offset of word in the EEPROM to read
304 *  @words: number of words to read
305 *  @data: word read from the EEPROM
306 *
307 *  Reads a 16 bit word from the EEPROM using the EERD register.
308 **/
309s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
310{
311	struct e1000_nvm_info *nvm = &hw->nvm;
312	u32 i, eerd = 0;
313	s32 ret_val = 0;
314
315	/* A check for invalid values:  offset too large, too many words,
316	 * too many words for the offset, and not enough words.
317	 */
318	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
319	    (words == 0)) {
320		e_dbg("nvm parameter(s) out of bounds\n");
321		return -E1000_ERR_NVM;
322	}
323
324	for (i = 0; i < words; i++) {
325		eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
326		    E1000_NVM_RW_REG_START;
327
328		ew32(EERD, eerd);
329		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
330		if (ret_val)
331			break;
332
333		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
334	}
335
336	return ret_val;
337}
338
339/**
340 *  e1000e_write_nvm_spi - Write to EEPROM using SPI
341 *  @hw: pointer to the HW structure
342 *  @offset: offset within the EEPROM to be written to
343 *  @words: number of words to write
344 *  @data: 16 bit word(s) to be written to the EEPROM
345 *
346 *  Writes data to EEPROM at offset using SPI interface.
347 *
348 *  If e1000e_update_nvm_checksum is not called after this function , the
349 *  EEPROM will most likely contain an invalid checksum.
350 **/
351s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
352{
353	struct e1000_nvm_info *nvm = &hw->nvm;
354	s32 ret_val = -E1000_ERR_NVM;
355	u16 widx = 0;
356
357	/* A check for invalid values:  offset too large, too many words,
358	 * and not enough words.
359	 */
360	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
361	    (words == 0)) {
362		e_dbg("nvm parameter(s) out of bounds\n");
363		return -E1000_ERR_NVM;
364	}
365
366	while (widx < words) {
367		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
368
369		ret_val = nvm->ops.acquire(hw);
370		if (ret_val)
371			return ret_val;
372
373		ret_val = e1000_ready_nvm_eeprom(hw);
374		if (ret_val) {
375			nvm->ops.release(hw);
376			return ret_val;
377		}
378
379		e1000_standby_nvm(hw);
380
381		/* Send the WRITE ENABLE command (8 bit opcode) */
382		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
383					 nvm->opcode_bits);
384
385		e1000_standby_nvm(hw);
386
387		/* Some SPI eeproms use the 8th address bit embedded in the
388		 * opcode
389		 */
390		if ((nvm->address_bits == 8) && (offset >= 128))
391			write_opcode |= NVM_A8_OPCODE_SPI;
392
393		/* Send the Write command (8-bit opcode + addr) */
394		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
395		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
396					 nvm->address_bits);
397
398		/* Loop to allow for up to whole page write of eeprom */
399		while (widx < words) {
400			u16 word_out = data[widx];
401			word_out = (word_out >> 8) | (word_out << 8);
402			e1000_shift_out_eec_bits(hw, word_out, 16);
403			widx++;
404
405			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
406				e1000_standby_nvm(hw);
407				break;
408			}
409		}
410		usleep_range(10000, 20000);
411		nvm->ops.release(hw);
412	}
413
414	return ret_val;
415}
416
417/**
418 *  e1000_read_pba_string_generic - Read device part number
419 *  @hw: pointer to the HW structure
420 *  @pba_num: pointer to device part number
421 *  @pba_num_size: size of part number buffer
422 *
423 *  Reads the product board assembly (PBA) number from the EEPROM and stores
424 *  the value in pba_num.
425 **/
426s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
427				  u32 pba_num_size)
428{
429	s32 ret_val;
430	u16 nvm_data;
431	u16 pba_ptr;
432	u16 offset;
433	u16 length;
434
435	if (pba_num == NULL) {
436		e_dbg("PBA string buffer was null\n");
437		return -E1000_ERR_INVALID_ARGUMENT;
438	}
439
440	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
441	if (ret_val) {
442		e_dbg("NVM Read Error\n");
443		return ret_val;
444	}
445
446	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
447	if (ret_val) {
448		e_dbg("NVM Read Error\n");
449		return ret_val;
450	}
451
452	/* if nvm_data is not ptr guard the PBA must be in legacy format which
453	 * means pba_ptr is actually our second data word for the PBA number
454	 * and we can decode it into an ascii string
455	 */
456	if (nvm_data != NVM_PBA_PTR_GUARD) {
457		e_dbg("NVM PBA number is not stored as string\n");
458
459		/* make sure callers buffer is big enough to store the PBA */
460		if (pba_num_size < E1000_PBANUM_LENGTH) {
461			e_dbg("PBA string buffer too small\n");
462			return E1000_ERR_NO_SPACE;
463		}
464
465		/* extract hex string from data and pba_ptr */
466		pba_num[0] = (nvm_data >> 12) & 0xF;
467		pba_num[1] = (nvm_data >> 8) & 0xF;
468		pba_num[2] = (nvm_data >> 4) & 0xF;
469		pba_num[3] = nvm_data & 0xF;
470		pba_num[4] = (pba_ptr >> 12) & 0xF;
471		pba_num[5] = (pba_ptr >> 8) & 0xF;
472		pba_num[6] = '-';
473		pba_num[7] = 0;
474		pba_num[8] = (pba_ptr >> 4) & 0xF;
475		pba_num[9] = pba_ptr & 0xF;
476
477		/* put a null character on the end of our string */
478		pba_num[10] = '\0';
479
480		/* switch all the data but the '-' to hex char */
481		for (offset = 0; offset < 10; offset++) {
482			if (pba_num[offset] < 0xA)
483				pba_num[offset] += '0';
484			else if (pba_num[offset] < 0x10)
485				pba_num[offset] += 'A' - 0xA;
486		}
487
488		return 0;
489	}
490
491	ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
492	if (ret_val) {
493		e_dbg("NVM Read Error\n");
494		return ret_val;
495	}
496
497	if (length == 0xFFFF || length == 0) {
498		e_dbg("NVM PBA number section invalid length\n");
499		return -E1000_ERR_NVM_PBA_SECTION;
500	}
501	/* check if pba_num buffer is big enough */
502	if (pba_num_size < (((u32)length * 2) - 1)) {
503		e_dbg("PBA string buffer too small\n");
504		return -E1000_ERR_NO_SPACE;
505	}
506
507	/* trim pba length from start of string */
508	pba_ptr++;
509	length--;
510
511	for (offset = 0; offset < length; offset++) {
512		ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
513		if (ret_val) {
514			e_dbg("NVM Read Error\n");
515			return ret_val;
516		}
517		pba_num[offset * 2] = (u8)(nvm_data >> 8);
518		pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
519	}
520	pba_num[offset * 2] = '\0';
521
522	return 0;
523}
524
525/**
526 *  e1000_read_mac_addr_generic - Read device MAC address
527 *  @hw: pointer to the HW structure
528 *
529 *  Reads the device MAC address from the EEPROM and stores the value.
530 *  Since devices with two ports use the same EEPROM, we increment the
531 *  last bit in the MAC address for the second port.
532 **/
533s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
534{
535	u32 rar_high;
536	u32 rar_low;
537	u16 i;
538
539	rar_high = er32(RAH(0));
540	rar_low = er32(RAL(0));
541
542	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
543		hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
544
545	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
546		hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
547
548	for (i = 0; i < ETH_ALEN; i++)
549		hw->mac.addr[i] = hw->mac.perm_addr[i];
550
551	return 0;
552}
553
554/**
555 *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
556 *  @hw: pointer to the HW structure
557 *
558 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
559 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
560 **/
561s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
562{
563	s32 ret_val;
564	u16 checksum = 0;
565	u16 i, nvm_data;
566
567	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
568		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
569		if (ret_val) {
570			e_dbg("NVM Read Error\n");
571			return ret_val;
572		}
573		checksum += nvm_data;
574	}
575
576	if (checksum != (u16)NVM_SUM) {
577		e_dbg("NVM Checksum Invalid\n");
578		return -E1000_ERR_NVM;
579	}
580
581	return 0;
582}
583
584/**
585 *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
586 *  @hw: pointer to the HW structure
587 *
588 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
589 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
590 *  value to the EEPROM.
591 **/
592s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
593{
594	s32 ret_val;
595	u16 checksum = 0;
596	u16 i, nvm_data;
597
598	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
599		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
600		if (ret_val) {
601			e_dbg("NVM Read Error while updating checksum.\n");
602			return ret_val;
603		}
604		checksum += nvm_data;
605	}
606	checksum = (u16)NVM_SUM - checksum;
607	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
608	if (ret_val)
609		e_dbg("NVM Write Error while updating checksum.\n");
610
611	return ret_val;
612}
613
614/**
615 *  e1000e_reload_nvm_generic - Reloads EEPROM
616 *  @hw: pointer to the HW structure
617 *
618 *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
619 *  extended control register.
620 **/
621void e1000e_reload_nvm_generic(struct e1000_hw *hw)
622{
623	u32 ctrl_ext;
624
625	usleep_range(10, 20);
626	ctrl_ext = er32(CTRL_EXT);
627	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
628	ew32(CTRL_EXT, ctrl_ext);
629	e1e_flush();
630}